

$v_{6}$
A.R. zimmer.

凹iv. Somg.

Digitized by the Internet Archive in 2019 with funding from University of Toronto

The Publishers and the Author will be grateful to any of the readers of this volume who will kindly call their attention to any errors of omission or of commission that they may find therein. It is intended to make our publications standard works of study and reference, and, to that end, the greatest accuracy is sought. It rarely happens that the early editions of works of any size are free from errors; but it is the endeavor of the Publishers to have them removed immediately upon being discovered, and it is therefore desired that the Author may be aided in his task of revision, from time to time, by the kindly criticism of his readers.

JOHN WILEY \& SONS.
43 \& 45 East Nineteenth Street.

## WORKS OF WILLIAM KENT

## PUBLISHED BY <br> JOHN WILEY \& SONS.

The Mechanical Engineers' Pocket=Book.
A Reference Book of Rules, Tables, Data, and Formulæ, for the Use of Engineers, Mechanics, and Students. xxxii + noo pages, 16 mo , morocco, \$5.00.

## Steam=Boiler Economy.

A Treatise on the Theory and Practice of Fuel Economy in the Operation of Steam-Boilers. xiv +458 pages, $\mathrm{r}_{3} 6$ figures, 8 vo , clô̂h, $\$ 4.00$.

## TIIE

## MECHANICAL ENGINEER'S P0CKET-B00K.

A REFERENCE-BOOK OF RULES, TABLES, DATA, AND FORMULA, FOR THE USE OF ENGINEERS, MECHANICS, AND STUDENTS.

BY
WILLIAM KENT, A.M., M.E.。
Dean and Professor of Mechanical Engineering in the L. C. Smith College of Applied Science, Syracuse University,
Member Amer. Soc'y Mechl. Engrs. and Amer. Inst. Mining Engrs.

SEVENTH EDITION, REVISAP AND ENLARGED. EIGHTH THOUSAND. TOTAL ISSEE FORTY-TWO THOUSAND.

NEW YORK:
JOHN WILEY \& SONS.
London: CHAPMAN \& HALL, Limited. 1905.

# Copyright, 1895, 190: <br> BY <br> WILLIAM KENT 



PRESS OF
BRAUNWORTH \& CO.
BOOKBINDERS AND PRINTERS
BROOKLYN, N. Y.

## PRETACE.

More than twenty years ago the author began to follow the advice given by Nystrom: "Every engineeer should make his own pocket-book, as he proceeds in study and practice, to suit his particular business." The manuscript pocket-book thus begun, however, soon gave place to more modern means for disposing of the accumulation of engineering facts and figures, viz., the index rerum, the scrapbook, the collection of indexed envelopes, portfolios and boxes, the card catalogue, etc. Four years ago, at the request of the publishers, the labor was begun of selecting from this accumulated mass such matter as pertained to mechanical engineering, and of condensing, digesting, and arranging it in form for publication. In addition to this, a careful examination was made of the transactions of engineering societies, and of the most important recent works on mechanical engineering, in order to fill gaps that might be left in the original collection, and insure that no important facts had been overlooked.

Some ideas have been kept in mind during the preparation of the Pocket-book that will, it is believed, cause it to differ from other works of its class. In the first place it was considered that the field of mechanical engineering was so great, and the literature of the subject so vast, that as little space as possible should be given to subjects which especially belong to civil. engineering. While the mechancal engineer must continually deal with problems which belong properly to civil engineering, this latter branch is so well covered by Trautwine's "Civil Engineer's Pocketbook" that any attempt to treat it exhaustively would not only fill no "long-felt want," but would occupy space which should be given to mechanical engineering.

Another idea prominently kept in view by the author has been that he would not assume the position of an "authority" in giving rules and formulæ for designing, but only that of compiler, giving not only the name of the originator of the rule, where it was known, but also the volume and page from which it was taken, so that its
derivation may be traced when desired. When different formulæ for the same problem have been found they have been given in contrast, and in many cases examples have been calculated by each to show the difference between them. In some cases these differences are quite remarkable, as will be seen under Safety-valves and Crank-pins. Occasionally the study of these differences has led to the author's devising a new formula, in which case the deriva tion of the formula is given.

Much attention has been paid to the abstracting of data of experiments from recent periodical literature, and numerous references to other data are given. In this respect the present work will be found to differ from other Pocketbooks.

The author desires to express his obligation to the many persons who have assisted him in the preparation of the work, to manufacturers who have furnished their catalogues and given permission for the use of their tables, and to many engineers who have contributed original data and tables. The names of these persons are mentioned in their proper places in the text, and in all cases it has been endeavored to give credit to whom credit is due. The thanks of the author are also due to the following gentlemen who have given assistance in revising manuscript or proofs of the sections named: Prof. De Volson Wcod, mechanics and turbines; Mr. Frank Richards, compressed air; Mr. Alfred R. Wolff, windmills; Mr. Alex. C. Humphreys, illuminating gas; Mr. Albert E. Mitchell, locomotives: Prof. James E. Denton, refrigerating-ma. chinery; Messrs. Joseph Wetzler and Thomas W. Varley, electrical engineering; and Mr. Walter S. Dix, for valuable contributions on several subjects, and suggestions as to their treatment. William Kent.
Passaic, N. J., April, 1895.

## FIFTII EDITION, MARCH, 1900.

Some typographical and othererrors discovered in the fourth edition have been corrected. New tables and some additions have been made under the head of Compressed Air. The new (1899) code of the Boiler Test Committee of the American Society of Mechanical Engineers has been substituted for the old (1885) code.
W. K.

## PREFACE TO FOURTII EDITION.

In this edition many extensive alterations have been made. Much obsolete matter has been cut out and fresh matter substituted. In the first 170 pages but few changes have been found necessary, but a few typographical and other minor errors have been corrected. The tables of sizes, weight, and strength of materials (pages 172 to 282) have been thoroughly revised, many entirely new tables, kindly furnished by manufacturers, having been substituted. Especial attention is called to the new matter on Cast-iron Columns (pages 250 to 253 ). In the remainder of the book changes of importance have been made in more than ion pages, and all typographical errors reported to date have been corrected. Manufacturers' tables have been revised by reference to their latest catalogues or from tables furnished by the manufacturers especially for this work. Much new matter is inserted under the heads of Fans and Blowers, Flow of $\Lambda$ ir in Pipes, and Compressed Air. The chapter on Wire-rope Transmission (pages 917 to 922) has been entirely rewritten. The chapter on Electrical Engineering has been improved by the omission of some matter that has become out of date and the insertion of some new matter.

It has been found necessary to place much of the new matter of this edition in an Appendix, as space could not conveniently be made for it in the body of the book. It has not been found possible to make in the body of the book many of the cross-references which should be made to the items in the Appendix. Users of the book may find it advisable to write in the margin such cross-references as they may desire.

The Index has been thoroughly revised and greatly enlarged.
The author is under continued obligation to many manufacturers who have furnished new tables and data, and to many individual engineers who have furnished new matter, pointed out errors in the earlier editions, and offered helpful suggestions. He will be glad to receive similar aid, which will assist . in the further improvement of the book in future editions.

William Kent.
Passaic, N. J., September, 1898.

## SIXTH EDITION. DECEMBER, 1902.

The chapter on Electrical Engineering has been thoroughly revised, much of the old matter cut out and new matter substituted. Fourteen new pages have been devoted to the subject of Alternating Currents. The chapter on Locomotives has been revised. Some new matter has been added under Cast Iron, Specifications for Steel, Springs, Steam-engines, and Friction and Lubrication. Slight changes and corrections in the text have been made in nearly a hundred pages.

SEVENTH EDITION, OCTOBER 1904.
An entirely new index has been made, with about twice as many titles as the former index. The electrical engineering chapter has been further revised and some new matter added. Four pages on Coal Handling Machinery have been inserted at page 9II, and numerous minor changes have been made.
W. K.

[^0]
## CONTENTS.

## (For Alphabetical Index see page 1093.)

## MATHEMATICS.

## Arithmetic.

Arithmetical and Algebraical Signs ..... 1
Greatest Common Divisor. ..... 2
Least Common Multiple ..... $\stackrel{2}{2}$
Fractions ..... 2
Decimals ..... 3
Table. Decimal Equivalents of Fractions of One Inch ..... 3
Table. Products of Fractions expressed in Decimals ..... 4
Compound or Denominate Numbers ..... 5
Reduction Descending and Ascending ..... 5
Ratio and Proportion ..... 5
Involution, or Powers of Numbers ..... 6
Table. First Nine Powers of the First Nine Numbers ..... 7
Table. First Forty Powers of 2 ..... 7
Evolution. Square Root ..... 7
Cube Root ..... 8
Alligation. ..... 10
Permutation ..... 10
Combination ..... 10
Arithmetical Progression ..... 11
Geometrical Progression ..... 11
Interest ..... 13
Discount. ..... 13
Compound Interest ..... 14
Compound Interest Table, 3, 4, 5, and 6 per cent ..... 14
Equation of Payments ..... 14
Partial Payments ..... 15
Annuities ..... 16
Tables of Amount, Present Values, etc., of Annuities. ..... 16
Weights and Measures.
Long Measure ..... 17
Old Land Measure ..... 17
Nautical Measure ..... 17
Square Measure ..... 18
Solid or Cubic Measure ..... 18
Liquid Measure ..... 18
The Miners' Inch ..... 18
Apothecaries' Fluid Measure. ..... 18
Dry Measure ..... 18
Shipping Measure ..... 19
Avoirdupois Weight. ..... 19
Troy Weight ..... 19
Apothecaries' Weight ..... 19
To Weigh Correctly on an Incorrect Balance ..... 19
Circular Measure ..... 20
Measure of time ..... 20
Board and Timber Measure
PAGE ..... 20
Table. Contents in Feet of Joists, Scantlings, and Timber.
French or Metric Measures. ..... 20 ..... 2
British and French Equivalents.
Metric Conversion Tables ..... 23
Compound Units.
of Pressure and Weight ..... 27
of Water, Weight, and Bulk ..... 27
of Work, Power, and Duty ..... 27
of Velocity ..... 27
of Pressure per unit area ..... 27
Wire and Sbeet Metal Gauges. ..... 28
Twist-drill and Steel-wire Gauges ..... 28
Music-wire Gauge ..... 29
Circular-mil Wire Gauge ..... 30
New U. S. Standard Wire and Sheet Gauge, 1893 ..... 30
Decimal Gauge ..... 32
Algebra.
Addition, Multiplication, etc ..... 33
Powers of Numbers ..... 33
Parentheses, Division. ..... 34
Simple Equations and Problems ..... 34
Equations containing two or more Unknown Quantities ..... 3:
Elimination ..... 35
Quadratic Equations ..... 35
Theory of Exponents. ..... 36
Binomial Theorem ..... 36
Geometrical Problems of Construction ..... 37
of Straight Lines ..... 37
of Angles ..... 38
of Circles ..... 39
of Triangles ..... 41
of Squares and Polygons ..... 42
of the Ellipse ..... 45
of the Parabola ..... 48
of the Hyperbola. ..... 49
of the Cycloid ..... 49
of the Tractrix or Schielo Anti-friction Curve. ..... 50
of the Spiral ..... 50
of the Catenary ..... 51
of the Involute. ..... 52
Geometrical Propositions ..... 53
Mensuration, Plane Surfaces.
Quadrilateral, Parallelogram, etc ..... 54
Trapezium and Trapezoid ..... 54
Triangles ..... 54
Polygons. Table of Polygons. ..... 55
Irregular Figures ..... 55
Properties of the Circle ..... 57
Values of $\pi$ and its Multiples, etc ..... $5 \%$
Relations of arc, chord, etc. ..... 58
Relations of circle to inscribed square, etc ..... 58
Sectors and Segments. ..... 59
Circular Ring. ..... 59
The Enlipse ..... 59
The Helix. ..... 60
The Spiral. ..... 60
Mensuration, Solid Bodies.
Prism ..... 60
Pyramid. ..... 60
Wedge. ..... 61
The Prismoidal Formula ..... 62
Rectangular Prismoid ..... 61
Cylinder ..... 61
Cone ..... $i 1$
PAGE
Sphere ..... 61
Spherical Triangle ..... 61 ..... 61
Spherical Polygon ..... 61
Spherical Zone ..... 62
Spherical Segment ..... 6
Spheroid or Ellipsoid ..... 63
Polyedron ..... 62
Cylindrical Ring ..... 62
Solids of Revolution ..... 63
Spindles ..... 63
Frustrum of a Spleroid. ..... $6: 3$
Parabolic Conoid ..... 64
Volume of a Cask ..... 64
Irregular Solids. ..... 64
Plane Trigonometry.
Solution of Plane Triangles ..... 65
Sine, Tangent, Secant, etc ..... 65 ..... 65
signs of the Trigonometric Functions ..... 66
Trigonometrical Formulæ. ..... 66
Solution of Plane Right-angled Triangles ..... 68
Solution of Oblique-angled Triangles ..... 68
Analytical Geometry.
Ordinates and Abscissas ..... 69
Equations of a Straight Line, Intersections, etr ..... 69
Equations of the Circle ..... 70
Equatious of the Ellipse ..... 70
Equations of the Parabola ..... ro
Equations of the Hyperbola ..... r0
Logarithmic Curves ..... 71
Differential Calculus.
Definitions ..... 72
Differentials of Algebraic Functions ..... 7
Formulæ for Differentiating ..... 73
Partial Differentials ..... r3
Integrals ..... 73
Forıulæ for Integration ..... 74
Integration between Limits ..... r4
Qnadrature of a Plane Surface ..... 74
Quadrature of Surfaces of Revolution ..... 75
Cubature of Volumes of Revolntion ..... 75
Second, Third, etc., Differentials ..... 75
Maclaurin's and Taylor's Theorems ..... 76
Maxima and Minima ..... f6
Differential of an Exponential Function ..... 4
Logarithms. ..... 77
Differential Forms whith have Known Integrals ..... 78
Exponential Functions. ..... r8
Circular Functions. ..... r8
The Cycloid ..... ז9
Integral Calculus ..... 79
Mathematical Tables.
Reciprocals of Numbers 1 to 2000 ..... 80
Squares, Cubes, Square Roots, and Cube Roots from 0.1 to 1600 ..... 86
Squares and Cubes of Decimals ..... 101
Fifth Roots and Fifth Powers ..... 102
Circumferences and Areas of Circles, Diameters 1 to 1000 ..... 103
Circumferences and Areas of Circles, Advancing by Eighths from $\frac{1}{64}$ to 100 ..... 108
Decimals of a Foot Equivalent to Inches and Fractions of an Inch ..... 112
Circumferences of Circles in Feet and Inches, from 1 inch to 32 feet 11 inches in diameter. ..... 113
Lengths of Circular Arcs, Degrees Given ..... 114
Lengths of Circular Arcs, Height of Are Given ..... 115
Areas of the Segments of a Circle. ..... 116
PAGE
Spheres ..... 118
Contents of Pipes and Cylinders, Cubic Feet and Gallons ..... 120
Cylindrical Vessels, Tanks, Cisterns, etc ..... 121
Gallons in a Number of Cubic Feet ..... 122
Cubic Feet in a Number of Gallons ..... 122
Square Feet in Plates 3 to 32 feet long and 1 inch wide ..... 123
Capacities of Rectangular 'Canks in Gallons ..... 125
Number of Barrels in Cylindrical Cisterns and Tanks ..... 126
Logarithms ..... 127
Table of Logarithms ..... 129
Hyperbolic Logarithms ..... 156
Natural Trigonometrical Functions ..... 159
Logarithmic Trigonometrical Functions ..... 162
MATERIALS.
Themical Elements ..... 163
Specific Gravity and Weight of Materials ..... 163
Metals, Properties of ..... 164
The Hydrometer ..... 165
Aluminum ..... 166
Antimony ..... 166
Bismuth ..... 166
Cadmium ..... 167
Copper ..... 167
Gold ..... 167
Iridium ..... 167
Iron ..... 167
Lead ..... 167
Magnesium ..... 168
Manganese ..... 168
Mercury ..... 168
Nickel ..... 168
Platinum ..... 168
Silver ..... 168
Tin ..... 168
Zinc ..... 168
Miscellaneous Materials.
Order of Malleability, etc., of Metals ..... 169
Formulæ and Table for Calculating Weight of Rods, Plates, etc ..... 169
Measures and Weights of Various Materials ..... 169
Commercial Sizes of Iron Bars ..... 170
Weights of Iron Bars ..... 171
of Flat Rolled Iron ..... 172
of Iron and Steel Sheets. ..... 114
of Plate Iron ..... 175
of Stee 1 Blooms ..... 176
of Structural Shapes
177
177
Sizes and Weights of Carnegie Deck Beams ..... 177
" " Steel Channels ..... 1i8
66 Z Bars ..... 178
Pencoyd Steel Angles ..... 179
Tees ..... 180
" 6 Channels ..... 180
66
66 " Roofing Materials ..... 181
" Terra-cotta. ..... 181
16 Tiles ..... 181
Tin Plates ..... 181
Slates ..... 183
"، 6
Pine Shingles. ..... 183
Sky-light Glass ..... 184
Weights of Various Roof-coverings. ..... 184
Cast-iron Pipes or Columns ..... 185
" " " " 12 ft . lengths ..... 186
Pipe-fittings ..... 187
" " " Water and Gas-pipe ..... 185 ..... 189
Safe Pressures on Cast Iron Pipe ..... 189
PAGE
Sheet-iron Hydraulic Pipe ..... 191
Standard Pipe Flanges ..... 19:
Pipe Flanges and Cast-iron Pipe ..... 193
Standard Sizes of Wrought-iron Pipe. ..... 194
Wrought-iron Welded Tubes ..... 196
Riveted Iron Pipes ..... 197
Weight of Iron for Riveted Pipe ..... 197
Spiral Riveted Pipe ..... 198
Seamless Brass Tubing ..... 198,199
Coiled Pipes ..... 199
Brass, Copper, and Zinc Tubing ..... 200
Lead and Tin-lined Lead Pipe ..... 201
Weight of Copper and Brass Wire and Plates ..... $20 \%$
Round Bolt Copper ..... 203
Sheet and Bar Brass ..... 203
Composition of Rolled Brass ..... 203
Sizes of Shot ..... 204
Screw-thread, U. S. Standard ..... 204
Limit-gauges for Screw-threads ..... 205
Size of Iron for Standard Bolts ..... 206
Sizes of Screw-threads for Bolts and Taps ..... 207
Set Screws and Tap Screws ..... 208
Standard Machine Screws ..... 209
Sizes and Weights of Nuts ..... 209
Weight of Bolts with Heads ..... 210
Track Bolts ..... 210
Weights of Nuts and Bolt-heads ..... 211
Rivets ..... 211
Sizes of Turnbuckles ..... 211
Washers ..... 212
Track Spikes ..... 212
Railway Spikes ..... 212
Boat Spikes ..... 212
Wrought Spikes ..... 213
Wire Spikes ..... 213
Cut Nails ..... 213
Wire Nails ..... 214, 215
Iron Wire, Size, Strength, etc ..... 216
Galvanized Iron Telegraph Wire ..... 217
Tests of Telegraph Wire ..... 217
Copper Wire Table, B. W. Gauge ..... 218
Edison or Circular Mil Gauge ..... 219
66 " ${ }^{6}$ B. \& S. Gauge ..... 220
Insulated Wire ..... 221
Copper Telegraph Wire ..... 221
Electric Cables ..... 221, ..... 22:
Galvanized Steel-wire Strand ..... 223
Steel-wire Cables for Vessels ..... 223
Specifications for Galvanized Iron Wire ..... 224
Strength of Piano Wire ..... 224
Plough-steel Wire ..... 224
Wires of different metals ..... 225
Specifications for Copper Wire ..... 225
Cable-traction Ropes ..... $2 \because 6$
Wire Ropes ..... 226, 227
Plough-steel Ropes ..... 228
Galvanized Iron Wire Rope ..... 228
Steel Hawsers ..... 223,
Flat Wire Ropes ..... $2: 9$
Galvanized Steel Cables ..... 230
Strength of Chains and Ropes ..... 230
Notes on use of Wire Rope ..... 231
Locked Wire Rope ..... 231
Crane Chains ..... 232
Weights of Logs, Lumber, etc ..... 232
Sizes of Fire Brick ..... 233
Fire Clay, Analysis ..... 234
Magnesia Bricks. ..... 235
Asbestos ..... 235

## Strength of Materials.

## PAGE

Stress and Strain ..... 236
Elastic Limit ..... 236
Yield Point ..... 237
Modulus of Elasticity ..... 237
Resilience ..... 238
Elastic Limit and Ultimate Stress ..... 238
Repeated Stresses ..... $2: 38$
Repeated Shocks ..... 240
Stresses due to Sudden Shocks ..... 241
Increasing Tensile Strength of Bars by Twisting ..... 241
Tensile Strength ..... 242
Measurement of Elongation ..... 243
Shapes of Test Specimens ..... 243
Compressive Strength ..... 244
Columns, Pillars, or Struts ..... 246
Hodgkinson's Formula ..... 246
Gordon's Formula ..... 247
Moment of Inertia ..... 247
Radius of Gyration ..... 247
Elements of Usual Sections ..... 248
Strength of Cast-iron Columns ..... 250
Transverse Strength of Cast-iron Water-pipe. ..... 251
Safe Load on Cast-iron Colunns ..... 252
Strength of Brackets on Cast-iron Columns ..... 253
Eccentric Loading of Columns ..... 254
Wrought-iron Columns ..... 455
Built Columns ..... 256
Phœenix Columns ..... 257
Working Formulæ for struts ..... 259
Merriman's Formula for Columns ..... 260
Working Strains in Eiridge Members ..... 26
Working Stresses for Steel ..... 263
Resistance of Hollow Cylinders to Collapse ..... 264
Collapsing Pressure of Tubes or Flnes ..... 265
Formula for Corrugated Furnaces ..... 266
Transverse Strength ..... 266
Formulæ for Flexure of Beams ..... 267
Safe Loads on Steel Beams ..... 269
Elastic Resilience ..... 270
Beams of Uniform Strength ..... $2 \pi 1$
Properties of Rolled Structural Shapes ..... $2 \pi$
Steel I Beams ..... 2 27 ..... 2 27
Spacing of Steel I Beams ..... $2 \pi 6$
Properties of Steel Channels ..... $2 \pi$
"T Shapes
278
278
66 Angles ..... 279 a
Size of Beams for Floors ..... 280
Flooring Material ..... 281
Tie Rods for Brick Arches ..... 281
Torsional Strength ..... 281
Elastic Resistance to Torsion ..... 282
Combined Stresses ..... 282
Stress due to Temperature ..... 283
Strength of Flat Plates ..... 283
Strength of Unstayed Flat Surfaces ..... 284
Unbraced Heads of Boilers ..... 285
Thickness of Flat Cast-iron Plates ..... 286
Strength of Stayed Surfaces ..... 286
Spherical Shells and Domed Heads ..... 286
Stresses in Steel Plating under Water Pressure ..... 287
Thick Hollow Cylinders under Tension ..... 287
Thin Cylinders under Tenslon ..... 299
Hollow Copper Balls ..... 289
Holding Power of Nails, Spikes, Bolts, and Screws ..... 289
Cut versus Wire Nails ..... 290
Strength of Wroughti-iron Bolts ..... 293
PAGE
Initial Strain on Bolts ..... 292
Stand Pipes and their Design ..... 292
Riveted Steel Water-pipes ..... 295
Mannesmann Tubes ..... 296
Kirkaldy's Tests of Materials ..... 296
Cast Iron ..... 296
Iron Castings ..... 297
Irou Bars, Forgings, etc ..... 297
Steel Rails and Tires ..... 298
Steel Axles, Shafts, Spring Steel ..... 299
Riveted Joints ..... 299
Welds ..... 300
Copper, Brass, Bronze, etc ..... 300
Wire, Wire-rope ..... 301
Ropes, Hemp, and Cotton ..... 301
Belting, Canvas ..... 302
Stones, Brick, Cement ..... 302
Tensile Strength of Wire ..... 303
Watertown Testing-machine Tests ..... 303
Riveted Joints ..... 303
Wrought-iron Bars, Compression Tests ..... 304
Steel Eye-bars ..... 304
Wrought-iron Columns ..... 305
Cold Drawn Steel ..... 305
American Woods ..... 306
Sliearing Strength of lron and Steel ..... 306
Holding Power of Boiler-tubes ..... 307
Chains, Weight, Proof Test, etc ..... 307
Wrought-iron Chain Cables ..... 308
Strength of Glass ..... 308
Copper at High Temperatures ..... 309
Strength of Timber ..... 309
Expansion of Timber ..... 311
Shearing Strength of Woods ..... 312
Strength of Brick, Stone, etc ..... 312
" Flagging ..... 313
" " Lime and Cement Mortar ..... 313
Moduli of Elasticity of Various Materials ..... 314
Factors of Safety ..... 314
Properties of Cork ..... 316
Vulcanized India-rubber ..... 316
Xylolith or Woodstone ..... 316
Aluminum, Properties and Uses ..... 317
Alloys.
Alloys of Copper and Tin, Bronze ..... 319
Copper and Zinc, Brass ..... 321
Variation in Strength of Bronze ..... 321
Copper-tin-zinc Alloys ..... 322
Liquation or Separation of Metals ..... 3:3
Alloys used in Brass Foundries ..... 325
Copper-nickel Alloys ..... $3: 6$
Copper-zinc-iron Alloys ..... $3 シ 6$
Tobin Bronze ..... 326
Phosphor Bronze ..... 327
Aluminum Bronze ..... 328
Aluminum Brass ..... 399
Caution as to Strength of Alloys ..... 329
Aluminum hardened ..... 330
Alloys of Aluminum, Silicon, and Iron ..... 330
Tungsten-aluminum Alloys. ..... 331
Aluminum-tin Alloys ..... 331
Manganese Alloys ..... 331
Manganese Bronze ..... 331
German Silver ..... 332
A.llovs of Bismuth ..... 332
Fusible Alloys ..... 333
Tsearing Metal Alloys. ..... 333
PAGE Alloys containing Antimony ..... 336
White-metal Alloys ..... 336
Type-metal ..... 336
Babbitt metals ..... 336
Solders. ..... 338
Ropes and Chains.
Strength of Hemp, Iron, and Steel Ropes ..... 338
Flat Ropes
Flat Ropes
Flat Ropes ..... 339 ..... 339
Working Load of Ropes and Chains.
Working Load of Ropes and Chains. ..... 339
Strength of Ropes and Chain Cables ..... 340
Rope for Hoisting or Transmission ..... 340
Cordage, Technical terms of ..... 341
Splicing of Ropes ..... 341
Coal Hoisting ..... 343
Manila Cordage, Weight, etc ..... 344
Knots, how to make
Knots, how to make
344
344
Splicing Wire Ropes ..... 346
Springs.
Laminated Steel Springs ..... 347
Helical Steel Springs
Helical Steel Springs ..... 347
Carrying Capacity of Springs
349
349
Elliptical Spriugs ..... 352
Phosplior-bronze Springs ..... 352
Springs to Resist Torsional Force ..... 352
Helical Springs for Cars, etc ..... 353
Riveted Joints.
Fairbairn's Experiments. ..... 354
Loss of Strength by Punching .....
354 .....
354
Strength of Perforated Plates
354
354
Hand vs. Hydraulic Riveting ..... 355
Formulæ for Pitch of Rivets
357
357
Proportions of Joints ..... 358
Efficiencies of Joints ..... 359
Diameter of Rivets ..... 360
Strength of Riveted Joints ..... 361
Riveting Pressures ..... 362
Shearing Resistance of Rivet Iron ..... 363
Iron and Steel.
Classification of Iron and Steel ..... 364
Grading of Pig Iron ..... 365
Influence of Silicon Sulphur, Phos, and iin on Cast Iron ..... 365 ..... 369
Tests of Cast Iron
Tests of Cast Iron
Chemistry of Foundry Irou ..... 370
Analyses of Castings. ..... 373
Strength of Cast Iron ..... 374
Specifications for Cast Iron ..... 374
Mixture of Cast Iron with Steel
Mixture of Cast Iron with Steel
375
375
Bessemerized Cast Iron ..... 375
Bad Cast Iron
375
375
Malleable Cast Iron
Malleable Cast Iron ..... 375
Wrouglit Iron ..... 377
Chemistry of Wronght Iron
377
377
Influence of Rolling on Wrought Iron
$37 \%$
$37 \%$
Specifications for Wrought Iron ..... 3~8
Stay-bolt Iron.
Stay-bolt Iron.
378
378
Formulæ for Unit Strains in Structures ..... 379
Permissible Stresses in Structures ..... 381
Proportioning Materials in Memphis Bridge ..... 382
Tenacity of Iron at High Temperatures ..... 382
Effect of Cold on Strength of Iron .....
383 .....
383
Expansion of Iron by Heat ..... 385
Durability of Cast Iron ..... 385
Corrosion of Iron and Steel
386
386
Preservative Cuatiugs; Paints, etc ..... 387
Non-oxidizing Process of Annealing ..... 387
Manganese Plating of Iron. ..... 389
Steel.
Relation between Chemical and Physical Properties ..... 389
Variation in Strength ..... 391
Open-hearth. ..... 392
Bessemer ..... 392
Hardening Soft Steel ..... 393
Effect of Cold Rolling. ..... 393
Comparison of Full-sized and Small Pieces ..... 393
Treatment of Structural Steel ..... 394
Influence of Annealing upon Magnetic Capacity ..... 396
Specifications for Steel ..... 397
Chemical Requirements. ..... 397
Kinds of Steel used for Different Purposes. ..... 397
Castings, Axles, Forgings ..... 397
Tires, Rails, Splice-bars, Structural Steel ..... 398
Boiler-plate and Rivet Steel ..... 399
May Carbon be Burned out of Steel? ..... 402
Recalescence of Steel ..... 402
Effect of Nicking $e$ Bar ..... 402
Electric Conductivity ..... 403
Specific Gravity: ..... 403
Occasional Failures. ..... 403
Segregation in Ingots. ..... 404
Earliest Uses for Structures. ..... 405
Steel Castings ..... 405
Manganese Steel ..... 407
Nickel Steel. ..... 407
Aluminum Steel ..... 409
Chrome Steel ..... 409
Tungsten Steel ..... 409
Compressed Steel. ..... 410
Crucible Steel. ..... 410
Effect of Heat on Grain ..... 412
" Hammering, etc ..... 412
Heating and Forging. ..... 412
Tempering Steel ..... 413
NECHANECS.
Force, Unit of Force ..... 415
Inertia ..... 415
Newton's Laws of Motion. ..... 415
Resolution of Forces. ..... 415
Parallelogram of Forces. ..... 416
Moment of a Force ..... 416
Statical Moment, Stability ..... 417
Stability of a Dam ..... 417
Parallel Forces. ..... 417
Couples. ..... 418
Equilibrium of Forces ..... 418
Centre of Gravity ..... 418
Moment of Inertia. ..... 419
Centre of Cyration. ..... 420
Radius of Gyration ..... 420
Centre of Oscillation ..... 421
Centre of Percussion. ..... 422
The Pendulum. ..... 422
Conical Pendulum ..... 423
Centrifugal Force ..... 423
Acceleration. ..... 423
Falling Bodies. ..... 424
Value of $g$. ..... 424
Angular Velocity ..... 425
Height due to Velocity ..... 425
Parallelogram of Velocities ..... 426
Mass. ..... 427
Force of Acceleration
PAGE ..... 427
Motion on Inclined Planes. ..... 428
Momentum.
Vis Viva ..... 428
Work, Foot-pound ..... 428
Power, Horse-power ..... 429
Energy ..... 429
Work of Acceleration ..... 430
Force of a Blow ..... 430
Impact of Bodies ..... 431
Energy of Recoil of Guns ..... 431
Couservation of Energy ..... 432
Perpetual Motion ..... 432
Efficiency of a Machine ..... 432
Animal-power, Man-power ..... 433
Work of a Horse ..... 434
Man-wheel ..... 434
Horse-gin ..... 434
Resistance of Vehicles. ..... 435
Elements of Mactines.
The Lever ..... 435
The Bent Lever ..... 436
The Moving Strut ..... 436
The Toggle-joint ..... 436
The Inclined Plane ..... 437
The Wedge ..... 4.37
The Screw ..... $43 \hat{1}$
The Cam ..... 438
The Pulley ..... 438
Differential Pulley ..... 439
Differential Windlass ..... 439
Differential Screw ..... 439
Wheel and Axle ..... 439
Toothed-wheel Gearing ..... 439
Endless Screw ..... 440
Stresses in praned Structures.
Cranes and Derricks ..... 440
Shear Poles and Guys ..... 442
King Post Truss or Bridge ..... 442
Queen Post Truss ..... 442
Burr Truss ..... 443
Pratt or Whipple Truss ..... 443
Howe Truss ..... 445
Warren Girder ..... 445
Roof Truss ..... 446

Thermometers and Pyrometers ..... 448
Centigrade and Fahrenheit degrees compared ..... 449
Copper-ball Pyrometer ..... 451
Thermo-electric Pyrometer ..... 451
Temperatures in Furnaces ..... 451
Wiborgh Air Pyrometer ..... 453
Seeger's Fire-clay Pyrometer ..... 453
Mesuré and Nouel's Pyrometer ..... 453
Uehling and Steinbart's Pyrometer ..... 453
Air-thermometer ..... 4.54
High Temperatures judged by Color ..... 454
Boiling-points of Substances ..... 455
Melting-points ..... 455
Unit of Heat ..... 455
Mechanical Equivalent of Heat ..... 456
Heat of Combustion ..... 456
Specific Heat ..... 457
Latent Heat of Fusion ..... 459, 461
Expansion by Heat ..... 460
Absolute Temperature ..... 461
Absolute Zero ..... 461
PAGE
Latent Heat ..... 461
Latent Heat of Evaporation ..... 462
Total Heat of Evaporation ..... 462
Evaporation and Drying ..... 462
Evaporation from Reservoirs ..... 463
Evaporation by the Multiple System ..... 463
Resistance to Boiling ..... 463
Manufacture of Salt ..... 464
Solubility of Salt and Sulphate of Lime ..... 464
Salt Contents of Brines ..... 464
Concentration of Sugar Solutions ..... 465
Evaporating by Exhaust Steam ..... 465
Drying in Vacuum ..... 466
Radiation of Heat ..... 467
Conduction and Convection of Heat ..... 468
Rate of External Conduction ..... 469
Steam-pipe Coverings ..... $4 \pi 0$
Transmission through Plates ..... 471
" in Condenser Tubes ..... 473
" Cast-iron Plates. ..... 474
from Air or Gases to Water ..... $4 i 4$
from Steam or Hot Water to Air ..... 475
through Walls of Buildings ..... $4 \pi 8$
Thermodynamics ..... 478
PHYSICAL PROPERTIES OF GASES.
Expansion of Gases ..... 449
Boyle and Marriotte's Law ..... 479
Law of Charles, Avogadro's Law ..... 479
Saturation Point of Vapors ..... 480
Law of Gaseous Pressure ..... 480
Flow of Gases ..... 480
Absorption by Liquids ..... 480
AIR.
Properties of Air ..... 481
Air-manometer ..... 481
Pressure at Different Altitudes ..... 481
Barometric Pressures ..... 482
Levelling by the Barometer and by Boiling Water ..... 482
To find Difference in Altitude ..... 483
Moisture in Atmosphere ..... 483
Weight of Air and Mixtures of Air and Vapor ..... 484
Specific Heat of Air ..... 484
Flow of Air.
Flow of Air through Orifices ..... 484
Flow of Air in Pipes ..... 485
Effect of Bends in Pipe ..... 488
Flow of Compressed Air ..... 488
Tables of Flow of Air ..... 489
Anemometer Measurements ..... 491
Equalization of Pipes ..... 491
Loss of Pressure in Pipes ..... 493
Wind.
Force of the Wind ..... 493
Wind Pressure in Storms ..... 495
Windmills ..... 495
Capacity of Windmills ..... 49 r
Economy of Windmills ..... 498
Electric Power from Windmills ..... 499
Compressed Air.
Heating of Air by Compression ..... 499
Loss of Energy in Compressed Air ..... 499
Volumes and Pressures ..... 500
PAGE
Loss due to Excess of Pressure ..... 501
Horse-power Required for Compression ..... 501
Table for Adiabatic Compression ..... 502
Mean Effective Pressures ..... 502
Mean and Terminal Pressures ..... 503
Air-compressors ..... 503
Practical Results ..... 505
Efficiency of Compressed-air Engines ..... 506
Requirements of Rock-drills ..... 506
Popp Compressed-air Systems ..... 507
Small Compressed-air Motors ..... 50
Efficiency of Air-heating Stoves ..... $50 \%$
Efficiency of Compressed-air Transmission ..... 508
Shops Operated by Compressed Air ..... 509
Pueumatic Postal Transinission ..... 509
Mekarski Compressed-air Tramways ..... 510
Compressed Air Working Pumps in Mines ..... 511
Fans and Blowers.
Centrifugal Fans ..... 511
Best Proportions of Fans ..... 512
Pressure due to Velocity ..... 513
Experiments with Blowers ..... 514
Quantity of Air Delivered ..... 514
Efficiency of Fans and Positive Blowers ..... 516
Capacity of Fans and Blowers ..... 517
Table of Centrifugal Fans ..... 518
Engines, Fans, and Steam-coils for the Blower System of Heating. ..... 519
Sturtevant Steel Pressure-blower ..... 519
Diameter of Blast-pipes. ..... 519
Efficiency of Fans ..... 520
Centrifugal Ventilators for Mines ..... 521
Experiments on Mine Ventilators ..... 522
Disk Fans ..... 524
Air Removed by Exhaust Wheel ..... 525
Efficiency of Disk Fans ..... 525
Positive Rotary Blowers ..... 526
Blowing Engines ..... 526
Steam-jet Blowers ..... 527
Steam-jet for Ventilation ..... 527
HEATING AND VENTILATION.
Ventilation ..... $5 \because 8$
Quantity of Air Discharged through a Ventilating Duct ..... 530
Artificial Cooling of Air ..... 531
Mine-ventilation ..... 531
Friction of Air in Underground Passages ..... 531
Equivalent Orifices ..... 533
Relative Efficiency of Fans and Heated Chimneys ..... 53:3
Heating and Ventilating of Large Buildings ..... 534
Rules for Computing Radiating Surfaces ..... 536
Overhead Steam-pipes ..... 537
Indirect Heating-surface ..... 537
Boiler Heating-surface Required ..... 538
Proportion of Grate-surface to Radiator-surface ..... 538
Steam consumption in Car-heating ..... 538
Diameters of Steam Supply Mains ..... 539
Registers and Cold-air Ducts ..... 539
Plysical Properties of Steam and Condensed Water. ..... 540
Size of Steam-pipes for Heating ..... 510
Heating a Greenhouse by Steam ..... 541
Heating a Greenhouse by Hot Water ..... 549
Hot-water Heating ..... 542
Law of Velocity of Flow ..... 542
Proportions of Radiating Surfaces to Cubic Capacities ..... 543
Diameter of Main and Branch Pipes ..... 543
Rules for Hot-water Heating ..... 544
Arrangements of Mains ..... 544
PAGE
Brower System of Heating anç Ventilating ..... 545
Experiments with Radiators ..... 545
Heating a Building to $70^{\circ} \mathrm{F}$. ..... 545
Heating by Electricity ..... 546
WATER.
Expansion of Water ..... 547
Weight of Water at different temperatures. ..... 547
Pressure of Water due to its Weight. ..... 549
Head Corresponding to Pressures. ..... 549
Buoyancy ..... 550
Boiling-point ..... 550
Freezing-point ..... 550
Sea-water. ..... 549, 550
Ice and Snow ..... 550
Specific Heat of Water ..... 550
Compressibility of Water ..... 551
Impurities of Water ..... 551
Causes of Incrustation ..... 551
Means for Preventing Incrustation ..... 554
Analyses of Boiler-scale ..... 552
Hardiness of Water ..... 553
Purifying Feed-water ..... 554
Softening Hard Water ..... 555
Hydraulics. Flow of Water.
Fomulæ for Discharge through Orifices ..... 555
Flow of Water from Orifices ..... 555
Flow in Open and Closed Channels. ..... 557
General Formulæ for Flow ..... 557
Table Fall of Feet per mile, etc ..... 558
Values of $\sqrt{r}$ for Circular Pipes ..... 559
Kutter's Formula ..... 559
Molesworth's Formula ..... 562
Bazin's Formula ..... 563
1)'Arcy's Formula ..... 563
Older Formulæ ..... 564
Velocity of Water in Open Channels ..... 564
Mean, Surface and Bottom Velocities ..... 564
Safe Bottom and Mean Velocities. ..... 565
Resistance of Soil to Erosion. ..... 565
Abrading and Transporting Power of Water ..... 565
Grade of Sewers ..... 566
Relations of Diameter of Pipe to Quantity discharged ..... 566
Flow of Water in a 20 -inch Pipe ..... 566
Velocities in Smooth Cast-iron Water-pipes ..... 56 T
Table of Flow of Water in Circular Pipes ..... 568-573
Loss of Head ..... $5{ }^{2} 3$
Flow of Water in Riveted Pipes ..... 574
Frictional Heads at given rates of discharge ..... 57
Effect of Bend and Curves ..... 518
Hydraulic Grade-line ..... 578
Flow of Water in House-service Pipes ..... $5 \%$
Air-bound Pipes ..... 579
Vertical Jets ..... 54
Water Delivered through Meters ..... 579
Fire Streams. ..... $5: 9$
Friction Losses in Hose ..... 580
Head and Pressure Losses by Friction ..... 580
Loss of Pressure in smooth 21/2-inch Hose ..... 580
Rated capacity of Steam Fire-engines ..... 580
Pressures required to throw water through Nozzles ..... 581
The Siphon ..... 581
Measurement of Flowing Water ..... 582
Piezometer ..... 582
Pitnt Tube Gauge ..... 583
The Venturi Meter ..... 583
Deasurement of Discharge by means of Nozzles. ..... 584
PAGE
Flow through Rectangular Orifices ..... 584
Measurement of an Open Stream ..... 584
Miners' Inch Measurements ..... 585
Flow of Water over Weirs ..... 586
Francis's Formula for Weirs ..... 586
Weir Table ..... 587
Bazin's Experiments ..... 587
Water-power.
Power of a Fall of Water ..... 588
Horse-power of a Running Stream ..... 589
Current Motors ..... 589
Horse-power of Water Flowing in a Tube ..... 589
Maximum Efficiency of a Long Conduit ..... 589
Mill-power ..... 589
Value of Water-power ..... 590
The Power of Ocean Waves ..... 539
Utilization of Tidal Power. ..... 600
Turbine Wheels.
Proportions of Turbines ..... 591
Tests of Turbines ..... 596
Dimensions of Turbines ..... 597
The Pelton Water-wheel ..... 597
Pumps.
Theoretical capacity of a pump ..... 601
Depth of Suction ..... 602
Amount ol Water raised by a Single-acting Lift-pump ..... 60:
Proportioning the Steam cylinder of a Direct-acting Pump ..... 602
Speed of Water through Pipes and Pump-passages ..... 602
Sizes of Direct-acting Pumps ..... 603
The Deane Pump ..... 603
Efficiency of Smiall Pumps ..... 603
The Worthington Duplex Pump ..... 604
Speed of Piston ..... 605
Speed of Water through Valves ..... 605
Boiler-feed Pumps ..... 605
Pump Valves ..... 606
Centrifugal Pumps ..... 606
Lawrence Centrifugal Pumps ..... 607
Efficiency of Centrifugal and Reciprocating Pumps ..... 608
Vanes of Centrifugal Pumps ..... 609
The Centrifugal Pump used as a Suction Dredge ..... 609
Duty Trials of Pumping Engines ..... 609
Leakage Tests of Pumps ..... 611
Vacuum Prmps ..... 612
The Pulsometer ..... 612
The Jet Pump ..... 614
The Injector ..... 614
Air-lift Pump ..... 614
The Hydraulic Ram. ..... 614
Quantity of Water Delivered by the Hydraulic Ram ..... 615
Hydraulic Pressure Transmission.
Energy of Water under Pressure ..... 616
Efficiency of Apparatus ..... 616
Hydraulic Presses ..... 617
Hydraulic Power in London ..... 617
Hydraulic Riveting Machines ..... 618
Hydraulic Forging ..... 618
The Aiken Intensifier ..... 619
Hydraulic Engine ..... 619
FUEL.
Theory of Combustion ..... 620
Total Heat of Combustion ..... Ba
PAGE
PAGE
Analyses of Gases of Combustion ..... 622
Temperature of the Fire ..... 622
Classification of Solid Fuel ..... 623
Classification of Coals ..... 634
Analyses of Coals ..... 624
Western Lignites ..... 631
Analyses of Foreign Coals ..... 631
Nixon's Navigation Coal ..... 63:
Sampling Coal for Analyses ..... 632
Relative Value of Fine Sizes ..... 63:
Pressed Fuel ..... $63 \%$
Relative Value of Steam Coals ..... 633
Approximate Heating Value of Coals ..... 634
Kind of Furnace Adapted for Different Coals ..... 635
Downward-drauglit Furnaces ..... 635
Calorimetric Tests of American Coals ..... 636
Evaporative Power of Bituminous Coals. ..... 636
Weathering of Coal ..... 637
Coke ..... 637
Experiments in Coking ..... 63 r
Coal Washing ..... 634
Recovery of By-products in Coke manufacture ..... 638
Making Hard Coke ..... 638
Generation of Steam from the Waste Heat and Gases from Coke-ovens. ..... 638
Products of the Distillation of Coal ..... 639
Wood as Fuel ..... 639
Heating Value of Wood ..... 639
Composition of Wood ..... 640
Charcoal ..... 640
Yield of Charcoal from a Cord of Wood ..... 641
Consumption of Charcoal in Blast Furnaces. ..... 641
Absorption of Water and of Gases by Charcoal ..... 641
Composition of Charcoals ..... 642
Miscellaneous Solid Fuels ..... 642
Dust-fuel-Dust Explosions ..... 642
Peat or Turf ..... 643
Sawdust as Fuel ..... 613
Horse-manure as Fuel ..... 643
Wet Tan-bark as Fuel ..... 643
Straw as Fuel ..... 643
Bagasse as Fuel in Sugar Manufacture ..... 643
Petroleum.
Products of Distillation ..... 645
Lima Petroleum ..... 645
Value of Petroleum as Fuel ..... 645
Oil vs. Coal as Fuel. ..... 646
Fuel Gas.
Carbon Gas ..... 646
Anthracite Gas. ..... 647
Bituminous Gas ..... $64 ?$
Water Gas ..... 648
Producer-gas from One Ton of Coal ..... 649
Natural Gas in Ohio and Indiana ..... 649
Combustion of Producer-gas ..... 650
Use of Steam in Producers. ..... 650
Gas Fuel for Small Furnaces ..... 651
Illuminating Gas.
Coal-gas ..... 651
Water-gas ..... 652
Analyses of Water-gas and Coal gas ..... 653
Calnrific Equivalents of Constituents ..... 654
Efficiency of a Water-gas Plant. ..... 654
Space Required for a Water-gas Plant ..... 656
Fuel-value ot Illuminating-gas ..... 656
PAGE
Flow of Gas in Pipes ..... 657
Service for Lamps. ..... 658
STEAM.
Temperature and Pressure ..... 6 2ั9
Total Heat ..... 659
Latent Heat of Steam ..... 659
Latent Heat of Volume ..... 660
Specific Heat of Saturated Steam ..... 660
Density and Volume ..... 660
Superheated Steam ..... 661
Regnault's Experiments ..... 661
Table of the Properties of Steam ..... 662
Flow of Steam.
Napier's Approximate Rule ..... 669
Flow of Steam in Pipes ..... 669 ..... 669
Loss of Pressure Due to Radiation ..... 671
Resistance to Flow by Bends ..... 672
Sizes of Steam-pipes for Stationary Engines ..... 673
Sizes of Stean-pipes for Marine Engines ..... 674
Steam Pipes.
Bursting-tests of Copper Steam-pipes ..... 674
Thickness of Copper Steam-pipes. ..... 675
Reinforcing Steam-pipes ..... 675
Wire-wound Steam-pipes ..... 675
Riveted Steel Steam-pipes ..... 675
Valves in Stean-pipes. ..... 675
Failure of a Copper Steam-pipe ..... $6 \pi 6$
The Stean Loop ..... 676
Loss from an Uncovered Steam-pipe ..... 676
THE STEAM BOILER.
The Horse-power of a Steam-boiler ..... 677
Measures for Comparing the Duty of Boilers. ..... 678
Steam-boiler Proportions ..... 678
Heating-surface ..... 678
Horse-power, Builders' Rating ..... 649
Grate-surface ..... 680
Areas of Fiues ..... 680
Air-passages Through Grate-bars ..... 681
Performance of Boilers ..... 681
Conditions which Secure Economy ..... 68:
Efficiency of a Boiler ..... 683
Tests of Steam-boilers ..... 685
Boilers at the Centennial Exhibition ..... 685
Tests of Tubulous Boilers ..... 686
High Rates of Evaporation ..... 687
Economy Effected by Heating the Air ..... 687
Results of Tests with Different Coals. ..... 688
Maximum Boiler Efficiency with Cumberland Coal ..... 689
Boilers Using Waste Gases ..... 659
Boilers for Blast Furnaces ..... 689
Rules for Conducting Boiler Tests ..... 690
Table of Factors of Evaporation ..... 695
Strongth of Steam-hoilers.
Rules for Construction ..... 300
Shell-plate Formulæ ..... \%01
Rules for Flat Plates ..... 701
Furnace Formulæ ..... ro:
Material for Stays ..... T03
Loads allowed on Stays ..... \% 03
Girders ..... 703
Rules for Constructinn of Boilers in Merchant Vessels in U. S ..... 705
PAGE
U. S. Rule for Allowable Pressures ..... 706
Safe-working Pressures ..... 707
Rules Governing Inspection of Boilers in Philadelphia ..... ro8
Flues and Tubes for Steam Boilers ..... 709
Flat-stayed Surfaces ..... r09
Diameter of Stay-bolts ..... 710
Strength of Stays. ..... 710
Stay-bolts in Curved Surfaces ..... 710
Boiler Attachments, Furnaces, etc.
Fusible Plugs ..... 710
Steam Domes ..... 711
Height of Furnace ..... 711
Mechanical Stokers ..... 711
The Hawley Down-draught Furnace ..... 712
Under-feed Stokers. ..... ${ }^{712}$
Smoke Prevention ..... 712
Gas-fired Steam-boilers ..... 714
Forced Combustion ..... 714
Fuel Economizers. ..... 715
Incrustation and Scale ..... 716
Boiler-scale Compounds ..... 717
Removal of Hard Scale ..... 718
Corrosion in Marine Boilers ..... 719
Use of Zinc ..... 720
Effect of Deposit on Flues ..... 720
Dangerous Boilers ..... 720
Safety Valves.
Rules for Area of Safety-valves ..... 721
Spring-loaded Safety-valves ..... 724 ..... 724
The Injector.
Equation of the Injector ..... 725
Performance of Injectors ..... 726
Boiler-feeding Pumps ..... 726
Feed-water Heaters.
Strains Caused by Cold Feed-water ..... $72 \%$
Steam Separators.
Efficiency of Steam Separators ..... 728
Determination of Moisture in Steam.
Coil Calorlmeter. ..... 729
Throttling Calorimeters ..... 729
Separating Calorimeters ..... 730
Identification of Dry Steam ..... 730
Usual Amount of Moisture in Steam ..... 731
Chimneys.
Chimney Draught Theory ..... 731
Force or Intensity of Draught ..... 732
Rate of Combustion Due to Height of Chimney ..... 733
High Chimneys not Necessary ..... 734
Heights of Chimneys Required for Different Fuels ..... 734
Table of Size of Chimneys ..... 734
Protection of Chimney from Lightning ..... 736
Some Tall Brick Chimneys ..... 737
Stability of Chimneys ..... 738
Weak Chimneys ..... 739
Steel Chimneys ..... 740
Sheet-iron Chimneys ..... 741
THE STEAM ENGINE.
Expanslon of Steam ..... 742
Mean and Terminal Absolute Pressures ..... 743
PAGE
Calculation of Mean Effective Pressure. ..... 744
Work of Steam in a Single Cylinder ..... 746
Measures of Comparing the Duty of Engines. ..... 748
Efficiency, Thermal Units per Minute. ..... 749
Real Ratio of Expansion ..... 750
Effect of Compression. ..... 751
Clearance in Low- and High-speed Engines. ..... 751
Cylinder-condensation. ..... 752
Water-consumption of Automatic Cut-off Engines ..... 753
Experiments on Cylinder-condensation ..... 753
Indicator Diagrams ..... 754
Indicated Horse-power ..... 755
Rules for Fistimating Horse-power ..... 755
Horse-pover Constant ..... 756
Errors of indicators. ..... 756
Table of Encine Consitants. ..... 756
To Draw Clearanoc on Indicator-diagram ..... 759
To Draw Hyperbola Curve on Indicator-diagram ..... 759
Theoretical Water Consumption ..... 760
Leakage of Steam. ..... 761
Compound Engines.
Advantages of Compounding ..... 762
Woolf and Receiver Types of Engines. ..... 762
Combined Diagrams. ..... 764
Proportions of Cylinders in Compound Engines. ..... 765
Receiver Space. ..... 766
Formula for Calculating.Work of Steam ..... 767
Calculation of Diameters of Cylinders ..... 768
Triple-expansion Engines ..... 769
Proportions of Cylinders. ..... 769
Formula for Proportioning Cylinders ..... 769
Types of Three-stage Expansion Engines. ..... 771
Sequence of Cranks. ..... 772
Velocity of Steam through Passages. ..... 772
Quadruple-expansion Engines. ..... 772
Diameters of Cylinders of Marine Engines. ..... 773
Progress in Steam-engines ..... 773
A Double-tanden Triple-expansion Engine. ..... 773
Principal Engines, World's Columbian Exhihition, 1893 ..... 774
Steam-engine Economy.
Economic Performance of Steam-engines ..... 775
Feed-water Consumption of Different Types. ..... 775
Sizes and Calculated Performances of Vertical High-speed Engines ..... 777
Most Economical Point of Cut-off ..... 777
Type of Engine Used when Fxhanst-steam is used for Heating. ..... 780
Comparison of Comnound and Single-cylinder Engines. ..... 780
Two-cylinder and Three-cylinder Engines ..... 781
Effect of Water in Steam on Efficiency ..... 781
Relative Commercial Economy of Compound and Triple-expansion Engines. ..... 781
Highest Economy of Pumping-engines ..... 782
Steam Consumption of Engincs with Superheated Steam ..... 782
Relative Economy of Engines under Variable Joads ..... 784
Efficiency of Non-condensing Compound Engines ..... 784
Economy of Engines under Varving Loads ..... 784
Steam Consumption of Various Sizes. ..... 785
Steam Consumption in Small Engines ..... 786
Steam Consumption at Various Speeds ..... 786
Limitation of Engine Speed ..... 787
Influence of the Steam-jacket ..... 787
Counterbalancinr Encrines ..... 788
Preventing Vibrations of Engines. ..... 789
Foundations Embedded in Air ..... 789
Cost of Coal for Steam-power. ..... 789
Storing Steam Heat. ..... 789
Cost of Steam-power ..... 790

## Rotary Steam-engines.

PAGE
Steam Turbines ..... 791
Rotary Steam-engines ..... r93
Dimensions of Parts of Engines.
Cylinder ..... 792
Clearance of Piston ..... r92
Thickness of Cylinder ..... 792
Cylinder Heads ..... 794
Cylinder-head Bolts ..... r95
The Piston ..... 795
Piston Packing-rings ..... r.96
Fit of Piston-rod ..... 796
Diameter of Piston-rods ..... r97
Piston-rod Guides ..... r98
The Connecting-rod ..... r99
Connecting-rod Ends ..... 800
Tapered Connecting-rods ..... 801
The Crank-pin ..... 801
Crosshead-pin or Wrist-pin ..... 804
The Crank-arm ..... 805
The Shaft, Twisting Resistance ..... 806
Resistance to Bending ..... 808
Equivalent Twisting Moment ..... 808
Fly-wheel Shafts ..... 809
Length of Shaft-bearings ..... 810
Crank-shafts with Centre-crank and Double-crank Arms ..... 813
Crank-shaft wlth two Cranks Coupled at $90^{\circ}$ ..... 814
Talve-stem or Valve-rod ..... 815
Size of Slot-link ..... 815
The Eccentric ..... 816
The Eccentric-rod ..... 816
Reversing-gear. ..... 816
Engine-frames or Bed-plates ..... 817
Fly-wheels.
Weight of Fly-wheels ..... 817
Centrifugal Force in Fly-wheels ..... 820
Arms of Fly-wheels and Pulleys ..... 820
Diameters for Various Speeds. ..... 821
Strains in the Rims ..... 822
Thickness of Rims ..... 823
A Wooden Rim Fly-wheel ..... $8: 4$
Wire-wound Fly-wheels ..... 824
The Slide-valve.
Definitions, Lap, Lead, etc. ..... 824
Sweet's Valve-diagram ..... 826
The Zeuner Valve-diagram. ..... 827
Port Opening ..... 8:2
Lead ..... $8: 9$
Inside Lead ..... $8: 2$
Ratio of Lap and of Port-opening to Valve-travel ..... 829
Crank Angles for Connecting-1rods of Different Lengths ..... 830
Relative Motions of Crosshead and Crank ..... 831
Periods of Admission or Cut-off for Various Laps and Travels. ..... 831
Diagram for Port-opening, Cut-off, and Lap ..... 832
Piston-valves ..... 834
Setting the Valves of an Engine ..... 834
To put an Engine on its Centre ..... 834
Link-motion. ..... 834
Governors.
Pendulum or Fly-ball Governors ..... 836
To Change the Speed of an Engine ..... 837
Fly-wheel or Shaft Governors ..... 838
Calculation of Springs for Shaft-governors ..... 838

# Condensers, Air-pumps, Circulating-pumps, etc. 

The Jet Condenser ..... page ..... 839
Ejector Condensers
The Surface Condenser ..... 840
Condenser Tubes. ..... 840
Tube-plates. ..... S41
Spacing of Tubes. ..... 841
Quantity of Cooling Water ..... 841
Air-pump. ..... 811
Area through Valve-seats ..... 842
Circulating-pump ..... 843
Feed-pumps for Marine Engines ..... 843
An Evaporative Surface Condenser. ..... 844
Continuous Use of Condensing Water ..... 844
Increase of Power by Condensers. ..... 846
Evaporators and Distillers. ..... 817
GAS, PETROLEUM, AND HOT-AIIE ENGINES.
847
847
Gas-engines. the Gas-engine ..... 848
Tests of the Simplex Gas-enginc. ..... 848
A $320-\mathrm{H} . \mathrm{P}$. Gas-engine. ..... 848
Test of an Otto Gas-engine ..... 849
Temperatures and Pressures Develoned ..... 849
Test of the Clerk Gas-engine. ..... 849
Combustion of the Gas in the Otto Engine ..... 849
Use of Carhuretted Air in Gas-engines. ..... 849
The Otto Gasoline-engine ..... 850
The Priestman Petroleum-engine. ..... 850
Test of a 5-H.P. Priestman Petroleum-engine ..... 850
Naphtha-engines. ..... 851
Hot-air or Caloric Engines ..... 851
Test of a Hot-air Engine ..... 851
LOCOIEOTUVES.
Resistance of Trains. ..... S51
Inertia and Resistance at Increasing Speeds. ..... 853
Efficicncy of the Mechanism of a Locomotive. ..... 854
Size of Locomotive Cylinders. ..... 855
Size of Locomotive Boilers ..... 855
Qualities Essential for a Free-steaming Locomotire. ..... 855
Wootten's Locomotive. ..... 855
Grate-surface, Smokestacks, and Exhaust-nozzles for Locomotives ..... 856
Exhaust Nozzles. ..... 856
Fire-brick Arches. ..... 857
Size. Weight, Tractive Power, etc. ..... 857
Leading American Types. ..... 858
Steam Distribution for High Speed ..... 858
Speed of Railway Trains. ..... 859
Formulæ for Curves. ..... 859a
Performance of a High-speed Locomotive. ..... $859 a$
Loenmotive Link-motion. ..... $859 a$
Dimensions of Some American Locomotives. ..... 859-862
Indicated Water Consumption. ..... 862
Locomotive Testing Apparatus. ..... 863
Waste of Fuel in Locomotives. ..... 863
Advantages of Compounding. ..... 863
Counterbalancing Locomotives. ..... 864
Maximum Safe Load on Steel Rails ..... 865
Narrow-gauge Railways. ..... 865
Petroleum-burning Locomotives ..... 865
Fireless Locomotives. ..... 866
SHENTENG.
Diameters to Resist Torsional Strain. ..... 867
Deflection of Shafting. ..... 868
Horse-power Transmitted by Shafting ..... 869
Table for Laying Out Shafting. ..... 871

## I'ULLEXS.

Proportions of Pulleys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
Convexity of Pulleys873
Cone or Step Pulleys. ..... 874
BELTLN゙ネ.
Theory of Belts and Bands ..... 876
Centrifugal Tension ..... 876
Belting Practice, Formulx for Beltrng ..... 877
Horse-power of a Belt one meh wide. ..... 878
A. F. Nagle's Formula. ..... 878
Width of Belt for Given Horse-power ..... 879
Taylor's Rules for Belting. ..... 880
Notes on Belting. ..... 882
Lacing of Belts. ..... 883
Setting a Belt on Quarter-twist ..... 883
To Find the Length of Belt ..... 884
To Find the Angle of the Arc of Contact ..... 884
To Find the Length of Belt when Closely Rolled ..... 884
To Find the Approximate Weight of Belts ..... 884
Relations of the Size and Speeds of Driving and Driven Pullevs. ..... 884
Evils of Tight Belts. ..... 885
Sag of Belts. ..... 885
Arrangements of Belts and Pulleys ..... 885
Care of Belts ..... 886
Strength of Belting. ..... 886
Adhesion, Independent of Diameter ..... 886
Endless Belts. ..... 886
Belt Data. ..... 886
Belt Dressing ..... 887
Cement for Cloth or Leather ..... 887
Rubber Belting. ..... 887
GEARING.
Pitch, Pitch-circle, etc ..... 887
Diametral and Circular Pitch. ..... 888
Chordal Pitch ..... 889
Diameter of Pitch-line of Wheels from 10 to 100 Teeth ..... 839
Proportions of Teeth ..... 889
Proportion of Gear-wheels. ..... 891
Width of Teeth. ..... 891
Rules for Calculating the Speed of Gears and Pulleys. ..... 891
Milling Cutters for Interchangeable Gears. ..... 892
Forms of the Teeth.
The Cycloidal Tooth. ..... 892
The Involute Tooth ..... 894
Approximation by Circular Ares ..... 896
Stepped Gears ..... 897
Twisted Teeth ..... 897
Spiral Gears. ..... 897
Worm Gearing. ..... 897
Teeth of Bevel-wheels ..... 898
Annular and Differential Gearing. ..... 898
Efficiency of Gearing ..... 899
Strength of Gear Teeth.
Various Formulre for Strength ..... 900
Comparison of Formulæ. ..... 903
Maximum Speed of Gearing ..... 905
A Heavy Machine-cut Spur-gear ..... 905
Frictional Gearing ..... 905
Frictional Grooved Gearing. ..... 906
HOISTING.
Weight and Strength of Cordage. ..... 906
Working Strength of Blocks ..... 906
PAGE
Efficiency of Chain-blocks ..... 907
Proportions of Hooks. ..... 907
Power of Hoisting Engines. ..... 908
Effect of Slack Rope on Strain in Hoisting. ..... 908
Limit of Depth for Hoisting. ..... 908
Large Hoisting Records. ..... 908
Pneumatic Hoisting. ..... 909
Counterbalancing of Winding-engines. ..... 909
Cranes.
Classification of Cranes ..... 911
Position of the Inclined Brace in a Jib Crane ..... 912
A Large Travelling-crane ..... 912
A 150-ton Pillar Crane ..... 912
Compressed-air Travelling Cranes. ..... 912
Coal-handling Machinery.
Weight of Overhead Bins ..... $912 a$
Supply-pipes from Bins ..... $912 a$
Types of Coal Elevators. ..... 912a
Combined Elevators and Conveyors ..... $912 a$
Coal Conveyors ..... $912 a$
Weight of Chain ..... $912 b$
Weight of Flights ..... 912 c
Horse-power of Conveyors ..... 912 c
Bucket Conveyors. ..... $912 c$
Screw Conveyors ..... $912 d$
Belt Conveyors. ..... $912 d$
Capacity of Belt Conveyors ..... 912d
Wire-rope Haulage.
Self-acting Inclined Plane. ..... 913
Simple Engine Plane ..... 913
Tail-rope System ..... 913
Endless Rope System ..... 914
Wire-rope Tramways. ..... 914
Suspension Cableways and Cable Hoists. ..... 915
Stress in Hoisting-ropes on Inclined Planes. ..... 915
Tension Required to Prevent Wire Slipping on Drums ..... 916
Taper Ropes of Uniform Tensile Strength. ..... 916
Effect of Various Sized Drums on the Life of Wire Ropes. ..... 917
WIRE-ROPE TRANSMISSION.
Elastic Limit of Wire Ropes ..... 917
Bending Stresses of Wire Ropes. ..... 918
Horse-power Transmitted. ..... 919
Diameters of Minimum Sheaves. ..... 919
Deflections of the Rope ..... 920
Long-distance Transmission. ..... 921
ROPE DIEIVING.
Formulæ for Rope Driving. ..... 922
Horse-power of Transmission at Various Speeds. ..... 924
Sag of the Rope Between Pulleys. ..... 925
Tension on the Slack Part of the Rope ..... 925
Miscellaneous Notes on Rope-driving. ..... 926
FRICTION AND LUBRICATION.
Coefficient of Friction. ..... 928
Rolling Friction. ..... 928
Friction of Solids ..... 928
Friction of Rest. ..... 928
Laws of Unlubricated Friction. ..... 928
Friction of Sliding Steel Tires. ..... 928
Coefficient of Rolling Friction. ..... 929
Laws of Fluid Friction. ..... 929
Angles of Repose. ..... 929
1'AGE
Friction of Motion ..... 929
Coefficient of Friction of Journal. ..... 930
Experiments on Friction of a Journal ..... 931
Coefficients of Friction of Journal with Oil Bath ..... 932
Coefficients of Friction of Motion and of Rest ..... 932
Value of Antj-friction Metals ..... 932
Cast-iron for Bearings. ..... 933
Friction of Metal Under Steam-pressure ..... 933
Morin's Laws of Friction ..... 933
Laws of Friction of well-lubricated Journals ..... 934
Allowable Pressures on Bearing-surface. ..... 935
Oil-pressure in a Bearing. ..... 937
Friction of Car-journal Brasses. ..... 937
Experiments on Overheating of Bearings. ..... 938
Moment of Friction and Work of Friction ..... 938
Pivot Bearings. ..... 939
The Schiele Curve ..... 939
Friction of a Flat Pivot-bearing. ..... 939
Mercury-bath Pivot. ..... 940
Ball Bearings. ..... 940
Friction Rollers ..... 940
Bearings for Very High Rotative Speed ..... 941
Friction of Steam-engines ..... 941
Distribution of the Friction of Engines. ..... 941
Lubrication.
Durability of Lubricants. ..... 942
Qualifications of Lubricants. ..... 943
Amount of Oil to run an Engine ..... 943
Examination of Oils. ..... 943
Penna. R. R. Specifications. ..... 944
Soda Mixture for Machine Tools ..... 945
Solid Lubricants. ..... 945
Graphite, Soapstone, Fibre-graphite, Metaline ..... 945
THE FOUNDIBY.
Cupola Practice ..... 946
Charging a Cupola ..... 948
Charges in Stove Foundries ..... 949
Results of Increased Driving ..... 949
Pressure Blowers ..... 950
Loss of Iron in Melting ..... 950
Use of Softeners. ..... 950
Shrinkage of Castings. ..... 951
Weight of Castings from Weight of Pattern. ..... 952
Moulding Sand ..... 952
Foundry Ladles ..... 952
THE MACHINE SHOP.
Speed of Cutting Tools ..... 9.53
Talle of Cutting Speeds. ..... 95
Speed of Turret Lathes. ..... 0.54
Forms of Cutting Tonls ..... 975
Rule for Gearing Lathes. ..... 9.55
Change-gears for Lathes ..... 056
Metric Screw-threads. ..... 956
Setting the Taper in a Lathe ..... 956
Speed of Drilling Holes. ..... 956
Speed of Twist-drills. ..... 957
Milling Cutters. ..... 957
Speed of Cutters ..... 958
Results with Milling-machines ..... 059
Milling with or Against Feed. ..... 960
Milling-machine vs. Planer ..... 960
Power Required for Machine Tools. ..... 960
Heavy Work on a Planer ..... 960
Horse-power to run Lathes. ..... 961
Power used by Machine Tools page
Power Required to Drive Machinery. ..... 963
Power used in Machine-shops. ..... 964
Abrasive Processes.The Cold Saw
966
Reese's Fusing-disk ..... 966
Cutting Stone with Wire
Cutting Stone with Wire ..... 966 ..... 966
The Sand-blast
The Sand-blast
966
966
Emery-wheels. ..... 967-969
Grindstones.
Grindstones. ..... 968-970
Various Tools and Processes.
Taps for Machine-screws. ..... 970
Tap Drills
Tap Drills ..... 971
Taper Bolts, Pins, Reamers, etc ..... 972
Punches, Dies, Presses.
972
972
Clearance Between Punch and Die.
972
972
Size of Blanks for Drawing-press. ..... 973
Pressure of Drop-press. ..... 973
Flow of Metals ..... 973
Forcing and Shrinking Fit:. ..... 973
Efficiency of Screws
974
974
Powell's Screw-thread ..... 975
Proportioning Parts of Machine
975
975
Keys for Gearing, etc. ..... 975
Holding-power of Set-screws ..... 977
Holding-power of Keys ..... 978
DYNAMOMETERS.
Traction Dynamometers ..... 978
The Prony Brake ..... 978
The Alden Dynamoneter ..... 979
Capacity of Friction-brakes.
980
980
Transmission Dynamometers. ..... 980
ICE MAKING OR REFIRIGERATING MACHINES.
Operations of a Refrigerator-machine
981
981
Pressures, etc., of Available Liquids. .....
982 .....
982
Ice-melting Effect
Ice-melting Effect
983
983
Ether-machines ..... 983
Air-machines
983
983
Ammonia Compression-machines. ..... 983
Ammonia Absorption-machines. ..... 984
Sulphur-dioxide Machines.
985
985
Performance of Ammonia Compression-machines ..... 986
Economy of Ammonia Compression-machines. ..... 987
Machines Using Vapor of Water
988
988
Efficiency of a Refrigerating-machine
988
988
Test Trials of Refrigerating-machines.
990
990
Temperature Range. ..... 991
Metering the Ammonia
992
992
Properties of Sulphur Dioxide and Ammonia Gas ..... 992
Properties of Brine used to absorb Refrigerating Effect
994
994
Chloride-of-calcium Solution ..... 994
Actual Performances of Refrigerating Machines.
Performance of a 75-ton Refrigerating-machine ..... 994. 998
Cylinder-heating. ..... 997
Tests of Ammonia Absorption-machine ..... 997
Ammonia Compression-machine, Results of Tests ..... 999
Means for Applying the Cold. ..... 999
Artificial Iceminanufacture.
'Iest of the New Iork Hygeia lce-making Plant ..... 1000
MARINE ENGINELRING.
Rules for Measuring Dimensions and Obtaining Tonnage of Vessels. ..... page ..... 1001 ..... 1001The Displacement of a VesselCoefficient of Fineness.1002
Coefficient of Water-lines. ..... 1002
Resistance of Ships ..... 1002
Coefficient of Performance of Vessels ..... 1003
Defects of the Common Formula for Resistance. ..... 1003
Rankine's Formula ..... 1003
Dr. Kirk's Method. ..... 1004
To find the I.H.P. from the Wetted Surface. ..... 1005
F. R. Mumford's Method ..... 1006
Relative Horse-power required for different Speeds of Vesscls. ..... 1006
Resistance per Horse-power for different Speeds. ..... 1006
Results of Trials of Steam-vessels of Various Sizes ..... 1007
Speed on Canals. ..... 1008
Results of Progressive Specd-trials in Typical Vcssels. ..... 1008
Estimated Displacement, Horse-power, etc., of Steam-vessels of Various Sizes. ..... 1009
The Screw-propeller.
Size of Screw ..... 1010
Propeller Coefficients. ..... 1011
Efficiency of the Propeller. ..... 1012
Pitch-ratio and Slip for Screws of Standard Form ..... 1012
Results of Recent Researches. ..... 1013
The Paddle-wheel.
Paddle-wheel with Radial Floats ..... 1013
Feathering Paddle-wheels. ..... 1013
Efficiency of Paddle-wheels. ..... 1014
Jet-propulsion.
Reaction of a Jet ..... 1015
Recent Practice in Harine Engines.
Forced Draught. ..... 1015
Boilers. ..... 1015
Piston-valves. ..... 1016
Steam-pipes ..... 1016
Auxiliary Supply of Fresh-water Evaporators. ..... 1016
Weir's Feed-water Heater. ..... 1016
Passenger Steamers fitted with Twin-screws ..... 1017
Comparative Results of Working of Marine-engine, 1872, 1881, and 1891 ..... 1017
Weight of Three-stage Expansion-engines ..... 1017
Particulars of Three-stage Expansion-engines ..... 1018
CONSTRUCTHON OF HULHIDINGS.
Walls of Warehouses, Stores, Factories, and Stables ..... 1019
Strength of Floors, Roofs, and Supports ..... 1019
Columns and Posts ..... 1019, 1022
Fireproof Buildings. ..... 1020
Iron and Steel Columns. ..... 1020
Lintels, Bearings, and Supports. ..... 1020
Strains on Girders and Rivets. ..... 1020
Maximim Load on Floors ..... 1021
Strength of Floors. ..... 1021
Safe Distributed Loads on Southern-pine Beams ..... 1023
ELECTHICAL ENGINEERING.
C. G. S. System of Physical Measurement ..... 1024
Practical Units used in Electrical Calculations. ..... 1024
Relations of Various Units. ..... 1025
Equivalent Electrical and Mechanical Units. ..... 1026
Analogies between Flow of Water and Electricity. ..... 1027

## Elcetrical Resistance.


#### Abstract

Laws of Electrical Resistance. PAGE Laws of


Conductors and Inculators Diferent Metals and Alloys. .................. . . 1028
Resistance Varies with Temperature. . . ................................... . . . . . 1023
Annealing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
Standard of Resistance of Copper Wire . . ....................................... . . . . . . 1029

## Direct Electric Currents.

Ohm's Law
1029
Series and Parallel or Multiple Circuits ..... 1030
Resistance of Conductors in Series and Parallel ..... 1030
Internal Resistance. ..... 1031
Electrical, Indicated, and Brake Horse-power. ..... 1031
Power of the Circuit ..... 1031
Heat Gencrated by a Current ..... 1031
Heating of Conductors ..... 1032
Fusion of Wires. ..... 1032
Heating of Coils ..... 1032
Allowable Carrying Capacity of Copper Wires. ..... 1033
Underwriters' Insulation ..... 1033
Copper-wire Table. ..... 1034, 1035
Electric Transmission, Dircet Currents.
Section of Wire Required for a Given Current ..... 1033
Weight of Copper for a Given Power ..... 1036
Short-circuiting. ..... 1036
Economy of Electric Transmission. ..... 1036
Wire Table for $110,220,500,1000$, and 2000 volt Circuits ..... 1037
Efficiency of Long-distance Transmission. ..... 1038
Table of Electrical Horse-powers. ..... 1039
Cost of Copper for Long-distance Transmission. ..... 1040
Systems of Electrical Distribution. ..... 1041
Clectric Lighting.
Arc Lights. ..... 1042
Incandescent Lamps. ..... 1042
Variation in Candle-power and Life. ..... 1042
Specifications for Lamps ..... 1043
Special Lamps. ..... 1043
Nernst Lamp. ..... 1043
Electric Welding ..... 1044
Electric Heaters ..... 1044
Electric Accumulators or Storage-batteries.
Description of Storage-batteries. ..... 1045
Sizes and Weights of Storage-batteries. ..... 1048
Gieneral Rules for Storage-cells. ..... 1048
Electrolysis ..... 1048
Electro-chemical Equivalents. ..... 1049
Efficiency of a Storage-cell. ..... 1048
Electro-magnets.
Units of Electro-magnetic Measurements. ..... 1050
Lines of Loops of Force. ..... 1050
The magnetic Circuit. ..... 1051
Permeability ..... 1052
Tractive or Lifting Force of a Magnet ..... 1053
Magnet Windings. ..... 1053
Determining the Polarity of Electro-magnets. ..... 1054
Determining the Direction of a Current ..... 1054
Dynamo-rlectric Machines.
Kinds of Dynamo-electric Machines as regards Manner of Winding. ..... 1055
Moving Force of a Dynamo-electric Machine. ..... 1055
Torque of an Armature. ..... 1056
Electro-motive Force of the Armature Circuit. ..... 1056
Strength of the Magnetic Field. ..... 1057
Dynamo Design. ..... 1058
Alternating Currente.
Maximum, Average, and Effective Values. ..... PAGE
Frequency ..... 1061
Inductance, Capacity, Power Factor ..... 1062
Reactance, Impedance, Admittance. ..... 1063
Skin Effect Factors. ..... 1063
Ohm's Law Applied to Alternating Currents ..... 1064
Impedance Polygons ..... 1066
Capacity of Conductors ..... 1066
Self-inductance of Lines and Circuits ..... 1066
Capacity of Conductors ..... 1067
Single-phase and Polyphase Currents ..... 1068
Measurement of Power in Polyphase Circuits ..... 1069
Alternating-current Generators ..... 1070
Transformers, Converters, etc. ..... 1070
Synchronous Motors ..... 1071
Induction Motors ..... 1072
Calculation of Alternating-current Circuits ..... 1072
Weight of Copper Required in Different Systems. ..... 1074
Electrical Machinery.
Direct-current Generators and Motors ..... 1074-1076
Alternating-current Generators ..... 1077
Induction Motors ..... 1077
Symbols Used in Electrical Diagrams ..... 1078
APRENDIX.
Strength of Timber.
Safe Load on White-oak Beams. ..... 1079
Mathematics.
Formula for Interpolation ..... 1080
Maxima and Minima without the Calculus. ..... 1080
Riveted Joints.
Pressure Required to Drive Hot Rivets ..... 1080
Heating and Ventilation.
Capacities for Hot-blast or Plenum Heating with Fans and Blowers. ..... 1081
Water-wheels.
Water-power Plants Operating under High Pressure. ..... 1681
Formulæ for Power of Jet Water-wheels ..... 1082
Gas Fuel.
Composition Energy, etc., of Various Gases. ..... 1082
Steam-boilers.
Rules for Steam-boiler Construction. ..... 1083
Boiler Feeding. ..... 1083
Feed-water Heaters. ..... 1083
The Steam-engine.
Current Practice in Engine Proportions. ..... 1084
Work of Steam-turbines ..... 1085
Relative Cost of Different Sizes of Engines. ..... 1085
Gearing.
Efficiency of Worm Gearing. ..... 1086
Hydraulic Formula.
Flow of Water from Orifices, etc. ..... 1087
Tin and Terne Plate.
Penna. R. R. Co.'s Specifications. ..... 1088
LIST OF AU'THORITLES ..... 1089

## NAMES AND ABBREVIATIONS OF PERIODICALS AND TEXT-BOOKS FREQUENTLY REFERRED TO IN THIS WORK.

Am. Mach. American Machinist.
App. Cyl. Mech. Appleton's Cyclopædia of Mechanics, Vols. I and II.
Bull. I. \& S. A. Bulletin of the American Iron and Steel Association (Philadelphia).
Burr's Elasticity and Resistance of Materials.
Clark, R. T. D. D. K. Clark's Rules, Tables, and Data for Mechanical Engineers.
Clark, S. E. D. K. Clark's Treatise on the Steam-engine.
Col. Coll. Qly. Columbia College Quarterly.
Eugg. Engineering (London).
Eng. News. Engineering News.
Engr. The Engineer (London).
Fairbairn's Useful Information for Engineers.
Flynn's Irrigation Canals and Flow of Water.
Jour. A. C. I. W. Journal of American Charcoal Iron Workers' Association. Jour. F. I. Journal of the Franklin Institute.
Kapp's Electric 'Iransmission of Energy.
Lanza's Applied Mechanics.
Merriman's Strength of Materials.
Modern Mechanism. Supplementary volume of Appleton's Cyclopædia of Mechanics.
Proc. lust. C. E. Proceedings Institution of Civil Engineers (London).
Proc. Inst. M. E. Proceedings Institution of Mechanical Engineers (London).
Peabody's Thermodynamics.
Proceedings Engineers' Club of Philadelphia.
Rankine, S. E. Rankine's The Steam Engine and other Prime Movers.
Rankine's Machinery and Millwork.
Rankine, R. T. D. Rankine's Rules, Tables, and Data.
Reports of U. S. Test Board.
Reports of U. S. Testing Machine at Watertown, Massachusetts.
Rontgen's Thermodynamics.
Seaton's Manual of Marine Engineering.
Haınilton Smith, Jr.'s Hydraulics.
The Stevens Indicator.
Thompson's Dynamo-electric Machinery.
Thurston's Manual of the Steam Engine.
Thurston's Materials of Engineering.
Trans. A. I. E. E. Transactions American Institute of Electrical Engineers.
Trans. A. I. M. E. Transactions American Institute of Mining Engineers.
Trans. A. S. C. E. Transactions American Society of Civil Engineers.
Trans. A. S. M. E. Transactions American Soc'ty of Mechanlcal Engineers.
Trautwine's Civil Engineer's Pocket Book.
The Locomotive (Hartford, Connecticut).
Unwin's Elements of Machine Design.
Weisbach's Mechanics of Engineering.
Wood's Resistance of Materials.
Wood's Thermodynamics.

## Greek Letters.

| A | a | Alpha | H | $\eta$ | Eta | N |  | Nu | T |  | Ta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | $\beta$ | Beta | $\stackrel{\square}{+}$ | $\vartheta \theta$ | Theta | E | $\xi$ | Xi | Y | $v$ | Upsilon |
| 5 | $\gamma$ | Gamma | I | $\iota$ | Iota | O | ${ }_{0}$ | Omicron | $\Phi$ | $\phi$ | Plii |
| $\triangle$ | $\delta$ | Delta | K | $\kappa$ | Kappa | II | $\pi$ | Pi | X | X | Chi |
| $\underset{Z}{E}$ | , | Epsilon | $\Lambda$ | $\lambda$ | Lambda | P |  | Rho | $\pm$ | 廿 | Psi |
|  | $\zeta$ | Zeta | M | $\mu$ | Mu | $\Sigma$ | $\sigma$ s | Sigina | $\Omega$ |  | Oineg |

## Arithmetical and Algebraical Signs and Abbreviations.

- plus (addition).
+ positive.
- minus (subtraction).
- negative.
$\pm$ plus or minus.
₹ minus or plus.
$=$ equals.
$\times$ multiplied by.
$a b$ or $a . b=a \times b$ 。
$\div$ divided by
$/$ divided by.
$\frac{a}{b}=a / b=a \div b . \quad 15-16=\frac{15}{16}$.
$.2=\frac{2}{10} ; .002=\frac{2}{1000}$.
$\checkmark$ square root.
$\sqrt[3]{ }$ cube root.
$\sqrt[4]{4}$ th root.
: is to, :: so is, : to (proportion).
$2: 4:: 3: 6$, as 2 is to 4 so is 3 to 6 .
: ratio; divided by.
$2: 4$, ratio of 2 to $4=2 / 4$.
$\therefore$ therefore.
$>$ greater than.
$<$ less than.
- square.
o round.
- degrees, arc or thermometer.
- millutes or feet.
" seconds or inches.
" " ""' accents to distinguish letters, as $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$.
$a_{1}, a_{2}, a_{3}, a_{b}, c_{c}$, read $a \operatorname{sub} 1, a$ sub $b$, etc.
() []$\}$ $\square$ vincula, denoting that the numbers enclosed are to be taken together ; as, $(a+b) c=\overline{4+3} \times 5=35$.
$\alpha^{2}, \alpha^{3}, a$ squared, $a$ cubed.
$a^{\mathrm{n}}$, a raised to the $n$th power.
$a^{\frac{2}{3}}=\sqrt[3]{1^{2}}, a^{\frac{3}{2}}=\sqrt{a^{3}}$.
$a^{-1}=\frac{1}{a}, a^{-2}=\frac{1}{a^{2}}$.
$10^{\circ}=10$ to the 9 th power $=1,000,000$,
$\sin . a=$ the sine of $\alpha$.
$\sin .^{-1} \alpha=$ the are whose sine is $a$.
$\sin . a^{-2}=\frac{1}{\sin . a}$
$\log .=\operatorname{logarithm}$.
log. or hyp. log. $=$ hyperbolic loga-
$\angle$ angle
L right angle.
$\perp$ perpendicular to.
sin., siie.
cos., cosine.
tang., or tan., tangent.
sec., secant.
versin., versed sine.
cot., cotangent.
cosec., cosecant.
covers., co-versed sine.
In Algebra, the first letters of the alphabet, $a, b, c, d$, etc., are generally used to denote known quantities, and the last letters, $v, x, y, z$. ttc., unknown quantities.
Abbreviations and Symbols commonly used.
d, differential (in calculus).
$\int$, integral (in calculus).
$\int_{\mathrm{b}}^{\mathrm{a}}$, integral between limits $a$ and $b$.
$\Delta$, delta, difference.
E. sigma, sign of summation.
$\pi$, pi, ratio of circumference of circle to diameter $=3.14159$.
$g$, acceleration due to gravity $=32.10$ ft. per sec.
Abbreviations frequently used in this Book.
L., l., length in feet and inches.
B., b., breadth in feet and inches.
D., d., depth or dianeter.
H., h., height, feet and inches.
T., t., thickness or temperature.
V., v., velocity.
F., force, or factor of safety.
f., coefficient of friction.
E., coefficient of elasticity.
R., r., radius.
W., w., weight.
P., p., pressure or load.
H.P., horse-power.
I. H.P., indicated horse-power.
B.H.P., brake horse-power.
h. p., high pressure.
i. p., internediate pressure.

1. p. low pressure.
A.W. G., American Wire Gauge
(Brown \& Sharpe).
B. W.G., Birmingham Wire Gauge.
r. p. m., or revs. per min., revolutions per minute.

## ARITHMETIC.

The user of this book is supposed to have had a training in arithmetic as well as in elementary algebra. Only those rules are given here which are apt to be easily forgotten.

## GREATEST COMIMON MEASURE, OR GREATEST COMIION DIVISOR OW TWO NUMEBERS.

Rule.- Divide the greater number by the less; then divide the divisor by the remainder, and so on, dividing always the last divisor by the last remainder, until there is no remainder, and the last divisor is the greatest common measure required.

## LEAST COMIMON MULTYPLE OF TWO OR MORE NUMBERS.

Rule.-Divide the given numbers by any number that will divide the greatest number of them without a remainder, and set the quotients with the undivided number's in a line beneath.

Divide the second line as before, and so on. until there are no two numbers that can be divided; then the continued product of the divisors and last quotients will give the multiple required.

## FRACTIONS.

To reduce a common fraction to its lowest terms.-Divide both terlus by their greatest common divisor. $39 / 52=3 / 4$.

To change an improper fraction to mixed number. Divide the numerator by the denominator; the quotient is the whole number, and the remainder placed over the denominator is the fraction: $39 / 4=93 / 4$.
To change a mixed number to an improper fraction. Multiply the whole number by the denominator of the fraction; to the product add the numerator: place the sum over the denominator: $17 / 8=1 \overline{0} / \mathrm{s}$.

To express a whole number in the form of a fraction with agiven denominator.-Muliply the whole number by the given demominator, and place the product over that denominator: $13=39 / 3$.
To reduce a compound to a simple fraction, also to multiply fractions.-Multiply the numerators together for a new numerator and the denominators tugether for a new denominator:

$$
\frac{2}{3} \text { of } \frac{4}{3}=\frac{8}{9}, \text { also } \quad \frac{2}{3} \times \frac{4}{3}=\frac{8}{9} \text {. }
$$

To reduce a complex to a simple fraction. -The numerator and denominator must each first be given the form of a simple fraction; then multiply the numerator of the upper fraction by the denominator of the lower for the new numerator, and the denominator of the upper by the numerator of the lower for the new denominator:

$$
\frac{7 / 3}{13 / 4}=\frac{7 / 3}{7 / 4}=\frac{28}{56}=\frac{1}{2} .
$$

To divide fractions.- Redice benth to the form of simple fractions, invert the divisor, and proceed as in multication:

$$
\frac{3}{4} \div 11 / 4=\frac{3}{4} \div \frac{5}{4}=\frac{3}{4} \times \frac{4}{5}=\frac{12}{20}=\frac{3}{5} .
$$

Cancellation of fractions.-In compound or multiplied fractions, divide any numerator and any denominator by any number which will divide them both without remainder, striking out the numbers thus divided and sefling down the quotients in their slead.

To reduce fractions to a common denominator.-Reduce each fraction to the form of a simple fraction; then multiply each numera-
tor by all the denominators except its own for the new numerators, and all the denominators together for the common denominator:

$$
\frac{1}{2}, \frac{1}{3}, \frac{3}{7}=\frac{21}{42}, \frac{14}{42}, \frac{18}{42} .
$$

To add fractions.-Reduce them to a common denominator, then add the numerators and place their sum over the common denominator:

$$
\frac{1}{2}+\frac{1}{3}+\frac{3}{7}=\frac{21+14}{42}+18=\frac{53}{42}=1 \frac{1}{42} .
$$

To subtract fractions.-Reduce them to a common denominator, subtract the numerators and place the difference over the common denominator:

$$
\frac{1}{2}-\frac{3}{7}=\frac{7-6}{14}=\frac{1}{14}
$$

## DECLIMAS.

To add decimals. - Set down the figures so that the decimal points are one above the other, then proceed as in simple addition: $18.75+.012=$ 18.:6\%.

To subtract decimals. - Set down the figures so that the decimal poims are one above the other, then proceed as in simple subtraction: 18.75 $-.012=18.738$.

To multiply decimals.-Multiply as in multiplication of whole numbers, then point off as many decimal places as there are in multiplier and multiplicand taken together: $1.5 \times .02=.030=.03$.

To divide decimals. - Divide as in whole numbers, and point off in the quotient as many decimal places as those in the dividend exceed those in the divisor. Ciphers must be added to the dividem to make its decimal places at least equal those in the divisor, and as many more as it is desnred to liave in the quotient: $1.5 \div .25=6.0 .1 \div 0.3=0.10000+0.3=0.3333+$

Decimal Equivalents of Fractions of One Inch.

| 1-64 | .0156\%5 | 1\%-64 | .265685 | 83-64 | 515095 | 49-64 | . 765625 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-3: | .0:31:25 | 9-32 | . $2 \times 120$ | 1\%-3: | . 53125 | 25-32 | . 78125 |
| 3-6t | .046875 | 19-6t | . 296875 | 35-64 | . 546875 | 51-64 | . 796875 |
| 1-16 | .0625 | 5-16 | . 3125 | 9-16 | . $56: 5$ | 18-16 | . 8125 |
| 5-64 | . 078125 | 21.64 | . $8281 \% 5$ | $3 i ゙-64$ | . 578125 | 53-64 | . 828125 |
| 3-32 | . 09375 | 11-32 | . 34375 | 19-3:3 | . 5937. | 27-32 | .843775 |
| 7-64 | .1093\% | 23-64 | . 359375 | 39-64 | . 609375 | 55-64 | . 859375 |
| 1-8 | . 125 | 3-8 | . 375 | 5-8 | . 625 | 7-8 | . 875 |
| 9-64 | . 140625 | 2.-64 | . 390625 | 4:-64 | . 640625 | 5\%-64 | . 890625 |
| 5-32 | . 15695 | 13-32 | . 40625 | : $1-3$ | . 65625 | 29-32 | . 90625 |
| 11-64 | .171855 | 27-64 | . 421875 | 4:3-64 | . 671875 | 59-64 | . 921875 |
| 3-16 | . 1875 | 7-16 | . 4375 | 11-16 | . 68.5 | 15-16 | . 9375 |
| 13-64 | . 203125 | 29-64 | .453125 | 45-64 | . 703165 | 61-64 | . 95.3125 |
| \%-3? | . $218 \%$ | 15-32 | . 46875 | 23-32 | . 71875 | 31-32 | . 96875 |
| 15-64 | . 234375 | 31-64 | . 484375 | 47-64 | . 734375 | 63-64 | . 984375 |
| 1-4 | . 25 | 1-2 | . 50 | 3-4 | . 75 | 1 | 1. |

To convert a common raction into a decimal.-Divide the numerator by the denominator, adding to the mumerator as many ciphers prefixed by a decimal point as are necessary to give the number of decimal places desired in the result: $1 / 3=10010 \div 3=0 .: 3: 3+$

To convert a decimal into a common fraction.--Set down the decimal as a numerator, and place as the denollinator 1 with as many ciphers annexed as there are decimal places in the numerator; erase the

| $\rightarrow$ | 8 |
| :---: | :---: |
| $\stackrel{\square}{7}$ | 㥯旲 |
| ato |  |
| $\xrightarrow{\text { mif }}$ |  |
| cot |  |
|  |  |
| $n$ |  |
| dit |  |
| $\checkmark \times$ |  |
| $\xrightarrow{6}$ |  |
| ato |  |
| die |  |
| ${ }^{+}$ |  |
| ${ }_{0}^{\circ}$ |  |
| +io |  |
| $\cdots$ |  |
| $\square$ |  |
| $\bigcirc$ |  |

decimal point in the numerator, and reduce the fraction thus formed to its lowest terms:

$$
.25=\frac{25}{100}=\frac{1}{4} ; .3333=\frac{3333}{10000}=\frac{1}{3}, \text { nearly } .
$$

To reduce a recurring decimal to a common fraction.Subtract the decimal figures that do not recur from the whole decmal inclucling one set of recurring figures; set down the remainder as the numerator of the fraction, and as many nines as there are recurring figures, followed by as many ciphers as there are non-recurring figures, in the denominator. Thus:

Subtract
.79054054 , the recurring figures being 054.

$$
\frac{78975}{99900}=(\text { reduced to its lowest terms }) \frac{117}{148}
$$

## COMPOUND OR DENOIIINATE NUIIBERS.

Reduction descending.-To reduce a compound number to a lower denomination. Nultiply the number by as many units of the lower denonination as makes one of the higher.

$$
3 \text { yards to inches: } 3 \times 36=108 \text { inches. }
$$

.04 square feet to square inches: $.04 \times 144=5.76$ sq. in.
If the given number is in more than one denomination proceed in steps from the highest denomination to the next lower, and so on to the lowest, adding in the units of each denomination as the oper.ation proceeds.
3 yds. 1 ft .7 in . to inches: $3 \times 3=9,+1=10,10 \times 12=120,+7=127 \mathrm{in}$.
Reduction ascending.-To express a number of a lower denomination in terms of a higher, divide the number by the number of units of the lower denomination contained in one of the next higher; the quotient is in the higher denomination, and the remainder, if any, in the lower.
$1: 7$ inches to higher denomination.

$$
\begin{array}{r}
127 \div 12=10 \text { feet }+7 \text { inches; } 10 \text { feet } \div 3=3 \text { yards }+1 \text { foot. } \\
\\
\text { Ans. } 3 \text { yds. } 1 \mathrm{ft} .7 \mathrm{in} .
\end{array}
$$

To express the result in decimals of the higher denomination, divide the given number by the number of units of the given denomination contained in one of the required denomination, carrying the result to as many places of decimals as may be desired.

$$
127 \text { inches to yards: } 127 \div 36=3 \frac{1}{3} 9=3.5277+\text { yards. }
$$

## RATEIO AND RROPORTEION.

Ratio is the relation of one number to another, as obtained by dividing one by the other.

$$
\begin{aligned}
& \text { Ratio of } 2 \text { to } 4 \text {, or } 2: 4=2 / 4=1 / 2 \text {. } \\
& \text { Ratio of } 4 \text { to } 2 \text { or } 4: 2=2 .
\end{aligned}
$$

Proportion is the equality of two ratios. Ratio of 2 to 4 equals ratio of 3 to $6,2 / 4=3 / 6:$ expressed thus, $2: 4:: 3: 6 ; \mathrm{read}, 2$ is to 4 as 3 is to 6 . The first and fourth terms are called the extremes or outer terms, the second and third the means or inner terms.
The product of the means equals the product of the extremes:

$$
2: 4:: 3: 6 ; \quad 2 \times 6=12 ; 3 \times 4=12 .
$$

Hence, given the first three terms to find the fourth, multiply the second and third terms together and divide by the first.

$$
2: 4:: 3: \text { what number } ? \text { Ans. } \frac{4 \times 3}{2}=6 \text {. }
$$

A1gebraic expression of proportion. $-a: b:: c: d ; \frac{a}{b}=\frac{c}{d} ; a d$ $=b c ;$ from which $a=\frac{b c}{d} ; d=\frac{b c}{a} ; b=\frac{a d}{c} ; c=\frac{a d}{b}$.

Mean proportional between two given numbers, 1 st and $2 d$, is such a number that the ratio which the first bears to it equals the ratio which it bears to the second. Thus, $2: 4:: 4: 8 ; 4$ is a mean proportional between 2 and 8 . To find the mean proportional between two numbers, extract the square root of their product.

$$
\text { Mean proportional of } 2 \text { and } 8=\sqrt{2 \times 8}=4
$$

Single Rule of Three; or, finding the fourth term of a proportion when three terms are given.-Rule, as above, when the terms are stated in their proper order, multiply the second by the third and divide by the first. The difficulty is to state the terms in their proper order. The term which is of the same kind as the required or fourth term is made the third; the first and second must be like each other in kind and denomination. To determine which is to be made second and whiclı first requires a little reasoning. If an inspection of the problem slows that the answer should be greater than the third term, then the greater of the other two given terms should be made the second term-otherwise the first. Thus, 3 men remove 54 cubic feet of rock in a day; how many men will remove in the same time 10 cubic yards? The answer is to be men-make men third term; the answer is to be more than three men, therefore make the greater quantity, 10 culic yards, the second term; but as it is not the same denomination as the other term it must be reduced, $=20$ cubic feet. The proportion is then stated:

$$
54: 270:: 3: x \text { (the required number); } x=\frac{3 \times 2 \pi 0}{54}=15 \text { men. }
$$

The problem is more complicated if we increase the number of given terms. Thus, in the above question, substitnte for the words "in the same time " the words "in 3 days." First solve it as above, as if the work were to be done in the same time; then make another proportion, stating it thus: If 15 men do it in the same time, it will take fewer men to do it in 3 days; make 1 day the 2 derm and 3 days the first term $3: 1:: 15$ men $: 5$ men.
Compound Proportion, or Double Rule of Three.-By this rule are solved questions like the one just given, in which two or more statings are required by the single rule of three. In it as in the single rule, there is one third term, which is of the same kind and denomination as the fourth or required term, but there may be two or more first and second terms. Set down the third term, take each pair of terms of the same kind separately, and arrange them as first and second by the same reasoning as is adopted in the single rule of three, making the greater of the pair the second if this pair considered alone should require the answer to be greater.

Set down all the first terms one under the other, and likewise all the second terms. Multiply all the first terms together and all the second terms together. Multiply the product of all the second terms by the third term, and divide this product by the product of all the first terms. Example: If 3 men remove 4 cubic yards in one day, working 12 hours a day, how many men working 10 hours a day will remove 20 cubic yards in 3 days?

| Yards | $4:$ | 20 |
| :--- | ---: | ---: |
| Days | $3:$ | 1 |
| Hours | $10:$ | 12 |$|: 3$ men. $, ~ 3: 6$ men. Ans.

To abbreviate by cancellation, any one of the first terms may cancel either the third or any of the second terms; thus, 3 in first cancels 3 in third, making it 1,10 cancels into 20 making the latter 2 , which into 4 makes it 2 , which into 12 makes it 6 , and the figures remaining are only $1: 6:: 1: 6$.

## INVOLUTION, OR POWERS OF NUILBERS.

Involution is the continued multiplication of a number by itself a given number of times. The number is called the root, or first power, and the products are called powers. The second power is called the square and
the third power the cube．The operation may be indicated without being performed by writing a small figure called the index or exponent to the right of and a little above the root；thus， $3^{3}=$ cube of $3,=27$ ．
To multiply two or more powers of the sanie number，add their exponents； thus， $2^{2} \times 2^{3}=2^{5}$ ，or $4 \times 8=32=2^{5}$ ．

To divide two powers of the same number，subtract their exponents；thus， $2^{3} \div 2^{2}=2^{1}=2 ; 2^{2} \div 2^{4}=2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$ ．The exponent may thus be nega－ tive． $2^{3}+2^{3}=2^{0}=1$ ，whence the zero power of any number $=1$ ．The first power of a number is the number itself．The exponent may be frac－ tional，as $2^{\frac{1}{2}}, 2^{\frac{2}{3}}$ ，which means that the root is to be raised to a power whose exponent is the numerator of the fractiom，and the root whose sign is the denominator is to be extracted（see Evolution）．The exponent nay be a decimal，as $20^{\circ 5}, 2^{1 \cdot 5}$ ；read，two to the five－tenths power．two to the one and five－tenths power．These powers are solved by means of Logarithms（which see）．

First Nine Powers of the First Nine Numbers．

| $\begin{gathered} 1 \text { st } \\ \text { Pow'r } \end{gathered}$ | $\stackrel{2 \mathrm{~d}}{\text { Pow'r }}$ | 3d Power． | 4th Power． | 5th Power． | 6th Power． | rth <br> Power． | 8th <br> Power． | 9th <br> Power． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 4 | 8 | 16 | 32 | 64 | $1: 2$ | 256 | 512 |
| 3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 |
| 4 | 16 | 64 | 256 | 10\％4 | 4096 | 16384 | 655.36 | 26：144 |
| 5 | 25 | 125 | $6: 5$ | 3125 | 15625 | 78125 | 390625 | 1953125 |
| 6 | 36 | 216 | 1296 | 7776 | 46656 | $2 ヶ 9936$ | 1679616 | 1007\％696 |
| 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 |
| 8 | 64 | 512 | 4096 | 3 3\％68 | 26：144 | 2097152 | 167 T\％216 | 134217\％ 28 |
| 9 | 81 | $7 \sim 9$ | 6561 | 59049 | 531441 | 4782969 | 43046\％21 | 38 \％420489 |

The First Forty Powers of 2.

| $\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 8 \end{gathered}$ | $\begin{aligned} & \stackrel{\dot{j}}{\Xi} \\ & \text { స } \\ & \hline \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{\oplus}{\Xi} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$ | － | $\stackrel{\text { ¢ }}{\sim}$ | \％ | ジ® | － | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 9 | 512 | 18 | 262144 | 27 | 13421\％728 | 36 | 68\％194\％6736 |
| 1 | 2 | 10 | 1024 | 19 | 524288 | 28 | 268435456 | 3 3\％ | 137438953472 |
| 2 | 4 | 11 | 2048 | 20 | $10485 \% 6$ | 29 | $5368 \% 0912$ | 38 | 2748\％\％906944 |
| 3 | 8 | 12 | 4096 | 21 | 2097152 | ：30 | 10 T3T41824 | 39 | 549755813888 |
| 4 | 16 | 13 | 8192 | 22 | 4194304 | 31 | $214 \sim 483648$ | 40 | 1099511697\％ 6 |
| 5 | 32 | 14 | 16384 | 23 | 8388608 | 32 | 4294967296 |  |  |
| 6 | 64 | 15 | 32768 | 24 | $167 \% 7216$ | 33 | 8589934592 |  |  |
| 7 | 128 | 16 | 65536 | 25 | 33554432 | 34 | 17179869184 |  |  |
| 8 | 256 | 17 | $1310 \% 2$ | 26 | 67108864 | 35 | 34350\％ 38368 |  |  |

## EVOLUTHON．

Evolution is the finding of the root（or extracting the root）of any number the power of which is given．
The sign $V$ indicates that the square root is to be extracted：$\sqrt[3]{\sqrt[4]{V}} \sqrt[n]{ }$ ，the cube root， 4 th root，$n$th root．
A fractional exponent with 1 for the numerator of the fraction is also used to indicate that the operation of extracting the root is to be performed； thus， $2^{\frac{2}{3}}, 2^{\frac{1}{3}}=\sqrt{2}, \sqrt[3]{2}$ ．

When the power of a number is indicated，the involution not being per－ formed，the extraction of any root of that power may also be indicated by
dividing the index of the power by the index of the root, indicating the division by a fraction. Thus, extract the square root of the 6th power of $\%$ :

$$
\sqrt{2^{6}}=2^{\frac{6}{2}}=2^{\frac{3}{1}}=2^{3}=8
$$

The 6th power of 2 , as in the table above, is $64 ; \sqrt{64}=8$.
Difficult problems in evolution are performed by logarithms, but the square root and the cube root may ioe extracted directly according to the rules given below. The 4th root is the square root of the square root. The 6 th root is the cube root of the square root, or the square root of the cube root; the 9 th root is the cube root of the cube root; etc.

To Extract the Square Poot.--Point off the given number into periods of two places each, begimning with inits. If there are decimals, point these off likewise, beginning at the decimal point, and supplying as many ciplters as may be needed. Find the greatest number whose square is less than the first left-hand period, and place it as the first figure in the quotient. Subtract its square from the left-hand period, aud to the remainder annex the two figures of the second period for a dividend. Double the first figure of the quotient for a partial divisor: find how many times the latter is contained in the dividend exclusive of the right-hand figure, and set the figure representing that number of times as the second figure in the quotient, and annex it to the right of the partial divisor, forming the complete divisor. Multiply this divisor by the second figure in the quotient and subtract the product from the dividend. To the remainder bring down the next period and proceed as before, in each case doubling the figures in the root already found to obtain the trial divisor. Should the product of the second figure in the ront by the completed divisor be greater than the dividend, erase the second figure both from the quotient and from the divisor, and substitute the next smaller figure, or one small enough to make the product of the second figure by the divisor less than or equal to the dividend.

| $3.1415926536 \mid 1.77245+$ |  |
| :---: | :---: |
| $2 \pi \overline{214}$ |  |
| \|189 |  |
| 3474 20 |  |
| 242 |  |
| 35428692 |  |
| 7084 |  |
| $35444 \overline{160865}$ |  |
| ${ }^{1411} 10$ |  |
| 354485 | $\longdiv { 1 9 0 8 9 3 6 }$ |
|  | $17 \% 2425$ |

To extract the square root of a fraction, extract the root of numerator and denominator separately. $\sqrt{\frac{4}{9}}=\frac{2}{3}$, or first convert the fraction into a decimal, $\sqrt{\frac{4}{9}}=\sqrt{.4444+}=.6666^{\circ}+$.

To Extract the Cube Root.-Point off the number into periods of 3 figures each, beginning at the right hand, or unit's place. Point off decimals in periods of 3 figures from the decimal point. Find the greatest cube that does not exceed the left-hand period; write its root as the first fignre in the required root Subtract the cube from the left-hand period, and to the remainder bring down the next period for a dividend.
Square the first figure of the root : multiply by 300, and divide the product in to the dividend for a trial divisor: write the quotient after the first figure of the root as a trial second figure.
Complete the divisor by adding to 360 times the square of the first figure, 30 times the product of the first by the second figure, and the square of the second figure. Multiply this divisor by the second figure; subtract the product from the remainder. (Shonld the product be greater than the remainder, the last figure of the root and the complete divisor are too large ;
substitute for the last figure the next smaller number, and correct the trial divisor accordingly.)

To the remainder bring down the next period, and proceed as before to find the third figure of the root-that is, square the two figures of the root already found; multiply by 300 for a trial divisor, etc.

If at any time the trial divisor is greater than the dividend, bring down another period of 3 figures, and place 0 in the root and proceed.

The cube root of a number will contain as many figures as there are periods of 3 in the number.
Shorter Miethods of Extracting the Cube Root. -1 . From Wentworth's Algebra:

After the first two figures of the root are found the next trial divisor is found by bringing down the sum of the 60 and 4 obtained in completing the preceding divisor, then adding the three lines conuected by the brace, and aunexing two ciphers. This method shortens the work in long examples, as is seen in the case of the last two trial divisors, saving the labor of squaring 123 and 1234. A further shortening of the work is made by obtaining the last two figures of the root by division, the divisor employed being three times the square of the part of the root already found; thus, after finding the first three figures:

$$
3 \times 123^{2}=45387|20498963| 45.1+
$$

The error due to the remainder is not sufficient to change the fifth figure of the root.
2. By Prof. H. A. Wood (Stevens Indicator, July, 1890):
I. Having separated the number into periods of three figures each, counting from the right, divide by the square of the neavest root of the first period, or first two periods; the nearest root is the trial root.
II. To the quotient obtained add twice the trial root, and divide by 3. This gives the root, or first approximation.
III. By using the first approximate root as a new trial root, and proceeding as before, a nearer approximation is obtained, which process may be repeated until the root has beeu extracted, or the approximation carried as far as desired.

Example.-Required the cube root of 20 . The nearest cube to 20 is $3^{3}$.

$$
\begin{aligned}
& \left.3^{2}=9\right) \frac{20.0}{2.2} \\
& \quad \frac{\frac{6}{8.1}}{2.7} \text { 1st T. R. }
\end{aligned}
$$

$\left.2.7^{2}=7.29\right) \frac{20.000}{\frac{2.743}{2.4}}$
$3) \frac{8.143}{2.714}$, 1st ap. cube root.


Remark.-In the example it will be observed that the second term, or first two figures of the root, were obtained by using for trial root the root of the first period. Using, in like manner, these two terms for trial root, we obtained four terms of the root; and these four terms for trial root gare seven figures of the root correct. In that example the last figure should be 7. Should we take these eight figures for trial root we should obtain at least fifteen figures of the root correct.

To Extract a Higher Root than the cube.-The fourth root is the square root of the square root; the sixth root is the cube root of the square root or the square root of the cube root. Other roots are most conveniently found by the use of logarithms.

## ALLIGATION

shows the value of a mixture of different ingredients when the quantity and value of each is known.

Let the ingredients be $a, b, c, d$, etc., and their respective values per unit $w, x, y, z$, etc.

$$
\begin{aligned}
& A=\text { the sum of the quantities }=a+b+c+d, \text { etc. } \\
& P=\text { mean value or price per unit of } A . \\
& A P=a w+b x+c y+d z, \text { etc. } \\
& P=\frac{a w+b x+c y+d z}{A} . \\
& \text { PERMUTATION }
\end{aligned}
$$

slows in how many positions any number of things may be arranged in a frow; thus, the letters $a, b, c$ may be arranged in six positions, viz. $a b c, a c b$, $c a b, c b a, b a c, b c a$.

Rule.-Multiply together all the numbers used in counting the things; thus, permutations of 1,2 , and $3=1 \times 2 \times 3=6$. In how many positions can 9 things in a row be placed ?

$$
1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9=362880 .
$$

## COIMBINATION

shows how many arrangements of a few things may be made out of a greater number. Rule : Set down that figure which indicates the greater number, and after it a series of figures diminishing by 1 , until as many are set down as the number of the few things to be taken in each combination. Then beginning under the last one set down said number of few things; then going backward set down a series diminishing by 1 until arriving under the first of the upper numbers. Multiply together all the upper numbers to form one product, and all the lower numbers to form anotlier; divide the upper product by the lower one.

How many combinations of 9 things can be made, taking 3 in each combination?

$$
\frac{9 \times 8 \times 7}{1 \times} \frac{8 \times 3}{2 \times 3}=\frac{304}{6}=84
$$

## ARETHELETICAL PROGRESSLON,

in a series of numbers, is a progressive increase or decrease in each successive nuinber by the addition or subtraction of the same amount at each step, as $1,2,3,4,5$, etc., or $15,12,9,6$, etc. The numbers are called terms, and the equal increase or decrease the difference. Examples in arithmetical progression may be solved by the following formulæ:
Let $\alpha=$ first term, $l=$ last term, $d=$ common difference, $n=$ number of terms, $s=$ sum of the terms:

$$
\begin{array}{rlrl}
l & =a+(n-1) d, & & =-\frac{1}{2} d \pm \sqrt{2 d s+\left(a-\frac{1}{2} d\right)^{2}}, \\
& =\frac{2 s}{n}-a, & & =\frac{s}{n}+\frac{(n-1) d}{2} . \\
s & =\frac{1}{2} n[3 a+(n-1) d], & & =\frac{l+a}{2}+\frac{l^{2}-\alpha^{2}}{2 d}, \\
& =(l+a) \frac{n}{2}, & & =\frac{1}{2} n[2 l-(n-1) d] . \\
\alpha & =l-(n-1) d, & & =\frac{s}{n}-\frac{(n-1) d}{2}, \\
& =\frac{1}{2} d \pm \sqrt{\left(l+\frac{1}{2} d\right)^{2}-2 d s,} \\
d & =\frac{l-a}{n-1}, & & =\frac{2 s}{n}-l . \\
& =\frac{l^{2}-a^{2}}{2 s-l-a}, & & =\frac{2(s-a n)}{n(n-1)}, \\
r & =\frac{l-a}{d}+1, & & =\frac{2(n l-s)}{n(n-1)} \\
& =\frac{2 s}{l+a}, & & =\frac{d-2 a \pm \sqrt{(2 a-d)^{2}+8 d s}}{2 d} \\
\end{array}
$$

## GEOMETRICAL PROGRESSION,

in a series of numbers, is a progressive increase or decrease in each suc. cessive number by the same multiplier or divisor at each step, as $1,2,4,8$, 16. etc., or $243,81,27,9$ etc. The common multiplier is called the ratio.

Let $a=$ first term, $l=$ last term, $r=$ ratio or constant multiplier, $n=$ number of terms, $m=$ any term, as 1 st, 2 d , etc., $s=$ sum of the terms:

$$
\begin{aligned}
& l=a r^{n-1}, \quad=\frac{a+(r-1) s}{r}, \quad=\frac{(r-1) s r^{n-1}}{r^{n}-1}, \\
& \log l=\log a+(n-1) \log r, \\
& l(s-l)^{n-1}-\alpha(s-a)^{n-1}=0 . \\
& m=a r^{m-1} \quad \quad \log m=\log a+(m-1) \log r . \\
& s=\frac{a\left(r^{n}-1\right)}{r-1}, \quad=\frac{r l-a}{r-1}, \quad=\frac{\sqrt[n-1]{l^{n}}-\sqrt[n-1]{a^{n}}}{\sqrt[{n-\sqrt[1]{l}-\sqrt[n-1]{a}}]{\sqrt[1]{a}}, \quad=\frac{l r^{n}-l}{r^{n}-r^{n-1}} . . . ~ . ~ . ~}
\end{aligned}
$$

$$
\begin{array}{rlrl}
a=\frac{l}{r^{n-1}}, & =\frac{(r-1) s}{r^{n}-1} . & \log a=\log l-(n-1) \log r . \\
r= & =\frac{n-a}{s-l} . & \log r=\frac{\log l-\log a}{n-1} \\
r^{n}-\frac{s}{a} r+\frac{s-a}{a}=0 . & r^{n}-\frac{s}{s-l} r^{n-1}+\frac{l}{s-l}=0 . \\
n=\frac{\log l-\log a}{\log r}+1, & & =\frac{\log [a+(r-1) s]-\log a}{\log r}, \\
& =\frac{\log l-\log a}{\log (s-a)-\log (s-l)}+1, & & =\frac{\log l-\log [l r-(r-1) s]}{\log r}+1 .
\end{array}
$$

## Population of the United States.

(A problem in geometrical progression.)

|  |  | Increase in 10 Years, per cent. | Annual Iner per cent |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Year. } \\ & 1860 \end{aligned}$ | Population. <br> 31,443,321 | Years, per cent. | per cent |
| 1870 | 39,818,449* | 26.63 | 2.39 |
| 1880 | 50,155, ${ }^{\text {r83 }}$ | 25.96 | 2.33 |
| 1890 | 62,622,250 | 24.86 | 2.25 |
| 1900 | 76,295,220 | 21.834 | 1.994 |
| 1905 | Est. 83,577,000 |  | Est. 1.840 |
| 1910 | 91,554,000 | Est. 20.0 | ' 1.840 |

Estimated Population in Each Year from 1870 to 1909.
(Based on the above rates of increase, in even thousands.)

| 18\%0... | 39,818 | 1880... | 50,156 | 1890... | 62,622 | 1900.. | 76,295 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1871. | 40,748 | 1881 | 51,281 | 1891. | 63,871 | 1901. | 77,699 |
| $18 \%$. | 41,699 | 1882 | 53,433 | 1892 | 65,145 | 1902. | 79,129 |
| 18ヶ3.... | 4:,673 | 1883. | 53,610 | 1893. | 66,444 | 1903. | 80,585 |
| 18 \% 4 | 43,6ז0 | 1884 | 54,813 | 1894. | 6\%,\%0 | 1904. | 82,067 |
| 18\%5.. | 44,690 | 1885. | 56,043 | 1895.. | 69,122 | 1905. | 83,577 |
| 1876. | 45,3i3 | 1886. | 57,301 | 1896 | r0,500 | 1906. | 85,115 |
| $187 \%$ | 46,800 | 1887 | 58,588 | 1897. | 71,906 | 1907. | 86,681 |
| 1878 | 47,893 | 1888. | 59,003 | 1898 | 73,341 | 1908 | 88,276 |
| 1879.... | 49,011 | 188 | 61,247 | 1899.... | r4,803 | 190 | 89,900 |

The above table has been calculated by logarithms as follows:

$$
\begin{aligned}
& \log r=\log l-\log a+(n-1) \text {, } \\
& \log m=\log a+(m-1) \log r \\
& \begin{aligned}
\text { Pop. } 1900 \ldots .6,295,220 \log = & \\
1890 \ldots 62,624988 & =\log l \\
=7.296 \pi 285 & =\log a
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \log \text { for } 1891=7.80530553 \text { No. }=63,8 \pi 1 \ldots \\
& \text { add again .0085\%703 } \\
& \log \text { for } 1892 \quad 7.81388256 \text { No. }=65,145 \ldots
\end{aligned}
$$

Compound interest is a form of geometrical progression; the ratio being 1 plus the percentage.

[^1]
## INTEREST AND DISCOUNT.

Interest is money paid for the use of money for a given time; the faotors are:
$p$, the sum loaned, or the principal:
$t$, the time in years;
$r$, the late of interest;
$i$, the amount of interest for the given rate and time;
$a=p+i=$ the amount of the principal with interest at the end of the time.
Formulæ:

$$
\begin{aligned}
& i=\text { interest }=\text { principal } \times \text { time } \times \text { rate per cent }=i=\frac{p t r}{100^{\prime}} ; \\
& a=\text { amount }=\text { principal }+ \text { interest }=p+\frac{p t r}{100} ; \\
& r=\text { rate }=\frac{100 i}{p t} ; \\
& p=\text { principal }=\frac{100 i}{t r}=a-\frac{p t r}{100} ; \\
& t=\text { time }=\frac{100 i}{p r} .
\end{aligned}
$$

If the rate is expressed decimally as a per cent,-thus, 6 per cent $=.06,-$ the formulæ becoine

$$
i=p r t ; a=p(1+r t) ; \quad r=\frac{i}{p t} ; \quad t=\frac{i}{p r} ; \quad p=\frac{i}{t r}=\frac{a}{1+r \cdot t}
$$

Rules for finding Interest. - Multiply the principal by the rate per annum divided by 100 , and by the time in $y^{-r}$ and fractions of a year.

If the time is given in days, interest $=\frac{\text { principal } \times \text { rate } \times \text { no. of days }}{365 \times 100}$.
In banks interest is sometimes calculated on the basis of 360 days to a year, or 12 months of 30 days each.

Short rules for interest at 6 per cent, when 360 days are taken as 1 year:
Multiply the principal by number of days and divide by 6000 .
Multiply the principal by number of months and divide by 200.
The interest of 1 dollar for one month is $1 / 2$ cent.
Interest of 100 Dollars for Different Times and Rates.

| Time. | 9. | 3\% | 4\% | 5\% | 6\% | 8\% | 10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 year | \$2.00 | \$3.00 | \$1.00 | \$5.00 | \$6.00 | \$8.00 | \$10.00 |
| 1 month | . $16 \frac{2}{3}$ | . 25 | .333 $\frac{1}{3}$ | . $41 \frac{2}{3}$ | . 50 | $66 \frac{2}{3}$ | 833 |
| 1 day $={ }^{\frac{1}{6} \%}$ year | . $00555^{\frac{5}{5}}$ | . $00833 \frac{1}{3}$ | .01111 ${ }^{3}$ | . $01388^{8}$ | . $0166 \frac{2}{3}$ | .0222 ${ }^{\frac{2}{9}}$ | .027\% ${ }^{\text {\% }}$ |
| 1 day $=\frac{1}{365}$ year | . 005479 | .008219 | . 010959 | . 013699 | . 016438 | . 0219178 | .0273973 |

Discount is interest deducted for payment of money before it is due.
True discount is the difference between the amount of a debt payable at a future date without interest and its present worth. The present worth is that sum which put at interest at the legal rate will amount to the debt when it is due.

To find the present worth of an amount due at future date, divide the amount by the anount of $\$ 1$ placed at interest for the given time. The discount equals the amount minus the present worth.

What discount should be allowed on $\$ 103$ paid six months before it is due, interest being 6 per cent per annum ?

$$
\frac{103}{1+1 \times .06 \times \frac{1}{2}}=\$ 100 \text { present worth, discount }=3.00
$$

Bank discount is the amount deducted by a bank as interest on money loaned on promissory notes. It is interest calculated not on the actual sum loaned, but on the gross anount of the note, from which the discount is deducted in advance. It is also calculated on the basis of 360 days in the year, and for 3 (in some banks 4) days more than the time specified in the note. These are called days of grace, and the note is not payable till the last of these days. In some States days of grace have been abolished.

What discount will be deducted by a bank in discounting a note for $\$ 108$ payable 6 months hence? Six months $=182$ days, add 3 days grace $=185$ days ${ }^{\prime} \frac{103 \times 185}{6000}=\$ 3.166$.

Compound Interest. - In compound interest the interest is added to the principal at the end of each year, (or shorter period if agreed upon).

Let $p=$ the principal, $r=$ the rate expressed decimally, $n=n o$ of years, and $a$ the amount:

$$
\begin{aligned}
& a=\text { amount }=p(1+r)^{n} ; r=\text { rate }=\sqrt[n]{\frac{a}{p}}-1 \\
& p=\text { principal }=\frac{a}{(1+r)^{n}} ; \text { no. of years }=n=\frac{\log a-\log p}{\log (1+r)}
\end{aligned}
$$

## Compound Enterest Table.

Value of one dollar at compound interest, compounded yearly, at $3,4,5$, and 6 per cent, from 1 to 50 years.)

|  | 3\% | 4\% | 5\% | 6\% | 䎂 | 3\% | 4\% | 5\% | 6\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.03 | 1.04 | 1.05 | 1.06 | 16 | 1.6047 | 1.8730 | 2.1829 |  |
| 2 | 1.0609 | 1.0816 | 1.1025 | 1.1236 | 17 | 1.6528 | $1.94 \%$ | 2.2892 | 2.6928 |
| 3 | 1.0997 | 1.1249 | 1.1576 | 1.1910 | 18 | 1.r024 | 2.0258 | 2.4066 | $\stackrel{1}{2.8543}$ |
| 4 | 1.1255 | 1.1699 | 1.2155 | 1.2625 | 19 | 1.7535 | $\stackrel{2}{2}$ | 2. 2266 | 2.0256 |
| 5 | 1.1593 | 1.2166 | 1.2763 | 1.3382 | 20 | 1.8061 | 2.1911 | 2.6533 | 3.2071 |
| 6 | 1.1941 | 1.2653 | 1.3401 | 1.4185 | 21 | 1.8603 | 2.2787 | 2.7859 | 3.3995 |
| 7 | 1.2299 | 1.3159 | 1.4071 | 1.5036 | 22 | 1.9161 | 2.3699 | 2.925 | 3.6035 |
| 8 | 1.2668 | 1.3686 | $1.47 \% 4$ | 1.5938 | 23 | $1.9 \sim 36$ | 2.4647 | 3.0ヶ15 | 3.8197 |
| 9 | 1.3048 | 1.4233 | 1.5513 | 1.6895 | 24 | 2.0328 | ${ }_{2}{ }_{2} .5633$ | 3.2251 | 4.0487 |
| 10 | 1.3439 | 1.4802 | 1.6289 | 1.7908 | 25 | 2.0937 | 2.6658 | 3.3863 | 4.2919 |
| 11 | 1.3842 | 1.5394 | 1.7103 | 1.8983 | 30 | $2.422^{2}$ |  |  |  |
| 12 | 1.4258 | 1.6010 | 1.7958 | 2.0122 | ${ }_{35}^{30}$ | 2.8138 | 3.2433 3.9460 | 4.3219 | 5.7435 7.6862 |
| 13 | 1.4685 | 1.6651 | 1.8556 | 2.1329 | 40 | 3.2620 | 4.8009 | 7.0398 | 10.2858 |
| 14 | 1.5126 | 1.7317 | 1.9799 | 2.2609 | 45 | 3.7815 | 5.8410 | 8.9847 | 13.7648 |
| 15 | 1.5580 | 1.8009 | 2.0 ¢89 | 2.3965 | 50 | 4.3838 | 7.1064 | 11.4670 | 18.4204 |

At compound interest at 3 per cent money will double itself in $231 / 2$ years, at 4 per cent in $172 / 3$ years, at 5 per cent in 14.2 years, and at 6 per cent in 11.9 years.

## EQUATION OF PAYMENTS.

By equation of payments we find the equivalent or average time in which one payment should be made to cancel a number of obligations due at different dates; also the number of days upon which to calculate interest or discount upon a gross sum which is composed of several smaller sums payable at different dates.
Rule.-Multiply each item by the time of its maturity in days from a fixed date, taken as a standard, and divide the sum of the products by the sum of the items: the result is the average time in days from the standard date.
A owes $B \$ 100$ due in 30 days, $\$: 00$ due in 60 days, and $\$ 300$ due in 90 days. In how many days may the whole be paid in one sun of $\$ 600$ ?

$$
100 \times 30+200 \times 60+300 \times 90=42,000 ; \quad 42,000 \div 600=70 \text { days, ans. }
$$

A owes $\mathrm{B} \$ 100, \$ 200$, and $\$ 300$, which amounts are overdue respectively 30 , 60 , and 90 days. If he now pays the whole amount, $\$ 600$, how many day ${ }^{\prime}$ interest should he pay on that sum 8 Alus, ro days.

## PARTIAL PAYIMENTS.

To compute interest on notes and bonds when partial payments have been made:

United States Rule.-Find the amount of the principal to the time of the first payment, and, subtracting the payment from it, find the amount of the remainder as a new principal to the time of the next payment.
If the payment is less than the interest, find the amount of the principal to the time when the sum of the payments equals or exceeds the interest due, and subtract the sum of the payments from this amount.
Proceed in this manner till the time of settlement.
Note.-The principles upon which the preceding rule is founded are:
ist. That payments must be applied first to discharge accrued interest, and then the remainder, if any, toward the discharge of the principal.
¿d. That only unpaid principal can draw interest.
Mercantile Method.-When partial payments are made on short notes or interest accounts, business men commonly employ the following method:
Find the amount of the whole debt to the time of settlement; also find the amount of each payment from the time it was made to the time of settlement. Subtract the amount of payments from the amount of the debt; the remainder will be the balance due.

## ANNUITIES.

An Annuity is a fixed sum of money paid yearly, or at other equal times agreed upon. The values of annuities are calculated by the principles of compound interest.

1. Let $i$ denote interest on $\$ 1$ for a year, then at the end of. a year the amount will be $1+i$. At the end of $n$ years it will be $(1+i)^{n}$.
2. The sum which in $n$ years will amount to 1 is $\frac{1}{(1+i)^{n}}$ or $(1+i)^{-n}$, or the present value of 1 due in $n$ years.
3. The amount of an annuity of 1 in any number of years $n$ is $\frac{(1+i)^{n}-1}{i}$.
4. The present value of an annuity of 1 for any number of years $n$ is $\frac{1-(1+i)^{-n}}{i}$.
5. The annuity which 1 will purchase for any number of years $n$ is $i$
$\overline{1-(1+i)^{-}} \bar{n}$.
6. The annuity which would amount to 1 in $n$ years is $\frac{i}{(1+i)^{n}-1}$.

Amounts, Present Values, etc., at 5\% Interest.

| Years | $\begin{gathered} (1) \\ (1+i)^{n} \end{gathered}$ | (2) $(1+i)^{-n}$ | (3) $\frac{(1+i)^{n}-1}{i}$ | (4) $\frac{1-(1+i)^{-n}}{i}$ | (5) $\frac{i}{1-(1+i)^{-n}}$ | (6) $\frac{i}{(1+i)^{n}-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.05 | . 952381 | 1. | . 958381 | 1.05 |  |
| 2 | 1.1025 | . 907029 | 2.05 | 1.859410 | . 537805 | . 487805 |
| 3 | 1.156625 | . 863838 | 3.1585 | 2.723 248 | . 367209 | . 317209 |
| 4 | 1.215506 | . 822702 | 4.310125 | 3.545951 | . 282012 | . 232012 |
|  | 1.276282 | . 783526 | 5.525631 | 4.329477 | . 230975 | . 180975 |
| 6. | 1.340096 | . 746215 | 6.801913 | 5.0ヶ5692 | .197017 | . 147018 |
|  | 1.407100 | . 710681 | 8.142008 | 5.786333 | . 112820 | . 122820 |
|  | $1.47 \% 455$ | . 676839 | 9.549109 | 6.463213 | . 154722 | . 104722 |
| 9..... | 1.551328 | . 644609 | 11.026564 | 7. 107828 | . 140690 | . 0906090 |
| 10. | 1.628895 | . 613913 | $12.5 \% 7893$ | \%.721735 | . 129505 | .0ヶ9505 |

Table I．－Annuity Required to Redeem $\$ 1000$ in trom 1 to 50 Years．

|  | －3 |  |  | ${ }^{6} 808048$ <br>  | Hex <br>  |  $\underset{\sim 1}{\infty} 0^{\circ}$－ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | － |  |  |  |  |  ががくが |
|  | 10 |  |  G+888 |  ¢inx |  <br>  | $10-1000 \%$ |
|  | $\cdots$ |  |  |  |  | 두앙ㅇ <br> －जipi－20 |
|  | $+$ |  |  |  <br> 88애우ำ |  | Fixir $\therefore 0^{\circ} 00^{\circ}$ |
|  | ¢゙ |  |  |  <br> B－4 40 |  |  |
|  | ${ }_{60} 0$ |  らन心8i ำ |  |  <br>  | ずかががo <br>  | 58 简等 <br> －iñoi |
|  | －30 |  | がぎずが <br> 禁戸よかに | サーロパズが 80 亿is io |  |  |
|  | 68 | 88.8910 <br>  |  |  |  |  <br> T－ 900 |
|  | \％ 6 |  | $\begin{aligned} & \text { Congig } \\ & \text { Mingoso } \end{aligned}$ |  |  <br>  | 8） <br> ズッジテ゚ |
|  | －${ }_{6}^{6}$ |  |  |  <br> 亿気 $910{ }^{\circ}$ |  | かったが心 <br> Givino |
|  | －1 |  |  | Bocioge <br>  |  <br>  |  |
|  | CI |  |  |  |  <br> がำ～に |  |
|  |  | $\text { बi ற் จัェ๐ } 0^{\circ}$ | $1-\infty 00 \%$ |  | $\therefore \infty 0^{\circ} \mathrm{O}$ | Ois |

## TABLES FOR CALCULA'TING SINKING-FUNDS AND PRESENT VALUES.

Engineers and others connected with municipal work and industrial enterprises often find it necessary to calculate payments to sinking-funds which will provide a sum of money sufficient to pay off a bond issue or other debt at the end of a given period, or to determine the present value of certain annual charges. The accompanying tables were computed by Mr. John W. Hill, of Cincinnati, Eng'g News, Jan. 25, 1891.
Table I (opposite page) shows the annual sum at various rates of interest required to net $\$ 1000$ in from 2 to 50 years, and Table II shows the present value at various rates of interest of an annual charge of $\$ 1000$ for from 5 to 50 years, at five-year intervals and for 100 years.

Table II.-Capitalization of Anmuity of $\$ 1000$ for


## WEIGHTS AND MEASURES.

Long Measure. - Measures of Length.

| 12 inches | $=1$ foot. |
| :--- | :--- |
| 3 feet | $=1$ yard. |

$1 \% 60$ yards, or $5 \geq 80$ feet $=1$ mile.
Additional measures of length in occasional use: $1000 \mathrm{mils}=1 \mathrm{inch}$; 4 inches = 1 hand; 9 inches $=1$ span; $21 / 2$ feet $=1$ military pace; 2 yards $=$ 1 fathom; $51 / 2$ yards, or $161 / 2$ feet $=1$ rod (formerly also called pole or perch).

Old Land Measure.-7.92 inches $=1$ link; 100 links, or 66 feet, or 4 rods $=1$ chain; 10 chains, or 220 yards $=1$ furlong; 8 furlongs $=1$ mile; 10 square chains $=1$ acre .

## Nautical Measure.

$\left.\begin{array}{rl}\left.\begin{array}{rl}6080.26 \text { feet, or } 1.15156 \text { stat } \\ \text { ute miles }\end{array}\right\} & =1 \text { nautical mile, or knot.* } \\ \begin{array}{rl}\text { nautical miles } \\ 60 \text { uautical miles, or } 69.168 \\ \text { statute miles }\end{array} \\ =1 \text { league. } \\ 360 \text { degrees }\end{array}\right\}=1$ degree (at the equator).

[^2]
## Square Measure.-Mieasures of Surface.

144 square inches, or 183.35 circular inches
9 square feet
$301 /$ square yards, or $2 \pi 21 / 4$ square feet
10 sq. chains, or 160 sq. rods, or 4810 sq . yards, or 43560 sq. feet,
640 acres

$$
\begin{aligned}
\} & =1 \text { square fo it. } \\
& =1 \text { square yard. } \\
& =1 \text { square rod. } \\
\} & =1 \text { acre. } \\
& =1 \text { square mile. }
\end{aligned}
$$

An acre equals a square whose side is $208 . \pi 1$ feet.
Circular Inch; Circular Mil. - A circular inch is the area of a circle 1 inch in diameter $=0.7854$ square inch.

1 square inch $=1.2732$ circular inches.
A circular mil is the area of a circle 1 mil , or .001 inch in diameter. $1000^{2}$ or $1,000,000$ circular mils $=1$ circular inch. 1 square inch $=1,273,239$ circular nits.
The mil and circular mil are used in electrical calculations involving ine diameter and area of wires.

> Solid or Cubie Measure. - Measures of Volume.
> $1 \sim 28$ cubic inches $=1$ cubic foot.
> 27 cubic feet $=1$ cubic yard.
> 1 cord of wood $=a$ pile, $4 \times 4 \times 8$ feet $=128$ cubic feet. 1 perch of masonry $=161 / 2 \times 11 / 2 \times 1$ foot $=243 / 4$ cubic feet.

## Liquid Measnre.

4 gills
2 pints
4 quarts
$311 / 2$ gallons
42 gall $\cdot \mathrm{ns}$
2 barrels, or 63 gallous
84 gallons, or 2 tierces
$=1$ pint.
$=1$ quart.
$=1$ gallon $\left\{\begin{array}{l}\text { U. S. } 231 \text { cubic inches. } \\ \text { Eng. } 277.2 \pi 4 \text { cubic }\end{array}\right.$
$=1$ barrel.
$=1$ tierce.
$=1$ hogshead.
$=1$ puncheon.

2 hogsheads, or 126 gallons $=1$ pipe or butt.

$$
2 \text { pipes, or } 3 \text { puncheous }=1 \text { tun. }
$$

A gallon of water at $62^{\circ} \mathrm{F}$. weighs 8.3356 lbs .
The U. S. gallon contains 231 cubic inches; 7.4805 gallons $=1$ cubic foot. A cylinder 7 in. diam. and 6 in. high contains 1 gallon, very nearly, or 230.9 cubic inches. The British Imperial gallon contains $277.2 \% 4$ cubic inches $=1.20032 \mathrm{U}$. S. gallon, or 10 lbs . of water at $62^{\circ} \mathrm{F}$.
The Miner>s Inch.-(Western U. S. for measuring flow of a stream of water).
The term Miner's Inch is more or less indefinite, for the reason that Californie water companies do not all use the same head above the centre of the aperture, and the inch varies from 1.36 to 1.73 cubic feet per minute cach; but the most common neasurement is through an aperture 2 inches high and whatever length is required, and through a plank $1 \frac{1}{2}$ inches thick. The lower edge of the aperture should be 2 inches above the bottom of the measuring-box, and the plank 5 inches high above the aperture, thus making a 6 -inch head above the centre of the stream. Each square inch of this opening represents a miner* inch, which is equal to a flow of $1 \frac{1}{2}$ cubic feet per minute.

## Apothecarics, Eluid Measure.

$$
60 \text { minims }=1 \text { fluid drachm. } \quad 8 \text { drachms }=1 \text { fluid ounce } .
$$

In the U. S. a fluid ounce is the 128 th part of a U. S. gallon, or 1805 cu . ins. It contains 456.3 grains of water at $39^{\circ} \mathrm{F}$. In Great Britain the fluid ounce is 1.i3: cu. ins. and contains 1 ounce avoirdupois, or $43 i .5$ grams of water at $6: 2^{\circ} \mathrm{F}$ 。

## Dry Measure, U. S.

2 pints $=1$ quart. 8 quarts $=1$ peck. $\quad 4$ pecks $=1$ bushel. The standard U.S. bushel is the Winchester bushel, which is in cylinder
form, $181 / 2$ inches diameter and 8 inches deep, and contains 2150.42 cubic inches.

A struck bushel contains 2150.42 cubic inches $=1.2445 \mathrm{cu} . \mathrm{ft} .: 1$ cubic foot $=0.80356$ struck bushel. A heaped bushel is a cylinder $181 / 2$ inches diam. eter and 8 inches deep, with a heaped cone not less than 6 inches high. It is equal to $11 / 4$ struck busleels.
The British Imperial bushel is based on the Imperial gallon, and contains 8 such gallons, or 2218.192 cubic inches $=1.2837$ cubic feet. The English quarter $=8$ Imperial bushels.
Capacity of a cylinder in U.S. gallons = square of diameter, in inches $x$ height in inches $\times .0034$. (Accurate within 1 part in 100,000 .)

Capacity of a cylinder in U.S. bushels $=$ square of diameter in inches $X$ height in inches $\times .0003652$.

## Shipping Measure.

Register Ton.-For register tonnage or for measurement of the entire internal capacity of a vessel :

$$
100 \text { cubic feet }=1 \text { register ton. }
$$

This number is arbitrarily assumed to facilitate computation.
Shipping Ton.-For the measurement of cargo:

$$
40 \text { cubic feet }=\left\{\begin{array}{l}
1 \mathrm{U} . \text { S. shipping ton. } \\
31.16 \text { Inmp. bushels. } \\
32.143 \mathrm{U} . \text {. } . \\
42 \text { cubic feet }=\left\{\begin{array}{l}
\text { British shipping ton. } \\
32.719 \text { Imp. bushels. } \\
33.75 \mathrm{U} . \text { S. }
\end{array}\right.
\end{array}\right.
$$

Carpenter's Rule. - Weight a vessel will carry $=$ length of keel $\times$ breadth at nain beam $\times$ depth of hold in feet $\div 95$ (the cubic feet allowed for a ton). The result will be the tonnage. For a double-decker instead of the depth of the hold take half the breadth of the beam.

## Measures of Weight. Avoirdupois, or Commercial Weight.

$$
\begin{aligned}
& 16 \text { drachms, or } 437.5 \text { grains }=1 \text { ounce, oz. } \\
& 16 \text { ounces, or } 2000 \text { grains }=1 \text { pound, lb. } \\
& =1 \text { anartel. }
\end{aligned}
$$

$$
28 \text { pounds } \quad=1 \text { quarter, qr. }
$$

$$
4 \text { pounds } \quad=1 \text { hundredweight, cwt. }=112 \mathrm{lbs} \text {. }
$$

20 hundred weight $\quad=1$ ton of 2240 pounds, or long ton.
2000 pounds $=1$ net, or short ton.
2204.6 pounds $=1$ metric ton.

$$
1 \text { stone }=14 \text { pounds } ; 1 \text { quintal }=100 \text { pounds. }
$$

The drachm, quarter, luuldredweight, stone, and quintal are now seldom used in the United States.

## Troy Weight.

$$
\begin{array}{ll}
24 \text { grains } & =1 \text { penny weight, dwt. } \\
20 \text { pennyweights } & =1 \text { ounce, oz. }=480 \text { grains. } \\
12 \text { ounces } & =1 \text { pound, } 1 \mathrm{~b} .=5760 \text { grains. }
\end{array}
$$

Troy weight is used for weighing gold and silver. The grain is the same in Avoirdupois, Troy, and Apothecaries' weights. A carat, used in weighing diamonds $=3.168$ grains $=.205$ gramme.

## Apothecaries' Weight.

$$
\begin{aligned}
20 \text { grains } & =1 \text { seruple, } \\
3 \text { scruples } & =1 \text { draclım, } 3
\end{aligned}=60 \text { grains. } . ~=~ 480 \text { grains. }
$$

To determine whether a balance has unequal arms.After weighing an article and obtaining equilibrium, transpose the article and the weights. If the balance is true. it will remain in equilibrium ; if untrue. the nan suspended from the loneer arm will descend.

To weigh correctly on an incorrect balance.-First, by substitution. Put the article to be weighed in one pan of the balance aud
counterpoise it by any convenient heavy articles placed on the other pan. Remove the article to be weighed and substitute for it standard weights until equipoise is again established. The amount of these weights is the weight of the article.
Second, by transposition. Determine the apparent weight of the article as usual, then its apparent weight after transposing the article and the weights. If the difference is small, add half the difference to the smaller of the apparent weights to obtain the true weight. If the difference is 2 per cent the error of this method is 1 part in 10,000 . For larger differences, or to obtain a perfectly accurate result, multiply the two apparent weights together and extract the square root of the product.

## Circular Measure.

60 seconds, ${ }^{\prime \prime}=1$ minute, ${ }^{\prime}$.
60 minutes, ${ }^{\prime}=1$ degree, ${ }^{\circ}$.
90 degrees $=1$ quadrant.
360 " $=$ circumference.
Time.
60 seconds $=1$ minute .
60 minutes $=1$ hour.
24 hours $=1$ day.
7 days $=1$ week.
365 days, 5 hours, 48 minutes, 48 seconds $=1$ year.
By the Gregorian Calendar every year whose number is divisible by 4 is a leap year, and contains 366 days, the other years containing 365 days, except that the centesimal years are leap years only when the number of the year is divisible by 400 .
The comparative values of mean solar and sidereal time are shown by the following relations according to Bessel :

> 365.24222 mean solar days $=366.24222$ sidereal days, whence
> 1 mean solar day $=1.00273991$ sidereal days;
> 1 sidereal day $=09972695$ nean solar day;
> 24 hours mean solar time $=24^{\mathrm{h}} 3^{\mathrm{m} 56^{\mathrm{s}} .555}$ sidereal time;
> 24 hours sidereal time $=23^{3 \mathrm{~h}} 56^{\mathrm{m}} 4^{8.091}$ mean solar time,
whence 1 mean solar day is $3^{\mathrm{m}} 55^{\text {s. }} .91$ longer than a sidereal day, reckoned in mean solar time.

## HOARD AND TIMEER MEASURE.

## Board IVeasure.

In board measure boards are assumed to be one inch in thickness. To obtain the number of feet board measure (B. M.) of a board or stick of square timber, multiply together the length in feet, the breadth in feet, and the thickness in inches.

To compute the measure or surface in square feet. - Wher all dimensions are in feet, multiply the length by the breadth, and the product will give the surface required.

When either of the dimensions are in inches, multiply as above and divide che product by 12.

When all dimensions are in inches, multiply as before and divide product
144. by 14.

## Timber Measure.

To compute the volume of round timber. - When all dimensions are in feet, multiply the length by one quarter of the product of the mean girth and dianeter, and the product will give the measurement in cubic feet. When length is given in feet and girth and diameter in inclies, divide the product by 144 ; when all the dimensions are in inches, divide by 1728.

## To compute the volime of square timber.- When all dimen-

 sions are in feet, multiply together the length, breadth, and depth; the product will be the volume in cubic feet. When one dimension is given in inclies, divide by 12; when two dimensions are in inches, divide by 144; when all three dimensions are in inches, divide by $17: 8$.Contents in Feet of Joists, Scantling, and Timber.
Length in Feet.

| Size. | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Feet Board Measure.

| $2 \times 4$ | 8 | 9 | 11 | 12 | 13 | 15 | 16 | $1{ }^{\sim}$ | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \times 6$ | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 311 |
| $2 \times 8$ | 16 | 19 | 21 | 24 | $2{ }^{2}$ | 29 | 32 | 35 | $3 \%$ | 40 |
| $2 \times 10$ | 20 | 23 | 27 | 30 | 33 | 37 | 40 | 43 | 47 | 50 |
| $2 \times 12$ | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
| $2 \times 14$ | 28 | 33 | 37 | 42 | 47 | 51 | 56 | 61 | 65 | \% 0 |
| $3 \times 8$ | 24 | 28 | $3 \cdot$ | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
| $3 \times 10$ | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | $\%$ | 75 |
| $3 \times 12$ | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 |
| $3 \times 14$ | 42 | 49 | 56 | 63 | $\%$ | 7 | 84 | 91 | 98 | 105 |
| $4 \times 4$ | 16 | 19 | 21 | 24 | 27 | 29 | 32 | 35 | 37 | 40 |
| $4 \times 6$ | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
| $4 \times 8$ | 32 | 37 | 43 | 48 | 53 | 59 | 64 | 69 | 75 | 80 |
| $4 \times 10$ | 40 | 47 | 53 | 60 | $6{ }^{2}$ | \%3 | 80 | 87 | 93 | 100 |
| $4 \times 12$ | 48 | 56 | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 |
| $4 \times 14$ | 56 | 65 | 75 | 84 | 93 | 103 | 112 | 121 | 131 | 140 |
| $6 \times 6$ | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 |
| $6 \times 8$ | 48 | 56 | 64 | \% | 80 | 88 | 96 | 104 | 112 | 120 |
| $6 \times 10$ | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
| $6 \times 12$ | 72 | 84 | 96 | 108 | $1: 0$ | 133 | 144 | 156 | 168 | 180 |
| $6 \times 14$ | 84 | 98 | 112 | 126 | 140 | 154 | 168 | 182 | 196 | 210 |
| $8 \times 8$ | 64 | 75 | 85 | 96 | 107 | 117 | 128 | 139 | 149 | 160 |
| $8 \times 10$ | 80 | 93 | 107 | 120 | 13:3 | 147 | 160 | 173 | 187 | 200 |
| $8 \times 12$ | 96 | 112 | 128 | 144 | 160 | $1 \% 6$ | 192 | 208 | 224 | 240 |
| $8 \times 14$ | 112 | 131 | 149 | 168 | 187 | 205 | 224 | 243 | 261 | 280 |
| $10 \times 10$ | 100 | 117 | 133 | 150 | 167 | 183 | 200 | 217 | 233 | 250 |
| $10 \times 12$ | 120 | 140 | 160 | 180 | 200 | 2:0 | 240 | 260 | 280 | 300 |
| $10 \times 14$ | 140 | 163 | 187 | 210 | 2:3 | 257 | 280 | 303 | 327 | 350 |
| $12 \times 12$ | 144 | 168 | 192 | 216 | $\stackrel{24}{ }$ | 264 | 288 | 312 | 336 | 360 |
| $12 \times 14$ | 168 | 196 | 224 | 25\% | 280 | 308 | 3336 | 364 | 39\% | 420 |
| $14 \times 14$ | 196 | 229 | 261 | 294 | 327 | 359 | 39: | 425 | 457 | 490 |

## FRENCR OR METRIC MEASURES.

The metric unit of length is the metre $=39.3 \%$ inches.
The metric unit of weight is the gra:n = 15.432 grains.
 Ceuti $=\frac{1}{10} 0$, Deci $=\frac{1}{10}$, Deca $=10$, Hecto $=100$, Kilo $=1000$, Myria $=10,000$.

## FRENCH AND BRITISH (AND AMERICAN) EQUIVALENT RHEASURES.

## Measures of Length.

\[

\]

## Measures of Surface.

French.
1 square metre
.836 square metre . 0929 square metre 6.452 square centimetres $=1$ square inch. 645.2 square millimetres $=1$ square inch.

1 centiare $=1$ sq. metre $=10 ; 64$ square feet.
1 are $=1$ sq. decametre
1 hectare $=100$ ares
1 sq. kilometre
1 sq. myriametre
$=.155$ square inch

1 square millimetre $=.00155$ sq. in. $=1973.5$ circ. mils.
British and U.S.
$=\{10 . \pi 6+$ square feet,
= 1.196 square yards. $=1$ square yard
$=1$ square foot.
$=1076.41$ square feet
$=10 \mathrm{~T} 641$ " $"=2.4711$ acres.
$=.386109$ sq. miles $=247.11$ "

## Of Volume.


of Weight.

French.
1 gramme
.0648 gramme 28.35 gramme

1 kilogramme
. 4536 kilogramme

British and U. S.
$=15.432$ grains .
$=1$ grain.
$=1$ ounce aroirdupois.
$=2.2046 \mu$ ounds.
$=1$ pound.
1 tonne or metric ton $=\left\{\begin{array}{l}.98+2 \text { ton of } 2240 \text { pounds, } \\ 19.68 \cdot w \text {. }\end{array}\right.$ 1000 kilogranmes 1.016 metric tous 1016 kilogrammes
$=\{19.68$ cwts.,
$=\left\{\begin{array}{l}204.6 \text { pounds. }\end{array}\right.$
$=\{1$ ton of 2240 pounds.

Mr. O. H. Titmann, in Bulletin No. 9 of the U.S. Coast and Geodetic Survey, discusses the work of various authorities who have compared the yard and the metre, and by referring all the observations to a common standard has succeeded in reconciling the discrepancies within very narrow limits. The following are his results for the number of inches in a metre according to the comparisons of the authorities named:


## METERC CONVERSION TABLES.

The following tables, with the subjoined memoranda, were published in 1890 by the United States Coast and Geodetic Survey, office of standard weights and measures, T. C. Mendemhall, Superintendent.

Tables for Converting U. S. Weights and IHeasuresCustomary to Metric.

LINEAR.

|  | Inches to Millimetres. | Feet to Mecres. | Yards to Metres. | Miles to Kilometres. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 25.4001 | 0.304801 | 0.914402 | 1.60935 |
| \% $=$ | 50.8001 | 0.609601 | 1.808804 | 3.21869 |
| $3=$ | 76.2002 | 0.914402 | 2. 743205 | $4.8: 804$ |
| $4=$ | 101.6002 | 1.219202 | 3.657607 | 6.43 ¢39 |
| $5=$ | 127.0003 | 1.524003 | 4.5\%2009 | $8.046 \% 4$ |
| $6=$ | 152.4003 | 1.828804 | 5.486411 | 9.65608 |
| $7=$ | 1\%î. 8004 | 2.133604 | 6.400813 | 11.26543 |
| $8=$ | 203.2004 | 2.438405 | 7.315215 | 12.87478 |
| $9=$ | 228.6005 | 2. ${ }^{2} 43: 05$ | 8.229616 | 14.48412 |

SQUARE.

|  | Square Inches to Square Centimetres. | Square Feet to Square Decimetres. | Square Yards to Square Metres. | Acres to Hectares. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 6.452 | 9.290 | 0.836 | 0.4047 |
| $2=$ | 12.903 | 18.581 | 1.672 | 0.8094 |
| $3=$ | 19.355 | 27.871 | 2.508 | 1.2141 |
| $4=$ | 25.807 | 37.161 | 3.344 | 1.6187 |
| $5=$ | 32.258 | 46.452 | 4.181 | 2.0234 |
| $6=$ | 38.710 | 55.742 | 5.017 | 2.4281 |
| $7=$ | 45.161 | 65.032 | 5.853 | 2.8328 |
| $8=$ | 51.613 | 74.323 | 6.689 | 3.2375 |
| $9=$ | 58.065 | 83.613 | 7.525 | 3.6422 |

CUBIC.

|  | Cubic Inches to Cubic Centimetres. | Cubic Feet to Cubic Metres. | Cubic Yards to Cubic Metres. | Bushels to Hectolitres. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 16.387 | 0.02832 | 0.765 | 0.35242 |
| $2=$ | 32.774 | 0.05663 | 1.529 | 0.70485 |
| $3=$ | 49.161 | 0.08195 | 2.294 | 1.05797 |
| $4=$ | 65.549 | 0.11327 | 3.058 | 1.40969 |
| $5=$ | 81.936 | 0.14158 | 3.823 | 1.76211 |
| $6=$ | 98.323 | 0.16990 | 4.587 | 2.11454 |
| $7=$ | 114.710 | 0.19822 | 5.352 | 2.46696 |
| $8=$ | 131.097 | 0.22654 | 6.116 | 2.81938 |
| $9=$ | 147.484 | 0.25485 | 6.881 | 3.17181 |

ARITHMETIC.

CAPACITY.

|  | Fluid Drachms <br> to Millilitres or <br> Cubic Centi- <br> metres. | Fluid Ounces to <br> Millilitres. | Quarts to Litres. |
| :--- | :---: | :---: | :---: | Gallons to Litres.

WEIGHT.

|  | Grains to Milligrammes. | Avoirdupois Ounces to Grammes. | Avoirdupois Pounds to Kilogrammes. | Troy Ounces to Grammes. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 64.7989 | 28.3495 | 0.453 .59 |  |
| ${ }_{3}^{2}=$ | 129.5978 | 56.6991 | $0.90 \sim 19$ | 6.2.26 696 |
| $3=$ $4=$ | 194.3968 | 85.0486 | $1.360 \% 8$ | 93.31044 |
| $4=$ $5=$ | 259.1957 | 113.3981 | 1.811 .37 | 121.41392 |
| $5=$ | 323.9916 | $141.74 \% 6$ | 2.26696 | 155.51740 |
| $\stackrel{6}{=}$ | 388.7935 | 170.0972 | 2.\%2156 |  |
| $8=$ | 453.5924 | 198.4467 | 3.17515 | 117.7243\% |
| $8=$ | 518.3914 | 226.7962 | 3.62874 | 248.82\%85 |
| $9=$ | 583.1903 | 255.1457 | 4.08233 | 2\%9.93133 |

1 chain $=20.1169$ metres.
1 square mile $=259$ hectares.
1 fathom $=1.829$ metres.
1 nautical mile $=1853.27$ metres
1 foot $=0.304801$ metre.
1 avoir. pound $=453.59242 \%$ gram.
15432.3 ̌639 grains $=1$ kilogramme.

## Tables for Converting U. S. Weights and MeasuresIVetric to Customary.

LINEAR.

|  | Metres to Inches. | Metres to Feet. | Metres to Yards. | Kilometres to Miles. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 39.3700 | 3.28083 |  |  |
| $2=$ | 78.7400 | 6.56167 | 2.187 | 1. 2.621374 |
| $3=$ $4=$ | 118.1100 <br> 157 | 9.84250 | 3. 280833 | 1.86411 |
| $4=$ $5=$ | 157.4800 196.8500 | 13.12333 | 4.3 T444 | 2.48548 |
| $5=$ | 196.8500 | 16.40417 | 5.468056 | 3.10685 |
| $6=$ | 236.2200 | 19.68500 | 6.561667 |  |
| $8=$ | 275.5900 | $\stackrel{2}{2} .96583$ | 7.655\% 8 | 4.34959 |
| $8=$ $9=$ | 314.9600 | 26.24667 | 8. 748889 | 4.97096 |
| $9=$ | 354.3300 | $29.52 \% 50$ | 9.842500 | 5.59233 |

SQUARE.

|  | Square Centimetres to Square Inches. | Square Metres to Square Feet. | Square Metres to Square Yards. | Hectares to Acres. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 0.1550 | 10.764 | 1.196 | 2.471 |
| $2=$ | 0.3100 | 21.528 | 2.392 | 4.942 |
| $3=$ | 0.4650 | 32.292 | 3.588 | 7.413 |
| $4=$ | 0.6200 | 43.055 | 4.784 | 9.884 |
| $5=$ | 0.7750 | 53.819 . | 5.980 | 12.355 |
| $6=$ | 0.9300 | 64.583 | 7.176 | 14.826 |
| $7=$ | 1.0850 | 75.317 | 8.372 | 17.297 |
| $8=$ | 1.2400 | 86.111 | 9.568 | 19.768 |
| $9=$ | 1.3950 | $96.8 \% 4$ | 10.764 | 22.239 |

CUBIC.

|  | Cubic Centimetres to Cubic Inches. | Cubic Decimetres to Cubic Inches. | Cubic Metres to Cubic Feet. | Cubic Metres to Cubic Yards. |
| :---: | :---: | :---: | :---: | :---: |
| 1 = | 0.0610 | 61.023 | 35.314 | 1.308 |
| $2=$ | 0.1290 | ${ }_{183.047}$ | \% | ${ }_{3}^{2} .924$ |
| $4=$ | 0.2441 | 244.093 | 141.258 | 5.232 |
| $5=$ | 0.3051 | 305.117 | 176.572 | 6.540 |
| $6=$ | 0.3661 | 366.140 | 211.887 | 7.848 |
| $7=$ | 0.42 T 2 | ${ }^{427}$. 163 | 247.201 | 9.156 |
| $8=$ |  | 488.187 | ${ }^{282} .516$ | 10.464 |
| $9=$ | 0.5192 | 549.210 | 317.830 | 11.771 |

## CAPACITY.

|  | Millilitres or Cubic Centilitres to Fluid Drachms. | Centilitres to Fluid Ounces. | Litres to Quarts. | Dekalitres to <br> Gallons. | $\begin{aligned} & \text { Hektolitres } \\ & \text { to } \\ & \text { Bushels. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1=$ | 0.27 | 0.338 | 1.0567 | 2.6417 | 2.8375 |
| $\stackrel{2}{2}=$ | 0.54 | 0.676 | 2.1131 | 5. 5.2838 | 5.6750 |
| $4=$ | 1.08 | 1.014 | 4.22067 | 10.5668 | 11.3500 |
| $5=$ | 1.85 | 1.691 | 5.2834 | 13.2085 | $14.18 i 5$ |
| $6=$ |  |  | 6.3401 |  | 17.0250 |
|  | 1.89 | 2.368 | 7.3968 | 18.4919 | 19.8635 |
| $8=$ | ${ }_{2.16}$ | 2.706 | 8.4534 | 21.1336 | 22.7000 |
| $9=$ | 2.43 | 3.043 | 9.5101 | 23.7553 | 25.5375 |

WEIGHT.

|  | Milligrammes to Grains. | Kilogrammes to Grains. | Hectogrammes (100 grammes) to Ounces Av. | Kilogrammes to Pounds Avoirdupois. |
| :---: | :---: | :---: | :---: | :---: |
| $1=$ | 0.01543 | 15432.36 | 3.52\%4 | 2.20462 |
| $2=$ | 0.03086 | 30864.71 | 7.0548 | 4.40924 |
| $3=$ | 0.04630 | 46297.07 | 10.58\%2 | 6.61386 |
| $4=$ | 0.06173 | 61729.43 | 14.1096 | 8.81849 |
| $5=$ | 0.07716 | \% 7161.78 | 17.6370 | 11.02311 |
| $6=$ | 0.09959 | 92594.14 | 21.1644 | 13.22773 |
| $7=$ | 0.10803 | 108026.49 | 24.6918 | 15.43:35 |
| $8=$ | 0.12346 | 123458.85 | 28.2192 | 17.63697 |
| $9=$ | 0.13889 | 138891.21 | 31.7466 | 19.84159 |

WEIGHT-(Continued).

|  | Quintals to <br> Pounds Av. | Milliers or Tonues to <br> Pounds Av. | Grammes to Ounces, <br> Troy. |
| :--- | :---: | :---: | :---: |
| $1=$ | 220.46 | 2204.6 | 0.03215 |
| $2=$ | 40.92 | 669.2 | 0.06430 |
| $3=$ | 661.38 | 8813.8 | 0.4 |
| $4=$ | 881.84 | 11023.0 | 0.12845 |
| $5=$ | 1102.30 | 132.27 .6 | 0.16075 |
| $6=$ | 1322.76 | 15432.2 | 0.19290 |
| $7=$ | 1543.22 | 17636.8 | 0.22505 |
| $8=$ | 1763.68 | 19841.4 | 0.25721 |
| $9=$ | 1984.14 |  | 0.28936 |

The only authorized material staridard of customary length is the Troughton scale belonging to this office, whose length at $59^{\circ} .62^{2}$ Falir. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only authorized material standard of customary weight is the Troy pound of the mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, aud contains $\% 000$ grains Troy.
The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The metric system was legalized in the United States in 1866.
By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris.

The International Standard Metre is derived from the Metre des Archives, and its length is defined by the distance between two lines at $0^{\circ}$ Centigrade, on a platinum-iridium bar deposited at the International Bureau.

The International Standard Kilogramme is a mass of platinum-iridium depnsited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

Copies of these international standards are deposited in the office of standard weights and measures of the U. S. Coast and Geodetic Survey.
The litre is equal to a cubic decimetre of water, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogranme in a vacumm; the volume of such a quantity of water being, as nearly as has heem ascertained, equal to a cubic decimetre.

# COMPOUND UNITS. Measures of Pressure and Weight. 

1 lb . per square inch.

1 ounce per sq. in.
$=\left\{\begin{array}{l}.12 \pi 6 \text { in. of mercury at } 62^{\circ} \mathrm{F} . \\ 1.732 \text { ins. of water at } 63^{\circ} \mathrm{F} .\end{array}\right.$ (2116.3 lbs. per square font.

1 atmosphere ( 14.7 lbs . per. sq. in.) $=\left\{\begin{array}{l}33.947 \mathrm{ft} \text {. of water at } 62^{\circ} \mathrm{F} . \\ 30 \mathrm{ins} \text {. of mercury at } 62^{\circ} \mathrm{F} . \\ 290.9 \text { ins. of met }\end{array}\right.$ 29.922 ins. of mercury at $32^{\circ} \mathrm{F}$. \%60 millimetres of mercury at $32^{\circ} \mathrm{F}$.

1 inch of water at $62^{\circ} \mathrm{F}$. $=\left\{\begin{array}{l}.03609 \mathrm{lb} . \text { or } .5774 \text { oz. per sq. in. } \\ 5.196 \mathrm{lbs} \text {, per square foot. } \\ .0736 \mathrm{in} . \text { of mercury at } 62^{\circ} \mathrm{F} .\end{array}\right.$
1 inch of water at $32^{\circ} \mathrm{F} . \quad=\left\{\begin{array}{c}5.2021 \mathrm{lbs} \text {. per square foot. } \\ .036125 \mathrm{lb} \text {." }\end{array}\right.$
1 foot of water at $62^{\circ} \mathrm{F}$.
1 inch of mercury at $63^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& =\left\{\begin{array}{l}
.433 \mathrm{lb} \text {. per square inch. } \\
62.355 \mathrm{lbs} \text { " }
\end{array}\right. \\
& \{.491 \mathrm{lb} \text {. or } 7.86 \mathrm{oz} \text {. per sq. in. } \\
& =\left\{\begin{array}{l}
1.132 \mathrm{ft} \text {. of water at } 62^{\circ} \mathrm{F} \text {. } \\
13.58 \text { ins. }
\end{array}\right.
\end{aligned}
$$

## Weight of One Cubic Foot of Pure Water.


A.merican gallon $=231$ cubic ins. of water at $62^{\circ} \mathrm{F} .=8.3356 \mathrm{lbs}$. British $"=2 \div 7.274$ " " " " " = 10 lbs .

## Measures of Work, Power, and Duty.

Work. - The sustained exertion of pressure through space.
Unit of work.-One foot-pound, i.e., a pressure of one pound exerted through a space of one foot.
Horse-power. -The rate of work. Unit of horse-power $=33,000 \mathrm{ft}$. lbs. per ininute, or 550 ft .1 lbs . per second $=1,980,000 \mathrm{ft}$.-lbs. per hour.
Heat unit $=$ heat required to raise 1 lb . of water $1^{\circ} \mathrm{F}$. (from $39^{\circ}$ to $40^{\circ}$ ).
Horse-power expressed in heat units $=\frac{33000}{778}=42.416$ heat units per minute $=.707$ heat unit per second $=2545$ heat units per hour.
1 lb . of fuel per H. I'. per hour $=\left\{\begin{array}{l}1,980,000 \mathrm{ft} . \mathrm{l} \text { lbs. per } \mathrm{lb} \text {. of fuel. } \\ 2,545 \text { heat units }\end{array}\right.$
$1,000,000 \mathrm{ft} .-1 \mathrm{bs}$. per lb . of fuel $=1.9 \mathrm{lbs}$. of fuel per H. P. per hour.
Velocity.--Feet per. second $=\frac{5980}{3600}=\frac{22}{15} \times$ miles per hour.
Gross tons per mile $=\frac{1 ; 60}{2240}=\frac{11}{14} \mathrm{lbs}$. per yard (single rail.)

## French and Rritish Equivalents of Compound Units.

 French.1 gramme per square millimetre
1 kilogramme per square ..
1 .. .. ". centimetre
1.0335 kg . per sq. cm. = 1 atmosphere
0.0 r0308 kilogramme per square centimetre

1 gramme per litre
1 kilogrammetre

British.
$=1.49 \%$ Jbs. per square inch. $=148232$
$=14.223$.. $=14.7$
$=1 \mathrm{lb}$. per square inch.
$=\quad 0.062428 \mathrm{lb}$. per cubic foot.
$=\quad$ r.2330 foot-pounds.

WIRE AND SHEET-METAL GAUGES COMPARED.

| $\begin{aligned} & 4 \\ & 0 \\ & 400 \\ & 0.0 \\ & \text { E } \\ & \text { E } \\ & \text { 20 } \end{aligned}$ |  |  |  |  | Eritish Sta Wire (Legal in Grea Marc | Imperial <br> ndard <br> Gauge. <br> Standard <br> t Britain nce <br> 1, 1884.) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | inch. | inch. | inch. | inch. | inch. | millim. | inch. |  |
| 0000000 |  |  | $.49$ |  | . 500 | 12.7 | . 5 | 7/0 |
| 000000 |  |  | . 46 |  | . 464 | 11.78 | . 469 | 6/0 |
| 00000 |  |  | . 43 |  | . 432 | 10.97 | . 438 | $5 / 0$ |
| 0000 | . 454 | . 46 | . 393 |  | . 4 | 10.16 | . 406 | $4 / 0$ |
| 000 | . 425 | . 40964 | . 362 |  | . 312 | 9.45 | . 345 | $3 / 0$ |
| 00 | . 38 | . 3648 | . 331 |  | . 348 | 8.84 | . 344 | 2/0 |
| 0 | . 34 | . 32486 | .307 |  | . 324 | 8.73 | . 313 | 0 |
| 1 | . 3 | . 2893 | . 283 | . 227 | . 3 | 7.63 | . 281 | 1 |
| 2 | . 284 | . $25 \% 63$ | .26:3 | . 219 | .2\% | 7.01 | . 266 | 2 |
| 3 | . 259 | . 22942 | . 244 | .212 | . 252 | 6.4 | . 25 | 3 |
| 4 | . 238 | . 20431 | . 225 | . $20 \%$ | . 23.2 | 5.89 | . 234 | 4 |
| 5 | . 22 | . 18194 | . 207 | . 204 | . 212 | 5.38 | . 219 | 5 |
| 6 | . 203 | .1620: | . 19 \% | . 201 | . 192 | 4.88 | . 503 | 6 |
| 7 | . 18 | . 14428 | . 177 | . 199 | . 176 | 4.47 | . 188 | 7 |
| 8 | . 165 | . 12849 | . 162 | . 197 | . 16 | 4.06 | . 172 | 8 |
| 9 | . 148 | . 11443 | . 148 | . 194 | . 144 | 3.66 | . 156 | 9 |
| 10 | . 134 | . 10189 | . 135 | . 191 | . 128 | 3.25 | . 141 | 10 |
| 11 | . 12 | . 09074 | . 12 | . 188 | . 116 | 2.95 | . 125 | 11 |
| 12 | . 109 | . 08081 | . 105 | . 185 | . 104 | 2.64 | . 109 | 12 |
| 13 | . 095 | . $0 \sim \sim 196$ | . 092 | . 182 | . 092 | 2.34 | . 094 | 13 |
| 14 | . 083 | . 06408 | . 08 | . 180 | . 08 | 2.03 | . 078 | 14 |
| 15 | . 072 | . 05707 | . $0 \% \%$ | . 188 | . 072 | 1.83 | . 07 | 15 |
| 16 | . 065 | . 0508.3 | . 063 | . 175 | . 064 | 1.63 | . 0685 | 16 |
| 17 | . 058 | . $045 \because 6$ | . 054 | . 172 | . 056 | 1.4. | . 0563 | 17 |
| 18 | . 049 | . 0103 | . 04 亿 | . 168 | . 043 | 1.2\% | . 05 | 18 |
| 19 | . 042 | . 03559 | . 041 | . 161 | . 04 | 102 | . 0438 | 19 |
| 20 | . 035 | . 03106 | .0:35 | .161 | . 036 | . 91 | .03\%5 | \$0 |
| 21 | . 032 | . $0 \% 846$ | . 03.2 | . 15 \% | . 032 | . 81 | . 0314 | \%1 |
| 22 | . $0 \geqslant 8$ | .02535 | . 028 | . 155 | . 028 | . 71 | . 0313 | 22 |
| 23 | . 025 | . 02257 | . 025 | . 153 | . 024 | . 61 | . 0281 | 23 |
| 24 | .022 | .0201 | . 043 | . 151 | . 022 | . 56 | . 025 | 24 |
| 25 | .02 | . 0159 | . 0.3 | . 148 | .02 | . 51 | . 0219 | 25 |
| 26 | . 018 | . 01594 | . 018 | . 146 | . 018 | . 46 | . 0188 | 26 |
| 27 | . 016 | . 014 i 9 | . 017 | . 143 | . 0164 | . 42 | . 0178 | 27 |
| 28 | . 014 | . 01264 | . 016 | . 139 | . 0148 | . 38 | . 0156 | 28 |
| 29 | . 013 | . 01126 | . 015 | . 134 | . 0136 | . 35 | . 0141 | 29 |
| 30 | . 012 | . 01002 | . 014 | . 127 | . 0124 | . 31 | . 0125 | 30 |
| 31 | . 01 | . 00893 | . 0135 | . 120 | . 0116 | . 29 | . 0109 | 31 |
| 32 | . 009 | . $00 \% 95$ | . 013 | . 115 | . 0108 | . 27 | . 0101 | 32 |
| 33 | . 008 | . 00708 | . 011 | . 112 | . 01 | . 25 | . 0094 | 33 |
| 34 | . 007 | . 0063 | . 01 | . 110 | . 0092 | . 23 | . 0086 | 34 |
| 35 | . 005 | . 00561 | . 0095 | . 108 | . 0084 | . 21 | .00\%8 | 35 |
| 36 | 004 | . 005 | . 009 | . 106 | . $00 \% 6$ | . 19 | . $00 \%$ | 36 |
| 37 |  | . 00445 | . 0085 | . 103 | . 0068 | . 17 | . 0066 | 37 |
| 38 |  | . 00396 | . 008 | . 101 | . 006 | . 15 | . 0063 | 38 |
| 39 |  | . 00353 | . 0075 | . 099 | . 0052 | . 13 |  | 39 |
| 40 |  | . 00314 | . 007 | . 098 | . 0048 | . 12 |  | 40 |
| 41 |  |  |  | . 095 | . 0044 | . 11 |  | 41 |
| 42 |  |  |  | . 093 | . 004 | . 10 |  | 42 |
| 43 |  |  |  | . 088 | . 0036 | . 09 |  | 43 |
| 44 |  |  |  | . 085 | .00:32 | . 08 |  | 44 |
| 45 |  |  |  | . 081 | . 0028 | . 07 |  | 45 |
| 46 |  |  |  | . 0.98 | . 0024 | . 06 |  | 46 |
| 47 |  |  |  | . 077 | . 062 | . 05 |  | 47 |
| 48 |  |  |  | .075 | . 0016 | . 04 |  | 48 |
| 49 |  |  |  | .072 | .0012 | . 03 |  | 49 |
| 50 |  |  |  | . 068 | . 001 | .025 |  | 50 |

EDISON，OR CLECUEAR MIE，GAUGE，FOR ELEC－ TRECAL WIREN．

| Gauge Num－ ber． | Circular Mils． | Diam－ eter in Mils． | Gauge Num－ とer． | Circular Mils． | $\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { in Mils. } \end{aligned}$ | Gauge Num－ ber： | Circular Mils． | Diam－ eter in Mils． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 3，000 | 54.78 | 70 | 70，000 | 264.58 | 190 | 190，000 |  |
| 5 | 5，000 | 70.78 | 75 | \％\％，000 | 273.8 亿 | 200 | 1900，000 | 435.89 $44 \% .22$ |
| 8 | 8，000 | 89.45 | 80 | 80，000 | 282.85 | 2：0 | 200，000 | 469.05 |
| 12 | 12，000 | 109.55 | 85 | 85，000 | 291.55 | 240 | 240，000 | 489.90 |
| 15 | 15，000 | 12\％． 48 | 90 | 90，000 | 300.00 | 260 | 260，000 | 509.91 |
| 20 | 20，000 | 141.43 | 95 | 95，000 | 308.23 | 280 | 280，000 | 529.16 |
| 25 | 25，000 | 158.12 | 100 | 100，000 | 316.23 | 300 | 300，000 | 54\％．73 |
| 30 | 30，000 | 173．21 | 110 | 110，000 | 331.67 | $3 \div 0$ | 320，000 | 565． 69 |
| 35 | 35，000 | $18 \% .09$ | 1：0 | 1：0，000 | 346.42 | 340 | 340，000 | 583.10 |
| 40 | 40，000 | 200.00 | 130 | 130，000 | 360.56 | 360 | 360，000 | 600.00 |
| 45 | 45，000 | 212．14 | 140 | 140，000 | 374.17 |  |  |  |
| 50 | 50，000 | 223.61 | 150 | 150，000 | 387.30 |  |  |  |
| 55 | 55，000 | 234.53 | 160 | 160，000 | 400.00 |  |  |  |
| 60 | 60，000 | 244.95 | 180 | 170，000 | 412.32 |  |  |  |
| 65 | 65，000 | 254.96 | 180 | 180，000 | $4 \geqslant 4.96$ |  |  |  |

＇TWIST TRELL AND STEEL WIRE GAUGE．
（Morse Twist Drill and Machine Co．）

| No． | Size． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \text { iveh. } \\ & .2280 \end{aligned}$ | 11 | inch | 21 | $\begin{aligned} & \text { inch. } \\ & .1590 \end{aligned}$ | 31 | inch． |  | inch． |  | h． |
| 2 | ． 2210 | 12 | ． 1890 | 21 | ． 15.0 | 31 | ． 1160 | 41 | ． 0960 | 52 | ． 0670 |
| 3 | ． 2130 | 13 | ． 1850 | 23 | ． 1540 | 32 | ． 1130 | 4 | ． 0938 | 52 | ． 0635 |
| 4 | ． 2090 | 14 | ． 1820 | 24 | ． 1520 | $3 t$ | ． 1110 | 44 | ． 0860 | 54 | ． 05.95 |
| 5 | ． 2055 | 15 | ． 1800 | 25 | ．1495 | 35 | ． 1100 | 45 | ．0820 | 55 | ．05：0 |
| ${ }_{7}$ | ． 2040 | 16 | ． 1740 | 26 | ．1400 | 36 | ． 1065 | 46 | ． 0810 | 56 | ． 0465 |
| 8 | ． 2010 | 17 | ．1730 | 27 | ． 1440 | 37 | ． 1040 | 4 | ． 0185 | 57 | ． 0430 |
| 8 | ． 1993 J | 18 | ． 1695 | ：8 | ． 1405 | 38 | ． 1015 | 48 | ．0ヶ¢ ${ }^{\text {a }}$ | 58 | ． 0420 |
| 9 10 | ． 1960 | 19 20 | ． 1660 | $\stackrel{29}{ }$ | ． 1360 | 39 | ． 0995 | 49 | ． 0130 | 59 | ． 0410 |
|  | ． 1985 | 20 | ． 1610 | 30 | ． 1285 | 40 | ． 0980 | 50 | ．0r00 | 60 | ． 0400 |

STURS＇STEEE WIIRE GAUGE．
（For Nos． 1 to 50 see table on page 28．）

| No． | Size． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | inch． <br> .413 |  | incl． |  |  |  | incli． |  | inch |  | inch |
| Y | ． 413 | P | $\begin{aligned} & .323 \\ & .316 \end{aligned}$ | $\underset{\text { E }}{\text { F }}$ | ． 250 | 51 52 | ． 066 | 61 | ． 038 | ${ }_{70}^{71}$ | ． 026 |
| X | ． 397 | N | ． 302 | D | ． 246 | 53 | ． .058 | 68 | ．037 | $\stackrel{\text { rin }}{\text { r }}$ | ．094 |
| W | ． 386 | M | ． 295 | C | ． 242 | 54 | ． 055 | 64 | ． 0.35 | $\stackrel{1}{4}$ | ． 022 |
| V | $.37 \%$ .368 | L | ． 290 | B | ． 238 | 55 | ． 050 | 65 | ．033 | is | ．020 |
| U | ． 368 | K | ． 281 | A | ． 234 | 56 | ． 045 | 66 | ． 13 | r6 | ． 018 |
| $\stackrel{\text { T }}{ }$ | ． 358 | J | ． 212 | to | \｛ See | 57 | ． 042 | 67 | ． 031 | 77 | ． 016 |
| R | ． 339 | ${ }_{\mathrm{H}}^{\mathrm{H}}$ | － 27.2 | to | \｛page | 58 | ． 041 | 68 | ．030 | 78 | ． 015 |
| Q | ． 332 | G | ． 2661 | 50 | 128 | ${ }_{6}^{59}$ | ． 040 | 69 | ． 029 | 79 | ． 014 |
|  |  |  |  |  |  | 60 | ． 039 | $\%$ | ． 02 亿r | 80 | ． 013 |

The Stubs＇Steel Wire Gauge is used in measuring diawn steel wire or drill rods，

## THE EDISON OR CIRCULAR HIIL WHRE GAUGE.

(For table of copper wires by this.gauge, giving weights, electrical resistances, etc., see Copper Wire.)
Mr.'C. J.' Field (Stevens Indicator, July, 188i) thus describes the origin of the Edison gauge:
The Edison company experienced inconvenience and loss by not having a wide euough range nor sufficient number of sizes in the existing gauges. This was felt more particularly in the central-station work in making electrical determinations for the street system. They were compelled to make use of two of the existing gauges at least, thereby introclucing a complication that was liable to lead to mistakes by the contractors and linemen.

In the incandescent system an even distribution throughout the entire system and a uniform pressure at the point of delivery are obtained by calculating for a given maximum percentage of loss from the potential as delivered from the dynamo. In carrying this out, on account of lack of regular sizes, it was often necessaly to use larger sizes than the occasion deinanded, and even to assume new sizes for large underground conductors. It was also found that nearly all manufacturers based their calculation for the conductivity of their wire on a variety of units, and that not one used the latest unit as adopted by the British Association and determined from Dr. Matthiessen's experiments; and as this was the unit employed in the manufacture of the Edison lamps, there was a further reason for constructing a new gauge. The engineering department of the Edison company, knowing the requirements, have designed a gauge that has the widest range c, btainable and a large number of sizes which increase in a regular and uniform manner. The basis of the graduation is the sectional area, ard the number of the wire corresponds. A wire of 100,000 circular mils area is No. 100 ; a wire of one half the size will be No. 50 ; twice the size No. 200.

In the older gauges, as the number increased the size decreased. With this gauge, however, the number increases with the wire, and the number multiplied by 1000 will give the circular mils.

The weight per mil-foot, 0.0000030205 pounds, agrees with a specific gravity of 8.889 , which is the latest figure given for copper. The ampere capacity which is given was deduced from experiments made in the company's laboratory, and is based on a rise of temperature of $50^{\circ} \mathrm{F}$. in the wire.

In 1893 Mr. Field writes, concerning gauges in use by electrical engineers:
The B. and S. gauge seems to be in general use for the smaller sizes, up to $100,000 \mathrm{c} . \mathrm{m}$., and in some cases a little larger. From between one and two hundred thousand circular mils upwards, the Edison gauge or its equivalent is practically in use, and there is a general tendency to designate all sizes above this in circular mils, specifying a wire as $200,000,400,000,500$,000 , or $1,000,000 \mathrm{c} . \mathrm{m}$.

In the electrical business there is a large use of copper wire and rod and other materials of these large sizes, and in ordering them, speaking of them, specifying, and in every other use, the general method is to simply specify the circular milage. I think it is going to be the only system in the future for the designation of wires, and the attaining of it nieans practically the adoption of the Edison gange or the method and basis of this gauge as the correct one for wire sizes.

## THE U. S. S'PANDARD GAUGE FORE SHEETE AND HLATE IRON AND STEEEL, 1893.

There is in this country no uniform or standard gauge, and the same numbers in different gauges represent different thicknesses of sheets or plates. This has given rise to much misunderstanding and friction between employers and workmen and mistakes and fraud betweeu dealers and consumers.
An Act of Congress in 1893 established the Standard Gauge for sheet iron and steel which is given on the next page. It is based on the fact that a cubic foot of iron weighs 480 pounds.
A sheet of iron 1 foot square and 1 inch thick weighs 40 pounds, or 640 ounces, and 1 ounce in weight should be $1 / 640$ inch thick. The scale has been arranged so that each descriptive nimber represents a certain number of ounces in weight and an equal number of 640 ths of an inch in thickness.

The law enacts that on and after July 1, 1893, the new gange shall be used in determining duties and taxes levied on sheet and plate iron and steel; and that in its application a variation of $21 / 2$ per cent either way may be allowed.

GAUGE FOR SHEET AND PLATE IRON AND STEEL. 31

## U. S. STANDAED GAUGE FOR SHEET AND PHATE HiRON AND STEEL, 1893.

|  | $\left\lvert\, \begin{aligned} & y=4 \\ & \text { an } \\ & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000000 | 1-2 | 0.5 | 127 | 320 | 20. | 9.072 | 97. 65 | 215.28 |
| 000000 | 15-32 | $0.465 \%$ | 11.90635 | 300 | 18.75 | 8.505 | 91.55 | 201.82 |
| 00000 | 7-16 | $0.43 \pi 5$ | 11.1125 | 280 | 17.50 | 7.938 | 85.44 | 188.37 |
| 0000 | 13-3: | 0.40625 | 10.31875 | 260 | 16.25 | 7.371 | 79.33 | 174.91 |
| 000 | 3-8 | $0.3 \% 5$ | 9.5\%5 | 240 | 15. | 6.804 | 73.24 | 161.46 |
| 00 | 11-32 | $0.343 \% 5$ | 8.73125 | 220 | 13.75 | 6.337 | 67.13 | 14800 |
|  | 5-16 | 0.3125 | \%.9375 | 200 | 12.50 | 5. 67 | 61.03 | 134.55 |
| 1 | 9-32 | 0.28125 | 7.14375 | 180 | 11.25 | 5.103 | 54.93 | 121.09 |
| 2 | 17-64 | 0.265625 | 6.746875 | 170 | 10.6:5 | 4.819 | 51.88 | 114.37 |
| 3 | 1-4 | 0.25 | 6.35 | 160 | 10. | 4.536 | 48.8: | 107.64 |
| 4 | 15-64 | 0.234375 | 5.953125 | 150 | 9.375 | 4.252 | 45. 77 | 100.91 |
| , | 7-32 | 0.21875 | 5.55685 | 140 | 8.75 | 3.969 | 42.\% | 94.18 |
| 6 | 13-64 | 0.203125 | 5.159325 | 130 | 8.125 | 3.685 | 39.67 | 87.45 |
| 7 | 3-16 | $0.18 \%$ | 4.76:5 | 1:0 | 7.5 | $3.40 \%$ | 36.62 | 80.72 |
| 8 | 11-64 | 0.171875 | 4.365625 | 110 | 6.875 | 3.118 | 33.57 | 74.00 |
| 9 | 5-32 | 0.156:5 | 3.958\% | 100 | 6.25 | 2.835 | 30.52 | 67.27 |
| 10 | 9-64 | 0.140625 | 3 5 T18\%5 | 90 | 5.6:5 | $\because 55:$ | 27.46 | 60.55 |
| 11 | 1-8 | 0.12 .5 | 3.175 | 80 |  | 2.268 | 24.41 | 53.82 |
| 12 | 7-64 | 0.109375 | 2.778125 | 50 | 4.375 | 1.984 | 21.36 | 47.09 |
| 13 | 3-32 | $0.093 \%$ | 2.38125 | 60 | 3.75 | 1.01 | 18.31 | 40.36 |
| 14 | 5-64 | 0.078125 | 1.984330 | 50 | 3.125 | 1.417 | 15.26 | 33.64 |
| 15 | 9-1:8 | $0.07031: 5$ | 1 T2593\%5 | 45 | 2.8125 | 1.2'6 | 13.73 | 30.27 |
| 16 | 1-16 | 0.06 .5 | $1.58 \% 5$ | 40 | 2.5 | 1.134 | 12.21 | 26.91 |
| 17. | 9-160 | 0.05625 | 1.42885 | 36 | 2.25 | 1. 0.21 | 10.99 | 24.22 |
| 18 | 1-20 | 0.05 | 1.27 | 32 | 2. | $0.90 \% 2$ | 9.765 | 21.53 |
| 19 | 7-160 | 0.043\% | 1.11125 | 28 | 1.75 | 0.7938 | 8.544 | 18.84 |
| 20 | 3-80 | 0.0375 | 0.95\%5 | 24 | 1.50 | 0.6804 | 7.324 | 16.15 |
| 21 | 11-3:2 | $0.0343 \% 5$ | 0.873125 | 2 | 1.335 | 0.6237 | 6.713 | 14.80 |
| 22 | 1-33 | 0.03125 | 0.793750 | 20 | 1.25 | $0.56 \%$ | 6.103 | 1346 |
| 23 | 0-3:0 | 0.028125 | $0.71430 \sim 5$ | 18 | 1.185 | 0.5103 | 5.493 | 12.11 |
| 24 | 1-40 | 0.025 | 0635 | 16 | 1. | 0.4536 | 4.882 | 10.76 |
| 25 | $7-3: 0$ | $0.0218 \pi 5$ | 0.555625 | 14 | 0.875 | 0.3969 | 4.2i2 | 9.42 |
| 26 | 3-160 | 0.01875 | 0.47695 | 12 | 0.75 | 0.3403 | 3.662 | 8.07 |
| $2 \pi$ | 11-640 | 0.0171875 | 0.4365625 | 11 | 0.6875 | 0.3119 | 3.357 | \%.40 |
| 28 | 1-64 | 0.015625 | 0.396875 | 10 | 0.625 | 0.2835 | 3.052 | 6.73 |
| 29 | 9-640 | 0.0140625 | $0.35 \% 18 \% 5$ | 9 | 0.5625 | 0.2551 | 2.746 | 6.05 |
| 30 | 1.80 | 0.0125 | 0.3175 | 8 | 0.5 | 0.2968 | $\bigcirc .441$ | 5.38 |
| 21 | $7-640$ | 0.0109375 | 0.2788125 | 7 | 0.4375 | 0.1984 | 2.136 | 4.71 |
| 32 | 13-1:80 | 0.01015625 | 0.35796815 | 61/2 | 0.40695 | 0.1843 | 1.983 | 4.37 |
| 33 | 3-320 | $0.0093 \% 5$ | 0.238125 | 6 | 0.375 | 0.1701 | 1.831 | 4.04 |
| 34 | 11-1280 | 000859375 | 0.21828125 | 51/2 | $0.343 \%$ | 0.1559 | 1.678 | $3 \%$ |
| 3.5 | 5-640 | 0.00781:5 | 0.1984375 |  | 0.3125 | 0.1417 | 1.526 | 336 |
| 36 | 9-1280 | 0.00703125 | 0178.59375 | 41/2 | $0.281 \cdot 5$ | 0.1276 | 1.373 | 3.03 |
| 37 | 17-2560 | 0.006640625 | 0.168671875 | 41/4 | $0.2656: 5$ | 0.1205 | 1.297 | 2.87 |
| 38 | 1-160 | 0.00625 | 0.15875 | 4 | 0.25 | 0.1134 | 1.221 | 2.69 |

The Decimal Gange. -The legalization of the standard sheet-metas gauge of 1893 and its adoption by some manufacturers of sheet iron have only added to the existing confusion of gauges. A joint committee of the American Society of Mechanical Engineers and the American Railway Master Mechanics' Association in 1895 agreed to recommend the use of the decimal gange, that is, a gauge whose number for each thickness is the number of thousandths of an inch in that thickness, and also to recommend "the abandonment and disuse of the various other gauges now in use, as tending to confusion and error.". A notched gauge of oval form, shown in the cut below, has come into use as a standard form of the decimal gange.

In 1904 The Westinghouse Electric \& Mfg. Co. abandoned the use of gauge numbers in referring to wire, sheet metal, etc.

## Weight of Sheet Iron and Steel. Thickness by Decimal Gauge.




## ALGEBRA.

Addition. - Add $a$ and $b$. Ans. $a+b$. Add $a, b$, and $-c$. Ans. $a+b-c$. Add 2 thand - 3ct. Ans. $-a$. Add $2 a b,-3 a b,-c,-3 c$. Ans. $-a b-4 c$. Subtraction.-Subtract $a$ from $b$. Ans. $b-a$. Subtract $-a$ from $-b$. Ans. $-b+a$.

Subtract $b+c$ from $a$. Ans. $a-b-c$. Subtract $3 a^{2} b-9 c$ from $4 a^{2} b+c$. Ans. $a^{2} b+10 c$. Rise: Change the signs of the subtrahend and proceed as in addition.

Multiplication. Multiply $a$ by $b$. Ans. $a b$. Multiply $a b$ by $a+b$. Ans. $a^{2} b+a b^{2}$.

Multiply $a+b$ by $a+b$. Ans. $(a+b)(a+b)=a^{2}+2 a b+b^{2}$ 。
Multiply - $a$ by - $b$. Ans. $a b$. Multiply - $a$ by $b$. Ans. $-a b$. Like signs give plus, unlike sigus minus.

Powers of numbers. - The product of two or more powers of any number is the number "ith an exponent equal to the sum of the powers: $a^{2} \times a^{3}=a^{5} ; a^{2} b^{2} \times a b=a^{3} b^{3} ;-\tilde{\gamma} a b \times 2 \alpha c=-14 a^{2} b c$.

To multiply a polynomial by a monomial, multiply each term of the polynomial by the monomial and add the partial products: $(6 a-3 b) \times 3 c=18 a c$ $-9 b c$.

To multiply two polynomials, multiply each term of one factor by each term of the other and add the partial products: $(5 a-6 b) \times(3 a-4 b)=$
$15 x^{2}-38 a b+24 b^{2}$. $15 a^{2}-38 a b+24 b^{2}$.

The square of the sum of two numbers $=$ sum of their squares + twice their product.

The square of the difference of two numbers = the sum of their squares - I wice their product.

The product of the sum and difference of two numbers = the difference of their squares:

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} ; \quad(a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b) \times(a-b)=a^{2}-b^{2} .
\end{gathered}
$$

The square of half the sums of two quantities is equal to their product plus the square of half their difference: $\left(\frac{a+b}{2}\right)^{2}=a b+\left(\frac{a-b}{2}\right)^{2}$.
The square of the sum of two quantities is equal to four times their prod. ucts, plus the square of their difference: $(a+b)^{2}=4 a b+(a-b)^{2}$

The sum of the squares of two quantities equals twice their product, plus the square of their difference: $a^{2}+b^{2}=2 a b+(a-b)^{2}$.
The square of a trinomial $=$ the square of each term + twice the product of each term by each of the terms that follow it: $(a+b+c)^{2}=a^{2}+b^{2}+$ $c^{2}+2 a b+2 a c+2 b c ;(a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2 a b-2 a c+2 b c$.
The square of (any number $+1 / 2$ ) $=$ square of the number + the number $+1 / 4 ;=$ the number $\times($ the number +1$)+1 / 4$;
$(a+1 / 2)^{2}=a^{2}+a+1 / 4,=a(a+1)+1 / 4 . \quad(41 / 2)^{2}=4^{2}+4+1 / 4=4 \times 5+1 / 4=201 / 4$.
The product of any number $+1 / 2$ by any other number $+1 / 2=$ product of the numbers + half their sum $+1 / 4 .(a+1 / 2) \times b+1 / 2)=a b+1 / 2(a+b)+1 / 4$. $41 / 2 \times 61 / 2=4 \times 6+1 / 2(4+6)+1 / 4=94+5+1 / 4=291 / 4$.
Square, cube, thepower, etc., of a binomial $a+b$ 。

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} ;(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} ; \\
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 c b^{3}+b^{4} .
\end{gathered}
$$

In each case the number of terms is onl greater than the exponent of the power to which the binomial is raised.
2. In the first term the exponent of $a$ is the same as the exponent of the power to which the binomial is raised, and it decreases by 1 in each succeeding term.
3. $b$ appears in the second term with the exponent 1 , and its exponent increases by 1 in each succeeding term.
4. The coefficient of the first term is 1.
5. The coefficient of the second term is the exponent of the power to which the binomial is raised.
6. The coefficient of each succeeding term is found from the next preceding term by multiplying its coefficient by the exponent of $\alpha$, and dividing the product by a number greater by 1 than the exponent of $b$. (See Biromial Theorem, below.)

Parentheses. - When a parenthesis is preceded by a plus sign it may be removed without changing the value of the expression: $a+b+(a+b)=$ $2 a+z b$. When a parenthesis is preceded by a minus sign it nay be removed if we change the signs of all the terms within the parenthesis: $1-(a-b$ $-c)=1-a+b+c$. When a parenthesis is within a parenthesis remove the inner one first: $a-[b-\{c-(d-e)\}]=a-[b-\{c-d+e\}]$ $=a-[b-c+d-e]=a-b+c-d+e$.
A multiplication sign, $x$, has the effect of a parenthesis, in that the operation indicated by it must be performed before the operations of addition or subtraction. $a+b \times a+b=a+a b+b$; while $(a+b) \times(a+b)=$ $a^{2}+2 a b+b^{2}$, and $(a+b) \times a+b=a^{2}+a b+b$.
Division.-The quotient is positive when the dividend and divisor have like signs, and negative when they have unlike signs: $a b c \div b=a c$; $a b c \div-b=-a c$.
To divide a monomial by a monomial, write the dividend over the divisor with a line between them. If the expressions have commou factors, remove the common factors:

$$
a^{2} b x \div a b y=\frac{a^{2} b x}{a b y}=\frac{a x}{y} ; \quad \frac{a^{4}}{a^{3}}=a ; \quad \frac{a^{3}}{a^{5}}=\frac{1}{a^{2}}=a^{-2}
$$

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial: $(8 a b-12 a c) \div 4 a=2 b-3 c$.
To divide a polynomial by a polynomial, arrange both dividend and divisor in the order of the ascending or descending powers of some common letter, and keep this arrangement throughout the operation.

Divide the first term of the dividend by the first term of the divisor, and write the result as the first term of the quotient.
Multiply all the terms of the divisor by the first term of the quotient and subtract the product from the dividend. If there be a remainder, consider it as a new dividend and proceed as before: $\left(a^{2}-b^{2}\right) \div(a+b)$.

$$
\begin{gathered}
a^{2}-b^{2} \mid a+b . \\
\frac{a^{2}+a b \mid a-b}{-a b}-\frac{b^{2}}{-a b-b^{2}} \\
\frac{1}{2} .
\end{gathered}
$$

The difference of two equal odd powers of any two numbers is divisible by their difference and also by their sum:
$\left(a^{3}-b^{3}\right) \div(a-b)=a^{2}+a b+b^{2} ;\left(a^{3}-b^{3}\right) \div(a+b)=a^{2}-a b+b^{2}$.
The difference of two equal even powers of two numbers is divisible by their difference and also by their um: $\left(a^{2}-b^{2}\right) \div(a-b)=a+b$.

The sum of two equal even powers of two numbers is not divisible by either the difference or the sum of the numbers; but when the exponent of each of the two equal powers is composed of an odd and an even factor, the sum of the given power is divisible by the sum of the powers expressed by the even factor. Thus $x^{6}+y^{6}$ is not divisible by $x+y$ or by $x-y$, but is divisible by $x^{2}+y^{2}$.
Simple equations.-An equation is a statement of equality between two expressions; as, $a+b=c+d$.

A simple equation, or equation of the first degree, is one which contains only the first power of the unknown quantity. If equal changes be made (by addition, subtraction, multiplication, or division) in both sides of an equation, the results will be equal.
Any term may be clianged from one side of an equation to another, provided its sign be changed: $a+b=c+d ; a=c+d-b$. To solve an equation having one unknown quantity, transpose all the terms involving the unknown quantity to one side of the equation, and all the other terms to the other side; combine like terms, and divide both sides by the coefficient of the unknown quantity.
Solve $8 x-29=26-3 x . \quad 8 x+3 x=29+26 ; 11 x=55 ; x=5$, ans.
simple algebraic problems containing one unknown quantity are solved by making $x=$ the unknown quantity, and stating the conditions of the problem in the form of an algebraic +quation, and then solving the equation. What two mmbers are those whose simn is 48 and difference 14? Let $x=$ the smaller number, $x+14$ the greater: $x+x+14=48 . \quad 2 x=34, x$ $=1 \% ; x+14=31$, ans.
Find a number whose treble exceeds 50 as much as its double falls short of 40 . Let $x=$ the number. $3 x-50=40-2 x ; 5 x=90 ; x=18$, ans. Proving, $54-50=40-36$.

Equations containing ivo unkiown quantities.-If one equation contains two unknown quantities, $x$ and $y$, an indefinite number of pairs of values of $x$ and $y$ may be found that will satisfy the equation, but if a second equation be given only one pair of values can be found that will satisfy both equations. Simultaneous equations, or those that may be satisfied by the same values of the mknown quantities, are solved by combining the equations so as to obtain a single equation containing only one unknown quantity. This process is called elimination.

Elimination by addition or subtraction.-Multiply the equation by such numbers as will make the coefficients of one of the unknown quantities equal in the resulting eqnation. Add or subtract the resulting equations according as they have unlike or like sigus.

$$
\text { Solve }\left\{\begin{array}{lll}
2 x+3 y=7 . & \text { Multiply by } 2: & 4 x+6 y=14 \\
4 x-5 y=3 . & \text { Subtract: } & 4 x-5 y=3
\end{array} \quad 11 y=11 ; y=1 .\right.
$$

Substituting value of $y$ in first equation, $2 x+3=r ; x=2$.
Elimination by substitution.-From one of the equations obtain the value of one of the unknown quantities in terms of the other. Substitutute for this unknown quantity its value in the other equation and reduce the resulting equations.

Solve $\begin{cases}2 x+3 y=8 . & \text { (1). From (1) we find } x=\frac{8-3 y}{2} . \\ 3 x+7 y=7 . & \text { (2). }\end{cases}$
Substitute this value in ( 2 ): $3\left(\frac{8-3 y}{2}\right)+7 y=7 ;=24-9 y+14 y=14$, whence $y=-2$. Substitute this value in (1): $9 x-6=8 ; x=7$.

Elimination by comparison.-From each equation obtain the value of one of the unknown quantities in terms of the other. Form an equation from these equal values, and reduce this equation.

Solve

$$
\left\{\begin{array}{l}
2 x-9 y=11 . \quad \text { (1). From (1) we find } x=\frac{11+9 y}{2} \\
3 x-4 y=7 .
\end{array}\right.
$$

Equating these values of $x, \frac{11+9!}{z}=\frac{r+4 y}{3} ; 19 y=-19 ; y=-1$.
Substitute this value of $y$ in (1): $2 x+9=11 ; x=1$.
If three simultaneous equations are given containing three unknown quantities, one of the unknown quantities must be eliminated between two pairs of the equations; then a second between the two resulting equations.

Quadratic equations.-A quadratic equation contains the square of the unknown quantity, but no higher power. A pure quadratic contains the square only; an affected quadratic both the square and the first power.
To solve a pure quadratic, collect the unknown quantities on one side, and the known quantities on the other; divide by the coefficient of the unknown quantity and extract the square root of each side of the resulting equation.

Solve $3 x^{2}-15=0.3 x^{2}=15 ; x^{2}=5 ; x=\sqrt{5}$
A root like $V 5$, which is indicated, but which can be found only approximately, is called a surd.
Solve $3 x^{2}+15=0 . \quad 3 x^{2}=-15 ; x^{2}=-5 ; x=\sqrt{-5}$.
The square root of - 5 cannot be found even approximately, for the square of any number positive or negative is positive; therefore a root which is indicated, but cannot be found even approximately, is called imaginary.
To solve an affected quadratic.-1. Convert the equation into the form $a^{2} x^{2} \pm 2 a b x=c$, multiplying or dividing the equation if necessary, so as to make the coefficient of $x^{2}$ a square number.
2. Complete the square of the first member of the equation, so as to convert it to the form of $a^{2} x^{2} \pm 2 a b x+b^{2}$, which is the square of the binomial $a x \pm b$, as follows: add to each side of the equation the square of the quotient obtained by dividing the second term by twice the square root of the
first term. first term.
3. Extract the square root of each side of the resulting equation.

Solve $3 x^{2}-4 x=3.2$ To make the coefficient of $x^{2}$ a square number, multiply by 3: $9 x^{2}-12 x=96 ; 12 x \div(2 \times 3 x)=2 ; 2^{2}=4$.
Complete the square: $9 x^{2}-12 x+4=100$. Extract the root: $3 x-2= \pm$

10 , whence $x=4$ or $-22 / 3$. The square root of 100 is either +10 or -10 , since the square of -10 as well as $+10^{2}=100$.
Problems involving quadratic equations have apparently two solutions, as a quadratic has two roots. Sometimes both will be true solutions, but generally one only will be a solution and the other be inconsistent with the conditions of the problem.

The sum of the squares of two consecutive positive numbers is 481. Find the numbers.
Let $x=$ one number, $x+1$ the other. $x^{2}+(x+1)^{2}=481 . \quad 2 x^{2}+2 x+1$ $=481$.
$x^{2}+x=240$. Completing the square, $x^{2}+x+0.25=240.25$. Extracting the root we obtain $x+0.5= \pm 15.5 ; x=15$ or -16.
The positive root gives for the numbers 15 and 16. The negative root 16 is inconsistent with the conditions of the problem.

Quadratic equations containing two unknown quantities require different methods for their solution, according to the form of the equations. For these methods reference must be made to works on algebra.
Theory or exponents. $-\sqrt[n]{a}$ when $n$ is a positive integer is one of $n$ equal factors of $a \cdot \sqrt[n]{a^{m}}$ means $a$ is to be raised to the $m$ th power and the $u$ th ront extracted.
$(\sqrt[n]{a})^{m l}$ means that the $n$th root of $a$ is to be taken and the result raised to the $m$ th power.
$\sqrt[n]{a^{m}}=\left(\sqrt[n]{a^{-}}\right)^{m}=a^{\frac{m}{n}}$. When the exponent is a fraction, the numerator indicates a power, and the denominator a root. $a^{\frac{6}{2}}=\sqrt{\overline{a^{6}}}=a^{3} ; a^{\frac{3}{2}}=$ $\sqrt{a^{3}}=a^{1 \cdot 5}$.
To extract the root of a quantity raised to an indicated power, divide the exponent by the index of the required root; as,

$$
\sqrt[n]{a^{m}}=a^{\frac{m}{n}} ; \quad \sqrt[3]{a^{6}}=a^{\frac{6}{3}}=a^{2} .
$$

Subtracting 1 from the exponent of $a$ is equivalent to dividing by $a$ : $a^{2-1}=a^{1}=a ; \quad a^{1-1}=a^{0}=\frac{a}{a}=1 ; a^{0-1}=a^{-1}=\frac{1}{a} ; \quad a^{-1}-1=a a^{-2}=\frac{1}{a^{2}}$
A number with a negative exponent denotes the reciprocal of the number with the corresponding positive exponent.
A factor under the radical sign whose root can be taken may, by having the root taken, be removed from under the radical sign:

$$
\sqrt{\overline{a^{2} b}}=\sqrt{\overline{a^{2}}} \times \sqrt{\bar{b}}=a \sqrt{\bar{b}}
$$

A factor outside the radical sign may be raised to the corresponding power and placed under it:

$$
\sqrt{\frac{\bar{a}}{b}}=\sqrt{\frac{\overline{a b}}{b^{2}}}=\sqrt{a b \times \frac{1}{b^{2}}}=\frac{1}{b} \sqrt{a b} ; \quad \sqrt{\frac{a}{b^{2}}}=\frac{1}{b} \sqrt{a}
$$

Binomial Theorem.-To obtain any power, as the $n$ th, of an expression of the form $x+a$
$(a+x)^{n}=a^{n}+n a^{n-1} x+\frac{n(n-1) a^{n-2}}{1.2} x^{2}+\frac{n(n-1)(n-2) a^{n-3}}{1.2 .3 .} x^{3}+$ etc.
The following laws hold for any term in the expansion of $(a+x)^{n}$.
The exponent of $x$ is less by one than the number of terms.
The exponent of $a$ is $n$ minus the exponent of $x$.
The last factor of the numerator is greater by one than the exponent of $a$.
The last factor of the denominator is the same as the exponent of $x$.
In the $r$ th term the exponent of $x$ will be $r-1$.
The expment of $a$ will be $n-(r-1)$, or $n-r+1$.
The last factor of the nmmerator will be $n-r+2$.
The last factor of the denominator will be $=r-1$.
Hence the $r$ th term $=\frac{n(n-1)(n-2) \cdots(n-r+2)}{1 \cdot 2 \cdot 3 \ldots(r-1)} a^{n-r+1} x^{r-1}$

## GEOMETRICAL PROBLEMS.



Fig. 1.


Fig. 3.


Fig. 4.


Fig. 5.


Fig. 6.

1. To biseet a straight line, or an are of a eircle (Fig. liFrom the ends $A, B$, as centres. describe ares intersecting at $C$ and $D$, and draw a line through $C$ and $D$ which will bisect the line at $E$ or the arc at $F$.

## 2. To draw aperpendicular to a straight line, or a radial line to a cireular are.-Same as in Problem 1. $C D$ is perpendicular to the line $A B$, and also radial to the arc.

## 3. To dratw aperpendieular

 to astraight line from agiven point in that line (Fig. ©). - With any radius, from the given point $A$ in the line $B C$, cot the line at $B$ and $C$. With a longer radius describe ares from $B$ and $C$, cutting each other at $D$, and draw the perpendicular $D A$.
## 4. From the end $A$ of given

 line $A$ to ereet a perpendiem ular A (Fig. 3).-From any centre $H^{\prime}$, above $A D$, describe a circle passing through the given point $A$, and cutting the given line at $D$. Draw $D F$ and produce it to cut the circle at $E$, and draw the perpendicular $A E$.Second Method (Fig. 4).-From the given point $A$ set off a distance $A E$ equal to three parts, by any scale: and on the centres $A$ and $E$, with radii of four and five parts respectively, describe ares intersecting at $C$. Draw the perpendicular $A C$.

Note.-This method is most useful on very large scales, where straight edges are inapplicable. Any multiples of the numbers $3,4,5$ may be taken with the same effect as $6,8,10$, or 9 , 12, 15.
5. To draw aperpendieular to atraight line from any point without it (Fig. 5.)-From the point $A$, with a sufficient radius cut the given line at $F$ and $G$, and from these points describe arcs cutting at $E$. Draw the perpendicular $A E$.
6. To draw a straight line parallel to a given line, at a given distanee apart (Fig. 6).From the centres $A, B$, in the given line, with the given distance as radius, describe ares $C, D$, and draw the parallel lines $C D$ touching the arcs.


Fig. 8.


Fig. 10.


Fig. 11.


Fig. 12
\%. To divide a straight line into a number of equal parts (Fig. 7).-To divide the line $A B$ into, say, five parts, draw the line $A C$ at an angle from $A$; set off five equal parts; draw $B 5$ and draw parallels to it from the other points of division in $A C$. These parallels divide $A B$ as required.

Note.- By a similar process a line may be divided into a number of unequal parts; setting off divisions on $A C$, proportional by a scale to the required divisions, and drawing parallel cutting $A B$. The triangles $A 11, A 22$, A33, etc., are similar triangles.
8. Upon a straight line to draw an angle equal to a given angle (Fig. 8). -Let $A$ be the given angle and $F G$ the line. From the point $A$ with any radins describe the arc $D E$. From $F^{\prime}$ with the same radius describe $I H$. Set off the are $I H$ equal to $D E$, and draw $F H$. The angle $F$ is equal to $A$, as required.
9. To drav angles of $60^{\circ}$ and $30^{\circ}$ (Fig. 9).-From $F$, with any radius $F I$, describe an are $I H$; and from $I$, with the same radius, cut the are at $H$ and draw $F H$ to form the required angle $I F H$. Draw the perpendicular $H K$ to the base line to form the angle of $30^{\circ} \mathrm{FH} \mathrm{K}$.
10. To draw an angle of $45^{\circ}$ (Fig. 10). -Set off the distance $F I$; draw the perpendicular 1 H equal to $I F^{\prime}$, and join $H F$ to form the angle at $F^{\prime}$. The angle at $H$ is also $45^{\circ}$.
11. To bisect an angle (Fig. 11).-Let $A C B$ be the angle; with $\dot{C}$ as a centre draw an are cutting the sides at $A, B$. From $A$ and $B$ as centres, describe ares cutting each other at $D$. Draw $C D$, dividing the angle into two equal parts.
> 12. Through two given points to describe an are of a circle with a given radius (Fig. 12).-From the points $A$ and $B$ as centres, with the given radins, describe ares cutting at $C$; and from $C$ with the same radius describe an $\operatorname{arc} A B$.


Fig. 13.
13. To find the centre of a circle or of an arc of a circle (Fig. 13).-Select three points, $A, B$, $C$, in the circumference, well apart; with the same radius describe arcs from these three points, cutting each other, and draw the two lines, $D E$, $F^{\prime} G$, through their intersections. The point $O$, where they cut, is the centre of the circle or arc.

## ro describe a circle passing

 through three given points. -Let $A, B, C$ be the given points, and proceed as in last problem to find the centre $O$, from which the circle may be described.
## 14. To describe an are of a circle passing through three given points when the centre is not available

 (Fig.14).-From the extreme points $A, B$, as centres, describe arcs $A H$. $B G$. Throngh the third point $C$ draw $A E, B F$, cntting the arcs. Divide $A{ }^{\prime}$ and $B E$ into any number of equal parts, and set off a series of equal parts of the same length on the upper portions of the arcs beyond the points $E F$. Draw straight lines, $B L, B M$, etc., to the divisions in $A F$, and $A I$, $A K$, etc., to the divisions in $E G$. The successive intersections $N, O$, etc., of these lines are points in the

Fig. 15. circle required between the given points $A$ and $C$. which may be drawn in ; similarly the remaining part of the curve $B C$ may be described. (See also Problem 54.)
15. To draw a tangent to a circle from a given point in the circnmference (Fig. 15). -Through the given point $A$, draw the radial line $A C$, and a perpendicular to it, $F G$, which is the tangent required.

16. To draw tangents to a circle from a point without it ( H ig. 16).-From $A$, with the radius $A C$, describe an are $B C D$, and from $C$. with a radius equal to the diameter of the circle, cut the arc at $B D$. Join $B C, C D$, cutting the circle at $E F$, and draw $A E, A F$, the tangents.

Note.-When a tangent is already drawn, the exact point of contact may be found by drawing a perpendicular to it from the centre.

Fig. 16.
17. Between two inclined lines to draw a series of cirm cles touching these lines and touching each other (Fig. 17).
-Bisect the inclination of the given lines $A B, C D$, by the line $N O$. From a point $P$ in this line draw the perpendicular $P B$ to the line $A B$, and


Fig. 17.


Fig. 18.


Fig. 19.


Fig. 20.


Fig. 21.


Fig. $2:$.
on $P$ describe the circle $B D$, touching the lines and cutting the centre line at $E$. From $E$ draw $E$ Ferpendicular to the centre line, cutting $A B$ at $F$, and from $F$ describe an arc $E G$, cutting $A B$ at $G$. Draw $G H$ parallel to $B P$, giving $H$, the centre of the next circle, to be described with the radius $H F$, and so on for the next circle $I N$.
Inversely, the largest circle may be described first, and the sinaller ones in succession. This problem is of frequent use in scroll-work.
18. Hetween two inclined lines to draw a circular segment tangent to the lines and passing. through a point $\boldsymbol{F}^{\prime}$ on the line $\boldsymbol{H}$ Uhich bisects the angle of the lines (Fig. 18). -Through $F$ draw $D A$ at right angles to $F C$ : bisect the angles $A$ and $D$, as in Problem 11, by lines cutting at $C$, and from $C$ with radius $C F$ dıaw the arc $H F^{\prime} G$ required.
19. To draw a circular are that will be tangent to two given lines $A \quad 7$ and $C$ IDinclincd to one another, one tangential point $A$ being given (Fig. 19).- Draw the centre line $G F$. From $E$ draw $E$ at right to angles $A B$ : then $F$ is the cenire of the circle required.
20. To describe a circular are joining two circles, and touching one of them at a given point (Hig. : 0 ). -'To join the circles $A B, k^{\prime} G$, by an are touching one of them at $F$, draw the radius $E \vec{F}$, and produce it both ways. Set off $F H$ equal to the radius $A C$ of the other circle; join CH and bisect it with the perpendicular $L I$, cutting $E F$ at $I$. On the centre $I$, with radius $I F$, describe the arc $F A$ as required.
21. To draw a circle with a given radius $R$ that will be tangent to two given circles $A$ and 13 (Fig. 21) - From centre of circle $A$ with radius equal $R$ plus radius of $A$, and from centre of $B$ with radius equal to $R+$ radius of $B$, draw twn ares cutting each other in $C$, which will be the centre of the circle required.
22. To construct an equilateral triangle, the sides being given (Fig. 22).-On the ends of one side, $A, B$, with $A B$ as radins, describe arcs cutting at $C$, and draw $A C, C B$.


B
C-Tig. 23.


Fig. 24.


Fig. 25.


Fig. 26.


Fig. 27.

23. To construct a triangle of mincqual sides ( Fig .23 ).-On either $\in$ nd of the base $A D$, with the side $B$ as radius, describe an arc; and with the side $C$ as radius, on the other end of the base as a centre, cut the are at $E$. Join $A E, D E$.
24. To construct a square on a given straight line a $B$ (Fig.:24).-With $A B$ as radius and $A$ and $B$ as centres, draw ares $A D$ and $B$ $C$. intersecting at $E$. Bisect $E B$ at $F$. With $E$ as centre and $E F$ as radius. cut the ares $A D$ and $B C$ in $D$ and $C$. Join $A C, C D$, and $D B$ to form the square.
25. To construct a rectangle with given base $H^{H}$ and heisht $\boldsymbol{E}^{\prime} H$ (Fig. 25).-On the base $E F$ draw the perpendiculars $E H$, $F G$ equal to the height, and join $G H$.

## 26. To describe a circle about atriangle (Fig. 26).-

 bisect two sides $A B, A C$ of the triangle at $E F$, and from these points draw perpendiculars cutting at $K$. On the centre $K$, with the radius $K A$, draw the circle $A B C$.
## 27. To inscribe a circle in

 a triangle (Fig. 2r).-Bisect two of the angles $A, C$, of the triangle by lines cutting at $D$; from $D$ draw a perpendicular $D$ E to any side, and with $D E$ as radius describe a circle.When the triangle is equilateral, draw a perpendicular from one of the angles to the opposite side, and from the side set off one third of the perpendicular.
28. ra describe a cirele abodit a square, and to in= scribe a squarein a circle (Fig. 28).-To describe the circle, draw the diagonals $A B, C D$ of the square, cutting at $E$. On the centre $E$, with the ratius $A E$, describe the circle.
ro inscribe the square.Draw the two diameters, $A B, C D$, at right angles, and join the points $A, B$, $C D$, to form the square.

Note.--In the same way a circle may be described about a rectangle.

29. To inscribe a cipele in a square (Fig. 29).-To inscribe the circle, draw the diagonals $A B, C D$ of the square, cutting at $E$; draw the perpendicular $E F$ to one side, and with the radius $E F$ describe the circle.
30. To describe a square about a circle (Fig. 30).-Draw two diameters $A B, C D$ at right angles. With the radius of the circle and $A, B$, $C$ and $D$ as centres, draw the four half circles which cross one another in the corners of the square.
31. To inscribe a pentagon in a circle (Fig. 31).-Draw diameters $A C, B D$ at right angles, cutting at $o$. Bisect $A o$ at $E$, and from $E$, with radius $E B$, cut $A C$ at $F$; from $B$, with radius $B F$, cut the circumference at $G, H$, and with the same radius; step round the circle to $I$ and $K$; joir: the points so found to form the penta gon.

## 32. To construct a penta-

 gon on a given line $A$ (Fig. $3_{3}^{2}$ ). - From $B$ erect a perpendicular $B C$ half the length of $A B$; join $A C$ and prolong it to $D$, making $C D=B C$. Then $B D$ is the radius of the circle circumscribing the pentagon. From $A$ and $B$ as centres, with $B D$ as radius, draw arcs cutting each other in $O$, which is the centre of the circle.
## 33. To construct a hexagona

 upon a given straight line (Fig. 33).-From $A$ and $B$, the ends of the given line, with radius $A B$, describe arcs cutting at $g$; from $g$, with the radius $g A$, describe a circle; with the same radius set off the ares $A G$, $G F$, and $B D, D E$. Join the points so found to form the hexagon. The side of a hexagon $=$ radius of its circumscribed circle.34. To inscribe a hexagore in a circle (Fig. 34).-Draw a diameter $A C B$. From $A$ and $B$ as centres, with the radius of the circle $A C$, cut the circumference at $D, E, F, G$, and draw $A D, D E$, etc., to form the hexagon. The radius of the circle is equal to the side of the hexagon; therefore the points $D, E$, etc., may also he found by stepping the radius six times round the circle. The angle between the diameter and the sides of a liexagon and also the exterior angke between a side and an adjacent side prolonged is 60 degrees; therefore a hexagon may conveniently be drawn by the use of a 60 -degree triangle.


Fig. 35.


Fig. 36.


Fig. $3 \%$


Fig. 38.


Fig. 39.
35. To describe a hexagon about a circle (Fig. 35).-Draw a diameter $A D B$, and with the radius $A D$, on the centre $A$, cut the circumference at $C ;$ join $A C$, and bisect it with the radius $D E$; through $E$ draw $F G$, parallel to $A C$, cutting the diameter at $F$, and with the radius $D F$ describe the circumscribing circle $F H$. Within this circle describe a hexagon by the preceding problem. A more convenient method is by use of a $60-$ degree triangle. Four of the sides make angles of 60 degrees with the diameter, and the other two are parallel to the diameter.
36. To describe an octagon on a given straight line (fig 36).-Produce the given line $A B$ both ways, and draw perpendiculars $A E$, $B F$; bisect the external angles $A$ and $B$ by the lines $A H, B C$, which make equal to $A B$. Draw $C D$ and $H G$ parallel to $A E$, and equal to $A B$; from the centres $G, D$, with the radius $A B$, cut the perpendiculars at $E, F$, and draw $E$ $I^{\prime}$ to complete the octagon.
37. To convert a square fintoan octagon (Fig. 37).-Draw the diagonals of the square cutting at $e$; from the corners $A, B, C, D$, with $A$ ' $e$ as radius, describe ares cutting the sides at $g n, f k, h m$, and ol, and join the points so found to form the octagon. Adjacent sides of an octagon make an angle of 135 degrees.

## 38. To inscribe an octagon

 in a circle (Fig. 38).-Draw two diameters, $A C, B D$ at right angles; bisect the arcs $A B, B C$, etc., at $e f$, etc., and join $A$ e, e $B$, etc., to form the octagon.39. To describe an octagon abouta circle (Fig. 33).-Describe a square about the given circle $A B$; draw perpendiculars $h k$, etc., to the diagonals, touching the circle to form the octagon.


Fig. 40.


Fig. 41.


Fig. 42.

with the radius $A B$, describe a semicircle; divide the semi-circumference into as many equal parts as there are to be sides in the polygon-say, in this example, five sides. Draw lines from $A$ through the divisional points $D, b$, and $c$, omitting one point $a$; and on the centres $B, D$, with the radius $A B$, cut $A b$ at $E$ and $A c$ at $F$. Draw $D E$, $E F, F B$ to complete the polygon.

## 41. To inscribe a circle

 Within a polygon (Figs. 41,42 )..When the polygon has an even number of sides (Fig. 41), bisect two opposite sides at $A$ and $B$; draw $A B$, and bisent it at $C$ by a diagonal $D E$, and with the radius $C A$ describe the circle.When the number of sides is odd (Fig. 4?), bisect two of the sides at $A$ and $B$, and draw lines $A E, B D$ to the opposite angles, intersecting at $C$; from $C$. with the radius $C A$, describe the circle.

## 42. To describe a circle

 vithout a polywon (Figs, 41, 4:2). -Find the centre $C$ as before, and with the radius $C D$ describe the circle.
## 43. To inscribe a polywon

 of any number of sides with* in a circle (Fig. 43).-Draw the diameter $A B$ and through the centre $E$ draw the perpendicular $E C$, cutting the circle at $F$. Divide $E F$ into four equal parts, and set off three parts equal to those from $F$ to $C$. Divide the dianeter $A B$ into as many equal parts as the polygon is to have sides; and from $C$ draw $C D$, through the second point of division, cutting the circle at $D$. Then $A D$ is equal to one side of the polygon, and by stepping round the circumference with the length $A D$ the polygon may be completed.TABLE OF POLYGONAL $\Lambda$ NGLES.

| Number of Sides. | Ancle at Centre. | Nimber of Sides. | Angle at Centre. | Number of Sides. | Angle at Centre. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. } \\ 3 \\ 4 \\ 4 \\ 6 \\ 6 \\ 7 \\ 8 \end{gathered}$ | Degrees. 120 90 $7{ }^{2}$ 60 $81 \frac{3}{7}$ 45 | $\begin{gathered} \text { No. } \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{gathered}$ | $\begin{aligned} & \text { Degrees. } \\ & 40 \\ & 36 \\ & 32 \frac{9}{1 \mathrm{~T}} \\ & 30 \\ & 2 \pi \\ & 2 \pi_{1}^{9} \\ & 25 \frac{5}{7} \end{aligned}$ | $\begin{gathered} \text { No. } \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{gathered}$ | Degrees. 24 $22 \frac{1}{2}$ $211^{3}$ 20 19 18 18 |

In this table the angle at the centre is found by dividing 360 degrees, the number of degrees in a circle, by the number of sides in the polygon; and by setting off round the centre of the circle a succession of angles by means of the protractor, equal to the angle in the table due to a given number of sides, the radii so drawn will divide the circumference into the same number of parts.

## 44. To describe an ellipse when the length and breadth are given (Fig. 44).- $A B$, transverse



Fig. 41.


Fig. 45.


Fig. 46.


Fig. 47. axis; C $D$, conjugate axis; $F G$, foci. The sum of the distances from $C$ to $F$ and $G$, also the sum of the distances from $F^{r}$ and $G$ to any other poist in the curve, is equal to the transverse axis. From the centre $C$, with $A E$ as radius, cut the axis $A B$ at $F$ and $G$, the foci; fix a couple of pins into the axis at $F$ and $G$, and loop on a thread or cord upon them equal in length to the axis $A B$, so as when stretched to reach to the extremity $C$ of the conjugate axis, as shown in dot-lining. Place a pencil inside the cord as at $\bar{H}$, and guiding the pencil in this way, keeping the cord equally in tension, carry the pencil round the pins $F, G$, and so describe the ellipse.
Note.-This method is employed in setting off elliptical garden-plots, walks, etc.
$2 d$ Method (Fig. 45). - Along the straight edge of a slip of stiff paper mark off a distance a equal to $A C$, half the transverse axis; and from the same point a distance $a b$ equal to $C D$, half the conjugate axis. Place the slip so as to bring the point $b$ on the line $A B$ of the transverse axis, and the point $c$ on the line $D E$; and set off on the drawing the position of the point $\alpha$. Shifting the slip so that the point $b$ travels on the transverse axis, and the point $c$ on the conjugate axis, any number of points in the curve may be found, through which the curve mas be traced.
3 il Method (Fig. 46). -The action of the preceding method may be embodied so as to afford the means of describing a large curve continuously by means of a bar $m k$, with steel points $m, l, k$, riveted into brass slides adjusted to the length of the semiaxis and fixed with set-screws. A rectangular cross $E G$, with guidingslots is placed, coinciding with the two axes of the ellipse $A C$ and $B H$. By sliding the points $k, l$ in the slots, and carrying round the point $m$, the curve may be coutinuously described. A pen or pencil may be fixed at $m$.
4th Method (Fig. 47).-Bisect the transverse axis at $C$ and through $C$ draw the perpendicular $D E$, making $C D$ and $C E$ each equal to half the coujugate axis. From $D$ or $E$, with the radins $A C$, cut the transverse axis at $F^{\prime}, F^{\prime}$, for the foci. Divide $A C$ into a number of parts at the
points 1, 2, 3, etc. With the radius $A I$ on $F$ and $F^{\prime}$ as centres, describe arcs, and with the radius $B I$ on the same centres cut these arcs as shown.


Fig. 48.


Fig. 49.


Fig. 50.


Fig. 51. Repeat the operation for the other divisions of the transverse axis. The series of intersections thius made are points in the curve, through which the curve inay be traced.

5th Method (Fig. 48).-On tiee two axes $A B, D E$ as diameters, on centre $C$, describe circles; from a number of points $a, b$, etc., in the circumference $A F B$, draw radii cutting the imner circle at $a^{\prime}, b^{\prime}$, etc. From $a, b$, etc., draw perpendiculars to $A B$; and from $a^{\prime}, b^{\prime}$, etc., draw parallels to $A B$, cutting the respective perpendiculars at $n, o$, etc. The intersections are points in the curve, throngh which the curve may be traced.
Gth Method (Fig. 49). - When the transverse and conjugate diameters are given, $A B, C D$, draw the tangent $E F$ paraliel to $A B$. Produce $C D$, and on the centre $G$ with the radius of half $A B$, describe a semicircle $I D K$; from the centre $G$ draw any number of straight lines to the points $E, r$, etc., in the line $E F$, cuttiug the circumference at $l, m, n$, etc.; from the centre $O$ of the ellipse draw straight lines to the points $E$, $r$, etc.; and from the points $l, m, n$, etc., draw parallels to $G C$, cutting the lines $O E$, $O r$, etc., at $L, M, N$, etc. These ar' $\theta$ points in the circumference of the ellipse, and the curve may be traced through them. Points in the other half of the ellipse are formed by extending the intersecting lines as indicated in the figure.
45. 'To deseribe an ellipse approximately by means of circular arce.-First.-With arcs of two radii (Fig. 50 ).-Find the difference of the semi-axes, and set it off from the centre $O$ to $\alpha$ and $c$ on $O A$ and $O C$; draw ac, and set off half $a c$ to $d$; draw $d i$ parallel to $a c$; set off $O$ e equal to $O d$; join $e i$, and draw the parallels e $m, d m$. From $m$, with radius $m C$, describe an are through $C$; and from $i$ describe an are through $D$; from $d$ and $e$ describe ares through $A$ and $B$. The four ares form the ellipse approximately.
Note.-This method does not apply satisfactorily when the conjugate axis is less than two thirds of the transverse axis.
$2 d$ Method (by Carl G. Barth, Fig. 51). --In Fig. $51 a b$ is the major and $c d$ the minor axis of the ellipse to be approximated. Lay off $b e$ equal to the semi-minor axis $c O$, and use $a e$ as radius for the arc at each extremity of the minor axis. Bisect eo at $f$ and lay off $e g$ equal to $e f$, and use $g b$ as radius for the arc at each extremity of the major axis.

The method is not considered applicable for cases in which the minor axis is less than two thirds of the major.


Fig. 52.

3d Method: With ares of three radii (Fig. 52).-On the transverse axis $A B$ draw the rectangle $B G$ on the height $O C$; to the diagonal $A C$ draw the perpendicular $G H D$ : set off $O K$ equal to $O C$, and describe a semicurcle on $A K$, and produce $O C$ to $L$; set off $O M$ equal to $C L$, and from $D$ describe an are with radins $D M$; from $A$, with radius $O L$. cut $A B$ at $N$; from $H$, with radius $H N$, cut arc $a b$ at $\pi$. Thus the five centres $D, a, b, H, H^{\prime}$ are found, from which the arcs are described to form the ellipse.

This process works well for neally all proportions of ellipses. It is used in striking out vaults and stone bridges. 4th Method (by F. R. Honey, Figs. 53 and 54).-Three radii are employed. With the shortest radins describe the two arcs which pass through the vertices of the major axis, with the longest the two ares which pass through the vertices of the minor axis, and with the third radius the four arcs which comect the former.

A simple method of determining the radii of curvature is illustrated in Fig. 53. Draw the straight


Fig. 53. lines a $f$ and a $c$, furming any angle at $\alpha$. With $\alpha$ as a centre, and with radii $a b$ and $a c$, respectively, equal to the semiminor and semi-major axes, draw the arcs $b e$ and $c d$. Join $e d$, and through $b$ and $c$ respectively draw $b g$ and $c f$ parallel to $e d$, intersecting $a c$ at $g$, and $a f$ at $f ; a f$ is the radius of curvature at the vertex of the minor axis; and $a g$ the radius of curvature at the

## vertex of the major axis.

Lay off $d h$ ( Fig .53 ) equal to one eighth of $b d$. Join $e h$, and draw $c k$ and $b l$ parallel to $e \pi$. Take $a k$ for the Jongest radins $(=R), a l$ for the shortest radius $(=r)$, and the arithmetical mean, or one half the sum of the semi-axes, for the third radius $(=p)$, and employ these radii for the eight-centred oval as follows:

Let $a b$ and $c d$ (Fig. 54)


Fig. 54. be the major and minor axes. Lay off a e equal to $r$, and $a f$ equal to $p$ : also lay off $c g$ equal to $R$, and $c h$ equal to $p$. With $g$ as a centre and $g h$ as a radius, draw the are $h k$; with the centre $e$ and radius $e f$ draw the arc $f k$, intersecting $h k$ at $k$. Draw the line $g k$ and prodnce it, making $g l$ equal to $R$. Draw $\hat{F}$ e and produce it, making $i f m$ equal to $p$. With the centre $g$ and radius $g c(=R)$ draw the are $c l$; with the centre $\%$ and rastius $k l(=p)$ draw the are $l m$, and with the centre $e$ and radius $e m$ $(=r$ ) draw the are ma.

The remainder of the work is symmetrical with respect to the axes.


Fig. 55.
46. The Parabola.-A parabola ( $D A C$, Fig. 55) is a curve such that every point in the curve is equally distant from the directrix $K L$ and the focus $F$. The focus lies in the axis $A B$ drawn from the vertex or head of the curve $A$, so as to divide the figure into two equal parts. The vertex $A$ is equidistant from the directrix and the focus, or $A e=A F$. Any line parallel to the axis is a diameter. A straight line, as $E G$ or $D C$, drawn across the figure at right angles to the axis is a duuble ordinate, and either half of it is an ordinate. The ordinate to the axis $E F G$, drawn through the focus, is called the parameter of the axis. A segment of the axis, reckoned from the vertex, is an abscissa of the axis, and it is an abscissa of the ordinate drawn from the base of the abscissa. Thus, $A B$ is an abscissa of the ordinate $B C$.

## Abscisse of a parabola are as the squares of their ordinates.

## To describe a parabola when an abscissa and its ordi-

 nate are given ( 1 ijg. 55).-Bisect the given ordinate $B C$ at $\alpha$ draw $A$ a, and then a $b$ perpendicular to it, meeting the axis at $b$. Set off $A e, A F$, each equal to $B b$; and draw $K e L$ perpendicular to the axis. Then $K L$ is the directrix and $F$ is the focus. Through $F$ and any number of points, $o, o$, etc., in the axis, draw donble ordinates, $n \cap n$, etc, and from the centre $F$, witb the radii $F e, o e$, etc., cut the respective ordinates at $E, G, n, n$, etc. The curve may be traced through these points as shown.

Fig. 56.


2d Method: By means of a square and a cord (Fig. 56).-Place a straightedge to the directrix $E N$, and apply to it a square $L E G$. Fasten to the end $G$ one end of a thread or cord equal in length to the edge $E G$, and attach the other end to the focus $F$; slide the square along the straightedge, holding the cord taut against the edge of the square by a pencil $D$, by which the curve is described.

3d Method: When the height and the base are given (Fig. 5i).-Let $A B$ be the given axis, and $C D$ a double ordinate or base; to describe a parabola of which the rertex is at $A$. Throngh $A$ draw $E F$ parallel to $C D$, and through $C$ and $D$ draw $C E$ and I $F$ parallel to the axis. Divide $B C$ and $B D$ into ans number of equal parts, say five, at $a, b$, etc., and divide $C E$ aud $D F$ into the same number of parts. Through the points $a, b, c, d$ in the base $C D$ on eachi side of the axis draw perpendiculars. and through $a, b, c, d$ in $C E$ and $D F$ draw lines to the vertex $A$, cutting the perpendiculars at $e, f, g, h$. These are points in the parabola, and the curve $C A D$ may be traced as shown, passing through there.
47. The Hyperbola (Fig, 58).-A hyperbola is a plane curve, such that the difference of the distances from any point of it to two fixed points is equal to a given distance. The fixed points are called the foci.


Flg. 58.


Fig. 59.
ro construct a hyperbola. -Jet $F^{\prime}$ and $F^{\prime}$ be the foct, and $F^{\prime \prime} F^{\prime}$ the distance between them. 'Jake a ruler longer than the distance $F^{*} F$, and fasten one of its extremities at the focus $F^{\prime \prime}$. At the other extremity, $H$, attach a thread of such a length that the length of the ruler shall exceed the length of the thread by a given distance $A B$. Attach the other extremity of the thread at the focus $F^{\prime}$.

Press a pencil, $P$, against the ruler, and keep the thread constantly tense, while the ruler is turned around $F^{\prime \prime}$ as a centre. The point of the pencil will describe one branch of the curve.
2d Method: By points (Fig. 59).From the focus $\dot{F}^{\prime}$ lay off a distance $F^{\prime \prime} N$ equal to the transverse axis, or distance ketween the two branches of the curve, and take any other distance, as $F^{\prime} H$, greater than $F^{\prime} N$.

With $F^{\prime \prime}$ as a centre and $F^{\prime} H$ as a radius describe the arc of a circle. Then with $F$ as a centre and $N H$ as a radins describe an arc intersecting the are before described at $p$ and $q$. These will be points of the hyperbola, for $F^{\prime} q-F^{\prime} q$ is equal to the transverse axis $A B$.
If, witlı $F$ as a centre and $F^{\prime \prime} H$ as a radius, an arc be described, and a second are be described with $F^{\prime}$ as a centre and $N H$ as a radius, two points in the other branch of the chrve will be determined. Hence, by changing the centres. each pair of radii will determine two points in each branch.
The Equilateral Hyperbola.-The transverse axis of a hyperbola is the distance, on a line joining the foci, between the two branches of the curve. The conjugate axis is a line perpendicular to the transverse axis, drawn from its centre, and of such a length that the diagonal of the rectangle of the transverse and conjngate axes is equal to the distance between the foci. The diagonals of this rectangle, indefinitely prolonged, are the asymptotes of the hyperbola, lines which the curve continually approaches, but touches only at an infinite distance. If these assmptotes are perpendicular to each other, the hyperbola is called a rectangular or equilateral hyperbola. It is a property of this hyperbola that if the asymptotes are taken as axes of a rectangular system of coördinates (see Analytical Geometry), the product of the abscissa and ordinate of any point in the curve is equal to the product of the abscissa and ordinate of any other point; or, if $p$ is the ordinate of any point and $v$ its abscissa, and $p_{1}$ and $v_{1}$ are the ordinate and abscissa of any other point, $p v=p_{1} v_{1}$; or $p v=$ a constant.
43. The Cycloid
 (Fig. 60).-If a circle $A d$ be rolled along a straight line $A 6$, any point of the circumference as $A$ will describe a curve, which is called a cycloid. The circle is called the generating circle, and $A$ the generating point.

To draw a cyeloid.
-Divide the circunference of the generating circle into an even number of equal parts, as $A 1,12$, etc., and set off these distances on the base. Through the points $1,2,3$, etc., on the circle draw horizontal lines, and on them set off distances $1 a=A 1$, $2 b=A 2,3 c=A 3$, etc. The points $A, a, b, c$, etc., will be points in the cycloid, through which draw the curve.


Fig. 61.


Fig. 62.


Fig. 6.3.
49. The Epicycloid (Fig. 61) is generated by a point $D$ in one circle $D C$ rolling upon the circumference of another circle $A C B$, instead of on a flat surface or line; the former being the generating circle, and the latter the fundamental circle. The generating circle is shown in four positions, in which the generating point is successively inarked $D, D^{\prime}, D^{\prime \prime}, D^{\prime \prime \prime}$. $A D^{\prime \prime \prime} B$ is the epicycloid.
50. The Hypocycloid (Fig. 62) is generated by a point in the gener. ating circle rolling on the inside of the fundamental circle.

When the generating circle $=$ radius of the other circle, the hypocycloid becomes a straight tine.

## 51. The Tractrix or Schiele's anti-friction curve

 (Fig. 63). $-R$ is the radius of the shaft, $C, 1,2$, etc., the axis. From $O$ set off on $R$ a small distance, o $a$; with radius $R$ and centre $a$ cut the axis at 1, join $a 1$, and set off a like small distance $a b$; from $b$ with radius $R$ cut axis at 2 , join $b 2$, and so on, thus finding points $o, a, b, c, d$, etc., through which the curve is to be drawn.52. The Spiral.-The spiral is a curve described by a point which moves along a straight line according to any given law, the line at the same time having a uniform angular motion. The line is called the radius vector.


Fig. 64. If the radius vector increases directly as the measuring angle, the spires, or parts described in each revolution, this gradually increasing their distance from each other, the curve is known as the spiral of Archimedes (Fig. 64).

This curve is commonly used for cams. To describe it draw the radius vector in several different directions around the centre, with equal angles between them; set off the distances $1,2,3,4$, etc., corresponding to the scale upon which the curve is drawn, as shown in Fig. 64.

In the common spiral (Fig. 61) the pitch is uniform; that is, the spires are equidistant. Such a spiral is made by rolling up a belt of uniform thickness.


Fig. 65.

To construct a spiral with four centres (Fig. 65).-Given the pitch of the spiral, construct a square about the centre, with the sum of the four sides equal to the pitch. Prolong the sides in one direction as shown; the corners are the centres for each arc of the external angles, forming a quadraut of a spire.
53. To find the diameter of a circle into which a certain number of rings sill it on its inside (Fig. 66).-For instance, what is the diameter of a circle into which twelve $1 / 2$-inch rings will fit, as per sketch? Assume that we have found the dianeter of the required


Fig. 66. circle, and have drawn the rings inside of it. Join the centres of the rings by straight lines, as shown: we then obtain a regular polygon with 10 sides, each side being equal to the diameter of a given ring. We have now to find the diameter of a circle circumscribed about this polygon, and add the diameter of one ring to it; the sum will be the diameter of the circle into which the rings will fit. Through the centres $A$ and $D$ of two adjacent rings draw the radii $C A$ and $C D$; since the polygon has twelve sides the angle $A C D=30^{\circ}$ and $A C B=15^{\circ}$. One half of the side $A D$ is equal to $A B$. We now give the following proportion : The sine of the angle $A C B$ is to $A B$ as 1 is to the required radius. From this we get the following ruie: Divide $A B$ by the sine of the angle $A C B$; the quotient will be the radias of the circumscribed circle; add to the corresponding dianeter the diameter of one ring; the sum will be the required diameter $F\left(F^{\prime}\right.$.
54. To describe an are of circle which is too large to be drawn by a beam compass, by means of points in the are, radius being given.--Suppose the radius is 20 feet and it is desired to obtain five points in an are whose half chord is 4 feet. Draw a line equal to the half chord, full size, or on a smaller scale if more convenient, and erect a perpendicular at one end, thus making rectangular axes of coördinates. Erect perpendiculars at points 1, 2, 3, and 4 feet from the first perpendicular. Find values of $y$ in the formula of the circle. $x^{2}+y^{2}=R^{2}$ by substituting for $x$ the values $0,1,2,3$, and 4 , etc.. and for $R^{2}$ the square of the radius, or 400 . The values will be $y=\sqrt{R^{2}-x^{2}}=\sqrt{4} \overline{0}$, $\sqrt{399}, \sqrt{396}, \sqrt{391}, \sqrt{384} ;=20, \quad 19.975,19.90, \quad 19.774, \quad 19.596$.
Subtract the smallest,
or 19.596, leaving $0.404,0.379,0.304,0.178,00$ feet.
Lay off these distances on the five perpendiculars, as ordinates from the half chord, and the positions of five points on the are will be found.


Fig. 67. Through these the curve may bo drawn. (See also Problem 14.)
55. The Catenary is the curve assumed by a perfectly flexible corl when its ends are fastened at two points, the weight of a unit length being constalt.

The equation of the catenary is $y=\frac{a}{2}\left(e^{\frac{x}{\alpha}}+e^{-\frac{i x}{a}}\right)$, in which $e$ is the base of the Naperian system of logarithms.

To plot the catenary.-Let o (Fig. 6i? be the origin of coördinates. Assigning to $a$ any value as 3 , the equation becomes

$$
y=\frac{3}{2}\left(e^{\frac{x}{3}}+e^{-\frac{x}{3}}\right)
$$

To find the lowest point of the curve.

$$
\text { Put } x=0 ; \therefore y=\frac{3}{3}\left(e^{0}+e^{-0}\right)=\frac{3}{2}(1+1)=3 \text {. }
$$

$$
\begin{aligned}
\text { Then put } x=1 ; \therefore y=\frac{3}{2}\left(e^{\frac{1}{3}}+e^{-\frac{1}{3}}\right)=\frac{3}{2}(1.396+0.717)=3.17 . \\
\text { Put } x=2 ; \therefore y=\frac{3}{2}\left(e^{\frac{2}{3}}+e^{-\frac{2}{3}}\right)=\frac{3}{2}(1.948+0.513)=3.69
\end{aligned}
$$

Put $x=3,4,5$, etc., etc., and find the corresponding values of $y$. For each value of $y$ we obtain two symmetrical points, as for example $p$ and $p^{1}$.
In this way, by making a successively equal to $2,3,4,5,6,7$, and 8 , the curves of Fig. 67 were plotted.
In each case the distance from the origin to the lowest point of the curve is equal to $a$; for putting $x=0$, the general equation reduces to $y=a$.
For values of $a=6,7$, and 8 the catenary closely approaches the parabola. For derivation of the equation of the catenary see Bowser's Analytic Mechanics. For comparison of the catenary with the parabola, see article by F. 1R. Honey, Amer. Machinist, Feb. 1, 1894.
56. The Involute is a name given to the curve which is formed by


Fig. 68.

Join the points $A, a_{1}, a_{2}, a_{3}$, etc, to $b b_{2} ; 3 a_{3}$ equal to $b b_{3}$; and so on. required involute.
$5 \%$ Method of plotting angles without using a protrac-tor.-.The radius of acircle whose circmmference is 360 is $5 \pi .3$ (more accurately 57. 996 ). Striking a semicircle with a radius 57.3 by any scale, spacers set to 10 by the same scale will divide the arc into 18 spaces of $10^{\circ}$ each, and intermediates can be measured indirectly at the rate of 1 by scale for each $1^{\circ}$, or interpolated by eye according to the degree of accuracy reguired. Ihe following table shows the chords to the above-mentioned radins, for every 10 degrees from $0^{\circ}$ up to $110^{\circ}$. By means of one of these,

| Angle. | Chord. | Angle. | Chord. |
| :---: | :---: | :---: | :---: |
|  | 0.999 | $60^{\circ}$ | 57.296 |
| $10^{\circ}$ | 9.988 | $70^{\circ}$ | 65.20\% |
| $20^{\circ}$ | 19.899 | $80^{\circ}$ | 73.658 |
| $30^{\circ}$ | 29.6 .58 | $90^{\circ}$ | 81.029 |
| $40^{\circ}$ | 39.192 | $100^{\circ}$ | 87.782 |
| $50^{\circ}$ | 48.429 | $110^{\circ}$ | 93.869 |

a $10^{\circ}$ point is fixed upon the paper next less than the required angle, and the remainder is laid off at the rate of 1 by scale for each degree.

## GEOMETRICAL PROPOSITIONS.

In a right-angled triangle the square on the hypothenuse is equal to the sum of the squares on the other two sides.

If a triangle is equilateral, it is equiangular, and vice verss.
If a straight line from the vertex of an isosceles triangle bisects the base, it bisects the vertical angle and is perpendicular to the base.
If one side of a triangle is produced, the exterior angle is equal to the sum of the two interior and opposite angles.
If two triangles are mutually equiangular, they are similar and their corresponding sides are proportional.
If the sides of a polygon are produced in the same order, the sum of the exterior angles equals four right angles. (Not true if the polygon has reentering angles )
In a quadrilateral, the sum of the interior angles equals four right angles.
In a parallelogram, the opposite sides are equal; the opposite angles are equal: it is bisected by its diagonal, and its diagonals bisect each other.
If three points are not in the same straight line, a circle may be passed throngh them.
If two arcs are intercepted on the same circle, they are proportional to the corresponding angles at the centre.
If two ares are similar, they are proportional to their radii.
The areas of two circles are proportional to the squares of their radii.
If a radius is perpendicular to a chord, it bisects the chord and it bisects the are subtended by the chord.
A straight line tangent to a circle meets it in only one point, and it is perpendicular to the radius drawn to that point.
If from a point without a circle tangents are drawn to touch the circle, there are but two; they are equal, and they make equal angles with the chord joining the tangent points.
If two lines are parallel chords or a tangent and parallel chord, they intercept equal ares of a circle.
If an angle at the circumference of a circle, between two chords, is subteuded by the same arc as an angle at the centre, between two radii, the angle at the circumference is equal to half the angle at the centre.
If a triangle is inscribed in a semicircle, it is right-angled,
If two chords intersect each other in a circle, the rectangle of the segments of the one equals the rectangle of the segments of the other.

And if one chord is a dianeter and the other perpendicular to it, the rectangle of the segments of the diameter is equal to the square on half the other chord, and the half chord is a mean proportional between the segments of the diameter.
If an angle is formed by a tangent and chord, it is measured by one half of the arc intercepted by the chord; that is, it is equal to half the angle at the centre subtended by the chord.
Degree of a Railway Curve. -This last proposition is useful in staking out railway curves. A curve is designated as one of so many degrees, and the degree is the angle at the centre subtended by a chord of 100 ft . To lay out a curve of $n$ degrees the transit is set at its beginning or "point of curve," pointed in the direction of the tangent, and turned through $1 / 2 n$ degrees; a point 100 ft . distant in the line of sight will be a point in the curve. 'The transit is then swung $1 / 2 n$ degrees further and a 100 ft . chord is measured from the point already fonnd to a point in the new line of sight, which is a second point or "station" in the curve.

The radins of a $1^{\circ}$ curve is 5729.65 ft ., and the radius of a curve of any degree is $5 \pi 29.65 \mathrm{ft}$. divided by the number of degrees.

## MENSURATION.

## PHANE SUREACES.

Qnadrilateral.-A four-sided figure.
Parallelogram.-A quadrilateral with opposite sides parallel.
Varieties.-Square: four sides equal, all angles right angles. Rectangle: opposite sides equal, all angles right angles. Rhombus: four sides equal, opposite angles equal, angles not light angles. Rhomboid: opposite sides equal, opposite angles equal, angles not right angles.

Trapezium.-A quadrilateral with unequal sides.
Trapezoid.-A quadrilateral with only one pair of opposite sides parallel.

Diagonal of a square $=\sqrt{2 \times \text { side }}=1.4142 \times$ side,
Diag. of a rectangle $=\sqrt{\text { sum of squares of two adjacent sides. }}$
Area of any parallelomram $=$ base $\times$ altitude.
Area of rhombus or rinomboid = product of two adjacent sides $x$ sine of angle included between them.
Area of a trapezium = half the product of the diagonal by the sum of the perpendiculars let fall on it from opposite angles.
Area of a trapezoid = product of half the sum of the two parallel sides by the perpendicular distance between them.
To find the area of any quadrilateral figure.-Divide the quadrilateral into two triaugles; the sum of the areas of the triangles is the area.
Or, multiply half the product of the two diagonals by the sine of the angle at their intersection.
Trofind the area of a quadrilateral inscribed in a circle. -From half the sum of the four sides subtract each side severally; multiply the four remainders together; the square root of the product is the area.
Triangle.-A three-sided plane figure.
Varieties.-Right-angled, having one right angle; obtuse-angled, having one obtuse angle; isosceles, having two equal angles and two equal sides; equilateral, having three equal sides and equal angles.s
The sum of the three angles of every triangle $=180^{\circ}$.
The sum of the two acute angles of a right-angled triangle $=90^{\circ}$.
Hypothennse of a right-angled triangle, the side opposite the right angle,
$=\sqrt{\text { sum of the squares of the other two sides. If } a \text { and } b \text { are the two sides }}$
and $c$ the hypothenuse, $c^{2}=a^{2}+b^{2} ; a=1^{\prime} \overline{c^{2}-l^{2}}=\sqrt{(c+b)(c-b)}$.
To find the area of a triangle:
Rule 1. Multiply the base by half the altitude.
Rule 2. Multiply half the product of two sides by the sine of the included angle.
Rule 3. From half the sum of the three sides subtract each side severally; multiply together the half sum and the three remainders, and extract the square root of the product.
The area of an equilateral triangle is equal to one fourth the square of one of its sides multiplied by the square root of $3,=\frac{a^{2} V_{3}}{4}, a$ being tine side; or $a^{2} \times .433013$.

Hypolhenuse and one side of right-angled triangle given, to find other side, Required side $=\boldsymbol{V}$ hyp ${ }^{2}-$ given side ${ }^{2}$.

If the two sides are equal, side $=$ hyp +1.4142 ; or hyp $\times . \% 071$,
Area of a triangle given, to find base: Base $=$ twice area $\div$ perpendicular height

Area of a triangle given, to find height: Height $=$ twice area $\div$ base .
Two sides and base giver, to find perpendicular height (in a triangle in which both of the angles at the base are acute).
Rule.-As the base is to the sum of the sides, so is the difference of the sides to the difference of the divisions of the base made by drawing the perpendicular. Half this difference being added to or shbtracted from half the base will give the two divisions thereof. As each side and its opposite
( vision of the base constitutes a right-angled triangle, the perpendicular is a scertained by the rule perpendicular $=V \sqrt{1 \mathrm{hy} \mathrm{p}^{2}-\text { base }^{2}}$.

Polyoon. - A plane figmre having three or more sides. Regular or irregular, according as the sides or angles are equal or unequal. Polygons are named from the number of their sides and angles.

To find tho area of an irregular polyoon.-Draw diagonals dividing the polygon into triangles, and tind the sum of hie areas of these triangles.

## To find the area of a regular polygon:

Rule.-Multiply the length of a side by the perpendicular distance to the centre; multiply the product by the number of sides, and divide it by 2 . Or, multiply half the perimeter by the perpendicular let fall from the centre on one of the sides.
The perpendicular from the centre is equal to half of one of the sides of the polygon multiplied by the cotangent of the angle subtended by the half side.

The angle at the centre $=360^{\circ}$ divided by the number of sides.
TABLE OF REGULAR POLYGONS.

|  |  |  | Radius of Circumscribed Circle. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \dot{11} \\ & 11 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |
| 3 | Triangle | . 4330127 |  | . 5773 | . 2887 | 1.735 | $120^{\circ}$ | $60^{\circ}$ |
|  | square | 1. | 1.414 | . $70 \% 1$ | . 5 | 1.4142 | 90 | 90 |
| 5 | Pentagon | $1.720+774$ | 1.238 | . 8506 | . 6882 | 1.1756 | \% | 108 |
| 6 | Hexagon | 2.5980763 | 1155 |  | . 866 |  |  | 120 |
| 7 | Heptagon | 3.6339124 | 1.11 | 1.1524 | 1.0383 | . $86 \%$ | $5126^{\prime}$ | 128 4-7 |
| 8 | Octagon | 4.8284271 | 1.083 | 1.3066 | 1.2071 | . 7653 | 45 | 135 |
| 8 | Nonagon | 6.181824? | 1.064 | 1.4619 | 1.3 T37 | . 684 | 40 | 140 |
| 10 | Decagon | 7.694:088 | 1.051 | 1.618 | 1.5\%88 | . 618 |  | 144 |
| 11 | Undecagon | 9.3656399 | $1.04{ }^{3}$ | 1.7547 | 1.70:8 | . 5634 | $3243{ }^{\prime}$ | 147 3-11 |
| 12 | Dodecagon | $11.19615 \% 4$ | 1.037 | 1.9319 | 1.866 | .5176 |  | 150 |

To find the area of a regular polygon, when the length of a side only is given:
Rune.-Multiply the square of the side by the multiphier opposite to the name of the polygon in the table.
To find the area of an in regular figure (Fig. 69).-Draw ordimates acruss its breadth at equal distances apart, the first and the last ordinate each being one half space from the ends of the fignre. Find the average breadth by adding together the lengths of these lines inctuded between the boundaries of the figure, and divide by the number of the lines added; multiply this mean breadth by the length. The greater the number of lines the nearer the approximation.


Fig. 69.

In a figure of very irregular outline, as an indicator-diagram from a highspeed steam-engiue, mean lines may be stibstituted for the actnal lines of the fignre, being so traced as to intersect the undalations, so that the total area of the spaces cut off may be compensated by that of the extra spaces inclosed.
$2 d$ Method: Tife Trapezoidal Rule. - Divide the figure into any sufficient number of equal parts; add half the sum of the two end ordinates to the sum of all the other ordinates; divide by the number of spaces that is, one less than the number of ordinates) to obtain the mean ordinate, and multiply this by the length to obtain the area.
3d Method: Simpson's Rule.-Divide the length of the figure into any even number of equal parts, at the common distance $D$ apart, and draw or dinates through the points of division to touch the boundary lines. Add together the first and last ordinates and call the sum $A$; add together the even ordinates and call the sum $B$; add together the odd ordinates, excent the first and last, and call the sum $C$. Then,

$$
\text { area of the figure }=\frac{A+4 B+20}{3} \times D .
$$

4th Method: Durand's Rule.-Add together $4 / 10$ the sum of the first an a last ordinates, $11 / 10$ the sum of the second and the next to the last (or the penultimates), and the sum of all the intermediate ordinates. Multiply the sun thus gained by the common distance between the ordinates to obtain the area, or divide this sum by the number of spaces to obtain the mean ordinate.
Prof. Duravd describes the method of obtaining his rule in Engincering News, Jan. 18, 1894. He claims that it is more acctrate than Simpson's rule, and practically as simple as the trapezoidal rule. He thas describes its application for approxinnate integration of differential equations. Any defiuite integral may be represented graphically by an area. Thus, let

$$
Q=\int u d x
$$

be an integral in which $u$ is some function of $x$, either known or admitting of computation or measurement. Any curve ploited with $x$ as abscissa and $u$ as ordinate will then represent the variation of $u$ with $x$, and the area between such curve and the axis $X$ will represent the integral in question, no matter how simple or complex may be the real nature of the function $u$.

Substituting in the rule as above givell the word "volume "for "area" and the word "section "for "ordinate," it becomes applicable to the determination of volumes from equidistant sections as well as of areas from equidistant ordinates.
Having approximately obtained an area by the trapezoidal rule, the area by Durand's rule may be found by adding algebraically to the sum of the ordinates used in the trapezoidal rule (that is, half the sum of the end ordinates + sum of the other ordinates) $1 / 10$ of (sum of pellultimates - sum of first and last) and multiplying by the common distance between the ordinates.

5th Method-Draw the figure on cross-section paper. Count the number of squares that are entirely included within the boundary; then estimate the fractional parts of squares that are cut by the boundary, add together these fractions, and add the sum to the number of whole squares. The result is the area in units of the dimensions of the squares. The finer the ruling oi the cross-section paper the more accurate the result.

6 th Method.-Use a planimeter.
Tth Method.-With a chemical balance, sensitive to one milligram, draw the figure on paper of uniform thickness and cut it out carefully; weigh the piece cut out, and compare its weight with the weight per square inch of the vaper as tested by weighing a piece of rectangular shape.

## THE CERCLE.

Circumference $=$ diameter $\times 3.1416$, nearly; more accurately, 3.14159265359. Approximations, $\frac{22}{7}=3.143 ; \frac{355}{113}=3.1415920$.
The ratio of circum. to diam. is represented by the symbol $\pi$ (called Pi).

Multiples of $\pi$.

$$
\begin{aligned}
& 1 \pi=3.14159265359 \\
& 2 \pi=6.28318530 \pi 18 \\
& 3 \pi=9.4247 \% 960 \% 7 \\
& 4 \pi=12.56637061436 \\
& 5 \pi=15.70 \% 96326 \pi 95 \\
& 6 \pi=18.84955532154 \\
& 7 \pi=21.99114857513 \\
& 8 \pi=25.132741228 \% \\
& 9 \pi=28.2 \pi 433388: 31
\end{aligned}
$$

$$
\text { Multiples of } \frac{\pi}{4}
$$

$$
\frac{1}{4} \pi=.8853982
$$

$$
" \times 2=1.5 \% 0 \pi 963
$$

$$
" \times 3=2.3561945
$$

$$
" \times 4=3.1415927
$$

$$
، \times 5=3.9269908
$$

$$
" \times 6=4.7123890
$$

$$
" \times r=5.497 \% 8 \% 1
$$

$$
" \times 8=6.2831853
$$

$$
" \times 9=ヶ .0685835
$$

Ratio of diam. to circumference $=$ reciprocal of $\pi=0.3183090$.

Reciprocal of $\frac{1}{4} \pi=1.2 \pi 324$.
Mrultiples of $\frac{1}{\pi}$.

$$
\begin{array}{l|l} 
& \frac{\pi}{\pi}=2.2281 \% \\
\text { ultiples of } \frac{1}{4} \pi=1.2 \pi 324 . & \frac{8}{\pi}=2.54618 \\
\frac{1}{\pi}=.31831 & \frac{9}{\pi}=2.864 \% \\
\frac{2}{\pi}=.63662 & \frac{10}{\pi}=3.18310 \\
\frac{3}{\pi}=.95493 & \frac{12}{\pi}=3.819 \% \\
\frac{4}{\pi}=1.27324 & \frac{1}{2} \pi=1.540 \pi 96 \\
\frac{5}{\pi}=1.59155 & \frac{1}{3} \pi=1.04 \% 19 \% \\
\frac{6}{\pi}=1.90986 & \frac{1}{6} \pi=0.523595
\end{array}
$$

$$
\begin{aligned}
\frac{1}{1:} \pi & =0.261 \% 99 \\
\frac{\pi}{360} & =0.008 \% 266 \\
\frac{360}{\pi} & =114.5915 \\
\pi^{2} & =9.86960 \\
\frac{1}{\pi^{2}} & =0.1013: 1 \\
\sqrt{\pi} & =1 \% 2453 \\
\sqrt{\frac{1}{\pi}} & =0.564139
\end{aligned}
$$

$\log \pi=0.49{ }^{\prime \prime} 1493 \%$
$\log \frac{1}{4} \pi=\overline{1} .895090$

Diam. in ins. $=13.5105 \sqrt{\text { area in sq. ft. }}$.
Area in sq. ft. $=(\text { (liam. in inches })^{2} \times .0054542$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Are diameter }, \quad R=\text { radius, } \quad C=\text { circumference }, \quad A=\text { area. } \\
C
\end{array}=\pi D ;=2 \pi R ;=\frac{4 A}{D} ;=2 \sqrt{\pi A} ;=3.545 \sqrt{A} ; \\
& A=D^{2} \times .7854 ;=\frac{C R}{2} ;=4 R^{2} \times .7854 ;=\pi R^{2} ;=\frac{1}{4} \pi D^{2} ;=\frac{C^{2}}{4 \pi} ;=.07958 C^{2} ;=\frac{C D}{4} . \\
& D \\
& D=\frac{C}{\pi} ;=0.31831 C ; i=2 \sqrt{\frac{A}{\pi}} ;=1.12838 \sqrt{ } \bar{A} ; \\
& R
\end{aligned}
$$

Areas of circles are to each other as the squares of their diameters.

## To find the length of an arc of circle:

rule 1. As 360 is to the number of degrees in the are, so is the circumference of the circle to the length of the are.
rule 2. Multiply the diameter of the circle by the number of degrees in the are, and this product by $0.008 \% 66$.

# Relations of Are, Chord, Chord of Half the Are, Versed sine, etc. 

Let $R$ radius,$\quad D=$ diameter,$\quad A \cdot c=$ length of arc,
$C d=$ chord of the are,$\quad c h=$ chord of half the arc,
$V=$ versed sine, or height of the are,

$$
\begin{aligned}
& A r c=\frac{8 c h-C d}{3}(\text { very nearly }),=\frac{\sqrt{C d^{2}+4 V^{2}} \times 10 V^{2}}{15 C d^{2}+33 V^{2}}+2 c h, \text { nearly. } \\
& \text { Arc }=\frac{2 c h \times 10 V}{60 D-2 \cdot V}+2 c h, \text { nearly. }
\end{aligned}
$$

Chord of the arc $=2 \sqrt{c h^{2}-V^{2}} ;=\sqrt{D^{2}-(D-2 V)^{2}} ;=8 c h-3 A r c$.

$$
=2 \sqrt{R^{2}-(R-V)^{2}} ;=2 V(D-V) \times V .
$$

Chord of half the are, ch $=\frac{1}{2} \sqrt{C d^{2}+4 V^{2}} ;=V \overline{D \times V} ;=\frac{3 A r c+C d}{8}$.

Diameter

Versed sine

$$
\begin{aligned}
& =\frac{c h^{2}}{V} ;=\frac{\left(\frac{1}{2} C d\right)^{2}+V^{2}}{V}- \\
& =\frac{c l^{2}}{D} ;=\frac{1}{2}\left(D-\sqrt{D^{2}-C d^{2}}\right) \\
& \\
& \text { (or } \frac{1}{2}\left(D+\sqrt{D^{2}-C d^{2}}\right), \text { if } V \text { is greater than radius } \\
& =\sqrt{c h^{2}-\frac{C d^{2}}{4}}
\end{aligned}
$$

Half the chord of the arc is a mean proportional between the versed sine anl diameter minus versed sine: $1 / 2 C d=\sqrt{\bar{F} \times\left(D-V^{\gamma}\right)}$

Length of the Chord surtending an angle at the centre $=$ twice the sine of halt the angle. (See Table of Sines, p. 157.)

## Lemgth of a Circular Are.-Hiyghens's Approximation. <br> Let $C$ represent the length of the chord of the are and $c$ the length of the

 chord of half the are; the length of the are$$
L=\frac{8 c-C}{3}
$$

Professor Williamson shows that when the are subtends an angle of $30^{\circ}$, the radius being 100,000 feet (nearly 19 mikes), the error by this formula is about two inches, or $1 / 600000$ part of the radins. When the length of the are is equal to the radius, i.e., when it subtends an angle of $57^{\circ} .3$, the error is less than $1 / \tau 680$ part of the radius. Therefore, if the radius is 100,000 feet, the error is less than $\frac{100000}{r 680}=13$ feet. The error increases rapidly with the increase of the angle subtended.
In the measurement of an are which is described with a short radius the error is so small that it may be neglected. Describing an are with a radius of 12 iuches subtending an angle of $30^{\circ}$, the error is $1 / 50000$ of an inch. For $56^{\circ} .3$ the error is less than $0^{\prime \prime} .0015$.
In order to measure an are when it subtends a large angle, bisect it and measure each half as before-in this case making $B=$ length of the chord of half the are, and $b=$ length of the chord of one fourth the are; then

$$
L=\frac{16 b-2 B}{3}
$$

## Relation of the Circle to its Equaf, Inscribed, and Circumscribed Squares.

Diameter of circle
Circumference of circle
Circumference of circle
$\left.\begin{array}{l}\times .88623 \\ \times \\ \times \\ .28: 009\end{array}\right\}=$ side of equal square.
$\times 1.1281=$ perimeter of equal square.

Diameter. of circle $\times$.7071


## Square inches $x$

1.2 ri32 $=$ circular inches.

Sectorg and Segments. -To find the aren of a sector of a circle.
Rule 1. Multiply the arc of the sector by half its radius.
Rule 2. As 360 is to the number of degrees in the arc, so is the area of the circle to the area of the sector.
Rule 3. Multiply the number of degrees in the are by the square of the radius and by .00str27.
To find the area of a segment of a circle: Find the area of the sector which has the same arc, and also the area of the triangle formed by the chord of the segment and the radii of the sector.
Then take the sum of these areas, if the segment is greater than a semicircle, but take their difference if it is less.
Another Method: Area of segment $=1 / 2 R(\operatorname{arc}-\sin A)$, in which $A$ is the central angle, $R$ the radius, and are the length of are to radius 1
To find the area of a segment of a circle when its chord and height only are givelı. First find radius, as follows:

$$
\text { radins }=\frac{1}{2}\left[\frac{\text { square of half the chord }}{\text { height }}+\text { height }\right] .
$$

2. Find the angle subtended by the are, as follows: half chord $\div$ radius $=$ sine of half the angle. Take the corresponding angle from_ a table of sines, and double it to get the angle of the arc.
3. Find area of the sector of which the segment is a part;
area of sector $=$ area of circle $\times$ degrees of arc $\div 360$.
4. Subtract area of triangle under the segment):

$$
\text { Area of triangle }=\text { half chord } \times \text { (radius }- \text { leight of segment }) \text {. }
$$

The remainder is the area of the segment.
When the chord, arc, and diameter are given, to find the area. From the length of the arc subtract the length of the chord. Multiply the remainder by the radins or one-half dianeter; to the product add the chord multiplied by the height, and divide the sum by 2 .
Given diameter, $d$, and height of segment, $h$.

> When $h$ is from 0 to $1 / 4 d$, area $=h \sqrt{1.766 d h-h^{2}} ;$
> " " " $1 / 4 d$ to $1 / 2 d$, area $=h \sqrt{0.01 \pi d^{2}+1 . i d h-h^{2}}$
(approx.). Greatest error $0.23 \%$, when $h=1 / 4 d$.
To find the chord: From the diameter subtract the height; multiply the remainder by four times the height and extract the square root.

When the chords of the arc and of half the arc and the rise are given: To the chord of the are add four thirds of the chord of half the arc; multiply the sum by the rise and the product by .40426 (approximate).

Circular 1 inn.-To find the area of a ring included between the circumferences of two concentric circles: Take the difference between the areas of the two circles; or, subtract the square of the less radius from the square of the greater, and multiply their difference by 3.14159.

$$
\text { The area of the greater circle is equal to } \pi R^{2} \text {; }
$$

The area of the gre smaller

Their difference, or the area of the ring. is $\pi\left(R^{2}-r^{2}\right)$.
The Ellipse.-Area of an ellipse = product of its semi-axes $\times 3.14159$ $=$ product of its axes $\times .785398$.
$\sqrt{\frac{D^{2}+d^{2}}{2}}, D$ and $d$
The Ellipse.-Circumference (approximate) $=3.1416 \sqrt{\frac{D^{2}+d^{2}}{2}}, D$ and $a$ being the two axes.

Trautwine gives the following as more accurate: When the longer axis $D$ is not more than five times the length of the shorter axis, $d$,

$$
\text { Circumference }=3.1416 \sqrt{\frac{D^{2}+d^{2}}{2}-\frac{(D-d)^{2}}{8.8}}
$$

When $D$ is more than $5 d$, the divisor 8.8 is to be replaced by the following : Divisor $=\begin{array}{lllllllllllll} & 9.2 & 9.3 & 9.35 & 9.4 & 9 & 14 & 16 & 16 & 18 & 20 & 30 & 40 \\ 50\end{array}$ An accurate formula is $C=\pi(a+b)\left(1+\frac{A^{2}}{4}+\frac{A^{4}}{16}+\frac{A^{8}}{250}+\frac{25 A^{8}}{1638 t}+\ldots\right)$, in which $A=\frac{a-b}{a-b}$.-Ingenieurs Taschenbuch, 1896.

Carl (G. Barth (Machinery, Sept., 1900) gives as a very close approximation
this formula to this formula

$$
C=\pi(a+b) \frac{64-3 A^{4}}{64-16 A^{2}}
$$

Area of a segment of an ellipse the base of which is parallel to one of the axes of the ellipse. Divide the lieight of the segment by the axis of which it is part, and find the area of a circular segment, in a table of circular segments, of which the lieight is equal to the quotient; multiply the area thus found by the product of the two axes of the ellipse.
Cycloid.-A curve generated by the rolling of a circle on a plane.
Length of a cycloidal curve $==4 \times$. diameter of the generating circle.

> Length of the base $=$ circumference of the generating circle. Area of a cycloid $=3 \times$ area of generating circle.

Helix (Screw). - A line generated by the progressive rotation of a point around an axis and equidistant from its centre.
Length of a helix.-To the square of the circumference described by the generating-point add the square of the distance advanced in one revolution, and take the square root of their sum multiplied by the number of revolu. tious of the generating point. Or,

$$
V\left(c^{2}+h^{2}\right) n=\text { length, } n \text { being number of revolutions. }
$$

Spirals.-Lines generated by the progressive rotation of a point around a fixed axis, with a constantly increasing distance from the axis.

> A plane spiral is when the point rotates in one plane.

A conical spiral is when the point rotates around an axis at a progressing distance from its centre, and advancing in the direction of the axis, as around a cone.
Length of a plane spiral line.-When the distance between the coils is uniform.
RuLe.-Add together the greater and less diameters; divide their sum by 2: multiply the quotient by 3.1416, and again by the number of revolutions. Or, take the inean of the length of the greater and less circumferences and multiply it by the number of revolutions. Or,

$$
\text { length }=\pi n \frac{d+d^{\prime}}{2}, d \text { and } d^{\prime} \text { being the inner and outer diameters. }
$$

Length of a conical spiral line.-Add together the greater and less diameters; divide their sum by 2 and multiply the quotient by 3.1416 . To the square of the product of this circumference and the number of revolutions of the spiral add the square of the lieight of its axis and take the square root of the sum.

$$
\text { Or, length }=\sqrt{\left(\pi u \frac{l+d^{\prime}}{2}\right)^{2}+\pi^{2}}
$$

## SOLED BODIES.

The Prism. - To find the surface of a right prism: Multiply the perimeter of the base by the altitude for the convex surface. To this add the areas of the two ends when the entire surface is required.

$$
\text { Volume of a prism }=\text { area of its base } \times \text { its altitude. }
$$

The pyramid. - Convex surface of a regular pyramid = perimeter of its base $\times$ half the slant height. To this add area of the base if the whole surface is required.

Volume of a pyramid $=$ area of base $\times$ one third of the altitude.

To find the surface of a frustum of a regular pyramid: Multiply half th:s slant height by the sum of the perimeters of the two bases for the convex surface. To this add the areas of the two bases when the entire surface is required.

To find the volume of a frustum of a pyramid: Add together the areas of the two bases and a mean proportional between them, and multiply the sum by one third of the altitude. (Mean proportional between two numbers $=$ square root of their product.)

Wedge.-A wedge is a solid bounded by five planes, viz.: a rectangular base, two trapezoids, or two rectangles, meeting in an edge, and two triangular ends. The altitude is the perpendicular drawn from any point in the edge to the plane of the base.

To find the volume of a wedge: Add the length of the edge to twice the length of the base, and multiply the sum by one sixth of the product of the hifirht of the wedge and the breadtlo of the base.

Rectangular prismoid.-A rectangular prismoid is a solid bounded by six plantes, of which the two bases are rectangles, having their corresponding sides parallel, and the four upright sides of the solids are trapezoids.

To find the volume of a rectangular prismoid: Add together the areas of the two bases and four times the area of a parallel section equally distant from the bases, and multiply the sum by one sixth of the altitude.

Cylinder.-Convex surface of a cylinder $=$ perimeter of base $\times$ altitude. To this add the areas of the two ends when the entire surface is required.

Volume of a cylinder $=$ area of base $\times$ altitude.
Cone. - Convex surface of a cone $=$ circumference of base $\times$ hair the slant side. To this add the area of the base when the entire surface is required. Volume of a cone $=$ area of base $\times$ one third of the altitude.
To find the surface of a frustum of a cone: Multiply half the side by the sum ot the circumferences of the two bases for the convex surface; to this add the areas of the two bases when the entire surface is required.

To find the volume of a frustum of a cone: Add together the areas of the two bases and a mean proportional between them, and multiply the sum by one third of the altitude. Or; Vol. $=0.2618 u\left(b^{2}+c^{2}+b c\right) ; \quad u=$ altitude: $b$ and $c$, diams. of the two bases.

Sphere.-To find the surface of a sphere: Multiply the diameter by the circumference of a great circle; or, multiply the square of the diameter by 3.14159 .

## Surface of sphere $=4 \times$ area of its great circle <br> $$
\text { "6 }{ }_{61} \text { = convex surface of its circumscribing cylinder. }
$$

Surfaces of spheres are to each other as the squares of their diameters.
To find the volume of a sphere: Multiply the surface by one third of the radius; or, multiply the cube of the diaueter by $\pi / 6$; that is, by 0.5236 .
Value of $\pi / 4$ to 10 decimal places $=.523594 T 156$.
The volume of a sphere $=2 / 3$ the volume of its circumscribing cylinder.
Volumes of spheres are to each other as the cubes of their diameters.
Spherical triangle.-To find the area of a spherical triangle: Compute the surface of the quadrantal triangle, or one eighth of the surface of the sphere. From the sum of the three angles subtract two right angles; divide the remainder by 90 , and multiply the quotient by the area of the quadrantal triangle.
Spherical polygon. - To find the area of a spherical polygon: Comnute the surface of the quadrantal triangle. From the sum of all the angles subtract the product of two right angles by the number of sides less two; divide the remainder by 90 and multiply the quotient by the area of the quadrantal triangle.
The prismoid.-The prismoid is a solid having parallel end areas, and may be composed of any combination of prisms, cylinders, wedges, pyramids, or cones or frustums of the same, whose bases and apices lie in the end areas.
Inasmuch as cylinders and cones are but special forms of prisms and pyramids, and warped surface solids may be divided into elcmentary forms of them, and since frustums may also be subdivided into the elementary forms, it is sufficient to say that all prismoids may be decomposed into prisms, wedges, and pyramids. If a formula can be found which is equally applicable to all of these forms, then it will apply to any combination of them. Such a formula is called

## The Prismoidal Formula.

Let $A=$ area of the base of a prism, wedge, or pyramid;
$A_{1}, A_{2}, A_{m}=$ the two end and the middle areas of a prismoid, or of any of its elementary solids;

$$
\begin{aligned}
& h=\text { altitude of the prismoid or elementary solid; } \\
& V=\text { its volume; } \\
& V=\frac{h}{6}\left(A_{\mathbf{2}}+4 A_{m}+A_{\mathbf{2}}\right) .
\end{aligned}
$$

For a prism, $A_{1}, A m$ and $A_{2}$ are equal, $=A ; V=\frac{h}{6} \times 6 A=h A$.
For a wedge with parallel ends, $A_{2}=0, A m=\frac{1}{2} A_{1} ; V=\frac{h}{6}\left(A_{1}+2 A_{1}\right)=\frac{h A}{2}$.
For a cone or pyramid, $A_{2}=0, A m=\frac{1}{4} A_{1} ; V=\frac{h}{6}\left(A_{1}+A_{1}\right)=\frac{h A}{3}$.
The prismoidal formula is a rigid formula for all prismoids. The only approximation involved in its use is in the assumption that the given solid may be generated by a right line moving over the boundaries of the end areas.
The area of the middle section is never the mean of the two end areas if the prismoid contains any pyramids or cones among its elementary forms. When the three sections are similar in form the dimensions of the middle area are always the means of the corresponding end dimensions. This fact often enables the dimensions, and hence the area of the middle section, to be computed from the end areas.

Polyedrons.-A polyedron is a solid bounded by plane polygons. A regular polsedron is one whose sides are all equal regular polygons.

To find the surface of a regular polyedron.- Multiply the area of one of the faces by the number of faces; or, multiply the square of one of the edges by the surface of a similar solid whose edge is unity.

## A Table of the Regular Polyedrons whose Edges are Unity.

| Names. | No. of Faces. | Surface. | Volume |
| :---: | :---: | :---: | :---: |
| Tetraedron. |  | 1.7320508 | $0.11 \sim 8513$ |
| Hexaedron. | 6 | 6.0000000 | 1.0000000 |
| Octaedron | 8 | 3.4641016 | 0.4714045 |
| Dodecaedron | 12 | 20.6457288 | 7.6631189 |
| dron | 20 | 8.660:540 | 2.1816950 |

To find the volume of a regular polycdron.-Multiply the surface by one third of the perpendicular let fall from the centre on one of the faces; or, multiply the cube of one of the edges by the solidity of a similar polyedron whose edge is unity.
Solid of revolution.-The volume of any solid of revolution is equal to the product of the area of its generating surface by the length of the path of the centre of gravity of that surface.
The convex surface of any solid of revolution is equal to the product of the perimeter of its generating surface by the length of path of its centre of gravity.
Cylindrical ring.-Let $d=$ outer diameter $; d^{\prime}=$ inner diameter ; $\frac{1}{2}\left(d-d^{\prime}\right)=$ thickness $=t ; \frac{1}{4} \pi t^{2}=$ sectional area $; \frac{1}{2}\left(d+d^{\prime}\right)=$ mean diameter $=M ; \pi t=$ circumference of section $; \pi M=$ mean circumference of ring; surface $=\pi t \times \pi M ;=\frac{1}{4} \pi^{2}\left(d^{2}-d^{\prime 2}\right) ;=9.86965 t M ;=2.46741\left(d^{2}-d^{\prime 2}\right)$; volume $=\frac{1}{4} \pi t^{2} M \pi ;=2.46 \pi 41 t^{2} M$.
Spherical zone.--Surface of a sphericat zone or segment of a sphere $=$ its altilude $\times$ the circumference of a great circle of the sphere. A great circle is one whose plane passes through the centre of the sphere.
Volume of a zone of a sphere.-To the sum of the squares of the radii of the ends add one third of the square of the height; multiply the sum by the height and by 1.5708 .
Spherical segment.-Volume of a spherical segment with one base.-

Multiply half the height of the segment by the area of the base, and the cube of the height by .5236 and and the two products. Or, from three times the diameter of the sphere subtract twice the height of the segment; multiply the difference by the square of the height and by .5236. Or, to three times the square of the radius of the base of the segment add the square of its height, and multiply the sum by the height and by .5236 .
Splicroid or ellipsoid. - When the revolution of the spheroid is about the transverse diameter it is prolate, and when about the conjugate it is oblate.
Convex surface of a segment of a spheroid.-Square the diameters of the spheroid, and take the square root of half their sum ; then, as the diameter from which the segment is cut is to this root so is the height of the segment to the proportionate height of the segment to the mean diameter. Multiply the product of the other diameter and 3.1416 by the proportionate lieight.
Convex surface of a frustum or zone of a spheroid.-Proceed as by previons rule for the surface of a segment, and obtain the proportionate height of the frustum. Mnltiply the product of the diameter parallel to the base of the frustum and 3.1416 by the proportionate height of the frustum.
Volume of a spheroid is equal to the product of the square of the revolving axis by the fixed axis and by .5236. The volnme of a spheroid is two thirds of that of the circumscribing cylinder.
$V$ olume of a segment of a spheroid.-1. When the base is parallel to the revolving axis, multiply the difference between three times the fixed axis and twice the height of the segment, by the square of the height and by .5236 . Multiply the product by the square of the revolving axis, and divide by the square of the fixed axis.
2. When the base is perpendicular to the revolving axis, multiply the difference between three times the revolving axis and twice the height of the segment by the square of the height and by .5P36. Multiply the product by the length of the fixed axis, and divide by the length of the revolving axis.

Volume of the middle frustum of a spheroid.-1. When the ends are circular, or parallel to the revolving axis: To twice the square of the midulle diameter add the square of the diameter of one end; multiply the sum by the length of the frustum and by . 2618 .
2. When the ends are elliptical, or perpendicular to the revolving axis: To twice the product of the transverse and conjugate diameters of the middle section add the product of the transverse and conjugate diameters of one end : mnltiply the sum by the length of the frustum and by .2618 .
Spindles. - Figures generated by the revolution of a plane area, when the curve is revolved abont a chord perpendicular to its axis, or abont its double ordinate. They are designated by the name of the arc or curve from which they are generated, as Circular, Elliptic, Parabolic, etc., etc.
Cinvex surface of a circular spindle, zone, or segment of it -Rule: Multiply the length by the radius of the revolving are; multiply this are by the central distance, or distance between the centre of the spindle and centre of the revolving arc; subtract this product from the former, double the remainder, and multiply it by 3.1416

Volume of a circular spindle.-Multiply the central distance by half the area of the revolving segment; subtract the product from one third of the cube of half the length, and multiply the remainder by 12.5664.
Vrilume of frustum or zone of a circular spindle.-From the square of half the lengtlo of the whole spindle take one third of the square of half the length of the frustum, and multiply the remainder by the said half length of the frustum ; multiply the central distance by the revolving area which generates the frustum ; subtract this product from the former, and inultiply the remainder by 6.2832 .
Volume of a segment of a circular spindle.-Subtract the length of the segment from the lialf length of the spindle; double the remainder and ascertain the volume of a middle frustum of this length; subtract the result from the volume of the whole spindle and halve the remainder.

Volume of a cycloidal spindle = five eighths of the volume of the circumscribing cylinder:-Mnltiply the product of the square of twice the diameter of the generating circle and 3.927 by its circumference, and divide this product by 8 .
Parabolic conoid.-Volume of a parabolic conoid (generated by the revolution of a parabola on its axis).-Multiply the area of the base bs half the height.

Or multiply the square of the diameter of the base by the height and by . $392 \%$.
Volume of a frustum of a parabolic conoid.-Multiply half the sum of the areas of the two ends by the height.
Volume of a parabolic spindle (generated by the revolution of a parabola on its base).-Multiply the square of the middle diameter by the length and by . 4189.
The volume of a parabolic spindle is to that of a cylinder of the same height and diameter as 8 to 15 .

Volume of the middle firustum of a parabolic spindle.-Add together 8 times the square of the maximun diameter, 3 times the square of the end diameter, and 4 times the product of the diameters. Multiply the sum by the length of the frustum and by .05236.
This rule is applicable for calculating the content of casks of parabolic form.

Casks.-I'o find the rolume of a cask of any form.-Add together 39 times the square of the bung diameter, 25 times the square of the head diameter, and 26 times the product of the diameters. Multiply the sum by the length. and divide by $31,7 \% 3$ for the content in Imperial gallons, or by 26.470 for U. S. gallons.

This rule was framed by Dr. Hutton, on the supposition that the middle third of the length of the cask was a frustum of a parabolic spindle, and each outer third was a frustum of a cone.
To find the ullage of a cask, the quantity of liquor in it when it is not full. 1. For a lying cask: Divide the number of wet or dry inches by the bung diameter in inches. If the quotient is less than 5 , deduct from it one fourth part of what it wants of. 5 . If it exceeds .5 , add to it one fourtli part of the excess above .5. Multiply the remainder or the sum by the whole content of the cask. The product is the quantity of liquor in the cask, in gallons, when the dividend is wet inches; or the empty space, if dry inches.
2. For a standing cast: Divide the number of wet or dry inches by the length of the cask. If the quotient exceeds . 5 , add to it one tenth of its excess above .5; if less than . 5 , sultract from it one tenth of what it wants of .5. Multiply the sum or the remainder by the whole content of the cask. The product is the quantity of liquor in the cask, when the dividend is wet, inches; or the empty space. if clry inches.

Volume of cash (apmroximate) U. S. gallons = square of mean diam. $\times$ length in inches $\times .0034$. Mean diam. $=$ half the sum of the bung and head diams.

Volume of an irreqular solid.-Shppose it divided into parts, resembling prisms or other bodies measurable by preceding rules. Find the content of eacli part; the sum of the contents is the cubic contents of the solid.

The content of a small part is found nearly by multiplying half the sum of the areas of each end by the perpendicular distance between them.

The contents of small irregular solids may sometines be fomd by immersing them under water in a prismatic or cylindrical vessel, and observing the amount by which the level of the water descends when the solid is withdrawn. The sectional area of the ressel being multiplied by the descent of the level gives the culbic contents.

Or, weigh the solid in air and in water; the difference is the weight of water it displaces. Divide the weiglit in ponnds by 62.4 to obtain volume in cubic feet. or multiply it by $2 \% .7$ to ohtain the volnme in cubic inches.

When the solid is rery large and a great degree of accuracy is not requisite, measmre its length, breadth, and depth in several iiferent places, and take the mean of the measnrement for each dimension, and multiply the three means together.

When the surface of the solid is very extensive it is better to divide it into triangles, to find the area of each triangle, and to multiply it by the mean depth of the triangle for the contents of each triangular portion; the contents of the triangular sections are to be added together.

The mean deptl of a triangular section is obtained by measuring the depth at each angle, adding together the. three measurements, and taking one third of the sum.

## PLANE TRIGONOMETRY.

## Trigonometrical Fanctions.

Every triangle has six parts-three angles and three sides. When any three of these parts are given, provided one of them is a side, the other parts may be determined. By the solution of a triangle is meant the determination of the unknown parts of a triangle when certain parts are given.
The complement of an angle or are is what remains after subtracting the anyle or are from $90^{\circ}$.
In general, if we represent any are by $A$, its complement is $90^{\circ}-A$. Hence the complement of an are that exceeds $90^{\circ}$ is negative.
Since the two acute angles of a right-angled triangle are together equal to a right angle, each of them is the complement of the other.
The supplement of an angle or are is what remains after subtracting the angle or are from $180^{\circ}$. If $A$ is an arc its supplement is $180^{\circ}-A$. The supplement of an are that exceeds $180^{\circ}$ is negatire.

The sum of the three angles of it triangle is equal to $180^{\circ}$. Fither angle is the supplement of the other two. In a right-angled triangle, the right angle being equal to $90^{\circ}$, each of the acute angles is the complement of the other:

In all vight-angled triangles huving the some rate angle, the sides have to efth other the same ratio. These ratios have received special names, as follows:

If $A$ is one of the acute angles, $a$ the opposite side, $b$ the adjacent side, and $c$ the hypothenuse.

The sine of the angle $A$ is the quotient of the opposite side divided by the hypothenuse. Sin. $A=\frac{a}{c}$.

The tangent of the angle $A$ is the quotient of the opposite side divided by the adjacent side. Tang. $A=\frac{a}{b}$.

The secant of the angle $A$ is the quotient of the hypothenuse divided by the adjacent side. Sec. $A=\frac{c}{b}$.

The cosine, cotangent, and cosecant of an angle are respectively the sine, tangent, and secant of the complement of that angle. The ternis sine, cosine, etc., are called trigonometrical functions.

In a circle whose radius is unity, the sine of an crec, or of the angle at the centre measured by that arc, is the perpendicular let fall from one extremity "f the rricupon the diame ter passing through the other extremity.

The tangent of an arc is the line mhich tonches the circle at oue extremity of the ard, and is limited by the diameter (produced) passing through the other extremit!!.

The secant of an arc is that part of the produced diameter. which is intorrepted betreen the centre and the tingent.
The versed sine of an arc is that part of the diameter intercepted bellreen the extremity of the arc and the font of the sine.
In a circle whose radius is not nnity, the trigouometric functions of an are will be equal to the lines here defined. divided by the radius of the circle.
If $I C A$ (Fig. 70 ) is an angle in the first quadrant, and $C F=$ radius,
The sine of the angle $=\frac{F G}{\text { Rad. }} . \quad \operatorname{Cos}=\frac{C G}{\text { Rad } .}=\frac{K F}{R a d}$.

$$
\begin{gathered}
\text { Tang. }=\frac{I A}{\text { Rad. }} \cdot \text { Secant }=\frac{C I}{\operatorname{Rad} .} \cdot \operatorname{Cot} .=\frac{D I}{\operatorname{Rad} .} \\
\text { Cosec. }=\frac{C L}{\operatorname{Rad} .} . \text { Versin. }=\frac{G A}{\operatorname{Rad} .}
\end{gathered}
$$

If radius is 1 , then Rad. in the denominator is omitted, and sine $=F G$, etc.
The sine of an arc = half the chord of twice the arc.
The sine of the supplenent of the are is the same as that of the arc itself. Sine of are $B D F=F G=$


Fig. \%o.

The tangent of the supplement is equal to the tangent of the are, but with a contrary sign. 'l'ang. $B D F=B M$.
The secant of the supplement is equal to the secant of the arc, but with a contrary sign. Sec. $B D F=C M$.
Signs of the functions in the four quadrants.-If we divide a circle into four quadrants ly a vertical and a horizontal diameter, the upper right-hand quadrant is called the first, the upper left the second, the lower left the third, and the lower right the fourth. The signs of the functions in the four quadrants are as follows:

First quad. Second quad. Third quad. Fourth quad.
Sine and cosecant, Cosine and secant, Tangent and cotangent,
+
+
+
$\pm$


士
The values of the functions are as follows for the angles specified:


## TREGONOMETERECALHORIMULE.

The following relations are deduced from the properties of similar triangles (Radius $=1$ ):
$\cos A: \sin A:: 1: \tan A$, whence $\tan A=\frac{\sin A}{\cos A} ;$
$\sin A: \cos A:: 1: \cot A, \quad$ " $\operatorname{cotan} A=\frac{\cos A}{\sin A}$,
$\cos A: 1 \quad:: 1: \sec A, \quad \because \quad \sec A=\frac{1}{\cos A}$
$\sin A: 1 \quad:: 1: \operatorname{cosec} A, \quad " \operatorname{cosec} A=\frac{1}{\sin A} ;$
$\tan A: 1 \quad:: 1: \cot A \quad " \quad \tan A=\frac{1}{\cot A}$.
The sum of the square of the sine of an are and the square of 1ts cosine equals unity. $\operatorname{Sin}^{2} A+\cos ^{2} A=1$.
Also, $\quad 1+\tan ^{2} A=\sec ^{2} A: \quad 1+\cot ^{2} A=\operatorname{cosec}^{2} A$.

## Functions of the sum and diference of two angles:

Let the two angles be denoted by $A$ and $B$, their sum $A+B=C$, and their difference $A-B$ by $D$.

$$
\begin{equation*}
\sin (A+B)=\sin A \cos B+\cos A \sin B \tag{1}
\end{equation*}
$$

From these four formulæ by addition and subtraction we obtain

$$
\begin{align*}
& \sin (A+B)+\sin (A-B)=2 \sin A \cos B ;  \tag{5}\\
& \sin (A+B)-\sin (A-B)=2 \cos A \sin B ;  \tag{6}\\
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B ; \\
& \cos (A-B)-\cos (A+B)=2 \sin A \sin B . \tag{8}
\end{align*}
$$

If we put $A+B=C$, and $A-B=D$, then $A=1 / 2(C+D)$ and $B=1 / 2(C-$ $D$ ), and we have

$$
\begin{align*}
& \sin C+\sin D=2 \sin 1 / 2(C+D) \cos 1 / 2(C-D) ; .  \tag{9}\\
& \sin C-\sin D=2 \cos 12(C+D) \sin 1 / 2(C-D) ; . \tag{10}
\end{align*} \cdot . \quad(10)
$$

Equation (9) may be enunciated thus: The sum of the sines of any two anyles is equal to twice the sine of half the sum of the angles multiplied by the cosine of half their difference. These formulæ enable us to transform a sum or difference into a product.

The sum of the sines of two angles is to their difference as the tangent of half the sum of those angles is to the tangent of half their difference.

$$
\begin{equation*}
\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{2 \sin 1 / 2(A+B)}{2 \cos 1 / 2(A+B)} \frac{\cos 1 / 2(A-B)}{\sin 1 / 2(A-B)}=\frac{\tan 1 / 2(A+B)}{1 \tan 16(A-B)} \tag{13}
\end{equation*}
$$

The sum of the cosines of two angles is to their difference as the cotangent of half the sum of those angles is to the tangent of half their difference.

$$
\begin{equation*}
\frac{\cos A+\cos B}{\cos B-\cos A}=\frac{2 \cos 1 / 2(A+B) \cos 1 / 2(A-B)}{2 \sin 1 / 2(A+B) \sin 1 / 2(A-B)}=\frac{\cot 1 / 2(A+B)}{\tan 1 / 2(A-B)} . \tag{14}
\end{equation*}
$$

The sine of the sum of two angles is to the sine of their difference as the sum of the taugents of those angles is to the difference of the tangents.

$$
\begin{equation*}
\frac{\sin (A+B)}{\sin (A-B)}=\frac{\tan A+\tan B}{\tan A-\tan B} \tag{i5}
\end{equation*}
$$

$$
\begin{array}{l|l}
\frac{\sin (A+B)}{\cos A \cos B}=\tan A+\tan B ; & \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\frac{\sin (A-B)}{\cos A \cos B}=\tan A-\tan B ; & \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} ; \\
\frac{\cos (A+B)}{\cos A \cos B}=1-\tan A \tan B ; & \cot (A+B)=\frac{\cot A \cot B-1}{\cot B+\cot A} \\
\frac{\cos (A-B)}{\cos A \cos B}=1+\tan A \tan B ; & \cot (A-B)=\frac{\cot A \cot B+1}{\cot B-\cot A}
\end{array}
$$

## Functions of twice an angle:

$\sin 2 A=2 \sin A \cos A ;$

$$
\cos \Omega A=\cos ^{2} A-\sin ^{2} A
$$

$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A} ;$

$$
\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}
$$

Functions of halrian angle :

$$
\begin{array}{l|l}
\sin 1 / 2 A= \pm \sqrt{\frac{1-\cos A}{2}} ; & \cos 1 / 2 A= \pm \sqrt{\frac{1+\cos A}{2}} ; \\
\tan 1 / 3 A= \pm \sqrt{\frac{1-\cos A}{1+\cos A} ;} & \cot 1 / 2 A= \pm \sqrt{\frac{1+\cos A}{1-\cos A}} .
\end{array}
$$

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B ; \text {. . . . . (2) } \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B ; \text {. . . . (3) }
\end{aligned}
$$

## Solution of Plane Rightangled Triangles.

Let $A$ and $B$ be the two acute angles and $C$ the right angle, and $a, b$, and $c$ the sides opposite these angles, respectively, then we have

$$
\begin{array}{ll}
\text { 1. } \sin A=\cos B=\frac{a}{c} ; & \text { 3. } \tan A=\cot B=\frac{a}{b} \\
\text { 2. } \cos A=\sin B=\frac{b}{c} ; & \text { 4. } \cot A=\tan B=\frac{b}{a}
\end{array}
$$

1. In any plane right-angled triangle the sine of either of the acute angles is equal to the quotient of the opposite leg divided by the hypothenuse.
2. The cosine of either of the acute angles is equal to the quotient of the adjacent log divider by the hypotbenuse.
3. The tangent of either of the acute angles is equal to the quotient of the opposite leg divided by the adjacent leg.
4. The cotangent of either of the acute angles is equal to the quotient of the adjacent leg divided by the opposite leg.
5. The square of the hypothenuse equals the sum of the squares of the other two sides.

## Solution of Oblique-angled Triangles.

The following propositions are proved in works on plane trigonometry. In any plane triangle-
Theorem 1. The sines of the angles are nroportional to the opposite sides.
Theorem 2. The sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.
Theorem 3. If from any angle of a triangle a perpendicular be drawn to the opposite side or base, the whole hase will be to the sum of the other two sides as the difference of those two sides is to the difference of the segments of the base.

Case I. Given two angles and a side, to find the third angle and the other two sides. 1. The third angle $=180^{\circ}-$ sum of the two angles. 2. The sides may be found by the following proportion:

The sine of the angle opposite the given side is to the sine of the angle opposite the required side as the given side is to the required side.
Case II. Given two sides and an angle opposite one of them, to find the third side and the remaining angles.

The side opposite the given angle is to the side opposite the required angle as the sine of the given angle is to the siue of the required angle.
The third angle is fombl by subtracting the sum of the other two from $180^{\circ}$, and the third side is found as in Case I.

Case III. Given two sides and the included angle, to find the third side and the remaining angles.

The sum of the required angles is found by subtracting the given angle from $180^{\circ}$. The difference of the required angles is then found by Theorem 11. Half the difference added to half the sum gives the greater angle, and half the difference subtracted from half the sum gives the less angle. The third side is then found by Theorem I.

Another method:
Given the sides $c, b$, and the included angle $A$, to find the remaining side $a$ and the remaining angles $B$ and $C$.

From either of the unknown angles, as $B$, draw a perpendicular $B e$ to the opposite side.
Then

$$
A e=c \cos A, B e=c \sin A, \quad e C=b-A e, \quad B e \div e C=\tan C
$$

Or, in other words, solve $B e, A e$ and $B e C$ as right-angled triangles.
CASE IV. Given the three sides, to find the angles.
Let fall a perpendicular upon the longest side from the opposite angle, dividing the given triangle into two right-angled triangles. The two seg. ments of the base may be found by Theorem III. There will then be given the hypothenuse and one side of a right-angled triangle to find the augles.

For areas of triangles, see Mensuration.

## ANALYTICAL GEOMETRY.

Analytical geometry is that branch of Mathematics which has for its object the determination of the forms and magnitudes of geometrical magnitudes by means of analysis.
Ordinates and abscissas.--In analytical geometry two intersecting


Fig. 71. hines $Y Y^{\prime}, X X^{\prime}$ are used as coördinate axes, $X X^{\prime}$ being the axis of abseissas or axis of $X$, and $Y Y^{\prime}$ the axis of ordinates or axis of $Y$. $A$, the intersection. is called the origin of coördinates. The distance of any point $P$ from the axis of $Y$ measured parallel to the axis of $X$ is called the abscissa of the point, as $A D$ or $C P$, Fig. 71. Its distance from the axis of $X$, measured parallel to the axis of $Y$, is called the ordinate, as $A C$ or $P D$. The abscissa and ordinate taken together are called the coördinates of the point $P$. The angle of intersection is usually taken as a right angle, in which case the axes of $X$ and $Y$ are called rectangular coördinates.
The abscissa of a point is desiguated by the letter $x$ and the ordinate by $y$. The equations of a point are the equalions which express the distances of the point from the axis. Thus $x=1, y=b$ are the equations of the point $P$.

Equations referred to rectangular coirdinates.-The equa-
tion of a line expresses the relation which exists between the coördinates of every point of the line.
Equation of a straight line, $y=\alpha x \pm b$, in which $a$ is the tangent of the angle the line makes with the axis of $\bar{X}$, and $b$ the distance above $A$ in which the line cuts the axis of $Y$.

Every equation of the first degree between two variables is the equation of a straight line, as $A y+B x+C=0$, which can be reduced to the form $y=$ $a x \pm b$.

Equation of the distance between two points:

$$
D=\sqrt{\left(x^{\prime \prime}-x^{\prime}\right)^{2}+\left(y^{\prime \prime}-y^{\prime}\right)^{2}},
$$

in which $x^{\prime} y^{\prime}, x^{\prime \prime} y^{\prime \prime}$ are the coorrdinates of the two points.
Equation of a line passing through a given point:

$$
y-y^{\prime}=\alpha\left(x-x^{\prime}\right),
$$

in which $x^{\prime} y^{\prime}$ are the coördinates of the given point, $\alpha$, the tangent of the angle the line makes with the axis of $x$, being undetermined, since any numbel of lines may be drawn through a given point.
Equation of a line passing through two given points:

$$
y-y^{\prime}=\frac{y^{\prime \prime}-y^{\prime}}{x^{\prime \prime}-x}\left(x-x^{i}\right)
$$

Equation of a line parallel to a given line and through a given point:

$$
y-y^{\prime}=a\left(x-x^{\prime}\right) .
$$

Equation of an angle $V$ included between two given lines:

$$
\operatorname{tang} V=\frac{a^{\prime}-a}{1+i^{\prime}\left(c^{\prime}\right.},
$$

in which $a$ and $a^{\prime}$ are the tangents of the angles the lines make with the axis of abscissas.

If the lines are at right angles to each other tang $V=\infty$, and

$$
1+a^{\prime} a=0 .
$$

Equation of an intersection of two lines, whose equations are

$$
\begin{aligned}
& y=a x+b, \quad \text { and } \quad y=a^{\prime} x+b^{\prime}, \\
& x=-\frac{b-b^{\prime}}{a-a^{\prime \prime}}, \text { and } y=\frac{a b^{\prime}-a^{\prime} b}{a-a^{\prime}}
\end{aligned}
$$

Equation of a perpendicular from a given point to a given line:

$$
y-y^{\prime}=-\frac{1}{a}\left(x-x^{\prime}\right)
$$

Equation of the length of the perpendicular $P$ :

$$
P=\frac{y^{\prime}-a x^{\prime}-b}{\sqrt{1+u^{2}}}
$$

The circle.-Equation of a circle, the origin of coordinates being at the centre, and radius $=R$ :

$$
x^{2}+y^{2}=R^{2} .
$$

If the origin is at the left extremity of the diameter, on the axis of $X$ :

$$
y^{2}=2 R x-x^{2}
$$

If the origin is at any point, and the coördinates of the centre are $x^{\prime} y^{\prime}$ :

$$
\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}=R^{2}
$$

Equation of a tangent to a circle, the coördinates of the point of tangency being $x^{\prime \prime} y^{\prime \prime}$ and the origin at the centre,

$$
y y^{\prime \prime}+x x^{\prime \prime}=R^{2}
$$

The ellipse.-Equation of an ellipse, referred to rectangular coördinates with axis at the centre:

$$
A^{2} y^{2}+B^{2} x^{2}=A^{2} B^{2}
$$

in which $A$ is half the transverse axis and $B$ half the conjugate axis.
Equation of the ellipse when the origin is at the vertex of the transverse axis:

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(\sim A x-x^{2}\right)
$$

The eccentricity of an ellipse is the distance from the centre to either focus, divided by the semi-transverse axis, or

$$
e=\frac{\sqrt{A^{2}-B^{2}}}{A}
$$

The parameter of an ellipse is the double ordinate passing through the focus. It is a third proportional to the transverse axis and its conjugate, or

$$
2 A: 2 B:: 2 B: \text { parameter; or parameter }=\frac{2 B^{2}}{A} .
$$

Any ordinate of a circle circumscribing an ellipse is to the corresponding ordinate of the ellipse as the semi-transverse axis to the semi-conjugate. Any ordinate of a circle inscribed in an ellipse is to the corresponding ordinate of the ellipse as the semi-conjugate axis to the semi-transverse.

Equation of the tangent to an ellipse, origin of axes at the centre :

$$
A^{2} y y^{\prime \prime}+B^{2} x x^{\prime \prime}=A^{2} B^{2}
$$

$y^{\prime \prime} x^{\prime \prime}$ being the coördinates of the point of tangency.
Equation of the normal, passing through the point of tangency, and perpendicular to the tangent:

$$
y-y^{\prime \prime}=\frac{A^{2} y^{\prime \prime}}{B^{2} x^{\prime \prime}}\left(x-x^{\prime \prime}\right)
$$

The normal bisects the angle of the two lines drawn from the point of tangency to the foci.
The lines diawn from the foci make equal angles with the tangent.
rThe parabola.-Equation of the parabola referred to rectangular coorrdinates, the origin being at the vertex of its axis, $y^{2}=\{p x$, in which $2 p$ is the parameter or double ordinate through the focus.

The parameter is a third proportional to any abscissa and its corresponding ordinate, or

Equation of the tangent:

$$
x: y:: y: 2 p
$$

$$
y y^{\prime \prime}=p\left(x+x^{\prime \prime}\right)
$$

$y^{\prime \prime} x^{\prime \prime}$ being coördinates of the point of tangency.
Equation of the normal:

$$
y-y^{\prime \prime}=-\frac{y^{\prime \prime}}{p}\left(x-x^{\prime \prime}\right)
$$

The sub-normal, or projection of the normal on the axis, is constant, and equal to half the parameter.

The tangent at any point makes equal angles with the axis and with the line drawn from the point of tangency to the focus.

The hyperbola.-Equation of the hyperbola referred to rectangular coördinates, origin at the centre:

$$
A^{2} y^{2}-B^{2} x^{2}=-A^{2} B^{2}
$$

in which $A$ is the semi-transverse axis and $B$ the semi-conjugate axis.
Equation when the origin is at the right vertex of the transverse axis:

$$
y^{2}=\frac{B^{2}}{A^{2}}\left(2 A x+x^{2}\right)
$$

Conjugate and equilateral Inyperbolas.-If on the conjugate axis, as a transverse, and a focal distance equal to $\sqrt{\overline{A^{2}+B^{2}}}$, we construct the two branches of a hyperbola, the two hyperbolas thus coustructed are called conjugate hyperbolas. If the transverse and conjugate axes are equal, the hyperbolas are called equilateral, in which case $y^{2}-x^{2}=-A^{2}$ when $A$ is the transverse axis, and $x^{2}-y^{2}=-B^{2}$ when $B$ is the transverse axis.
The parameter of the transverse axis is a third proportional to the transverse axis and its conjugate.

$$
2 A: 2 B:: 2 B: \text { parameter }
$$

The tangent to a hyperbola bisects the angle of the two lines drawn from the point of tangency to the foci.
The asymptotes or a byperbola are the diagonals of the rectangle described on the axes, indefinitely produced in both directions.
In an equilateral hyperbola the asymptotes make equal angles with the transverse axis, and are at right angles to each other.
The asymptotes continually approach the hyperbola, and become tangent to it at an infinite distance from the centre.
Conic sections.-Every equation of the second degree between two variables will represent either a circle, an ellipse, a parabola or a hyperbola. These curves are those which are obtained by intersecting the surface of a cone by planes, and for this reason they are called conic sections.

Hogarithmic carve.-A logarithmic curve is one in which one of the coorrdnates of any point is the logarithm of the other.
The coödinate axis to uhich the lines denoting the logarithms are parallel is called the axis of logarithms, and the other the axis of numbers. If $y$ is the axis of logarithms and $x$ the axis of numbers, the equation of the curve is $y=\log x$.
If the base of a system of logarithms is $a$, we have $a^{y}=x$, in which $y$ is the logarithm of $x$.
Each system of logarithms will give a different logarithmic curve. If $y=$ $0, x=1$. Hence every logarithmic curve will intersect the axis of numbers at a distance from the origin equal to 1.

## DIFFERENTIAL CALCULUS.

The differential of a variable quantity is the difference between any two of its cousecutive values; hence it is indefinitely small. It is expressed by writing $d$ before the quantity, as $d x$, which is real differential of $x$.
The term $\frac{d y}{d x}$ is called the differential coefficient of $y$ regarded as a func. tion of $x$.

The differential of a function is equal to its differential coefficient multiplied by the differential of the independent variable; thus, $\frac{d y}{d x} d x=d y$.

The limit of a variable quantity is that value to which it contmally approaches, so as at last to differ from it by less than any assignable quan tity.

The differential coefficient is the limit of the ratio of the increment of the independent variable to the increment of the function.
The differential of a constant quantits is equal to 0 .
The differential of a product of a constant by a variable is equal to the constant multiplied by the differential of the variable.

$$
\text { If } u=A v, \quad d u=A d v
$$

In any curve whose equation is $y=f(x)$, the differential coefficient $\frac{d y}{d x}=\tan a$; hence, the rate of increase of the function, or the ascension of the curve at any point, is equal to the tangent of the angle which the angent line makes with the axis of abscissas.

All the operations of the Differential Calculus comprise but two objects:

1. To find the rate of change in a function when it passes from one state of value to another, conseculive with it.
2. To find the actual change in the function: The rate of change is the differential coefficitht. and the actual change the differential.

Differentials of algebraic functions.-The differential of the sum or difference of any number of functions, dependent on the sane variable, is equal to the sum or difference of their differentials taken sepa. rately:

$$
\text { If } \quad u=y+z-w, \quad d u=d y+d z-d w .
$$

The differential of a product of two functions dependent on the same variable is equal to the sum of the products of each by the differential of the other :

$$
d(u v)=v\left(u u+u d v . \quad \frac{d(u v)}{u v}=\frac{d u}{u}+\frac{d v}{v} .\right.
$$

The differential of the product of any number of functions is equal to the sum of the products which arise by miltiplying the differential of each function by the product of all the others:

$$
d(u t s)=t s d u+u s d t+u t d s
$$

The differential of a fraction equals the denominator into the differential of the numerator minus the numerator into the differential of the denomintor, divided by the square of the (lenominator:

$$
d t=d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}
$$

If the denominator is constant, $d v=0$, and $d t=\frac{v a u}{v^{2}}=\frac{d u}{v}$.
If the numerator is coustant, $d u=0$, and $d t=-\frac{u c l u}{v^{2}}$
The differential of the square root of a quantity is equal to the differential of the quantity divided by twice the square root of the quantity:

$$
\text { If } v=u^{\frac{1}{2}}, \text { or } v=\sqrt{\prime} \bar{u}, \quad d v=\frac{d u}{2 \sqrt{u}} ;=\frac{1}{2} u^{-\frac{1}{2}} d u \text {. }
$$

The differential of any power of a function is equal to the exponent multiplied by the function raised to a power less one, nultiplied by the differential of the function, $d\left(u^{n}\right)=m u^{n-1} d u$.

Formulas for dimerentiating algebraic functions.

1. $d(a)=0$.
2. $d(a x)=a d x$.
3. $d(x+y)=d x+d y$.
4. $d(x-y)=d x-d y$.
5. $d(x y)=x d y+y d x$.
6. $d\left(\frac{x}{y}\right)=\frac{y d x-x d y}{y^{2}}$.
r. $d\left(x^{m}\right)=m x^{m-1} d x$.
7. $d(\sqrt{x})=\frac{d x}{2 \sqrt{x}}$.
8. $d\left(x^{-\frac{r}{s}}\right)=-\frac{r}{s} x^{-\frac{r}{s}-1} d x$.

To find the differential of the form $u=\left(a+b x^{n}\right)^{m}$ :
Multiply the exponent of the parenthesis into the exponent of the variable within the parenthesis, into the coefficient of the variable, into the binomial raised to a power less 1, into the variable within the parenthesis raised to a power less 1 , into the differential of the variable.

$$
d u=d\left(a+b x^{n}\right)^{m}=m n b\left(a+b x^{n}\right)^{m-1} x^{n-1} d x .
$$

To find the rate of change for a given value of the variable:
Find the differential coefficient, and substitute the value of the variable in the second member of the equation.
Example.-If $\boldsymbol{x}$ is the side of a cube and $u$ its volume, $u=x^{3}, \frac{d u}{d x}=3 x^{2}$. Hence the rate of change in the volume is three times the square of the edge. If the edge is denoted by 1 , the rate of change is 3.
Application. The coefficient of expansion by heat of the volume of a body is three times the linear coefficient of expansion. Thus if the side of a cube expands .001 inch, its volume expands. 003 cubic inch. $1.001^{3}=1.00: 3003001$.
A partial differential coeficient is the differential coetficient of a function of two or more variables under the supposition that only one of them has changed its value.

A partial differential is the differential of a function of two or more variables under the supposition that only one of them has changed its value.
The total differential of a function of any number of variables is equal to the sum of the partial differentials.
If $u=f(x y)$, the partial differentials are $\frac{d u}{d x} d x, \frac{d u}{d y} d y$.
If $u=x^{2}+y^{3}-z, d u=\frac{d u}{d x} d x+\frac{d u}{d y} d y+\frac{d u}{d z} d z ;=2 x d x+3 y^{2} d y-d z$.
Integrals.-An integral is a functional expression derived from a differential. Integration is the operation of finding the primitive function from the differential function. It is indicated by the sign $f$, which is read "the integral of." Thus $f 2 x d x=x^{2}$ : read, the integral of $2 x d x$ equals $x^{2}$.

To integrate an expression of the form $m x^{m-1} d x$ or $x^{m} d x$, add 1 to the exponent of the variable, and divide by the new exponent and by the diffrrential of the variable: $\int 3 x^{2} d x=x^{3}$. (Applicable in all cases except wheu $m=-1$. For $\int x^{-1} d x$ see formula 2 page $\%$.)

The integral of the product of a constant by the differential of a variable is equal to the constant multiplied by the integral of the differential:

$$
\int a x^{m} d x=a \int x^{m} d x=a \frac{1}{m+1} x^{m+1}
$$

The integral of the algebraic sum of any number of ufferentials is equal to the algebraic sum of their integrals:

$$
d u=2 a x^{2} d x-b y d y-z^{2} d z ; \quad \int a u=\frac{2}{3} a x^{3}-\frac{b}{2} y^{2}-\frac{z^{3}}{3}
$$

Since the differential of a constant is 0 , a constant connected witl a variable by the sign + or - disappears in the differentiation; thus $d\left(\Omega+x^{m}\right)=$ $d x^{m}=m x^{m-1} d x$. Hence in integrating a differential expression we must
annex to the integral obtained a constant represented by $C$ to compensate for the term which may have been lost in differentiation. Thus if we have $d y=a d x ; f d y=a \int d x$. Integrating,

$$
y=a x \pm C
$$

The constant $C$, which is added to the first integral, must have such a value as to render the functional equation true for every possible value that may be attributed to the variable. Hence, after having found the first integral equation and added the constant $C$, if we then make the variable equal to zero, the value which the function assumes will be the true value of $C$.

An indefinite integral is the first integral obtained before the value of the constant $C$ is determined.

A particular integral is the integral after the value of $C$ has been found.
A definite integral is the integral corresponding to a given value of the variable.

Integration between limits.-Having found the indefinite integral and the particular integral, the next step is to find the definite integral, and then the definite integral between given limits of the variable.
The integral of a function, taken between two limits, indicated by given values of $x$, is equal to the difference of the definite integrals corresponding to those limits. The expression

$$
\int_{x^{\prime}}^{\partial x^{\prime \prime}} d y=a \int d x
$$

is read: Integral of the differential of $y$, taken between the limits $x^{\prime}$ and $x^{\prime \prime}$. the least linit, or the limit corresponding to the subtractive integral, being placed below.

Integrate $d u=9 x^{2} d x$ between the limits $x=1$ and $x=3, u$ being equal to 81 when $x=0$. $\int d u=\int 9 x^{2} d x=3 x^{3}+C ; C=81$ when $x=0$, then

$$
\int_{x=1}^{x=3} \begin{aligned}
& d u
\end{aligned}=3(3)^{3}+81, \text { minus } 3(1)^{3}+81=78 .
$$

## Integration of particular forms.

To integrate a differential of the form $d u=\left(a+b x^{n}\right)^{m} x^{n-1} d x$.

1. If there is a constant factor, place it withont the sign of the integral, and omit the power of the variable without the parenthesis and the differ. ential;
$\underset{\sim}{2}$. Angment the exponent of the parenthesis by 1 , and then divide this quantity, with the exponent so increased, by the exponent of the parenthesis, into the exponent of the variable within the parenthesis, into the coefficient of the variable. Whence

$$
\int d u=\frac{\left(a+b x^{n}\right)^{m+1}}{(m+1) u b}=C
$$

The differential of an arc is the hypothenuse of a right-angle triangle of which the base is $d x$ and the perpendicular $d y$.

$$
\text { If } z \text { is an arc, } d z=\sqrt{d x^{2}+d y^{2}} \quad z=\int \sqrt{d x^{2}+d y^{2}}
$$

## Quadrature of a plane figure.

The differential of the area of a plane surface is equal to the ordinate into the differential of the abscissa.

$$
d s=y d x
$$

To apply the principle enunciated in the last equation, in finding the area of any particular plane surface:
Find the value of $y$ in terins of $x$, from the equation of the bounding line: substitute this value in the differential equation, and theu integrate between the required limits of $x$.

Area of the parabola.-Find the area of any portion of the common parabola whose equation is

$$
y^{2}=2 p x ; \quad \text { whence } \quad y=\sqrt{2 p x}
$$

Substituting this value of $y$ in the differential equation $d s=y d x$ gives

$$
\begin{gathered}
\int d s=\int \sqrt{2 p x} d x=\sqrt{2 p} \int x^{\frac{1}{2}} d x=\frac{2 \sqrt{2 p}}{3} x^{\frac{3}{2}}+C ; \\
\\
\cdot \text { or, } \quad s=\frac{2 \sqrt{2 p x}}{3} \times x=\frac{2}{3} x y+C .
\end{gathered}
$$

If we estimate the area from the principal vertex, $x=0, y=0$ and $C=0$; and denoting the particular integral by $s^{\prime}, s^{\prime}=\frac{2}{3} x y$.
That is, the area of any portion of the parabola, estimated from the vertex, is equal to $2 / 3$ of the rectangle of the abscissa and ordinate of the extreme point. The curve is therefore quadrable.
Quadrature of surfaces of revolution. - The differential of a su:face of revolution is equal to the circumference of a circle perpendicular to the axis into the differential of the arc of the meridian curve.

$$
d s=2 \pi y \sqrt{d x^{2}+d y^{2}}
$$

in which $y$ is the radius of a circle of the bounding surface in a plane perpendicular to the axis of revolution, and $x$ is the abscissa, or distance of the plane from the origin of coördinate axes.
Therefore, to find the volume of any surface of revolution:
Find the value of $y$ and $d y$ from the equation of the meridian curve in terms of $x$ and $d x$, then substitute these values in the differential equation, and integrate between the proper limits of $x$.

By application of this rule we may find:
The curved surface of a cylinder equals the product of the circumference of the base into the altitude.
The convex surface of a cone equals the product of the circumference of the base into half the slant height.

The surface of a sphere is equal to the area of four great circles, or equal to the curved surface of the circumscribing cylinder.
Cubature of volumes of revolution.-A volume of revolution is a volume generated by the revolution of a plane figure about a fixed line called the axis.
If we denote the volume by $V, d V=\pi y^{2} d x$.
The area of a circle described by any ordinate $y$ is $\pi y^{2}$; hence the differential of a volume of revolution is equal to the area of a circle perpendicular to the axis into the differential of the axis.

The differential of a volume generated by the revolution of a plane figure glout the axis of $\boldsymbol{Y}$ is $\pi x^{2} d y$.

To find the value of $V$ for any given volume of revolution:
Find the value of $y^{2}$ in terms of $x$ from the equation of the meridian curve, substitute this value in the differential equation, and then integrate between the required limits of $x$.

By application of this rule we may find:
The volume of a cylinder is equal to the area of the base multiplied by the altitude.

The volume of a cone is equal to the area of the base into one third the altitnde.

The volume of a prolate spheroid and of an oblate spheroid (formed by the revolution of an ellipse around its transverse and its conjugate axis respectively) are each equal to two thirds of the circumscribing cylinder.

If the axes are equal, the spheroid becomes a sphere and its volume $=$ $\frac{2}{3} \pi R^{2} \times D=\frac{1}{6} \pi D^{3} ; R$ being radius and $D$ diameter.
The volume of a paraboloid is equal to half the cylinder having the same base and altitude.

The volume of a pyramid equals the area of the base multiplied by one third the altitude.

Second, third, etc., differentials.-The differential coefficient being a function of the independent variable, it may be differentiated, and we thus obtain the second differential coefficient:

$$
d\left(\frac{d u}{d x}\right)=\frac{d^{2} u}{d x} . \text { Dividing by } d x, \text { we have for the second differential coeffi. }
$$

cient $\frac{d^{2} u}{d x^{2}}$, which is read: second differential of $u$ divided by the square of the differential of $x$ (or $d x$ squared).
The third differential coefficient $\frac{d^{3} u}{d x^{3}}$ is read: third differential of $u$ divided by dx cubed.
The differentials of the different orders are obtained by multiplying the differential coefficients by the corresponding powers of $d x$; thus $\frac{d^{3} u}{d x^{3}} d x^{3}=$ third differential of $u$.
Sign of the first differential coefficient.-If we have a curve whose equation is $y=f x$, referred to rectangular coördinates, the curve will recede from the axis of $X$ when $\frac{d y}{d x}$ is positive, and approach the axis when it is negative, when the curve lies within the first angle of the coördinate axes. For all angles and every relation of $y$ and $x$ the curve will recede from the axis of $X$ when the ordinate and first differential coefficient have the same sign, and approach it when they laare different signs. If the tangent of the curve becomes parallel to the axis of $X$ at any point $\frac{d y}{d x}=0$. If the tangent becomes perpendicular to the axis of $X$ at any point $\frac{d y}{d . x}=\infty$.
Sion of the second difrerential coeffeient.-The second differentual coefficient has the same sign as the ordinate when the curve is convex toward the axis of abscisca and a coutrary sign when it is concave.
Maclaurin's Theorem. - For developing into a series any function of a single variable as $u=A+B x+C x^{2}+D x^{3}+E x^{4}$, etc., in which $A, B$,
$C$, etc., are independent of $x:$
$u=(u)_{x=0}+\left(\frac{d u}{d x}\right)_{x=0} x+\frac{1}{1.2}\left(\frac{d^{2} u}{d x^{2}}\right)_{x=0} x^{2}+\frac{1}{1 \cdot 2 \cdot 3}\left(\frac{d^{3} u}{d x^{3}}\right)_{x=0} x^{3}+\cdot$ etc.
In applying the formula, omit the expressions $x=0$, although the coefficients are always found under this hypothesis.
Examples:
$(a+x)^{m}=a^{m}+m a^{m-1} x+\frac{m}{1} \frac{(m-1)}{\mathscr{2}} a^{m-2} x^{2}$

$$
+\frac{m}{1} \frac{(m-1)}{2} \frac{(m-2)}{3} a^{m-3} x^{3}+\text { etc. }
$$

$\frac{1}{a+x}=\frac{1}{a}-\frac{x}{a^{2}}+\frac{x^{3}}{a^{3}}-\frac{x^{2}}{a^{4}}+\ldots \frac{x^{n}}{a^{n+1}}$, etc.
Taylor's Theorem.-For developing into a series any function of the sum or difference of two independent variables, as $u^{\prime}=f(x \pm y)$ :

$$
u^{\prime}=u+\frac{d u}{d x} y+\frac{d^{2} u}{d x^{2}} \frac{y^{2}}{1 \cdot 2}+\frac{d^{3} u}{d x^{3}} \frac{y^{3}}{1 \cdot 2 \cdot 3}+\text { etc. }
$$

in which $u$ is what $u$ becomes when $y=0, \frac{d u}{d x}$ is what $\frac{d u^{\prime}}{d x}$ becomes when $y=0$. etc.
Maxima and minima.-To find the maximum or minimum value of a function of a single variable:

1. Find the first differential coefficient of the function, place it equal to 0 , and determine the ronts of the equation.
2. Find the second differential coefficient. and substitute each real ront, in succession, for the variable in the second member of the equation. Each reot which gives a negative result will correspond to a maximum value of the function, and each which gives a positive result will correspond to a minimum value.
Example.-To find the value of $x$ which will render the function $y$ a maximum or minimum in the equation of the circle, $y^{2}+x^{2}=R^{2}$;

$$
\frac{d y}{d x}=-\frac{x}{y} ; \text { making }-\frac{x}{y}=0 \text { gives } x=0 .
$$

The second differential coefficient is: $\frac{d^{2} y}{d x^{2}}=-\frac{x^{2}+y^{2}}{y^{3}}$.
When $x=0, \because=R$; hence $\frac{d^{2} y}{d x^{2}}=-\frac{1}{R}$, which being negative, $y$ is a maximum for $R$ positive.
In applying the rule to practical examples we first find an expression for the runction which is to be made a maximum or minimum.
2. If in such expression a coustant quantity is found as a factor, it may be omitted in the operation; for the product will be a maximum or a minimum when the variable factor is a naxinum or a ninimum.
3. Any value of the indep ndent variable which renders a function a maximum or a minimum will ronder any power or root of that function * maximum or minimum; hence wo may square both members of an eo tion to free it of radicals before differentiating.

By these rules we may find:
The maximum rectanglo which can be inscribed in a triangle is one whose altitude is half the altitude of the triangle.

The altitude of the maximum cylinder which can be inscribed in a cone is one third the altitude of the cone.
The surface of a cylindrical vessel of a given volume, open at the top, is a minimum when the altitude equals half the diameter.

The altitude of a cylinder inscribed in a sphere when its convex surface is a maximım is $r \sqrt{\bar{z}} . r=$ radius.

The altitude of a cylinder inscribed in a sphere when the volume is a maximum is $2 r \div \sqrt{3}$.
(For nıaxima and ininima without the calculus see Appendix, p. 1070.)

## Differential of an exponential function.

$$
\begin{align*}
\text { If } u & =a^{x} .  \tag{1}\\
\text { then } d u & =d a^{x}=a^{x} k d x \tag{2}
\end{align*}
$$

in which $k$ is a constant dependent on $a$.

$$
\begin{equation*}
\text { The relation between } a \text { and } k \text { is } a^{\frac{1}{k}}=e \text {; whence } a=e^{k} \text {, } \tag{3}
\end{equation*}
$$

in which $e=2.7182818 \ldots$ the base of the Naperian. system of logarithms.
Logarithms.-The logarithms in the Naperian system are denoted by $l$, Nap. $\log$ or hyperbolic $\log$, hyp. $\log$, or $\log _{e}$; and in the common system always by log.

$$
\begin{equation*}
k=\text { Nap. } \log a, \quad \log a=k \log e \tag{4}
\end{equation*}
$$

The common logarithm of $e,=\log 2.8182818 \ldots=.4342945 \ldots$ is called the modulus of the cominon system, and is denoted by $M$. Hence, if we liave the Naperian logarithm of a number we can find the commou logarithm of the same number by multiplying by the modulus. Reciprocally, Nap. $\log =\mathrm{com} . \log \times 23025851$.

If in equation (4) we make $\alpha=10$, we have

$$
1=k \log e, \text { or } \frac{1}{k}=\log e=M
$$

That is, the modulus of the common system is equal to 1 , divided by the Naperiau logarithm of the common base.

From equation (2) we have

$$
\frac{d u}{u}=\frac{d a^{x}}{a^{x}}=k d x .
$$

If we make $\alpha=10$, the base of the common system, $x=\log u$, and

$$
d(\log u)=d x=\frac{d u}{u} \times \frac{1}{k}=\frac{d u}{u} \times M .
$$

That is, the differential of a common logarithm of a quantity is equal to the differential of the quantity divided by the quantity, into the modulus.
If we make $a=e$, the base of the Naperian system, $x$ becomes the Nape-
rian logarithm of $u$, and $k$ becomes 1 (see equation (3)); hence $M=1$, and

$$
d(\text { Nap. } \log u)=d x=\frac{d u}{a^{x}} ;=\frac{d u}{u} .
$$

That is, the differential of a Naperian logarithm of a quantity is equal to the differential of the quantity divided by the quantity; and in the Naperian system the modulus is 1 .

Since $k$ is the Naperian logarithm of $a, d u=a^{x} l a d x$. That is, the differential of a fuuction of the form $a^{x}$ is equal to the function, into the Naperian logarithm of the base $a$, into the differential of the exponent.

If we have a differential in a fractional furm, in which the numerator is the differential of the denominator, the integral is the Naperian logarithm of the denominator. Integrals of fractional differentials of other forms are given helow:

Differential forms which have known integrals; ex pomential functions. ( $l=$ Nap. $\log$.)

1. $\int a^{x} l a d x=a^{x}+C$;
2. 

$$
\int \frac{d x}{x}=\int d x x^{-1}=l x+C
$$

3. 

$$
\int\left(x y^{x-1} d y+y^{x} l y \times d x\right)=y^{x}+C
$$

4. 

$$
\int \frac{d x}{\sqrt{x^{2} \pm \alpha^{2}}}=l\left(x+\sqrt{\left.x^{2} \pm a^{2}\right)}+C\right.
$$

5. 

$$
\int \frac{d x}{\sqrt{x^{2} \pm 2 a x}}=l\left(x \pm a+\sqrt{x^{2} \pm 2 a x}\right)+c
$$

6. 

$$
\int \frac{2 a d x}{a^{2}-x^{2}}=l\left(\frac{a+x}{a-x}\right)+C
$$

7. 

$$
\int \frac{2 a d x}{x^{2}-a^{2}}=l\left(\frac{x-a}{x+a}\right)+C
$$

8. 

$$
\int \frac{2 a d x}{x \sqrt{a^{2}+x^{2}}}=l\left(\frac{\sqrt{a^{2}+x^{2}}-a}{\sqrt{a^{2}+x^{2}}+a}\right)+C
$$

9. 

$$
\int \frac{2 a d x}{x \sqrt{a^{2}-x^{2}}}=l\left(\frac{a-\sqrt{a^{2}-\overline{x^{2}}}}{a+\sqrt{a^{2}-x^{2}}}\right)+C
$$

10. 

$$
\int \frac{x^{-2} d x}{\sqrt{x+x^{-2}}}=-l\left(\frac{1+\sqrt{1+a^{2} x^{2}}}{x}\right)+C
$$

Circular functions. - Let $z$ denote an are in the first quadrant, $y$ its sine, $x$ its cosine, $v$ its versed sine, and $t$ its tangent; and the following notation be employed to designate an are by any one of its functions, viz.,

$$
\begin{aligned}
& \sin ^{-1} y \text { denotes an are of wlich } y \text { is the sine } \\
& \cos ^{-1} x \\
& \tan ^{-1} t
\end{aligned} \quad \text { " } x \text { is the cosine, }
$$

(read " arc whose sine is $y$," etc.),--we have the following differential forms which have known integrals ( $r=$ radius):

$$
\begin{aligned}
& \int \cos z d z=\sin z+C \\
& \int-\sin z d z=\cos z+C \\
& \int \frac{d y}{\sqrt{1-y^{2}}}=\sin ^{-1} y+C \\
& \int \frac{-d x}{\sqrt{1-x^{2}}}=\cos ^{-1} x+C \\
& \int \frac{d v}{\sqrt{2 v-v^{2}}}=\operatorname{ver}^{-} \sin ^{-1} v+C \\
& \int \frac{d t}{1+t^{2}}=\tan ^{-1} t+C \\
& \int \frac{r d y}{\sqrt{r^{2}-y^{2}}}=\sin ^{-1} y+C \\
& \int \frac{-r d x}{\sqrt{r^{2}-x^{2}}}=\cos ^{-1} x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin z d z=\operatorname{ver}-\sin z+C \\
& \int \frac{d z}{\cos ^{2} z}=\tan z+C \\
& \int \frac{v d v}{\sqrt{2 r v+v^{2}}}=\operatorname{ver}-\sin ^{-1} v+C \\
& \int \frac{r^{2} d t}{r^{2}+t^{2}}=\tan ^{-1} t+C \\
& \int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1} \frac{u}{a}+C \\
& \int \frac{-d u}{\sqrt{a^{2}-u^{2}}}=\cos ^{-1} \frac{u}{a}+C \\
& \int \frac{d u}{\sqrt{2 a u-u^{2}}}=\operatorname{ver}^{-2} \cdot \sin -1 \frac{u}{\alpha}+C \\
& \int \frac{a d u}{\alpha^{2}+u^{2}}=\tan -1 \frac{u}{a}+C
\end{aligned}
$$

The cycloid.-If a circle be rolled along a straight line, any point of the circumference, as $P$, will describe a curve which is called a cycloid. The circle is called the generating circle, and $P$ the generating point.

The transcendental equation of the cycloid is

$$
\begin{aligned}
& \qquad x=\operatorname{ver}-\sin -1 \frac{y}{v}-\sqrt{2 y-y^{2}}, \\
& \text { and the differential equation is } d x=\frac{y d x}{\sqrt{2 r y-y^{2}}} .
\end{aligned}
$$

The area of the cycloid is equal to three times the area of the generating circle.
The surface described by the arc of a cycloid when revolved about its base is equal to 64 thirds of the generating circle.
The volume of the solid generated by revolving a cycloid about its base is equal to five eighths of the circumscribing cylinder.

Integral calculus. - In the integral calculus we have to return from the differential to the function from which it was derived. A number of differential expressions are given above, each of which has a known integral corresponding to it, and which being differentiated, will produce the given differential.
In all classes of functions any differential expression may be integrated when it is reduced to one of the known forms; and the operations of the integral calculus consist mainly in making such transformations of given differential expressions as shall reduce them to equivalent ones whose integrals are known.
For methods of making these transformations reference must be made to the text-books on differential and integral calculus.

RECHPROCALS OF NUIBERS.

| No. | Reciprocal. | No. | Recipro cal. | No. | Recipro cal. | No. | Reciprocal. | No. | Recipro cal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.00000000 | 64 | . 01562500 | 127 | 00787402 | 190 | 6 | 253 |  |
|  | . 50000000 | 5 | . 01538461 | 8 | . 00781250 |  | . 00523560 | 4 | 003 |
| , | . 333333333 |  | . 01515151 | 9 | . 00 \% 75194 | 2 | . 00520833 |  | 003921 |
| 4 | . 85000000 |  | . 01492537 | 130 | . $000^{\prime} 69231$ | 3 | . 00518135 |  | 003906 |
| 5 | . 20000000 |  | . 01470588 |  | . 00763359 | 4 | . 00515464 |  | 003891 |
| 6 | . 16666660 | $\stackrel{8}{2}$ | . $014492 \% 5$ | 2 | .00757576 | 5 | . $0051: 820$ |  | 003 |
| \% | . 14285 i14 | 70 | .014285:1 | 3 | . 00751580 | 6 | .00510204 | 9 | .0038 |
| 8 | . 12500000 | 1 | . 01408451 | 4 | . $00 \% 146 \div 69$ |  | .00507614 | 260 | 003846 |
| 9 | . 11111111 |  | . 01388889 | 5 | . 00740741 | 8 | . 00505051 |  | 00:38:31 |
| 10 | . 10000000 | 3 | . 01369863 | 6 | . 00735894 | 9 | . 00502513 |  | $003816 \hat{i}$ |
| 11 | . 09090909 | 4 | . 01351351 |  | .0072992 | 200 | . 00500000 |  | 0038022 |
| 12 | .083333333 | 5 | .013333333 |  | . 00704638 |  | . 00497512 |  | 003\%'8i8 |
| 13 | . 07692308 | 6 | .01315789 | 9 | . 00719424 | 2 | . 00495049 |  | 0377358 |
| 14 | . $0711285 \%$ | 6 | .01298~01 | 140 | 00714286 | 3 | . 00492611 | 6 | 003759 |
| 15 | .0666666\% | 8 | . $0128: 051$ | , | . $00 \% 09220$ |  | . 00490196 |  | 003i4 453 |
| 16 | . 06350000 | 9 | . 01265823 | 2 | . 00704225 | 5 | . $0048{ }^{\prime} 805$ |  | 03 |
| 17 | . 05882353 | 80 | . 01250000 | 3 | .00699:301 | 6 | . 0048543 r | 9 | .00371r47 |
| 18 | . 055555556 | 1 | . $01: 334568$ | 4 | . 00694444 | 7 | . 00483092 | $2 \%$ | 00370370 |
| 19 | . 05263158 |  | 01219512 | 5 | . 0068965 | 8 | . 00480769 | 2 | )0369004 |
| 20 | . 05000000 | 3 | . 01204819 | 6 | . 00684931 | 9 | . 00478469 | 2 | 0036r64\% |
| 1 | . 04761905 | 4 | . 0119046 | 7 | .00680:72 | 210 | . 00476190 | 3 | 00366300 |
| 2 | . 0454545 | 5 | . 01176471 | 8 | . 00675676 | 11 | . $004 \% 3934$ |  | 00364963 |
| 3 | . 04347886 | 6 | . 01162791 | , | . 00671141 | 12 | . 00411698 |  | 0036363 |
| 4 | . 01166667 |  | . 01149 | 150 | . $0066666{ }^{7}$ | 13 | . 00469484 |  | 0036:319 |
| 5 | . 04000000 | 8 | . 0113636 |  | .00662252 | 14 | . $0046 \% 290$ |  | 00361011 |
| 6 | . 0384615 |  | . 01123595 | 2 | . 00657895 | 15 | . 00465116 | 8 | .003 |
| r | .03\%0370 | 90 | . 01111111 | 3 | . 0065359 | 16 | . 00462963 | 9 | 003588423 |
| 8 | .033714\%9 | , | . 01098901 | 4 | . 00649351 | 17 | . 00460829 | 280 | $0035 \% 143$ |
|  | .034482r6 | 2 | . 01086956 | 5 | . 00645161 | 18 | . 00458716 |  | 00355872 |
| 30 | . 0:3333:33: | , | . 01075069 | 6 | . 00641026 | 19 | . 00456621 | 2 | 00:354610 |
| 1 | . 03225806 | - | . 01 166:3830 | 7 | . 00636943 | 200 | . 00454545 | 3 | .003533:57 |
| $\stackrel{\sim}{3}$ | . 033125000 | 5 | . 01050238 | 8 | . 00683911 | 1 | . 00452489 | 4 | 00:352113 |
| 3 | . 03030303 | 6 | . 01041668 | 9 | . $006 \div 8931$ | , | . 00450450 | 5 | $003508 \%$ |
| 5 | . 0291116 | $\stackrel{7}{8}$ | . 01030928 | 160 | . 00625000 | 3 | . 00448430 | 6 | . 00349550 |
| 5 | . 02857143 | 9 | . $010 \div 0408$ | 1 | . 00621118 |  | . 00446429 |  | 0034843.3 |
| 6 | . $037 \% r 68$ | 9 | .01010101 |  | . $0061{ }^{1}$ | 5 | . 00444444 |  | 003472?2 |
| 8 | . 02702703 | 100 | . 01000000 | 3 | . $0061349 \%$ | 6 | 00442478 | 9 | 00316021 |
| 8 | . $026315 \% 9$ | 1 | . 00990099 | 4 | .00609\%56 |  | 00440529 | 290 | .00344828 |
| 9 | . 02564103 |  | .00980392 | 5 | . 00606061 | 8 | .00438596 | ~ | 00343643 |
| 40 | . $0 \cdot 5500000$ |  | .00970874 | 6 | . 00602410 | 9 | . 00436681 | 2 | 00:342466 |
| 1 | $.0 \geqslant 439024$ .02380952 | 4 | 00961538 | , | . 00598802 | 230 | . 004.31783 | 3 | 00341297 |
| 3 | .0238095: | 5 | 0095:381 | 8 | . 00595938 | 1 | . 00432900 | 4 | 00:340136 |
| 3 | .02325581 | 6 | 00943396 | r 9 | . $00591 \% 16$ | $\bigcirc$ | . 00431034 | 5 | 00338983 |
| 4 | .022727\% | $\stackrel{7}{8}$ | .003345\%9 | 170 | . 00588.335 | 3 | . 00429184 | 6 | 00337838 |
| 6 | .021 | 9 |  | 1 | . 000585 | 4 | .0042\%350 |  | . 00336600 |
| $?$ | . 02127660 | 110 | . 00909091 | 3 |  | 5 | .0042553. |  | 00335570 |
|  | .0208333:3 | 11 | . 00900901 |  |  |  | 00423\%29 |  | 00334448 |
| 9 | . 02040816 | 12 | . $0089 \% 88$ | 5 | 005142 ? | 8 | +20168 |  | 00333:333 |
| 50 | . 02000000 | 13 | . 00881959 | 6 | 0056818.3 | 9 | . 004184 i 0 | 4 | 00331126 |
| 1 | . 01960784 | 14 | . 00877193 | 7 | . 00504972 | 240 | . $0041666 \%$ | 3 | . 00330033 |
| 2 | .0192307\% | 15 | . 00860565 |  | .00561798 | 1 | . 00414938 |  | . $0032894 \%$ |
| 3 | .01886792 | 16 | . 00862069 | 9 | . 00.558659 | 2 | . 00413293 | 5 | .0032\%869 |
|  | . 01851852 | 17 | . 0085461 | 180 | . 00555550 | 3 | . 00411523 | 6 | .00326r9\% |
| 5 | . $0181818:$ | 18 | . 00817154 | 1 | . 00552486 | 4 | . 00409836 | 7 | .00325i33 |
| 6 | . 01785714 | 19 | . 00840336 | $\stackrel{\sim}{2}$ | . 00.549451 | 5 | .0010816:3 | 8 | . 00324675 |
| 7 | . 01754386 | 120 | . 008333333 | 3 | . 20516448 | 6 | . 00406504 | 9 | .00323625 |
| 8 | . 01724138 | 1 | . $008: 6446$ | 4 | . 0054.3478 | 7 | . 00404858 | 310 | .00322581 |
| 9 60 | . 01694915 |  | .008196\%\% | 5 | . 00510510 | 8 | . 00403226 | 11 | . 00321543 |
| 60 | . 01666667 | 3 | . 000813008 | 6 | .00537634 | 9 | . 00401606 | 12 | . 00320513 |
| $\stackrel{1}{2}$ | . 01639314 | 4 | .0080645:3 | 7 | .00534759 | 250 | . 00400000 | 13 | . 00319489 |
| ~ |  | 6 | . 00800000 | 8 | . 00531914 | 1 | . 00338106 | 14 | . $0033184{ }^{\circ} 1$ |
| 3 | . 0158730 2 | 6 | . 00 -93651 | 9 | $.005: 9100$ | 2 | . 00:3968\%5 | 15 | . 00317460 |


| No | Reciprocal. | N | Reciprocal. | No. | $\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$ | No. | Recipro- | No. | Reciprocal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 316 | .00316456 | 381 |  | 446 | . 00224215 | 511 | . 00195695 | 576 | 00173611 |
| 17 | . 00315457 | 2 | 00261\%80 |  | .002.23714 | 12 | . 00195312 |  | .001:3310 |
| 18 | . 00314465 |  | 00:61097 |  | 0022:3214 | 13 | . 00194932 |  | . 00173010 |
| 19 | . 00313480 | 4 | 00260411 | 9 | .0022\% 14 | 14 | 00194552 | 9 | 001 ¢2rid |
| 320 | . 00312500 | 5 | 00:59740 | 450 | . 00032222 | 15 | . 00194175 | 580 | . 00172414 |
| 1 | . 00311526 | 6 | 00259067 | , | . 00221729 | 16 | . 00193798 |  | . 00112117 |
| 2 | . 00310559 | 7 | . 00258398 |  | .002:21239 | $1 \hat{1}$ | . 00193424 |  | . 00171821 |
| 3 | . 00309597 | 8 | 0025 2732 | 3 | .00220751 | 18 | . 00193050 | 3 | . $001 \% 152 \%$ |
|  | . 00308642 | 9 | . $00255^{\circ} 069$ | 4 | .00 $\because 20 \div 64$ | 19 | .001926 ${ }^{\text {c }} 8$ | 4 | . 001 r1:33:3 |
|  | . $0030 \sim 692$ | 390 | .00256110 | 5 | .00:19\%80 | 5:0 | . 00192308 |  | . $001 \% 0940$ |
| ${ }^{6}$ | . 00306648 | 1 | . 00255754 | 6 | .00219:98 | , | 00191939 | 6 | . $001 \% 0648$ |
|  | . 00305810 | 2 | . 002 25 5102 |  | . 00218818 |  | $001915 \sim 1$ |  | . 00170358 |
|  | . $003048 \% 8$ | 3 | . 00254453 |  | . 00218341 |  | . 00191205 |  | . 00170068 |
| 9 | . 00303951 | 4 | .0025380 | 9 | . 00217865 |  | . 00190840 | 9 | . $001697 \% 9$ |
| 30 | . 00303030 | 5 | . 00:53165 | 460 | .00217391 | 5 | . $00190+186$ | 590 | . 00169491 |
| 1 | . 00332115 | 6 | .00:52525 |  | . 00216920 |  | . 00190114 |  | . 00169205 |
| $\stackrel{\sim}{3}$ | . 00301205 | ¢ | . 00251889 | 2 | . 00216450 |  | . 00189753 |  | . 00168919 |
| 3 | . 003300300 | 8 | . 00251256 | 3 | . 00215983 | 8 | . 00189394 |  | . 00168634 |
| 4 | . 00299401 | 9 | . $0025062 \sim$ | 4 | .00215.517 | 9 | . 00189036 |  | . 00168350 |
| 5 | . 00298507 | 400 | . 00250000 | 5 | . 00215054 | 530 | . 00188679 | 5 | . 00168067 |
| 6 | . 00297619 | 1 | . $002493 \%$ | 6 | . 00214592 |  | . $001883: 4$ |  | 00167785 |
|  | . 00296436 | 2 | . 00248756 |  | .00214133 | 2 | . 00187970 |  | . 0016 ¢504 |
|  | . 00295858 | 3 | . 00248139 | 8 | . 00:13675 | 3 | .0018\%61\% |  | . $01616 r^{2} 24$ |
|  | . 00234985 | 4 | . 00247525 | 9 | .00:13220 |  | . $0018{ }^{\text {r } 266}$ |  | . 00166945 |
| 0 | .00294118 | 5 | . 00246914 | 470 | . 00212766 | 5 | . 00186916 | 600 | . 00166667 |
|  | . 00293255 | 6 | .00246305 |  | .00312:314 | 6 | .0018656r |  | . 00166389 |
|  | .00:992398 | 7 | .00245700 | 2 | . 00211864 |  | .00186220 |  | . 00166113 |
| 3 | . 00291545 | 8 | . 00245098 | 3 | . 00211416 |  | . 00185874 |  | . 0016583 r |
|  | . 00290698 | 9 | . 00244499 | 4 | .00210970 |  | . 00185528 | 4 | 00165563 |
| 5 | . 00289855 | 410 | .00243902 | 5 | .00:10526 | 540 | . 00185185 | 5 | 00165289 |
|  | . 00289017 | 11 | . 00243309 | 6 | . 00210084 | 1 | C0184443 |  | . 00165016 |
|  | . 00288184 | 12 | . 00242718 | 7 | .00209614 | 2 | 00184502 |  | .00164i45 |
|  | . 00287356 | 13 | . 00242131 | 8 | .00209205 | 3 | 00184162 |  | . $001644 \pi 4$ |
|  | .00286533 | 14 | . 00241546 | - 9 | .00208768 |  | 001838:3 |  | . 00164204 |
| 350 | . 00285714 | 15 | 00240964 | 480 | .00:08333 |  | 00183486 | 610 | 00163934 |
|  | . 00288900 | 16 | . 00240385 | 1 | .0020 2900 |  | 00183150 | 11 | 00163666 |
| $\stackrel{2}{2}$ | . 00284091 | 17 | .00239808 | 2 | .0020í469 |  | 0018:815 | 12 | . 00163399 |
| 3 | .00283286 | 18 | . $00: 239234$ | 3 | 00207039 |  | 0018:48\% | 13 | . 00163132 |
|  | . 00282486 | 19 | .00238663 |  | . $00: 206612$ |  | 00189149 | 14 | 00162866 |
|  | .00281690 | 420 | . 00238095 | 5 | . $00 \div 06186$ | 550 | 00181818 | 15 | 00162602 |
| 6 | .00280899 | 1 | .002347530 | 6 | . 00205 T 61 | 1 | . 00181488 | 16 | 0016:338 |
|  | .00280112 | 2 | . $0023696 \uparrow$ |  | . 00205339 | 2 | . 00181159 | 17 | 00162075 |
| 8 | .002\%9330 | 3 | .00236407 | 8 | . 00:04918 |  | . 00180832 | 18 | 00161812 |
| 9 | .00: 88551 |  | .00235849 | 9 | .00:04499 |  | . 00180505 | 19 | . 00161551 |
| 360 | . 009 Trar 8 | 5 | .002352294 | 490 | . 00204082 | 5 | . 00180180 | 620 | . 00161290 |
| 1 | . 002 T 008 | 6 | . 00234742 | 1 | . $00: 03666$ |  | . 00179856 |  | . 00161031 |
| $\stackrel{2}{3}$ | . $002 \sim 6943$ | 7 | . $00 \because 34192$ | $\stackrel{2}{8}$ | .00203252 |  | .001 99533 |  | . 00160 Tra |
| 3 | . $00 \times 2548 \%$ | 8 | .00233645 | 3 | .0020:840 | 8 | . 00179211 | 3 | . 00160514 |
| 4 | . $002 \% 4 \sim 2{ }^{2}$ | 9 | .00233100 | 4 | .00:02429 | 9 | . 00178891 |  | . 00160256 |
|  | . $00 \times 739 \sim 3$ | 430 | . 002325258 | 5 | . 00202020 | 560 | . 00178571 | 5 | . 00160000 |
|  | . $002732{ }^{2} 4$ | 1 | .00233019 | 6 | . 00201613 | 1 | . $001 \% 8853$ |  | .00159744 |
| 8 | .10:Y2480 |  | . 00231481 | 7 | .0020120i |  | . $001 \% 9336$ |  | . 00159490 |
| 8 | .002\%1739 | 3 | .0023091' | 8 | .00:00803 | 3 | . $001 \% 620$ | 8 | 00159:36 |
| 0 | . 00211003 | 4 | . $002230+15$ | 9 | . 00200401 | 4 | . 00177305 | 9 | .00158382 |
| , | -00269542 |  |  | 500 | . 0020000 |  | . 00176091 | 630 | . 00158730 |
| 2 | . 00268817 |  | . 00228883 | 2 | . 00199203 |  | . 0017636 | $\stackrel{1}{2}$ | .00158228 |
| , | .00268096 | 8 | . 00928310 | 3 | . $0019880{ }^{\circ}$ | 8 | . 00116056 | 3 | 00157978 |
| 4 | .0026 6380 | 9 | .0022ri90 | 4 | . 00198413 | 9 | . 0017544 |  | 0015~T:9 |
| 5 | . 00266666 | 440 | . 0022 ar 3 | 5 | . 00198020 | 570 | . 00125439 |  | . 00157480 |
|  | .0026595~ | 1 | . $00 \pm 26 \%$ \%í | 6 | . 0019 97628 | 1 | . 00175131 |  | .00157233 |
| 7 | . 0026525 | 2 | . $00 \geqslant 26: 44$ |  | .00197239 | 2 | . 00174825 | 7 | . 00156986 |
| 9 | . 00264550 | 3 | .00225734 | 8 | . 00196850 | 3 | . 00174520 |  | . $00156 \% 40$ |
|  | .00263852 |  | . 00225225 |  | . $0019646+$ | 4 | . 00174216 | , | . 00156494 |
| 380 | .00263158 | 5 | .00224\%19 | 510 | . $001960 \sim 8$ | 5 | . 00173913 | 640 | . 00156250 |


| No． | Recipro－ cal． | No． | $\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$ | No． | Recipro－ cal． | No． | Reci；ro－ cal． | No． | Recipro－ cal． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 641 | ． 00156006 | 7 | 00141643 | 781 |  | 836 | ． 00119617 | 901 | ． 00110988 |
| $\bigcirc$ | ．00155，633 | 7 | ． 00141443 | 2 | ．00129534 | 8 | $001194 \sim 4$ | $\stackrel{1}{2}$ | 00110865 |
|  | ． $001555 \cdot 31$ | 8 | ． 00141243 | 3 | ． 00129366 | 8 | ．001193：32 | 3 | 00110 ¢ 4 |
| 4 | ． 00155279 | 9 | ． 00141044 | 4 | ．00129149 | 9 | ． 00119189 | 4 | ． 00110619 |
| 5 | ． 001550339 | 710 | ． 00140845 | 5 | ． 00129032 | 840 | ． 00119048 | 5 | ． 00110497 |
| 6 | ． 00154799 | 11 | ． 00140647 | 6 | ． 00128866 |  | ． 00118906 | 6 | ． 00110375 |
|  | ． 00154559 | 12 | ． 00140449 | $\pi$ | ．00128700 | 2 | ． 00118765 | 7 | ． 00110254 |
| 8 | ．001．243：1 | 13 | ． 00140252 | 8 | ． 00128535 | 3 | ． 00118624 | 8 | ．00110132 |
| 9 | ． 00154083 | 14 | ． 00140056 | 9 | ． $001283 \%$ | 4 | ． 00118483 | 9 | ． 00110011 |
| 0 | ． 00153846 | 15 | ．00139860 | \％80 | ． 00128205 | 5 | ． 00118343 | 910 | ． 00109890 |
| 1 | ． 00153610 | 16 | ．001：39665 | 1 | ． 00128041 | 6 | ． 00118203 | 11 | ． 00109769 |
|  | ． 00153334 | 17 | ． $001394 \%$ | ， | ．0012787\％ | $\underset{\sim}{ }$ | ． 00118064 | 12 | ． 00109649 |
|  | ． 0015.3140 | 18 | ． $001392 \% 6$ | 3 | ．00127\％14 |  | ． 00117924 | 13 | ．001095：9 |
| 4 | ． 00152905 | 19 | ． 00139082 | 4 | ．00127551 | 9 | ． $0011 \% 86$ | 14 | ． 00109409 |
| 5 | ． 00152672 | 720 | ． 00138889 |  | ． 00127388 | 830 | ． $0011764{ }^{\circ}$ | 15 | ． 00109290 |
|  | ． $00152+39$ | 1 | ．00138696 | 6 | ．0012～2：6 | 1 | ． 00117509 | 16 | ． $001091 \% 0$ |
| 7 | ．0015．2207 | 2 | ． 00138501 | \％ | ． 00127065 | 2 | ． 00117371 | 17 | ． 00109051 |
|  | ． 00151975 | 3 | ． 00138313 | 8 | ． 00126904 | 3 | 0011 2833 | 18 | 0010593： |
| 9 | ． 00151745 | 5 | ． 00138121 | 9 | ． 00126743 | 4 | 00117096 | 19 | ． 00108814 |
| 0 | ． 00151515 | 5 | ． 00137931 | 790 | ． 0012658 | 5 | ． 00116959 | 920 | ． 00105696 |
|  | ． $00151: 86$ | 6 | ． $0013 \sim 741$ | 1 | ． $0012642 \%$ | 6 | ．001168\％2 | T | ． 001085 ¢\％ |
| $\stackrel{2}{3}$ | ． 0015105 r | 7 | ． 00137552 | $\stackrel{2}{2}$ | ．00126263 | 7 | ． 00116686 | 2 | ． 00108460 |
| 3 | ． 00150830 | 8 | ． 00131363 | 3 | ． 00126103 | 8 | ． 00116550 | 2 | $0010834 \%$ |
| 4 | ． 00150602 | 9 | ． 00137174 | 4 | ． 00125945 | 9 | ． 00116414 | 4 | ． $00108 \times 25$ |
|  | ．001503：6 | 730 | ．00136986 |  | ． $00125 \% 86$ | 860 | ． $001162 \% 9$ | 5 | 00108108 |
|  | ． 00150150 |  | ．00136 999 | 6 | ． 00125628 | 1 | ． 00116144 | 6 | ．0010～991 |
|  | ．001499：5 | $\square$ | ．00136612 | 7 | ． 00125470 | $\stackrel{\square}{2}$ | ． 00116009 | 7 | ．0010\％85 |
|  |  | 3 | ． 00136426 | 8 | ． 00125313 | 3 | ． 00115875 |  | ．00107\％ |
|  | 析 | 5 | ． 00136240 | 9 | ． 00125156 |  | ． 00115741 | 9 | ．0010；64：3 |
| 1 |  | 5 | ． 00136054 | 800 | 00125000 | 5 | ． $0011560 \sim 1$ | 930 | ．001075：7 |
| 2 | ． 0 | 6 | ． 00135870 | 1 | 001：4844 | 6 | ． 00115473 | 1 | ．0010ヶ411 |
| ， | ． 0014858 | 8 | ． 00135501 | $\stackrel{\sim}{3}$ | ， | ¢ | 00115340 | 2 | ． 00101096 |
| 4 | ． 00148368 | 9 | ． 00135318 | 4 | 0012438 | 9 |  | 3 | 00107181 |
| 5 | ． 00148148 | 740 | ． 00135135 | 5 | ．00124こ24 | $8 \%$ | ． 00114942 | 5 | $0010605 \cdot$ |
| 6 | ． $001+7929$ | 1 | ． 00134953 | 6 | ． 00124069 | 1 | ．00114811 | 6 | $.00106953$ |
| 7 | ． $00147 \% 10$ | 2 | ．001347\％1 | $\bigcirc$ | ．0012：3916 | 2 | ． 001146.9 | 7 | $.00106 \approx 24$ |
| 8 | ． $0014 \pi 493$ | 3 | ． 00134589 |  | ．00123562 | 3 | ． 00114547 | 8 | 00106610 |
| 680 | ．00147275 | 4 | ． 00134409 | 9 | ．001－33609 | 4 | ． 00114416 | 9 | 00106496 |
| 680 | ． 00148059 | 5 | ． 00134228 | 810 | ． $001 \because 3457$ | 5 | ． 00114286 | 10 | $001063 \times 3$ |
| 1 2 2 | ． 00146843 | 6 | ． 00131048 | 11 | ． 00123305 | 6 | ． 00114155 |  | ．00106： 0 |
| $\stackrel{2}{3}$ | ． $001466 \div 8$ | 7 | ．00133869 | 12 | ．00123153 | $\square$ | ． 00114025 |  | ． 00106157 |
| 3 | ． 00146413 | 8 | ． 00133690 | 13 | ． $001 \sim 3001$ | 8 | ． 00113895 | 3 | 00106044 |
| 4 | ． 00146199 | 9 | ． 00133511 | 14 | ． 00122850 | 9 | ． 00113766 |  | 0010．9332 |
| 5 | ． 00145985 | 750 | ．00133333 | 15 | ． 00124699 | 880 | ． 00113636 | 5 | 00105820 |
| 6 | ． 00145183 | 1 | ． 00133156 | 16 | ． 00122549 | ， | $0011350{ }^{7}$ | 6 | ．00105\％08 |
| 8 | ． 00145560 | 2 | ． 00132979 | 17 | ． 00129399 | 2 | ． 001133 ¢9 |  | ． 00105597 |
| 8 | ． 00145349 | 3 | ． $0013 \geqslant 802$ | 18 | ．00122．49 | ， | ． 00113250 | 8 | 00105485 |
| 690 | ． 00145137 | 4 | ． 00132626 | 19 | ． 00122100 | 4 | ． 00113192 | － | 001053 ¢ 4 |
| 690 | ． 001449 | 5 | ． $\mathrm{C0132450}$ | 8：0 | ． $001: 1951$ | 5 | ． 00112994 | ． 950 | ． 00105263 |
| 1 2 2 | ． $00144 \% 18$ | 6 | ．00139275 | 1. | ． $001: 1803$ | 6 | ． $0011286{ }^{\circ}$ | 1 | ． 00105152 |
| $\stackrel{2}{3}$ | ． 00144509 | 7 | ． 00132100 | $\stackrel{9}{3}$ | ． 00121654 | 7 | ． $00112 \sim 240$ | $?$ | ． 001050 12 |
| 4 | ． 00144092 | 8 | － | 3 | ． $0012150 \%$ | 8 | ． 00112613 | 3 | ． 00104932 |
| 5 | ． 0014388.5 | \％60 | ．001315\％9 | 4 | ． 00 | 890 | 00112486 | 4 | ． 00104822 |
| 6 | ． 001436 \％ | 1 | ． 00131406 | 6 | ． 00121065 | 1 | 00112 | 5 | 00104712 |
| $\underset{\sim}{1}$ | ． $001434 \% 2$ | 2 | ． 00131234 | $r$ | ．001：0919 | 2 | ． 00112105 |  | 00104602 |
| 8 | ．00143：66 | 3 | ．001：31062 | 8 | ． $00120 \%{ }^{\text {a }}$ | 3 | ． 00111982 | 8 | 00104493 |
| 9 | ．0014：3061 | 4 | ．00130890 | 9 | ． 0012062 3 | 4 | ． 00111857 | 9 | 00104275 |
| 700 | ． $0014 * 857$ | 5 | ．00130719 | 830 | ． $001: 0482$ | 5 | ． 00111732 | 960 | ． $0010416^{\circ}$ |
| 2 | ． $0014 \geq 65.3$ | 6 | ． 00130548 | 1 | ． 00120337 | 6 | ． 00111607 | 1 | ． 00104058 |
| 2 | ． 00142450 | 7 | ．00130378 | $\stackrel{3}{3}$ | ． 00120192 | 9 | ． 00111483 | 2 | ． 00103950 |
| 4 | ．00142：4\％ | 8 | $.00130 \% 08$ .00130039 | 3 | ． $001 \approx 0048$ | 8 | ． 00111359 | 3 | ． 00103842 |
| 5 | ． 00141844 | 70 | ．001298\％ | 5 | ． $00119{ }^{\text {ra }} 60$ | 900 | ． 00111235 | 4 | 0103734 |


| No. | Recipr cal. | No. | Recip cal | . | Rec c | No. | Reciprocal. | No. | Recipro- cal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 00103520 | 1031 | 2 | 1096 |  | 1161 |  | 1226 |  |
| 7 | . 00103413 |  | 0096899 |  | . $00091157 \%$ |  | 5. |  | .000814996 |
| 8 | .00103306 | 3 | 00968054 | 8 | .000910\%47 | 3 | . 000859845 |  | 33: |
| 9 | . 00103199 | 4 | . 000967118 | 9 | . 000909918 | 4 | .000859106 |  | 13670 |
| 970 | .0010:3093 | 5 | 0966184 | 1100 | . 000909091 | 5 | . 000858369 | 30 | 813008 |
| 1 | . 00102987 | 6 | . 000965051 | 1 | . $000908 \% 65$ |  | . 00085 \%633 |  | 000812348 |
| 2 | . 00102881 | $\stackrel{7}{7}$ | . 000964320 | 2 | . $00090 \% 441$ | 7 | . 000856898 | 2 | . 000811688 |
| 3 | 00102~75 | 8 | . 000963391 | 3 | .000906618 | 8 | . 000856164 |  | .000811080 |
| 4 | . $0010 \div 669$ | 9 | . 000962464 | 4 | . 000905797 | 9 | . 000855432 |  | 0008103\%3 |
| 5 | $.00102564$ | 1040 | . 000961538 | 5 | . 000904977 | 1170 | . $000854 \% 01$ |  | 9717 |
| 6 | 00102459 | 1 | . 000960615 | 6 | . 000094159 |  | . 000853971 | 6 | . 000809061 |
| \% | . 00102354 | 2 | . 000959693 | 7 | . 000903342 | 2 | . $000853: 42$ |  | 000808407 |
| 8 | . 00103250 | 3 | . 0009 | 8 | . $0009025: 7$ | 3 | . 000852515 |  | 100802754 |
| 9 | . 00102145 | 4 | . 000957854 | 9 | . 000901713 |  | . 000851789 | 9 | . $00080710 \div$ |
|  | $.00102041$ | 5 | . 00095693 | 1110 | . 000900901 |  |  | 0 | 000806452 |
| 1 | . 00101937 | 6 | .00095602 | 11 | 000900090 |  | 340 |  | 000805802 |
| 2 | . 00101833 |  | . 000955110 | 12 | . 000899281 | 7 |  |  | . 000805153 |
| 3 | .00101:29 | S | . 000954198 | 13 | . 000898473 | 8 | . 000848896 |  | . 000804505 |
| 4 | . 00101626 | 9 | . 000953989 | 14 | . 000897666 | 9 | .000848176 |  | 000803858 |
| 5 | . $001015: 3$ | 1050 | .000952:381 | 15 | . 000896861 | 1180 | $.00084{ }^{2} 45 r$ |  | 000803:13 |
| 6 | . 00101420 | 1 | . 00095145 | 16 | . $00089605 \%$ |  | . 000846740 |  | .000802568 |
| 7 | . 00101317 | 2 | . 000950570 | 17 | . 000895255 | , | . 000846024 |  | $19: 5$ |
| $\delta$ | . 00101215 | 3 | . 000949668 | 18 | . 000894454 | 3 | . 000845308 |  | .000801282 |
| 9 | .00101112 |  | . 000948767 | 19 | . 000893655 | , | . 000844595 |  | 000800640 |
| , | . 00101010 | 5 | . 000947867 | 1120 | . 000892857 | 5 | 2 | 0 | . 000080000 |
| 1 | . 00100908 | 6 | . 000946970 |  | . 000892061 |  | .000843170 |  | . 000699360 |
| 2 | . 00100806 |  | . 000946074 | 2 | . 000891266 | 7 | . 000842460 |  | . 000798722 |
| 3 | . 00100705 | 8 | . 000945180 |  |  | . | . 000841751 |  | 000798085 |
| 4 | . 00100601 | 9 | . 00094428 r |  | 0889680 | 9 | . 000841043 |  | 000797448 |
| 5 | . 00100502 | 1060 | . 000943396 | 5 | 00888889 | 1190 | . 000840336 |  | 813 |
|  | . 00100402 |  | . $00094250{ }^{\circ}$ |  | 00888099 | I | . 0000839631 |  | 17 |
| \% | . 00100301 | 2 | . 000941620 |  | 00887311 | 2 | . 000838926 |  | 54 |
|  | . 00100200 | 3 | .000!4073 |  | . 000886525 | 3 | . 000838222 |  | . 000794913 |
|  | . 00100100 |  | 009:39850 | , | . 0000885740 |  | .000837521 |  | . 00079428 |
| 0 | . 00100000 | 5 | . 000938896i | 1130 | . 000884956 |  | . 000836820 | 1260 | 00079365 |
|  | . 000999001 | 6 | 000938086 | 1 | ,000884173 |  | . 000836120 |  | .000\%93021 |
| 2 | . 000998004 |  | .0009:37.207 |  | 000883392 | 7 | .000835422 |  | 000792393 |
| 3 | . 000997009 |  | . 000933633 |  | .00088:612 |  | .0008:34724 |  | 000791r66 |
|  | . 0009996016 |  | . 0009335454 |  | $.000881834$ |  | . 000834028 |  | .000791139 |
|  | . 000995025 | 1070 | .000934579 |  | , 000881057 | 1200 | 000833333 |  | 000\%90514 |
| 6 | . 000994036 | 1 | . 000933370 | 6 |  |  | . 0008582639 |  | 000:89889 |
| 1 | . 000933049 |  | 000933 |  | 008i9508 |  | . 000831947 |  | 000:8926 |
|  | . 000992063 | 3 | . 000931966 | 8 | 000878735 | 3 | .0008:31255 |  | $000 r 88643$ |
|  | . 000991080 |  | . 000931099 |  | .0008: 7963 |  | .000830565 |  | $000 \% 88022$ |
| 1010 | . 000990099 |  | . 00093023.3 | 1140 | . $0008 \% 7193$ | 5 | . 000889875 | 1270 | 000787402 |
| 11 | . 000989120 |  | 00929368 |  | . $0008{ }^{2} 6424$ | 6 | . 000889187 |  | $000 \% 86 i 82$ |
| 12 | . 000988142 |  | . 0000288505 |  | . 00088565 \% |  | . 000828500 |  | 000786163 |
| 13 | . 000987167 |  | . $00092 \% 644$ | 3 | . 0000874891 | , | . 000827815 |  | 000785546 |
| 14 | 000986193 | 9 | . 000926784 |  | 008r4 | 9 | .000827130 |  | $0007849: 9$ |
| 35 | . 000985222 | 1080 | . 000925926 |  | 00873362 | 1210 | .000826446 |  | 000784314 |
| 16 | . 0009 |  | . 000925059 |  | . 000872600 | 11 | .0008:5764 |  | 000r8.699 |
| $1 \%$ | .000983:84 |  | . $000924 \div 14$ |  | . 000871840 | 12 | . 000825082 |  | 00078308 |
| 18 | .000982318 | 3 | . $00092: 3361$ | 8 | . 0008771080 | 13 | . 0000824402 |  | . $000 \% 884 \%$ |
| 19 | . 000981354 |  | . 000922.09 |  | .000870322 | 14 | .000823~23 |  | . $000 \% 81861$ |
| 1020 | .000980392 |  | . 000921659 | 1150 | . 000869565 | 15 | . 000823045 | 1280 | .000781250 |
|  | . 000979432 |  | . 000920810 |  | .000868810 | 16 | . 000822368 |  | 000780640 |
| 2 | 0009:8474 |  | . 00091996 |  | . 000868056 | 17 | . 000081693 | 2 | . $000 \% 80031$ |
| 3 | .0009\%751\% | 8 | . 000919118 | 3 | . 0008678303 | 18 | . 0000821018 |  | $000 \% 942$ |
|  | . 000966562 | 1000 | 000918274 |  | . 000866551 | 19 | . $0008 \% 0344$ |  | 000\%r8816 |
|  | .0009ヶ5610 | 1090 | . 000917431 |  | . 000865801 | 1220 | . 0000819672 |  | 000~ 8210 |
|  | . $0009 \% 4659$ |  | . 000916590 |  | . 00086505 |  | . 000819001 |  | 0007\%r605 |
| 7 | . $00009 \% 3 \% 10$ |  | . 0000915751 |  | . 00086430 |  | . 000818331 |  | 0007\%r00t |
|  | . $000972 \sim 63$ |  | . 000914913 |  | . 000863358 |  | 000817661 |  | 000\% $639 \%$ |
|  | . 000971817 |  | . 00091407 |  | . 000868813 |  | . 000816993 |  | . $0000 \sim 75795$ |
| 030 | .0009708 ${ }^{\text {r }}$ |  | . 0009132 | 1160 | . 0008620 |  | 0008163 |  | $000 \% r 519$ |


| No． | Recipro－ cal． | No． | $\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$ | No | Recipro－ cal． | No． | Recipro－ cal． | No． | $\begin{aligned} & \text { Recipro- } \\ & \text { cal. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1291 | ． 00 | 1356 |  | 1421 | 000703730 | 1486 | ．0006：2948 | 1551 | ． 000644745 |
|  | ． 000773994 |  | 000т3：369：0 |  | 000ヶ03235 |  | ．0006 2495 |  | ． 000644330 |
|  | ． 000773395 |  | 0007363\％ |  | 000\％02711 | 8 | ．000672043 | 3 | ．000643915 |
|  | ． 0007 72797 |  | 000735835 |  | ． 000702247 | 9 | 0006ヶ1592 |  | ． $0006+3501$ |
|  | ．000772：01 | 1360 | $000735 \cdot 394$ |  | ． $000 \div 01754$ | 1490 | 000671141 |  | ． 00064308 ir |
|  | ．000771605 |  | ． 00073 5754 |  | 000ヶ01262 |  | ．0006～0691 |  | 00064：673 |
|  | ．000771010 |  | 000734214 |  | 000¢00т71 | 2 | ． 000670241 |  | ．000642261 |
|  | ．000770416 |  | 0007336\％ 6 |  | 000：00280 | 3 | ． 000669792 |  | 000641848 |
|  | 000\％69823 |  | ．000；33138 |  | 000699790 |  | 000669314 | 9 | $0006+1437$ |
| 00 | ． $000 \% 69: 31$ |  | ．00073 3601 | 1430 | 000699301 | 5 | ． 000668896 | 1560 | ．0006410：2 |
|  | ．000768639 |  | 000732064 |  | 000698812 | 6 | ． 000668449 |  | ． 000640615 |
|  | ．000ヶ68049 |  | ．000\％31529 |  | 0006983：4 | 7 | ．000668003 |  | ．000640：05 |
|  | 000\％67459 |  | 000730994 | $3$ | 00069i83i | 8 | ． 000667557 | 3 | 000689795 |
|  | 000\％66871 | 9 | 000¢ 30460 |  | 000697350 | 9 | ．00066ar111 |  | ． 0006339386 |
|  | 000766283 | 1370 | 0007：99：7 |  | 000696864 | 1500 | ．000666667 |  | 000638978 |
|  | 000i65697 |  | ．000i：93935 |  | 000696359 |  | ． 000666223 |  | $0006385: 0$ |
|  | ．000i65 111 |  | 000¢28863 |  | 000695894 | 2 | ． 000665779 |  | 000638162 |
|  | 000\％64526 |  | 000 2 2833\％ | 8 | 000695410 |  | ． 000665336 |  | 0006：37555 |
| 9 | ．000763942 |  | 000ヶ27802 | 9 | ． $0006949 \%$ 亿 | 4 | ． 0000664894 |  | 060637319 |
| 10 | ．000763359 |  | 0007 \％\％ざ3 | 1440 | 00069444 | 5 | ． 000664452 | $15 \%$ | ． 000636913 |
| 11 | ． 000062766 | 6 | 000726 44 |  | 000693962 | 6 | ． 000664011 |  | ． $00063653{ }^{\text {a }}$ |
| 12 | ．000762195 |  | 000726216 |  | ． 000693481 |  | ． $00066355^{\circ}$ |  | ．000636132 |
| 13 | 000\％61615 |  | ．000725689 | 3 | 000693001 | 8 | ． 000663130 |  | 000635\％：8 |
| 14 | ． 000761035 | 9 | 000725163 |  | 00069：2521 |  | ．00066：691 |  | ． $0006353 \% 4$ |
| 15 | 000760456 | 1380 | 000721638 | 5 | ． 000692041 | 1510 | ． $00066: 252$ |  | 000634921 |
| 16 | 000759878 |  | ． 000724113 | 6 | ． 000691563 | 11. | ． 000661813 |  | ． 000634518 |
| 17 | ．000\％59301 |  | ．000te3s59 |  | ．000691085 | 12 | ． $0006613{ }^{\text {a }} 6$ |  | ． 000634115 |
| 18 | 000ヶ58925 | 3 | ． 0007233066 | 8 | 000690608 | 13 | ．000660939 |  | 000633714 |
| 19 | 000758150 |  | ．00072：35 43 | 9 | ． 000690131 | 14 | ． 000660502 | 9 | ． 000633312 |
| 13：0 | 000\％57576 |  | 000i2202 | 1450 | ． 000689655 | 15 | ． 000680066 | 1580 | ． 0006339911 |
|  | 000757002 |  | ． 000721501 |  | 000689180 | 16 | ． 000659631 |  | ． 000638511 |
|  | ． $000456+30$ |  | ．000\％ 20380 | 2 | ．000688705 |  | ． 000659196 |  | 000632111 |
|  | ． 000755858 |  | ．000720461 | 3 | 000688：31 | 18 | ． $000658 \% 61$ |  | ．000631712 |
|  | ．000755：28i |  | ．000719942 | 4 | ． 00068 ¢ 558 | 19 | ． $0006583 \geqslant 8$ |  | ． 000631313 |
|  | 000 T54717 | 1390 | 000i194：4 | 5 | ． 000681285 | 15：0 | ． 00065 \％ 895 |  | ． 000630915 |
|  | ． 000754148 |  | 000718907 | 6 | ． 000686813 |  | ． 000657462 | 6 | ． 000630517 |
|  | ． 000753559 | $\stackrel{2}{2}$ | 000718391. |  | 000686341 |  | ． 000657030 |  | ． 000630120 |
|  | 000753012 |  | ．000717875 |  | 000685871 |  | ． 000656598 |  | ．0006：9723 |
|  | 000752145 |  | ． $000 \sim 17360$ |  | ． 000685401 |  | ． 000656168 |  | ． 000629327 |
| 30 | 000：51880 | 5 | ．000\％16846 | 1460 | ．000684933 | 5 | ． $000655 \uparrow 38$ | 1590 | 0006：8931 |
|  | ． 000051315 |  | ．000：16332 | 1 | ． 000684463 |  | ． 000655308 |  | ． 0006288536 |
|  | 000云0年50 |  | ． $0007158: 3$ | 2 | ．000683994 |  | ． 000654879 |  | ． 000628141 |
| 3 | ． 000 T5018 |  | ． 000 \％ 15308 | 3 | ．00068352\％ |  | ． 000654450 | 3 | ． 000627746 |
|  | ． 000 ¢ 49005 |  | ． 000714796 | 4 | ． 000683060 |  | ． $0006540 \% 2$ |  | ． $0006: 7353$ |
|  | ． 000749044 | 1400 | ． 000714286 | 5 | ．00068：594 | 1530 | ．000653595 |  | ． 000626959 |
|  | 000\％48503 |  | 000713766 | 6 | ． 000682128 |  | ． 000653168 | 6 | ． 000626566 |
|  | 000747913 | $\stackrel{2}{2}$ | 00071326 | 7 | ． 000681663 | $2$ | ．000652\％42 |  | ． $0006 \cdot 2174$ |
|  | ．000747384 |  | 000712 T 58 | 8 | ．000681199 |  | ． 000652316 |  | ． $000625 \% 82$ |
|  | 000746826 |  | $000712 \sim 51$ |  | ． 0006680735 |  | ． 000651890 |  | ． $0006 \times 5391$ |
| 40 | $000746 \div 69$ |  | 000\％ 11 ¢̃4 | $14 \% 0$ | ． $0006802 \%$ | 5 | ． 000651466 | 1600 | ．000625000 |
| 1 | 000745712 |  | 000711238 | 1 | ． 0006 c 9810 | $6$ | ． 000651042 | 2 | ． $0006 \geqslant 4219$ |
|  | 000745156 |  | 000710732 | 2 | ．000679348 |  | ． 000650618 |  | ． 000623441 |
| 3 | ．000～44602 |  | ．000710227 |  | ．0006：8887 | 8 | ． 000650195 | 6 | ． 000692665 |
| 4 | 000744048 |  | ． $000 \% 09 \mathrm{~T} 23$ | 4 | ． 000678426 | 9 | ． 000649773 | 8 | ． 000621890 |
|  | 000743494 | 1410 | ．000709\％20 | 5 | ． 000 cin 966 | 1540 | ． 000649351 | 1610 | ． $0006: 1118$ |
| ${ }_{7}^{6}$ | 000742942 |  | ． $000008{ }^{\text {a }} 1 \sim 11$ | 6 | ． $00066750{ }^{\text {a }}$ |  | ． 000648929 | 2 | ． 000620347 |
| 8 | 000\％42390 | 12 | ． $000 \sim 08315$ |  | ． 000677048 | 2 | ． 000648508 |  | ． 0206195 \％ 8 |
| 8 | 000741840 | 13 | ． 0000070714 | 8 | ．0006：6590 | $3$ | ． 000648088 |  | ． 000618812 |
|  | 000741290 | 14 | ． 000 ก07214 |  | .000676132 | $4$ | ． 000647668 |  | ． 000618042 |
| 1350 | 000\％ 40 ¢ 41 | 15 | ． $000706 \% 14$ | 1480 | $0006 \% 56 \%$ | 5 | ． 000647249 | 1620 | ． 000617284 |
| 1 | 000740192 | 16 | $000 \pi 06215$ | 1 | ． 00 ก6\％5219 | 6 | ． 000646830 | 2 | ． 000616523 |
|  | 000739645 |  | ． $000 \% 05 \% 16$ |  | $.0006{ }^{*} 4^{\sim} 64$ |  | ． 000646412 |  | 000615：63 |
|  | 000739098 |  | ．000705：19 | 3 | ．000674309 | 8 | ． 000645995 | 6 | ． 000615006 |
|  | 0007385\％2 | 19 | ． 00070472 | 4 | ．0006i3854 | 9 | ． $0006455 \% 8$ | 8 | ． $00061+250$ |
|  | 00073 |  | ． $000 \% 01225$ |  | 006\％34 | 1550 | 000615161 |  | 7 |


| No | Reciprocal. | No. | Reciprocal. | No. | Recipro- cal. | No. | $\begin{gathered} \text { Recipro- } \\ \text { cal. } \end{gathered}$ | No. | Reciprocal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | . 00061 | 1706 | 000586166 | 1780 |  | 1854 | 000539374 | 19:8 |  |
|  | 000611995 |  | 000585480 |  | 000561167 |  | 000538793 | 1930 | 000518135 |
|  | 000611247 | 1710 | $000584 \% 95$ |  | 000560538 |  | 000538:13 |  | 000517599 |
|  | 000610500 |  | 000584112 |  | .000559910 | 1860 | 000537634 |  | 000517063 |
| 40 | 000609756 | 14 | . 000583430 |  | . $000559: 384$ |  | 00053 r 0 r |  | 000516528 |
|  | .000609013 | 16 | . 000582750 | 1790 | 000558659 |  | 0005.36480 |  | 000515996 |
|  | 0006082\%2 | 18 | .0005820\%2 |  | 000555035 |  | 000535905 | 1940 | 0005154 |
|  | 060i5 | 2 | .000581395 |  | . $00055 \% 413$ |  | 000535332 |  | 000514933 |
| 8 | 0006067 |  | 000580720 |  | 0005026793 | $18 \%$ | 000534759 |  | 000514403 |
| 1650 | . 000606061 |  | . 000550046 |  | 000556174 |  | . 000534188 |  | . 0005138 |
| 2 | $000 \div 05327$ |  | .000579354 | 1800 | 000555556 |  | .000533618 |  | . 00051334 |
|  | 000604595 |  | 000578704 | 2 | 000554939 |  | . 000533349 | 1950 | . 000512820 |
|  | 000603865 | 1730 | 0005 T8035 |  | . $0005543: 4$ |  | . 000533481 |  | 000512295 |
|  | 000603136 |  | . 000574367 |  | .000553\%10 | 1880 | .000531915 |  | 0005117 |
| 1660 | 00060:210 |  | 000576r01 |  | .000553097 |  | . 000531350 |  | 00051124 |
|  | 000601685 |  | $0005 \% 6037$ | 1810 | 000552486 |  | .000530\%85 |  | 000510:2 |
|  | $00160096{ }^{2}$ |  | . 000575374 | 12 | . $0005518{ }^{\text {a }} 6$ |  | .000:30222 | 1 160 | 000510:24 |
|  | 000600240 | 1740 | 000574713 | 14 | 000551268 | 8 | $0005 \sim 9661$ |  | 00050968 |
|  | $0005995: 0$ |  | . 000554053 | 16 | 000550661 | 1890 | .000529100 |  | 000509165 |
| $16 \%$ | 000598803 |  | . 000543394 | 18 | 000550055 |  | . 000528541 |  | . 00050864 |
|  | 000598086 |  | .000.572737 | 1820 | 000549451 |  | .00052r983 |  | . 000508130 |
|  | 000597.371 |  | $00057208 \% 2$ |  | 000548818 |  | 000597426 | 1970 | 0005076 |
|  | 000596658 | 1750 | 000571429 |  | $000548: 26$ |  | 000526870 |  | 005 |
|  | 000595948 |  | 000570776 | 6 | 000547645 | 1900 | 000526316 |  | - |
| 1630 | 000595238 |  | .0005012 |  | 000547046 |  | . 000595762 |  | 0005 |
| 2 | 000594530 |  | 0005694i6 | 1830 | . 000546448 |  | . 000:25:210 | 8 | 000505561 |
|  | 0005938:4 |  | .0005688:8 | 2 | 000545851 |  | . 000524659 | 1980 | . 000505051 |
|  | 00059:3120 | 1760 | 000568182 | 4 | 000-45855 |  | . 000524109 |  | . 000504541 |
|  | 000592417 | 2 | 00056:53i | 6 | 000544662 | 1910 | 000523560 |  | 00050403 |
| 90 | 000591716 |  | 000566893 |  | 000544069 | 12 | .000523012 |  | . 000503524 |
|  | 000591017 | ${ }_{8}^{6}$ | $.000566: 51$ | 1840 | $0005+3+78$ | 14 | .000522466 |  | 000503018 |
|  | 000590319 |  | . 000565611 |  | 000542888 | 16 | 000521920 | 1990 | 00050251 |
|  | 000589692 | $17 \%$ | . 000564972 |  | .000542:99 | 18 | 000521376 |  | . 00050200 |
|  | 000588928 |  | . 0005643334 |  | $000541 \% 11$ | 19:0 | .000520833 |  | 000501504 |
| 00 | 000588:335 |  | . 0005656398 |  | 000541125 |  | .000520291 |  | .00050100 |
|  | $00058 \% 54$ |  | . 000563063 | 1850 | 000540540 |  | . 000519750 |  | .0003 |
|  | 00058 |  | 000562430 | 2 | 0005399 |  | 19211 |  |  |

Use of reciprocals.-Reciprocals may be conveniently used to facilitate computations in long division. Instrad of dividing as usnal, multiply the divideud by the reciprocal of the divisor. The method is especially useful when many different dividends are required to be divided by the same divisor. In this case find the reciprocal of the divisor, and make a small table of its multiples up to 9 times, and use this as a multiplicationtable instead of actually performing the multiplication in each case.

Example.-9871 and several other numbers are to be divided by 1638. The reciprocal of 1638 is .000610500 .
Multiples of the
reciprocal:

1. . 0006105
2. . $001: 210$
3. . $0018: 315$
4. . 0024420
5. .0030525
6. .0036630
7. . 0042735
8. . 0048840
9. . 0054945
10. . 0061050

The table of multiples is made by continuous addition of 6105 . The tenth line is written to check the accuracy of the addition, but it is not afterwards used.

Operation:
Dividend $98 \pi 1$
Take from table 1........
0006105
0.0427 .35
$\begin{array}{ccc}8 . & . . . . & 00.48840 \\ 9 . . . . . . & 000.4945\end{array}$

## Quotient ........ 6.0262455 <br> Correct quotient by direct divisiou <br> 6.0262515

The result will generally be correct to as many fignres as there are significant figures in the reciprocal, less one, and the error of the next figure will in general not exceed one. In the above example the reciprocal has six sig. nificant figures, $6: 10500$, and the result is correct to five places of figures.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMEERS FHOMI . 1 TO 1600.

| No. | Square. | Cube. | Sq. Root. | Cube Root. |  | Square. | Cube. | Sq. Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 1 | . 01 | . 001 | . 3162 | . 4642 | 3.1 | 2. 61 | $29 . \% 91$ | 1.761 | 1.458 |
| . 15 | . 0225 | . 0038 | . 3873 | . $5: 313$ | . 2 | 10.24 | 32.768 | 1.789 | 1.474 |
| . 2 | . 04 | 008 | . 4472 | . 5848 | . 3 | 10.89 | 35.937 | 1.817 | 1.489 |
| . 25 | .06:25 | 0156 | . 500 | . 6300 | .4 | 11.56 | 39.304 | 1.844 | 1.504 |
| . 3 | . 09 | 027 | . 5477 | . 6694 | . 5 | 12.25 | $42.8 \%$ | 1.871 | 1.518 |
| . 35 | . 1225 | 0429 | . 5916 | \%04\% | . 6 | 12.96 | 46.656 | 1.897 | 1.533 |
| . 4 | . 16 | 064 | .6395 | . 7368 | . $\%$ | 13.69 | 50.653 | 1.924 | $1.54{ }^{\text {r }}$ |
| . 45 | .20\%5 | . 0911 | . 6708 | . 7663 | . 8 | 14.44 | 54.87 | 1.949 | 1.560 |
| . 5 | . 25 | 125 | . 7071 | . 7937 | . 9 | 15.21 | 59.319 | 1.975 | 1.574 |
| . 55 | . 3025 | . 1664 | . 7416 | . 8193 |  | 16. | 64. |  | $1.58{ }^{4} 4$ |
| . 6 | . 36 | 216 | . 7146 | . 8434 | 1 | 16.81 | 68.921 | 2.025 | 1.601 |
| . 65 | . 4225 | . 2746 | . $806{ }^{2}$ | . 8662 | . 2 | 17.64 | 74.088 | 2.049 | 1.613 |
| . 7 | . 49 | . 343 | . 83367 | . 8879 | . 3 | 18.49 | 79.507 | 2.074 | 1.6:6 |
| . 8 | . 6625 | . 4219 | . 86660 | . 9086 | . 4 | 19.36 | 85.184 | 2.098 | 1.639 |
| . 8 | . 64 | . 512 | . 8944 | . 9288 | . 5 | 20.25 | 91.125 | 2.121 | 1.651 |
| . 85 | . 7828 | . 6141 | . 9219 | . 9473 | . 6 | 21.16 | 97.336 | 2.145 | 1.663 |
| . 9 | . 81 | . 229 | . 9487 | . 9655 | . 7 | 23.09 | 103.8 .23 | 2.168 | 1.6\% |
| . 95 | . 9025 | . 8574 | . 9747 | . 9830 | . 8 | 23.04 | 110.592 | 2.191 | 1.687 |
| , |  |  | 1. |  | 9 | 24.01 | 117.649 | 2.214 | 1.698 |
| 1.05 | 1.1025 | 1.158 | 1.025 | 1.016 | 5. | 25. | 125. | 2.2361 | 1.7100 |
| 1.1 | 1.21 | 1.331 | 1.049 | 1.032 | . 1 | 26.01 | 132.651 | 2.258 | 1.721 |
| 1.15 | 1.3225 | 1.521 | 1.0\%: | 1.048 | . 2 | 27.04 | 140.608 | 2.280 | 1.732 |
| 1.2 | 1.44 | 1. ${ }^{\text {r28 }}$ | 1.095 | 1.063 | . 3 | 28.09 | 148.9\%7 | 2.302 | 1.744 |
| 1.25 | 1.5625 | 1.953 | 1.118 | 1.077 | . 4 | 29.16 | 157.464 | 2.324 | 1.754 |
| 1.3 | 1.69 | 2.197 | 1.140 | 1.091 | . 5 | 30.25 | 166.375 | 2.345 | 1.665 |
| 1.35 | 1.8225 | 2.460 | 1.162 | 1.105 | . 6 | 31.36 | 175.616 | 2.366 | 1.176 |
| 1.4 | 1.96 | 2.644 | 1.183 | 1.119 | \% | 32.49 | 185.193 | $2.35 \%$ | 1.786 |
| 1.45 | 2.1025 | 3.049 | 1.204 | 1.132 | . 8 | 33.64 | 195.112 | 2.408 | 1.797 |
| 1.5 | 2.25 | 3.375 | 1.2247 | 1.1447 | . 9 | 34.81 | $205.3 \tilde{9}$ | 2.429 | 1.807 |
| 1.55 | 2.4025 | 3.724 | 1.245 | 1.157 | 6. | 36. | 216. | 2.4495 | 1.81\%1 |
| 1.6 | 2.56 | 4.096 | 1.265 | $1.1 \% 0$ | . 1 | 37.21 | 226.981 | $2.4 \% 0$ | 1.82\% |
| 1.65 | 2.7225 | 4.49: | 1.285 | 1.18? | 2 | 38.44 | 238.328 | 2.490 | 1.88\% |
| $1 . \tilde{1}$ | 2.89 | 4.913 | 1.304 | 1.193 | . 3 | 39.69 | 250.047 | 2.510 | 1.847 |
| 1.75 | 3.0625 | 5.359 | 1.323 | 1. 205 | . 4 | 40.96 | 262.144 | 2.530 | 1.857 |
| 1.8 | 3.24 | 5.832 | 1.342 | 1.216 | . 5 | 42.25 | 2\%4.625 | 2.550 | 1.866 |
| 1.85 | 3.4225 | 6.332 | 1.360 | 1.228 | . 6 | 43.56 | 287.496 | 2.569 | 1.876 |
| 1.9 | 3.61 | 6.859 | 1.378 | 1.239 | . $\%$ | 4489 | 300.763 | 2.588 | 1.885 |
| 1.95 | 3.8025 | 7.415 | 1.396 | 1.249 | . 8 | 46.24 | 314.432 | 2.608 | 1.895 |
| 2. | 4. |  | 1.4142 | 1.2599 | 9 | 4761 | 328.509 | 2.62' | 1.904 |
| . 1 | 4.41 | 9.261 | 1.449 | 1.281 | \% | 49. | 343. | 2.6458 | 1.9129 |
| . 2 | 4.84 | 10.648 | 1.483 | 1.301 | . 1 | 50.41 | 85\%. 911 | 2.665 | 1.922 |
| . 3 | 5.29 | 12.167 | 1.517 | 1.3:0 | . 2 | 51.84 | 373.248 | 2.683 | 1.931 |
| . 4 | 5.76 | 13.824 | 1.549 | 1.339 | . 3 | 53.29 | 389.017 | 2.702 | 1.940 |
| . 5 | 6.25 | $15.6 \% 5$ | 1.581 | 1.357 | . 4 | 54.76 | 405.224 | 2.720 | 1.949 |
| . 6 | 6.76 | 17.576 | 1.612 | 1.375 | . 5 | 56.25 | $421.8 \%$ | 2.739 | 1.957 |
| . 7 | 7.29 | 19.683 | 1.643 | 1.392 | . 6 | 57.76 | 438.976 | 2.757 | 1.966 |
| . 8 | 7.84 | 21.952 | 1.673 | 1.409 | . 7 | 59.29 | 456.533 | 2.775 | 1.975 |
| . 9 | 8.41 | 24.389 | 1. 003 | 1.4:6 | . 8 | 60.84 | $474.55]$ | 2793 | 1.983 |
| 3. | 9. | 27. | 1.7321 | 1.44:2 | . 9 | 62.41 | 493.039 | 2.811 | 1.992 |


| No. | Square. | Cube. | Sq. Root. | Cube <br> Root. | No. | Square. | Cube. | Sq. Root. | Cube <br> Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8. | 64. | 512. | 2.8284 |  | 45 | 2025 | 91125 | 6.7082 | 3. 5569 |
| . 1 | 65.61 | 531.441 | $\therefore .846$ | 2008 | 46 | 2116 | 97336 | 6.7823 | 3.5830 |
| . 2 | 67.24 | 5.51 .368 | 2.864 | 2.017 | 47 | 2:209 | 103523 | 6.855 ก | 3.6088 |
| . 3 | 68.89 | $5 \% 1.78 \%$ | 2.881 | : 0:25 | 48 | 2304 | 110592 | 6.9282 | 3.6342 |
| . 4 | \% 0.56 | 592.704 | 2.898 | 2.033 | 49 | 2401 | 117649 |  | 3.6593 |
| . 5 | 72.25 | 614.125 | 2.915 | 2.041 | 50 | 2500 | 125000 | 7.0711 | 3.6840 |
| . 6 | 73.96 | 636.056 | 2.933 | 2.049 | 51 | 2601 | 132651 | 7.1414 | 3. 0084 |
| . 7 | 75.69 | 658.503 | 2.950 | 2.057 | 52 | 2004 | 140608 | \% 2111 | 3.73:\% |
| . 8 | 77.44 | 681.47 \% | 2.966 | 2.065 | 53 | 2809 | $1485 \% 7$ | \%.2801 | 3. 7563 |
| . 9 | 79.21 | 704.969 | 2. 983 | 2.072 | 54 | 2916 | 157464 | 7.3485 | 3.7798 |
| 9. | 81. | \%29. | 3. | 2.0801 | 55 | 3025 | $1663 \% 5$ | \% 7.4162 | 3.8030 |
| . 1 | 82.81 | 753.571 | 3.017 | 2.088 | 56 | 3136 | 175616 | 7.4833 | 3.8\%59 |
| . 2 | 84.64 | 778.688 | 3.033 | 2.095 | 57 | 3249 | 185193 | 7.5498 | 3.8485 |
| . 3 | 86.49 | $804.35 \%$ | 3.050 | 2.103 | 58 | 3364 | 195112 | 7.6158 | $3.8 \uparrow 09$ |
| . 4 | 88.36 | 830.584 | 3.066 | 2.110 | 59 | 3481 | 2053 ¢9 | 7.6811 | 3.8930 |
| . 5 | 90.25 | 857.375 | 3.082 | 2.118 | 60 | 3600 | 216000 | 7.7460 | 3.9149 |
| . 6 | 92.16 | 884.736 | 3.098 | 2.125 | 61 | 3721 | 226981 | \%.8102 | 3.9365 |
| . 7 | 94.09 | 912.673 | 3.114 | 2133 | 62 | 3844 | 2383:8 | 7.8740 | 3.9579 |
| . 8 | 96.04 | 941.192 | 3.130 | 2. 140 | 63 | 3969 | 250047 | 7.9373 | 3.9791 |
| . 9 | 98.01 | 970.299 | 3.146 | 2.147 | 64 | 4096 | $26: 144$ | 8. | 4. |
| 10 | 100 | 1000 | 3.1623 | 2.1544 | 65 | 4225 | 274635 | 8.0623 | 4.0307 |
| 11 | 121 | 1331 | 3.3166 | 2.2240 | 66 | 4356 | $28 \% 496$ | 8.1240 | 4.0112 |
| 12 | 144 | 1728 | 3.4641 | 2.2894 | 67 | 4489 | $300 \% 63$ | 8.1854 | 4.0615 |
| 13 | 169 | 219 \% | 3.6056 | 2.3513 | 68 | 46\%4 | 314432 | 8.2162 | 4.081\% |
| 14 | 196 | 2044 | 3.7417 | 2.4101 | 69 | 4761 | $3: 88509$ | 8.3066 | 4.1016 |
| 15 | 225 | 3375 | 3.8730 | 2.4662 | $\%$ | 4900 | 343000 | 8.3666 | 4.1213 |
| 16 | 256 | 4096 |  | 2.5198 | 71 | 5041 | 85\%911 | 8.4261 | 4.1408 |
| 17 | 239 | 4913 | 4.1231 | 2. 5713 | 72 | 5184 | 373248 | 8.485 .3 | 4.1602 |
| 18 | 324 | 5832 | 4.2426 | 2.6207 | 73 | 5329 | 389017 | 8.5440 | 4.1793 |
| 19 | 361 | 6859 | 4.3589 | 2.6684 | 74 | $54 \sim 6$ | $405 \geqslant 4$ | 8.6023 | 4.1983 |
| 20 | 400 | 8000 | 4.4721 | 2.7144 | 85 | 5625 | 421875 | 8.6603 | $4.21 \% 2$ |
| 21 | 441 | 9261 | 4.5826 | 27589 | 76 | 576 | 438976 | 8.7178 | 4.2858 |
| 22 | 484 | 10648 | 4.6904 | 2.8020 | 77 | 5929 | 456533 | 8.7\%50 | 4.2543 |
| 23 | 529 | 12167 | 4.5958 | 2.8439 | \%8 | 6084 | 474552 | 8.8318 | $4.2 \% 27$ |
| 24 | 576 | 13824 | 4.8990 | 2.8845 | \%9 | 6241 | 493039 | 8.8882 | 4.2908 |
| 25 | 625 | $156: 5$ |  | 2.9240 | 80 | 6100 | 512000 | 8.9443 | 4.3089 |
| 26 | $6 \tau 6$ | 17576 | 5.0990 | 2.9625 | 81 | 6561 | 531441 |  | 4.326\% |
| 27 | 729 | 19683 | 5.1962 |  | $8 \cdot$ | 6724 | 551368 | 9.0554 | 4.344.5 |
| 28 | 784 | 21952 | 5.2915 | 30366 | 83 | 6889 | 571.87 | 9.1104 | 4.3621 |
| 29 | 841 | 24389 | 5.3852 | 3.0523 | 84 | \% 7056 | 592\%04 | 9.1652 | 4.3 95 |
| 30 | 900 | 2\%000 | 54772 | $3.10 \% 2$ | 85 | 7225 | 614125 | 9.2195 | 4.3968 |
| 31 | 961 | $29 ¢ 91$ | 5.56\%8 | 3.1414 | 86 | 7396 | 636056 | 9.2i36 | 4.4140 |
| 32 | 1024 | 32768 | 5.6569 | 3.1748 | 87 | 7569 | 658503 | 9 3:ゼ6 | 4.4310 |
| 33 | 1089 | 35937 | 5.7446 | 3.20\%5 | 88 | 7744 | 681472 | 9.3808 | 4.4480 |
| 34 | 1156 | 39304 | 5.8310 | 3.2396 | 89 | \%921 | - 704969 | 9.4340 | 4.4647 |
| 35 | 1225 | 42875 | 5.9161 | 3.2711 | 90 | 8100 | \%29000 | 9.4868 | 4.4814 |
| 36 | 1296 | 46656 |  | 3.3019 | 91 | 8281 | 75.3571 | 9.5394 | $4.49 \sim 9$ |
| $3{ }^{\text {r }}$ | 1369 | 50653 | 6.0828 | 3.332\% | 92 | 8464 | 778688 | $9.591 \sim$ | 4.5144 |
| 38 | 1444 | 548 ¢ 2 | ©. 1644 | 3.3620 | 93 | 8649 | 804357 | 9 643~ | 4.5307 |
| 39 | 1521 | 59319 | 6.2450 | 3.3912 | 94 | 8836 | 830584 | 9.6954 | 4.5468 |
| 40 | 1600 | 64000 | 6.3246 | 3.4200 | 95 | 90:5 | 857375 | 97468 | 4.5629 |
| 41 | 1681 | 689:1 | 6.4031 | 3.4482 | 96 | 9216 | 881\%36 | 9.7980 | 4.5789 |
| 42 | 1764 | ${ }^{\text {\% }} 4088$ | 6.4807 | 3.4760 | 9 9 | 9409 | 9126 ¢ 3 | 9.8489 | 4.594 |
| 43 | 1849 | \%9507 | $6.55 \% 4$ | 3.5034 | 95 | 9604 | 941192 | 9.8995 | 4.6104 |
| 44 | 1936 | 85181 | 6.6332 | 3.5303 | 99 | 9801 | 970:99 | 9.9499 | 4.6261 |


| No． | Square． | Cube． | Sq． Root． | Cube Root． | No． | Square． | Cube， | Sq． Root． | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 10000 | 1000000 | 10. | 4.6416 | 55 | 240.25 | 3723875 | 12.4499 | 5.3717 |
| 101 | 10：01 | 1030301 | 10.0199 | 4.6570 | 156 | 243：36 | 3＾96416 | 12.4900 | 5.3839 |
| 10：3 | 10404 | 1061208 | 10.0995 | $4.6 \div 3$ | $15 \hat{7}$ | 24649 | 3869893 | 12.5300 | 5.3947 |
| 103 | 10609 | 1092\％${ }^{1}$ | 10.1489 | 4.6875 | 158 | 24964 | $39+1312$ | 12.5698 | 5.4061 |
| 104 | 10816 | 1124864 | 10.1980 | 4.7027 | 159 | 25：81 | 4019679 | 12.6095 | 5.4175 |
| 105 | 11025 | 1157625 | 10.2170 | 4.7177 | 160 | 25600 | 4096000 | 12.6491 | 5.4288 |
| 106 | 11：36 | 1191016 | 10.2956 | 4．\％3： 6 | 161 | 25921 | 4173281 | 12.6886 | 5.4401 |
| 107 | 11449 | 1225043 | 10.3441 | 4．74\％5 | 162 | 26244 | 4251528 | 12.7279 | 54514 |
| 108 | 11664 | 1259712 | $10.39 \% 3$ | 4.762 | 163 | 26569 | 4330 ti | 12.7671 | 5.4626 |
| 109 | 11881 | 1295029 | 10.4403 | 4.5769 | 164 | 26896 | 4410944 | 12．806＊ | $5.4 \% 3 \%$ |
| 110 | 12100 | 1331000 | 10.4881 | 4.7914 | 165 | 2\％225 | 4492125 | 12.845 | 5.4848 |
| 111 | 123：1 | 1367631 | 10.5357 | 4.8059 | 106 | 27556 | $4574 \geqslant 96$ | 12.8841 | 5.4959 |
| 112 | 12544 | $14049: 8$ | 10.5830 | $4.8 \geqslant 03$ | 167 | ご889 | $465 \sim 463$ | 12.9228 | 5.5069 |
| 113 | 12\％69 | $144: 897$ | 10.6301 | 4.8346 | 168 | 98：24 | 4741632 | 12.9615 | $5.51 \% 8$ |
| 114 | 12996 | 1481544 | $10.67 \% 1$ | 4.8188 | 169 | 28561 | 4826809 | 13.0000 | 5.5288 |
| 115 | 132：5 | 1520875 | 10．7238 | $4.86: 9$ |  | 28900 | 4913000 | 13.0381 | $5.539 \%$ |
| 116 | 13456 | 1560896 | 10.7703 | 4.8710 |  | 29241 | 5000211 | $13.0 \sim 6 \hat{\sim}$ | 5.5505 |
| $11 \%$ | 13689 | 1601613 | 10.8167 | 4.8910 | 172 | 29584 | 5088448 | 13.1149 | 5.5613 |
| 118 | 139：3 | 164303： | 10.8628 | 4.9049 |  | 29999 | $51 \% \% 1 \%$ | 13.1529 | 5.5721 |
| 119 | 14161 | 1685159 | 10.9087 | $4.918 i$ |  | $302 \% 6$ | 5268021 | 13.1909 | 5.5828 |
| $1: 0$ | 14400 | 1728000 | 10.9545 | 4.9321 |  | 30695 | $53593 \% 5$ | 13．2288 | 5.5934 |
| 121 | 14641 | $17 \% 1561$ | 11.0000 | 4.9461 | 176 | 30976 | 545156 | 13.2665 | 5.6041 |
| 120 | 14884 | 1815848 | 11.0454 | 4.959 r |  | $313: 9$ | 5545233 | 13.3041 | 5.6147 |
| 123 | 151：29 | 1860867 | 11.0905 | 4.9732 | 178 | 31684 | 5639752 | $13.3+17$ | 5.6252 |
| 124 | 15376 | 1906694 | 11.1355 | 4.9866 |  | $3: 041$ | 5635339 | $13.3 \% 91$ | 5．635\％ |
| 12.5 | 15695 | 195.3125 | 11.1803 | 5.0000 | 180 | 32100 | 583：000 | 13.4164 | 5.6462 |
| 126 | 15876 | 2000376 | 11.2250 | 5.0133 | 181 | $32 \% 61$ | 5929～41 | 13.4536 | $5.656{ }^{7}$ |
| $13 i$ | 16129 | $\because 018333$ | 11．2694 | $50 \geq 65$ |  | 33124 | $602 \checkmark 568$ | $13.490{ }^{7}$ | $5.66 \pi 1$ |
| 128 | 16384 | 2097152 | 11.3137 | 5.0397 |  | 33489 | $612848 \%$ | $13.52 \%$ | 5．6\％4 |
| $1: 9$ | 16641 | 2146689 | 11.3578 | $5.05 \div 8$ |  | 33856 | 6：39504 | 13.5617 | $5.68 \% 7$ |
| 130 | 16900 | 2197000 | 11.4018 | 5.0658 |  | $348: 5$ | 6331625 | 13.6015 | 5.6980 |
| 131 | 17161 | 2248091 | 11.4455 | 5.0788 |  | 31596 | 6131856 | 13.6382 | 5．7083 |
| 132 | 17424 | 2299968 | 11.4891 | 5.0916 |  | 34969 | 65：39203 | 13.6748 | 5.7185 |
| 133 | 17689 | $235263 \%$ | 11.5326 | 5.1045 |  | 35344 | $66446 \% 2$ | 13.7113 | 5． 7287 |
| 134 | 17956 | 2406104 | 11.5758 | 5.1172 |  | $35 \sim 201$ | 6751269 | 13．74\％ | 5.7388 |
| 135 | 189.5 | 2460375 | 11.6190 | 5.1299 | 190 | 36100 | 6859000 | 13.7840 | 5． 7489 |
| 136 | 18496 | 2515456 | 11.6619 | 5.1426 | 191 | 36481 | 6967871 | 13.8203 | Б．7590 |
| $1: 37$ | $18 \% 69$ | $25 \% 1353$ | $11.704 \%$ | 5.1551 | 192 | 36864 | \％077888 | 13.8564 | 5.7690 |
| 138 | 19014 | 2628072 | 11．743 | 5． $16 \% 6$ | 193 | 3 \％ 249 | T189057 | 13．89\％4 | $5 \quad 7690$ |
| 139 | 19321 | $\because 685619$ | 11.7898 | 5.1801 |  | 37636 | 7301384 | 13.9284 | 5． 7890 |
| 140 | 13600 | 2744000 | 11.8322 | 5.1995 |  | 38025 | \％414875 | 13.9642 | 5.7989 |
| 141 | 19881 | 2803：21 | 11.8343 | 5． 2048 |  | 38116 | $75 \geqslant 9536$ | 14.0000 | 5.8088 |
| 142 | $\because 0164$ | $2863: 888$ | 11.9164 | 5．2171 | 197 | 38809 | 「6453\％3 | $14.035 \%$ | 5.8186 |
| 143 | $: 0449$ | $29: 4207$ | 11.9583 | 5．920：3 |  | 39234 | \％642392 | 14.0712 | $5.8: 85$ |
| 144 | $20 \% 36$ | 2985984 | 12．0000 | 5．2415 |  | 39601 | \％880599 | 14．106 | 5.8383 |
| 145 | 21025 | 3048625 | 12.0416 | 5．2536 |  | 40000 | 8000000 | 14.1421 | 5.8480 |
| 146 | 21316 | 3112136 | 12．0830 | 5． 2656 | 301 | 40401 | 8120601 | 14.1774 | $5.85 \% 8$ |
| 147 | 21609 | 3176523 | 12.124 | 5．2゙76 | $20 \pm$ | 40804 | 8242408 | 14．21：～ | 5.8675 |
| 148 | 21904 | $32+1792$ | 12．1655 | 5.2896 | 203 | 41：09 | 836512 \％ | $14.24 \% 8$ | 5．8\％1 |
| 149 | 2）201 | 3307949 | 12.2066 | 5． 3015 |  | 41616 | 8489664 | $14.28: 29$ | 5.8868 |
| 150 | 22500 | 3375000 | 12．2474 | 5.3133 | 205 | 42025 | 8615125 | 14.3178 | 5.8964 |
| 151 | 23801 | 3442951 | 12．2888 | $5.3 \geqslant 51$ | 206 | 42436 | 8741816 | $14.352 \%$ | 59059 |
| 152 | 23104 | 3511808 | 12.3388 | 5.33368 |  | 42849 | 8869743 | 14.3875 | 5.9155 |
| 153 | 23409 | 3581577 | 113.3643 | 5.3485 |  | 43264 | 8998912 | 14.4222 | 5.9250 |
| 154 | 23716 | 3659264 | 112409 \％ | 5.3601 | 209 | 43681 | 9129329 | 14.4568 | 5.9345 |

SQUARES, CUBES, SQUARE AND CUBE ROOTS.

| No. | Square. | Cube | Sq. Root. | Cube Root. | No. | Square. | Cube. | Sq. Rout. | Cube <br> Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210 | 44100 | 9261000 | 14.4914 | 5.9439 | 265 | \%0225 | 18609625 | 16. | 6.4232 |
| 211 | $445 \because 1$ | 9393931 | 14.5258 | 5.9533 | 266 | $707 \% 6$ | 188:1096 | 16.3095 | 6.4312 |
| 212 | $449+4$ | 95.28128 | 14.560: | 5.9627 | 267 | 71289 | 190:34163 | 16.3401 | 6.4393 |
| 213 | 45369 | 9663597 | $14.59+5$ | 5.9721 | $\therefore 68$ | \%1824 | 1924883: | 16.3\%07 | 6.44\% $\%$ |
| 214 | $45 \uparrow 96$ | 9800344 | 14.628\% | 5.9814 | 269 | 72361 | 19465109 | 16.4012 | 6.4553 |
| 215 | 46 | 9938 | 14.6629 | 5990 亿 | 2.0 | \%2900 | 19683000 | 16.4317 |  |
| 216 | 46656 | 1007636 | 14.6969 | 6.0000 | 271 | 73441 | 19902511 | 16.46:1 | 6.4713 |
| 217 | 47089 | 1021831:3 | 14.7309 | 6.0092 | $2 \pi$ | 73984 | 20123648 | 16.4924 | $6.479 \%$ |
| 218 | $475 \% 4$ | 10360233 | 14.7648 | 6.0185 | 273 | \%4529 | 20346417 | $16.592 \%$ | 6.48 22 |
| 219 | $4 \% 961$ | 10503459 | 14.159 | 6.0.27\% | 274 | 250\%6 | $205 \% 0824$ | 16.5529 | 6.4951 |
| 220 | 48400 | 10648000 | 14.8324 | 6.03 | $2 \%$ | 65625 | $20 \% 968$ | 16.5831 | 6.5030 |
| $2 \cdot 21$ | 48841 | $10 \div 93861$ | 14.8661 | 6.0459 |  | 76176 | 21024576 | 16.6132 | 6.5108 |
| 220 | 49:84 | 10941048 | 14.899 ${ }^{\text {/ }}$ | 6.0550 | $23 \%$ | \%6\%29 | 21253933 | 16.6433 | 6.5187 |
| 223 | 49\%929 | $1108956 \%$ | 14.93332 | 6.0641 | 278 | TT284 | 21484952 | 16.6*33 | 6.5265 |
| 204 | $501 \% 6$ | 112394.4 | 14.9666 | 6.0732 | 279 | \% 641 | 21116639 | 16.7033 | 6.5343 |
| $2:$ | 50625 | 11390695 | 15.0000 | 6.0822 | $\geq 80$ | 78400 | 2195:000 | 16.7332 | 6.5421 |
| 226 | ${ }^{510 \% 6}$ | 11543176 | 15.0333 | 6.0912 | 281 | 78961 | 2:2188041 | 16.7631 | 6.5499 |
| $22 \%$ | 51529 | 1169 \%083 | 15.0665 | 6.1002 | $\because 8$ | \%95\%4 | 2242568 | 16.79:9 | 6.5577 |
| 2:88 | 51984 | 1185\%35: | 15.0997 | 6.1091 | 283 | 80039 | 20665187 | 16.8\%26 | 6.5654 |
| 229 | 52441 | 12008989 | 15.1327 | 6.1180 | 284 | S06ä6 | 22906304 | 16.85\%3 | 6.5731 |
|  | 529 | $16 \%$ | 15.16 | 6.1269 | 285 | 812 | 314 | 16.8819 | 6.5808 |
| 2.1 | 53361 | 12326391 | 15.198i | 6.1358 | $\because 86$ | $81 \% 96$ | 233933656 | 16.9115 | 6. |
| 23: | 53824 | 12487168 | 15.2315 | 6.1446 | 288 | \$2369 | 236399903 | 16.9411 | 6.596\% |
| 23:3 | 54289 | 12649:33 | 15.2643 | 6.1534 | 288 | 82944 | 23887872 | 16.9706 | 6.6039 |
| 234 | 54756 | 1281:904 | 15.29\%1 | 6. 16.2 | ¿89 | 83521 | 2113 ¢̃69 | 17.0000 | 6.6115 |
| 235 | 55225 | 1297\%875 | 15.3.97 | 6.1710 | 290 | 84100 | 21389000 | 17.0294 | 6.6191 |
| 236 | 55696 | 13144256 | 15.3623 | 6.1797 | 2.11 | 84681 | 24649171 | 17.058i | 6.626\% |
| 2.3 | 56169 | 13312053 | 153948 | 6.1885 | 292 | 85.64 | 24897088 | 17.0880 | 6.6343 |
| 2:38 | 56644 | 134812\% | 15.4? 2 | 6.1972 | 293 | 85849 | 25153757 | 17.1172 | 6.6419 |
| 239 | 5 5121 | 13651919 | 15.4596 | 6.2058 | 294 | S6436 | 2541:218 | 17.1464 |  |
| 240 | 5\%600 | 1382400 | 15.4919 | 6.2145 | 295 | 8\%0:5 | 2567.23 | 17. 1756 | 6.6569 |
| 211 | 58081 | 13997521 | 15.5\%42 | 6. 2231 | 2096 | 8 S616 | 25934336 | 17.2047 | 6.6644 |
| $2+2$ | 58564 | 14172188 | 15.556:3 | 6.2317 | $29 \%$ | 88:09 | 26198073 | 17.23337 | $6.6 \sim 19$ |
| 243 | 59049 | 1434890 ¢ | 15.5885 | 6.2403 | 298 | 88804 | 26463592 | 17.26\% | 6.6794 |
| ?4 | 59536 | 14526\%84 | 15.6:03 | 6.2188 | 299 | 89401 | $26 \% 30899$ | 1'،.2916 | 6.6869 |
| 245 | 60025 | 1470612 | 15.6525 | 6.2573 | 300 | 90000 | $2 \% 000000$ | 17. 3205 | 6.6943 |
| 246 | 60516 | 14886936 | 15.6844 | 6.2655 | 301 | 90601 | 2\%2\%0901 | 17.3494 | 6. $\% 018$ |
| 24 | 61009 | 15069?23 | 15.7162 | 6. 2 243 | :302 | 91204 | 24543608 | 17.3781 | 6. $\% 092$ |
| 248 | 61504 | 15:52993 | 15.7480 | 6.2828 | 303 | 91809 | 2 T 818127 | 17.4069 | 6.7166 |
| 24 | 62001 | 15438249 | 15.7\%97 | + | 304 | 9241 | 28 | 174356 |  |
| 250 | 62500 | 15625000 | 15.8114 | 6.2996 | 30.5 | 93025 | $\because 8370625$ | 17.4642 | 6.7313 |
| 251 | $6: 3001$ | 15813:51 | 15.8130 | 6.3080 | 303 | 93636 | 25652616 | 17.4929 | 6.138i |
| $25 \%$ | 63504 | 16003008 | 15.8845 | 6.3164 | -30\% | 94249 | 28934443 | 17.5?14 | 6. 1460 |
| 253 | 64009 | 1619427\% | 15.9060 | 6.324i | . 308 | 94864 | 29218112 | 17.5499 | 6. 7533 |
| 254 | 64516 | 1638\%064 | 15.93i4 | 6.3330 | :309 | 95481 | 29503629 | 17.5584 |  |
|  | 65025 | 1658137 | 15.968 | 6.3413 | 310 | 96100 | 29791000 | 17.6068 | 6.76~9 |
| 256 | 655:36 | 16 \%\%\%216 | 16.0000 | 6.3496 | 311 | 96\%:21 | 300802:31 | 17.6352 | 6775 |
| $25 \%$ | $660+9$ | 16974593 | 16.0312 | $6.35 \% 9$ | 312 | 97314 | 303713:8 | 17.6635 | 6. $\% 824$ |
| 258 | 66564 | 17173512 | 16.06.2 | 6.3661 | 313 | 97969 | $30664 \% 97$ | 17.6918 | 6.\%99\% |
| 25 | 6\%'081 | 17373979 | 16.0935 | 6.3 ก̃4 | 314 | 98596 | 30959144 | 17.7200 | 6. 7969 |
| 260 | 67600 | 17576000 | 16.1245 | 63895 | 315 | 99325 | $312558 \%$ | 17. 7482 | 6.8041 |
| 261 | 68121 | 17779581 | 16.1555 | 6.390 ¢ | 316 | 99856 | 31554496 | 17.7164 | 6.8113 |
| 262 | 68644 | 17984728 | 16.1864 | 6.3988 | 317 | 100489 | 31855013 | 17.8045 | 6.8185 |
| 203 | 69169 | 18191447 | 16.2173 | 6.40 \% 0 | :318 | 101104 | 32157432 | 17.83?6 | 6.8.55 |
| $\stackrel{1}{2}$ | 69696 | 18399744 | 16.24 | 6.415 | 1319 | 101 | 32461759 | 17.86 | 3. $83: 3$ |


| No． | Square． | Cube． | Sq． Root． | Cube <br> Root． | No． | Square． | Cube． | Sq． Root | Cube <br> Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 320 | 102400 | 32768000 | 17.8585 | 6.8399 | 375 | 1406：5 | 52734375 | 19.3649 | 7.2112 |
| 321 | 103041 | $330 \sim 6161$ | 17.9165 | 6.8570 | 376 | 141376 | 53157376 | 19．390～ | \％．217\％ |
| 322 | 103684 | 33386248 | 17．9444 | 6.8541 | $37 \%$ | 142129 | 5358：633 | 19.4165 | 7．$\because 240$ |
| 323 | $10+329$ | 3369826\％ | 17．9722 | 6.8612 | 378 | 14：884 | 54010152 | 19.4422 | 7．2304 |
| 324 | 104976 | 3401224 | 18．00 0 | 6.8683 | 3ヶ9 | 143641 | 54439939 | $19.46{ }^{\text {a }} 9$ | 7.2368 |
|  | 105 | 3432 | 18．0278 | 6.8753 | 380 | 144400 | 54872000 | 19.4936 | 7．2432 |
| 326 | 106：26 | 34645976 | 18.0555 | 6.8824 | 381 | 145161 | 55306341 | 19.5192 | 7．2495 |
|  | 106929 | 34965783 | 18.0831 | 6.8894 | 382 | 145924 | 55742968 | 19.5448 | 7.2558 |
| $3 \geqslant 8$ | 10\％584 | 35287552 | 18.1108 | 6.8964 | 383 | 146689 | $5618188 \pi$ | 19.5704 | 7.2622 |
| 329 | 108\％41 | 35611289 | 18.1384 | 6.9034 | 384 | $14 \% 456$ | 56623104 | 19.5959 | \％．2685 |
| ， | 108900 | 3593\％000 | 18.1 | 6.91 |  | 1482 | 5706 | 19.6214 | 48 |
| 331 | 109561 | 36264691 | 18.1934 | 6.9174 | 386 | 148996 | 57512456 | 19.6469 | 7．2811 |
| 33.2 | 110224 | 36594368 | 18．2：09 | 6.9244 | $38 i$ | 149 T69 | 57960603 | 19．6\％23 | 7.2874 |
| 333 | 110889 | 3692603ヶ | 18．2483 | 6.9313 | 388 | 150544 | 58411072 | 19．69\％ | 7.2936 |
| 334 | 111556 | 37259：04 | 18.2757 | 6.9382 | 389 | 151321 | 28863869 | 19．7231 | 7．2999 |
| 335 | $11 \Vdash 2$ | 375953\％ | 18.3030 | 6.9451 | 390 | 152100 | 59319000 | 19.7484 | 061 |
| 336 | 112896 | 379330．56 | 18.3303 | 6.9521 | 391 | 152881 | 59\％\％6471 | 19．7737 | 7．3124 |
| 33 | 113569 | 382\％ 2 T53 | $18.35 \% 6$ | 6.9589 | 392 | 153664 | 60236：88 | 19.7990 | 7.3186 |
| 338 | 114244 | 386144\％ | 18.3818 | 6.9658 | 393 | 154449 | 60698457 | $198: 42$ | ¢． $3 \geqslant 48$ |
| 339 | 114921 | 38958：19 | 18.4120 | 6.972 T | 394 | 155236 | 61162984 | 19.8494 | \％． 3310 |
| 340 | 115600 | 39304000 | 18.4391 | 6.9795 | 395 | 156025 | 61629875 | 19.8746 | 7．3372 |
| 341 | $116: 81$ | 39651821 | 18．466： | 6.9864 | 396 | 156816 | 62099136 | 19.8997 | 7.3434 |
| 342 | 116964 | 40001688 | 18.4932 | 6 993： | 397 | 157609 | 625\％0\％73 | 19．9：49 | 7.3496 |
| 343 | 117649 | 4085.366 | 18.5203 | \％． 0000 | 398 | 158404 | $63044 \% 92$ | 19.9499 | 7.3558 |
| 344 | 118336 | 40\％0\％584 | 18．54\％2 |  | 399 | 159201 | 63521199 | 19.9750 | 7． 3619 |
| 345 | 11902 | 41063 | 18.5 ¢42 | 7.01 | 400 | 160000 | 64000000 | 200000 | 81 |
| 346 | 119716 | 414：1736 | 18.6011 | 7．0203 | 401 | 160801 | 64481201 | 20950 | 7．3742 |
| 347 | 120409 | 4178！923 | 18．6279 | 7.0271 | 402 | 161604 | 64964808 | 20.0499 | 803 |
| 318 | 121104 | 42144192 | 18.6548 | 7.0338 | 403 | 16：409 | 6545082\％ | 200749 | ¢． 3864 |
| 349 | 121801 | 42508549 | 18.6815 | \％040t | 404 | 163216 | 65539264 | $\because 0.0998$ | 〒． 3925 |
| 350 | 122500 | 42875000 | 18． 2083 | 7.0473 | 405 | 164025 | 66430125 | 20.1246 | 7.3986 |
| 35 | 123201 | 4324：3551 | 18． 7350 | 7.0540 | 406 | 164836 | 66923416 | 20.1494 | 7.4047 |
| 352 | 123904 | 43614：08 | 18． 6617 | $7.060 \%$ | 407 | 165649 | $6{ }^{6} 419143$ | 20.1742 | 7.4108 |
| 353 | $1 \geqslant 4609$ | 43986977 | 18．78＊3 | 7．06i4 | 408 | 166464 | 67917312 | 20.1990 | \％．4168 |
| 354 | 125 | 4436186 | 18.8149 |  | 409 | 167 | 68417929 | 20 |  |
| 35.5 | 126025 | 44738875 | 18.8414 | 7.0807 | 410 | 168100 | 68921000 | 20.2485 | 7.4290 |
| 3.56 | $126 \pi 36$ | 45118016 | 18.8680 | 7.0873 | 411 | 1689：1 | 69426531 | 20.2731 | 7.4350 |
|  | 12 ＇i449 | 45499：93 | 18.8944 | 7.0940 | 412 | 169744 | 69934528 | 20.2978 | 7.4410 |
| 358 | 128164 | 4588：212 | 189209 | \％．1006 | 413 | 170569 | 70444997 | 20.3224 | \％． 4470 |
| 359 | 128881 | 462682 亿9 | 18.9473 | \％．1072 | 414 | 171396 | \％0957944 | $20.34 \%$ | \％．4530 |
| 360 | 129600 | 46656000 | 18．9737 | 7.1138 | 415 | 172095 | 71473375 | 20.3715 | 7.4590 |
| 361 | 130321 | 47045881 | 19.0000 | 7． 1204 | 416 | 173056 | 71991296 | 20.3961 | 7.4650 |
| 362 | 131044 | 47437928 | 19.0263 | 7.1269 | 417 | 173889 | 22511ヶ13 | 20.4206 | 7.4710 |
| 363 | 131769 | 47832147 | 19.0526 | 7.1335 | 418 | 1\％4\％24 | 73031633 | 20.4450 | 4 Tr0 |
| 364 | 13：496 | 4822854 | 19.0 ¢88 | 7.1400 | 419 | $1 \% 5561$ | ¿3560059 | 20.4695 | \％．48：39 |
| 365 | 133225 | 4862712 | 19.1050 | 7.1466 | 420 | 176400 | \％ 4088000 | 20．4939 | 7.4889 |
| 360 | 133956 | 49027896 | 19.1311 | 7.1531 | 421 | 177：41 | 74618461 | $\because 0.5183$ | 7.4948 |
| 367 | 134689 | 49430863 | 19．15\％ | 7.1596 | 422 | 178084 | 75151448 | 20.5426 | 7．5007 |
| 368 | 135424 | 4983603： | 19.1833 | \％． 1661 | 423 | 178929 | 75686967 | 20.5670 | 7.5067 |
| 369 | 136 | 50 | 19.209 |  | 424 | 17977 | r622 | 20.59 | 7.5126 |
| 370 | 136900 | 50653000 | 19.2354 | 7．1791 | 425 | 180625 | 76765625 | 20.6155 | 7.5185 |
| 371 | 137641 | 51064811 | 19.2614 | 7.1855 | 426 | 181476 | \％7308ヶ76 | 20.639 | 7．5：44 |
| 372 | 138384 | 51478848 | 19．2873 | 7．1920 | 427 | 1823：9 | 77854483 | 20.664 | 7.5302 |
| 373 | 139129 | $5189511{ }^{4}$ | 19．313： | 7.1984 | 428 | 183184 | 78402ヶ52 | 20.688 | 7.53361 |
| 374 | 139876 | 523136：4 | 19.3391 | 7．2048 | $4: 9$ | $18+041$ | \％8953589 | 20.712 | 8.5420 |


| No. | Square. | Cube. | Sq. Root. | Cube Root. | No. | Square. | Cube | Sq. Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 430 | 184900 | 79507000 | 20.7364 | 7.5478 | 485 | 235225 | 114084125 | 22.0227 | 8568 |
| 431 | 185761 | 80062991 | 20.7605 | 7.5537 | 486 | 236196 | 114791256 | 22.0454 |  |
| 432 | 1866:4 | 806\%1568 | 20.7846 | 7.5595 | 487 | 237169 | 115501303 | 22.0681 | 8676 |
| 433 | 18 T489 | S1182T37 | 20.8087 | 7.5654 | 488 | 238144 | 116214272 | 22.0907 | 7.8730 |
| 434 | 188356 | 81746504 | 20.8327 | 7.5712 | 489 | $23912 i$ | 116930169 | 20. 113 |  |
| 435 | 189 | 823128\%5 | 20.8 |  | 90 | 240100 | 117649000 |  |  |
| 436 | 190096 | 82881856 | 120.8806 | 7.58 | 191 | 241081 | 118370 ${ }^{\text {ari }}$ | 2. 21885 |  |
| 437 | 190969 | 83453453 | 20.9045 | 7.5886 | 492 | 24:06 | 119095488 | 22.1811 | 4 |
| 438 | 191844 | $840276 \tilde{\sim}^{2}$ | 20.9384 | 7.594 | 493 | 243049 | 1198:3157 | 22.2036 | \%.8998 |
| 439 | 192\%21 | 84604519 | 20.9523 | 7.6001 | 494 | 244036 | 120553784 | $20.2: 61$ | 7.9051 |
| 440 | 19 | 85 | 20.97 | 7.60 | 495 | 245025 | 121287375 | 22.2486 | 7.9105 |
| 441 | 194481 | 85766121 | 21.0000 | 7.6117 | 496 | 246016 | 120023936 | $2 \because 2 \pi / 11$ | \%.9158 |
| $44 \%$ | 195364 | 86350888 | 21.0238 | 7.61\%4 | 497 | 247009 | 122:63+73 | 22.2935 | ¢. 9211 |
| 443 | 196249 | 86938307 | 21.0476 | 7.623: | 498 | 248004 | 123505992 | $2 \cdot .3159$ | 264 |
| 444 | 197136 | 875:8384 | 21.0713 |  | 499 | 249001 | 124251499 | 223383 | 317 |
| 445 | 19 | 88121125 | 21.0950 | 7.6346 | 500 | 250000 | 125 | 22.3607 |  |
| 446 | 198916 | 98^16.536 | $21.118 \%$ | 7.6403 | 501 | 251001 | 125751501 | 22.3830 | 3 |
| 447 | 199809 | 89314633 | 21.1424 | 7.6460 | 502 | 252004 | 126506008 | $\because 2.4054$ |  |
| 448 | 200704 | 89915392 | 21.1660 | 7.6517 | 503 | 253009 | 127:635:27 | 22.427\% | ¢.95:8 |
| 449 | 201601 | 90518849 | 21.1836 | $7.65 \% 4$ | 504 | 254016 | 128024064 |  | -. 9581 |
| 450 | 202500 | 911250 | 21.2 |  | 505 | , | 128787625 | 22.4722 | 7.9634 |
| 431 | 203401 | 91733851 | 21.2368 | 7.66 | 506 | 256036 | 129554216 | 22.4944 | \%.9686 |
| $45:$ | 204304 | 92345408 | 21.2603 | 7.6744 | 507 | 257049 | 130323843 | 22.516 | -.9739 |
| 453 | $\because 05 \% 09$ | 929596 ${ }^{\text {a }}$ | 21.2835 | 7.6800 | 508 | 258064 | 131096512 | 22.5389 | 791 |
| 454 | 206116 | 93576 | 21.3 |  | 509 |  | 131872229 | 22.5610 | 7.9843 |
| 455 | $20 \%$ | 9419 | $21.330{ }^{\circ}$ | 7.6914 | 510 | 260100 | 132651000 | 22.5832 |  |
| 456 | 207936 | 94818816 | 21.3542 | $7.69 \% 0$ | 511 | 261121 | 133432831 | 22.6053 | 7.994 |
| 457 | 208849 | 95443993 | 21.3 \% 76 | 7.7026 | 512 | 262144 | 13421\%「\%8 |  | 8.00 |
| 458 | 209\%64 | 960^1912 | 21.4009 | 7.5082 | 513 | 263169 | 135005697 |  | 8.0052 |
| 459 |  | 96\%025\%9 | 21.4243 |  | 514 | 264196 | 135796744 | 22.6716 | 8.010 |
| 460 | 211600 | 97336000 | $21.44 \%$ |  | 515 |  |  | 22. |  |
| 161 | 21:521 | 97972181 | 21.4709 | 7. 7250 | 516 | 266256 | 13738809 |  |  |
| 46. | 213444 | 98611128 | 21.4942 | 7.7306 | 517 | 267289 | 138188413 | 2:.73i6 | 8.0260 |
| 463 | 214369 | 99252887 | 21.5174 | 7. 7362 | 518 | 2683:4 | 138991832 | 22. 7596 | 8.0311 |
| 464 | 215:96 | 99897344 | 21.5407 |  | 510 |  | 139 ¢98359 |  | 8.0363 |
| 465 |  | 1005446 | 2.5 | 7.7473 | 520 | 270400 | 140608000 | 22.8035 | 8.0415 |
| 466 | 217156 | 101194696 | 21.5870 | 7. 75.39 | 521 | 271441 | 141420761 | 2. 2.8254 | 8.0466 |
| 467 | 218089 | $10184 \% 563$ | 21.6102 | 7.7584 | 522 | 272484 | 142236648 | 22.8473 | 8.0517 |
| 468 | 219024 | 102503\%3\% | 21.63333 | 7.7639 | 523 | 273529 | $14305566 \%$ | 22.8692 | 0569 |
| 469 | 219961 | 10316 | 21 |  | 524 | 274576 | 14387\%8\%4 | 22.8910 | 8.0620 |
| $4 \% 0$ | 220900 | 103823000 | 21.6 \% 95 | 7.7750 | 525 | 275625 | 14470 | 22.9129 |  |
| 471 | 221841 | 10448 T 111 | 21.70\%5 | 7.7805 | 526 | 276676 | 145531576 | 22.9347 | $8.0 \pi 23$ |
| $4 \%$ | 222784 | 105154048 | 21.7256 | 8. 7860 | 527 | 2 27728 | 146363183 | 22.9565 | 8.074 |
| $4 \sim 3$ | 223T29 | 10.58:3817 | 21.7486 | 7.7915 | 528 | 278784 | 14~19795\% | 22.9788 | 8.0825 |
| 474 | 22460 | 106496424 | 21.7715 |  | 529 | 2798 | 14803588 | . | 8.0836 |
| 415 | 225625 | 107171875 | 21.7945 | 2.8025 | 530 | 80900 | 1488\%\%00 | 23.0217 | 7 |
| 476 | 226576 | 107850176 | 21.8174 | 7.8079 | 531 | 381961 | 149721:91 | 23.0434 | 8.0978 |
| $4 \hat{9}$ | 22 ¢529 | 10853133 | 21.8403 | 7.8134 | 532 | 283024 | 150568768 | 23.0651 | 8.1028 |
| 478 | 228484 | 109:15352 | 21.8632 | 7.8188 | 533 | 284089 | 151419437 | 23.0568 | 8.1079 |
| $4 \% 8$ | 229441 | 109902239 | 21.8861 |  | 534 | 285156 | 1522\%33304 | 23.1084 | 8.1130 |
| 880 | 230400 | 110592000 | 219089 | 7.8297 | 535 | 286225 | 153130375 | $23.130^{+}$ | 8.1180 |
| 481 | 2:31361 | 111284641 | 21.9317 | 7.835\% | 536 | 28 2296 | 153990656 | 23.1517 | 8.1231 |
| 48.2 | 2323324 | 111980168 | 21.9545 | 7.8406 | 537 | 288369 | 154854153 | 23.1733 | 8.1281 |
| 483 | $2333: 89$ | 1126\%858 | 21.9773 | 7.8460 | 538 | 289444 | 155720872 | 23.1948 | 8.1332 |
| 484 | 234256 | 113349904 | $\because 2.00$ | 7.851 | 539 | 290521 | 156590819 | 23.21 | 8.1382 |


| No． | Square． | Cube． | Sq． Root． | Cube Root． | No． | Square． | Cube． | Sq． Root． | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 291600 | 157464000 | 23.2379 | 8.1433 | 595 | 354025 | 210644875 | 24.3926 | 8.4108 |
| 541 | 292681 | 158340421 | 23．2594 | 8.1483 | 596 | 355216 | 211208736 | 24.4131 | 8.4155 |
| 542 | 293764 | 1592：0088 | 23.2809 | 8.1533 | 597 | 356409 | 212i76173 | 24.4336 | 8.4202 |
| 543 | 294849 | 160103007 | 23.3024 | 8．1583 | 598 | $35 \sim 604$ | 213847192 | 24.4540 | 8.4249 |
| 544 | 295936 | 160989184 | 23．3238 | 8.16393 | 599 | 358801 | $214921 \% 99$ | 24.4745 | 8.4296 |
| 545 | 297025 | 161878625 | 23.3452 | 8.168 | 660 | 360000 | 216000000 | 24.4949 | 84343 |
| 546 | 298116 | 162771336 | 23． 3666 | 8.1733 | 601 | 361901 | 217081801 | 24.5153 | 8.4390 |
| 547 | 299：09 | 1636667323 | 2：3．3880 | 8.1783 | 60－2 | 362404 | 218167208 | $24.535 \sim$ | $8.443{ }^{\circ}$ |
| 548 | 300304 | 164566592 | 23.4094 | 8.1833 | 603 | 363609 | $21925622 \sim$ | 24.5561 | 8.4484 |
| 549 | 301401 | 165469149 | 23．4307 | 8.1882 | 604 | 364816 | 220348864 | 24.5764 | 8.4530 |
| 550 | 302500 | 166375000 | 23.4521 | 8.1932 | 605 | 3660：5 | 221445125 | 24.5967 | 8.45 \％ 7 |
| 551 | 305601 | $16 \tau 284151$ | 234734 | 8.1982 | 606 | 367：36 | 2：2545016 | 24.6171 | 8.4623 |
| 55 | 304 204 | 168196608 | 23．494 | 8．2031 | $60 \sim$ | 368149 | 223648543 | 24.6374 | 8．46\％0 |
| 553 | 305809 | 16911237\％ | 23.5160 | 8.2081 | 1608 | 369664 | 224ヶ55712 | 24．65ir | 8.4716 |
| 554 | 306916 | 170031464 | 23.5372 | 8.2130 | 1609 | 330881 | 2：5866529 | 24．6तт9 | 8.4663 |
| 55 | 308025 | 1709538T | 235584 | 8.2180 | 610 | 3 2100 | 226981000 | 246982 | 09 |
| 556 | 309136 | 171879616 | 23.5797 | 8． 2229 | 611 | 373321 | 228099131 | 24.7184 | 8． 4856 |
|  | $310 \because 49$ | 17.2808693 | 23.6008 | 8228 | 612 | 374544 | 2：29：209：8 | 247386 | 8.4902 |
| 55 | 311364 | 17374111： | $\therefore 3.6 \geqslant 0$ | 8．23： | 613 | 375769 | 23034639\％ | 24．7588 | 8.4948 |
| 559 | 312481 | 174676879 | 23.6432 | 8．23：7 | 614 | 3 3̌6996 | 2314i5544 | 24．7590 | 8.4994 |
| 560 | 313 | 175 | マ3．6 | 8. | 615 | 378 | 2326 | 24. | 8.5040 |
| 561 | 314721 | 1765．58481 | 23．6854 | 8.240 | 616 | $3{ }^{\text {¢ } 9456}$ | 233～～44896 | 24.8193 | 8.5086 |
| 562 | 315844 | 177504328 | 23.7065 | 82594 | $61 \%$ | 380689 | 234885113 | 24.8395 | 8.5132 |
| 563 | 316969 | 17845354 | $23.726^{6}$ | 8．2．73 | 618 | 381924 | 2360：9032 | 24.8596 | 8.5178 |
| 564 | 318096 | 179406144 |  | 8．26：1 | 619 | 383161 | 237116659 | 24．8ヶ97 | 8.5224 |
| 565 | 319225 | 18036212.5 | 23．769．97 |  | 620 | 384400 | 238328000 | 24.8998 | 8．5270 |
| 566 | 320356 | 1813：1496 | 23.7908 | 8.2719 | 6．21 | 385641 | 239483061 | 24.9199 | 8.5316 |
| $56 \hat{1}$ | 321489 | 182084263 | 23.8118 | 8.2 2r68 | 622 | $3 ¢ 6884$ | 240641848 | 24.9399 | 8.5362 |
| 568 | 322624 | 18395043： | 23．83：28 | 8． 216 | 603 | 388129 | 241804367 | 24.9600 | 8.5408 |
| 569 | $323 / 61$ | 1842：0009 | $23.853 \hat{1}$ | 8．2865 | 624 | 3893\％6 | 2429\％6624 | 24.9800 | 8.5453 |
| $5 \% 0$ | 324900 | 185193000 | $23.874{ }^{\top}$ | 8.2913 | 625 | 390625 | 244140625 | 25.0000 |  |
| 571 | 3：2041 | 186169411 | 23.8956 | 8.2963 | $6 \times 6$ | 391876 | 1245314376 | 25．0：00 | 8.5544 |
| 57. | 327184 | 187149：48 | 23.9165 | 8.3010 | 627 | 393129 | 246491883 | 25.0400 | 8.5590 |
| 573 | 3283：9 | 188132517 | 23.9374 | 8.3059 | 628 | $39+384$ | 217673152 | 25．0399 | 8.5635 |
| 574 | 329476 | 189119224 | 23.9583 | 8.3107 | 6：9 | 395641 | 218858189 | 25.0799 | 8.5681 |
| 575 |  | 1901093 |  |  | 6， |  | 2．504 | 25.0998 | 8．5\％26 |
| 576 | 331746 | 19110：29\％6 | 24.0000 | 8.3203 | 631 | 398161 | $2512: 39591$ | 25.1197 | $8.57{ }^{\text {8 }}$ |
| 574 | 33：929 | 19：100033 | 24.0208 | 8.3251 | 63： | 399424 | 252435968 | 25． 1396 | 8.5817 |
| 578 | 334084 | 193100552 | 24.0416 | 8.3300 | 63.3 | 400689 | $25363613 i$ | 25.1595 | 8.5862 |
| $5{ }^{19}$ | 335：41 | 194104539 | 24.0624 | 8 | 634 | 40 | － | 25. | 8.5907 |
| 580 | 336400 | 195112000 | 24.0832 | 83396 | 635 | 403925 | 25604\％875 | 25.1992 | 8．5952 |
| 5 | $33 \% 561$ | 196122941 | 24.1039 | $8.3+43$ | 636 | $40+496$ | $25 \sim 259456$ | 25.2190 | 85997 |
| 582 | 338724 | 197137368 | 24．124 | 8.3491 | 637 | 40.569 | $\because 58474853$ | 25.2389 | 8.6043 |
| 583 | 339889 | 198155：8\％ | 24.1454 | 8．3539 | 638 | $40 \sim 044$ | $2596910{ }^{2}$ | 25．2587 | 8.6088 |
| 584 | 341056 | 19 | 24.1661 |  | 639 | 4083：1 | 260917119 | 25.2784 | 8.6132 |
| 585 | 342925 | 200201625 | 24.1868 | 8.3634 | 610 | 409600 | 26.144000 | 25.2982 | 8.6177 |
| 58 | 243396 | 201230056 | 24．20ז4 | 8.3682 | 641 | 410881 |  | 25.3180 | 8．629：2 |
| 58 | 344569 | 20226：003 | 24.2081 | 8．3730 | 642 | 412164 | 264609288 | 25.3377 | $8.626{ }^{1}$ |
| 588 | 345744 | 20329T4 $\sim_{\text {a }}$ | $24.248 \sim$ | 8．3T7 | 64.3 | 413449 | $26584 \div 07$ | $25.35 \% 4$ | 8．6319 |
| 589 | 346921 | 204336469 | 24.2693 | 8．3825 | 644 | 414736 | 26 \％089984 | 25.3772 | 8.6357 |
| 590 | 348100 | 205379000 | 24.2899 | 8．38\％${ }^{\text {2 }}$ | 64.5 | 416025 | 268936125 | 25.3969 | 8.6401 |
| 591 | 349281 | 206425071 | 24310.5 | 8.3919 | 646 | 417316 | 269586136 | 25.4165 | 86446 |
| 2 | 350464 | 20ヶ474688 | 24.3311 | 8．346i | $64 \%$ | 418609 | － 28840023 | 25.4362 | 8.6190 |
| 50.3 | 351649 | 2085： $18.5 \%$ | 24.3516 | 8.4014 | 618 | 419904 | 2\％209\％79\％ | 25.45 | 8．8535 |
| 591 | 352836 | 1209584584 | 24.3721 | 8.4061 | 649 | 421201 | 273359449 | 125.4755 | 8.6579 |


| No． | Square． | Cube． | Sq． Root | Cube Root． | No． | Square． | Cube | Sq． <br> Root． | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 650 | 422500 | 274625000 |  |  | 705 | 490025 | 350402625 |  | 8.9001 |
| 65 | 423801 | 275894451 | 25.5147 | 8.6668 | 706 | 498436 | 351895816 | $26.5 \% 07$ | 8.9043 |
| 6 | 425104 | 2T7167808 | 25.5343 | 8.6713 | \％07 | 499849 | 353：393：24 | 26.5895 | 8.9085 |
| 603 | 426409 | 278445077 | 25.5539 | $8.675 \%$ | 708 | 501264 | $35+894912$ | 26.6083 | $8.912 \%$ |
| 654 | 42 zr 16 | 279726：64 | 25.5734 | 8.6801 | \％09 | 502681 | 356400829 | 26.62 11 | 8.9169 |
|  | 429025 | 28101 | 25.5 | 8. | 10 | 5041 | 357911000 | 26.6458 | 8.9211 |
|  | 430336 | 282300416 | 25.6125 | S． 6890 | 711 | 505．5 1 | 359425131 | 26.6646 | 8.9253 |
|  | 431649 | 28359：3393 | 25.6320 | 8．6934 | \％12 | 506944 | 360944128 | 26.6833 | 8.9295 |
| 658 | 43：964 | 284890312 | 25.6515 | 8．69～8 | 713 | 508369 | 36：46709 | 26．\％021 | 8.9337 |
| 659 | 434 | 286191179 | 25．6710 | 8.7022 | 714 | 509796 | $36399+344$ | 26.7208 | 8．93\％8 |
| 660 | 4356 | 2874 | 25.6905 | 8.7066 | $\because 15$ | 511225 | 365525875 | 26．73 | 8．9420 |
|  | 436921 | 288804～81 | 25.7099 | 8.7110 | 716 | 51：265 | 36\％061696 | 26.7582 | 8.9162 |
| 66： | 438214 | 2901175き8 | 257294 | 8． 7154 | 717 | 514089 | 368601813 | 26． ¢769 $^{\text {c }}$ | 8.9503 |
| 663 | 439569 | 291434：4\％ | 25． 4488 | 8． 7198 | 718 | $5155: 4$ | $3{ }^{\text {3 0 0146232 }}$ | 26．7955 | 8.9545 |
| 664 | 440896 | $292 \% 5494$ | 25． 7682 | 8．7241 | 719 | 516961 | 3～1694959 | 26.8142 | $8.958{ }^{\text {8 }}$ |
| 665 | 442225 | 29407 | 25.7 |  | 720 | 518400 |  |  | 28 |
| 666 | 443556 | 295408：96 | 25.807 | 8．73：9 | T21 | 519841 | 374805361 | 26.8514 | 8．96i0 |
| ¢ | 444889 | 296740963 | 125.8263 | 8．7373 | T22 | 521284 | 3\％6367048 | 26.8701 | 8．9 811 $^{\text {d }}$ |
| 668 | 4462 ${ }^{4}$ | $2980 \sim 7632$ | 25.8457 | 8． 7416 | 723 | 5202\％9 | 3T793306i | 26．888i | 8.9752 |
| 669 | 447561 | 299418309 | 25.8650 | 8．${ }^{4} 460$ | \％ 21 | 5\％11～6 | 3～0503124 |  |  |
|  |  |  | 25 |  | 725 | 5 | 3810 | 26 | 8．98：35 |
| 6 | 450241 | 302111711 | 25.9037 | 8． 7547 | $\because 26$ | $530 \sim 6$ | 38： $65 \% 1$ |  | $8.98 \% 6$ |
| 672 | 451581 | 303464448 | 25．9230 | 8．7590 | \％ | 528.529 | $3842+0.583$ |  | 8.9918 |
| 67.3 | 45\％929 | 304821217 | 25．912： | 8．7634 | 728 | 529984 | 38.5828352 | 26.9815 | 8.9959 |
| $6{ }^{4} 4$ |  |  | 25 |  | $7: 9$ |  | 38\％ 420489 |  | 9.0000 |
| 67 | 455 | 30 \％ | 25.9 | 8．7\％1 | 730 | 532900 | 38901\％ |  | 9.0041 |
| 6.6 | $4569 \sim 6$ | 308915 | 26.0000 | 8．7664 | T31 | 534361 | 390617891 | 27．0370 | 9.0082 |
| 6 | 4583：29 | 310288T3 | 26.0192 | 8．7807 | 73 | 535824 | 39222：3168 | 27.0555 | 9.0123 |
| $66^{\text {6 }} 8$ | 459684 | 311665 T52 | 26．0384 | 8． 7850 | 733 | $53 i 289$ | 393832883 |  |  |
| $6{ }^{\text {r }} 9$ | 461041 | 313046839 | 26.0576 |  | 734 | $538 \%$ | 395446904 | 27.0924 | 9．0205 |
| 680 | 462400 | 31443200 | 26.076 |  |  | 硡 |  |  |  |
| 681 | 463761 | 315821241 | 26.0960 | 8． 7988 | 736 | 541696 | 398688256 | 7．129 |  |
| 682 | 465124 | 317214568 | 26.1151 | 8．80：3 | 737 | 543169 | 400315553 | 2r．14\％ | 9.0328 |
|  | 466489 | 318611987 | 26.1343 | 8.8066 | 738 | 54464 | 40191ヶ2\％2 | 27．1662 | 9.0369 |
| 684 | 467856 | $3: 0013504$ | 26.1534 |  | － |  | 402－83119 | 27．18 | 9.0410 |
|  |  |  |  |  | \％40 | 547600 | 405：21000 | 27.2029 | 9.0450 |
|  | 40059 | 32288885 | 26.1916 | 8.8194 | T41 | 549801 | 406869021 | 27.2213 | 9.0491 |
| 68 | 471969 | 324242T03 | 26.2107 | 8．823í | 742 | 550564 | 408518188 | 27．239\％ | 9.0532 |
| 638 | 473344 | 325660672 | 26.2298 | 8.8280 | $\tau 13$ | 55：049 | 41017240\％ | 27． 2580 | 9.0572 |
| 689 |  | 327 |  |  | \％44 | 553536 | ＋11830 484 |  |  |
| 690 | 476100 | 328509000 | 26.2679 | 8.8 | T45 | 555025 | 4134936 |  |  |
| 691 | 477481 | 3299393＇1 | 26.2869 | 8.8108 | 746 | 556516 | 415160936 | $2 \pi .3130$ | 9.0691 |
| 693 | 478864 | 331373888 | 26.3059 | 8.8451 | 747 | 558009 | 41683：2ヶ23 | 27.3313 | 9.0 \％ 35 |
| 693 | 480249 | 332812557 | 26.3249 | 8．8493 | \％48 | 559504 | 418508992 | ：27．3496 | 9.0 \％75 |
| 694 | 481636 | 334255384 | 26.3439 |  | $\tau 49$ | 561001 | 420189749 | 27.3679 | 9.0816 |
| 69. | 483025 | 335102315 | 20.3029 |  | 750 | 562500 | 421875000 | 27.3861 |  |
| 696 | 484416 | 337153536 | 26.3818 | 8.8621 | 751 | 564001 | 423354451 | 27 4044 | 0896 |
| 697 | 48580 | 33860888 | 26.4008 | 8.8663 | 752 | 565504 | 425：59008 | 27．4：22 | 9.0937 |
| 698 | 487204 | 310068392 | 26.4197 | 8.8706 | 753 | 567009 | 42695 TTTH | 27．4408 | 9．097î |
| 699 | 488601 | 341532099 | 26.438 |  | 75 | 56 | 428661064 | 27.45 | 9.1 |
| 700 | 490000 | 343000000 | 26.4575 | 8.8790 | 755 | 570025 | 430368875 | $27.47 \% 3$ | 9.1057 |
| 701 | 491401 | 344472101 | 26.4764 | 8.8833 | 756 | 571536 | 432081216 | 27.4955 | 9.1098 |
| 702 | 493804 | 345948408 | 26.4953 | 8．88t5 | 57 | 57：349 | 433798093 | 27.5136 | 9.1138 |
| 703 | 494：09 | $34742892 \%$ | 26.5141 | 8.8917 | 758 | 574564 | 435519512 | 27.5318 | $9.11 \% 8$ |
| 704 | 495616 | 348913664 | 26.533 | 8.89 |  | 5\％6081 | $43 \% 245179$ | \％．550 | 9．1\％18 |


| No． | Square． | Cube． | Sq． Root． | Cube Root． | No． | Square． | Cube． | Sq． Root． | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc 60$ | $57 \% 600$ | 4389\％6000 | 27.5681 | 9.1258 | 815 | 664225 | 541343365 | 28.5482 | 9.3408 |
| r61 | 579121 | 440711081 | 27.5862 | 9.1298 | 816 | 665856 | 543238496 | 28．565\％ | 9.3447 |
| \％62 | 580644 | 4424507＊8 | 27.6043 | 9.1338 | 817 | 667489 | 545338513 | 28.5832 | 9.3485 |
| \％63 | 582169 | 441194947 | 2\％．6225 | 9.1378 | 818 | 669124 | $5473+3+32$ | 28.600 f | 0.3593 |
| 764 | 583696 | 445943744 | 27.6405 | 9.1418 | 819 | 6.0761 | 54935：359 | $28.618 \%$ | $!9.3561$ |
| 760 | 585225 | 447697125 | 2r． 6586 | 9.1458 | 820 | $6 \div 2400$ | 551368000 | 28．6356 | 93599 |
| 766 | 586756 | 449455096 | $2 \% .676{ }^{\circ}$ | 9.1498 | 821 | $6 \pi 4041$ | 553338\％661 | 28．65：31 | $9.363{ }^{7}$ |
| $\% 68$ | 588：89 | $45121 / 663$ | 27.6948 | 9.1537 | 822 | 675684 | 555412248 | $28.6 \% 05$ | $9.36 \% 5$ |
| 768 | 5898：4 | 459984832 | 27.7128 | $9.15 \sim 7$ | 823 | 67392 | $55 \% 441 \% 6 \%$ | 28.6880 | 9.3713 |
| 769 | 591361 | 454756609 | 27.7308 | $9.161 \%$ | 8：4 | 6.8976 | 5594\％6224 | 28.5054 | $9.3 \% 151$ |
| 870 | 593900 | 456533000 | 2\％．7489 | 9.1657 | 825 | 680625 | 561515625 | 28． 7228 | $9.3 \% 89$ |
| \％71 | 594441 | 458314011 | 2\％．7669 | 9.1696 | 886 | 68こ？${ }^{\text {¢ }} 6$ | $5635599 \% 6$ | 28．7402 | 9.3827 |
| 7\％2 | 595984 | 460099648 | 27．7849 | 9.1736 | 82\％ | 6839：9 | 565609283 | 28.7576 | 9．3865 |
| \％13 | 597599 | 461889917 | 27．8029 | 9.1 \％r5 | 898 | 685584 | 567663552 | 28.750 | 9.3902 |
| 814 | 5990\％6 | 463684824 | 27.8209 | 9.1815 | $8: 39$ | 689241 | 569 229 89 | 28．r924 | 9.3940 |
| 76 | 600625 | 465484375 | 27.8388 | 9.1855 | 8 | 688900 | $5 \% 1 \% 8000$ | 28.8097 | $9.39 \% 8$ |
| 76 | $6021 \% 6$ | $46 \% 2885 \% 6$ | 27.8568 | 9.1894 | 831 | 690561 | 573856191 | $28.82{ }^{\text {¢ }}$ | 9.4016 |
| \％ri | $603 \% 29$ | 469097433 | 27．874 | 9.1933 | 830 | 692224 | 5\％5930368 | 28.8444 | 94053 |
| \％r8 | $605 \div 84$ | 4\％091095？ | 2\％．892\％ | 9.1973 | S33 | 69：3859 | 578009537 | 28.861 | 9.4091 |
| $9{ }^{2} 9$ | 606841 | 4 ¢＇2\％29139 | 27.9106 | 9.2012 | 834 | 6955 ¢̊ 6 | $580093 \% 04$ | $28.8 \% 91$ | 9.4129 |
| 780 | 608400 | 474552000 |  | 9.2052 | 835 | 697025 | 582182875 | 28.8964 | 9.4166 |
| \％S1 | 609961 | 4763\％9541 | 27.9464 | Y． 2091 | 836 | 698896 | 5842\％\％056 | $28.913{ }^{7}$ | 9．4：04 |
| 782 | 6115\％4 |  | 2r． 9643 | 9.2130 | $83 \sim 1$ | ¢00569 | 58631625 | ： 8.9310 | $9.42+1$ |
| 783 | 613089 | 48004868 i | 2\％．9821 | $9.21 \% 0$ | 838 | r0324 | 5，884804\％ | 28.9482 | 9.4279 |
| 784 | 614656 | 481890304 | 28.0000 | 9．2209 | 839 | \％03921 | $590589 \%^{\prime} 19$ | 28.9655 | 9.4316 |
| 785 | 616225 | 483\％36625 |  | 9.2248 | 840 | T05600 | $592 \sim 04000$ | 28.9828 | 9.4354 |
| \％86 | $61 \% 96$ | $48558 \sim 656$ | 28．035 | 9.2087 | 841 | 「0\％${ }^{2}$ | $59+8 \times 23: 321$ | 29.0000 | 9.4391 |
| 787 | 619369 | 48：44：3403 | 28．0535 | 9.2326 | 842 | \％08964 | $59694 \sim 6$ | 29.0172 | 9.4429 |
| 789 | 6：0944 | 4893038i～ | 28.0713 | 9.2365 | 843 | \％10649 | 5990\％ $10 \%$ | 29.0345 | 9.4466 |
| 789 | 620521 | 491169069 | 28.0891 | 9.2404 | 844 | 71：336 | 601211584 | $29.051 i$ | 9.4503 |
| 790 | 624100 | 493039000 | 28.1069 | 9.2443 | 845 | \％14025 | 60.3351125 | 29.0689 | 9.4541 |
| 791 | 625681 | 494913661 | $28.124 \%$ | 9．248．2 | 846 | 710 \％ 16 | $60.5495 \% 36$ | 29.0861 | $9.45 \% 8$ |
| 792 | 6ご264 | 496\％93088 | 28．1425 | 9.2521 | $84 \%$ | 717409 | 60.645423 | ：9．103：3 | 9.4615 |
| 798 | 628849 | $4986 \% \sim 25 \%$ | 28.1603 | 9.2560 | 848 | \％19104 | 609800192 | $29.1 \geq 04$ | 9.4652 |
| r94 | 630436 | 500566184 | $28.1{ }^{17}{ }^{\circ} 0$ | 9.2599 | 849 | \％20801 | $6119600 \div 9$ | 29.1876 | 9.4690 |
| 795 | 632025 | 502459875 | 28．195\％ | 9.26 .38 | S． 0 | 729500 | 614125000 | 29.1548 | 9．47．27 |
| 796 | 6：33616 | 5043.58336 | 28.2135 | 9．$\therefore 6 \boldsymbol{6}$ | 851 | T24201 | 616295051 | $\because 9.1 ヶ 19$ | 9.4764 |
| 797 | 63509 | 506261573 | 28.2812 | 9.2716 | $85:$ | T25904 | 618450208 | 29.1800 | 9.4801 |
| 798 | 6368804 | 508169592 | 28.2189 | 9.254 | 8.3 | 「0～609 | 6：06504\％\％ | $29.206 \%$ | 9.4838 |
| 799 | 638401 | 51008 2399 | 28.2666 | 9.2193 | 854 | \％29316 | 622835864 | 29.2233 | 9.4875 |
| 800 | 640000 | 512000000 | 28．284：3 | 9.2832 | 855 | T．31025 | 625029375 | 29.2404 | 9.4912 |
| 801 | 641601 | 513920401 | 28.3019 | $9.28{ }^{\circ} 0$ | 8.56 | 73： 336 | 62 C 20016 | $29.25 \%$ | 9.4949 |
| 802 | 643：0 4 | 515849608 | \＆8．3196 | 9.8909 | $85 \tilde{1}$ | ri34449 | 6：942：へ93 | 29．2746 | 9.49 E 6 |
| 803 | 644809 | $51 \% 18162^{\sim}$ | $28.33 \%{ }^{\circ}$ | 9.2948 | 858 | 736164 | 631688712 | 29.2916 | 9．50\％3 |
| 804 | 646416 | 519718464 | 28.3549 | 9.2986 | 859 | i3i881 | 683539 \％\％ 9 | $29.308 \pi$ | 9.5060 |
| S05 | 648025 | 5216601 5 | 28.3705 | 9.3025 | 860 | \％39600 | 636056000 | 29.3258 | 9.5097 |
| 806 | 649636 | 523606616 | 28．3901 | 9.3063 | 861 | \％ $413: 1$ | $6382{ }^{-7} 381$ | 293498 | 9.5134 |
| 807 | 651949 | 525557943 | 28．40\％ | 9.3102 | $86:$ | 743044 | 640503928 | 29.3598 | $9.51 \% 1$ |
| 808 | 652864 | 52\％514112 | 28．4：53 | 9.3140 | 863 | 744769 | 642\％3564\％ | $29.3 \sim 69$ | 9.5207 |
| 809 | 654481 | 529475129 | 28．4429 | 9.3179 | 864 | r46496 | 644972544 | 29.3939 | 9.5244 |
| 810 | 656100 | 531441000 | 28.4605 | $9321 \%$ | 865 | \％ 48225 | $64 \% 14625$ | 29.4109 | 9.5281 |
| 811 | $657 \% 1$ | 533411731 | 28．4\％81 | 9．3255 | 866 | ¢49956 | 649461896 | 29.4279 | 9.5317 |
| 812 | $659: 314$ | $5353873 \geq 8$ | 28.4956 | 9．3：04 | $86 \hat{7}$ | \％51689 | 651714363 | 29.4449 | 9.5354 |
| 815 | 660969 | 53736\％r9\％ | 28.5132 | 9.33332 d | 868 | 753424 | 653972032 | 99.4618 | 9.5391 |
| 814 | $66 \bigcirc 596$ | 539353144 | 28.5307 | 9.3360 | 869 | \％55161 | 656：34909 | $29.4 \% 88$ | 9.5427 |


| No． | Square． | Cube． | $\begin{aligned} & \text { Sq. } \\ & \text { Root. } \end{aligned}$ | Cube Root． | No． | Square． | Cube． | Sq． Root． | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 870 | 756900 | 65850 |  | 9.5464 | 925 | 855625 | 791453125 |  | 9．\％435 |
|  | 758641 | ö607ヶ6311 | 29.5127 | 9.5501 | 926 | $8574 \% 6$ | 7940～ン＇a6 | 30．430：2 | 9．${ }^{2} 470$ |
|  | 760384 | 663054848 | $29.5 \div 96$ | 9.5537 | 9：37 | 8593：9 | т9659\％98：3 | 30．4467 | 9．7505 |
| 873 | $7621: 9$ | 665338617 | 29.5466 | 9.55 \％ 4 | $9: 8$ | 861184 | \％99178T5\％ | 30.4631 | 9 \％5 $\ddagger 0$ |
| 874 | 7638：6 | 66ז627624 | 29.5635 | 9.5610 | 929 | 863041 | 801ヶ65089 | 30.4595 | 9．\％5\％ |
| 875 | 765625 | 669921875 | 29.5804 | 9.56 | 930 | 864900 | 804357000 | 30.4959 | 9．r610 |
| 6 | 767376 | 672221376 | 29.5973 | 9.5683 | 931 | 866761 | 806954491 | 30．5123 | 9.7645 |
|  | 769129 | 674526133 | 29．6142 | 9.5719 | 932 | 868624 | $80955 \sim 568$ | 30．5：87 | 9．7680 |
|  | T70884 | 676836152 | 29.6311 | 9.5756 | $9: 33$ | 8i0489 | 8121662：37 | 30.5450 | 9．\％$\% 15$ |
| 9 | $7{ }^{\text {720 }} 641$ | 6 69151439 | 29.6479 | 9.5792 | 934 | 8T：235 | 814780504 | 30.5614 | 9．7\％50 |
|  | Ti4 | 681472000 | 29.6548 | 9.58 | 935 | $8{ }^{5}$ | 81\％4003\％ | $30.5 \sim 8$ |  |
|  | － 66161 | 683799841 | 29．6816 | 9.5865 | 936 | 876096 | $8200 \div 5856$ | 30.5941 | 9.7819 |
| 88.2 | \％ 7924 | 686128968 | 29.6985 | 9.5901 | 937 | 8 Tr969 | 8：2656953 | 30.6105 | 9．2854 |
| 88.3 | \％ 79689 | 688465387 | 29．7153 | 9．593\％ | 938 | 879844 | 825：9：36\％2 | 30．6268 | 9．7889 |
| 884 | T81456 | 69080\％104 | $29.73: 1$ | 9.5973 | 939 | 881721 | 827936019 | 30.6431 | 9.79 .4 |
| 885 | 783？25 | 693154125 | 29.7489 | 9.6010 | 940 | 883600 | 830584000 | 30.6594 | 9.5959 |
|  | \％84996 | 695506456 | 29.7658 | 9.6046 | $9+1$ | 885481 | 833：23：6：1 | 30.6 \％ 5 | 9． 7995 |
| 887 | ¢50゙69 | 697864103 | 29．78\％5 | $9.605 \%$ | 94：3 | 887364 | ． 8358968888 | 30．6920 | $9.80 \div 8$ |
|  | 7885：4 | \％0022\％0\％ | 29.7993 | 9.6118 | 943 | 889249 | 83856180 | 30．7083 | 9.8063 |
| 889 | 5903：1 | \％02593369 | 29.8161 | 9.6154 | 944 | 891136 | 841：32338 | 30.7246 | 9．809？ |
| 890 | \％92100 |  |  |  | 945 | 8930 |  | 30.1409 | 32 |
|  | ¢93381 | т0т34ก99\％1 | 29.8496 | 9．6：26 | 946 | 894916 | 846590536 | 30．7571 | $9.816{ }^{\text {a }}$ |
| 892 | 795664 | \％09r3：288 | 29.8664 | 9.6263 | $94 \%$ | 896809 | 8492781：3 | 30.7734 | 9．3：01 |
| 03 | ¢9744 | $71: 121957$ | $\therefore 9.8831$ | 9.6298 | 948 | 898：04 | 851971292 | 30．7＇896 | 9.8236 |
| 894 | －99：36 | ¢14516984 | 29.8998 | 9.6334 | 949 | 900601 | $8546 \% 0349$ | 30.8058 | 9．82\％0 |
| 895 | 80 | $7169173 \%$ | 29.9166 | 9．63\％ | 950 | 902500 | 857375000 | 30.8221 | 9.8305 |
| 896 | 80：3bl6 | \％19323136 | 29.9333 | 9.6406 | 951 | 904401 | 864085351 | 30．8388 | 9.83339 |
| 897 | 804609 | T21734273 | 29.9500 | 9.6442 | 95. | 906304 | 86：801408 | 30.8545 | $9.833 \% 4$ |
|  | 806404 | T 21150 | 29.9666 | 9.64 亿í | 95.3 | 908：09 | $8655231 \sim 1$ | $30.870 \tilde{1}$ | 9.8108 |
| 899 | 808：01 | \％265\％2699 | 29.9833 | 96513 | 954 | 910116 | 868：50664 | 30.8869 | 9.8443 |
| 900 | 810000 | 729000000 | 300000 | 9.6549 | 955 | 912025 | $8{ }^{7}$ | 0.9031 |  |
|  | 811501 | 73143：201 | 30．016í | 9.6585 | 956 | 913936 | STisti2816 | 30．9193 | 9.8511 |
|  | 813604 | 73：3870808 | 30．03333 | 9.6620 | $95 \%$ | 915819 | 8 8646r493 | 30．9354 | 9.8546 |
| 90：3 | 815409 | 736：3143：27 | 30.0500 | 9.6656 | 958 | 91 \％＇64 | 87921.912 | 30.9516 | 9.8580 |
| 904 | 81\％：16 | 73S\％63264 | 30.0666 | 9．6692 | 959 | 919681 | $8819 \sim 4079$ | 30.96 r | 9.8614 |
|  |  |  | ， |  | 960 | 921600 | 884736000 | 30.9839 | 9.8648 |
|  | 8：0836 | \％436T\％416 | 30.0998 | 9.6763 | 961 | 9233521 | 88ヶ503681 | 31.0000 | 9.8683 |
| 907 | 822649 | 746142643 | 30.1164 | 9．6ז99 | 96： | 925444 | $8902{ }^{2} 7128$ | 31.0161 | 9.8717 |
|  | 824464 | \％4861331： | 30．1330 | 9.6834 | 963 | 92\％369 | 89305634 | 31.0382 | 9.8751 |
| 909 | 8：6 $2 \times 81$ | \％51089429 | 30.1496 | ． $68{ }^{\text {a }}$ | 964 | 929：96 | 895841344 | 31.0483 | $9.8 \% 85$ |
| 910 | 828100 | 753511000 | 30.1662 | 9.6905 | 965 | 931255 | 898632125 | 31.0644 | 9.8819 |
| 911 | $8: 9921$ | 7560580：31 | $30.18 \% 8$ | 9.6941 | 966 | 933156 | 9014 28696 | 31.0805 | 9.8854 |
| 12 | $831 \pi 44$ | 7585505：2 | 30．1993 | 9．6976 | $96 \hat{7}$ | 93.5089 | 904：31063 | 31．0966 | 9.8888 |
| 913 | 833569 | 761048497 | 30.2159 | 9．701シ | 968 | 933034 | 907039232 | $31.112 \pi$ | 9．89\％2 |
| 914 | 835396 | 763551944 | 30．23：4 | 9．7047 | 969 | 938961 | 909853209 | 31.1288 | 9.8956 |
| 915 | 837225 | \％660608\％ | 30.2490 | 9.708 | 9 9\％ | 940900 | 9126r3000 | 31.1448 | 9．8990 |
| 916 | 839056 | \％68575296 | 30.2655 | 9．7118 | 971 | 942841 | 915498611 | 31.1609 | 9.9024 |
| 912 | 840889 | 771095213 | 30．28：20 | 9．7153 | 972 | 944784 | 918330048 | 31.1 169 | 9.9058 |
| 910 | $8427 \cdot 4$ | \％7362063： | 30.2985 | 9.7188 | $9 \% 3$ | $946 \sim 29$ | $92116 \tau 317$ | 31．19：9 | 9.9092 |
| 919 | 844561 | Tr6151559 | 30.3150 | 9.7224 | 974 | $9486 \sim 6$ | 924010424 | 31.2090 | 9.9126 |
| 920 | 846400 | 778688000 | 30.3315 |  | 975 | 950625 | 926859375 | 31.2250 | 9.9160 |
| 9.1 | 848241 | \％81229961 | 30.3480 | 9．7294 | 976 | 952576 | 929714176 | 31.2410 | 9.9194 |
| $9 \% 2$ | 850084 | T8877T448 | 30.3645 | 9．7329 | $9 \mathrm{9T}$ | 954529 | 9325 44833 | 31.2570 | $9982 \%$ |
| 923 | 851929 | 78633046\％＇ | 30.3809 | 9．7364 | $9 \% 8$ | 956484 | 935441352 | 31．2730 | 9．9261 |
| 924 | 8．53T\％ 6 | \％88889024 | 30.3974 | 9．${ }^{2} 400$ | 979 | 958441 | $938313 \% 39$ | 31.2890 | 9．9295 |


| No． | Square． | Cube． | Sq． Root． | Cube． Root． | No． | Square． | Cube． | Sq． Root | Cube Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 980 | 960400 | 941192000 | 31.3050 | 9 939 | 1035 | 10ヶ12．35 | 1108717875 | 32.1714 | 10.1153 |
| 981 | $96: 361$ | 944076141 | 131．3\％09 | 9.9363 | 1036 | 10783296 | 1111934656 | $32.18 \% 0$ | 10.1186 |
| 98： | 964324 | 946966168 | 31.3369 | 9.9396 | 103 r | $10 ヶ 5369$ | 1115157653 | 32．2025 | 10.1218 |
| 983 | 966259 | 949862087 | 31．35こ8 | 9.9430 | 1038 | 1077444 | 1118386872 | 32.2180 | 10.1251 |
| 984 | 968256 | 952\％63904 | 31.3688 | 9.9464 | 1039 | 1079521 | 1121622319 | 3：2． 2335 | 10.1283 |
|  | 970225 | 9556\％16：5 | 31．3847 | 9.9497 | 1040 | 1081600 | 1124864000 | 32.2490 | 10.1316 |
| 986 | 972196 | 958585：356 | 31.4006 | 9.9531 | 1041 | 108：3681 | 1128111921 | 32．2645 | 10.1348 |
| $98 \sim$ | $9 \sim 4169$ | 961504803 | 31.4166 | 9.9565 | $104 \div$ | 1085764 | 1131366088 | 32． 2800 | 10.1381 |
| 988 | $9 \% 6144$ | 9644302\％＇2 | $31.43 \% 5$ | 9.9598 | 1043 | 1087849 | 11：3462650i | 32．2955 | 10.1413 |
| 989 | 978121 | 967361669 | 31.4484 | 9．96：3： | 1044 | 1089936 | 1137893184 | 32.3110 | 10.1446 |
| 990 | 980100 | 970299000 | 31．4643 | 9．966 | 1045 | 1092025 | 1141166125 | 32.3265 | $10.14 \%$ |
| 991 | 98：081 | $973: 4 \cup: \% 1$ | 31．4802 | 9.9699 | 1046 | 1094116 | 1144445336 | 32.3419 | 10.1510 |
| 99：2 | 984064 | 976191488 | 31.4960 | 9.9733 | 1047 | 1096209 | $114 \% 30823$ | $32.35 \sim 4$ | 10.1543 |
| $99: 3$ | 986049 | 979146657 | 31.5119 | 9.9766 | 1048 | 1098304 | 1151022592 | 32．37：8 | 10.1575 |
| 994 | 9880：36 | 982107\％84 | $31.52 \sim 8$ | 9.9800 | 1049 | 1100401 | 11543：0649 | 32.3883 | 10.1607 |
| 99 | 990025 | 985074875 | 31.5436 | 9.9833 | 1050 | 1102500 | $11576 \cdot 25000$ | 32．40：3í | 10.1640 |
| 996 | 992016 | 988047936 | 31.5595 | 9.9866 | 105！ | 1104601 | 1160935651 | 32.4191 | $10.16{ }^{\sim} 2$ |
| 997 | 994009 | 991026973 | $31.5 \%$ | 9.9900 | 105： | $1106 \% 04$ | 1164252608 | 32．4345 | 10.1704 |
| 998 | 996004 | 991011992 | 31.5911 | 99933 | 10．53 | 1108809 | $116757587 \%$ | 32．4500 | 10.1736 |
| 999 | 098001 | 99700：993 | $31.60 \% 0$ | 9.996 | 10.54 | 1110916 | 1170905464 | 32.4654 | 10.1769 |
| 1000 | 1000000 | 1000000000 | 31.6228 | 10.0000 | 1055 | 1113025 | 11\％4241375 | 32.4808 | 10.1801 |
| 1001 | 100：001 | 1003003001 | 31.6386 | 10.0033 | 1056 | 1115136 | 1177583616 | 32．4962 | 10.1833 |
| 1002 | 1004004 | 1006012008 | 31.6544 | 10.0067 | $105{ }^{\circ}$ | 1117249 | $118093 \geqslant 193$ | 32.5115 | 10.1865 |
| 1003 | 1006009 | 10090：\％02i | 31.6702 | 10.0100 | 1058 | 1119：364 | 1184287112 | 32．5こ69 | 10.1897 |
| 1004 | 1008016 | 101®048064 | 31.6860 | 10.0133 | 1059 | 11：1481 | 1187648379 | 32.5423 | 10.1929 |
| 1005 | 1010025 | 1015075125 | 31．${ }^{\text {F }} 017$ | 10.0166 | 1060 | 1123600 | 1191016000 | $32.55 \% 6$ | 101961 |
| 1006 | 101：033 | $1018108 \cdot 16$ | 31.7175 | 10．0：00 | 1061 | 1125\％2 | 1194：389981 | 3：． 5730 | 10.1993 |
| 100\％ | 1014049 | 1021147343 | 31.7333 | $100: 33$ | 106： | 1127544 | 119\％rre3．e8 | 3：．5883 | 10.2025 |
| 1008 | 1016064 | $102+192512$ | 31.7490 | $10.0 \geqslant 66$ | 1063 | 1189969 | 120115704～ | 32.6036 | 102057 |
| 1009 | 1018081 | 1027．43729 | 31.7648 | 10．0：99 | 1064 | 113：096 | 1204550144 | 3之． 6190 | 10．2089 |
| 1010 | $10: 3100$ | 1030301000 |  | 10．0332 | 1065 | 1134：25 | 120\％919625 | 32.6343 | 10.2121 |
| 1011 | 1022121 | 10333364331 | $31.796 ?$ | 10.0365 | 1066 | 1136356 | 1211355496 | 32.6497 | 10.2153 |
| 1012 | 1024144 | 10：364332788 | 31.8119 | 10.0398 | 106 ～̈ | 1138489 | 1214767\％63 | 326650 | 10.2185 |
| 1013 | $10 \div 6169$ | 1039．50919 ${ }^{\prime \prime}$ | $31.80 i \%$ | 10.04831 | 1068 | 11406：4 | 121818643： | 32.6803 | 10．2217 |
| 1014 | 1028196 | 1042590＇44 | 31.8434 | 10.0465 | 1069 | $1142{ }^{\text {c }} 61$ | 1221611509 | 32.6956 | 10.2249 |
| 1015 | 1030295 | 1045678375 |  |  | $10 \% 0$ | 1144900 | 1295043000 | 32.7109 | 10．2281 |
| 1016 | 1032256 | $10487 \% 296$ | 31.5748 | 10．0531 | $10 \% 1$ | $114 \% 041$ | 1298480911 | 32．7261 | 10.2313 |
| 1017 | 1034289 | $10518 \sim 1913$ | 31.8904 | 10.0563 | 1022 | 1149184 | 1231925：48 | 32.7414 | 10.2345 |
| 1018 | 10363：4 | 1054977839 | 31.9061 | 10.0596 | 1073 | 1151329 | 1235376017 | $32.756 \%$ | 10．2376 |
| 1019 | 1038301 | 1058089859 | 31.9218 | 10．0629 | $10 \% 4$ | 1153476 | 1238833224 | 32.7719 | 10.2408 |
| 1020 | 1040400 | 1061208000 | $31.93{ }^{\circ} 4$ | 10.0662 | 10\％5 | 1155695 | 124229685 | 39．7872 | 10.2440 |
| 1021 | 104：441 | 1064333261 | $31.95: 31$ | 10.0695 | 10\％6 | $115 \% 76$ | 1245766976 | 3：．8024 | $10.24 \%$ |
| 102： | 1044484 | 1067469648 | 31.9688 | 10.0788 | 10\％ | 11599：9 | 1249243533 | $32.817 \%$ | 10.2503 |
| 1023 | 1046529 | 107059916i | 31.9844 | 10.0 .61 | 10\％S | 1162084 | 1252726552 | 32.8329 | 10.2535 |
| 1024 | $10485 \%$ | 1073741824 | 32．0000 | 10.0694 | $10 \sim 9$ | $11649+1$ | 1256216039 | 32.8481 | 10.2567 |
| 1025 | 1050625 | 1076890625 | 32.0156 | 10.0826 | 1080 | 1166400 | 1259712000 | 32.8634 | 10．2599 |
| 1026 | 10526\％ 6 | 1080045566 | $32.031:$ | 10.0859 | 1081 | 1168561 | 1263214441 | 32.8786 | 10.2630 |
| 1027 | 1054729 | 1083：06683 | 32.0468 | 10．089\％ | 1082 | 1170724 | 1266＇23368 | 32.8938 | 10.2662 |
| 1028 | 1056\％84 | 1086373952 | $3 ? .0624$ | 10.0925 | 1083 | 1172889 | 12\％02：38787 | 32.9090 | 10．269：3 |
| $10: 9$ | 1058841 | $108954 \% 389$ | 32.0780 | 10.095 \％ | $108 \pm$ | 1176056 | 1273760\％04 | 32.9242 | $10.2 \% 25$ |
| 10：30 | 1060900 | 1092\％$\% 000$ | 32.0936 | 10.0990 | 1085 | 117\％225 | 12\％\％289125 | 32.9393 | 10．257 |
| 1031 | 106：961 | 1095912791 | 32.1092 | 101023 | 1086 | 1179396 | 1280824056 | 32.9545 | 10.2788 |
| 103： | 10650：4 | 1099104768 | $3 ? .1248$ | 10.1055 | 1087 | 1181569 | $1 \cong 84365503$ | 32．969 | 10.2880 |
| 10：33 | $106{ }^{\prime} 089$ | 110230293i | 32.1403 | 10.1088 | 1088 | 1183744 | 1287913472 | $32.98+8$ | 10.2851 |
| 1034 | 106915 | $110550 \sim 304$ | 32.1559 | 10．1121 | 1089 | 1185921 | 1291467969 | 33.0000 | 10.2883 |


| No. | Square. | Cube. | Sq. Root. | Cube Root. | No. | Square. | Cube. | Sq. Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1090 | 1188100 | 1295029000 | 33.0151 |  |  | 1311025 | 1501123625 |  | 10.4617 |
| 1091 | 1190281 | $12985965{ }^{1} 1$ | 33.0303 | 10.2946 | 1146 | 1313316 | 1505060136 | 33.85:6 | 10.4617 |
| 10 | 1192464 | 1302174688 | 33.0454 | 10.2977 | 1147 | 1315609 | 1509003523 | $33.86 \pi 4$ | 10.46 \% 8 |
| 1093 | 1194649 | 1:35\%51357 | 33.0606 | 10.30 | 1148 | 1317904 | 1512953792 |  |  |
| 1094 | 1196836 | 1309338584 |  | 10.3040 | 1149 | 1320:01 | 1516910949 | 33.8969 |  |
|  |  |  |  |  |  | 1322500 | 1520875000 |  |  |
|  | 1201216 | 1316532736 | 33.1059 | 10.3103 | 1151 | 1324801 | 1524845951 |  |  |
| 10 | 1203409 | $13: 0139673$ | 33.1210 | 10.3134 | 1152 | 132\%104 | 15288\%3808 | 33.9411 | 30 |
| 10 | 1205604 | 1323i53192 | 33.1361 | 10.3165 |  | 1329409 | 15325085ĩ | 33.9559 | 10.4860 |
| 1099 | 120テ801 | 13:27373299 | 33.1512 |  |  | 1331716 | 1536800264 |  |  |
| 110 | 1210000 | 1331000000 |  |  |  |  | 15407988\% |  |  |
| 1101 | 1212201 | 1334633301 | 33.1813 | 10.3259 | 1156 | 1336336 | 1544804416 | 34. | 51 |
| 20 | 1214404 | 1338273208 | 33.1964 | 10.3:90 | $115 \%$ | 1338649 | 15488168 |  | 981 |
| 1103 | 1216609 | 1341919727 | 33.2114 | 10.332: | 115 | 1340964 | 155283631: | 34.0294 | 10.5011 |
| 1104 | 1218816 | $13455 \% 2864$ |  |  | 11 |  | 15568626\%9 |  | 10.5042 |
|  | 1221025 |  |  |  |  | 1345600 | 1560896000 |  | T2 |
| 110 | 1223236 | 135289901 | 33.2566 | 10.3415 | 1161 | 1347921 | 1564 |  | 10.510:3 |
| 1107 | 1225449 | 13565720 | 33.2716 | $10.344 \sim$ | 1162 | 1350244 | 15689 | 34.0881 | 105132 |
| 1108 | 12:2?664 | 1360:251712 | 3.2866 | 10. | 1163 | 1355569 | 157303774 | 34 | 10.516: |
| 1109 | 1:29881 | 1363938029 | 33.3017 | 10.3509 | 1164 | 1354896 | $15 \sim 1709894$ | 34.117 | 10.5192 |
| 1110 | 12 | 13 | 33.3167 | 10. | 11 | 135722.5 | 15 | 31 | 105223 |
| 1111 | 1234321 | 137133063 | 33.3317 | 10.3571 | 1160 | 1359556 | 158524 |  | 10.5253 |
| 1112 | 1236544 | 13750369:8 | 33.3467 | 10.3602 | 116 f | 1361889 | 15893:44 | 34.1614 | 283 |
| 1113 | 1238769 | 13ヶ874989 | $33.361 \%$ | 10.3633 | 116 | 1364224 | 15934136 | 34 | 10.5313 |
| 1114 | 1240996 |  |  | 10.3664 | 11 | 1366561 |  |  |  |
| 1115 | 1243225 | 13861 |  | 103695 | 11.0 |  | 1601613000 |  |  |
|  | 1245456 | 1389928 |  | 10.3726 | 117 | 137 | $1605 \%$ |  |  |
|  | 1247689 | 1393668613 | 33.4215 | 10.3757 | 1172 | 1373584 | 160984044 | 34.2345 |  |
| 1118 | 12499:4 | 1397415032 | 33.4365 | 10.3788 | 1173 | 1375929 | 1613964717 | 34.2491 | 10.5463 |
| 1119 | 1252161 | 1401168159 | 33.4515 |  | $11{ }^{1} 4$ |  | 1618096024 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 1121 | 1256641 | 140869 | 33.4813 | 10.3881 | 1176 | 138:976 | $16 \geq 6379$ | 34.2929 |  |
| 11 | 1258884 | 1412467 | 33.4963 | 10.3912 | 117 | 1385329 | 163053 |  | 583 |
| d | 1261129 | 1416 | 33.5112 | 10.3943 | 1178 | 1387684 | 163169175 |  |  |
| 1124 | 1263376 | 14200 | 33.5261 | $10.39 \% 3$ | 1179 | 1390041 |  |  |  |
| 11 | 12656 |  |  |  | 118 | 139 |  |  |  |
|  | $126 \sim 876$ | $142 \sim 688$ | 33.5559 | 10.4035 | 1181 | $1394 \% 1$ | 164721:274 | 34.365\% |  |
|  | 12\%0129 | 143143538 | 33.5708 | 10.4066 | 1182 | 13971\%4 | 165140056 | 34.38 | (3)2 |
| 1128 | 1272384 | 1435249152 | 33.5857 | 10.4097 | 1183 | 1399489 | 1655595487 | 34.3948 | $105{ }^{\text {5 }} 6$ |
| 1129 | 1274641 |  |  |  | 1184 | 14018 ¢ 6 |  |  |  |
|  | 1276900 |  |  |  |  |  | 1664006625 |  |  |
| 1131 | 1279161 | 1446731091 | 33.6 | 10.4189 | 1186 | 1406596 | 166822:38 |  |  |
| 1132 | 1281424 | 1450571968 | 33.6459 | 10.4219 | 118 | 1408969 | 1672446:0 | 34.45:9 | 10.5881 |
| 1135 | 1283689 | 1454419637 | 33.6601 | 10.4250 | 1188 | 1411344 | 16766 | - | 10.5910 |
| 1134 | 1285956 | 1458274104 | 33.6749 | 10.4281 | 11 | 14137 | 1680 | 34. | 10. |
| 113 | 12 | 14 |  |  | 1190 | 14 | 16851 |  | 10.59\%0 |
| 1136 | 1290496 | 1466003456 | 33. 7046 | 10.4312 | 1191 | 1418481 | 1689410871 | 31.5109 | 10.6000 |
| 113 | 1292769 | 1469578353 | 33.7174 | 10.4373 | 1192 | 1420864 | 1693669888 | $34.525-1$ | 10.6029 |
| 1138 | 1295044 | 1473760072 | 33.7342 | 10.4404 | 1193 | 1423:49 | 1697936057 | 34.5398 | 10.6059 |
| 1139 | 129 9321 | 1477648619 | 33.7491 | $10 .$ | 1194 |  |  |  |  |
| 1140 | 1299600 | 1481544000 | 33.7639 | 10.4464 | 1195 | 1428025 | 1706489875 | 34.5688 | 10.6118 |
| 1141 | 1301881 | 1485446221 | $33.778{ }^{\text {r }}$ | 10.4495 | 1190 | 1430416 | 17107775 | 34.5832 | 10.6148 |
| 114: | 1304164 | 1489355288 | 33.793 | 10.4525 | 1197 | 143:809 | 1715072373 | 3.597\% | 0.6177 |
| 1143 | 1306449 | 149327120 | 33.8083 | 10.4556 | 1198 | 1435:04 | 171937439\% |  | 10.6207 |
| 114 | 13087 |  |  | 110.45 |  | 113 |  |  | 0.6236 |


| No． | Square． | Cube． | Sq． Root． | Cube Root． | No． | Square． | Cube． | Sq． Root． | Cube <br> Root． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1440000 |  |  |  | 125 | 15750\％5 | 1976656375 |  |  |
| 1201 | 1442401 | 1ヶ323236 | 34.6554 | 10．6295 | 1256 | 1574536 | 1981385216 | 35.4401 | 10．7894 |
| 1：0： | 1444804 | 1736654408 | 34.6609 | 10．6335 | 1258 | 1580049 | 1386121593 | 35.4542 | － 59.2 |
| 1203 | 144\％20 | 174099242\％ | 3t．6843 | 106354 | 1258 | 158：564 | 1990865512 | 35.4683 | 0． 2951 |
| 1：04 | 1449616 | 174533 | 3＋．6987 | 10.6354 | 1259 | 1585081 | $19956169 \uparrow 9$ | 5.4824 | 10.7980 |
| 120 | 145： |  |  | 10.6413 | 1260 | 1587600 | 2000376000 | 35.4965 |  |
| 1206 | 1454436 | 175404981 | $34.72 \%$ | 10.6443 | 1261 | ；1590121 | 2005142581 | 35.5106 |  |
| $120 \%$ | 1456849 | $1 \% 58467$ | 4.7419 | 10.64 \％2 | 1262 | $159: 644$ | 2009916728 | 35.5246 | 10.8045 |
| 120 | 1459：64 | 1：62～90912 | 34．7563 | 10.6501 | 1263 | 1595169 | ：01469844 | $35.538{ }^{\text {r }}$ | 10.8094 |
| 1209 | 1461681 | 1767122329 |  | 10.6530 | 1264 | 1597696 | $201948 \%$ | 35.5528 | 10.8122 |
| 12 | 1464100 |  |  | 10.6560 | 12 | 1600225 | 2024284625 | 35. | 10.8151 |
| 1211 | 1466521 | 1 1 75956931 | 34． 7994 | 10.6590 | 1266 | 1602756 | 20：2089096 | ＇35．5809 | 0.8179 |
| 1212 | 1455944 | 1880360128 | 34.8138 | 10.6619 | $126{ }^{1}$ | 1605：88 | 2033901163 | 35.5949 | 08 |
| 1213 | $14 \sim 1369$ | $1 ; 8$ ¢Tr059i | 34． 8281 | 10.6648 | 1268 | 16078：2 | 203820832 | 35.6090 | 0.8236 |
| 1214 | 1473796 | $1 ; 89188344$ | 34.8425 | 10.6678 | 1269 | 1610361 | 2043548109 | 35.6230 | 10.6865 |
|  |  |  |  |  | 12.0 | 1612900 | 2048383000 |  | 93 |
| 1216 | $14 \% 8656$ | 1798045 | ． | 10．6\％36 | 1271 | 1615＋41 | $20.33: 25511$ | 35.6511 | 108322 |
| 1217 | 1481089 | 1802485 | 34. | 10.6765 | 122： | 1617984 | 2058075648 | 35.6651 | 10.8350 |
| 12 | 1483524 | 1806932 | 34.8999 | 10.6795 | 1243 | 16：05：9 | $206293341 \sim$ | 35．6691 | 108378 |
| 12 | 1485961 | 18 |  | 10．6824 | 12 T 4 | 1623076 | 2066798824 | 35.6931 | 10.8407 |
| 130 | 1488100 | 18158480 |  | 10. | 10～\％ | 1625625 | 2072671875 | 35． $70 \sim 11$ |  |
|  | 1490841 | 182031686 | 34.9428 | 10．688： | 12 T 6 | 1628176 | 20 т $51525 \sim 5$ | 35.7211 |  |
| 1 | 1493984 | 18：4793048 | 34.9571 | 10.6911 | 1271 | 1630～29 | 2082440933 | 35． 7351 | 8492 |
| 12：23 | 1495：n9 | 1829：2r656i | 34.9714 | 10.6940 | 1278 | 1633：24 | 2087336952 | 35.7491 | 520 |
| 12\％4 | $14981 \% 6$ | 1833ヶ6ヶ424 |  | $10.69 \% 0$ | $12 \% 9$ | 1635841 | 2092240639 |  |  |
| 1225 | 1500625 | 1838965625 |  | 10.6999 | 1280 | 1638400 | 2097152000 | 35.7771 | 10.8547 |
| 12： | $15030 \sim 6$ | 1842T 11 | 35. |  |  | 1640961 | 21020 11041 | 135．7911 |  |
| $12 \cdot 7$ | 1505．5：9 | 184～：8408： | 35. | 10．705\％ | 1282 | 16435：4 | 210699\％ 68 | 35.8050 |  |
| $1 \geqslant 28$ | $150 ¢ 984$ | 185180435： | 35.0428 | 10．7086 | 1283 | 1646089 | 2111932187 | 35.8190 | 10.8661 |
| 12：9 | 1510441 | 1856331989 | $35.05 \% 1$ |  | 1284 | 1648656 | $21168 \pi 4304$ | 35.8329 |  |
| 12：30 |  |  |  | ， | 1285 | 1651225 | 2121824125 |  |  |
| 12：31 | 1515361 | 18654（\％）391 | 35.085 | 107173 | 1286 | 1653596 | $21 \sim 6781656$ | 35.8608 |  |
| 123 | 1517824 | 1869959 | 35.0999 | 10．7202 | 12 | 1656369 | 2131746903 | 35.87 | \％ |
| 123：3 | 1500239 | 187451 | 35.1141 | 10．Te31 | 1288 | $16589+4$ | 2136\％198\％2 |  |  |
| 1234 | 1522756 |  |  |  | 1289 | 1661521 | 2141700569 | 35.9026 |  |
|  |  |  |  |  |  |  |  |  |  |
| 1236 | 152\％696 | 188 | 35.15 | 10．7318 | 1291 | 1666681 | 21516851 11 |  |  |
| 123 | 1530169 | 1892819053 | 35.1 \％10 | 10． $334 \%$ | 1292 | 1669264 | $\because 156689088$ | 35．944 | 8915 |
| 1238 | 153：244 | 1897413：？ | 35．185： | 10.7376 | 1293 | 16：1849 | $2161 \% 00 \% \sim$ |  | 94？ |
| 123 |  |  |  |  | 129 | $1{ }^{\sim}$ | $2166 テ 20184$ |  |  |
| 1 |  |  |  |  |  |  | 2171\％4 335 |  |  |
| 1 | 1540081 | 19112405：31 | 35． 2 L \％ 8 | 107463 | 1296 | 16：9616 | $21 \sim 6 \sim 8 \geq 336$ | 360000 | 10.9027 |
| 1242 | 1542564 | 1915864488 | ：35．2420 | 10．7491 | 1297 | 168：2209 | 2181825073 | 36.0139 |  |
| 1243 | 1545049 | $1920+95907$ | 35．25．62 | 10．7520 | 1298 | $168480+$ | 2186875592 | $36.02 \%$ | 10.9083 |
| 1244 |  | 19：5134i84 | 35.2704 | 10.7549 | 1299 | 168 T401 | 2191933899 | 36. | 10.9111 |
| 1245 | 15500\％ | 1929781125 | 35.2846 | 10．75\％8 | 1300 | 1690000 | 2197000000 | 36.0555 | 10.9139 |
| 12 | 155：516 | 1934434936 | 35.298 r | 10． 7607 | 1301 | 1692601 | 2202073901 | 36.0694 | 0．916i |
| 1247 | 1555009 | 1939096923 | 35.3129 | 10．7635 | 1302 | 169520t | 2007155608 | 36.0832 | 10.9195 |
| 124 | 1557504 | 1943764992 | $35.33 \% 0$ | 10．7664 | 1303 | 1697809 | $\because 2,224512 i$ | 36．0971 | 0．922：3 |
| 1249 | 1560001 | 1948141249 | 35.3412 | 107693 | 1304 | 1700416 | 2217342464 | 36.1109 | 10.9251 |
| 1250 | 1562500 | 195 |  | 10.7 | 1305 | 1703025 | 202 $24 \sim 605$ |  |  |
| 1251 | 1565001 | 1957816：51 | 35.3695 | 10．7750 | 1306 | 17056.36 | $22 \sim 5560616$ | 36.1386 | 10．930\％ |
| 125： | 1567504 | 1962515008 | 35.3835 | 10．7Tา9 | 1307 | 1708249 | $22.3 \geqslant 681443$ | $36.15 \% 5$ | 10.9335 |
| 1253 | 15\％0009 | 1967 | $35.39 \%$ | 10 \％508 | 130 | 1710864 | 2237810112 | 36.1663 | 10.9363 |
| 1254 | 1572 | 1971935064 | 35 |  |  | $1 \% 134$ | 2242946629 | 36.1801 | 0.939 |


| No. | Square. | Cube. | Sq. Root. | Cube Root. | No. | Square. | Cube. | Sq. Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1310 | 1716100 | 2248091000 | 36.1939 | 10.9418 | 13 | 1863225 | 25 |  |  |
| 1311 | 1718721 | 22532432331 | 36. 20\% | 10.9446 | 1366 | 1865956 | 2548895896 | 36.9597 |  |
| 1312 | 172134 | 2258103328 | 36.9215 | 10.9174 | $136 \hat{}$ | 1865659 | 2554497863 | 36.9730 | 11.0983 |
| 1313 | 1723969 | 2263571297 | 36.2353 | 10.950\% | 1368 | 1891424 | 256010503: | 36.9865 | 111010 |
| 1314 | 1\%:6596 | $226874 \sim 144$ | 36.2191 | 10.9530 | 1369 | 1874161 | 2565726409 |  | 1.1037 |
|  | 1729 |  | 36.2629 | 10.0557 | 1370 | 1876900 | 2571 | 37.0135 | 11.1064 |
| 16 | 1731856 | 2279124196 | 36.2 \%67 | 10.9585 | 1371 | 1879641 | -5 26987811 | 37.0270 | 11.1091 |
| 1317 | 1 1ヶ34489 | $228432: 013$ | 36.2305 | 10.9613 | 137: | 188:384 | 258:630818 | 3T.0405 | 11.1118 |
| 1318 | 1737124 | 2289529432 | 36.3043 | 10.9640 | 1373 | 1885129 | 2588:28:117 | 37.0540 | 11. |
| 1319 | 1739761 | $229+744759$ | 36.3180 | 10.9668 | 13T4 | 1887876 | $25939+1624$ | 3\%.06\% | 11.1122 |
|  |  |  |  |  |  |  |  |  |  |
| 1321 | 174 | 2305199161 | 36.3456 | 10.97:24 | $13 \sim 6$ | 18933\% | $26052853 \%$ | - | 1.1226 |
| 1322 | 1ז4\%684 | 2310438248 | 36.3593 | 10.9752 | 1378 | 1896129 | 2610 | \%. | 11.1253 |
| 13\%:3 | $17503: 9$ | $231568526{ }^{\text {a }}$ | 36.3731 | 10.9759 | $13 \pi 8$ | 1895881 | $261666215 \%$ | $37.1: 14$ | 11.1280 |
| $13: 4$ | 1552966 | 2320910224 | 36.3868 | 10.9807 | 1379 | 1901641 | $\because 6.2362939$ | \% . 1349 | 11.1307 |
| 2 | 1755695 | 23: | 36.4005 | 10. | 13 | 1904400 |  |  |  |
| 26 | 1758 | 23331473976 | 36.4143 | 10. | 138 | 190 ¢161 | $\because 633 \% 89341$ | 3\%. 161 | 11.1361 |
| 132 | 17609 | $2336 \pi 52 \pi 83$ | 36.4280 | 10.9890 | 1382 | 19099?4 | 2639514968 | . 37.11 | 11.1387 |
| 1320 | 1763584 | $234203955: 3$ | 36.4117 | 10.9917 | 1383 | 1912689 | 2645948887 | 37.188 斤 | 11.1414 |
| $13: 9$ | $1666: 41$ | 2347334289 | 33.4555 | 10.9945 | 1384 | 1915456 | 2650991104 | 37.2021 |  |
|  | 1768900 |  |  | 10 | 1385 | 1918225 |  | 37.2156 | 68 |
|  | 1T71561 | 23.5\%977691 | 36.4829 | 11.0000 | 1386 | 1920996 | 2662500456 | 37.2290 |  |
| 133 | $1774 \geqslant 2$ | $2363: 66368$ | 36.4966 | 11.0028 | 138 | 192:3T69 | 266826~603 | 37 :424 | 15\% |
| 13 | $17 \% 6889$ | 2:368593033î | 36.5103 | 11.0055 | 1388 | 1926544 | $\because 6440+30 \%$ | 37.2559 | 548 |
| 1334 | 177955 |  | 36.5240 | 11.0083 | 1389 | 19:29321 | 2649826869 | 37.2693 | 11.15 \% |
| 1335 | 178 |  |  |  |  | 1932100 |  |  |  |
|  | 1784896 | $23846210 \overline{6}$ | 36.551 | 11.0138 | 1391 | 1934881 | 2691419411 | 137.2961 | $11.16: 9$ |
| 1337 | 1787569 | 2389979753 | 36.5650 | 11.0165 | 1392: | 193766 | 2697228828 | 37.3095 | 11.1655 |
| 13:38 | 1790: 44 | 23953464\% | 36.5787 | 110193 | 1393 | 1940449 | 2003045457 | $37.3 \pm 29$ | 11.1688 11.1709 |
| 1339 | 179:921 | $2400 \sim 21219$ |  | 11 | 1394 | 1943:36 |  |  |  |
|  |  | $\because 406104000$ |  | 11 | 1395 | 1946025 | 2714704875 | 37. 3497 |  |
| $13+1$ | 1798281 | $24114948: 1$ | 36.6197 | 11.02 25 | 1396 | $19+8816$ | $2 \sim 054 \sim 136$ |  |  |
| 1342 | 1800964 | 2416893688 | 36.6333 | 11.0302 | 1397 | 1951609 | Q 26397 |  |  |
| 1343 | 1803649 | 2+223300607 | 36.6469 | 11.0333 | 1398 | 1954404 | 273.256\%92 | 37 | 11.1816 |
| 1344 | 1806336 | $242 \sim 715584$ | 36.6606 | 11.035 T | 1399 | 195 ¢201 | 2T38124199 | 37 |  |
| 134 | 18090 |  |  |  |  |  |  |  |  |
|  | 1811716 | 2438569736 | $36.68 \% 9$ | 11.0412 | 1401 | 196:801 | :749884201 | 3 \% | 1896 |
| 1347 | 1814409 | 2444008923 | 36.7015 | 11.0439 | 140:2 | 1965604 | $2755 \% 76808$ | 37 |  |
| 1348 | 1817104 | 2449456192 | 36.7151 | 11.0466 | 1403 | 1968409 | $27616 i 782 \%$ | 3T. 4566 |  |
| 1349 | 1819801 | 2454911549 |  | 11 | 1404 | 108 |  |  |  |
| 13 | 1822500 | 2460375000 | 36.7423 |  | 1405 | 1974 | 2173505125 |  |  |
| 1351 | 1825:201 | 2465816551 | 36.7560 | 11.0548 | 1406 | 1976836 | 2799431416 | 31.496 | $11.20: 8$ |
| 13 | 182\%904 | 21 1326208 | 36.7696 | 11.0575 | $140 \sim$ | 1979649 | $2 \sim 85366143$ | 3ก. 51 | 11.2055 |
| 1. | 1830609 | 2476813977 | 36.7831 | 11.0603 | 1408 | 1982464 | 2 91309312 | 27.5233 | 11.2082 |
| 1354 | 1833316 | 2482309864 |  | 11. | 1409 | 1985281 | 2797260929 | 37. |  |
|  |  |  |  | 11.0657 | 1410 | 19881 | 2803221000 | 37. | 11.2135 |
| 130 | 1838736 | 24933:6016 | 36.8239 | 11.0684 | 1411 | 19909:21 | 2809189531 | 137.56 \% |  |
| $135 \hat{1}$ | 1841449 | 2498846293 | 36.83 \% 5 | 11.0712 | 1412 | 199374 | 2815166528 | 37.5766 | 11.2188 |
| 1358 | 1844164 | 2504374712 | 36.8511 | 11.0739 | 1413 | 1936569 | 28:1151997 | 37.5899 | 11.2214 |
| 1359 | 1846881 | $25099112 \pi 9$ |  | $11.0 \pi 66$ | 1414 | 1999396 | $\because 827145944$ | 37.6032 | 11.2240 |
| 1360 | 1849600 | 2515456000 | 36.8782 |  | 1415 | 200 |  | 37. | 11.2267 |
| 1361 | 1852321 | 2591008881 | 36.8917 | 11.08:0 | 1416 | 200.0056 | 2839159296 | 37.629 | 112293 |
| 1362 | 1855044 | 2526569928 | 36.9053 | 11.0847 | 1417 | $200 \div 888$ | 2845178713 | 337.643 | 11.2320 |
| 1.96 | $185 \sim 7$ | $25.3213914 \%$ | 36.91 | 11.08\% | 14 | $2010 \% 2$ | 2851206632 | 37.650 | 11.2346 |
| 1364 | 1860 | 233 \% 165 | 36 |  | 14 | 2013 | 85 | 97.6696 | 3 |


| No． | Square． | Cube． | Sq． Root． | Cube Root． | No． | Square． | Cube． | Sq． Root． | Cube Roōt． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2016400 | 28632 |  |  | 1475 | 2175625 | 3209046875 | 38.4057 | 11.3832 |
| 1421 | 2019241 | 2869341461 | 37.6962 | 11.2425 | 1476 | $21785 \sim 6$ | $32155781 \% 6$ | $38.418{ }^{\text {a }}$ | 11.3858 |
| 1422 | 20：2084 | 2875403448 | 37． 2094 | 11.2452 | 14ǐ | 2181529 | 32：2211833：3 | 38.4318 | 11.3883 |
| 1423 | 20249：9 | 288147396 r | 37.7227 | $11.24 \% 8$ | 14\％8 | 2184484 | $\because 22866735$ | 38.4448 | 11.3909 |
| 1424 | 2027776 | 2887553024 | 37.7359 | 11.2505 | 1479 | 218،441 | 3235225239 | 38．45\％8 | 11.3935 |
|  |  |  |  |  |  | 2190400 | $3241 ; 92000$ | 38.4708 |  |
| 1426 | 2033476 | 28 | 37.7624 | 11.2557 | 1481 | 2193361 | 32－4836斤641 | 38.4838 | 11.3986 |
| $142 \%$ | 2036：329 | 2905841483 | 37.7757 | 11.2583 | 1482 | 2196324 | 32 F 4952168 | 38.4968 | 11.4012 |
| 1428 | 2039184 | 2911954752 | 37． 1889 | 11.2610 | 1483 | 2199289 | 3261545587 | $38.509 \sim$ | 11.4037 |
| 1429 | 2042041 | 2918076589 |  | 11.2636 | 1484 | 2202：256 | 3268147904 | $38.522 \sim$ | 11.4063 |
| 1430 | 2044900 |  |  |  | 1485 | 22052：5 | 32\％4\％59125 | 38.5357 | 11.4089 |
| 1431 | 2047761 | 2930345991 | 37．8286 | 11.2689 | 1486 | 2208196 | 32813：9256 | $38.548{ }^{7}$ | 11.4114 |
| 1432 | 20506：4 | ？936493568 | 37.8418 | 11.2715 | 1487 | 2211169 | 3288008303 | 38.5616 | 11.4140 |
| 1433 | 2053489 | 2942649137 | 37.8550 | 11． $2 \times 41$ | 1488 | 2214144 | 32946462テ2 | 38.5746 | 11.4165 |
| 1434 | 2056356 | 2948814504 | 37．8682 | 11.2767 | 1489 | 2217121 | 3301：93169 | $38.58 \sim 6$ | 11.4191 |
| 1435 | 20592：5 |  |  | 11.2793 | 1490 | 2220100 | 3307949000 | 38.6005 | 11.4216 |
| 1436 | 2062096 | 296116985 | 37.8946 | $11.28: 0$ | 1491 | 2 P 2：3081 | $3314613 \div 71$ | 38.6135 | 11．4242 |
| 1437 | 2064969 | 2967360453 | 37．9078 | 11.2846 | 1492 | 2226064 | 33：1287488 | 38.6264 | 11．4268 |
| 1438 | 2067844 | 2973559672 | 37． 9210 | 11.2872 | 1493 | 22：9049 | 3327970157 | 38.6394 | 11.4293 |
| 1439 | $20 \% 0721$ | 2979 ¢\％ 619 | 37．9342 | 11.2898 | 1494 | 2232036 | 2334661784 | 38.6523 | 1.4319 |
| 1440 |  |  |  |  | 1495 | 2235025 | $33413623 \% 5$ | 38.6652 | 11.4344 |
| 1441 | $20 \% 6481$ | 2992：20912 | 3\％． 9605 | 11.2950 | 1496 | 2238016 | $33480 \sim 1936$ | 38.6782 | $11.43 \% 0$ |
| 1442 | 2079364 | 299844：88 | 37．973\％ | 11.2977 | 1497 | 2241009 | 3354\％904 | 88.6911 | 11.4395 |
| 1443 | 208：249 | 3004685 |  | 11.3003 | 1498 | 2244004 | 3.36151 | 38.7040 | 11.4421 |
| 144＋ | 2085136 | 301093 | 38.0000 | 11.3029 | 1499 | $224 \% 001$ | 3368254499 |  |  |
|  |  |  |  |  | 1500 | 2250000 | 3375000000 |  |  |
| 1446 | 2090916 | 30234645 | 38.026 | 11.3081 | 1501 | 2253001 | 3381～54501 | 38.7427 | 11.4497 |
| 1447 | $\because 093809$ | 3029 4162 | 38．0395 | 11．310～ | $150 \cdot 2$ | 2256004 | 3：388518008 | 38． 1556 | $11.45 \% 2$ |
| 1448 | $2096 \% 04$ | 303602i392 | 38.0526 | 11.3133 | 150：3 | 2259009 | 3395：90527 | 38.7685 | 11.4548 |
| 1449 | 2099601 | 30423：1849 | 38 | 11.3159 | 1504 | 2262016 | 20\％00064 | 38.78 | $11.45 \% 3$ |
| 1450 |  |  |  |  |  |  |  |  |  |
| 1451 | 2105401 | 3054936851 | 38.0920 | 11．3：11 | 1506 | $2 \because 68036$ | 34156622 | 38. | $6 \cdot 4$ |
| 1452 | 2108304 | 306125\％408 | 38.1051 | 11．3937 | 1507 | 2：51049 | 342047084 | 38.8201 | 1.4649 |
| 1453 | 2111209 | 3067586677 | 38.1182 | 11．3ং63 | 1508 | $22 \% 4064$ | 3499288512 | 38．83：30 | $11.46 \% 5$ |
| 1454 | 2114116 | 30739：4664 | 38.1314 | 11.3289 | 1509 | $2: \% 7081$ | 3436115229 |  |  |
| 14 | 2117025 |  |  | 11.3315 | 1510 | 2 2 8 |  |  |  |
| 1456 | 2119936 | 30866：6816 | $38.15 \% 6$ | 11.3341 | 1511 | $\stackrel{2}{2} 83121$ | 3449795831 | 38.8716 | 11.4751 |
| 1457 | 2122849 | 309：990993 | $38.170{ }^{\text {a }}$ | 11．336\％ | 1512 | 2286144 | 3456649728 | 388844 | 1．97\％6 |
| 1458 | $2125 \sim 64$ | 3099363912 | 88．1838 | 1133493 | 1513 | 2289169 | 346351269\％ | 88.897 | 11.4801 |
| 1459 | 2128681 | $31057455 \% 9$ | 38.1969 | 11.3419 | 1514 | 2292196 | $34 \sim 0384 \% 44$ | 38.9102 | 11.4820 |
| 1460 | 2131600 | 3112136000 | 20 | 11.3445 | 1515 | 2295225 | 5 | ． 8. | 85\％ |
| 1461 | 21315：1 | 3118535181 | 38.283 | 11.3471 | 1516 | 2298：56 | 3481156096 | 38.9358 | 11.4877 |
| 1462 | 2137444 | 3124943128 | 38.2361 | 11.3496 | 1517 | 2301289 | 3491055413 | $38.948{ }^{\text {r }}$ | 11．4902 |
| 1463 | 2140369 | 313135984 7 | 38.2492 | 11.3522 | 1518 | 2304324 | 3497963832 | 38.9615 | 11.4927 |
| 1464 | 21432.96 | $3137 \uparrow 85344$ | 38 | 11.3548 | 1519 | $230 \sim 361$ | 3504881359 | 38 | 11.4958 |
| 1465 | $2146 \pm 25$ | 3144219625 | 38.2 \％${ }^{\text {a }} 3$ | 11.35 .54 | 1520 | 2310400 | 3511808000 |  |  |
| 1466 | 2149156 | $315066 \because 696$ | 3 S .2884 | 11.3600 | 1521 | 2313：341 | 3518ヶ43761 | 39.0000 | 11.5003 |
| 1467 | 2152089 | 3157114563 | 38.3014 | $11.36 \div 6$ | 15：？ | 2316484 | 355 25688648 | 39.0128 | 11.5028 |
| 1468 | 2155024 | 31635 T5：32 | 32.3145 | 11.3652 | 1523 | 2319599 | 353：64266\％ | 39.0256 | 11.5054 |
| 1469 | 215i961 | $3170044 \% 09$ | 38.32 ¢5 | 11．36～r | 15．4 | 2322576 | 3539605824 | 39.0384 | 11.5079 |
| $14 \% 0$ | 2160900 | 3176523000 | 38.3406 | 11.3703 | 1535 | 2325625 | 3546578125 | 39.0512 | 11.5104 |
| 1471 | 2163841 | 3183010111 | 38.3536 | 11.3729 | 1526 | 2328676 | $35535595 \sim 6$ | 39.0640 | 11.5129 |
| $14 \sim 2$ | $2166 \sim 84$ | 3189506048 | 38．3667 | 11.3755 | 152て | 2331729 | 3560550183 | 39.0 r68 | 11.5154 |
| 1473 | $2169 \% 2$ | $319601081 \%$ | 383797 | 11.3780 | 1598 | 2331784 | 356\％549952 | 9.0896 | 11.5179 |
| $14{ }^{\text {r }}$ | $21 \sim 20$ | 3202524 | 38．392\％ | 11.3806 | 15． | 2337811 | 135745588 |  |  |

SQUARES, CUBES, SQUARE AND CUBE ROOTS. 10.

| No. | Square. | Cube. | Sq. Root | Cube Root. | No. | Square. | Cube. | Sq. Root. | Cube Root. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1530 | 2340900 | $358157 \% 000$ |  |  | 1565 | 2449225 | $383303 \sim 125$ | 39.5601 |  |
| 1531 | 2343961 | 3588604291 | 39.1280 | 11.5255 | 1566 | 245:3556 | 3840389496 | 39.5727 | 11.6126 |
| 1532 | 2347024 | 3595640768 | 39.1408 | 11.5280 | 1567 | 2455489 | $3847751 \geq 63$ | 39.5854 | 11.6151 |
| 1533 | 2350089 | 36026864:37 | 39.1535 | 11.5305 | 1568 | 24586:4 | $385512343:$ | 39.5980 | 11.617 |
| 1534 | 2353156 | 3609741304 | 39.1663 | 11.5330 | 1569 | 2461761 | 3862503009 | 39.6106 | 11.6200 |
| 1535 | 2356225 | 3616S05375 | 39.1791 | 11. | 1570 | 2464900 | 3869893000 |  |  |
| 1536 | 2359:296 | 3623878656 | 39.1918 | 11.5380 | 1571 | 2468041 | 387\%29:411 | 39.6358 | 11.6250 |
| 1537 | 2362369 | 3630961153 | 39.2046 | 11.5405 | 15\%2 | $24 \% 1184$ | 3884701248 | 39.6485 | 11.6:74 |
| 15.38 | 2365444 | 363805:87: | 39.2173 | 11.5430 | 1573 | 2474329 | 389:211951\% | 39.6611 | 11.6299 |
| 1539 | 2368521 | 3645153819 | 39.2301 | 11.5455 | 1574 | 2477476 | 3899547224 | 39.6737 | 11.6324 |
| 1540 | 2371600 | 3652264000 |  |  | 1575 | 24806 |  | 39.6863 | 11.0348 |
| 1541 | 23374681 | 365938:3421 | 39.2556 | 11.5505 | 1576 | 248377 | 144309\%6 | 39.6989 | 11.6373 |
| 1512 | 2377764 | 366651:088 | $39.268: 3$ | 11.5530 | 1577 | 24869:29 | $392188 \% 033$ | 39.7115 | 11.6398 |
| 1543 | 2380849 | $367365000 \%$ | 39.2810 | 11.5555 | $15 \% 8$ | 2490084 | 39:985255: | 39.7:40 | 11.6422 |
| 1544 | 2383936 | 3680797184 | 39.2938 | 11.5580 | 1579 | 2493:41 | -3936827539 | 39.7366 | 11 |
| 1545 | 238 | 3687953625 | 39.3065 | 11.5605 | 1580 | 2496400 | 3944312000 | 39.7492 | 71 |
| 1546 | 23390116 | 3695119336 | $39.319 \cdot$ | 11.5630 | 1581 | 2499561 | 3651805941 | 39.7618 | 11.6496 |
| 154\% | 239:3209 | $370229+323$ | 39.3319 | 11.5655 | 158: | $250 \cdot 7 \cdot 2$ | 3959309368 | 39.7\%44 | $11.65: 0$ |
| 1548 | 2396304 | 3709478592 | 39.3446 | 11.5680 | 1583 | 2505889 | 3966822287 | 39.7869 | 11.6545 |
| 1549 | 2399401 | 3716672149 | $39.35 \% 3$ | $11.5{ }^{\prime \prime} 05$ | 1584 | 2509056 | 3974344704 | 39.7995 | 11.6570 |
| 1550 | 2402500 |  |  |  | 1585 | 251 |  |  |  |
| 1551 | 2405601 | 3731087151 | 39.3827 | 11.5754 | 1586 | 2515396 | $3989+18056$ | 39.8 | 11.6619 |
| 155: | 2408\%04 | 3738308608 | 39.3954 | $11.5 \% 79$ | 1587 | 2518569 | 3996969003 | 39 |  |
| 15053 | 2411809 | 37455393 ¢7 | 39.4081 | 11.5804 | 1588 | 25.2174 | $400+529+$ \%2 | 39.849 | 668 |
| 1554 | 2414916 | 3752779464 | 39.4208 | 11.5829 | 1589 | 2524921 | 4012099469 | $39.86: 3$ | 11.6692 |
| 1555 | 2418025 | 3760028 |  |  | 1590 | 2528100 | $40196 r 9000$ | 39.87 |  |
| 1556 | 2421136 | 3767287616 | 39.4462 | 5879 | 1591 | 2531281 | 40:\% $2080{ }^{\text {a }} 1$ | 39.887 |  |
| 1557 | 242t? 49 | 3774555693 | 39.4588 | 11.5903 | 159\% | $253+464$ | 4034866688 | 39.8999 | 1.6765 |
| 1558 | 2427364 | 3781833112 | 39.4715 | 11.5928 | 1593 | 2537649 | $40424 \% 4857$ | 39.9121 | 11.6790 |
| 1559 | 2430481 | $3 \% 891198 \sim 9$ | 39.4842 | 11.5953 | 1594 | 2540836 | 4050092584 | 39.9249 | 11.6814 |
| 1560 | 213:3600 | 37964160 | 394968 | 11.5978 | 1595 | 2544025 | $4057 \% 19875$ | 39.9375 | 11.7839 |
| 1561 | 2436\%1 1 | 380:3'21481 | 39.5095 | 11.6003 | 1596 | 2547216 | 4065356 136 | 39.9500 | 11.6863 |
| 1562 | $2+39844$ | 381103632S | 39.5221 | 11.6027 | 1597 | 2550409 | 4073003173 | 39.9625 | 11.6888 |
| 156:3 | 244;969 | :381836054 | 39.5348 | 11.6052 | 1598 | 2553604 | 4080659192 | 39.9750 | 11.6912 |
| 1564 | 2446096 | $38 \cdot 5694144$ | 39.5474 | 11.60\%7 | 1599 1600 | 2556801 2560000 | 4088324799 4096000000 | 39.9875 40.0000 | 11.6936 |

## SQUARES AND CUBES OF DECIMALS.

| No. | Square. | Cube. | No. | Square. | Cube. | No. | Square. | Cube. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 1 | . 01 | . 001 | . 01 | . 0001 | . 000001 | . 001 | . 000001 | . 000000001 |
| . | . 04 | . 008 | . 03 | . 0001 | . 000008 | . 002 | . 000004 | . 000000008 |
| , | . 09 | . 027 | . 03 | . 0009 | . 000027 | . 003 | . 000009 | . 000000027 |
| 4 | . 16 | . 064 | . 04 | . 0016 | . 000064 | . 004 | . 000016 | . 000000064 |
| . 5 | . 25 | . 125 | 05 | . 0025 | . 000125 | . 005 | -00 0025 | . 0000000125 |
| . 6 | . 36 | . 216 | . 06 | .0036 | . 000216 | . 006 | . 000036 | . $000000 \geqslant 16$ |
| . 5 | . 49 | . 343 | 07 | . 0049 | . 000343 | . 00 ¢̂ | . 000049 | . 000000343 |
| . 8 | . 61 | . 512 | 08 | . 0064 | . 000512 | . 008 | . 000064 | . 000000513 |
| . 9 | . 81 | . 729 | . 09 |  |  |  | . 0000081 | . 0000000729 |
| 1.0 | 1.00 | 1.000 | . 10 | . 0100 | . 001000 | . 010 | . 000100 | . 0000001000 |
| 1.2 | 1.44 | 1.728 | . 12 | . 0144 | . 001728 | 012 | . 000144 | .000001728 |

Note that the square has twice as many decimal places, and the cube three times as many decimal places, as the gout.

## FIFTH ROOTS AND FIFTH POWERS.

(Abridged from Trautwine.)

| $\begin{aligned} & \text { ó } \\ & \dot{\circ} \mathrm{O} \\ & \dot{8} \dot{4} \text {. } \end{aligned}$ | Power. |  | Power. | $\left\|\begin{array}{\|c\|} \hline 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 8 \end{array}\right\|$ | Power. |  | Power. |  | Power. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 10 | 000010 | 3.7 | 693.440 | 9.8 | 90392 | 21.8 | 4923597 | 40 | 102400000 |
| . 15 | .000075 | 3.8 | 792.35\% | 9.9 | 95099 | 22.0 | 51536 | 41 | 115856:01 |
| .20 | 000320 | 3.9 | 902.242 | 10.0 | 100000 | $\because 2.2$ | 5392186 | 42 | 130691232 |
| . 25 | . 000974 | 4.0 | 1024.00 | 10.2 | 110408 | 22.4 | 5633493 | 43 | 14\%008443 |
| . 30 | 002430 | , | 1158.56 | 10.4 | 121665 | 22.6 | 5895793 | 44 |  |
| . 35 | .005252 | . 2 | 1306.91 | 10.6 | 13:3883 | 22.8 | 6161327 | 45 | ${ }^{184528125}$ |
| 40 | .010240 | 4.3 | 1470.08 | 10.8 | 146933 | 23.0 | 64363343 | 46 | 20596296 $22934500 \sim$ |
| . 45 | . 018453 | 4.4 | 1649.16 | 11.0 | 161051 | 23.2 23.4 | 6721093 7015834 | 48 | 229345002 254803968 |
|  | .031250 | 4.5 | 1845.28 2059.63 | 11.2 11.4 | 176234 192541 | 23.6 | 7320825 | 49 | 282475249 |
| . 60 | . 07 Tri60 | 4.7 | 2293.45 | 11.6 | 210034 | 23.8 | 7636332 | 50 | 312500000 |
|  | . 116029 | 4.8 | 2548.04 | 11.8 | 2:8「76 | 24.0 | 7962624 | 51 | 345025251 |
| . 70 | $1680 \sim 0$ | 4.9 | 2824.75 | 12.0 | 248832 | 24.2 | 8299976 | 52 | 380204032 |
| . 75 | . 235305 | 5.0 | 3125.00 | 12.2 | $2702{ }^{1} 1$ | 24.4 | 8648666 | 53 | 18195493 |
| . 80 | .327680 | 5.1 | 3450.25 | 12.4 | 293163 | 24.6 | 008 |  |  |
| . 85 | 443705 | 5.2 | 3802.04 | 12.6 | 31758 |  |  | 55 56 | 5032438.5 |
| . 90 | 590490 773781 | 5.4 | 4181.95 | 13.0 | ${ }_{3} 71293$ | . 2 | 10162550 | 57 | $60169205 \%$ |
| 1.00 | 1.00000 | 5.5 | 50:32.84 | 13.2 | 400746 |  | 10512278 | 58 | 8 |
| 1.05 | 1.27698 | 5.6 | 5507.82 | 13.4 | 432040 | 25.6 | 10995116 | 59 | 714924299 |
| 1.10 | 1.61051 | 5.7 | 6016.92 | 136 | 465259 | . 8 | 11431377 | 60 | 7 |
| 1.15 | 2.01135 | 5.8 | 6563.5 r | 13.8 | 500490 | 26.0 | 11881376 | 61 | 1 |
| 1.20 | 2.48832 | 5.9 | 7149.24 | 14.0 | $5378 \% 4$ | 26.2 | 12345437 | 62 | 2832 |
| 1.25 | 3.05176 | 6.0 | 7776.00 | 14.2 | 577353 | 26.4 | 12823886 | 63 | 992436543 |
| 1.30 | 3.71293 | 6.1 | 8445.96 | 14.4 | 61917 | 26. | 13317055 |  | $1073 \pi 41824$ |
| 1.35 | 4.48403 | 6.2 | 9161.33 | 146 | 663383 |  | 07 |  | 11602906 |
| 1.40 | 5.37824 | 6.3 | 9924.37 | 14.8 | 710082 | 20 | 14348907 | 6 | 12523325 6 |
| 1.45 | 6.40973 | 64 | 10737 | 15.0 | 759375 |  | 14888280 | 8 | 135012510 |
| 1.50 | 7.59375 | 6.5 | 11603 | 15.2 | 811368 | 27. ${ }^{2}$ | 15443 |  |  |
| 1.55 | 8.94661 | 6.6 | 125:3 | 15.4 | 866111 | 27.6 278 | 16015681 | 69 70 | 1564031349 |
| 1.60 | 10.4858 | 6. ${ }^{\text {\% }}$ | 13501 | 15.6 | 923896 984658 | 27.8 | ${ }_{17210368}^{1660430}$ | ${ }_{71}$ | $180+299351$ |
| 65 | 12.2298 | 6.8 | 14533 | 5.8 | 10485\% | 28.2 | 1 1\%833868 | 72 | 193491;632 |
| 1.75 | 16.4131 | 7.0 | 16807 | . 2 | $1115 \% 1$ | 28.4 | 184 T5309 | 73 | 20730 11593 |
| 80 | $18.895 \%$ | 7.1 | 18012 | 6.4 | 118636 r | 28.6 | 19135005 | 74 | 22190066\% |
| 1.85 | $21.6{ }^{\text {r }} 00$ | \%.2 | 19349 | 16.6 | 1260493 | 28.6 | 1981355\% | 75 | 23130468\% |
| 1.90 | 24.7610 | 7.3 | 20731 | 168 | 13382\% | 29.0 | 20511149 | 76 | 2535525376 |
| 1.95 | 28.1951 | 7.4 | 22190 | 17.0 | 1419857 | 2 | 21228253 |  | 270 |
| 2.00 | 32.0800 | 7. 5 | 2月,30 | 17.2 | 1505366 | $\cdots 9$ | 21965275 |  |  |
| 2.05 | 36.2051 | 7. 6 | 25355 | 4 | ${ }_{16894947}$ | $\because 9.6$ | 22, 23.628 | 59 80 8 | 30,1656399 32,6800000 |
| ${ }_{2}^{2.10}$ | 40.8410 | 7.7 | 28068 | 17.8 | $1688 \% 42$ 1.86899 | 29.8 30.0 | $2.3500 \% 28$ 24300000 |  | 32,6800000 3486784401 |
|  | 45.9401 | 7.8 7 7 | $288 \%$ $30 \% 1$ | 17.8 | 1786899 1889568 | 30.0 | 243000036 | 8 | 34\% $300739843: 3$ |
| 2.25 | 57.6650 | 8.0 | 32\%68 | 18.2 | 1996903 | 31.0 | 286:9151 |  | 3939040643 |
| 2.30 | 64.3634 | 8.1 | 34868 | 18.4 | 2109061 | 31.5 | 31013642 | 84 | 418211942 |
| 2.35 | 71.6703 | 8.2 | $370{ }^{\text {\% }} 4$ | 18.6 | 2296203 | 32.0 | 335554432 | 85 | 4431053125 |
| 2.40 | 79.6:62 | 8.3 | 39390 | 18.8 | 2348493 | 32.5 | 36:59082 | 86 | 47042 T 176 |
| 2.45 | 88.2735 | 8.4 | 41821 | 19.0 | 2776099 | 0 | 39135193 |  | 498 |
| 2.50 | 97.6562 | 8.5 | $443 \% 1$ | 19.2 | 2609193 |  | $4 \times 191410$ | 88 | 52ri319168 |
| 2.55 | 107.820 | 8.6 | $4 \% 043$ | 19.4 | 2747949 | 34. | 45435424 | 89 90 | ${ }^{5584059449} 5$ |
| 2.60 | 118.814 | 8.7 | 49842 | 19.6 | 2899547 3043168 | 34.5 35.0 | 48875980 | $90$ | 5904900000 |
| 2. 0 | 143.489 | 8.8 | 52743 | 19.8 <br> 20.0 | 3043168 $3: 00000$ | 35.0 | 52388167 | 92 | 6590815232 |
| 2.90 | 205.111 | 9.0 | 53049 | 20.2 | :3363232 | 36.0 | 60466176 | 93 | 6956883693 |
| 3.00 | 243.000 | 9.1 | 6:403 | 20.4 | 3533059 | 36.5 | 64~83487 | 94 | 7339040224 |
| 3.10 | 286.292 | 9.2 | 65908 | 20.6 | 3709677 | 37.0 | 69343957 | 95 | 7r378093 |
| 3.20 | 335.544 | 9.3 | 69569 | 20.8 | 3893289 | 37.5 | 2415715 | 96 | 815372696 |
| 3.30 | 391.354 | 9.4 | 73390 | 21.0 | 4084101 | 38.0 | 79235168 |  | 8587340257 |
| 3.40 | 454.354 | 9.5 | $7{ }^{7} 378$ | 21.2 | 4282332 | 38.5 |  | 98 | 95 |
| 3.50 | 525.219 | 9.6 | 81537 | 21.4 | 4488166 | 39.0 | 90224199 | 99 | 9509900499 |
| 3.60 | 604.662 | 9.7 | 85873 | 21 | 4701850 | 39 | 96158012 |  |  |

## CHRCUMFERENCES AND AREAS OF CIRCLES.

| Diam. | Circum. | Area. | Diam. | Circum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.1416 | 0.7854 | 65 | 204.20 | 3318.31 | 129 | 405.27 | 13069.81 |
| 2 | 6.2832 | 3.1416 | 66 | 207.34 | 3421.19 | 130 | 408.41 | 13273.23 |
| 3 | 9.4248 | 7.0686 | 67 | 210.49 | 3585.65 | 131 | 411.55 | 13478.22 |
| 4 | 12.5664 | 12.5664 | 68 | 213.63 | 3631.68 | 132 | 414.69 | 13684 |
| 5 | 15.7080 | 19.635 | 69 | 216.7 | 3739.28 | 133 | 417.83 | 13892.91 |
| 6 | 18.850 | 28.274 | 70 | 219.91 | 3848.45 | 134 | 420.97 | 14102.61 |
| 7 | 21.991 | 38.485 | 71 | 223.05 | 3959.19 | 135 | 424.12 | 14313.88 |
| 8 | 25.133 | 50.266 | 72 | 226.19 | $40 \sim 1.50$ | 136 | 427.26 | 14526. ${ }^{2}$ |
| 9 | 28.274 | 63.617 | \%3 | 229.34 | 4185.39 | 137 | 430.40 | 14\%41.14 |
| 10 | 31.416 | 78.540 | 4 | 232.48 | 4300.84 | 138 | 433.54 | 1495 \% 12 |
| 11 | 34.558 | 95.033 | 75 | 235.62 | 4417.86 | 139 | 436.68 | 15174.68 |
| 12 | 37.699 | 113.10 | r6 | 238.76 | 4536.46 | 140 | 439.82 | 15393.80 |
| 13 | 40.841 | 132.73 | 77 | 241.90 | 4656.63 | 141 | 442.96 | 15614.50 |
| 14 | 43.982 | 153.94 | 78 | 245.04 | 4778.36 | 142 | 446.11 | 15836.77 |
| 15 | 47.124 | 176.71 | 79 | 248.19 | $4901.6{ }^{5}$ | 143 | 449.25 | 16060.61 |
| 16 | 50.265 | $201.00{ }^{\text {a }}$ | 80 | 251.33 | 5026.55 | 144 | 452. 39 | 16286.02 |
| 17 | 53.407 | 226.98 | 81 | 254.47 | 5153.00 | 145 | 455.53 | 16513.00 |
| 18 | 56.549 | 254.47 | 82 | 257.61 | 5981.02 | 146 | 458.67 | 16741.55 |
| 19 | 59.690 | 283.53 | 83 | 260.75 | 5410.61 | 147 | 461.81 | 16971.67 |
| 20 | 62.832 | 314.16 | 84 | 263.89 | 5541.77 | 148 | 464.96 | 17203.36 |
| 21 | 65.973 | 346.36 | 85 | 267.04 | $56 \% 450$ | 149 | 468.10 | 1\%436.62 |
| 22 | 69.115 | 380.13 | 86 | $22^{2} 0.18$ | 5808.80 | 150 | 471.24 | 176\%1.46 |
| 23 | 72.257 | 415.48 | 87 | $273.3 \%$ | 5944.68 | 151 | 474.38 | 17907. 86 |
| 24 | 75.398 | 452.39 | 88 | 276.46 | $605 \% .12$ | 152 | 477.52 | 18145.84 |
| 25 | 78.540 | 490.87 | 89 | 279.60 | $6 \because 21.14$ | 153 | 480.66 | 18385.39 |
| 26 | 81.681 | 530.93 | 90 | 282.74 | 6361.73 | 154 | 483.81 | 18626.50 |
| 27 | 84.823 | 57.2 .56 | 91 | 285.88 | 6503.88 | 155 | 486.95 | 18869.19 |
| 28 | 87.965 | 615.75 | 92 | 289.03 | 6647.61 | 156 | 490.09 | 19113.45 |
| 29 | 91.106 | 660.52 | 93 | 292.17 | 6792.91 | 157 | 493.23 | 19359.28 |
| 30 | 94.248 | \% 06.86 | 94 | 295.31 | 6939.78 | 158 | 496.37 | 19606.68 |
| 31 | 97.389 | 754.77 | 95 | 298.45 | 7088.22 | 159 | 499.51 | 19855.65 |
| 32 | 100.53 | 804.25 | 96 | 301.59 | 7238.23 | 160 | 502.65 | 20106.19 |
| 33 | 103.67 | 855.30 | 97 | 304.73 | 7389.81 | 161 | 505.80 | 20358.31 |
| 34 | 106.81 | 907.92 | 98 | 307.88 | 7542.96 | 162 | 508.94 | 20611.99 |
| 35 | 109.96 | 962.11 | 99 | 311.02 | 7697.69 | 163 | 512.08 | 20867.44 |
| 36 | 113.10 | 101\%. 88 | 100 | 314.16 | \%853.98 | 164 | 515.22 | 21124.07 |
| 37 | 116.24 | 1075.21 | 101 | 317.30 | 8011.85 | $16 \bar{~}$ | 518.36 | 21382. 46 |
| 38 | 119.38 | 1134.11 | 102 | $3: 0.44$ | 81\%1.28 | 166 | $5: 1.50$ | 21642.43 |
| 39 | 122.52 | 1194.59 | 103 | 323.58 | 8332.29 | 167 | 524.65 | 21903 97 |
| 40 | 125.66 | 1256.64 | 104 | 326.73 | $8494.8{ }^{4}$ | 168 | 527.79 | $2216{ }^{1} 08$ |
| 41 | 128.81 | $13: 20.25$ | 105 | $339.8{ }^{7}$ | 8659.01 | 169 | 530.93 | 22431. 66 |
| 42 | 131.95 | 1385.44 | 106 | 333.01 | 88.24 .73 | 170 | 534.0 亿 | 22698.01 |
| 43 | 135.09 | 1452.20 | 107 | 336.15 | 8992.02 | 171 | 537.21 | 22965.83 |
| 44 | 138.23 | 1520.53 | 108 | 339.29 | 9160.88 | 172 | 540.35 | 23235.22 |
| 45 | 141.37 | 1590.43 | 109 | 342.43 | 9331.32 | $1{ }^{1} 3$ | 543.50 | 23506.18 |
| 46 | 144.51 | 1661.90 | 110 | 345.58 | 9503.32 | 174 | 546.64 | 23 Tr78. ${ }^{\text {c }} 1$ |
| 47 | 147.65 | 1734.94 | 111 | 348.72 | $96 \% 6.89$ | 175 | 549.78 | 24052.82 |
| 48 | 150.80 | 1809.56 | 112 | 351.86 | 9852.03 | 176 | 552.92 | 24328.49 |
| 49 | 153.94 | 1885.74 | 113 | 355.00 | 100?8.75 | 177 | 556.06 | 24605.74 |
| 50 | 157.08 | 1963.50 | 114 | 358.14 | 10:07.03 | $1{ }^{178}$ | 559.20 | 24884.56 |
| 51 | 160.22 | 2042.82 | 115 | 361.28 | 1038689 | 179 | 562.35 | 25164.94 |
| $5:$ | 163.36 | 2123.72 | 116 | 364.42 | 10568.32 | 180 | 565.49 | 2544690 |
| 53 | 166.50 | 2206.18 | 117 | 367.57 | 10751.32 | 181 | 568.63 | $25 \% 30.43$ |
| 54 | 169.65 | 2290.22 | 118 | 370.71 | 10935.88 | 182 | $5 \% 1.77$ | 26015.53 |
| 55 | 172.79 | 23 T 5.83 | 119 | 373.85 | 11122.02 | 183 | 5i4.91 | 26302.20 |
| 56 | :75.93 | 2463.01 | 120 | 376.99 | 11309.73 | 184 | 578.05 | 26590.44 |
| 57 | 179.07 | 2.551 .76 | 121 | 380.13 | 11499.01 | 185 | 581.19 | 26880.25 |
| 58 | 182. 21 | 2642.08 | 122 | 383.27 | 11689.87 | 186 | 584.34 | 27171.63 |
| 59 | 185.35 | 2733.97 | 123 | 386.42 | 1188\%. 29 | 187 | 587.48 | 27464.59 |
| 60 | 188.50 | 28.27 .43 | 124 | 389.56 | $120 \check{6} 6.28$ | 188 | 590.62 | $2{ }^{4} 759.11$ |
| 61 | 191.64 | 2922.47 | 125 | 392.70 | 12271.85 | 189 | 593.76 | 28055.21 |
| 63 | 194.78 | 3019.07 | 126 | 39\%.84 | 12468.98 | 190 | 596.90 | 2835287 |
| 63 | 197.92 | 311\%. 25 | 127 | 398.98 | 12667.69 | 191 | 600.04 | 28652.11 |
| 64 | 201.06 | 3216.98 | 128 | 402.12 | 12867.96 | 192 | 603.19 | 28952.92 |


| Di | Circum. | Are | Diam. |  | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 193 | 606.33 | 29255.30 | 260 | 816.81 | 53092.92 | 327 | $102 \% .30$ | 3981.84 |
| 194 | 609.47 | 29559.25 | 261 | 819.96 | 53502.11 | 328 | 1030.44 | 84496.28 |
| 195 | 612.61 | $29864 . \tilde{\text { ¢7 }}$ | 262 | 823.10 | 53912.87 | 329 | 1033.58 | 85012.28 |
| 196 | 615.\%5 | 301 \%1.86 | 263 | 826.24 | 54325. 21 | 330 | 1036.73 | 85529.86 |
| 197 | 618.89 | 30480.52 | 264 | $8: 29.38$ | 54739.11 | 331 | $1039.8{ }^{\text {\% }}$ | 86049.01 |
| 198 | 622.04 | 30790.\% 5 | 265 | 832.52 | 55154.59 | 332 | 1043.01 | 86569.73 |
| 199 | 6:5.18 | 31102.55 | 266 | 835.66 | 55571.63 | 333 | 1046.15 | $8 \mathrm{r092} .02$ |
| 200 | 628.32 | 31415.93 | 26 \% | 838.81 | 55990.25 | 334 | 1049.29 | $8{ }^{6} 615.88$ |
| 201 | 631.46 | 31730.87 | 268 | 841.95 | $56+110.44$ | 335 | 1052.43 | 88141.31 |
| $20 \%$ | 634.60 | 32047.39 | 269 | 845.09 | 56832.20 | 336 | 1055.58 | 88668.31 |
| 203 | 637.74 | 3:3655.47 | 270 | 848.23 | $5 \chi^{2} 55.583$ | 337 | 1058.72 | 9196.88 |
| 204 | 640.88 | 32685. 13 | 271 | 851.37 | 57680.43 | 338 | 1061.86 | 891.27.03 |
| 205 | 644.03 | 33006.36 | $2 \%$ | 854.51 | 58106.90 | 339 | 1065.00 | 90258. 44 |
| 206 | 647.17 | 333:29.16 | 273 | 85 \%. 65 | 58534.94 | 340 | 1068.14 | $90 \% 92.03$ |
| $20 \%$ | 650.31 | 33653.53 | 274 | 860.80 | 58964.55 | 341 | 10i1.28 | 91326.88 |
| 208 | 653.45 | 33979.47 | $2 \%$ | $86{ }^{6} 3.94$ | 59395. 4 | 342 | $10 \% 4.42$ | 91863.31 |
| 209 | 656.59 | 34306. 98 | 276 | 867.08 | 598\%8.49 | 343 | 1077.57 | 92401.31 |
| 210 | 659. 73 | 346336.06 | 2it | 870.22 | 60:62.8.2 | 344 | 1080.71 | 92940.88 |
| 211 | 662.88 | 34966.71 | 278 | 873.36 | 60698.71 | 345 | 1083.85 | 93482.02 |
| 212 | 666.02 | 35:298.94 | 9 | 876.50 | 61136.18 | 346 | 1086.99 | 94024.73 |
| 213 | 669.16 | 35632. 73 | 280 | 879.65 | $615 \% 52 \%$ | 347 | 1090.13 | 94569.01 |
| 214 | 672.30 | 35968.09 | 281 | 88\%. 79 | 62015.82 | 348 | 1093.27 | 95114.86 |
| 215 | $6 \hat{5} 5.44$ | 36305.03 | 28. | 885.93 | 62458.00 | 349 | 1096.42 | 95662.28 |
| 216 | $6{ }^{6} 8.58$ | 36643.54 | $28: 3$ | 889.07 | 6:901.75 | 350 | 1099.56 | 96211.28 |
| 21 | 681.73 | 36983.61 | 284 | 892.21 | 63347.07 | 351 | 1102. ${ }^{\text {\% }}$ 0 | $96 \hat{61.84}$ |
| 218 | 684.8 \% | 37325.26 | 285 | 895.35 | 63\%93.9\% | 352 | 1105.84 | 97313.97 |
| 219 | 688.01 | 37668.48 | 286 | 898.50 | $642+2.43$ | 353 | 1108.98 | 9 986i. 68 |
| 220 | 691.15 | 38013.27 | 287 | 901.64 | 64692.46 | 354 | 1112.12 | $98+22.96$ |
| 221 | 694. 29 | 38359.63 | 288 | 904.78 | $65144.0 \%$ | 355 | $1115.2 \hat{\sim}$ | 98979.80 |
| 222 | 697.43 | 38707.56 | 289 | 90\%' 92 | 65597.2 | 356 | 1118.41 | 99538.22 |
| 243 | 700.58 | 39057.07 | 290 | 911.06 | 66051.99 | 3.57 | 1121.55 | 100098.21 |
| 224 | 703.72 | 39408.14 | 291 | 914.20 | 66508.30 | 358 | 1124.69 | 100659. ${ }^{\text {a }}$ |
| 225 | 706.86 | 39760.78 | 292 | 917.35 | 66966.19 | 359 | 112\%.83 | 101222.90 |
| 226 | 710.00 | 40115.00 | 293 | 920.49 | $6 \tau 425.65$ | 360 | 1130.9 ¢ | 101\%8\%. 60 |
| 202 | 713.14 | $404 \pi 0.78$ | 294 | 923.63 | 67886.68 | 361 | 1134.11 | 102353.8 ${ }^{\text {r }}$ |
| 228 | \%16.28 | 408:8.14 | 295 | 926.77 | 68349.28 | $36 \cdot$ | 1137.26 | 102921.72 |
| 229 | ז19.42 | 4118 \% . 07 | 296 | 929.91 | 68813.45 | 363 | 1140.40 | 103491.13 |
| 230 | 7\%2.5\% | $4154 \% .56$ | $29 \%$ | 9333.05 | 692\%9.19 | 364 | 1143.54 | 104062.12 |
| 231 | \%25. 71 | 41909.63 | 298 | 936.19 | $69 \% 46.50$ | 365 | 1146.68 | $10+634.67$ |
| 23.2 | \% 28.85 | $4 \geq 2 \% 3.2 \pi$ | 299 | 939.34 | \%0215.38 | 365 | 1149.82 | 105208.80 |
| 23 | \%31.99 | 4:638.48 | 300 | 942.48 | \%0685. 83 | 365 | 1152.96 | 105784.49 |
| 234 | 735.13 | 43005.26 | 301 | 945.62 | ¢115\%.86 | 368 | 1156.11 | 106361 |
| 235 | 738.27 | 43353.61 | 302 | 948.15 | ז1631.45 | 369 | 1159.25 | 10694060 |
| 23 | \% 41.42 | 43343.54 | 303 | 951.90 | \% 2106.62 | 370 | 1162.39 | $10 \sim 521.01$ |
| 23 | 744.56 | 44115.03 | 304 | 955.04 | \%2583.36 | 371 | 1165.53 | 108102.99 |
| 238 | 747. 0 | 44488.09 | 305 | 958.19 | \%3061.66 | 372 | 1168.6 r | 108686.54 |
| 2:39 | 250.84 | 4486?.73 | 306 | 961.33 | 73541.54 | 373 | 1171.81 | 109271.66 |
| 240 | 753.98 | 452:38.93 | 307 | 964.47 | \%402: 99 | $3 \% 4$ | $11 \tau 496$ | 109858.35 |
| $2+1$ | $75 \pi .12$ | 45616.71 | 308 | 967.61 | 74506.01 | 375 | $11 \% 8.10$ | 110446.62 |
| 212 | \%60.27 | 45996.06 | 309 | ${ }^{7} 0.75$ | \% 7990.60 | 376 | 1181.24 | 11103645 |
| 24.4 | 763.41 | $463 \% 6.98$ | 310 | 973.89 | \%54\%6.76 | 377 | 1184.38 | 1116: ก. 86 |
| 24 | ${ }^{2} 66.55$ | 46759.47 | 311 | 97\%. 04 | 75964.50 | 378 | 118\%.5: | 112420.83 |
| 245 | 769.69 | 47143.52 | 312 | 980.18 | 76453.80 | $3{ }^{3} 9$ | 119066 | 112815.38 |
| 246 | 7 7~2. 83 | 47529.16 | 313 | 983.32 | 76944.67 | 380 | 1193.81 | 113411.49 |
| 218 | 7 75.97 | $4 \sim 916.36$ | 314 | 986.46 | тT43\%.12 | 381 | 1196.95 | 114009. 18 |
| 249 | 799.11 | 48305.13 | 315 | 989.60 | \% 7931.13 | 382 | 1200.09 | 114608.44 |
| 249 200 -20 | 782.26 | 48695.47 | 316 | 992. 74 | 784:6.72 | 383 | 1203.23 | 115209.2\% |
| 250 | \% 50.40 | 49087.39 | 317 | 995.88 | ¢8923.88 | 384 | 1206.37 | 115811.6 r |
| 2.51 | 788.54 | 49480.87 | 318 | 999.03 | 79422.60 | 385 | 1200.51 | 116415.64 |
| 25.2 253 | 791.68 | 49875.92 | 319 | 1002.1\% | 79922.90 | 386 | 1212.65 | 11 12021. 18 |
| 253 | 994.82 | $502 \%$ 2. 55 | 320 | 1005.31 | 80424.77 | 387 | 1215.80 | 11ז628.30 |
| 254 | \%97.96 | $506 \% 0.75$ | 321 | 1008.45 | 80928.21 | 388 | 1218.94 | 118236.98 |
| 255 | 801.11 | $51070.5 \%$ | 322 | 1011.59 | 8143322 | 389 | 1222: 08 | 118847.24 |
| 250 | 804.25 | 51471.85 | $3: 3$ | 1014.73 | 81939.80 | 390 | 1225.22 | 119459.06 |
| 20 | 807.39 | 51874.76 | $3 \because 4$ | 1017.88 | 8244i.96 | 391 | 1228.36 | $1200 \% 2.46$ |
| 258 | 810.53 | 52979.24 | 325 | 1021.02 | 8:95\%. 68 | 392 | 1231.50 | 12068\%.42 |
| 259 | 813.67 | 52685.29 | 326 | 11124.16 | 83468.98 | 393 | 1234.65 | 121303.96 |


| Dia | Cir | Area． | Diam． | C | Area． | m | Circum． | Area． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 12192 |  | 1448.27 | 166913.60 | 528 | 1658.6 | 218956.44 |
|  | 1240.93 | 122541.75 | 462 | 1451.42 | 16 ¢̂638．53 | 529 | 1661.90 | 219\％86．61 |
| 396 | 1944.07 | 123163.00 | 463 | 1454.56 | 168365．02 | 530 | 1665.04 | 220618.34 |
| 397 | $12+7.21$ | 123785．82 | 464 | $1457 . \% 0$ | 169093.08 | 531 | 1668.19 | $2: 14.51 .65$ |
| 398 | 1250.35 | 124410.21 | 465 | 1460.84 | 1698\％2． 72 | 53： | 1671.33 | 222286．53 |
| 99 | 125350 | 125036.17 | 466 | 1463 | 110553．92 | 533 | $16 \hat{4} 4.4 \tau$ | 223122.98 |
| 400 | 1256．64 | 125663.71 | 46 \％ | 1467．12 | 171286.50 | 534 | 16 \％it． 61 | 2233961．00 |
| 401 | 1259．78 | 126292．81 | 468 | $1470.2 \pi$ | 120021．05 | 535 | 1650．\％ | 224800.59 |
| 402 | 1262．92 | 126923.48 | 469 | 147341 | 172756.97 | 536 | 1683.89 | $\pm 25$ |
| 4 | 1266.06 | 127555．73 | 470 | $14 \% 6.55$ | 173424．45 | 537 | $168 \%$ ． 04 | 226484.4 |
| 404 | 1269.20 | 128189.55 | 471 | 1479.69 | 174233.51 | 538 | 1690.18 | $22 \div 328.99$ |
| 40 | $12 \%$ \％ 35 | 128824．93 | 47.2 | 1482．833 | 174974.14 | 539 | 1693．32 | 22817466 |
| 400 | 1275.49 | 129461 | 473 | 1485.94 | 175116.35 | 540 | 1696.46 | $22900 \% .10$ |
| 407 | 1278．6：3 | 130100.42 | 4 r 4 | 1489.11 | 11．6460 12 | 541 | 1699.60 | 22981.12 |
| 408 | 1281.77 | $130 \% 40.52$ | 475 | 1492．26 | 1 1ヶ205．46 | 542 | 1\％0\％．74 | $230 \% 1 . \% 1$ |
| 409 | 1：84．91 | 131382． 19 | $4 \% 6$ | 1495.40 | 1 17952．3̃＇ | 543 | 175 | 2315：3．86 |
| 410 | 1288.05 | $13: 025.43$ | 4 | 1498.54 | 178700.86 | 544 | 1709.03 | 232124.59 |
| 411 | 1291.19 | $13: 2600.24$ | $4 \% 8$ | 1501. fi8 | 179450.91 | 545 | 171210 | 233324． 89 |
| 412 | 1294.34 | 133316.63 | 479 | 1504.82 | 180202．54 | 546 | 1115.31 | 234139.66 |
| 413 | 1297.48 | 133964.58 | 480 | 1507.96 | 180955． 24 | 547 | 1718.45 | 234998.20 |
| 414 | 1300.62 | 134614.10 | 481 | 1511.11 | 181710.50 | 548 | 1721.59 | 235858．21 |
| 415 | 1303.76 | 135255．20 | 482 | 1514．25 | 18：466．84 | 549 | 1724．73 | 236「19．79 |
| 416 | 1306.90 | 135917．86 | 483 | 1517．39 | 183：4．\％ | 550 | $1 \% \% \%$ | 23\％58：． 94 |
| 417 | 1310.04 | 1365\％2． 10 | 484 | 1，50． | 183984．23 | 551 | 1731 | 238447.67 |
| 418 | 1313.19 | 1312227.91 | 485 | 1523． 6.67 | 184 45.28 | 55. | 1134.16 | 239313.96 |
| 419 | 1316．33 | 137885.29 | 486 | 1526.81 | 185507. | 55 | 173\％．30 | 240181.83 |
| 420 | 1319.47 | 138544.24 | $48 \%$ | 15：9．96 | 186ะ 2 2． 10 | 55 | 1740.44 | 241051.26 |
| 421 | 1322.61 | 139：04． 6 | 488 | 1533.10 | 187037．86 | 555 | 1713.58 | 2419：2．27 |
| $42 \%$ | 1335．75 | 139866.85 | 489 | 1536.24 | 187805.19 | 556 | 1746. | 242794．${ }^{\text {¢ }}$ |
| 423 | $13 \geqslant 3.89$ | 1405．30．51 | 490 | 1539.38 | 188554．10 | 557 | 1749．8i | 243668.99 |
| 424 | 133204 | 141195.74 | 491 | 1542 | 18934 | 55 | 1753. | 244514.61 |
| 425 | 1335． 18 | 14186254 | 492 | 1545.66 | 190116.62 | 559 | 1756.15 | 24542000 |
| 426 | 13：38．32 | $142530.92 \%$ | 493 | 1548.81 | 190890.24 | 560 | 1159．29 | 246300.80 |
| 427 | 1341.46 | 143：200 86 | $49+$ | 1551.95 | 191665.43 | 561 | 1162．43 | 247181.30 |
| 42 |  | 143872.38 | 495 | 155509 | 192442． 18 | 562 | 1 T 6 5 | 248063.30 |
| $4: 9$ | 1347.74 | $1445+5.46$ | 496 | 15．58．23 | 193＞20．51 | 563 | 126－．72 | $2489+6.8$ 亿 |
| 430 | 1350.88 | 145120.12 | 497 | 1561．37 | 194000.41 | 564 | 1711.86 | 249833.01 |
| 431 | 13．54．03 | 145896．35 | 498 | 1564.51 | 191781.89 | 565 | $1 \% 55.00$ | $250{ }^{2} 18$ 73 |
| 43.2 | 1357.17 | $1465 \% 415$ | 99 | 1567.65 | 195564．933 | 566 | 1778.14 | 25160 ． 01 |
| 433 | 1360.31 | 14\％253．52 | 500 | 1570.80 | 196349.54 | 567 | 1781.28 | 25.496 .87 |
| 434 | 1363.45 | 14793446 | 501 | 15 T 3.94 | 197135. | 568 | 1781 | 25：3388．30 |
| 435 | 1366.59 | 148616．97 | 502 | 1577.0 | 197923. | 569 | $118 \% .5 \%$ | 254281．29 |
| 436 | 1369.73 | 149301．05 | 503 | 1580 | 198712.80 | 570 | 1190.71 | 2，5175． 86 |
| 437 | 1372.88 | $149986 . \%$ | 504 | 1583.36 | 199503． 70 | 571 | 1793．85 | 250072.00 |
| 438 | 1376.02 | 1506\％3．9 | 505 | 155650 | 200\％：16． | 592 | 1796.99 | 256969.71 |
| 439 | 9.16 | 151362 |  | 1589．65 | 201090 こ0 | 573 | 1800.13 | $25 i 868.99$ |
| 440 | 138：3． 30 | 152053．08 | 507 | $1592 . \tilde{9} 9$ | 20188.51 | 574 | 1803.24 | 258 ¢69．85 |
| 441 | 1385.44 | 152745.02 | 508 | 1595.93 | 202682.99 | 5 | 180642 | 259672.27 |
| 442 | 1388.58 | 15343853 | 509 | 1599.07 | 203481.74 | 576 | 180956 | 2605176.26 |
| 44. | 1391.73 | 154133.60 | 510 | 1603． 21 | 204282.06 | 578 | 181：． 70 | 261481.83 |
| 444 | 1391.87 | 154830.25 | 511 | 160535 | 205083.9 .5 | 578 | 181584 | 26．2388． 96 |
| 445 | 139801 | 155.528 .47 | 512 | 1608.50 | $20588 \% .42$ | 579 | 1818.98 | $263 \times 99.67$ |
| 446 | 1401.15 | 156：28．26 | 513 | 1611.64 | 20669：4\％ | 580 | 1822． 12 | 264 |
| 44 | 1404.29 | 156929.62 | 514 | 1614．78 | 207499.05 | 581 | 1825． 27 | 265119.19 |
| 448 | 1407.43 | 15763\％ 55 | 515 | 1617．92 | 20830\％． 23 | 58.2 | 1828．41 | 266033.21 |
| 449 | 1410.58 | 158：337．06 | 516 | 1621.06 | 209116.97 | 583 | 1831.55 | 26694820 |
| 450 | 1413．72 | 159043.13 | 517 | 1634．20 | 209928．29 | 584 | 1834.69 | 26：864． 76 |
| 451 | 1416.8 | 159750.77 | 518 | 1627.34 | 210741.18 | 585 | 1837.83 | 268782.89 |
|  | 1420.00 | 160459.99 | 519 | $16: 30.49$ | $\stackrel{211525.63}{ }$ | 586 | 1840.90 | $269 \% 02.59$ |
| 453 | 14：3．14 | 161170.77 | 520 | 1633.63 | 210．31． 66 | 588 | 184.11 | 270683.86 |
| 454 | 1426．28 | 161883.13 | 521 | 1636．75 | 213189.26 | 588 | 1847.26 | 271546.70 |
| 455 | 142942 | 16：2597． 05 | 522 | 1639.91 | 214008.43 | 589 | 1850.40 | $2724 \% 1.12$ |
| 456 | 143\％．5\％ | 163312.55 | 523 | 1643． 05 | $2148: 29.14$ | 590 | 1853.54 | 27339.10 |
| 457 | 1435.71 | 164029.62 | 594 | 1646.19 | $\stackrel{15651.49}{ }$ | 591 | 1856.68 | $2 \pi 4324.66$ |
| 458 | 1438.85 | 164\％48．26 | 525 | 1619.34 | 216475.37 | 592 | 1859.82 | 275：53．is |
| 459 | 1441.99 | 1605190.45 | 526 | 1652.48 | 217300.82 $21812 \% .85$ | 593 594 | 1866.96 | 276181.48 277116.75 |
| 60 | 1445.13 | 166190.25 | $52 \%$ | 1655 | 218127.85 | 594 | 1866.11 | 277116.75 |


|  | Cir |  |  |  |  |  | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 595 | 18 | 278050.58 | $66: 3$ | 208\%.88 | $345 \div 36.69$ | 1 | 2296.50 | 419686.15 |
| 596 | 18\%. 39 | $2 \tau 8955.99$ | 664 | 20su. 0 : | $3462 \% 8.91$ | 732 | 2299.65 | 420835. 19 |
| $59 \%$ | $18 \% 5.53$ | $2799 \cdots 2.97$ | 66.5 | 2089.16 | 3473:32. 0 | 733 | 230:. 99 | 421985.79 |
| 548 | $1888.6 \hat{1}$ | 280861.52 | 666 | $209 \% .30$ | 348368.07 | 734 | 2305.93 | 423137.97 |
| 599 | 1881.81 | 28180165 | $66 \%$ | 2095.44 | 349415.00 | 735 | 2309.0斤 | 424:91. $\%$ |
| 600 | 1884.96 | 28.2 243.34 | 668 | 2098.58 | 350463.51 | 7/36 | 2312.21 | 42544\%. 04 |
| 601 | 1888.10 | 2836856.60 | 669 | $\because 101.73$ | 351513.59 | 738 | 2315.35 | 426603.94 |
| 602 | 1891.24 | 284631.44 | 670 | $\because 104.8 \%$ | 352565.24 | 738 | 2318.50 | $42 \div \bigcirc 6: 4.40$ |
| 603 | 1594.38 | $2855 \%$ \%. 84 |  | 2108.01 | 353618.45 | 739 | 23:21.64 | $4289 \div 2.43$ |
| 604 | 1897.5 | $286725.8 \%$ | $6{ }^{6}$ | 2111.15 | 35461324 | 740 | 23.24 \% | 430084.03 |
| 605 | $\begin{aligned} & 1900.66 \\ & 1903.81 \end{aligned}$ | 28745.36 $2884 \div 6.48$ | 673 644 | 2114.298 | 35579.60 | ¢41 | 2327.92 | 431247.21 |
| 60 | 1906.95 | 289339.17 | 6 | 2120.58 | 35784\%.04 | ri4 $r$ | $\begin{aligned} & 2: 331.06 \\ & 2334.20 \end{aligned}$ | 432411.95 $4335 \sim 8.2 \%$ |
| 608 | 1910.09 | 290333.43 | 676 | 213. 22 | 3.355908 .11 | $\stackrel{\square}{4}$ | 2337.34 | 434746.16 |
| I | 1913.23 | 291:289.26 | 617 | 21:6.86 | 3599\%0 \% | 745 | 2310.49 | 4:35915.62 |
| 610 | 1916.36 | $29 \% 246.66$ | 6.8 | $\because 130.00$ | 361034.97 | 746 | 23843.63 | 437088.64 |
| 11 | 191951 | 293205.63 | 679 | 2133.14 | 36:2100.75 | $74 \%$ | 2376.18 | 438859.24 |
| 612 | $192: 65$ | 294166.11 | 680 | 2136.28 | 36:3168 11 | \%48 | 2349.91 | 439433.41 |
| 613 | 1925.80 | $2951 \pm 8.28$ | 681 | $\because 139.42$ | 364237.04 | \%49 | 23553. 05 | 41060916 |
| 614 | 1928.94 | 296091.9 \% | 68: | $214: 5 \%$ | 365307.54 | 750 | 2356.19 | $441 \sim 46.47$ |
| 615 | 193:.08 | 29705\%.20 | 6ix 3 | $\because 1+5.71$ | 3663379.60 | 751 | 2359.34 | 412965.35 |
| 616 | 1935.22 | $2980: 4.05$ | 684 | 2148.85 | 3364533.24 | 752 | 2362.48 | 444145.80 |
| $61 \%$ | 1938.36 | 29899.44 | 685 | 2151.89 | 368.528 .45 | 753 | 2365.62 | 4 ¢53:2. 53 |
| 618 | 1941.50 | 299962.41 | 686 | 2150.13 | $369665 . \because 3$ | 754 | 2368.76 | 446511.4: |
| 619 | 1914.65 | 3009333.95 | 688 | 2158 | 370683.59 | 755 | 23.1 .90 | $44 \sim 696.59$ |
| 620 | 1947.59 | 301907.05 | (i88 | $\because 161.42$ | 311763.51 | ¢56 | 2335.04 | 448883.32 |
| $6: 21$ | 1950.93 | $30 \geqslant 881.73$ | 689 | 2164.56 | 372845.00 | $75 \%$ | 23388.19 | 4500 ¢1. 63 |
| 622 | 1954.0\% | $30385 \% .98$ | 690 | $\because 16 \pi . \sim 0$ | 333928 07 | 758 | 2381.33 | 451261.51 |
| 623 | 1957.21 | 304835.80 | 691 | 2170.84 | 3.5012 .6 | 759 | 2384.45 | 45242. 96 |
| 624 | 1960.35 | 305815.20 | 692 | 2173.98 | 336098.91 | 760 | $238 \%$ \% 61 | 45364598 |
| $6: 5$ | 1963.50 | 306196.16 | 693 | 210.12 | 37 ¢186. 68 | C'61 | $2390 . \div 5$ | 454840.57 |
| 626 | 1966.64 | 30 กT78. 69 | 694 | 2180.24 | $378: 60$ | ri62 | 2393.89 | 456036. 3 |
| 622 | 1969.78 | 308i6.9.79 | 695 | 2183.41 | 379366.95 | :63 | 2339\%.04 | 45.7234 .46 |
| 628 | 1972.92 | $309 \hat{9} 48.4 \sim$ | 696 | 2186.55 | 380459.44 | r64 | 2400.18 | 458433.77 |
| 629 630 | 1976.06 | 310735.71 | $69 \%$ | 2189.69 | 381553.50 | 765 | 2403.32 | 459634.64 |
| 630 | 1979.20 | 311204.53 | 698 | 2192.83 | 38:649.13 | 766 | 2406.46 | $46083 \% .08$ |
| 631 | 198. 35 | 312 ¢14.92 | 699 | $\because 195.97$ | 383'46.33 | $26 \%$ | 2409.60 | 46:041.10 |
| 632 633 | 1985.49 | 313106.88 | -00 | 2199.11 | 384845.10 | ri68 | 2412.74 | 463246.69 |
| 633 | 1988.63 | 314:00.40 | ¢ 21 | 220:.26 | 385945.44 | \%69 | 2415.88 | 4644538 |
| 634 | $1991 . \%$ \% | 315695.50 | r'02 | -2205.40 | $38 \% 04{ }^{\text {a }} 36$ | 570 | 2419.03 | $46566: 2.57$ |
| 635 $6: 36$ | 1994.91 | $316692.1 \%$ | 203 | 2008.54 | 388150.84 | ricl | 242\%.1\% | 4668 \% 2.8 \% |
| 6:36 | 1998.05 | $317690.4 \times$ | 204 | $\because 211.68$ | 389:25.90 | \% | $24 \cdot 5.31$ | 468084 r 4 |
| 638 | 2001.19 | 318690.23 | \% 05 | 2214.82 | 390362.52 | \%\%3 | 2428.45 | 469298.18 |
| 638 639 | 2004.34 | 319691.61 | 706 | $2 \times 1 \% .96$ | $3914 \% 0.18$ | rit | 2431.59 | 4\%0513.19 |
| 639 640 | 200~. 48 | 3:0694.56 | 707 | 2020.11 | 392580.49 | 775 | 2431.73 | 4\%1729.\%\% |
| 640 | 2010.62 | $3: 1699.09$ | 18 | - | 393691.82 | $2{ }^{2} 6$ | 2431.88 | 4\% 29 \% 9.9 |
| 611 | 2013.76 | $3 \because 2705.18$ | \%09 | -2\%2. 39 | 394804.73 | \% $\%$ | 2441.02 | $4 \% 416 \% .65$ |
| 64: | 2016.90 | 333712.85 | 710 | 2230.53 | 395919.21 | \% 78 | 2444.16 | 475388.94 |
| 64.3 | $20 \% 0.04$ | 324T@ 09 | T11 | $2{ }_{2}^{2} 33.3 .6 \hat{4}$ | 39\%03i) 26 | rr9 | 2447.30 | $4 \pi 6611.81$ |
| 644 | 2023.19 | 325732.89 | 712 | 2 | 39815:. 89 | -80 | 2450.44 | 4î¢836.24 |
| 645 | 2026.33 | 3:6\%45.27 | \%13 | 2239.96 | 3992\%2.08 | T81 | 2453.58 | $4 \% 9062.25$ |
| 646 | $20: 9.4$ | $3 \times 559$ | \%14 | $22+3.10$ | 400392.84 | r82 | 2456.73 | 480:89.83 |
| 644 | 2039.61 | $328 \%$ \% 4.4 | 715 | $22+46.24$ | 401515.18 | ris3 | 2459.8 \% | 481518.97 |
| 648 | 2035. 75 | 329 ¢ 91. ¢ 3 | 716 | 2249.38 | 402639.08 | \%84 | 2463.01 | 4827.49.69 |
| 649 | 2038.89 | 330810.49 | ${ }^{7} 17$ | 225*.5: | 403564.56 | 885 | 2466.15 | 483981.98 |
| 65 | 2012.01 | 331830.7 | $\tau 18$ | $2 \because 55.66$ | 404891.60 | \% 86 | 2469.29 | 485:15.84 |
| 651 | 2045.18 | 33:85\%.63 | 719 | $2: 58.81$ | 4060:0.20 | \%8\% | 24\%2.43 | 486451.28 |
| $65:$ | 2048.32 | 333875.90 | 720 | $\because 261.95$ | 407150.41 | 788 | 2475.58 | 48 ¢688.28 |
| 53 | 2051.46 | 334900.85 | 721 | $2 \geqslant 65.09$ | 408288. 17 | \%89 | $\because 4 \% 8 . \%$ | 4889:6.85 |
| 654 | 2054.60 | 33593\% 36 | \% 20 | 2268.23 | 409415.50 | 790 | 2481.86 | 490166.99 |
| 655 | 205\%. 74 | 33:36955.45 | 20:3 | 2271.34 | 410550.40 | 791 | 2485.00 | $491408 . \tilde{1}$ |
| 656 | 2060.88 | 3334985.10 | 72 | 224.51 | $411686.8{ }^{\text {a }}$ | \%92 | 2488.14 | 492651.99 |
| 657 | 2064.03 | 339016.33 | 225 | 2-6.65 | 412824.91 | 793 | 2491.28 | 493896.85 |
| 658 | 2067. 10 | 340049.13 | T26 | 2280.80 | 413964.52 | \%94 | 2494.42 | 495143.28 |
| 659 660 | $20 \pi 0.31$ | 341083. 50 | T\% | $2 \because 53.94$ | 415105.11 | 795 | $\because 497.5 \%$ | 496391.27 |
| ${ }_{660}^{661}$ | 2073.45 | $3+2119.44$ | 228 | $2 \because 87.08$ | 416243.46 | 796 | 2500.71 | 496640.84 |
| 661 | 2076.59 | 31.3156 .9 .5 | \% 2 | 2190.22 | 417392.79 | $79 \%$ | 2503.85 | 498891.98 |
| 662 | 2079.73 | 344196.03 | 730 | 293.36 | 4185 | \%98 | 2506.99 | 500144.69 |

CIRCUMFERENCES AND AREAS OF CIRCLES． $10{ }^{\circ}$

| D | Ci | Area． |  |  |  |  |  | ea． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 199 | 2510.13 | 501398.97 | 86 | 2723.76 | 590375．16 | 935 | 293～． 39 | 686014．71 |
| 800 | 2513.27 | 50：654．8： | 868 | 2ั26．90 | 591737． 83 | 936 | 2940.53 | 688084.19 |
| 801 | 2516.42 | 503912． 25 | 869 | 2780.04 | 593102．06 | 937 | 2943.67 | 689555.24 |
| 80.2 | 2.519 .56 | 505171.24 | S70 | 2133.19 | 594467.87 | 938 | 294681 | 6910：\％ 86 |
| 803 | 25ここ． 70 | 506431.80 | 871 | 2736.33 | 595835.25 | 989 | 2949.96 | 69：50：．05 |
| 804 | 25\％5．81 | 507693． 94 | 87 | 2739.47 | 59\％\％04．20 | 940 | 2953.10 | 69897\％8\％ |
| 80.5 | 25.38 .98 | 50895\％． 64 | 873 | 2742.61 | 5985 \％ | 941 | 2956.24 | 695455.15 |
| 806 | こち3\％．12 | 51022． 92 | 874 | 2\％45．75 | 599946.81 | 942 | 2959.38 | 6969：34．06 |
| 807 | 2535．${ }^{2} 7$ | $511489.7 \%$ | 875 | 2748.69 | $6013: 0.47$ | 943 | 2962．52 | 698414.53 |
| 808 | 2533.41 | 512758．19 | 8.6 | 2\％5：． 04 | 602695.70 | 944 | 2965.66 | 699896.58 |
| 809 | 2541.55 | $5140 \div 8.18$ | 87 | 2755.18 | 604072．50 | 945 | 2968.81 | \％01380．19 |
| 810 | 2544．69 | 515299.74 | 878 | 2758.32 | 605450.88 | 946 | 2971.95 | \％02865．38 |
| 811 | －547．83 | 5165 \％）． 87 | 879 | 2761.46 | $606830.8 \%$ | $94 \%$ | 2975.09 | \％0435：． 1 |
| 812 | 2550.97 | 517847．57 | 880 | 276460 | 608212．34 | 948 | 2978.23 | $\% 05840.4$ |
| 3 | 2554.11 | 519123 84 | 881 | 2767.74 | 609595.42 | 949 | 2981.37 | 707330．37 |
| 814 | 2557.26 | 520401．68 | 882 | $2 \% 70.88$ | 610980.08 | 950 | 2984.51 | \％088：1．84 |
| 815 | 2560.40 | 521581.10 | 883 | 2\％\％4．03 | $61: 366.31$ | 951 | 2987． 65 | \％10314．88 |
| 816 | 2563.54 | 5：2962．08 | 84 | 20.78 .17 | 613 T54．11 | 952 | $\checkmark 990.80$ | ＇11809．50 |
| 817 | 2556.68 | 524244.63 | 85 | $2 \% 80.31$ | 615143.48 | 953 | 2993.94 | 713305．68 |
| 818 | $\because 569.8$ \％ | 525528． 66 | 888 | 2783.45 | 616534．42 | 954 | 2997.08 | \％14803．43 |
| 19 | 25\％ 96 | 5．6814．46 | 87 | 2786.59 | 617926.93 | 955 | 3000．22 | 716302． 76 |
| 820 | 2506.11 | 5＊8101．73 | 888 | 2789.73 | 619321.01 | 956 | 3003.36 | 717803．66 |
| 8． | 25～9． 25 | 529390.56 | 889 | 2\％93．88 | $6 \approx 0716.66$ | $95 \%$ | 3006.50 | 19306.1 |
| 8：2 | －558． 39 | 530680.97 | 890 | $2 \% 96.02$ | $6 \pm 2113.89$ | 958 | 3009.65 | \％20810．16 |
| 8：3 | 2585.53 | 531972． 95 | 891 | 2\％99．16 | 623512.68 | 959 | 3012．79 | \％22315． 77 |
| 4 | 2588.6 r | 533：66．50 | 892 | 2812． 30 | $6 \cdot 4913.04$ | 960 | $30: 593$ | T23822．95 |
| 825 | 2591.81 | 534561．6 | 893 | 2805.44 | 6：26314．9 | 961 | 3019.07 | \％25331．70 |
| 826 | 2594.96 | 535858.32 | 894 | 2508.58 | 627718.49 | 962 | 3022．21 | \％26842．02 |
| 8．2～ | 2598．10 | 537156．58 | 895 | 2811.73 | 629123.56 | 963 | 3025.35 | 7：8353．91 |
| 8：8 | $2601 . \therefore 4$ | 538156.41 | 896 | 2814.83 | 630530．21 | 964 | 3028.50 | 729867．3\％ |
| $8: 29$ | 2604.38 | 53975\％．82 | 97 | 2818.01 | 631938.43 | 965 | 3031.64 | 73138：．40 |
| 836 | 260 \％ 5 5： | 541060． 79 | 95 | $28: 21.15$ | 633348．22 | 966 | 3034.78 | 739899．01 |
|  | 2610.66 | $54 \geq 365.34$ | 899 | 28：4．：39 | 634759.58 | 967 | 3037．92 | 73441\％．18 |
| $88: 3$ | 2613.81 | 545671.46 | 900 | 28．3\％．43 | $6361 \% 2.51$ | 08 | 8041.06 | \％35936．93 |
| 83.3 | 2610.95 | 544979.15 | 901 | 2830．58 | 637587.01 | 969 | 3044.20 | 73\％458．24 |
| 834 | 260.09 | $546 \geq 88.40$ | 90： | $2833.7 \times$ | 639003.09 | 970 | 3047.34 | ［38 |
| 835 | $26 \div 3.23$ | 547599．23 | 903 | 2836.86 | 640430.73 | 971 | 3050.49 | 740505．59 |
| 836 | 26.26 .37 | 548911.63 | 904 | 2840.00 | 641839.95 | 9 9\％ | 3053.63 | 740 |
| 837 | 26：3．51 | 55022．）． 61 | 05 | 2813.14 | $643 \pm 60.73$ | 973 | 3056.77 | 743559．28 |
| $8: 38$ | 26．33．65 | 551541.15 | 906 | 2816.28 | 644683.09 | 97 | 3059.91 | \％45088．39 |
| 839 | 2635.80 | 552858．26 | 07 | 2849.42 | 646107.01 | 975 | 3063.05 | r 46619.13 |
| 840 | 2638.94 | $5541 \% 6.94$ | 08 | 2850．5 | 647532.51 | 976 | 3066.19 | r 48 |
| 811 | 264：．08 | 55．549\％．20 | 909 | 2855.71 | 618959.58 | 97 | 3069.34 | \％49 |
| 842 | 2645.22 | 556819.02 | 910 | 28.58 .85 | 650388．22 | 978 | 3078.48 | \％512：0．78 |
| 84.3 | 2648 ． 36 | 558142.40 | 11 | 2861．99 | 651818.43 | 979 | 3075．62 |  |
| 844 | 2651.50 | 55946 \％．39 | 12 | 2865． 13 | 6539．50．91 | 980 | 30ヶ8．76 | 754 296.40 |
| 845 | 2654．65 | 560793.92 | 913 | 2868.97 | 654683.56 | $98 i$ | 308190 | 755836.56 |
| 816 | 2657.79 | 562122．03 | 914 | 2571.42 | 656118.48 | 983 | 3085.04 |  |
| 817 | 2660.93 | 563451.71 | 915 | 2854.56 | 657554.98 | 983 | 3088.19 | \％58921．61 |
| 848 | 2664.07 | 56478.96 | 916 | 28\％T， 0 | 658993.04 | 984 | 3091.33 | 76046648 |
| 849 | 2667.21 | 566115.75 | 917 | 2580.81 | 660432.68 | 985 | 3094.47 | 76201®．9 |
| 850 | 2670.35 | $56 \sim 450.1 \%$ | 918 | 2883.98 | 661873.88 | 986 | 3097.61 | T63560．95 |
| 851 | $26 \sim 3.50$ | 568 \％86．14 | 919 | 288．12 | 66331666 | 987 | 3100.75 | 6651105 |
| 852 | 2676.64 | $5 \% 01.23 .6 i$ | 920 | 2890.27 | 664761.01 | 988 | 3103.89 | \％66661． 70 |
| 853 | 2679.78 | 5\％1462．71 | $9 \% 1$ | 2893.41 | 666206.92 | 989 | 3107.04 | \％68214． 1 |
| 54 | 268292 | 572803.45 | 922 | 2896.55 | $66 \% 654.41$ | 990 | 3110.18 | 「69768． |
| 85.5 | 2636.06 | 574145.69 | 923 | 2839.69 | 669103.47 | 991 | 3113.32 | $\bigcirc 113946$ |
| 856 | 2689.90 | 575489.51 | 224 | 2903.83 | 670554.10 | 992 | 3116.46 | \％T2882．06 |
| $8.5 \%$ | 2692．34 | 576831．90 | 25 | 2905.97 | $6 \sim 2006.30$ | 993 | 3119.60 | rri4441．0 |
| 88.58 | 2695.49 | 578181.85 | 920 | 2909.11 | 6 6 3460.08 | 994 | 3192.74 | rr6001．6 |
| 859 | 2698.63 | 579530.38 | 927 | 2912.26 | $6{ }^{-1915.42}$ | 995 | 3195.88 | \％rris63．8 |
| 860 | 2701.78 | 580880.48 | 993 | 2915.40 | 676372.33 | 996 | 3129.03 | －r91：2～． 5 |
| 861 | 2704.91 | 582232． 15 | 929 | 2918.54 | $67 \% 830.8 ?$ | 997 | $3132.1 \%$ | 780692.8 |
| 862 | 2708.05 | 583585.39 | 930 | 2921.68 | $6 \sim 9290.87$ | 998 | 3135.31 | 8959 |
| $86: 3$ | 2711.19 | 584940．20 | 931 | 2924． 82 | 680752.50 | 999 | 3138.45 | 783828.1 |
| 864 | 2714.34 | 586296.59 | 932 | 292\％．96 | $682 \times 15.69$ | 1000 | 3141.59 | 78539816 |
| 865 | $2{ }^{2} 17.48$ | 58.654 .54 | 933 | 2931． 11 | 683680.46 |  |  |  |
| 866 | $2 \% 20.68$ | 589014.07 | 934 | 2934.25 | 685146.80 |  |  |  |

## CHRCUMEERENCIS AND AREAS OF CHRCLES

Advancing by Eighths.

| Diam. | Citcum. | Area. | Diam. | Circuin. | A | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/64 | 04909 | . 00019 | $23 / 8$ | 74613 | 4.4301 | (1/8 | 19.242 | 29.465 |
| $1 / 3 \cdot 2$ | . 09818 | . 00077 | - $2 / 110$ | $7.65 \% 6$ | 4.6664 |  | 19.635 | 30650 |
| 3/64 | . 14826 | . $0017 \%$ | $\begin{array}{r} 1 / 2 \\ 9 / 16 \end{array}$ | 7.8540 | 4.9087 |  | 20.028 | 31.919 |
| 1/16 | . 19645 | . 003307 |  | 8.0503 | $5.15 i$ |  | 20.420 | 33.183 |
| $3 / 3 \cdot 2$ | . 29452 | . 00690 | $\begin{aligned} & 9 / 16 \\ & 5 / 8 \end{aligned}$ | 8.2467 | 5.4119 |  | 20.813 | 34.45 |
|  | . 39220 | . 01228 | $\begin{gathered} 11 / 16 \\ 3 / 4 \\ 13 / 16 \end{gathered}$ | 8.4430 | 5.6927 |  | 21206 | 35.785 |
| $5 / 32$ $3 / 16$ | . 49087 | . 01917 |  | $8.6339 \pm$ | 5.9396 |  | 21.598 | 37.192 |
| 3/16 | . 58905 | .02\%61 | $\begin{gathered} 13 / 16 \\ 8 / 8 \\ 15 / 16 \end{gathered}$ | $8.835 \pi$ | 6.2126 |  | 21.991 | 38.485 |
| 7/3: | . 68.20 |  |  | 9.0521 | 6.4918 | 1/8 | 22.384 | 39.871 |
|  | ¢8540 |  |  | 9.2084 | 6.7\%1 |  | 22. 236 | 41.282 |
| 9/32 | . 88357 | .06:13 | $15 / 16$ 3. | 9.4248 | 70686 | 8 | 23.169 | 42.718 44.179 |
| 5/16 | 98175 | . 07670 | $\begin{aligned} & 1 / 16 \\ & 1 / 8 \end{aligned}$ | 96211 | $7.366 \%$ |  | 23.955 | 45.664 |
| 11/32 | 1.0799 | . 09281 |  | 9.8175 | 7.6699 |  | $24.34 \%$ | 47.173 |
|  | 1.1781 | . 11045 |  | 10.014 | 7.9798 | 8 | 24.740 | 48.707 |
| 13/3: | 1.2763 | .1296? | $\begin{gathered} 3 / 8 \\ 1 / 4 \\ 1 / 4 \end{gathered}$ | 10.210 | 8.2958 | 8. | 25.133 | 50.265 |
| \%/16 | 1.3744 | . 15033 | $5 / 16$ | 10.407 | $8.61 \% 9$ | 1/8 | 25.525 | 51.819 |
| 15/3 | 1.4*26 | . 1725\% |  | 10.603 | $8.946:$ |  | 25.918 | 53.456 |
|  |  |  | $8 / 16$ | 10.749 | 9.2806 | 18 | 26.311 | 55.088 |
| 17/32 | 15708 1.6690 | . 19635 | $9 / 16$ | 10.996 | $9.6 \geqslant 11$ |  | 26.504 | 56.745 |
| 9/16 | 1. 8671 | . 24850 |  | 11.388 | ${ }_{10.921}$ | \% 8 | 27.096 27.489 | 58.426 |
| 19/3: | 1.8653 | 27685 | $11 / 16$ | 11.585 | 10.680 | \% | 27.489 | 60.13 .2 61.862 |
| $5 / 8$ | 1.9635 | . 30680 | $\begin{gathered} 3 / 4 \\ 13 / 16 \end{gathered}$ | 11.781 | 11.045 |  | 28.274 | 63.617 |
| 21/32 | 2.0617 | . 33824 |  | 11.937 | 11.416 | 1/8 | 28.66 r | 65.397 |
| 11/16 | 2.1598 | 37122 | $\begin{gathered} 7 / 8 \\ 15 / 16 \end{gathered}$ | 12.124 | 11.693 |  | 29.060 | 67.201 |
| $23 / 32$ | 2. 2580 | . $405 \% 4$ |  | 12.3i0 | 12.15\% |  | 29.452 | 69.029 |
|  |  |  | 1/16 | 12. 566 | 12.566 | 12 | 29.845 | \%0.88\% |
|  | 2.3562 | 44179 |  | 12.763 | 12962 | 5 | 30.238 | \%2. 7.6 |
| $13 / 16$ | 2.4544 | . 4793 i | $1 / 8$ | 11.959 | 13.364 | $3 / 4$ | 30.631 | \%4.662 |
| 27/3 | ${ }^{2} .6505$ | . 51889 | $3 / 16$ | 13.155 $13.35 \%$ | 13.712 14.186 |  | 31.023 31.416 | 76.589 78.540 |
|  | 2. 7489 | . 60132 | 5/16 | 13.548 | 14.60 亿 |  | 31.416 31.809 | 18.540 80.516 |
| 29/3: | $2.84{ }^{6} 1$ | . $6450 \pm$ | $3 / 3 / 8$ | 13.744 | 15.033 |  | 32.201 | 8: 516 |
| 15/16 | 2.9459 | .69029 | $\begin{aligned} & 5 / 16 \\ & 1 / 2 \\ & 9 / 16 \end{aligned}$ | 13.941 | 15.466 | $3 / 8$ | 32.594 | 84.541 |
| 31/32 | 3.0434 | . 73708 |  | 14.137 | 15.904 |  | 32.957 | 86.590 |
|  | 3.1416 |  |  | 14.334 | 16.319 |  | 33.3\%9 | 88.664 |
|  |  | . 7854 | $\begin{aligned} & 9 / 16 \\ & 5 / 8 \end{aligned}$ | 14.530 | 16.800 |  | 33 \%72 | 90.763 |
| 1/16 | 3.3379 | . 8866 | 11/16 | 14.7.26 | 17.257 |  | 34.165 | 92.886 |
| 1/8 | 3.5343 | . 9940 |  | 14.923 | 17.721 |  | 34.558 | 95.033 |
| 3/16 | 3. 7306 | 1. 1075 | 13/16 | 15.119 | 18.190 |  | 34.950 | 97. 205 |
| 5 | 3.9350 4.923 | 1. 2.72 | $7 / 8$$15 / 16$ | 15. 315 | 18.665 | 14 | 35.343 | 99.40: |
|  | 4.3197 | 1.3530 |  | 15) 512 | 19.14 \% |  | 35.736 | 101.62 |
| $7 / 16$ | 4.5160 | 1. 6830 | $1 / 16$ | 15.708 | 19.635 | 2 | 36.128 | 103.87 |
|  | 4.7124 | $1.76 \% 1$ | $\begin{aligned} & 1 / 8 \\ & 3 / 16 \end{aligned}$ | 16.101 | 20.6:9 |  | 36.521 36.914 | 106.14 |
| 9/16 | 4.9087 | 1.9155 |  | 16.297 | 21.135 | \%/8 | 37.306 | 110.75 |
| 5/8 | 5.1051 | 2.0739 | $1 / 4$$5 / 16$ | 16.493 | 21.648 |  | 37.699 | 113.10 |
| 11/16 | 5.3014 | 2.2365 |  | 16.690 | $22.160^{\circ}$ | $1 / 8$ | 38.092 | 115.47 |
| $3 / 4$ | 5.4978 | 2.4053 | 23/8 | 16.886 | 次. 691 | $1 / 4$ | 38.48 5 | 117.86 |
| 13/16 | 5.6941 | $2.540 \%$ | $7 / 16$ | $17.08{ }^{2}$ | 23.221 |  | 38.8 \% 7 | 120.28 |
|  | 5.8905 | 2.7612 |  | 17.299 | 23.758 | 1 | 39.2 0 | 122.72 |
| 15/16 | 6.0868 | 2.9483 | $9 / 16$ | 17.475 | 24.301 |  | 39.663 | 125.19 |
|  | 6.2832 |  |  | 17. 671 | 24.850 |  | 40.055 | 127.68 |
|  |  | 3.1416 | $\begin{aligned} & 11116 . \\ & 3 / 4 \\ & \hline 18 . \end{aligned}$ | 17.868 | 25.406 |  | 40.448 | 130.19 |
| 1/16 | 6.4595 | 3.3410 |  | 18.064 | $25.96{ }^{\sim}$ |  | 40.841 | 132.73 |
|  | 6.6759 | 3.5166 | 13-16 | 18.261 | 26.535 | $1 / 8$ | 41.233 | 135.30 |
| $3 / 16$ | 6.872.2 | 3.758 .3 | $\begin{gathered} 7 / 8 \\ 15-16 \end{gathered}$ | $18.45 \%$ | 27.109 |  | 41.626 | 137.89 |
| $1 / 4$ $5 / 16$ | 7.06s6 7.2649 | 3.9561 4.2000 |  | 18.653 18.85 | 27.688 |  | 42.019 | 140.50 |
| 5/16 | 7.2649 | 4.2000 |  | 18.8.50 | $28.2 \pi 4$ | $1 / 3$ | 42.412 | 143.14 |



|  |  |
| :---: | :---: |
|  |  |


| Diam． | Circum． | Area． | Diam | Circum． | Area | Diam． | Circum． | Area． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 383 / 8 \\ 1 / 8 \\ 588 \\ 3 / 4 \\ 89 \\ 89 \end{array}$ | 120.559 | 1156.6 | $\begin{array}{r} 4658 \\ 3.5 \\ 48 \% \\ 48 \end{array}$ | 146.477 | 1707． 4 | 54\％／8 | $1 \% 2.395$ | 2365.0 |
|  | 120．951 | 1164． 2 |  | 146.869 | 1\％16．5 | 55. | 172． 888 | 2375.8 |
|  | 121.344 | 111\％1．${ }_{11}$ |  | 147．26\％ | ${ }^{1 \%} 4.5 .7$ |  | 173.180 17.35 | $\stackrel{2386.6}{2397.5}$ |
|  | 122．129 | 1186.9 |  | 148.048 | 18 |  | 173.966 |  |
|  | 1 $22.52=$ | 1194.6 |  | 148440 | 1753.5 |  | 174.358 | 2419.2 |
|  | 122．915 | 1202.3 | 11／4 | 148.833 | 1762.7 |  | 174.751 | 2430.1 |
|  | 123．308 | 1210.0 | 1 | 149.2026 | 1772.1 | $\begin{aligned} & 98 \\ & \frac{8}{4} \\ & 8 \end{aligned}$ | 175.144 |  |
|  | 123．700 | 121\％．${ }^{\text {a }}$ | 8 | 149.618 | 1781.4 |  | 175.536 | 241.1 2452.0 |
|  | 12．4．093 | 1225.4 | 析 | 150.011 | 1790.8 | $56^{8 / 8}$ | 175.929 | 2463.02474 |
|  | 124．486 | 1233．2 |  | 150.404 | 1800.1 |  | $1 \sim 6.322$ |  |
|  | 12．4．878 | 1241.0 | 48 | 150.796 | 1809.6 |  | 1\％6． 115 | 24440 2485.0 |
|  | 125．201 | 1248.8 | $1 / 8$ | 151.189 | 1819.0 | 3 | $17 \% .107$ | 2196.12507.2 |
|  | 126.056 | 1256.6 |  | 151．58\％ | 18：28．5 | 3／8 | 177.500 |  |
|  | 126.449 | 126.4 | $1 /$ | 151.975 |  | 5／8 | 177.8 | $\begin{aligned} & 2507.2 \\ & 2518.3 \end{aligned}$ |
|  | 1 $26.8 .8+2$ | 1280．3 | 5 | 152．760 | 1847.5 | $\sqrt[3]{7 / 8}$ | 178 | 2599.4 |
|  | 127．235 | 1288．2 |  | 153.153 | 1866.5 |  | $179.0{ }^{171}$ | $\begin{aligned} & 2540.6 \\ & 2551.8 \end{aligned}$ |
|  | 127.627 | 1296. | 49. | 153.545 | 18\％6．1 |  | 179.463 | $\stackrel{2563.0}{25.4 .2}$ |
|  | 128．0：0 | 1304．${ }^{\text {2 }}$ |  | 153.938 | 1885 | 184 | 179.856 |  |
|  | 128.413 | 1312． 2 | 1 | 154．331 | 1895.4 |  | 180.249 | 2585.42596.7 |
| 41. | 128.805 | 1320.3 |  | 154.723 | 1905.0 | 3／8 | 180.642 |  |
|  | 129．198 | 1328.3 | 3／8 | 155． 116 | 1914.6 | 洔 | 181.034 | 2608.0 |
|  | 129.591 | 1336.4 | 5／8 | 155.509 | 1924.4 |  | 181.427 | 2619.42630.7 |
|  | 129.983 | 1344.5 |  | 155.902 | 1934.2 | 3／4 | 181.820 |  |
|  | 130.37 | 135 |  | 15i． 294 | 1943.9 |  | 182.212 | $\stackrel{2630.7}{2642.1}$ |
|  | 130.1 | 136 | 50 | 156687 | 1953．7 |  | 182．605 | 2653.52664.9 |
|  | 131.554 | 1369 |  | 15.08 | 1963 | 1.4 | 182.998 |  |
|  | 131.947 | 1385 |  | 15\％．865 | 1983 | $3 / 8$ | 183.390 | ${ }^{2066.4}$ |
|  | 132．340 | 1393． 7 | 3 18 | 158.258 | 1993.1 | 5 | 184.176 | $\begin{aligned} & 2687.8 \\ & 2699.3 \end{aligned}$ |
|  | 132． 732 | 1402.0 |  | 158.650 | 2003.0 | \％／8 | 184.569 | $2 \pi 10.9$$2 \pi 2 \cup .4$20.4 |
|  | 13.3 .125 | 1410 | $\begin{aligned} & 1 / 2 \\ & 5 \% \end{aligned}$ | 159.043 | 2012.9 |  | 184.961 |  |
|  | 1333.518 | 1418 |  | 159.436 | 2032.8 | 59 | 185.354 | 2\％34．0 |
|  | 1333.910 | 14\％ |  | 159．829 | 2032.8 |  | $185.74 \%$ | $\begin{aligned} & 275.6 \\ & 2757.2 \end{aligned}$ |
|  | 134.303 | 1435.4 |  | 160.221 | 2042 |  | 186.139 |  |
|  | 134．696 | 1443.8 | 51. | 160.614 | 20528 | 3 | 186．53： | 2768． 8 |
|  | 13．3． 088 | 1452．${ }^{\text {2 }}$ | 1／4 | 161.007 | 206\％． 9 |  | 186．92\％ | $2{ }^{2} 800.5$ |
|  | 135.481 | 1460 |  | 161.399 | 2073.0 | 彭 | 187．31\％ |  |
|  | 135．874 | 1469 | \％ | 161．79． | 20831 | 3848 | 187． 110 | 2803.3 |
|  | 136.659 | 1486.2 |  | 162.577 | 2103 | 60. | 188.103 | 2815．7 |
|  | 137．052 | 1494.7 | 52 | 16．3．9\％ | 2113.5 |  | 188.888 |  |
|  | 137．445 | 1503.3 |  | 163．363 | 2123．${ }^{\text {r }}$ | $1 / 4$ | 189.281 | 2839.2 2851.0 |
| $4{ }^{1 / 8}$ | 137.837 | 1511.9 |  | 163.756 | 2133.9 | 38 | $189.6{ }^{14}$ | 2862.9 |
|  | 138.230 | 15：20．5 | $1 / 4$318 | 164.148 | 2144. | $1 / 2$$1 / 8$ | 130.066 | $28 \% 4.8$2886.6 |
|  | 138.683 | 15：9．2 |  | 164.541 | 2154.5 |  | 190.459 |  |
|  | 139.015 | 153\％．9 | 1／2 | 164.934 | 2164.4 | 3 | 190.852 | 2898.6 |
|  | 139.401 | 15466 |  | 165．3：6 | 2175 | \％／8 | 191.244 | 2910．5 |
|  | 140194 | 1504 | $\begin{aligned} & 38 \\ & 3 / 8 \end{aligned}$ | 160.119 |  | 61. |  |  |
|  | 140.586 | 15ヶ．． 8 | 53.8 | 166.504 | 2900.8 |  | 192．030 | 2934.52946.5 |
| \％／8 | 140.979 | 1581.6 |  | 166.89 亿 | $\stackrel{2}{2} 216.6$ | 3／8 | $\begin{aligned} & 192.42: 3 \\ & 192.815 \end{aligned}$ |  |
| 45. | $141.3 \%$ | 1590.4 | 1／4 | 167．290 | 2027.0 |  | 193.208 | 29585 |
|  | 141.764 | 1599.3 |  | 167． 683 | 2937．5 | 5／8 | 193.601 | 298： 7 |
|  | 142．15\％ | 1608．2 |  | 168.0 ¢5 | $2 \because 48.0$ | 3／4 | 193.993 | 2994.8 <br> 30069 <br> 0 |
|  | 142．550 | 1617.0 |  | 168.468 | 2258.5 |  |  |  |
| 12 | 14：．942 | 16：6．0 |  | 168.861 | 2269.1 | 62. | 194．\％79 | 3019.13031.3 |
|  | 143.335 | 1634.9 | 5 78 | 169.253 | $2: 29.6$ |  | $\begin{aligned} & 195.171 \\ & 195.564 \end{aligned}$ |  |
|  | 143.738 | 1643.9 | 54. | 169.646 | 2290.2 | $1 / 4$$3 / 8$ |  | 3043.5 |
|  | 144.121 | 16．5．9 9 | 18 | 170.039 | 2300.8 |  | $\begin{aligned} & 195.95 \mathrm{r} \\ & 196.350 \end{aligned}$ | 3055．\％ |
|  | 14.513 | 1661.9 | $\begin{aligned} & 1 / 4 \\ & 3 \\ & 38 \end{aligned}$ | 170.431 | 2311 | 1. |  | 3068.0 |
|  | 144.906 | 1670.9 |  | 170.894 | 23 | $\begin{aligned} & 5 / 8 \\ & 3 \end{aligned}$ | $\begin{aligned} & 196.742 \\ & 197.135 \end{aligned}$ | 3080.3 |
|  | 14．5． 691 | 1680.0 | $\begin{aligned} & 3 / 8 \\ & 1 / 2 \\ & 58 \\ & 58 \end{aligned}$ | 171.217 $1 \div 1.609$ | 2332.8 2343.5 |  |  | 3092.6 |
| 2 | 146.084 | 1698.2 |  | 17\％．00： | 2354.3 |  | $197.5: 8$ 197.920 | 3101.9 3117.2 |


| Diam. | Circum. | Area. | Diam. | Circum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 631 / 8 \\ 1 / 4 \\ 138 \\ 1 / 8 \\ 5 / 8 \\ 3 / 8 \\ 3 / 8 \\ 84.8 \end{array}$ | 198.313 | 3129.6 | $\begin{array}{r} 7138 \\ 18 \\ 58 \\ 58 \\ 3 . \\ 7.8 \\ 7 . \end{array}$ | 224.231 | 4001.1 | $\begin{array}{r} 795 / 8 \\ 3 / 4 \end{array}$ | 250.149 |  |
|  | 198.706 | 3142.0 |  | 224.604 | 4015.2 |  | 250.542 |  |
|  | 199.098 | 3154.5 |  | 2.25 .017 | 4029.2 | 78 | 250.935 | $\begin{aligned} & 4995.2 \\ & 5010.9 \end{aligned}$ |
|  | 199.491 | 3166.9 |  | $2 \sim 5.409$ | 4043.3 | 80 | 251.327 | 5026.5 |
|  | 199.884 | 3179.4 |  | 205.802 | 4057.4 | 1/8 | 251.720 | 5042.3 |
|  | 200.2 \% 7 | 3191.9 |  | $\because 26.195$ | 4071.5 | 14 | 25\%. 113 | 5058.0 |
|  | 200.669 | 3204.4 |  | $\stackrel{2}{2} 26.587$ | 40857 |  | $\stackrel{2}{2} 2.506$ | 5078.8 |
|  | 201.062 | 3:1\%.0 | 1,4 | 226.980 | 4099.8 |  | 25.898 | 5089.6 |
|  | 201.455 | 3239.6 | 3/8 | ${ }^{2 \cdot 2} \cdot 7.343$ | 4114.0 |  | 253.291 | $\begin{aligned} & 5105.4 \\ & 5121.2 \end{aligned}$ |
|  | 201.847 | 3.42 .2 3.254 |  | 2.27 .765 2.28 .158 | 4128.2. | 3 | $\stackrel{253.684}{254.064}$ |  |
|  |  | 3254.8 | 58 | $2 \geqslant 8.551$ | 4156.8 | 81. | 254.469 | 5153.0 |
|  | 203.025 | 3250.1 | 384888 | $2 \cup 5.94$ | $41 \% 1.1$ | 18 | 254.869 |  |
|  | 203.418 | 3292.8 | $731 / 8$ | 229.336 | 4185.4 |  | 255.254 | 5168.9 5184.9 |
|  | 203.811 | 3305.6 |  | 2:29.729 | 4199.7 | 38 | 255.647 | 5200.8 |
| 65. | 204.204 | 33318.3 |  | 230.120 | 4214.1 | 1.2 | 256.040 | 5216.8 |
|  | 204.596 | 3331.1 |  | 230.514 | 42:8.5 | 58 | 256.433 | 523:2 8 |
|  | 204.989 | 3343.9 |  | 23.30 .907 | 4242.91 | $3 / 4$ | 256.8:5 | 5248.9$5: 24.9$ |
| 8 | 205.382 | 3356.7 | $\begin{aligned} & 52 \\ & 58 \\ & 3 / 4 \end{aligned}$ | 231.300 | 425\%.4. | , | 257.218 |  |
|  | 205.774 | 3369.6 |  | 231.69: | 42 T 1.8 | 82. | $\because 57.611$ | 5281.05297.1 |
|  | $\because 06.167$ | 3382. 4 | $\begin{array}{r} 3 / 4 \\ .78 \end{array}$ | 2332.085 | 4286.3 | $1 / 8$ | 258.003 |  |
|  | 206.560 | 3395.3 | 74. | $23.2 .4 \% 8$ | 4300.8 | 1.4 | 258.396 | 5:97. 5313.3 |
|  | 206.95 ? | 3108.2 |  | 23.2 .871 | 4315.4 |  | 258.789 | 5329.4 |
|  | 207.345 | 3421.2 |  | 2333.263 | $43 \times 9.9$ | , | 259.181 | 5345.65361.8 |
|  | 207.738 | 3434.2 | $3 / 8$$1 / 2$ | 2:33 656 | 43445 | \% | 259.574 |  |
|  | 208.131 | 3447.2 |  | 234.019 | 4359.2 | 3 | 259.96 \% | 5378.15394.3 |
|  | 208.523 | 3460.2 | 308 | 234.441 | 43.3 . 8 | $83^{8}$ | 260.359 |  |
|  | 208.916 | 3473.2 |  | 234.8 .34 | 4388.51 | 83 | $\stackrel{260.752}{261.145}$ | 54106 |
|  | 209.201 | 3499.4 | $75.1 / 8$ | 235.619 | 4417.9 | $1 / 4$ | 261.538 | 5426.9 5443.3 |
| 7/8 | 210.094 | 3512.5 |  | 236.012 | 4432.6 | 12 | 261.930 | 5459.6 |
| 67 | 210.487 | 35257 | $1 / 4$$3 / 8$ | 236.405 | 444.4 |  | 262.323 | 5476.05492.4 |
|  | 210.879 | 3538.8 |  | 2336.798 | 4462.2 | 告8 | $26^{2} .716$ |  |
|  | 211.272 | 355\%.0 | \% | 237.190 | 4476.0 |  | 263.108 | 5508.8 |
|  | 211.665 | 3565.2 |  | ${ }^{2} 3.37 .583$ | 4491.8 | 84. | 263.501 | 5525.3 |
|  | 212.058 | 3578.5 | 38 | 237.906 | 4506 |  | 263.894 | 5541.8 |
|  | 212.450 | 3591.7 | $76{ }_{1}^{\text {\% }}$ | 238.368 | 4521.5 |  | $\because 64.286$ | 5558.3 |
|  | 212.843 | $3 \mathrm{C05} .0$ |  | 2:38. 761 | 4536.5 |  | 264.679 | $55 \% 4.8$5591.4 |
| 8 | 213.236 | 3618.3 |  | 239.154 | 4551.4 | 1/4 | $\because 65.0 \hat{2}$ |  |
| GS | $213.6 \cdot 8$ | 36:31.7 |  | $\because 239.516$ | 4566.4 |  | $\because 65.465$ | 5607.95694.5 |
| 1/8 | 214.0:1 | 3645.0 | $1 / 4$ | 239939 | 4581.3 | 5/8 | 265.857 |  |
|  | 214.414 | 3658.4 |  | $210.33{ }^{2}$ | 4506.3 |  | $\because 66.250$ | 56.4 .5 5641.2 |
| 3/8 | 214.806 | $36 \widetilde{1.8}$ | 58 | 240.925 | 4611.4 | $85^{7 / 8}$ | 266.643 | 5657.856.4 |
|  | 215.199 | 3685.3 | 33/4 | 241.117 | 46:6.4 |  | 267.035 |  |
| 8 | 215.592 | 3698.7 |  | 241.510 | 4641.5 |  | $26 \% .428$ | 5691.2 |
| $3 / 4$ | 215.984 | 3712.2 | 77. | 241.903 | 4656.6 |  | 267.821 | 570^.95724.8 |
|  | 216.377 | 3725.7 |  | 242.295 | 4671.8 | 1/4 | $\stackrel{268.213}{ }$ |  |
| 69. | 216.770 | 3739.3 | $1 / 4$ | 24.688 | 4686.9 |  | 2168.606 | 5741.5 |
|  | 217.163 | 3752.8 | 3/8 | 243.081 | 4702.1 | 58 | 268.999 | ${ }^{5758.3}$ |
| $1 / 4$ | 217.5 .5 | 3766.4 |  | 24.453 | 4717.3 | \% | 269.392 |  |
|  | 218.733 | 3807.3 | $78^{1 / 8}$ | 24.652 | $4 \% 63.1$ | 1/8 | 2\%0.5\%0 | 825.7 |
|  | 219.120 | 3821.0 |  | 2 25. 044 | 4778.4 | $1 / 4$ | $200.96 \%$ | 5842. 6 |
| 8 | $\because 19.519$ | 38:34.7 | 1/8 | $245.43 \pi$ | 4793.7 | \% 18 | 271.355 | 5859.6 |
| 80. | 219.911 | 3348.5 | $1 / 4$$3 / 8$ | 245.830 | 4809.0 |  | 271.748 | 5876.5 |
|  | $\because 20.304$ | 3862.2 |  | 246.202 | 48:4.4 | 5\% | 2\%. 140 | 5893.5 |
|  | 220.697 | 3876.0 | 18 | 246.615 | 48398 | 淅 | 2\%2. 533 | 5910.6 |
| 3/8 | $2 \because 1.0 ¢ 0$ | 3889.8 | 58 | 277.008 | 485.5. ${ }^{\text {a }}$ |  | 272.926 | $59: 7.6$ |
|  | 221.482 | 3903.6 |  | 247.400 | 48i0.7 | 87. | $2 \sim 3.319$ | 5944.7 |
|  | $2{ }_{2} 21.875$ | 3917.5 |  | 247.793 | 4586. ${ }^{\text {2 }}$ |  | 273.711 | 5961.8 |
|  | 2 P 2.268 | 3931.4 | 79. | 248.186 | 4901.7 | 1.4 | 274.104 | 5978.9 |
| 8 | 22.2 .660 | 3945.3 | $11 / 4$ | 248.579 | 4! 17.2 |  | 2T4.497 | 5996.0 |
| 71 | 223.053 | 3959.2 |  | $2489{ }^{6} 1$ | 493:3. |  | $2 \pi 4.889$ | 6013.2 |
|  | 2203.446 | 3973.1 | 3/8184 | $\stackrel{2}{29} 364$ | 4948.3 | $\begin{array}{r} 588 \\ 3 \\ \hline \end{array}$ | $\begin{array}{r} 275.282 \\ 275.6 \% 5 \\ 20 \end{array}$ | $\begin{array}{r} 6030.4 \\ 6047.6 \end{array}$ |
| $1 / 4$ | 22:3 8:38 | 398\%. 1 |  | 249 \%\% | 4963.9 |  |  |  |


| Diam. | Circum. | Area. | Diam. | Circum. | Area. | Diam. | Circum. | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 276.067 | 6064.9 | 92. $1 / 8$18338185583$7 / 8$ | 289.027 | $664 \% .6$ | $961 / 8$ | 301.986 | 7257.1 |
|  | 276.460 | 608:. 1 |  | 289.419 | 6665.7 |  | 302.318 | $72 \% 6.0$ |
|  | $276.853$ | 6099.4 |  | 289.812 | 6683.8 |  | 302.7 11 | 7294.9 |
|  | $277.246$ | 6116.7 |  | 290.205 | $6{ }^{6} 01.9$ |  | 303.164 | \%313.8 |
|  | 277.638 278.031 | 6134.1 |  | $\stackrel{290.597}{ }$ | 6720.1 |  | 303.556 | 7332.8 |
|  | 278.031 | 6151.4 |  | 290.990 | 6738.2 |  | 303.949 | 7351.8 |
|  | $\begin{aligned} 278.424 \\ 278.816 \end{aligned}$ | 6168.8 6186.2 |  | 291.383 | 6756.4 |  | 304.342 | 7330.8 |
|  | 288.816 279.209 | 6186. ${ }_{6}$ |  | 291.775 | 674.7 |  | 304.734 | 7389.8 |
|  | 279.602 | 6221.1 |  | 292.168 | 6692.9 | 1 | 305.127 | \% 708.9 |
|  | 279.994 | 62:38.6 |  | 292 |  | 4 | 305.520 | 7428.0 |
|  | 280.387 | 6256 |  | 293.316 | 6857.8 |  | 306 | \%447.1 |
|  | 280.780 | 6273.7 |  | 293.739 | 6866 |  | 306.698 |  |
|  | $\because 81.173$ | 6291.2 |  | 294.13: | 6884. | 3 | 307.091 | $\dot{4} 50$ |
|  | 281.565 | 608.8 |  | 294.524 | 6902.9 | 7/8 | 307.483 | \%503. |
|  | 281.958 | 63:26.4 |  | $294.91 \%$ | 6921. | 98. | 307.876 | 7543.0 |
|  | 232. 351 | 6344.1 | 94 | 295.310 | 6939.8 | 8 | 308.269 | 7562.2 |
|  | 282. 743 | 6361.7 | 1/8 | 295. 002 | 6958.2 |  | 308.661 | 7581.5 |
|  | 283.136 | 63 ¢9.4 | 崖 | 296.055 | 69\%6.\% | 8 | 309.054 | 7600.8 |
|  | 283.529 | 6397.1 | , | 236.488 | 6995.3 | 18 | 309.447 | r620.1 |
|  | 283.921 | 6414.9 |  | 296.881 | $\bigcirc 013.8$ | 9 | 309.840 | 7639.5 |
|  | 28.4 .314 | $643 \pm .6$ | 5 | 297.273 | $703 \leq .4$ |  | 310.232 | 7658.9 |
|  | 284.707 | 6450.4 | 3 | 297. 666 | \%051.0 | 7/8 | 810.625 | \%6r8.3 |
|  | ${ }_{285}^{285.100}$ | 6468 |  | 298.059 | \%069.6 |  | 311.018 | ¢697.7 |
|  | 285 | 6486.0 |  | 298.451 | \%088.2 | $1 / 8$ | 311.410 | \%717.1 |
|  |  | 6503.9 |  | 298.844 | 7106.9 | $1 / 4$ | 311.803 | T736.6 |
|  | ${ }^{286.640}$ | 6539 |  | 299 | 71 | $3 / 8$ | 312.196 | 7506.1 |
|  | $28 \% .063$ | 655 |  | 300.022 | \%163 |  | 312 | 5. 6 |
|  | 287.456 | 6575 |  | 300.415 | -181.8 |  | $313.3 \hat{4} 4$ | 7814.8 |
|  | 287.818 | 65 | 4 | 300.50 \% | \%200.6 | 18 | 313.767 | ¢834.4 |
|  | 288.241 | 6611.5 |  | 301.200 | 2219.4 | 100. | 314.159 | 7854.0 |
|  | 288.634 | 6629.6 | 96 | 301.593 | 7238.2 |  |  |  |

## DECIMALS OF A FOOT EQUIVALEN'T TO INCHES AND FRACTIONS OF AN INCH.

| Inclies. | 0 | 1/8 | 1/4 | 3/8 | 12 | 5/8 | $3 / 4$ | 7/8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | . 01042 | . 02083 | . 03125 | . $0416{ }^{7}$ | . 05908 | . 06250 | . 07292 |
| 1 | . 0833 | . 0938 | . 1042 | . 1146 | . 1250 | . 1354 | . 1458 | . 1563 |
| $\stackrel{2}{2}$ | . 1667 | . 1761 | . 1875 | . 1979 | . 2083 | . 2188 | . 2292 | . 2396 |
| 3 | . 2500 | . 2604 | . 2708 | . 2813 | . 2917 | . 3021 | 3125 | . 3239 |
| 4 | . 3333 | . 3438 | . 3542 | . 3616 | . 3750 | . 3854 | . 3953 | . 4063 |
| 5 | . $416 \%$ | . 42 \%1 | . 4375 | . 4479 | . 4583 | . 4688 | . 4792 | . 4896 |
| $\stackrel{6}{4}$ | . 5000 | . 5104 | . 5208 | . 5313 | . $541 \%$ | . 5521 | . 5625 | . 5729 |
| \% | . 5833 | . 5938 | . 6042 | . 6146 | . 6250 | . 6354 | . 6458 | . 6563 |
| 8 | . 6667 | . 6771 | . 6875 | . 6979 | . 7083 | . 7188 | . 7292 | . 7396 |
| 9 10 | . 7500 | .7604 | . 7808 | . 7813 | . 7917 | . $80 \div 1$ | .812\% | 89.9 |
| 10 | . 8333 | . 8438 | . 8542 | . 8646 | . 8750 | . 8854 | . 8958 | . 9063 |
| 11 | . 9167 | . 9271 | . 9375 | . 9479 | . 9583 | . 9688 | . 9792 | . 9896 |




|  |  |  |
| :---: | :---: | :---: |
|  |  |  | にMズ









 ， －mionoromu－on
方
$*$
 －
豙



音





## LENGTHS OF CHRCULAR ARCS.

 (Degrees being given. Radius of Circle $=1$.Formula. - Length of are $=\frac{3.1415927}{180} \times$ radius $\times$ number of degrees.
Rule.-Multiply the factor in table for any given number of degrees by the radius.

Example.-Given a curve of a radius of 55 feet and an angle of $78^{\circ} 2 N^{\prime}$. What is the length of same in feet?

Factor from table for $78^{\circ}$
1.3613568

Factor from table for ${ }^{2} 0^{\prime}$
$.00581 \% 8$
Factor
1.3671746
$1.36 \pi 1746 \times 55=75.19$ feet .

| Degrees. |  |  |  |  |  | Minutes. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 0174533 | 61 | 1.0646508 | 121 | 2.1118484 | 1 | . 0002909 |
| 2 | . 0349066 | 62 | 1.0821041 | 122 | 2.1293017 | 2 | . 0005818 |
| 3 | . 0523599 | 63 | 1.0995574 | 123 | 2.1467550 | 3 | .0008727 |
| 4 | . 0698132 | 64 | 1.1170107 | 124 | 2.1642083 | 4 | . 0011636 |
| 5 | . 08726768 | 65 | 1.1344640 | 125 | 2.1816616 | 5 | . 0014544 |
| 7 | . 1047198 | 66 67 | 1.1519173 | 126 | 2.1991149 | 6 | . 0017453 |
| 8 | . 1221730 | 67 68 | 1.1693706 | 127 | 2.2165682 | 7 | .0020362 |
| 9 | . 1570796 | ${ }_{69}^{68}$ | 1.1868239 | 128 | 2.2340214 | 8 | .0023271 |
| 10 | . 1745329 | 70 | 1.2217305 | 139 | 2.2514747 | 9 | . 0026180 |
| 11 | .1919862 | 71 | 1.2391838 | 131 | 2.26893813 | 10 | .0029089 |
| 12 | . 2094395 | 72 | 1.2566371 | 132 | 2.3038346 | 12 | . 0034907 |
| 13 | .2208928 | 73 | 1.2740904 | 133 | 2.32812879 | 13 | . 0037815 |
| 14 | . 2443461 | 74 | 1.2915436 | 134 | 2.3387412 | 14 | . 0040724 |
| 35 | . 2617994 | 75 | 1.3089969 | 135 | 2.3561945 | 15 | . 0043633 |
| 16 | -27925,27 | 76 | 1.326.1502 | 136 | 2.3736478 | 16 | . 0046542 |
| 17 | . 2967060 | 77 | 1.3439035 | 137 | 2.3911011 | 17 | . 0049451 |
| 18 | . 3141593 | 78 | 1.3613568 | 138 | 2.4085544 | 18 | . 0052360 |
| 19. | . 3316126 | 79 | 1.3788101 | 139 | 2.4260077 | 19 | . 0055269 |
| 20 21 20 | .3490659 .3665191 | 80 | $1.396 \cong 634$ 1.4137167 | 140 | 2.4434610 | 20 | . 0058178 |
| 23 | . 38.39724 | 88 | 1.4137167 | 141 | 2.4609142 | 21 | .0061087 |
| 23 | . 4014257 | 83 | 1.43186233 | 142 | 2.4783675 | 22 | . 0063995 |
| 24 | . 4188790 | 84 | 1.4660766 | 143 | ${ }_{2} .5139741$ | 23 | .0066904 |
| 25 | . 43633323 | 85 | 1.4835299 | 145 | ${ }_{2}^{2.5307274}$ | 24 | . 0069813 |
| 26 | . 4537856 | 86 | 1.5009832 | 146 | 2.5481807 | 26 | . 0072722 |
| 27 | . 4712389 | 87 | 1.5184364 | 147 | 2.5656340 | 27 | . 0075631 |
| 28 | .488692\% | 88 | 1.5358897 | 148 | 2.5830873 | 28 | . 0081449 |
| 29 | . 5061455 | 89 | 1.5533430 | 149 | 2.6005406 | 29 | . 0084358 |
| 30 | . 5235988 | 90 | 1.5707963 | 1.50 | 2.6179939 | 30 | . 0087266 |
| 31 | . 5410521 | 91 | 1.5882496 | 151 | 2.6354472 | 31 | . 0090175 |
| 32 | . 5585054 | 92 | 1.6057029 | 152 | 2.6529005 | 32 | . 0093084 |
| 33 | . 5759587 | 93 | 1. 6231562 | 153 | 2.6703538 | 33 | . 0095993 |
| 34 | . 5934119 | 94 | 1.6406095 | 154 | 2.6878070 | 34 | .0098902 |
| 35 36 | . 6108652 | 95 | 1.6580628 | 155 | 2.7052603 | 35 | . 0101811 |
| 36 37 | . 6283185 | 97 | 1.6755161 | 156 | 2.7227136 | 36 | . 0104720 |
| 37 <br> 38 | . 6457718 | 97 98 | 1.6929694 1.7104297 | 157 | 2.7401669 | 37 | . 0107629 |
| 38 39 | . 680606784 | 98 | 1.7104227 1.7278760 | 158 | ${ }^{2.7576202}$ | 38 <br> 3 | . 0110538 |
| 40 | . 6981317 | 100 | 1.7453293 | 160 | 2.7750735 2.7925268 | 39 40 | . 01113446 |
| 41 | . 71558550 | 101 | 1.7627825 | 161 | 2.8099801 | 41 | -0116355 |
| 42 | . 7330383 | 102 | 1.7802358 | 162 | 2.8274334 | 42 | . 0122173 |
| 43 | . 7504916 | 103 | 1.7976891 | 163 | 2.8448867 | 43 | . 0125082 |
| 44 | .7679449 .7853982 | 104 | 1.8151424 | 164 | 2.8623400 | 44 | . 0127991 |
| 45 46 | .8038515 | 105 | 1.8325957 | 165 166 | 2.8797933 2.8972466 | 45 | . 0130900 |
| 47 | . 8203047 | 107 | 1.8675023 | 167 | 2.9146999 | 46 47 | . 01333809 |
| 48 | . 8377580 | 108 | 1.8849556 | 168 | 2.9321531 | 48 | . 01389626 |
| 49 | .8552113 | 109 | 1.9024089 | 169 | 2.9496064 | 49 | . 0142535 |
| 50 | . 8726046 | 110 | 1.9198622 | 170 | 2.9670597 | 50 | . 0145444 |
| 51 | . 8901179 | 111 | 1.9373155 | 171 | 2.9845130 | 51 | . $014835{ }^{\text {a }}$ |
| 52 | . 9075712 | 112 | 1.9547688 | 172 | 3.0019663 | 52 | . 0151262 |
| 5 | .9250245 | 113 | 1.9722u21 | 173 | 3.0194196 | 53 | . 0154171 |
| 54 55 | . 9424778 | 114 | 1.9896753 | 174 | 3.0368729 | 54 | .0157080 |
| 55 56 57 | .9773844 | 115 116 | 2.0071286 2.045819 | 175 | 3.0543262 3.0717795 | 55 | . 0159989 |
| 57 | . 9918377 | 117 | 2042035 | 177 | 3.0717795 3.0892328 | $\stackrel{56}{57}$ | . 0162897 |
| 58 | 1.0122910 | 118 | 2.0594885 | 178 | 3.1066861 | - 58 | . 016168806 |
| 59 | 1.0297443 | 119 | 2.0769418 | 179 | 3.1241394 | 59 | . 0171624 |
| 60 | 1.0471976 | 120 | 2.0943951 | 180 | 3.1415927 | 60 | . 0174533 |

## LENGTHS OF CIRCULAR ARCS.

## (Diameter $=1 . \quad$ Given the Chord and Height of the Are.)

Rule for Use of the Table.-Divide the height by the chord. Find in the column of heights the number equal to this quotient. Take out the corresponding number from the column of lengths. Multiply this last number by the length of the given chord; the product will be length of the arc.

If the arc is greater than a semicircle, first find the diameter from the formula, Diam. $=$ (square of half chord $\div$ rise) + rise; the formula is true whether the arc exceeds a semicircle or not. Then find the circumference. From the diameter subtract the given height of arc, the remainder will be height of the smaller arc of the circle; find its length according to the rule, and subtract it from the circumference.

| Hgts. | Lgths. | Hgts. | Lgths. | Hgts. | Lgths. | Hgts. | Lgths. | Hgts. | Lgths |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 001 | 1.00002 | . 15 | 1.05896 | 238 | 1.14480 | . 326 | 1.26288 | 414 | 1.40788 |
| . 005 | 1.00007 | . 152 | 1.06051 | . 24 | 1.14714 | . 388 | 1.26588 | . 416 | 1.41145 |
| . 01 | 1.00027 | . 154 | 1.06209 | . 242 | 1.14951 | . 33 | 1.26892 | . 418 | 1.41503 |
| . 015 | 1.00061 | . 156 | 1.06368 | . 244 | 1.15189 | . 332 | 1.27196 | 42 | 1.41861 |
| . 02 | 1.00107 | . 158 | 1.06530 | 246 | 1.154:8 | . 334 | 1.24502 | . 422 | 1.42221 |
| . $0: 25$ | 1.00167 | . 16 | 1.06693 | 248 | 1.156\%0 | . 336 | $1.2 \% 810$ | 424 | 1.42583 |
| . 03 | 1.00240 | . 162 | 1.06858 | 25 | 1.15912 | . 338 | 1.28118 | . 426 | 1.42945 |
| . 035 | 1.0032 T | . 164 | 1.07025 | 252 | 1.16156 | . 34 | 1.28428 | . $4: 8$ | 1.43309 |
| . 04 | 1.00426 | . 166 | 1.07194 | 254 | 1.16402 | . 342 | 1.28739 | . 43 | 1.43673 |
| . 045 | 1.00539 | . 168 | 1.07365 | 256 | 1.16650 | . 314 | 1.29052 | . 432 | 1.44039 |
| . 05 | 1.00665 | . 17 | 1.07537 | 258 | 1.16899 | . 316 | 1.29366 | . 434 | 1.44405 |
| . 055 | 1.00805 | . 172 | $1.07 \% 11$ | . 26 | 1.17150 | . 348 | 1.29681 | . 436 | 1.44 Tit3 |
| . 06 | $1.0095 \%$ | . 174 | 1.07888 | . 262 | 1.17403 | . 35 | 1.29997 | 438 | 1.45142 |
| . 065 | 1.01123 | . 176 | 1.08066 | . 264 | 1.17657 | . 352 | 1.30315 | . 44 | 1.45512 |
| . 07 | 1.01302 | . 178 | 1.08246 | 266 | 1.17912 | . 354 | 1.30634 | . 442 | 1.45883 |
| . 075 | 1.01493 | . 18 | 1.08428 | . 268 | 1.18169 | . 356 | 1.30954 | . 444 | 1.46255 |
| . 08 | 1.01698 | . 182 | 1.08611 | . 27 | 1.18429 | . 358 | 1.31276 | . 446 | 1.46698 |
| . 085 | 1.01916 | . 184 | $1.0879 \sim$ | . 272 | 1.18689 | . 36 | 1.31599 | . 448 | 1.47002 |
| . 09 | 1.02146 | . 186 | 1.08984 | . 274 | 1.18951 | . 362 | 1.31923 | . 45 | 1.473\% |
| . 095 | 1.0:3889 | . 188 | 1.09174 | 276 | 1.19214 | . 364 | 1.32849 | . 452 | $1.47 \% 53$ |
| . 10 | 1.02646 | . 19 | 1.09365 | . 278 | 1.19479 | . 366 | 1.32577 | . 454 | 1.48131 |
| . 102 | 1.02752 | . 192 | $1.0955 \%$ | . 28 | 1.19746 | . 368 | 1.32905 | . 456 | 1.48509 |
| . 104 | 1.02860 | . 194 | 1.09\%52 | . 282 | 1.20014 | 37 | 1.33234 | . 458 | 1.48889 |
| . 106 | 1.02970 | . 196 | 1.09919 | 284 | 1.20284 | . 372 | 1.33564 | . 46 | 1.49265 |
| . 110 | 1.03082 | . 198 | 1.10147 | 286 | 1.20555 | 374 | 1.33896 | . 462 | 1.49651 |
| . 11 | 1.03196 | . 20 | 1.1034 | 288 | 1.2089\% | 376 | 1.34229 | . 464 | 1.50033 |
| .112 | 1.03312 | . 202 | 1.10548 | . 29 | 1.2110: | . 378 | 1.34563 | . 466 | 1.50416 |
| . 114 | 1.03430 | . 204 | 1.10752 | 292 | 1.21377 | . 38 | 1.34899 | . 468 | 1.50800 |
| . 116 | 1.03551 | . 206 | 1.10958 | . 294 | 1.21654 | . 382 | 1.35237 | . 47 | 1.51185 |
| . 118 | 1.03672 | 208 | 1.11165 | 296 | 1.21933 | . 384 | 1.35575 | . $4 \% 2$ | 1.515i1 |
| 12 | 1.03797 | 21 | $1.113{ }^{4} 4$ | 298 | 1.22:13 | . 386 | 1.35914 | . 474 | 1.51958 |
| 122 | 1.03923 | . 212 | 1.11584 | . 30 | 1.29495 | . 388 | 1.36254 | . 476 | 1.52346 |
| . 124 | 1.04051 | . 214 | 1.11796 | . 302 | 1.22\%78 | . 39 | 1.36596 | . 478 | $1.52 \% 36$ |
| . 126 | 1.04181 | . 216 | 1.12011 | . 304 | 1.23063 | . 392 | 1.36939 | . 48 | 1.53126 |
| . 128 | 1.04313 | . 218 | 1.12225 | . 306 | 1.23344 | 394 | 1.37283 | 482 | 1.53518 |
| . 13 | 1.04447 | 22 | 1.12444 | . 308 | 1.23636 | 396 | 1.37628 | . 484 | 1.53910 |
| . 132 | 1.04584 | . 222 | 1.12664 | . 31 | 1.23926 | . 398 | 1.3r9\%4 | . 486 | 1.5430\% |
| . 134 | 1.04722 | 224 | 1.12885 | . 312 | 1.24216 | 40 | 1.38322 | . 488 | 1.54696 |
| . 136 | 1.04862 | 226 | 1.13108 | . 314 | 1.24507 | . 402 | 1.38671 | 49 | 1.55091 |
| . 138 | 1.05003 | 228 | 1.13331 | . 316 | 1.24801 | . 404 | 1.39021 | 492 | $1.5548 \%$ |
| 14 | 1.05147 | . 23 | 1.1355 | . 318 | 1.25095 | . 406 | 1.393~2 | . 494 | 1.55854 |
| . 142 | 1.05293 | . 232 | 1.13785 | . 32 | 1.25391 | . 408 | 1.39724 | . 496 | 1.5698: |
| 144 | 1.05441 | . 234 | 1.14015 | 322 | 1.25689 | . 41 | 1.400 Tr | . 498 | 1.56681 |
| . 148 | 1.05591 1.05743 | . 236 | 1.1424 | . 324 | 1.25988 | . 412 | 1.40432 | . 50 | 1.570 |

## AREAS OF THE SEGMENTS OF A CIRCLE. (Diameter $=1$; Hise or Height in parts of Diameter being

Rule for Use of the Table. - Divide the rise or height of the segment by the diameter. Multiply the area in the table corresponding to the quotient thus found by the square of the diameter.
If the segment exceeds a semicurcle its area is area of circle - area of seg ment whose rise is (diam. of circle - rise of given segment.)
Given chord and rise, to find diameter. Diam = (square of half chord + rise) + rise The half chord is a mean proportional between the two parts into which the chord divides the diameter which is perpendicular to 1 .

| $\begin{aligned} & \text { Rise } \\ & \dot{+} \\ & \text { Diam. } \end{aligned}$ | Area. | $\begin{gathered} \text { Rise } \\ \div \\ \text { Diam } \end{gathered}$ | Area | $\left\lvert\, \begin{gathered} \text { Rise } \\ \div \div \\ \text { Diam. } \end{gathered}\right.$ | Area. | $\begin{gathered} \text { Rise } \\ \vdots \\ \text { Diann } \end{gathered}$ | Area. | $\left\|\begin{array}{c} \text { Rise } \\ \text { Diam. } \end{array}\right\|$ | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 001 | . 00004 | . 054 | . 01646 | . 107 | . 04514 | . 16 | . 08111 | . 213 | . 12235 |
| .00) | . 000012 | . 0.55 | . 01691 | . 108 | . 04596 | . 161 | . 08185 | . 214 | 12317 |
| . 003 | .000:2 | . 056 | . 01787 | . 109 | . 04638 | .16: | .08258 | . 215 | 12399 |
| . 004 | . 00034 | . 057 | . 01783 | . 11 | .04701 | . 163 | . 08332 | 216 | . 12481 |
| . 005 | . 00047 | . 058 | . $018: 30$ | . 111 | .04763 | . 164 | . 08406 | . 217 | . 12563 |
| . 006 | .0006: | . 059 | .01877 | . 112 | . 04826 | . 165 | . 08480 | . 218 | . 12646 |
| . $007^{\circ}$ | .00078 | . 06 | .019:4 | . 113 | . 04889 | . 166 | . 08554 | . 219 | 12729 |
| . 008 | . 00095 | . 061 | . $019 \%$ | . 114 | . 04953 | 16 | . $086 \div 9$ | . 22 | . 12811 |
| . 009 | . 00113 | . 062 | . $020 \geqslant 0$ | . 115 | . 05016 | . 168 | .08704 | . 221 | . 12894 |
| . 01 | . 00133 | . 063 | . $0: 068$ | . 116 | . 0.5080 | . 169 | .08\%79 | .222 | 129\%7 |
| . 011 | . 00153 | . 064 | . 02117 | . 117 | . 05145 | . 17 | . 08854 | . 223 | . 13060 |
| . 012 | .00175 | . 065 | . 02166 | . 118 | .05:09 | . 171 | . 08929 | . 224 | . 13144 |
| . 013 | . 00197 | . 066 | . 02.215 | . 119 | . $052 \% 4$ | .172 | . 09004 | . $2 \cdot 5$ | . 13227 |
| . 014 | .002: | . 067 | .02265 | . 12 | . 05338 | . 173 | . 09080 | . 226 | . 13311 |
| . 015 | . 00214 | . 068 | . 02315 | . 121 | . 05404 | . $1 \% 4$ | . 09155 | . 227 | . 13385 |
| . 016 | . 00268 | . 069 | . 02366 | . 122 | . 05169 | . 1 \%5 | . 09231 | . 228 | . 13478 |
| . 017 | . 00291 | -. 07 | . $02+17$ | . 123 | . 05535 | .1176 | . $0930{ }^{\text {r }}$ | . 229 | . 13562 |
| . 018 | .0032 | . 071 | . $0 \pm 468$ | . 124 | . 05600 | . 137 | . 09384 | . 23 | . 13646 |
| . 019 | . 00334 | . 07.2 | . 0250 | . 125 | . 05666 | . 178 | . 09160 | . 231 | 137:31 |
| . 02 | . 00375 | . 078 | . 035011 | . 126 | . 05 \% 33 | . 179 | . 09537 | . 232 | . 13815 |
| . 021 | . 00403 | . 0 \%̃ 4 | . 02624 | . 127 | . $05 \% 99$ | . 18 | . 09613 | . 233 | . 13900 |
| . 02.3 | . 00432 | . $0 \% \%$ | . $0 \div 676$ | . 198 | . 05866 | . 181 | . 09690 | . 234 | . 13984 |
| . 023 | . 0046 | . 0.6 | . $0 \cdot 7 \cdot 29$ | . 129 | . 05933 | . 18 ? | . 09764 | . 235 | . 14069 |
| . 024 | . 0049 | . 077 | .02r82 | . 13 | . 06000 | . 183 | . 09845 | . 236 | . 14154 |
| .025 | .00523 | . 078 | . 028836 | . 131 | . 0606 亿 | . 184 | .09922 | .23\% | . 14239 |
| . 026 | . 00555 | . 0 ¢̂9 | . $0 \cdot 2889$ | . 132 | . 06135 | . 185 | . 10000 | . 238 | . $143 \cdot 4$ |
| .027 | . 0058 r | . 08 | . 02913 | . 133 | . 06803 | . 186 | . $100 \sim 7$ | . 239 | . 14409 |
| . $0: 38$ | . 00619 | . 081 | . 03998 | . 134 | .062 11 | . $18{ }^{\prime}$ | . 10155 | . 24 | . 14494 |
| . 029 | .00653 | . $08 \cdot 3$ | .030.53 | . 135 | . 06339 | . 188 | . 10233 | . 241 | . 14580 |
| . 03 | . 00687 | . 083 | . 03108 | . 136 | .0640~ | . 189 | . 10312 | . 242 | . 14666 |
| . 031 | . $00 \% 1$ | . 081 | . 03163 | . 137 | . 06476 | . 19 | . 10390 | . 243 | . 14751 |
| . 033 | . 00756 | . 085 | . $03 \geqslant 19$ | . 138 | . 06545 | . 191 | . 10169 | 244 | . 14837 |
| . 033 | . 00791 | . 086 | . 03.325 | . 139 | . 06614 | . $19 \cdot 3$ | . 10547 | . 245 | . 14923 |
| . 031 | .008:2 | . 08 \% | .03331 | . 14 | .0668:3 | . 193 | . 10626 | . 246 | . 15009 |
| . 035 | . 00864 | . 088 | .0338ir | . 141 | . 06753 | . 194 | . $10 \% 05$ | . 247 | . 15095 |
| . 036 | . 00301 | . 089 | . 03144 | . 142 | . 06822 | . 195 | . $10 \% 84$ | . 248 | . 15182 |
| . 037 | .009:38 | . 09 | . 03501 | . 143 | . 06892 | . 196 | . 10864 | . 249 | . $15 \div 68$ |
| 038 | .00976 | . 091 | . 03559 | . 144 | . 06963 | . 197 | . 10943 | . 25 | . 15355 |
| . 039 | . 01015 | . 092 | . 03616 | . 145 | . 07033 | . 198 | . 11023 | . 251 | . 15441 |
| . 04 | . 01051 | . 093 | .036\%4 | . 146 | . $0 \%^{\prime} 103$ | . 199 | . 11102 | . 252 | . 15528 |
| . 041 | .0109:3 | . 094 | .03\%32 | . 147 | .07174 | . 2 | . 11182 | . 253 | . 15615 |
| . 042 | . 01133 | . 095 | . 03791 | . 148 | .07245 | . 201 | . 11262 | . 254 | . 15 \% 02 |
| . 043 | . 01173 | . 096 | . $0: 3850$ | . 149 | . 07316 | .202 | . 11343 | . 255 | . 15789 |
| . 044 | . 01214 | . 097 | . 03909 | . 15 | . 08387 | . 203 | . 11423 | .256 | . 15876 |
| . 045 | . 01255 | . 098 | . 03968 | . 151 | . 07459 | 204 | . 11504 | . 25 \% | . 15964 |
| . 046 | . 01297 | . 099 | . 04028 | . 152 | . 075331 | . 205 | . 11584 | . 258 | . 16051 |
| . 047 | . 01339 | . 1 | . 04087 | . 153 | . 07603 | . 206 | . 11665 | . 259 | . 16139 |
| . 048 | .01382 | . 101 | . 04148 | . 154 | . 0 \%6T5 | . $20 \%$ | . 11 146 | . 26 | . 16226 |
| . 049 | . 01425 | . 102 | . 04208 | . 155 | .07i4 | . 208 | . 118:2r | . 261 | . 16314 |
| . 05 | . 01468 | . 103 | . 04269 | . 156 | . 07819 | . 209 | . 11908 | .262 | . 16402 |
| . 051 | . 01512 | . 104 | . 04330 | . 157 | . 07892 | . 21 | . 11990 | . 263 | . 16490 |
| . 052 | . 01556 | 105 | . 04391 | . 158 | .07965 | . 211 | . 120\%1 | . 264 | . 165 \% |
| . 053 | . 01601 | 106 | . 04452 | . 159 | . 08038 | . 212 | . 12153 | . 265 | . 16666 |


| $\begin{aligned} & \text { Kise } \\ & \dot{\square} \\ & \text { Diam } \end{aligned}$ | Area. | $\begin{gathered} \text { Rise } \\ \therefore \therefore \\ \text { Diam. } \end{gathered}$ | Area. | $\begin{gathered} \text { Rise } \\ \dot{\square} \\ \text { Diam. } \end{gathered}$ | Area. | $\left\|\begin{array}{c} \text { Rise } \\ \overline{+} \\ \text { Diam. } \end{array}\right\|$ | Area | $\left\lvert\, \begin{gathered}\text { Rise } \\ \text { Diam }\end{gathered}\right.$ | Area. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 266 | . 16755 | . 313 | . 21015 | . 36 | . 25455 | . $40 \%$ | . $300 \$ 4$ | . 454 | . 34676 |
| . 267 | . 16843 | . 314 | . 21108 | . 361 | . 25551 | . 408 | .30122 | . 455 | . $34 \times 6$ |
| . 268 | . 16932 | . 315 | . 21201 | . 362 | . 25647 | . 409 | . 30220 | . 456 | . 34876 |
| . 269 | . 17090 | . 316 | . $21 \gtrsim 94$ | . 363 | . 25543 | . 41 | . 30319 | . 457 | . 34975 |
| . 27 | . 17109 | . 317 | . $2138 \%$ | . 364 | .25839 | . 411 | . 30417 | . 458 | . $350 \%$ |
| . 271 | . 17198 | . 318 | . 21480 | . 365 | . 25936 | 412 | . 30516 | . 459 | . 35175 |
| . 272 | .1728\% | . 319 | . $215 \% 3$ | . 366 | . 26032 | . 413 | . 30 ¢14 | . 46 | . 35274 |
| . 273 | . 17376 | . 32 | . 21667 | . 367 | . 26128 | . 414 | . 30712 | . 461 | .25374 |
| 274 | . 17465 | . 321 | . 21760 | . 368 | . 26295 | . 415 | . 30811 | . 462 | . $354 \% 4$ |
| . 275 | . 17554 | . 322 | . 21853 | . 369 | .26:321 | . 416 | . 30910 | . 463 | . 35573 |
| . 276 | . 17644 | . 323 | . 21947 | . 37 | . 26418 | . 417 | . 31008 | . 464 | . $356 \% 3$ |
| . 274 | .17733 | . 324 | , 22040 | . 3 ¢1 | . 26514 | . 418 | . 3110 ช | . 465 | . 35773 |
| . 2 \% 8 | . 17823 | . $3: 5$ | 22:134 | .302 | . 26611 | . 419 | . 31205 | . 466 | . 35873 |
| . 279 | . 17912 | . 326 | 2328 | . 373 | . 26708 | . 42 | . 31304 | .467 | . 35972 |
| . 28 | . 18002 | . 327 | ,22329 | . 374 | . 26805 | . 421 | . 31403 | . 468 | . 36072 |
| . 281 | . 18092 | . 328 | . 82415 | . 375 | . 26901 | . 422 | . 31502 | . 469 | . $361 \%$ |
| .283 | . 18182 | . 329 | . 22509 | . 376 | . 26998 | . 423 | . 31600 | . 47 | . 36.272 |
| . 283 | . 18 2\% 2 | . 33 | . 22603 | . 374 | .2\%095 | . 424 | . 31699 | . 471 | . 36372 |
| . 284 | . 18362 | . 331 | . $2069{ }^{\circ}$ | . 368 | . 27192 | . 425 | . 31798 | . 472 | . 36471 |
| . 285 | . 18452 | . 332 | . 24.49 | . 379 | . 27289 | . 426 | . $3189 \%$ | . 473 | . $365 \% 1$ |
| . 286 | . 18542 | . 333 | .26886 | . 38 | . 27386 | . $42 \%$ | . 31996 | . 434 | . 36671 |
| . 28 \% | . 18633 | . 334 | . 29980 | . 381 | .2\% 483 | . 428 | . 32095 | .435 | . $367 \% 1$ |
| . 288 | . 18723 | . 335 | . 23074 | . 382 | . 27580 | . $4: 9$ | . 32194 | . 476 | . 36871 |
| .289 | . 18814 | . 336 | .2'3169 | . 383 | . 27678 | . 43 | . 32.293 | . $4{ }^{\circ}$ | . 36971 |
| . 29 | . 18905 | . 337 | . 23263 | . 384 | . $27 \% 75$ | . 431 | . 32392 | . 478 | . 37071 |
| . 291 | . 18996 | . 338 | . 23358 | . 385 | . $278 \%$ | . 432 | . 32491 | . 479 | . 3 \%171 |
| . 292 | . 19086 | . 339 | . 23453 | . 386 | . 26969 | . 433 | . 32590 | . 48 | . $312 \% 0$ |
| . 293 | . 19177 | . 34 | . $9354 \%$ | . 387 | . 28067 | . 434 | . 32689 | . 481 | . 313 c 0 |
| . 294 | . 19268 | . 341 | . 1864 | . 388 | . 28164 | . 435 | . $3 \cdot 2788$ | .48: | . 37470 |
| .295 | . 19360 | . 342 | . 23737 | . 389 | . 28262 | . 436 | . 32885 | . 483 | .3\%5\% |
| . 296 | . 19451 | . 343 | .23832 | . 39 | . 28359 | . 437 | . $3 \times 98$ r | . 484 | . 37670 |
| . 297 | . 19542 | . 344 | ${ }^{2} 8392 \%$ | . 391 | . 2845 rir | . 438 | . 33086 | . 485 | . 37 \%r0 |
| . 298 | . 19634 | . 345 | 24022 | . 392 | . 28.554 | . 439 | . 33185 | . 486 | . 37880 |
| . 299 | . 19725 | . 346 | . 24117 | . 393 | .2865? | . 44 | . $33 \div 84$ | . 487 | . $379 \% 0$ |
| . 3 | . 19817 | . 347 | . 24212 | . 394 | . 28750 | . 441 | . 33384 | . 438 | . $380 \% 0$ |
| . 301 | . 19308 | . 348 | . 24307 | . 395 | . 28848 | . 442 | . 33483 | . 489 | . 38170 |
| . 302 | . 20000 | . 349 | . 24403 | . 396 | . 28945 | . 443 | . $3: 358^{\circ}$ | . 49 | . $382 \% 0$ |
| . 303 | . 20092 | . 35 | 24498 | . 397 | . 29044 | . 414 | . 33659 | . 491 | . $383 \%$ |
| . 304 | . 20184 | . 351 | . 24593 | . 398 | . 29141 | . 445 | . $33 \% 81$ | . 492 | . 38470 |
| . 305 | . 20276 | . 358 | . 24689 | . 399 | .29239 | . 446 | . 33480 | . 493 | . 38550 |
| . 305 | . 20368 | . 353 | . 27784 | . 4 | . 293337 | . $44 \%$ | . 33980 | . 494 | . $386 \%$ |
| . 307 | . 20460 | . 354 | . 24880 | . 401 | . 29435 | 448 | . $340 \%$ | . 495 | . $38 \%$ |
| . 308 | . 20553 | 355 | . 24976 | . 402 | . 29533 | . 449 | . 31179 | .496 | . $388 \% 0$ |
| . 309 | . 20645 | . 356 | . 25061 | . 403 | . 29631 | . 45 | . $312 \% 8$ | . $49 \%$ | . 38970 |
| . 31 | . 20738 | . 357 | . 25167 | . 404 | . 29729 | .451 | .343\%8 | . 498 | . 39070 |
| 811 | . 20830 | . 358 | . 25263 | . 405 | . $2982{ }^{\circ}$ | . 452 | . $3+4 \%$ | . 499 | . 39170 |
| . 312 | 29\%23 | . 359 | . 25359 | . 406 | . 29926 | . 453 | . $3457 \%$ | . 5 | . $39 \pm 0$ |

EOWTHin for finding the area of a segment see Mensuration, page 59.

## SRIERRES.

(Some errors of 1 in the last figure only. From Trautwine.)

| Diam. | Sur. face. | Volume. | Diam. | Sur- <br> face. | Volume. | Diam. | Sur- <br> face. | Volume. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-32 | . 0030 . | . 00002 |  | 33.183 | 17.974 |  | 306.36 | 504.21 |
| 1-16 | . 01227 | . 00013 | 5-16 | $34.47{ }^{\text {a }}$ | 19.031 | 10. | 314.16 | 523.60 |
| 3-32 | . 02761 | . 00043 | 3/8 | 35.784 | 20.129 | 1/8 | 322.06 | 543.48 |
|  | . 04909 | . 00102 | 7-16 | 37.122 | 21.268 |  | 330.06 | 563.86 |
| 5-32 | . 07670 | . 00200 | 1/2 | 38.484 | 22.449 | $3 / 8$ | 338.16 | 584.74 |
| 3-16 | . 11045 | . 00345 | 9-16 | 39.8i2 | 23.674 | 16 | 346.36 | 606.13 |
| 7-3.2 | . 15033 | . 00548 | 5/8 | 41.283 | 24.942 |  | 354.66 | 628.01 |
| $1 / 4$ | . 19635 | . 00818 | 11-16 | 42.719 | 26.254 |  | 363.05 | 650.46 |
| 9-32 | . 24851 | . 01165 | $3 / 4$ | 44.179 | 27.611 | 7/8 | 371.54 | 6 63.42 |
| 5-16 | . 30680 | . 01598 | 13-16 | 45.664 | 29.016 |  | 380.13 | 696.91 |
| 11-32 | . 37123 | . 02127 |  | 47.173 | 30.466 |  | 388.83 | 720.95 |
| 3/8 | . 44119 | . 02761 | 15-16 | 48.708 | 31.965 |  | 397.61 | 745.51 |
| 13-32 | . 51848 | . 03511 | 4. | 50.265 | 33.510 |  | 406.49 | $7 \% 0.64$ |
| 7-16 | . 60132 | . 04385 |  | 53.456 | 36.751 |  | 415.48 | 796.33 |
| 15-32 | . 69028 | . 05393 |  | 56.745 | 40.195 |  | 424.50 | 822.58 |
| 1/2 | .78540 | . 06545 | 38 | 60.133 | 43.847 |  | 433.73 | 849.40 |
| 9-16 | . 99403 | . 09319 | 12 | 63.617 | 47.713 |  | 443.01 | 876.79 |
| 5/8 | 1.29\%2 | . 12783 |  | ${ }^{67.201}$ | 51.801 | 12. | 452. 39 | 904.78 |
| 11-16 | 1.4849 | . 12014 |  | 70.883 | 56.116 |  | 471.44 | 962.52 |
| 13/4 | 1.7671 | . 22089 | 7/8 | 74.663 | 60.663 |  | 490.8 \% | 102.2. 7 |
| 13-16 | 2.0739 | 28084 | 5. | 78.540 | 65.450 |  | 510.71 | 1085.3 |
|  | 2.4053 | . 35077 |  | 82.516 | 70.482 | 13. | 530.93 | 1150.3 |
| 15-16 | 2.7611 | . 43143 |  | 86.591 | \%5.767 |  | 551.55 | 1218.0 |
| 1. | 3.1416 | .52360 |  | 90.763 | 81.308 |  | 572.55 | 1288.3 |
| 1-16 | 3.5466 | . 62804 |  | 95.033 | 87.113 |  | 593.95 | 1361.2 |
| 1/8 | 3.9761 | . 74551 |  | 99.401 | 93.189 | 14. | 615.75 | 1436.8 |
| 3-16 | 4.4301 | . 87681 | 4 | 103.87 | 99.541 |  | $63 \% .95$ | 1515.1 |
| $1 / 4$ | 4.9088 | 1.022.27 |  | 108.44 | 106.18 |  | 660.52 | 1596.3 |
| 5-16 | 5.4119 | 1. 1839 | 6. | 113.10 | 113.10 |  | ${ }^{683} .49$ | 1680.3 |
|  | 5.9396 | 1.3611 | $1 / 8$ | 117.87 | 120.31 |  | 706.85 | 176\%. ${ }^{\text {d }}$ |
| 7-16 | 6.4919 | 1.5553 |  | 12:.72 | 127.83 |  | 730.63 | 1857.0 |
| 12 | 7.0686 | 1. 7671 |  | 127.68 | 135.66 |  | 754.77 | 1949.8 |
| 9-16 | 7.6699 | 1.9974 |  | 132.73 | 143.79 |  | 779.32 | 2045.7 |
| 58 | 8.2957 | 2.2468 | 8 | 137.89 | 152.25 |  | 804.25 | 2144.7 |
| 11-16 | 8.9461 | 2.5161 |  | 143.14 | 161.03 |  | 829.57 | $2 \geqslant 46.8$ |
| $13 / 4$ | ${ }^{9.69211}$ | ${ }^{2} .806{ }^{3}$ |  | 148.49 | 170.14 |  | 855.29 | 2352.1 |
| 13-16 | 10.821 | 3.1177 | 7. | 153.94 | 179.59 |  | 881.42 | 2460.6 |
|  | 11.044 | 3.4514 |  | 159.49 | 189.39 | 17. | 907.93 | 2572.4 |
| 15-16 | 11.793 | 3.8083 |  | 165.13 | 199.53 |  | 934.83 | 268 T .6 |
|  | 12.566 | 4.1888 | 38 | 170.87 | 210.03 |  | 962.12 | 2806.2 |
| 1-16 | 13.364 | 4.5929 |  | 176.71 | 220.89 |  | 989.80 | 2928.2 |
| $1 / 8$ | 14.186 | 5.0243 |  | 182. 66 | $\stackrel{23.13}{ }$ | 18. | 1017.9 | 3053.6 |
| 3-16 | 15.033 | 5.4809 |  | 188.69 | $\stackrel{213.73}{ }$ |  | 1046.4 | 3182.6 |
|  | 15.904 | 5.9641 |  | 194.83 | 255.72 |  | 1075.2 | 3315.3 |
| 5-16 | 16.800 | 6.4751 | 8. | 201.06 | 268.08 |  | 1104.5 | 3451.5 |
| 3/8 | 17.721 | 7.0144 |  | *27.39 | 280.85 | 19. | 1134.1 | 3591.4 |
| 7-16 | 18.666 | 7.5829 |  | ${ }^{213.82}$ | 294.01 |  | 1164. 2 | 3735.0 |
|  | 19.635 | 8.1813 |  | -0.36 | 307.58 |  | 1191.6 | 3882.5 |
| 9-16 | $20.6: 9$ 21.648 | 8.8103 9408 |  | $\stackrel{2}{2} 26.98$ | 321.56 <br> 335 |  | 1225.4 | 4033.7 |
| 11-168 | 22.691 | 10.164 | $\frac{8}{4}$ | 240.53 | 335.95 350.77 |  | 1256.7 | 4188.8 <br> 4347.8 |
| $3 / 4$ | 23.758 | 10.889 |  | 247.45 | 360.02 |  | 1320.3 | 4510.9 |
| 13-16 | 24.850 | 11.649 | 9. | 254.47 | 381.70 |  | 1352. ${ }^{\text {\% }}$ | 46 \%7. 9 |
|  | 25.967 | 12.443 |  | 261.59 | 397.83 | 21. | 1385.5 | 48491 |
| 15-16 | 27.109 | 13.272 | 14 | 268.81 | 414.41 |  | 1418.6 | 5024.3 |
|  | 28.274 | 14.137 | $3 / 8$ | 270.12 | 431.44 |  | 1452.2 | 5203.7 |
| 1-16 | 29.465 | 15.039 | 12 | 283.53 | 448.92 |  | 1486.2 | 5387. 4 |
|  | 30.680 | 15.979 | 58 | 291.04 | 466.87 | 22. | 1520.5 | $55 \% 5.3$ |
| 3-16 | 31.919 | 16.957 | $3 / 4$ | 1298.65 | 485.31 | 14 | 1555.3 | 15767.6 |

SPHERES-(Continued.)

| Diam. | Surface. | Volume. | Diam. | Surface. | VoIume | Diam. | Sur- <br> face. | Volume. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\therefore \quad \frac{1}{3}$$23 .$ | 1590.4 | 5964 | $40 \quad 1 / 2$ | 5153.1 | 34783 | 70112 <br> 71. | 15615 | 1834\%1 |
|  | 1626.0 | 6165.2 |  | 5281.1 | 36087 |  | 15837 |  |
|  | 1661.9 | 6370.6 |  | 5410.7 | 37423 | $1 / 2$ | 16061 | 191389 |
|  | 1698.2 | 6580.6 |  | 5541.9 | 38\%92 |  | 16286 | 195433 |
|  | 1735.0 | 6795.2 |  | 5674.5 | 40194 |  | 16513 | 199532 |
|  | 1772 | 7014.3 |  | 5944.7 | 4163043099 | 1/2 | 16742 | 203689 |
| 24. | 18 | $1 \sim 3$ | 1/2 |  |  |  | $169 \%$ | 207903 |
|  | 1885.8 | r¢00. 1 | 45. | 6221.26361.7 | 46141 | 1/2 | 17437 | 216505 |
|  | 1924.4 | 7938.3 |  |  |  | 75. | $176 \% 2$ | 220894 |
|  | 1963.5 | 8181.3 |  | 6503.9 |  | 1/2 | 17908 | $\stackrel{225341}{229848}$ |
|  | 2002.9 | 8429.2 |  | $\begin{aligned} & 6647.6 \\ & 6792.9 \end{aligned}$ | $\begin{aligned} & 49321 \\ & 50965 \end{aligned}$ | $76.1 / 2$ | 18146 |  |
|  | 2042.8 | 8682.0 | 46. $1 / 2$ |  | 509645 |  |  | $\begin{aligned} & 229848 \\ & 234414 \end{aligned}$ |
|  | 2083.0 | 8939.9 |  | 6939.9 | 54362 | 77. | 18626 | 239041 |
|  | 2123.7 | 9202.8 | 48. ${ }^{1}$ | 7088.3 | 56115 | 78 1/2 | 18869 | ${ }_{2}^{243 \% 28}$ |
|  | 2164.7 | 9470.8 |  | T238.3 | 57906 |  | 19114 |  |
|  | 2206 | 9744.0 | 48. $1 / 2$ | 7389.9 | 59734 | 73. 1/2 | 19360 | $\begin{aligned} & 248475 \\ & 253284 \end{aligned}$ |
|  | 2290.2 | 1030 | 40. $1 / 2$ | $\begin{aligned} & 7543.1 \\ & 769 \% .7 \end{aligned}$ | 61601 |  | 19607 | 258155 |
|  | 2332.8 | 10595 | 50. $1 / 2$ | 7854.0 | 63506 65450 |  | 20106 | $\stackrel{263088}{268083}$ |
|  | 2375.8 | 10889 |  | 8011.8 | 6 6433 |  | 20358 | 273141 |
|  | 2419.2 | 11189 | $1.1 / 2$ | 8171.2 | 69456 | $8132$ | 20612 | 2\%8:63 |
| 28. | 2463.0 | 11494 | 52. ${ }^{1 / 2}$ | 8832.3 | 7151973622 |  | 20861 |  |
|  | 2507.2 | 11805 |  | $\begin{aligned} & 8494.8 \\ & 8658.9 \end{aligned}$ |  |  |  | 288696 |
|  | 2551.8 | 12121 | 52. $1 / 2$ |  | 75767 |  | 21382 | $\stackrel{294010}{299388}$ |
|  | 2596.7 | 12443 |  | 8824.8 | 77952 | $83 .$ | 21642 |  |
|  | 2642.1 | 12770 | 54. | 8992.0 9160.8 | 80178 | 1/2 | 21904 | 304831 |
|  | 2687 | 13103 |  | 9:331.2 | $\begin{aligned} & 82448 \\ & 84760 \end{aligned}$ | $84 .$ $1 / 2$ | 2167 | 310340 315915 |
|  | 2780.5 | 13787 | 55. $1 / 2$ | 9503.2 | $8{ }^{8} 1114$ |  | 22698 | 221556 |
| 30. | 282\%. 4 | 14137 | 5. $1 / 2$ | 96.6 .8 | 89511 | 86 | 22966 | 32\%264 |
|  | 2374.8 | 14494 | 56. | 9852.0 | 9195394438 |  | 23235 | 3330393.38882 |
|  | 2922.5 | 14856 |  | 1002910207 |  | 86. | $23 \% 79$ |  |
|  | 2970.6 | 15224 |  |  | $\begin{aligned} & 96967 \\ & 99541 \end{aligned}$ |  |  | 344792 |
|  | 3019.1 | 15599 | 58.8 | $\begin{aligned} & 10207 \\ & 10387 \end{aligned}$ |  |  | 24053 | 350771 |
|  | 306 | 15979 |  | 10568 | 99541 102161 | $\begin{aligned} & 88.1 / 2 \\ & 89 . \end{aligned}$ | $\begin{aligned} & 24328 \\ & 24606 \end{aligned}$ | 356819 |
|  | 3166.9 | 16.58 | $59$ | $\begin{aligned} & 10751 \\ & 10936 \end{aligned}$ | $\begin{aligned} & 104826 \\ & 10 \div 536 \end{aligned}$ |  | $\stackrel{24885}{ }$ | 369122 |
| 32. | 3217.0 | 17157 | 60. ${ }^{1 / 2}$ | $111: 2$ | 110294 | 112 | 25165 | 3753\%8 |
|  | 326\%.4 | 17563 |  | $\begin{aligned} & 11310 \\ & 11499 \end{aligned}$ | $\begin{aligned} & 113098 \\ & 115949 \end{aligned}$ | 12 | 25730 | 381704388102$3945 \%$ |
|  | 3318.3 | 17974 | 61. ${ }^{1 / 2}$ |  |  |  |  |  |
|  | 3369.6 | 18392 |  | 11690 | 11884 |  | 2630: |  |
|  | ${ }_{34}{ }^{\text {². }}$. | 1881 | $62 .^{1 / 2}$ | 11882 | $\begin{aligned} & 121789 \\ & 124789 \\ & 12 \% 832 \end{aligned}$ |  |  | 401109 |
|  | 3525.7 | 19685 | $62.1 / 2$ | $\begin{aligned} & 1: 0 \div 6 \\ & 122 \because 2 \end{aligned}$ |  | $\begin{aligned} & 92 . \\ & 93 \\ & 1 / 2 \end{aligned}$ | $26880$ | $\begin{aligned} & 40 \uparrow 21 \\ & 414405 \end{aligned}$ |
|  | 3578.5 | 20129 |  | 12469 | 130925 |  | 27172 | 421161 |
| 34. | 3631.7 | 20580 |  | 12668 | 134067 |  | $2 \% 464$ | 421991 |
|  | 3685.3 | 21037 | 64. | 12868 | 137259 | 94. | 27759 | 434894 |
|  | 3739.3 | 21501 |  | $130 \% 0$ | 140501 |  | 28055 | 441871 |
|  | 3848.5 3959.2 | 22449 |  | 13:73 | 1474138 |  | 28652 | 456047 |
| 36. | 4071.5 | 24429 |  | 13685 | 150533 |  | 28953 | 463248 |
|  | 4185.5 | 25461 |  | 13893 | 153980 |  | 29255 | $4 \% 0524$ |
|  | 4300.9 | 26522 |  | 14103 | 157480 |  | 29559 | $4 \sim 7874$ |
|  | 4417.9 4536.5 | 27612 $28 i 31$ |  | 14314 | 161032 |  | 29865 | 485302 |
| 38.1 | 4536.5 | 28731 |  | $1452 \%$ | $16463 \%$ |  | 30172 | 492808 |
| 39. ${ }^{1 / 2}$ | 4656.7 4778.4 | 29880 |  | 14741 | 168295 |  | 30481 | 500388 |
| $1 / 2$ | 4901.7 | 3:2\%0 |  | 149 | 1:574 |  | 30191 31103 3 | 508017 |
|  | 50:6.5 | 33510 |  | 1539 | $1 \% 95$ |  | 31416 | 523598 |

## CONTENTS IN CUBIC FEETE AND U. S. GALLONS OF PIPES AND CYLINDERS OF VARIOUS DIAMETERS AND ONE TOO'TN LENGTH.

1 gallon $=231$ cubic inches. 1 cubic foot $=7.4805$ gallons .

|  | For 1 Foot in Length. |  |  | For 1 Foot in Length. |  |  | For 1 Foot in Length. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cubic Ft. also Area in Sq. Ft. | $\begin{aligned} & \text { U.S. } \\ & \text { Gals., } \\ & 231 . \\ & \text { Cu. In. } \end{aligned}$ |  | Cubic Ft. also Area in Sq. Ft. | .U. S. Gals. 231 Cu. In. |  | Cubic Ft. also Area in Sq. Ft. | $\begin{gathered} \text { U.S. } \\ \text { Gals., } \\ \text { Cus1 } \\ \text { Cu.Iu. } \end{gathered}$ |
|  | .0003 | . 0025 | 63/4 | . 2485 | 1.859 | 19 | 1.969 | 14.73 |
| 5-16 | . 0005 | . 004 |  | .2673 | 1.999 | 191/2 | 2.074 | 15.51 |
| 3/8 | . 0008 | . 0057 | $71 / 4$ | . 2867 | 2.145 | $\therefore 0$ | 2.189 | 16.32 |
| ${ }_{\sim}^{7}-16$ | . 001 | .0078 | $71 / 2$ | . 3068 | 2.295 | $201 / 2$ | 2.292 | 17.15 |
| 1/2 | . 0014 | . 0102 | $73 / 4$ | .3:76 | 2.45 | 21 | 2.405 | 17.99 |
| 9-16 | . 0017 | . 0129 | 8 | . 3491 | 2.611 | 2119 | 2.521 | 18.86 |
| 5/8 | .00:21 | . 0159 | 814 | . 3712 | 2.77\% |  | 2.640 | 19.75 |
| 11-16 | . $00 \div 6$ | . 0193 | $81 / 2$ | . 3941 | 2.948 | $221 / 2$ | 2.761 | 20.66 |
| $3 / 4$ | . 0081 | .0230 | $83 / 4$ | . 4176 | 3.125 | ${ }^{23}$ | 2.885 | 21.58 |
| 13-16 | .0036 | . 0269 | 9 | . 4418 | 3.305 | 231/2 | 3.012 | 22.53 |
| \%/8 | . 0042 | . 0312 | $91 / 4$ | . 4667 | 3.491 | 24 | 3.142 | 23.50 |
| 15-16 | . 0048 | . 0359 | $91 / 2$ | . $49 \% 2$ | 3.682 | 25 | 3.409 | 25.50 |
|  | .0055 | . 0408 | 93/4 | . 5185 | $3.8 \% 9$ | 26 | 3.687 | 27.58 |
| 11/4 | . 0085 | .06:38 | 10 | . 5454 | 4.08 | 27 | $3.9 \% 6$ | 29.4 |
| 11/2 | .0123 | . 0918 | 1014 | . 5730 | 4.286 | 28 | 4.276 | 31.99 |
| 13/4 | . $016 \pi$ | . 1249 | 101\% | . 6013 | 4.498 | 29 | 4.587 | 34.31 |
| 2 | . 0318 | . 1633 | 103/4 | . 6303 | 4.715 | 30 | 4.909 | 36.72 |
| 21/4 | . 02216 | . 2066 | 11 | . 66 | $4.93{ }^{\text {a }}$ | 31 | 5.241 | 39.21 |
| 21.2 | .0311 | .25.50 | 111/4 | . 6903 | 5.164 | 32 | 5.585 | 41.is |
| $23 / 4$ | .0412 | . 3085 | 111/2 | . 9213 | 5.396 | 33 | 5.940 | 44.43 |
| 3 | . 0491 | . $36 \%$ | 113/4 | . 7530 | 5.633 | 34 | 6.305 | 47.16 |
| $31 / 4$ | . $05 \% 6$ | . 4309 | 12 | . 18.8 | $5.8 \%$ | 35 | 6.681 | 49.98 |
| $81 / 3$ | .0668 | . 4998 | $121 / 2$ | .8522 | 6.3 \% 5 | 36 | 7.069 | 52.88 |
| 3 | . $076{ }^{\text {and }}$ | . 57.38 |  | . 92918 | 6.895 <br>  | 37 | 7.467 | 55.86 |
| 4 | .08t3 | . $65 \div 8$ | 131/2 | . 994 | 7.436 | 38 | 7.8\%6 | 58.92 |
| 41/4 | .0985 | . 7369 | 14 | 1.069 | 7.997 | 39 | 8. 2.96 | 6206 |
| 41. | . 1104 | .8:63 | 141/2 | 1147 | 8.578 | 40 | 8.727 | 65.28 |
| $43 / 4$ | . 1231 | . 9206 | 15 | 1.227 | 9.180 | 41 | 9.168 | 68.58 |
| 5 | . 1364 | 1.020 | 151/2 | 1.310 | 9.801 | $4{ }^{4}$ | $9.6 \% 1$ | 81.97 |
| 51/4 | . 1503 | 1.125 | 16 | 1.396 | 10.44 | 43 | 10.085 | 75.44 |
|  | . 1650 | 1.234 | 161\% | 1.485 | 11.11 | 44 | 10.559 | \%8.99 |
| 53/4 | . 1803 | 1.349 | 17 | 1.576 | 11.79 | 45 | 11.045 | 82.6: |
| 6 | . 1963 | 1.469 | 151/2 | $1.6 \% 0$ | 12.49 | 46 | 11.541 | 86.33 |
| $61 / 4$ | . 2131 | 1.594 | 18 | 1.i68 | 13.22 | 47 | 12.048 | 90.13 |
| $61 / 2$ | . 2304 | 1.724 | 1812 | 1.86 r | 13.96 | 48 | 12.566 | 94.00 |

To find the capacity of pipes greater than the largest given in the table, look in the table for a pipe of one half the given size, and multiply its capacity by 4; or one of one thind its size, and multiply its capacity by 9 , etc.
To find the weight of water in any of the given sizes multiply the capacity in cubic feet by $621 / 4$ or the gallons by $81 / 3$, or, if a closer approximation is required, by the weight of a cubic foot of water at the actual temperature in the pipe.
Given the dimensions of a cylinder in inches, to find its capacity in U.S. gallous: Square the diameter, multiply by the length and by .0034 . If $\dot{d}=$ diameter, $l=$ length, gallons $=\frac{d^{2} \times .7854 \times l}{\approx 31}=.0034 d^{2} l$.

## CYLINDRICAL VESSELS, TANKS, CESTERNS, ETC.

Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons Capacity for One Foot in Depth.

1 gallon $=231$ cubic inches $=\frac{1 \text { cubic foot }}{7.4805}=0.13368$ cubic feet.

| Diam. | Area. | Gals. | Diam. | Area. | Gals. | Diam. | Area. | Gals. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ft. In. | Sq. ft. | 1 foot depth. | Ft. In. | Sq. ft. | 1 foot depth. | Ft. In. | Sq. ft. | 1 foot depth |
|  | .785 .922 | 5.87 6.89 | $\begin{array}{ll}5 & 8 \\ 5 & 9\end{array}$ | 20. 22 25.92 | 18866 | 19 | 283.53 | $2120.9$ |
| 12 | 1.069 | 8.00 | 510 | 25.97 | 194.25 199.92 | $\begin{array}{ll}19 \\ 19 & 3 \\ 19\end{array}$ | 291.04 298 | $21 \% 7.1$ |
| 13 | 1.22 亿 | 9.18 | 511 | 27.49 | 205.67 | 199 | 306.35 | 2291.7 |
| 14 | 1.396 | 10.44 |  | 28.27 | 211.51 | 20 | 314.16 | 2350.1 |
| 15 | 1.576 | 11.79 | 63 | 30.68 | 29.50 | 20 | $3 \% 2.06$ | 2409.2 |
| 16 | $1.76 \%$ | 13.22 | 66 | 33.18 | 248.23 | 20 | 330.06 | 2469.1 |
|  | 1.969 | 14.73 | 69 | 35.78 | 267.69 | 20 | 338.16 | 2529.6 |
| 18 | 2.182 | 16.32 | 7 | 38.48 | 287.88 | 21 | 34636 | 2591.0 |
| 19 | 2.405 | 17.99 |  | 41.28 | 308.81 | 213 | 354.66 | 2653.0 |
| 110 | 2.640 | 19.75 | 7 7 | 44.18 | 330.48 | 216 | ${ }^{363.05}$ | $2 \sim 15.8$ |
| 111 | ${ }^{2.885}$ | 21.58 | ${ }_{8}^{7} 9$ | 47.17 | 35\%. 88 | 21 | 371.54 | 2ง\%9.3 |
| 2 | 3.142 | 23.50 | 8 | 50.27 | 376.01 | 22 | 380.13 | 2843.6 |
| 2 1 | 3.409 | 25.50 | 83 | 53.46 | 399.88 | 22 | 388.82 | 2908.6 |
| $\stackrel{3}{2}$ | 3.687 | 27.58 | 86 | 56.75 | 424.48 | 22 | ${ }^{397.61}$ | 2944.3 |
|  | 3.976 | 29.74 | 89 | 60.13 | 449.82 | 22 | 406.49 | 3040.8 |
| 24 | 4.276 | 31.99 | 9 | 63.32 | 475.89 | 23 | 415.48 | 3108.0 |
| 25 | 4.58 i | 34.31 | 93 | 6720 | 502.70 | 23 | 424.56 | 3175.9 |
| ${ }_{2} 6$ | 4.909 | 36.22 | 96 | \% 0.88 | $530 』 4$ | 23 | 433.\%4 | 3244.6 |
|  | 5.241 | 39.21 | 99 | 74.66 | 558.51 | 23 | 44301 | 3314.0 |
| 28 | 5.585 | 41.18 | 10 | 78.54 | 587.52 | 84 | 455. 39 | 3384.1 |
| 29 | 5.940 | 44.43 | 103 | 83.53 | 617.26 | 24 | 461.86 | 3455.0 |
| 210 | 6.305 | 47.16 | 106 | 86.59 | 647.74 | 24 | 471.44 | 3526.6 |
| $\ddot{\sim} 11$ | 6.681 | 49.98 | 109 | 90.76 | 678.95 | 24 | 481.11 | 3598.9 |
| 3 | 7.069 | 5288 | 11 | 95.03 | 710.90 | 25 | 490.87 | $36 \%$ \% 0 |
| 31 | 7.467 | 55.86 | 113 | 99.40 | \%43.58 | 25 | 500.64 | $3{ }^{\text {¢ }} 4.5 .8$ |
|  | \%.876 | 58.92 | 116 | 103.8i | 776.99 | 256 | 510.71 | 3820.3 |
| 33 | 8. 296 | 62.06 | 119 | 108.43 | 811.14 | 259 | 520.77 | 3895.6 |
| 34 | 8.727 | 65.28 | 12 | 113.10 | 846.03 | 26 | 530.93 | 3971.6 |
| 35 | 9.163 | 68.58 | 123 | 117.86 | 881.65 | $26 \quad 3$ | 541.19 | 4048.4 |
|  | 9.621 | 71.97 | 126 | 122.72 | 918.00 | $26 \quad 6$ | 551.55 | 4125.9 |
| 37 | 10.085 | 75.44 | 129 | 12 T .68 | 95509 | 269 | 562.00 | 4204.1 |
| 3 8 | 10.559 | 78.99 | 13 | 132.73 | 992.91 | 27 | 572.56 | 4283.0 |
| ${ }^{3} 9$ | 11.045 | 8262 | 133 | 13 1. 89 | 1031.5 | 27 | 583.21 | 4362.7 |
| 310 | 11.541 | 86.33 |  | 143.14 | 1070.8 | 276 | 503.96 | 4443.1 |
| 311 | 12.048 | 90.13 | 139 | 148.49 | i110.8 | 279 | 604.81 | $45 * 4.3$ |
| 4 | 12.566 | 94.00 | 14 | 153.94 | 1151.5 | 28 | 615.75 | 4606.2 |
| 41 | 13.095 | 97.96 | 143 | 159.48 | 1193.0 | 283 | $6 \div 6.80$ | 4688.8 |
| $4 \stackrel{1}{2}$ | 13.635 | 102.00 | 146 | 165.13 | 1235.3 | 286 | 637.94 |  |
| 43 | 14.186 | 106.12 | 14.9 | ${ }_{170.8 \%}$ | 1278.2 | 289 | 649.18 | 4856.2 |
|  | 14.748 | 110.32 | 15 | 176.71 | 1821.9 | 29 | 660.5: | $49+1.0$ |
| 45 | 15.3:1 | 114.61 | 153 | 18265 | 1366.4 | 293 | 671.96 | 5026.6 |
| 46 | 15.90 | 118.9 r | 156 | 188.69 | 1411.5 | 296 | 683.49 | 5112.9 |
|  | 16.50 | 123.42 | 159 | 194.83 | 1457.4 | $29 \quad 9$ | 695.13 | 5199.9 |
|  | 17.10 | 127.95 | 16 | 201.06 | 1504.1 | 30 | 706.86 | 528\%.\% |
|  | 17.72 | 132.56 | 163 | 207.39 | 1551.4 | 30 | \%18.69 | 53\%6.2 |
| 410 | 18.35 | 137.25 | 166 | 21382 | 1599.5 | 30 | 730.62 | 5465.4 |
| 411 | 18.99 | 142.02 | 169 | 220.35 | 1648.4 | 30 | \%42.64 | 5555.4 |
| 5 | 19.63 | 146.88 | 17 | 226.98 | 1697.9 | 31 | \%54.75 | 5646.1 |
| 51 | 20.29 | 151.82 | 173 | 233.71 | 1748.2 | 31 | ¢66.99 | 573\%.5 |
| 52 | 20.97 | 156.83 | 176 | 240.53 | 1799.3 | 31 | \%'9.31 | $5829 .{ }^{\text {\% }}$ |
| 53 | 21.65 | 161.93 | 179 | 247.45 | 1851.1 | 31 | 791.63 | 5922.6 |
| 54 | 22.34 | 167.12 | 18 | 254.47 | 1903.6 | 32 | 80425 | 6016.2 |
| 55 | 23.04 | 172.38 | 18 2 | 261.59 | 1956.8 | $3 \times 3$ | 816.86 | 6110.6 |
| 56 | 23.76 | 177.72 | 186 | 268.80 | 2010.8 | 32 | 829.58 | 6:05.7 |
| 5 | 24.48 | 183.15 | 189 | 276.12 | 2065.5 | 329 | 842.39 | 6301.5 |

## GALIONS AND CUBIC FEET.

United States Gallons in aiven Number of Cubic Feet.
1 cubic foot $=\% .480519 \mathrm{U}$. S. gallons; 1 gallon $=231 \mathrm{cu} . \mathrm{in} .=.13368056 \mathrm{cu} . \mathrm{ft}$.

| Cubic Ft. | Gallons. | Cubic Ft. | Gallons. | Cubic Ft. | Gallons. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.75 | 50 | 374.0 | 8,000 | 59,844.2 |
| $0 \stackrel{1}{\sim}$ | 1.50 | 60 | 448.8 | 9,000 | $67,3 \times 4.7$ |
| 0.3 | 2.24 | 70 | 523.6 | 10,000 | 74,805.2 |
| 0.4 | 2.99 | 80 | 598.4 | 20,000 | 149,610.4 |
| 0.5 | 3.74 | 90 | 673.2 | 30,000 | 224,415.6 |
| 0.6 | 4.49 | 100 | 748.0 | 40,000 | 299,220.8 |
| 0.7 | 5.24 | 200 | 1,496.1 | 50,000 | 374,025.9 |
| 0.8 | 5.98 | 300 | 2,244.2 | 60,000 | 448,8.31.1 |
| 0.9 | 6. T 3 | 400 | 2,992.2 | r0,000 | 523,636.3 |
| 1 | \%. 48 | 500 | 3,440.3 | 80,000 | 598,441.5 |
| 2 | 14.96 | 600 | 4,488.3 | 90,000 | 6:3,246.7 |
| 3 | 22.44 | 700 | 5,236.4 | 100,000 | 748,051.9 |
| 4 | 29.92 | 800 | 5,984.4 | 200,000 | 1,496,103.8 |
| 5 | 3 \%. 40 | 900 | 6,732.5 | 300,000 | $2,24+155.7$ |
| 6 | 44.88 | 1,000 | 7,480.5 | 400,000 | 2,992,207.6 |
| 7 | 52.36 | 2,000 | 14,961.0 | 500,000 | 3,740.209.5 |
| 8 | 59.84 | 3,000 | 22,441.6 | 600,000 | 4.488,311.4 |
| 9 | 6 6. 3.2 | 4,000 | 29,9\%2. 1 | \%00,000 | 5,236,363 3 |
| 10 | 74.80 | 5,000 | 37,403. 6 | 800,000 | 5,981,415.2 |
| 20 | 149.6 | 6,000 | 44,883.1 | 900,000 | 6,73:2,46\%. 1 |
| 30 40 | 294.4 <br> 299.2 | 7,000 | 52,363.6 | 1,000,000 | 7,480,519.0 |

Cubic Feet in a given Number of Gallons.

| Gallous. | Cubic Ft. | Gallons. | Cubic Ft. | Gallons. | Cubic Ft. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 134 | 1,000 | 133.681 | 1,000,000 | 133,680 6 |
| 2 | .26\% | 2,000 | 267.361 | 2,000.000 | 267.361 .1 |
| 3 | . 401 | 3,000 | $401.04 \%$ | 3,000,000 | 401, 041.7 |
| 4 | . 53.35 | 4.000 | 534.722 | 4,000,000 | 534.922 .2 |
| 5 | . 668 | 5,000 | 668.403 | 5,000,000 | 668,402.8 |
| 6 | . 802 | 6,000 | $80: 083$ | 6,000,000 | 802,083 3 |
| 7 | . 936 | T,000 | 935. 664 | T,000,000 | 935,'63.9 |
| 8 | 1.069 | 8,000 | 1,069.444 | $8,000,000$ | 1,069,444.4 |
| 9 | 1. 203 |  | 1,203.195 | 9,000,000 | 1,203, 125.0 |
| 10 | 1.387 | 10,000 | 1,336.806 | 10,000,000 | 1,336,805.6 |

## NUMBER OF SQUARE FEET IN PLATES 3 TO 32 FEET LONG, AND 1 INCH WIDE.

For other widths, multiply by the width in inches. 1 sq. in. $=.0069_{9}^{4} \mathrm{sq} . \mathrm{ft}$.

| $\begin{gathered} \text { Ft. and } \\ \text { In. } \\ \text { Long. } \end{gathered}$ | Ins. | Square Feet. | Ft. and Ins. Long. | Ins. Long. | Square Feet. | $\begin{gathered} \text { Ft. and } \\ \text { Ins. } \\ \text { Long. } \end{gathered}$ | Ins. Long. | Square Feet. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3. 0 | 36 | . 25 | 7.10 | 94 | . 6528 | 12.8 | 159 | 1.056 |
|  | 37 | . 2569 | 11 | 95 | . 659 \% | 17.8 | 153 | 1.063 |
| 2 | 38 | . 2639 | 8. 0 | 96 | . 6667 | 10 | 154 | 1.069 |
| 3 | 39 | . 2708 | 1 | 97 | . 6736 | 11 | 155 | 1.076 |
| 4 | 40 | . 2778 | 2 | 98 | . 6806 | 13. 0 | 156 | 1.083 |
| 5 | 41 | . 2847 | 3 | 99 | . 68 i5 | 1 | 157 | 1.09 |
| ${ }_{7}^{6}$ | 42 | . 2917 | 4 | 100 | . 6944 | 2 | 158 | 1.097 |
| T | 43 | . 2986 | 5 | 101 | .r014 | 3 | 159 | 1.104 |
| 8 | 44 | . 3056 | 6 | 102 | . 083 | 4 | 160 | 1.114 |
| 9 | 45 | . 3125 | 7 | 103 | .7153 | 5 | 161 | 1.118 |
| 10 | 46 | . 3194 | 8 | 104 | .7923 | 6 | 162 | 1.125 |
| 11 | $4 \hat{1}$ | . 3264 |  | 105 | -7292 | 7 | 163 | 1.132 |
| 4. 0 | 48 | . 3333 | 10 | 106 | . 7361 | 8 | 164 | 1.139 |
|  | 49 | . 3403 | 11 | 107 | . 7431 | 9 | 165 | 1.146 |
| ${ }_{3}^{2}$ | 50 51 | . 34 20. | 9. 0 | 108 | . 75 | 10 | 166 | 1.153 |
| . | 52 | . 3642 | 1 | 109 | . 7569 | 11 | $16 \%$ | 1.159 |
| 5 | 53 | . 3681 | 3 | 111 | . 7708 | 14.0 | 168 | 1.169 |
| 6 | 54 | . 375 | 4 | 112 | . $\%$ \% 8 | 2 | 170 | 1.181 |
| 7 | 55 | . 3819 | 5 | 11.3 | . 7847 | 3 | 171 | 1.188 |
| 8 | 56 | . 3889 | 6 | 114 | . 2917 | 4 | $1 \% 2$ | 1.194 |
| 9 | 5 r | . 3958 | 7 | 115 | . 7986 | 5 | 173 | 1.201 |
| 10 | 58 | . 4028 | 8 | 116 | . 8056 | 6 | 174 | 1.208 |
| 11 | 59 | . 4097 |  | 117 | . 8125 | 7 | 175 | 1.215 |
| 5. 0 | 60 | . 4167 | 10 | 118 | . 8194 | 8 | 176 | 1.222 |
|  | 61 | . 4236 | 11 | 119 | . 8964 | 9 | 178 | 1.229 |
| $\stackrel{2}{3}$ | 62 | . 4306 | 10.0 | 120 | . 8333 | 10 | 178 | 1.236 |
| 3 | 63 64 | . 43744 | 1 | 121 | . 8103 | 111 | 179 | 1.243 |
| 5 | 65 | . 4514 | 3 | 123 | .8472 | 15. 0 | 180 | 1.25 |
| 6 | 66 | . 4583 | 4 | 124 | . 8611 | 2 | 182 | 1. 264 |
| 8 | 67 | . 4653 | 5 | 125 | . 8681 | 3 | 183 | 1.271 |
| 8 | 68 | . 4722 | 6 | 126 | . 875 | 4 | 184 | 1.278 |
| 9 | 69 | . 4792 | 7 | 127 | . 8819 | 5 | 185 | 1.285 |
| 10 | 70 | . 4861 | 9 | 1198 | . 88898 | ${ }_{7}^{6}$ | 186 | 1.292 |
| 6. 0 | 71 | . 5931 | ${ }_{10}^{9}$ | 129 130 | . 89588 | 7 | $18 \%$ 188 | 1. 299 |
|  | 73 | . 5069 | 11 | 131 | . 9097 | 9 | 189 | 1.313 |
| 2 | 74 | . 5139 | 11.0 | 132 | 9167 | 10 | 190 | 1.319 |
| 3 | 75 | . 5208 | 1 | 133 | . 9233 | 11 | 191 | 1.326 |
| 4 | 76 77 | . 53878 | 2 | 134 | . 93306 | 16. 0 | 192 | 1.333 |
| 6 | 78 | . 5417 | 4 | 136 | . 9444 | 1 | 193 | 1.34 |
| 7 | 79 | . 5486 | 5 | 137 | . 9514 | 2 | 195 | 1.344 |
| 8 | 80 | . 5556 | 6 | 138 | . 9583 | 4 | 196 | 1361 |
| 9 | 81 | . 5625 | 8 | 139 | . 9653 | 5 | 19\% | 1.368 |
| 10 | 82 | . 5694 | 8 | 140 | . 9722 | 6 | 198 | 1.3 15 |
| 711 | 83 | . 5 \% 64 | 9 | 141 | . 9792 | 7 | 199 | 1.382 |
|  | 84 | . 58384 | 10 | 142 | . 98931 | 8 | 200 | 1.389 |
| $\stackrel{1}{2}$ | 85 | . 59072 | 12. ${ }^{11}$ | 143 144 14 | .0931 1.000 | 9 10 | 201 | 1.396 |
| 3 | 87 | . 6042 | 1 | 145 | 1.007 | 11 | 203 | 1.41 |
| 5 | 88 | . 6111 | $\stackrel{2}{3}$ | 146 | 1.014 | 17.0 | 204 | 1.417 |
| 5 | 89 | . 6181 | 3 | 147 | 1.021 | 1 | 205 | 1.424 |
| 6 7 | $\stackrel{90}{91}$ | . 625 | 5 | 148 | 1.028 | 2 | $\mathfrak{6 0 6}$ | 1.431 |
| 8 | 9 | . 63389 | 5 | 149 | 1.035 | 3 | 207 | 1.438 |
| 9 | 93 | . 6458 | 7 | 151 | 1.049 | 5 | 208 | 1.4451 |

SQUARE FEET IN PLATES-(Continued.)

| Ft. and Ins. Long. | $\begin{aligned} & \text { Ins. } \\ & \text { Long. } \end{aligned}$ | Square Feet. | Ft. and Ins. Long. | Ins. Long. | Square Feet. | Ft. and Ins. Long. | Ins. Long. | Square Feet. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17.6 | 210 | 1.458 | 22. 5 | 269 | 1.868 | 97.4 | 328 | 2.278 |
|  | 211 | 1.465 |  | $2 \% 0$ | 1.875 | 5 | 329 | 2.285 |
| 8 | 21: | $1.4 \%$ | 7 | 271 | 1.882 | 6 | 330 | 2.292 |
| 9 | 213 | 1.479 | 8 | 272 | 1.889 | 7 | 331 | 2.299 |
| 10 | 214 | 1.486 | 9 | 273 | 1.896 | 8 | 332 | 2.306 |
| 11 | 215 | 1.493 | 10 | 274 | 1.903 | 9 | 33.3 | 2.313 |
| 18. 0 | 216 | 1.5 | 11 | 275 | 1.91 | 10 | 334 | 2.319 |
| 1 | 217 | 1.507 | 28. 0 | 276 | 1.917 | 11 | 335 | 2.326 |
| 2 | 218 | 1.514 | 1 | $27 \%$ | 1.9:4 | 28. 0 | 336 | 2.333 |
| 3 | 219 | 1.521 | 2 | 278 | 1.931 | 1 | 337 | 2.34 |
| 4 | 220 | 1.528 | 3 | 279 | 1.938 | 2 | 338 | 2.347 |
| 5 | 221 | 1.535 | 4 | 280 | 1.944 | 3 | 339 | 2.354 |
| 6 | 222 | 1.542 | 5 | 281 | 1.951 | 4 | 340 | 2.361 |
| 7 | 203 | 1.549 | 6 | 282 | 1.958 | 5 | 341 | 2.368 |
| 8 | 284 | 1.556 | 7 | 283 | 1.965 | 6 | 342 | 2375 |
| 9 | $2: 5$ | 1.563 | 8 | 284 | 1.970 | 7 | 343 | 2382 |
| 0 | 226 | 1.569 | 9 | 285 | 1.979 | 8 | 344 | 2.389 |
| 11 | 20\% ${ }^{2}$ | 1.56 | 10 | 286 | 1.986 | 9 | 345 | 2.396 |
| 19. 0 | 228 | 1.583 | 11 | 287 | 1.993 | 10 | 346 | 2.403 |
| 1 | 229 | 1.59 | 24.0 | 288 | 2. | 11 | 317 | 2.41 |
| 2 | 230 | 1.597 | 1 | 289 | 2.007 | 29.0 | 348 | 2.417 |
| 3 | 231 | 1.604 | 2 | 290 | 2.014 | 1 | 349 | 2.424 |
| 4 | 232 | 1.611 | 3 | 291 | 2.021 | 2 | 350 | 2.481 |
| 5 | 233 | 1.618 | 4 | 292 | 2028 | 3 | 351 | 2.438 |
| 6 | 234 | 1.6:5 | 5 | 293 | 2.035 | 4 | 35: | 2.444 |
| r | 235 | 1.632 | 6 | 294 | 2.048 | 5 | 3.3 | 2.451 |
| 8 | 236 | 1.639 | 7 | 295 | 2.049 | 6 | 3.4 | 2.458 |
| 9 | 237 | 1.645 | 8 | 296 | 2.056 | 7 | 355 | 2.465 |
| 10 | 238 | 1.653 | 9 | 297 | 2063 | 8 | 356 | 2.472 |
| 11 | 239 | 1.659 | 10 | 298 | 2.069 | 9 | 357 | 2.479 |
| 20.0 | 240 | $1.66 \%$ | 11 | 299 | 2.076 | 10 | 358 | 2.486 |
| 1 | 241 | $1.6 \% 4$ | 玉.) 0 | 300 | 2.083 | 11 | 359 | 2.483 |
| 2 | $24:$ | 1.681 | 1 | 301 | 2.09 | 30.0 | 360 | 2.5 |
| 3 | 243 | 1.688 | 2 | 302 | $2.09{ }^{\circ}$ | 1 | 361 | 2.507 |
| 4 | 244 | 1.694 | 3 | 303 | 2.104 | 2 | 362 | 2.514 |
| 5 | 245 | $1 . \% 01$ | 4 | 304 | $\mathfrak{2} .111$ | 3 | 363 | 2.521 |
| 6 | 246 | 1.708 | 5 | 305 | 2.118 | 4 | 364 | 2.528 |
| 7 | 247 | 1.615 | 6 | 306 | 2.125 | 5 | 365 | 2.535 |
| 8 | 248 | 1.722 | 7 | $30{ }^{\circ}$ | 2.132 | 6 | 366 | 2.542 |
| 9 | 249 | 1.729 | 8 | 308 | 2.139 | 7 | 367 | 2.549 |
| 10 | 250 | 1.736 | 9 | 309 | 2.146 | 8 | 368 | 2.556 |
| 11 | 251 | 1.743 | 10 | 310 | 2.153 | 9 | 369 | 2.563 |
| 21.0 | 252 | 1.75 | 11 | 311 | 2.16 | 10 | 370 | 2.569 |
| 1 | 253 | 1.757 | 26. 0 | 312 | 2.167 | 11 | 371 | 2.576 |
| $\stackrel{1}{2}$ | 254 | 1.764 | -1 | 313 | 2.174 | 31. 0 | 37 | 2.583 |
| 3 | 255 | 1.771 | $\stackrel{1}{2}$ | 314 | 2.181 | 1 | 373 | 2.59 |
| 4 | 256 | 1.778 | 3 | 315 | 2.188 | 2 | 374 | 2.597 |
| 5 | $25 \%$ | 1.785 | 4 | 316 | 2.194 | 3 | 375 | 2.604 |
| 6 | 258 | 1.7'92 | 5 | 317 | 2.201 | 4 | 376 | 2.611 |
| 7 | 259 | 1.799 | 6 | 318 | 2.208 | 5 | 377 | 2.618 |
| 8 | 260 | 1.806 | 7 | 319 | 2.215 | 6 | 378 | 2.605 |
| 9 | 261 | 1.813 | 8 | $3: 0$ | 2.202 | 7 | 379 | 2.63:? |
| 10 | 202 | 1.819 | 9 | 321 | 2.209 | 8 | 380 | 2.639 |
| 11 | 263 | 1.826 | 10 | $3: 2$ | 2.236 | 9 | 381 | 2.646 |
| 22.0 | 264 | 1.833 | - 11 | 323 | 2.243 | 10 | 382 | 2653 |
| 1 | 265 | 1.84 | 27.0 | 324 | 2.25 | 11 | 383 | 2.66 |
| $\stackrel{2}{8}$ | 266 | $1.84 \%$ | 1 | 3.5 | 2.257 | 32. 0 | 384 | 2.667 |
| 3 | 267 | 1.854 | $\stackrel{2}{2}$ | 326 | 2.264 | 1 | 385 | 2.674 |
| 4 | 268 | 1.861 | 13 | $3: 7$ | $2.2 \pi 1$ | 2 | 386 | 2.681 |

## CAPACHELES OF RECTANGULAR TANKS IN U. S. GALIONS, HOR EACH FOOT IN DERTH.

1 cubic foot $=7.4805 \mathrm{U} . \mathrm{S}$. gallons.


## NUMBER OF HARRELS (31 1-2 GALLONS) IN CISTERNS AND TANKS.

1 Barrel $=311 / 2$ gallons $=\frac{31.5 \times 231}{1728}=4.21094$ cubic feet. Reciprocal $=.23747 \%$.

| Depth in Feet. | Diameter in Feet. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 1 | 4.663 | 6.714 | 9.139 | 11.937 | 15.108 | 18.652 | 22.569 | 26.859 | 31.522 | 36557 |
| 5 | 23.3 | 33.6 | 45.7 | 59.7 | 75.5 | 93.3 | 11: 8 | 134.3 | 15\%. 6 | 182.8 |
| 6 | 28.0 | 40.3 | 54.8 | 71.6 | 90.6 | 111.9 | 135.4 | 161.2 | 189.1 | 2193 |
| 7 | 32.6 | 47.0 | 64.0 | 83.6 | 105. 8 | 130.6 | 158.0 | 188.0 | $2 \cdot 0.7$ | 255.9 |
| 8 | 37.3 | 53.7 | 73.1 | 95.5 | 120.9 | 149.2 | 180.6 | 214.9 | 25: 2 | $29: 3.5$ |
| 9 | 42.0 | 60.4 | 82.3 | 107.4 | 136.0 | 167.9 | 203.1 | 241.7 | 283.7 | 329.0 |
| 10 | 46.6 | 67.1 | 91.4 | 119.4 | 151.1 | 186.5 | 205.1 | 268.6 | 315.2 | 365.6 |
| 11 | 51.3 | 73.9 | 1005 | $1: 31.3$ | 166.2 | 205.2 | 2483 | 295.4 | 346.7 | 40\%.1 |
| 12 | 56.0 | 80.6 | 109.7 | 143.2 | 181.3 | 223.8 | 2708 | 32: 3 | 378.3 | 438.7 |
| 13 | 60.6 | 87.3 | 118.8 | 155.2 | 196.4 | 212.5 | 293.4 | 349.2 | 409.8 | $4 \% .2$ |
| 14 | 65.3 | 94.0 | 1127.9 | 167.1 | 211.5 | 261.1 | 316.0 | 376.0 | 4413 | 511.8 |
| 15 | 69.9 | 100.7 | 137.1 | 179.1 | 226.6 | $\because 89.8$ | 338.5 | 40.29 | $4{ }^{120} \cdot 8$ | 548.4 |
| 16 | 74.6 | 107.4 | 146.2 | 191.0 | 241.7 | 298.4 | 361.1 | 4:9.7 | 504.4 | 54.9 |
| 17 | 「9.3 | 114.1 | 155.4 | 202.9 | 256.8 | 31\%. 1 | $353 \%$ | 456.6 | 535.9 | (01.5 |
| 18 | 83.9 | 120.9 | 164.5 | 214.9 | 271.9 | 335.7 | 406.2 | 483.5 | 5ffict 4 | 658.0 |
| 19 | 88.6 | 127.6 | 173.6 | 226.8 | 287. 1 | 354.4 | 428.8 | 510.3 | 598.9 | 694.6 |
| 20 | 933 | 134.3 | ;82.8 | 238 \% | 302.2 | 373.0 | 451.4 | 53\%.2 | 630.4 | \%31.1 |


| $\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$ | Diameter in Feet. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 1 | 41.966 | 47.748 | 53.903 | 60.431 | 67.332 | 74.606 | 89.253 | $90.2 \% 3$ |
| 5 | 209.8 | 238.7 | 269.5 | 302.2 | 3336. ${ }^{\text {r }}$ | 3 3\%3.0 | 411.3 | 451.4 |
| 6 | 251.8 | 286.5 | 323.4 | 3626 | 404.0 | 44\%.6 | 493.5 | 541.6 |
| 7 | 293.8 | 334.2 | 3\%7.3 | 423.0 | $4 \% 1.3$ | 522. 2 | 575.8 | 631.9 |
| 8 | 335.7 | 382.0 | 431.2 | 483.4 | 538.7 | 596.8 | 658.0 | 722.2 |
| 9 | 3 3\%.7 | 429.7 | 4851 | 543.9 | 606.0 | $6 \% 1.5$ | 740.3 | 812.5 |
| 10 | 419.7 | 4 7 \% 5 | 539.0 | 604.3 | 673.3 | \%46.1 | 822.5 | $90 \% .7$ |
| 11 | 461.6 | 595.2 | 592.9 | 664.7 | 740.7 | $8: 0.7$ | 904.8 | 993.0 |
| 12 | 503.6 | 5\%3.0 | 646.8 | 725.2 | 808.0 | 895.3 | $98 \% .0$ | 1083. 3 |
| 13 | 545.6 | 6:0.7 | \%00. 7 | 785.6 | 8 \%5.3 | 969.9 | 1069.3 | 1173.5 |
| 14 | 58\%.5 | 668.5 | 754.6 | 846.0 | 942.6 | 1044.5 | 1151.5 | 1263.8 |
| 15 | 629.5 | 716.2 | 808.5 | 906.5 | 1010.0 | 1119.1 | 12338 | 1354.1 |
| 16 | ${ }_{6} 6$ T1.5 | 764.0 | $86 \cdot .4$ | 966.9 | $107 \% 3$ | 1193.7 | 1316.0 | 1444.4 |
| 17 | 713.4 | 811.7 | 916.4 | 1027.3 | 1144.6 | 1268.3 | 1398.3 | 1534.5 |
| 18 | \% 55.4 | 859.5 | 970.3 | 1087.8 | 1212.0 | 1342.9 | 1480.6 | 1624.9 |
| 19 | 797.4 | 907.2 | 1024.2 | 1148.2 | 12\%9.3 | 1417.5 | 1562.8 | 1715.2 |
| 20 | 839.3 | 955.0 | 1078.1 | 1208.6 | 1346.6 | 1492. 1 | 1645.1 | 1805.5 |

# NUMBER OF BARRELS (31 1-2 GALLONS) IN CISTERES AND TANKS.-Continued. 

| $\begin{aligned} & \text { Depth } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$ | Diameter in Feet. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 1 | 98.666 | 107.432 | 116.571 | 126.083 | 135.968 | 146.226 | 157.858 | 167.868 |
| 6 | 493.3 | 537.2 | 583.9 | 630.4 | 679.8 | 731.1 | 784.3 | 839.3 |
| 6 | 5930 | 644.6 | 699.4 | 756.5 | 815.8 | 877.4 | 941.1 | 1007.2 |
| 7 | 690.7 | \%52.0 | 816.0 | 883.6 | 951.8 | 1023.6 | 1098.0 | $11 \% 5.0$ |
| 8 | 789.3 | 859.5 | 93.26 | 1008.7 | 1087.7 | 1169.8 | 1254.9 | 1342.9 |
| 9 | 888.0 | 966.9 | 1049.1 | 1134.7 | 1223.7 | 1316.0 | 1411.7 | 1510.8 |
| 10 | 986.7 | 1074.3 | 1165.7 | 1260.8 | 1359.7 | 1462.2 | 1568.6 | 1678.6 |
| 11 | 1085.3 | 1181.8 | 128.3 | 1386.9 | 1495.6 | 1608.5 | 1725.4 | 1846.5 |
| 12 | 1184.0 | 1289.2 | 1398.8 | 1513.0 | 1631.6 | 1754.7 | 1882. 3 | 2014.4 |
| 13 | 1282.\% | 1396.6 | 1515.4 | 1639.1 | 176テ.6 | 1900.9 | 2039.2 | 2182.2 |
| 14 | 1381.3 | 15040 | 1632.0 | 1765.2 | 1903.6 | 2047.2 | 2196.0 | 2350.1 |
| 15 | 1480.0 | 1611.5 | 1748.6 | 1891.2 | 2039.5 | 2193.4 | 2352.9 | 2517.9 |
| 16 | 1578.7 | 1718.9 | 1865.1 | 2017.3 | $21 \% 5$ | 2339.6 | 2509.7 | 2685.8 |
| 17 | 1677.3 | 1826.3 | 1981.7 | 2143.4 | 2311.5 | 2485.8 | 2666.6 | 285.3.7 |
| 18 | 17700.0 | 1933.8 | 2098.3 | 2269.5 | 2447.4 | 2632.0 | 2823.4 | 3021.5 |
| 19 | 1874.7 | 2041.2 | 2214.8 | 2395.6 | 2583.4 | 2\%78.3 | 2980.3 | 3189.4 |
| 20 | 1973.3 | 2148.6 | 23:21.4 | 2521.7 | 2719.4 | 2924.5 | 3137.2 | 3357.3 |

## LOGARETEINS.

Logarithms (abbreviation $\log$ ). - The $\log$ of a number is the exponent of the power to which it is necessary to raise a fixed number to produce the given number. The fixed number is called the base. Thus if the base is 10 , the $\log$ of 1000 is 3 , for $10^{3}=1000$. There are two systems of logs in general use, the common, in which the base is 10, and the Naperian, or hyperbolic, in which the base is 2.718281828 .... The Naperian base is commonly denoted by $e$, as in the equation $e^{y}=x$, in which $y$ is the Nan. log of $x$.
In any system of $\operatorname{logs}$, the $\log$ of 1 is 0 ; the $\log$ of the base, taken in that system, is 1 . In any system the base of which is greater than 1 , the logs of all numbers greater than 1 are positive and the logs of all numbers less than 1 are negative.

The modulus of any system is equal to the reciprocal of the Naperian log of the base of that system. The modulus of the Naperian system is 1, that of the common system is .4342945 .

The $\log$ of a number in any system equals the modulus of that system $x$ the Naperian $\log$ of the number.

The hyperbolic or Naperian log of any number equals the common log $\times 2.3025851$.

Every log consists of two parts, an entire part called the characteristic, or index, and the decimal part, or mantissa. The mantissa only is given in the usual tables of common logs, with the decimal point omitted. The characteristic is found by a simple rule, viz., it is one less than the number of figures to the left of the decimal point in the number whose $\log$ is to be found. Thus the characteristic of numbers from 1 to $9.99+$ is 0 . from 10 to $99.99+$ is 1, from 100 to $999+$ is 2 , from .1 to $.99+$ is -1 , from .01 to $.099+$ is -2, etc. Thus

| 2000 is 3.30103 | log of | 2 |
| :---: | :---: | :---: |
| 200 " 2.30103; |  | . 02 |
| 20 " 1.30103; |  | . 002 |
| 2 " 0.30103; |  |  |

The minus sign is frequently written above the characteristic thus: $\log .002=\overline{3} .30103$. The characteristic only is negative, the decimal part, or mantissa, being always positive.
When a log consists of a negative index and a positive mantissa, it is usual to write the negative sign over the index, or else to add 10 to the index, and to indicate the subtraction of 10 from the resulting logarithin.

Thus $\log .2=\overline{1} .30103$, and this may be written 9.30103-10.
In tables of logarithmic sines, etc., the - 10 is generally omitted, as being understond.

Rules for use of the table of Logarithms. -To find the 10 g of any whole number.-For 1 to 100 mclusive the log is given complete ir the small table on page 129.
For 100 to 999 inclusive the decimal part of the log is given opposite the given number in the column headed 0 in the table (including the two figures to the left, making six figires). Prefix the characteristic, or index.
For 1000 to 9999 inclusive: The last four figures of the log are fonnd opposite the first three figures of the given number and in the vertical column headed with the forrth figure of the given number; prefix the two figures under column 0 , and the index, which is 3 .
For numbers over 10,000 laving five or more digits: Find the decimal part of the $\log$ for the first four digits as above, multiply the difference figure in the last column by the remaining digit or digits, and divide by 10 if there be only one digit more, by 100 if there be two more, and so on; add the quotient to the log of the first four digits and prefix the index. which is 4 if there are five digits, 5 if there are six digits, and so on. The table of proportional parts may be used, as shown below.
ro find the $10 g$ of a decimal fraction or of a whole number and a decimal. - First find the $\log$ of the quantity as it there were no decintal point, then prefix the index according to rule ; the index is one less than the number of figures to the left of the decimal point.
Required log of 3.141593.

| From proportional parts |  | ${ }^{3.1415}$ |  | $=0.49 \% 068$. |  | Diff. $=138$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | = | 690 |  |
|  |  |  | 09 | = | 1242 |  |
| ct * | 6 |  |  |  | 003 | $=$ | 041 |  |
|  | $\log$ | 3.1415 |  |  | 1498 |  |

To find the number corresponding to a given log.-Find in the table the $\log$ nearest to the decimal part of the given $\log$ and take the first four digits of the required number from the column $N$ and the top or foot of the column containing the log which is the next less than the given log. To find the 5 th and 6 th digits subtract the log in the table from the given log. nultiply the difference by 100 , and divide by the figure in the Diff. column opposite the $\log$; annex the quotient to the four digits already fonnd, and place the decimal point according to the rule; the number of figures to the left of the decimal point is one greater than the inder.

$$
\begin{aligned}
& \text { Find number corresponding to the } \log \ldots . . . \ldots . .0 .497150 \\
& \text { Next lowest log in table corresponds to } 3141 \ldots \ldots \text {. } 497068 \\
& \text { Diff. }=\frac{82}{82} \\
& \text { Tabular diff. }=138 ; 82 \div 138=.59+
\end{aligned}
$$

The index being 0 , the number is therefore $3.14159+$.
To multiply two numbers by the use of logarithms.... Add together the logs of the two numbers, and find the number whose $\log$ is the sum.
To divide two numbers.-Subtract the $\log$ of the divisor from the log of the dividend, aud find the number whose log is the difference.
To raise a number to any given power. - Multiply the log of the number by the exponent of the power, and find the number whose $\log$ is the product.

To find any root of a given number.-Divide the $\log$ of the number by the index of the root. The quotient is the log of the root.
To find the reeiprocal of anmber. - Subtract the decimal part of the $\log$ of the number from 0 , add 1 to the index and change the sign of the index. The result is the $\log$ of the reciprocal.

Required the reciprocal of 3.141593.
Log of 3.141593 , as found above.................................... . . 0.4971498
Subtract decimal part from 0 gives................................................... 0.49728508
Add 1 to the index, and changing sign of the index gives.. $\overline{1} .50: 28502$ which is the $\log$ of 0.31831 .
To find the fourth term of a proportion by logarithms. - Add the logarithms of the second and third terms, aud from their sum subtract the logarithm of ti.e first term.

When one logarithm is to be subtracted from another, it may be nore convenient to conve"t the subtraction into an addition, which may be rlone by first subtracting the given logarithm from 10 , adding the difference tr. the other logarithm, and afterwards rejecting the 10.

The difference between a given logarithm and 10 is called its aritimetical complement, or cologarithm.

To subtract one logarithm from another is the same as to add its complement and then reject 10 from the result. For $a-b=10-b+u-10$.

To work a proportion, then, by logarithms, add the complement of the logarithm of the first term to the logarithms, of the second and third ternis. The characteristic must afterwards be diminished by 10 .

Example in logarithms with a negative index.-Solve by logarithms $\left(\frac{526}{1011}\right)^{2.45}$, which means divide 526 by 1011 and raise the quotient to the 2.45 power.

$$
\begin{aligned}
\log 526= & 2.720986 \\
\log 1011 & =3.004751 \\
\log _{\text {of }} \text { quotient } & =-1.716235 \\
\text { Multiply by } & \frac{2.45}{-2.58175} \\
& -2.864940 \\
& -1.4324 \% 0 \\
& -1.30477575=.20173, \text { Ans. }
\end{aligned}
$$

In multiplying - 1.7 by 5 , we say; $5 \times 7=35,3$ to carry; $5 \times-1=-5$ less +3 carried $=-2$. In adding $-2+8+3+1$ carried from previous column, we say: $1+3+8=12$, minus $2=10$, set down 0 and carry $1 ; 1+4-2=3$.

Logarithms of ${ }^{\text {Notmbers from }} 1$ to 100.

| N. | Log. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.000000 | 21 | 1.322219 | 41 | 1.612784 | 61 |  | 81 |  |
| 2 | 0.301630 | 22 | 1.342423 | 42 | 1.623249 | 62 | $1.792392$ | 82 | 1.913814 |
| 3 | 0.477121 | 23 | 1.361728 | 43 | 1. 633468 | 63 | 1.799341 | 83 | $1.9190 \sim 8$ |
| 4 | 0.602060 0.698970 | $\stackrel{24}{25}$ | 1.380211 1.397940 | 44 | 1. 643153 | 64 | 1.806180 | 84 | 1.9242:9 |
|  | 0.698910 | 25 | 1.397940 | 45 | 1.653213 | 65 | 1.812913 | 85 | 1.929419 |
| ${ }_{4}^{6}$ | 0.778151 | 26 | 1.414973 | 46 | 1.662758 | 66 | 1.819544 | 86 | 1.934498 |
| 8 | 0.815098 0.903090 | $\stackrel{27}{28}$ | 1.431361 | 47 | 1.672098 | 67 | $1.8260 \% 5$ | 87 | 1.939519 |
| 8 | 0.903090 | 28 | 1.447158 | 48 | 1. 681241 | 68 | 1.832509 | 88 | 1.944483 |
| 10 | 0.954243 1.00000 | 3 | 1.462398 $1.47 \% 121$ | 49 | 1.690196 | 69 70 | 1.838849 | 89 | 1.849390 |
| 11 | 1.041393 | 31 | 1.491362 |  |  |  | 1.815098 | 90 | 1.954243 |
| 12 | 1.079181 | 32 | 1.505150 | 51 | 1.707570 1.716003 | 71 | 1.851258 | 91 | 1.959041 |
| 13 | 1.113913 | 33 | 1.518514 | 53 | 1.764276 | 7 | 1.857332 1.863323 | $\begin{aligned} & 92 \\ & 93 \end{aligned}$ | $\begin{aligned} & 1.963788 \\ & 1.06848 \end{aligned}$ |
| 14 | 1.146128 | 34 | 1.531/ 1 9 | . 54 | 1.732394 | 74 | 1.869232 | 94 | 1.968183 |
| 15 | 1.176091 | 35 | 1.544068 | 55 | 1.740363 | 75 | 1.875061 | 95 | $1.977 \% 24$ |
| 16 | 1.204120 | 36 | 1.556303 | 56 | 1.748188 | \%6 | 1.880814 | 96 | 1.982271 |
| 17 | 1.230449 | 37 | 1.568202 | 57 | 1.755875 | 7 | 1.886491 | 97 | 1.986772 |
| 18 | 1.255273 | 38 | 1.579784 | 58 | 1.763428 | 78 | 1.892095 | 98 | 1.991226 |
| 20 | 1.2601030 | 39 40 | 1.591065 | 59 | 1. ${ }^{\text {\% } 20852}$ | 79 | 1.897627 | 99 | 1.995635 |
|  | 1.301030 | 40 | 1.602060 | 60 | 1.778151 | 80 | 1.903090 | 100 | 2.000000 |


| No. 100 L. 000.$]$ |  |  |  |  |  |  |  |  | [No. 109 L. 040. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 100 | 000000 | 0434 | 0868 | 1301 | 1734 | 2166 | 2598 | 3029 | 3461 | 3891 | 432 |
| 1 | $43: 1$ | 4751 | 5181 | 5609 | 6038 | 6166 | 6894 | 7321 | 7748 | 8174 | 438 |
| 2 | 860 | 9026 | 9451 | 95. | 0300 | 0724 | 1147 | 1570 | 1993 | 2415 |  |
| 3 | 012837 | 3259 | 3680 | 4100 | 4521 | 4940 | 5360 | 5779 | 6197 | 6616 | 420 |
| 4 | 7033 | 7451 | 7868 | 8284 | 8700 | 9116 | 9532 | 9947 |  |  |  |
| 5 | 021189 | 1603 | 2016 | 2428 | 2841 | 3252 | 3654 | 4075 | ${ }^{0} 4486$ | ${ }^{0775}$ | 416 |
| 6 | 5306 | 5715 | 6125 | 6533 | 6942 | 7350 | 7657 | 8164 | $85 \% 1$ | 8978 | 408 |
| 8 | 938 | 978 | 0195 | 0600 | 1004 | 1408 | 1812 | $2: 16$ | 2619 |  |  |
| 8 | 033124 | 3826 | 4227 | 4628 | 5029 | 5130 | 5830 | 6230 | 6629 | 7028 | 400 |
| 9 | $04^{7426}$ | 7825 | 8223 | 8620 | 9017 | 9414 | 9811 | 0207 | 0602 | 0998 | 397 |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 434 | 43.4 | 86.8 | 130.2 | 173.6 | $21 \% .0$ | 260.4 | 303.8 | 347.2 | 390.6 |
| 433 | 43.3 | 86.6 | 129.9 | 173.2 | 216.5 | 259.8 | 303.1 | 346.4 | 389.7 |
| 432 | 43.2 | 86.4 | 129.6 | 172.8 | 216.0 | 259.2 | 302.4 | 345.6 | 388.8 |
| 431 | 43.1 | 86.2 | 129.3 | 172.4 | 215.5 | 258.6 | 301.7 | 344.8 | 387.9 |
| 430 | 43.0 | 86.0 | 129.0 | 172.0 | 215.0 | 258.0 | 301.0 | 314.0 | 387.0 |
| 429 | 42.9 | 85.8 | 128.7 | 171.6 | 214.5 | 257.4 | 300.3 | 343.2 | 386.1 |
| 428 | 42.8 | 85.6 | 128.4 | 171.2 | 214.0 | 256.8 | 299.6 | 342.4 | 385.2 |
| 427 | 42.7 | 85.4 | 128.1 | 170.8 | 213.5 | 256.2 | 298.9 | 341.6 | 384.3 |
| 426 | 42.6 | 85.2 | 127.8 | 170.4 | 213.0 | 255.6 | 298.2 | 340.8 | 383.4 |
| 495 | 42.5 | 85.0 | 127.5 | 170.0 | 212.5 | 255.0 | 297.5 | 340.0 | 382.5 |
| 424 | 42.4 | 84.8 | 127.2 | 169.6 | 212.0 | 254.4 | 295.8 | 339.2 | 381.6 |
| 423 | 42.3 | 84.6 | 126.9 | 169.2 | 211.5 | 253.8 | 296.1 | 338.4 | 380.7 |
| 422 | 42.2 | 81.4 | 126.6 | 168.8 | 211.0 | 253.2 | 295.4 | 337.6 | 3.9 .8 |
| 421 | 42.1 | 81.2 | 126.3 | 168.4 | 210.5 | 252.6 | 294.7 | 336.8 | 378.9 |
| 420 | 42.0 | 84.0 | 126.0 | 168.0 | 210.0 | 252.0 | 294.0 | 336.0 | 378.0 |
| 419 | 41.9 | 83.8 | 125.7 | 167.6 | 209.5 | 251.4 | 293.3 | 335.2 | 377.1 |
| 418 | 41.8 | 83.6 | 125.4 | 167. ${ }^{\text {d }}$ | 209.0 | 250.8 | 292.6 | 334.4 | $3{ }^{\prime \prime} 6.2$ |
| 417 | 41.7 | 83.4 | 125.1 | 166.8 | 208.5 | 250.2 | 291.9 | 333.6 | 375.3 |
| 416 | 41.6 | 83.2 | 124.8 | 166.4 | 208.0 | 249.6 | 291.2 | 332.8 | 374.4 |
| 415 | 41.5 | 83.0 | 124.5 | 166.0 | $20 \% .5$ | 249.0 | 290.5 | 332.0 | 3 r 3.5 |
| 414 | 41.4 | 82.8 | 121.2 | 165.6 | 207.0 | 218.4 | 289.8 | 331.2 | 372.6 |
| 413 | 41.3 | 82.6 | 123.9 | 165.2 | 206.5 | 247.8 | 289.1 | 330.4 | $3{ }^{\text {r }} 1.7$ |
| 412 | 41.2 | 82.4 | 123.6 | 164.8 | 206.0 | $24 \% .2$ | 288.4 | 329.6 | 370.8 |
| 411 | 41.1 | 82.2 | 123.3 | 161.4 | 205.5 | 246.6 | 287.7 | 328.8 | 369.9 |
| 410 | 41.0 | 82.0 | 123.0 | 164.0 | 205.0 | 246.0 | 28\%.0 | 328.0 | 369.0 |
| 409 | 40.9 | 81.8 | 122.7 | 163.6 | 204.5 | 245.4 | 286.3 | 327.2 | 368.1 |
| 408 | 40.8 | 81.6 | 122.4 | 163.2 | 204.0 | 244.8 | 285.6 | 326.4 | 367.2 |
| 407 | 49.7 | 81.4 | 122.1 | 162.8 | 203.5 | 244.2 | 284.9 | 325.6 | 366.3 |
| 406 | 40.6 | 81.2 | 121.8 | 162.4 | 203.0 | 2436 | 284.2 | 324.8 | 365.4 |
| 405 | 40.5 | 81.0 | 121.5 | 162.0 | 202.5 | 243.0 | 283.5 | 324.0 | 364.5 |
| 404 | 40.4 | 80.8 | 121.2 | 161.6 | 202.0 | 242.4 | 282.8 | 323.2 | 363.6 |
| 403 | 40.3 | 80.6 | 120.9 | 161.2 | 201.5 | 241.8 | 282.1 | 322.4 | 362.7 |
| 402 | 40.2 | 80.4 | 120.6 | 160.8 | 201.0 | 2412 | 281.4 | 321.6 | 361.8 |
| 401 | 40.1 | 80.2 | 120.3 | 160.4 | 200.5 | 240.6 | 280.7 | 320.8 | 360.9 |
| 400 | 40.0 | 80.0 | 120.0 | 160.0 | 200.0 | 240.0 | 280.0 | 330.0 | 360.0 |
| 399 | 39.9 | 79.8 | 119.7 | 159.6 | 199.5 | 239.4 | 279.3 | 319.2 | 359.1 |
| 398 | 39.8 | 79.6 | 119.4 | 159.2 | 199.0 | 238.8 | 278.6 | 318.4 | 358.2 |
| 397 | 39.7 | 79.4 | 119.1 | 158.8 | 198.5 | 238.2 | $27 \% .9$ | 317.6 | 357.3 |
| 396 | 39.6 | 79.2 | 118.8 | 158.4 | 198.0 | 937.6 | $27 \% .2$ | 316.8 | 356.4 |
| 39 | 39.5 | 79.0 | 118.5 | 158.0 | 197.5 | 237.0 | 276.5 | 316.0 | 355.5 |


| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{array}{r} 110 \\ 1 \\ 2 \end{array}\right.$ | $\begin{array}{r} 041393 \\ 5323 \\ 9218 \end{array}$ | $\begin{aligned} & 1787 \\ & 5714 \\ & 9606 \end{aligned}$ | $\begin{aligned} & 2182 \\ & 6105 \\ & 0002 \end{aligned}$ | $\begin{aligned} & 2576 \\ & 6495 \end{aligned}$ | $\begin{aligned} & 2969 \\ & 6885 \end{aligned}$ | $\begin{aligned} & 3362 \\ & 7275 \end{aligned}$ | 3755 <br> 7664 | $\begin{aligned} & 4148 \\ & 8053 \end{aligned}$ | $\begin{aligned} & 4540 \\ & 8442 \end{aligned}$ | $\begin{aligned} & 4932 \\ & 8830 \end{aligned}$ | 393890 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\begin{aligned} & 0380 \\ & 4230 \\ & 8046 \end{aligned}$ | $\begin{aligned} & 0766 \\ & 4613 \\ & 8424 \end{aligned}$ | $\begin{aligned} & 1153 \\ & 4996 \\ & 8805 \end{aligned}$ | $\begin{aligned} & 1538 \\ & 5338 \\ & 9185 \end{aligned}$ | $\begin{aligned} & 1924 \\ & 5: 60 \\ & 9563 \end{aligned}$ | 2309 <br> 6142 <br> 9942 | $\begin{aligned} & 2694 \\ & 6524 \end{aligned}$ | 386383 |
| 3 | $\begin{array}{r} 053078 \\ 6905 \end{array}$ | $\begin{aligned} & 3463 \\ & 7286 \end{aligned}$ | $\begin{aligned} & 3846 \\ & 7666 \end{aligned}$ |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 060698 4458 8186 | $\begin{aligned} & 1075 \\ & 4832 \\ & 8557 \end{aligned}$ | $\begin{aligned} & 1452 \\ & 5206 \\ & 8928 \end{aligned}$ | $\begin{aligned} & 1829 \\ & 5580 \\ & 9298 \end{aligned}$ | $\begin{aligned} & 2206 \\ & 5953 \\ & 9668 \end{aligned}$ | $\begin{aligned} & 2582 \\ & 6326 \end{aligned}$ | $\begin{aligned} & 2958 \\ & 6699 \end{aligned}$ | $\begin{aligned} & 3333 \\ & 70 \pi 1 \end{aligned}$ | $\begin{aligned} & 3709 \\ & 7443 \end{aligned}$ | $\begin{aligned} & 0320 \\ & 4083 \\ & 7815 \end{aligned}$ | 379$3 \% 6$373 |
| $\stackrel{6}{6}$ |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{7}$ |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  <br> 071882 <br> 5547 | 22505912 | $\begin{aligned} & 2617 \\ & 6276 \end{aligned}$ | $\begin{aligned} & 2985 \\ & 6640 \end{aligned}$ | $\begin{aligned} & 3352 \\ & 7004 \end{aligned}$ | $\begin{aligned} & 0038 \\ & 3718 \\ & 37268 \end{aligned}$ | $\begin{aligned} & 0407 \\ & 4085 \end{aligned}$ | $\begin{aligned} & 0766 \\ & 4451 \\ & 8094 \end{aligned}$ | $\begin{aligned} & 1145 \\ & 4816 \\ & 8457 \end{aligned}$ | $\begin{aligned} & 1514 \\ & 5182 \\ & 8819 \end{aligned}$ | $\begin{aligned} & 3 \pi 0 \\ & 366 \\ & 363 \end{aligned}$ |
| 9 |  |  |  |  |  |  |  |  |  |  |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 395 | 39.5 | 79.0 | 118.5 | 158.0 | 197.5 | 23\%.0 | 276.5 | 316.0 | 355.5 |
| 394 | 39.4 | 78.8 | 118.2 | 157.6 | 197.0 | 236.4 | 275.8 | 315.2 | 354.6 |
| 393 | 39.3 | 78.6 | 117.9 | 157.2 | 196.5 | 235.8 | 275.1 | 314.4 | 353.7 |
| 392 | 39.2 | 78.4 | 117.6 | 156.8 | 196.0 | 235.2 | 274.4 | 313.6 | 352.8 |
| 391 | 39.1 | 78.2 | 117.3 | 156.4 | 195.5 | 234.6 | 273.7 | 312.8 | 351.9 |
| 390 | 39.0 | 78.0 | 117.0 | 156.0 | 195.0 | 234.0 | 273.0 | 312.0 | 351.0 |
| 389 | 38.9 | 77.8 | 116.7 | 155.6 | 194.5 | 233.4 | $2 \% 2.3$ | 311.2 | 350.1 |
| 388 | 38.8 | 77.6 | 116.4 | 155.2 | 194.0 | 232.8 | 271.6 | 310.4 | 349.2 |
| 388 | 38.7 | \%7. 4 | 116.1 | 154.8 | 193.5 | 232.2 | 270.9 | 309.6 | 348.3 |
| 386 | 38.6 | 77.2 | 115.8 | 154.4 | 193.0 | 231.6 | $2 \% 0.2$ | 308.8 | 347.4 |
| 385 | 38.5 | 77.0 | 115.5 | 154.0 | 192.5 | 231.0 | 269.5 | 308.0 | 346.5 |
| 384 | 38.4 | r6.8 | 115.2 | 153.6 | 192.0 | 230.4 | 268.8 | 307.2 | 345.6 |
| 383 | 38.3 | 76.6 | 114.9 | 153.2 | 191.5 | 229.8 | 268.1 | 306.4 | 344.7 |
| 382 | 38.2 | 76.4 | 114.6 | 152.8 | 191.0 | 229.2 | 267.4 | 305.6 | 343.8 |
| 381 | 38.1 | 76.2 | 114.3 | 152.4 | 190.5 | 228.6 | 266.7 | 304.8 | 342.9 |
| 380 | 38.0 | 76.0 | 114.0 | 152.0 | 190.0 | 228.0 | 266.0 | 304.0 | 342.0 |
| 379 | 37.9 | 75.8 | 113.7 | 151.6 | 189.5 | 227.4 | 265.3 | 303.2 | 341.1 |
| 378 | 37.8 | 75.6 | 113.4 | 151.2 | 189.0 | 226.8 | 264.6 | 302.4 | 340.2 |
| 377 | 37.7 | 75.4 | 113.1 | 150.8 | 188.5 | 226.2 | 263.9 | 301.6 | 339.3 |
| 376 | 37.6 | 75.2 | 112.8 | 150.4 | 188.0 | 225.6 | 263.2 | 300.8 | 338.4 |
| 375 | 37.5 | 75.0 | 112.5 | 150.0 | $18 \% .5$ | 225.0 | 262.5 | 300.0 | $33 \% .5$ |
| 374 | 37.4 | 74.8 | 112.2 | 149.6 | $18 \% .0$ | 224.4 | 261.8 | 299.2 | 336.6 |
| 373 | 37.3 | \%4.6 | 111.9 | 149.2 | 186.5 | 223.8 | 261.1 | 298.4 | 335.7 |
| 372 | 37.2 | 74.4 | 111.6 | 148.8 | 186.0 | 223.2 | 260.4 | $29 \% .6$ | 334.8 |
| 371 | 37.1 | 74.2 | 111.3 | 148.4 | 185.5 | 222.6 | 259.7 | 296.8 | 333.9 |
| 370 | 37.0 | 74.0 | 111.0 | 148.0 | 185.0 | 222.0 | 259.0 | 296.0 | 333.0 |
| 369 | 36.9 | \%3.8 | 110.7 | 147.6 | 184.5 | 221.4 | 258.3 | 295.2 | 332.1 |
| 368 | 36.8 | 73.6 | 110.4 | 147.2 | 184.0 | 220.8 | 257.6 | 294.4 | 331.2 |
| 367 | 36.7 | 73.4 | 110.1 | 146.8 | 183.5 | 220.2 | 256.9 | 293.6 | 330.3 |
| 366 | 36.6 | 73.2 | 109.8 | 146.4 | 183.0 | 219.6 | 256.2 | 292.8 | 329.4 |
| 565 | 36.5 | 73.0 | 109.5 | 146.0 | 182.5 | 219.0 | 255.7 | 292.0 | 328.5 |
| 364 | 36.4 | T2.8 | 109.2 | 145.6 | 182.0 | 218.4 | 254.8 | 291.2 |  |
| 363 | 36.3 | 72.6 | 108.9 | 145.2 | 181.5 | 217.8 | 254.1 | 290.4 | 326.7 |
| 362 | 36.2 | 72.4 | 108.6 | 144.8 | 181.0 | 217.2 | 253.4 | 289.6 | 325.8 |
| 361 | 36.1 | 72.2 | 108.3 | 144.4 | 180.5 | 216.6 | 252.7 | 288.8 | 324.9 |
| 360 | 36.0 | 72.0 | 108.0 | 144.0 | 180.0 | 216.0 | 252.0 | 288.0 | 324.0 |
| $\stackrel{359}{358}$ | 35.9 | 71.8 | 107.7 | 143.6 | 179.5 | 215.4 | 251.3 | 287.2 | 323.1 |
| 358 | 35.8 | 71.6 | 107.4 | 143.2 | 179.0 | 214.8 | 250.6 | 286.4 | 322.2 |
| 357 356 | 35.7 35 | 71.4 | 107.1 | 142.8 | 178.5 | 214.2 | 249.9 | 285.6 | 321.3 |
| 356 | 35.6 | 71.2 | 106.8 | 142.4 | 178.0 | 213.6 | 249.2 | 284.8 | 320.4 |


| No. 120 L .079.$]$ |  |  |  |  |  | [No. 134 L. 130. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 120 | 079181 | 9543 | 9904 | 0366 | 0626 | 0987 | 1347 | 1707 | 2067 | 2426 | 360 |
| 1 | $082 \% 85$ | 3144 | 3503 | 3861 | 4219 | 4576 | 4934 | 5291 | 5647 | 6004 | 357 |
| 2 | 6360 | 6716 | 7071 | $74 \geqslant 6$ | 7781 | 8136 | 8490 | 8845 | 9198 | 9552 | 355 |
|  |  | 0958 | 0611 | 0963 | 1315 | 166\% | 2018 | 2370 | 2\%01 | 3071 | 352 |
| 4 | 09342: | 3772 | 4122 | $44 \% 1$ | 48:0 | 5169 | 5518 | 5866 | 6215 | 6562 | 349 |
| 5 | 6910 | r25\% | \%604 | \%951 | 8:98 | 8644 | 8990 | 9335 | 9681 |  |  |
| 6 | 100371 | 0715 | 1059 | 1403 | 1747 | 2091 | 2434 | $27 \%$ | 3119 | 3462 | 346 343 |
| 7 | 3804 | 4146 | 4487 | $48 \% 8$ | 5169 | 5510 | 58.51 | 6191 | 6531 | 6871 | 341 |
| 8 | 「210 | 7549 | 7888 | 8227 | 8565 | 8903 | 9241 | $95{ }^{\circ} 9$ | 9916 |  |  |
| 9 | 110590 | 0926 | 1263 | 1599 | 1934 | $22 \%$ | 2605 | 2940 | $32 \%$ | 3609 | 335 |
| 130 | 3943 | 4277 | 4611 | 4944 | 59\%8 | 5611 | 5943 | 62\%6 | 6608 | 6940 | 333 |
| 1 | 7271 | r603 | 7934 | 8265 | 8595 | 8920 | 92556 | 9586 | 9915 |  |  |
| 2 | 1205\%4 | 0903 | 1231 | 1560 | 1888 | 2216 | 2514 | 28.1 | 3198 | 3525 | 328 |
| 3 | 3852 | 4178 | 4504 | 4830 | 5156 | 5481 | 5806 | 6131 | 6450 | $6 \% 81$ | 395 |
| 4 | $13^{7105}$ | 7439 | 7753 | 8076 | 8399 | 8702 | 9045 | 9368 | 9690 | 0012 | $3 \times 3$ |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 355 | 35.5 | 71.0 | 106.5 | 142.0 | $17 \% .5$ | 2130 | 248.5 | 284.0 | 319.5 |
| 354 | 35.4 | ro.8 | 106.2 | 141.6 | $1 \% 7.0$ | 212.4 | 247.8 | 283.2 | 318.6 |
| 353 | 35.3 | 70.6 | 105.9 | 141.2 | 176.5 | 211.8 | $24 \% .1$ | 282.4 | 317.7 |
| 352 | 35.2 | \%0.4 | 105.6 | 140.8 | 176.0 | 211.2 | 246.4 | 281.6 | 316.8 |
| 351 | 35.1 | 80.2 | 105.3 | 140.4 | 175.5 | 210.6 | 245.7 | 280.8 | 315.9 |
| 350 | 35.0 | 70.0 | 105.0 | 140.0 | 175.0 | 210.0 | 245.0 | 280.0 | 315.0 |
| 349 | 34.9 | 69.8 | 104.7 | 139.6 | 174.5 | 209.4 | 214.3 | 279.2 | 314.1 |
| 348 | 34.8 | 69.6 | 104.4 | 139.2 | 174.0 | 208.8 | 243.6 | 278.4 | 313.2 |
| 847 | 34.7 | 69.4 | 104.1 | 138.8 | 173.5 | 208.2 | 242.9 | $2 \% 8$ | 312.3 |
| 346 | 34.6 | 69.2 | 103.8 | 138.4 | 173.0 | 207.6 | 242.2 | 276.8 | 311.4 |
| 345 | 34.5 | 69.0 | 103.5 | 138.0 | 172.5 | $20 \% .0$ | 241.5 | 276.0 | 310.5 |
| 314 | 34.4 | 68.8 | 103.2 | 137.6 | 172.0 | 206.4 | 240.8 | 275.2 | 309.6 |
| 343 | 31.3 | 68.6 | 102. 9 | 137.2 | 171.5 | 205.8 | 240.1 | 274.4 | 308.7 |
| 342 | 31.2 | 68.4 | 10٪.6 | 136.8 | 111.0 | 205.2 | 239.4 | 273.6 | 307.8 |
| 341 | 34.1 | 68.2 | 102.3 | 136.4 | $1 \% 0.5$ | 204.6 | 238.7 | $2 \% 2.8$ | 306.9 |
| 340 | 34.0 | 68.0 | 102.0 | 136.0 | $1 \% 0.0$ | 204.0 | 238.0 | 272.0 | 306.0 |
| 339 | 33.9 | 67.8 | 101.7 | 135.6 | 169.5 | 203.4 | 237.3 | 271.2 | 305.1 |
| 338 | 33.8 | $67 \%$ | 101.4 | 135.2 | 169.0 | 202.8 | 236.6 | 270.4 | 304.2 |
| 337 | 33.7 | $6 \% .4$ | 101.1 | 134.8 | 168.5 | 202.2 | 235.9 | 269.6 | 303.3 |
| 336 | 33.6 | 67.2 | 100.8 | 134.4 | 168.0 | 201.6 | 235.9 | 268.8 | 302.4 |
| 335 | 33.5 | 67.0 | 100.5 | 134.0 | 167.5 | 201.0 | 234.5 | 268.0 | 301.5 |
| 334 | 33.4 | 66.8 | 100.2 | 133.6 | 167.0 | 200.4 | 233.8 | 267.2 | 300.6 |
| 333 | 33.3 | 66.6 | 99.9 | 133.2 | 166.5 | 199.8 | 233.1 | 266.4 | 299.7 |
| 332 | 33.2 | 664 | 99.6 | 132.8 | 166.0 | 199.2 | 233.4 | 265.6 | 298.8 |
| 331 | 33.1 | 662 | 99.3 | 132.4 | 165.5 | 198.6 | 231.7 | 264.8 | 297.9 |
| 330 | 33.0 | 66.0 | 99.0 | 132.0 | 165.0 | 198.0 | 231.0 | 264.0 | 297.0 |
| 329 | 32.9 | 65.3 | 98.7 | 131.6 | 164.5 | 197.4 | 230.3 | 263.2 | 296.1 |
| 328 | 32.8 | 65.6 | 98.4 | 131.2 | 164.0 | 196.8 | $2 \geqslant 9.6$ | 262.4 | 295.2 |
| $32 \%$ | 32.7 | 65.4 | 98.1 | 130.8 | 163.5 | 196.2 | 288.9 | 261.6 | 294.3 |
| 326 | 32.6 | 65.2 | 97.8 | 130.4 | 163.0 | 195.6 | 208.2 | 260.8 | 293.4 |
| 325 | 32.5 | 65.0 | 97.5 | 130.0 | 162.5 | 195.0 | 227.5 | 260.0 | 292.5 |
| 324 | 32.4 | 64.8 | 97.2 | 129.6 | 162.0 | 194.4 | 226.8 | 259.2 | 291.6 |
| 383 | 33.3 | 64.6 | 96.9 | 129.2 | 161.5 | 193.8 | 226.1 | 258.4 | 290.7 |
| 320 | 32.2 | 61.4 | 96.6 | 128.8 | 161.0 | 193.2 | 225.4 | 257.6 | 289.8 |

[No. 149 L. 175.

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | 130334 | 0655 | 0977 | 1298 | 1619 | 1939 | 2260 | 2580 | 2900 | 3219 | 321 |
| 7 | 35396721 | $\begin{aligned} & 3858 \\ & 7037 \end{aligned}$ | ${ }^{4173} 7$ | 4496 | 4814 | 5133 | 54518618 | 59698934 | 60869249 | 64039564 | 316 |
|  |  |  |  | \%6\%1 | 7987 | 8303 |  |  |  |  |  |
|  |  | $\begin{aligned} & 0194 \\ & 3327 \end{aligned}$ | $\begin{aligned} & 0508 \\ & 3639 \end{aligned}$ | $\begin{aligned} & 0822 \\ & 3951 \end{aligned}$ | 1136 | 1450 | 1763 | $20 \%$ | 2389 | 2702 | 314 |
| 9 | 143015 |  |  |  | 42\%63 | 4574 | 4885 | 5196 | 5507 | 5818 | 311 |
| 140 | $\begin{aligned} & 6128 \\ & 9219 \end{aligned}$ | $\begin{aligned} & 6438 \\ & 9527 \end{aligned}$ | $\begin{aligned} & 6748 \\ & 9835 \end{aligned}$ | 7058 | 7367 | r6\%6 | 7985 | 8294 | 8603 | 8911 | 309 |
|  |  |  | 2900 | 01423205 | 04493510 | 0756 | 1063 | 1370 | 1676 | 1982 | 307305303 |
| 2 | 152288 | 2594 |  |  |  | 3815 | 4120 | 4121 | $4{ }^{\text {2 }}$ | 5032 |  |
| 3 | 5336 | 56408664 | 5913 | 6216 | $\begin{aligned} & 6549 \\ & 9567 \end{aligned}$ | $\begin{aligned} & 6852 \\ & 9868 \end{aligned}$ | 7154 | \% 457 | Tis9 | 8061 |  |
|  | 8362 |  | 8965 | 9266 |  |  | 0168 |  |  |  | 303 |
|  | 161368 | 1667 | 1967 | 2266 | 2564 | 2863 |  | 3460 | 0769 3758 | 1068 | 301 |
|  | 4353 |  | $\begin{aligned} & 4947 \\ & 7908 \end{aligned}$ | $\begin{aligned} & 5 \approx 44 \\ & 8203 \end{aligned}$ | $\begin{aligned} & 5541 \\ & 8497 \end{aligned}$ | $\begin{aligned} & 5838 \\ & 8792 \end{aligned}$ | 0168 3161 6134 |  | 3758 6726 | 4055 7022 | 299 |
|  | 7317 | $\begin{aligned} & 4650 \\ & 7613 \end{aligned}$ |  |  |  |  | 9086 | 6430 9380 | 9674 | 9968 | 295 |
| 8 | $\begin{array}{r} 170262 \\ 3186 \end{array}$ | $\begin{aligned} & 0555 \\ & 34 \% 8 \end{aligned}$ | $\begin{aligned} & 0848 \\ & 3769 \end{aligned}$ | $\begin{aligned} & 1141 \\ & 4060 \end{aligned}$ | $\begin{aligned} & 1434 \\ & 4351 \end{aligned}$ | $\begin{aligned} & 1 \% 26 \\ & 4641 \end{aligned}$ | $\begin{aligned} & 2019 \\ & 4932 \end{aligned}$ | $\begin{aligned} & 2311 \\ & 52222 \end{aligned}$ | $\begin{aligned} & 2603 \\ & 5512 \end{aligned}$ | $\begin{aligned} & 2895 \\ & 5802 \end{aligned}$ | $\stackrel{293}{291}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 321 | 32.1 | 64.2 | 96.3 | 128.4 | 160.5 | 192.6 | 224.7 | 256.8 | 288.9 |
| 320 | 32.0 | 64.0 | 96.0 | 128.0 | 160.0 | 192.0 | 224.0 | 256.0 | 288.0 |
| 319 | 31.9 | 63.8 | 95.7 | 127.6 | 159.5 | 191.4 | 223.3 | 255.2 | 287.1 |
| 318 | 31.8 | 63.6 | 95.4 | 127.2 | 159.0 | 190.8 | 222.6 | 254.4 | 286.2 |
| 317 | 31.7 | 63.4 | 95.1 | 126.8 | 158.5 | 190.2 | 221.9 | 253.6 | 285.3 |
| 316 | 31.6 | 63.2 | 94.8 | 126.4 | 158.0 | 189.6 | 221.2 | 252.8 | 284.4 |
| 315 | 31.5 | 63.0 | 94.5 | 126.0 | 157.5 | 189.0 | 220.5 | 252.0 | 283.5 |
| 314 | 31.4 | 62.8 | 94.2 | 125.6 | 157.0 | 188.4 | 219.8 | 251.2 | 282.6 |
| 313 | 31.3 | 62.6 | 93.9 | 125.2 | 156.5 | 187.8 | 219.1 | 250.4 | 281.7 |
| 312 | 31.2 | 62.4 | 93.6 | 124.8 | 156.0 | $18 \% .2$ | 218.4 | 249.6 | 280.8 |
| 311 | 31.1 | 62.2 | 93.3 | 124.4 | 155.5 | 186.6 | 217.7 | 248.8 | 279.9 |
| 310 | 31.0 | 62.0 | 93.0 | 124.0 | 155.0 | 186.0 | 217.0 | 248.0 | 279.0 |
| 309 | 30.9 | 61.8 | 92.7 | 123.6 | 154.5 | 185.4 | 216.3 | 247.2 | 278.1 |
| 308 | 30.8 | 61.6 | 92.4 | 123.2 | 154.0 | 181.3 | 215.6 | 246.4 | 277.2 |
| 307 | 30.7 | 61.4 | 92.1 | 122.8 | 153.5 | 184.2 | 214.9 | 245.6 | 276.3 |
| 306 | 30.6 | 61.2 | 91.8 | 122.4 | 153.0 | 183.6 | 214.2 | 24.8 | 275.4 |
| 305 | 30.5 | 61.0 | 91.5 | 122.0 | 152.5 | 183.0 | 213.5 | 244.0 | $2{ }^{\text {2 }} 4.5$ |
| 304 | 30.4 | 60.8 | 91.2 | 121.6 | 152.0 | 182.4 | 212.8 | 243.2 | ${ }_{24}$ |
| 303 | 30.3 | 60.6 | 90.9 | 121.2 | 151.5 | 181.8 | 212.1 | 242.4 | $2 \% 9$ |
| 302 | 30.2 | 60.4 | 90.6 | 120.8 | 151.0 | 181.2 | 211.4 | 241.6 | 271.8 |
| 301 | 30.1 | 60.2 | 90.3 | 120.4 | 150.5 | 180.6 | 210.7 | 240.8 | $2 \% 0.9$ |
| 300 | 30.0 | 60.0 | 90.0 | 120.0 | 150.0 | 180.0 | 210.0 | 240.0 | 270.0 |
| 299 | 29.9 | 59.8 | 89.7 | 119.6 | 149.5 | 179.4 | 209.3 | 239.2 | 269.1 |
| 298 | 29.8 | 59.6 | 89.4 | 119.2 | 149.0 | 178.8 | 208.6 | 238.4 | 268.2 |
| 297 | 29.7 | 59.4 | 89.1 | 118.8 | 148.5 | 178.2 | 207.9 | 237.6 | 267.3 |
| 296 | 29.6 | 59.2 | 88.8 | 118.4 | 148.0 | 177.6 | 207.2 | 236.8 | 266.4 |
| 295 | 29.5 | 59.0 | 88.5 | 118.0 | 147.5 | 177.0 | 206.5 | 236.0 | 265.5 |
| 294 | 29.4 | 58.8 | 88.2 | 117.6 | 147.0 | 170.4 | 205.8 | 235.2 | 264.6 |
| 293 | 29.3 | 58.6 | 87.9 | 117.2 | 146.5 | 175.8 | 205.1 | 234.4 | 263.7 |
| 292 | 29.2 | 58.4 | 87.6 | 116.8 | 146.0 | 175.2 | 204.4 | 233.6 | 262.8 |
| 291 | 29.1 | 58.2 | 87.3 | 116.4 | 145.5 | 174.6 | 203.7 | 232.8 | 261.9 |
| 290 | 29.0 | 58.0 | 87.0 | 116.0 | 145.0 | 174.0 | 203.0 | 232.0 | 261.0 |
| 289 | 28.9 | 57.8 | 86.7 | 115.6 | 144.5 | 173.4 | 202.3 | 231.2 | 260.1 |
| 288 | 28.8 | 57.6 | 86.4 | 115.2 | 144.0 | 172.8 | 201.6 | 230.4 | 259.2 |
| 287 | 28.7 | 57.4 | 86.1 | 114.8 | 143.5 | 1\%2.2 | 200.9 | 229.6 | 258.3 |
| 286 | 28.6 | 57.2 | 85.8 | 114.4 | 143.0 | 171.6 | 200.2 | 228.8 | 257.4 |

## No. 150 . 176.]

[No. 169 L. 230.

| N. | 0 | 1 | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 150 \\ 1 \end{gathered}$ | 176091 | $\begin{aligned} & 6381 \\ & 9264 \end{aligned}$ | $\begin{aligned} & 66 \% 0 \\ & 9552 \end{aligned}$ | $\begin{aligned} & 6959 \\ & 9839 \end{aligned}$ | r248 | \%536 | 7825 | 8113 | 8401 | 868 | 28 |
|  |  |  |  |  | $\begin{aligned} & 0126 \\ & 2985 \\ & 5825 \\ & 8647 \end{aligned}$ | $\begin{aligned} & 0413 \\ & 3270 \\ & 6108 \\ & 8928 \end{aligned}$ | $\begin{aligned} & 0699 \\ & 3555 \\ & 6391 \\ & 9209 \end{aligned}$ | $\begin{aligned} & 0986 \\ & 3839 \\ & 66 \% 4 \\ & 9490 \end{aligned}$ | $\begin{aligned} & 1272 \\ & 4123 \\ & 6956 \\ & 9771 \end{aligned}$ | $\begin{aligned} & 1558 \\ & 4407 \\ & 7239 \end{aligned}$ | 287285283 |
|  | 18184 | 2129 |  |  |  |  |  |  |  |  |  |
| 3 | 4691 | 4975 | 5259 | 5542 |  |  |  |  |  |  |  |
| 4 | 7521 | 7803 | 8084 | 8366 |  |  |  |  |  |  | 281 |
|  | 19033 |  |  |  |  |  |  |  |  | 5623 |  |
| 6 | 312 | 3403 | 3681 | 3959 | 4237 | 4514 | 4792 | 506 | 53 |  | 279278276 |
| 8 | 5900 | 6176 | ${ }_{9206}$ | ${ }_{9481}^{6729}$ | $\begin{aligned} & 9005 \\ & 9755 \end{aligned}$ | $\begin{aligned} & 0029 \\ & 2761 \end{aligned}$ | 7556 | 7832 | 810 | 8382 |  |
|  | 8657 | 8932 |  |  |  |  | $\begin{aligned} & 0303 \\ & 3033 \end{aligned}$ | $\begin{aligned} & 577 \\ & 305 \end{aligned}$ | $\begin{aligned} & 850 \\ & 577 \end{aligned}$ | 1124 <br> 3848 | 274272 |
| 9 | 39 | 1670 |  |  | 88 |  |  |  |  |  |  |
| 160 | 4120 | $\begin{aligned} & 4391 \\ & 7096 \\ & 9783 \end{aligned}$ | $\begin{array}{r} 4663 \\ 7365 \end{array}$ | $\begin{array}{r} 4934 \\ 7634 \end{array}$ | $\begin{aligned} & 5204 \\ & 7904 \end{aligned}$ | $\begin{aligned} & 5475 \\ & 8173 \end{aligned}$ | $\begin{aligned} & 5746 \\ & 8441 \end{aligned}$ | $\begin{aligned} & 6016 \\ & 8710 \end{aligned}$ | $\begin{aligned} & 6286 \\ & 8979 \end{aligned}$ | $6556$ | 271269 |
| 1 | 26 |  |  |  |  |  |  |  |  |  |  |
| 2 | 9515 |  | $\begin{aligned} & 0051 \\ & 2720 \\ & 5373 \\ & 8010 \end{aligned}$ | $\begin{aligned} & 0319 \\ & 2986 \\ & 5638 \\ & 8273 \end{aligned}$ | $\begin{aligned} & \hline 0586 \\ & 3252 \\ & 5902 \\ & 8536 \end{aligned}$ | $\begin{aligned} & \hline 0853 \\ & 3518 \\ & 6166 \\ & 8798 \end{aligned}$ | $\begin{aligned} & \hline 1121 \\ & 3 \uparrow 83 \\ & 6430 \\ & 9060 \end{aligned}$ | $\begin{aligned} & \hline 1388 \\ & 4049 \\ & 6694 \\ & 9323 \end{aligned}$ | $\begin{aligned} & 1654 \\ & 4314 \\ & 695 \pi \\ & 9585 \end{aligned}$ | $\begin{aligned} & 1921 \\ & 4579 \\ & 7221 \\ & 9846 \end{aligned}$ | 267266264262 |
| 3 | 212188 | 保 |  |  |  |  |  |  |  |  |  |
| 4 | 4844 | 5109 |  |  |  |  |  |  |  |  |  |
| 5 | 7484 | 7747 |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$ | $\begin{array}{r} 220108 \\ 2716 \\ 5309 \\ 7887 \\ 23 \end{array}$ | $\begin{aligned} & 03 \% 0 \\ & 2976 \\ & 5568 \\ & 8144 \end{aligned}$ | $\begin{aligned} & 0631 \\ & 3236 \\ & 5826 \\ & 8400 \end{aligned}$ | $\begin{aligned} & 0892 \\ & 3496 \\ & 6084 \\ & 8657 \end{aligned}$ | $\begin{aligned} & 1153 \\ & 3755 \\ & 6342 \\ & 8913 \end{aligned}$ | $\begin{aligned} & 1414 \\ & 4015 \\ & 6600 \\ & 9170 \end{aligned}$ | $\begin{aligned} & 1675 \\ & 4274 \\ & 6858 \\ & 9426 \end{aligned}$ | $\begin{aligned} & 1936 \\ & 4533 \\ & 7115 \\ & 9682 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2196 \\ & 4792 \\ & 7372 \\ & 9938 \end{aligned}$ | 256 | 261259258256 |
|  |  |  |  |  |  |  |  |  |  | 5051 |  |
|  |  |  |  |  |  |  |  |  |  | 763 |  |
|  |  |  |  |  |  |  |  |  |  | 019 |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 285 | 28.5 | 57.0 | 85.5 | 114.0 | 142.5 | 171.0 | 199.5 | 228.0 | 256.5 |
| 284 | 28.4 | 56.8 | 85.2 | 113.6 | 142.0 | 170.4 | 198.8 | 227.2 | 255.6 |
| 283 | 28.3 | 56.6 | 84.9 | 113.2 | 141.5 | 169.8 | 198.1 | 226.4 | 254.7 |
| 282 | 28.2 | 56.4 | 84.6 | 112.8 | 141.0 | 169.2 | 197.4 | 225.6 | 253.8 |
| 281 | 28.1 | 56.2 | 84.3 | 1124 | 140.5 | 168.6 | 196.7 | 224.8 | 252.9 |
| 280 | 28.0 | 56.0 | 84.0 | 112.0 | 140.0 | 168.0 | 196.0 | 224.0 | 252.0 |
| 279 | 27.9 | 55.8 | 83.7 | 111.6 | 139.5 | 167.4 | 195.3 | 223.2 | 251.1 |
| $2 \sim 8$ | 27.8 | 55.6 | 83.4 | 111.2 | 139.0 | 166.8 | 194.6 | 222.4 | 250.2 |
| 277 | 27.7 | 55.4 | 83.1 | 110.8 | 138.5 | 166.2 | 193.9 | 221.6 | 249.3 |
| $2 \sim 6$ | 27.6 | 55.2 | 82.8 | 110.4 | 138.0 | 165.6 | 193.2 | 220.8 | 248.4 |
| 275 | 27.5 | 55.0 | 82.5 | 110.0 | 137.5 | 165.0 | 192.5 | 220.0 | 247.5 |
| 274 | 27.4 | 54.8 | 88.2 | 109.6 | 137.0 | 164.4 | 191.8 | 219.2 | 246.6 |
| 273 | 27.3 | 54.6 | 81.9 | 109.2 | 136.5 | 163.8 | 191.1 | 218.4 | 245.7 |
| 272 | 27.2 | 54.4 | 81.6 | 108.8 | 136.0 | 163.2 | 190.4 | 217.6 | 244.8 |
| 271 | 27.1 | 54.2 | 81.3 | 108.4 | 135.5 | 162.6 | 189.7 | 216.8 | 243.9 |
| 270 | 27.0 | 54.0 | 81.0 | 108.0 | 135.0 | 162.0 | 189.0 | 216.0 | 243.0 |
| 269 | 26.9 | 53.8 | 80.7 | $10 \% .6$ | 134.5 | 161.4 | 188.3 | 215.2 | 242.1 |
| 268 | 26.8 | 53.6 | 80.4 | 107.2 | 134.0 | 160.8 | 187.6 | 214.4 | 241.2 |
| 267 | 26.7 | 53.4 | 80.1 | 106.8 | 133.5 | 160.2 | 186.9 | 2136 | 240.3 |
| 266 | 26.6 | 53.2 | 79.8 | 106.4 | 133.0 | 159.6 | 186.2 | 212.8 | 239.4 |
| 265 | 26.5 | 53.0 | 79.5 | 106.0 | 132.5 | 159.0 | 185.5 | 212.0 | 238.5 |
| 264 | 26.4 | 52.8 | 79.2 | 105.6 | 132.0 | 158.4 | 184.8 | 211.2 | 237.6 |
| 263 | 26.3 | 52.6 | 78.9 | 105.2 | 131.5 | 157.8 | 184.1 | 210.4 | 236.7 |
| 262 | 26.2 | 52.4 | 78.6 | 104.8 | 131.0 | 157.2 | 183.4 | 209.6 | 235.8 |
| 261 | 26.1 | 52.2 | 78.3 | 104.4 | 130.5 | 156.6 | 182.7 | 208.8 | 234.9 |
| 260 | 26.0 | 52.0 | 78.0 | 104.0 | 130.0 | 156.0 | 182.0 | 208.0 | 234.0 |
| 259 | 25.9 | 51.8 | 77.7 | 103.6 | 129.5 | 155.4 | 181.3 | 207.2 | 233.1 |
| 258 | 25.8 | 51.6 | 77.4 | 103.2 | 129.0 | 154.8 | 180.6 | 206.4 | 232.2 |
| $25 i$ | 25.7 | 51.4 | 77.1 | 102.8 | 128.5 | 154.2 | 179.9 | 205.6 | 231.3 |
| 256 | 25.6 | 51.2 | 76.8 | 102.4 | 128.0 | 153.6 | 179.2 | 204.8 | 230.4 |
| 255 | 25.5 | 51.0 | 76.5 | 102.0 | $1 \% 7.5$ | 153.0 | 178.5 | 204.0 | 229.5 |




Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 225 | 22.5 | 45.0 | 67.5 | 90.0 | 112.5 | 135.0 | 157.5 | 180.0 | 202.5 |
| 224 | 22.4 | 44.8 | 67.2 | 89.6 | 112.0 | 134.4 | 156.8 | 179.2 | 201.6 |
| 223 | 22.3 | 44.6 | 66.9 | 89.2 | 111.5 | 133.8 | 156.1 | 178.4 | 200.7 |
| 222 | 22.2 | 44.4 | 66.6 | 83.8 | 111.0 | 133.2 | 155.4 | 177.6 | 199.8 |
| 221 | 22.1 | 44.2 | 66.3 | 88.4 | 110.5 | 132.6 | 154.7 | 176.8 | 198.9 |
| 220 | 22.0 | 44.0 | 66.0 | 88.0 | 110.0 | 132.0 | 154.0 | 176.0 | 198.0 |
| 219 | 21.9 | 43.8 | 65.7 | 87.6 | 109.5 | 131.4 | 153.3 | 175.2 | 197.1 |
| 218 | 21.8 | 43.6 | 65.4 | 87.2 | 109.0 | 130.8 | 152.6 | 174.4 | 196.2 |
| 217 | 21.7 | 43.4 | 65.1 | 86.8 | 108.5 | 130.2 | 151.9 | 173.6 | 195.3 |
| 216 | 21.6 | 43.2 | 64.8 | 86.4 | 108.0 | 129.6 | 151.2 | 172.8 | 194.4 |
| 215 | 21.5 | 43.0 | 64.5 | 86.0 | 107.5 | 129.0 | 150.5 | 172.0 | 193.5 |
| 214 | 21.4 | 42.8 | 64.2 | 85.6 | 107.0 | 128.4 | 149.8 | 171.2 | 192.6 |
| 213 | 21.3 | 42.6 | 63.9 | 85.2 | 106.5 | $12 \% .8$ | 149.1 | 170.4 | 191.7 |
| 212 | 21.2 | 42.4 | 63.6 | 84.8 | 106.0 | 127.2 | 148.4 | 169.6 | 190.8 |
| 211 | 21.1 | 42.2 | 63.3 | 81.4 | 105.5 | 126.6 | 147.7 | 168.8 | 189.9 |
| 210 | 21.0 | 42.0 | 63.0 | 84.0 | 105.0 | 126.0 | 147.0 | 168.0 | 188.0 |
| 209 | 20.9 | 41.8 | 62.7 | 83.6 | 104.5 | 125.4 | 146.3 | 167.2 | 188.1 |
| 208 | 20.8 | 41.6 | 69.4 | 83.2 | 104.0 | 124.8 | 145.6 | 1664 | 187.2 |
| $20 \%$ | 20.7 | 41.4 | 62.1 | 82.8 | 103.5 | 124.2 | 144.9 | 165.6 | 186.3 |
| 206 | 20.6 | 41.2 | 61.8 | 82.4 | 103.0 | 123.6 | 144.2 | 164.8 | 185.4 |
| 205 | 20.5 | 4.0 | ¢1.5 | 82.0 | 102.5 | 123.0 | 143.5 | 164.0 | 184.5 |
| 204 | 20.4 | 40.8 | 61.2 | 81.6 | 102.0 | 122.4 | 142.8 | 163.2 | 183.6 |
| 203 | 20.3 | 40.6 | 60.9 | 81.2 | 101.5 | 121.8 | 142.1 | 162.4 | 182.7 |
| 202 | 20.2 | 40.4 | 60.6 | 0.8 | 101.0 | 121.2 | 141.4 | 161.6 | 181.8 |


| N. | 0 | 1 | 2 | 3 |  |  | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 215 \\ 6 \\ 7 \\ 8 \end{array}$ | $\begin{array}{r} 332438 \\ 4454 \\ 6460 \\ 8456 \end{array}$ | $\begin{aligned} & 2640 \\ & 4655 \\ & 6660 \\ & 8656 \end{aligned}$ | $\begin{aligned} & 2842 \\ & 4856 \\ & 6860 \\ & 88.55 \end{aligned}$ | $\begin{aligned} & 3044 \\ & 5057 \\ & 7060 \\ & 9054 \end{aligned}$ | $\begin{aligned} & 3246 \\ & 5257 \\ & 7260 \\ & 9253 \end{aligned}$ | $\begin{aligned} & 3447 \\ & 5458 \\ & 7459 \\ & 9451 \end{aligned}$ | $\begin{aligned} & 3649 \\ & 5658 \\ & 7659 \\ & 9650 \end{aligned}$ | $\begin{aligned} & 3850 \\ & 5859 \\ & 7858 \\ & 9849 \end{aligned}$ | $\begin{aligned} & 4051 \\ & 6059 \\ & 8058 \end{aligned}$ | $\begin{aligned} & 4253 \\ & 6260 \\ & 8257 \end{aligned}$ | 202201200 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 9 | 340444 | 0642 | 0841 | 1039 | 1237 | 1435 | 1632 | 1830 | $\begin{aligned} & 0047 \\ & 2028 \end{aligned}$ | $\begin{aligned} & 0246 \\ & 2225 \end{aligned}$ | 199 |
| $\begin{array}{r} 220 \\ 1 \\ 2 \\ 3 \end{array}$ | $\begin{aligned} & 2423 \\ & 4392 \\ & 6353 \\ & 8305 \end{aligned}$ | $\begin{aligned} & 2620 \\ & 4589 \\ & 6549 \\ & 8500 \end{aligned}$ | $\begin{aligned} & 2817 \\ & 4785 \\ & 6644 \\ & 8694 \end{aligned}$ | $\begin{aligned} & 3014 \\ & 4981 \\ & 6939 \\ & 8889 \end{aligned}$ | $\begin{aligned} & 3212 \\ & 5178 \\ & 7135 \\ & 9083 \end{aligned}$ | $\begin{aligned} & 3409 \\ & 53,4 \\ & 7330 \\ & 93078 \end{aligned}$ | $\begin{aligned} & 3606 \\ & 5510 \\ & 5025 \\ & 9472 \end{aligned}$ | $\begin{aligned} & 3802 \\ & 5766 \\ & 77120 \\ & 9666 \end{aligned}$ | $\begin{aligned} & 3999 \\ & 5962 \\ & 7915 \\ & 9860 \end{aligned}$ | $\begin{aligned} & 4196 \\ & 6157 \\ & 8110 \end{aligned}$ | 197196195 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | $\begin{array}{r} 350 \Re 48 \\ 2183 \\ 4108 \\ 6026 \\ 7935 \\ 9835 \end{array}$ | $\begin{aligned} & 0442 \\ & 2375 \\ & 4301 \\ & 6217 \\ & 8125 \end{aligned}$ | $\begin{aligned} & 0636 \\ & 2568 \\ & 4493 \\ & 6408 \\ & 8316 \end{aligned}$ | 0829 | 1023 | 1216 | 1410 | 1603 | 1796 | 1989 | 193 |
| 5 |  |  |  | 2761 | 2954 | 3147 | 3339 | 3532 | 3724 | 3916 | 193 |
| 6 |  |  |  | 4685 | $48 \% 6$ | 5068 | 5260 | 5452 | 5643 | 5834 | 192 |
| 7 |  |  |  | 6599 | 6790 | 6981 | 7172 | 7363 | 7554 | 7744 | 191 |
| 8 |  |  |  | 8506 | 8696 | 8886 | 9076 | 9266 | 9456 | 9646 | 100 |
|  |  | 0025 | 0215 | 0404 | 0593 | 0783 | 0972 | 1161 | 1350 | 1539 | 89 |
| 230 | 361728 <br> 3612 <br> 5488 <br> 7356 <br> 9216 | $\begin{aligned} & 191 \% \\ & 3800 \\ & 5675 \\ & 7542 \\ & 9401 \end{aligned}$ | $\begin{aligned} & 2105 \\ & 3988 \\ & 5862 \\ & 7929 \\ & 9587 \end{aligned}$ | $\begin{aligned} & 2294 \\ & 4176 \\ & 6049 \\ & 7915 \end{aligned}$ | $\begin{aligned} & 2482 \\ & 4363 \\ & 6233 \\ & 8101 \\ & 9958 \end{aligned}$ | $\begin{aligned} & 26 \% 1 \\ & 4551 \\ & 6423 \\ & 828 \% \end{aligned}$ | $\begin{aligned} & 2859 \\ & 4739 \\ & 6610 \\ & 8473 \end{aligned}$ | $\begin{aligned} & 3048 \\ & 4926 \\ & 6 i 96 \\ & 8659 \end{aligned}$ | $\begin{aligned} & 3236 \\ & 5113 \\ & 6983 \\ & 8845 \end{aligned}$ | $\begin{aligned} & 3424 \\ & 5301 \\ & 7169 \\ & 9030 \end{aligned}$ | 188188187186 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  | $\begin{aligned} & 0143 \\ & 1991 \\ & 3831 \\ & 5664 \\ & 7488 \\ & 9306 \end{aligned}$ | 21754015584676709487 | $\begin{aligned} & 0513 \\ & 2360 \\ & 4198 \\ & 6029 \\ & 7852 \\ & 9668 \end{aligned}$ | $\begin{aligned} & 0698 \\ & 2544 \\ & 4382 \\ & 6212 \\ & 8034 \\ & 9849 \end{aligned}$ | 2\% <br> 4565 <br> 6394 <br> 8216 <br> 0030 | $\begin{aligned} & 185 \\ & 184 \\ & 184 \\ & 183 \\ & 182 \\ & 181 \end{aligned}$ |
| 5 | $\begin{array}{r} 371068 \\ 2912 \\ 4748 \\ 6577 \\ 8398 \end{array}$ | $\begin{aligned} & 1253 \\ & 3096 \\ & 4932 \\ & 6759 \\ & 8580 \end{aligned}$ | $\begin{aligned} & 1436 \\ & 3280 \\ & 5115 \\ & 6942 \\ & 8761 \end{aligned}$ | $\begin{aligned} & 1622 \\ & 3464 \\ & 5298 \\ & 71124 \\ & 8943 \end{aligned}$ | $\begin{aligned} & 1806 \\ & 3647 \\ & 5481 \\ & 7306 \\ & 9124 \end{aligned}$ |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |  |  |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 | 20.2 | 40.4 | 60.6 | 80.8 | 101.0 | 121.2 | 141.4 | 161.6 | 181.8 |
| 201 | 20.1 | 40.2 | 60.3 | 80.4 | 100.E | 120.6 | 140.7 | 160.8 | 180.9 |
| 200 | 20.0 | 40.0 | 60.0 | 80.0 | 100.0 | 120.0 | 140.0 | 160.0 | 180.0 |
| 199 | 19.9 | 39.8 | 59.7 | 79.6 | 99.5 | 119.4 | 139.3 | 159.2 | 179.1 |
| 198 | 19.8 | 39.6 | 59.4 | 79.2 | 99.0 | 118.8 | 138.6 | 158.4 | 178.2 |
| 197 | 19.7 | 39.4 | 59.1 | 78.8 | 98.5 | 118.2 | 131.9 | 157.6 | 177.3 |
| 196 | 19.6 | 39.2 | 58.8 | 78.4 | 98.0 | 117.6 | 134.2 | 156.8 | 176.4 |
| 195 | 19.5 | 39.0 | 58.5 | 78.0 | 97.5 | 117.0 | 136.5 | 156.0 | 175.5 |
| 194 | 19.4 | 38.8 | 58.2 | 77.6 | 97.0 | 116.4 | 135.8 | 155.2 | 174.6 |
| 193 | 19.3 | 38.6 | 57.9 | 77.2 | 96.5 | 115.8 | ${ }^{\circ} 135.1$ | 154.4 | 173.7 |
| 192 | 19.2 | 38.4 | 57.6 | ri6.8 | 96.0 | 115.2 | 134.4 | 153.6 | 17.8 |
| 191 | 19.1 | 38.2 | 57.3 | 76.4 | 95.5 | 114.6 | 133.7 | 152.8 | 171.9 |
| 190 | 19.0 | 38.0 | 57.0 | 76.0 | 95.0 | 114.0 | 133.0 | 152.0 | 171.0 |
| 189 | 18.9 | 37.8 | 56.7 | 75.6 | 94.5 | 113.4 | 132.3 | 151.2 | 170.1 |
| 188 | 18.8 | 37.6 | 56.4 | 75.2 | 94.0 | 112.8 | 131.6 | 150.4 | 169.2 |
| 187 | 18.7 | 374 | 56.1 | 74.8 | 93.5 | 112.2 | 130.9 | 149.6 | 168.3 |
| 186 | 18.6 | 37.2 | 55.8 | 84.4 | 93.0 | 111.6 | 130.2 | 148.8 | 167.4 |
| 185 | 18.5 | 37.0 | 55.5 | 74.0 | 92.5 | 111.0 | 129.5 | 148.0 | 166.5 |
| 184 | 18.4 | 36.8 | 55.2 | 73.6 | 92.0 | 110.4 | 128.8 | 147.2 | 165.6 |
| 183 | 18.3 | 36.6 | 54.9 | \%3.2 | 91.5 | 109.8 | 128.1 | 146.4 | 164.7 |
| 182 | 18.2 | 36.4 | 54.6 | 72.8 | 91.0 | 109.2 | 127.4 | 145.6 | 163.8 |
| 181 | 18.1 | 36.2 | 54.3 | 72.4 | 90.5 | 108.6 | 126.7 | 144.8 | 162.9 |
| 180 | 18.0 | 36.0 | 54.0 | 72.0 | 90.0 | 108.0 | 126.0 | 144.0 | 162.0 |
| 179 | 17.9 | 35.8 | 53.7 | 71.6 | 89.5 | 107.4 | 125.3 | 143.2 | 161.1 |

## No. 240 L. 380.1

[No. 269 L. 431.

| N. | 0 | 1 | 8 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 240 | 380211 | 0392 | $05 \% 3$ | 0754 | 0934 | 1115 | 1296 | $14 \% 6$ | 1656 | 1837 | 181 |
| 2 | 2017 | 2.97 | 2317 | 20.57 | 2737 | 2917 | 3097 | 3277 | 3456 | 3636 | 180 |
|  | 3815 | 3995 | 4174 | 4353 | 4533 | 4712 | 4891 | $50 \% 0$ | 5249 | 「428 | 179 |
| 2 | 56067890 | 5785 | 5964 | 6142 | 6321 | 6499 | 6677 | 6856 | 7034 | 7212 | 178 |
| 4 |  | 7568 | 7746 | 7418 | 8101 | 82\%9 | 8156 | 8634 | 8811 | 8989 | 178 |
| 5 | 9166 | 9343 | 95\%0 | 9698 | 98'5 |  |  |  |  |  |  |
|  | 390935 | 112 | 1288 | 64 | 1641 | 0051 | 02288 | 0405 2169 | ${ }^{0582}$ | 0759 2521 | 177 176 |
| 789 | $\begin{aligned} & 2697 \\ & 4452 \end{aligned}$ | 28\%3 | 3048 | 3224 | 3100 | 3575 | 3751 | 3926 | 4101 | 4277 | $1 \% 6$ |
|  |  | 4627 | 4802 | 4977 | 5152 | 5326 | 5501 | 5676 | 5850 | 6025 | 175 |
|  | 6199 | 6374 | 6548 | 6722 | 6896 | 707 i | 7245 | 7419 | 7592 | 7766 | 174 |
| [ 250 | $\begin{aligned} & 7940 \\ & 9674 \end{aligned}$ | $\begin{aligned} & 8114 \\ & 9847 \end{aligned}$ | 8287 | 8461 | 8634 | 8808 | 8981 | 9154 | 9328 | 9501 | 173 |
|  |  |  | 0020 | 0192 | 0365 | 0538 | 0711 | 0883 | 105 | 1208 | 173 |
| 2344567 |  | 15 | 1745 | 1917 | 2089 | 2261 | 2433 | 2605 | 277 | 2949 | 172 |
|  | 401401 3121 | 3292 | 3464 | 3635 | . 3807 | $39 \% 8$ | 4149 | 4320 | 4492 | 4663 | 171 |
|  | 4834 | 5005 | $51 \% 6$ | 5346 | 5517 | 5688 | 5858 | 6029 | 6199 | 6370 | $1 \% 1$ |
|  | $\begin{aligned} & 6540 \\ & 8: 10 \end{aligned}$ | 6710 | 6881 | ro51 | 7221 | 7391 | 7561 | 7ri31 | 7901 | 80\%0 | $1 \% 0$ |
|  |  | 8410 | 8579 | $8{ }^{*} 49$ | 8918 | $908{ }^{\circ}$ | 92.5\% | 9426 | 9595 | 9764 | 169 |
|  | 9933 | 0102 | 0271 | 0440 | 0609 | $077 \%$ | 0916 | 1114 | 1283 | 1451 | 169 |
| 8 | 411620 | 1788 | 1956 | 2124 | 2293 | 2461 | 2629 | 2796 | 2964 | 3132 | 168 |
| 9 | 3300 | 3467 | 3635 | 3803 | 3970 | 4137 | 4305 | 4472 | 4639 | 4806 | 167 |
| 260 | 4973 | 5140 | 5307 | 5474 | 5641 | 5808 | 5974 | 6141 | 6308 | 6474 | 167 |
| - 1 | $\begin{aligned} & 6641 \\ & 8301 \end{aligned}$ | 6807 | 6973 | 7139 | 7306 | $74 \% 2$ | 7638 | r'804 | 7970 | 8135 | 166 |
| 3 |  | 8167 | 8633 | 8 \%98 | 8964 | 9129 | 9295 | 9460 | 9625 | 9791 | 165 |
|  | 421604 | 0121 | 0286 | 0451 | 0616 | 0:81 | 0915 | 1110 | 1275 | 1439 | 165 |
| 456789 |  | 1768 | 1933 | 2097 | $2 \geqslant 61$ | 2426 | 2590 | 2754 | 2918 | 3082 | 16. |
|  | 3246 | 3410 | 35\%4 | 3i3t | 3901 | 4065 | 4228 | 4392 | 4555 | 4718 | 164 |
|  | 4882 | 5045 | 5208 | 5371 | 5534 | 5697 | 5860 | 60:3 | 6186 | 6349 | 163 |
|  | 6511 | 6674 | 6836 | 6999 | ${ }_{7} 7161$ | 7324 | ${ }^{2} 486$ | 7648 | r811 | 7973 | 162 |
|  | 8135 | 8297 | 8459 | 8621 | 8783 | 8944 | 9106 | 9268 | 9429 | 9591 | 162 |
|  | $43{ }^{\text {202 }}$ | 9914 | 0075 | 0236 | 0398 | 05.5 | 0720 | 0881 | 1042 | 1203 | 161 |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 178 | 17.8 | 35.6 | 53.4 | 71.2 | 89.0 | 106.8 | 124.6 | 142.4 | 160.2 |
| 177 | 17.7 | 35.4 | 53.1 | 70.8 | 88.5 | 106.2 | 123.9 | 141.6 | 159.3 |
| 176 | 14.6 | 35.2 | 52.8 | 70.4 | 88.0 | 105.6 | 123.2 | 140.8 | 158.4 |
| 175 | 17.5 | 35.0 | 52.5 | 70.0 | 87.5 | 105.0 | 122.5 | 140.0 | 157.5 |
| 174 | 17.4 | 34.8 | 52.2 | 69.6 | 87.0 | 104.4 | 121.8 | 139.2 | 156.6 |
| 173 | 17.3 | 34.6 | 51.9 | 69.2 | 86.5 | 103.8 | 121.1 | 138.4 | 155.7 |
| 172 | 17.2 | 34.4 | 51.6 | 68.8 | 86.0 | 103.2 | 120.4 | 137.6 | 154.8 |
| 171 | 17.1 | 34.2 | 51.3 | 68.4 | 85.5 | 102.6 | 119.7 | 136.8 | 153.9 |
| 170 | 17.0 | 34.0 | 51.0 | 68.0 | 85.0 | 102.0 | 119.0 | 136.0 | 153.0 |
| 169 | 16.9 | 33.8 | 50.7 | 67.6 | 81.5 | 101.4 | 118.3 | 135.2 | 152.1 |
| 168 | 16.8 | 33.6 | 50.4 | 67.2 | 84.0 | 100.8 | 117.6 | 134.4 | 151.2 |
| 167 | 16.7 | 33.4 | 50.1 | 66.8 | 83.5 | 100.2 | 116.9 | 133.6 | 150.3 |
| 166 | 16.6 | 33.2 | 49.8 | 66.4 | 83.0 | 99.6 | 116.2 | 132.8 | 149.4 |
| 165 | 16.5 | 33.0 | 49.5 | 66.0 | 82.5 | 99.0 | 115.5 | 132.0 | 148.5 |
| 164 | 16.4 | 32.8 | 49.2 | 65.6 | 82.0 | 98.4 | 114.8 | 131.2 | 147.0 |
| 163 | 16.3 | 32.6 | 48.9 | 65.2 | 81.5 | 97.8 | 114.1 | 130.4 | 146.7 |
| 162 | 16.2 | 32.4 | 48.5 | 64.8 | 81.0 | 97.2 | 113.4 | 129.6 | 145.8 |
| 161 | 16.1 | 32.2 | 48.3 | 64.4 | 80.5 | 96.6 | 112.7 | 128.8 | 144.8 |

## No. 270 L. 431.$]$

[No. 299 L. 476.

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \% 0$ | 431364 | 1525 | 1685 | 1846 | 2007 | 2167 | 2328 | 2488 | 2649 | 2809 | 161 |
| 1 | 2969 | 3130 | 3290 | 3450 | 3610 | 370 | 3930 | 4090 | 4249 | 4409 | 160 |
| 2 | 4569 | 4729 | 4888 | 5048 | 5207 | 5367 | 5526 | 5685 | 5844 | 6004 | 159 |
| 3 | 6163 | 6322 | 6481 | 6640 | 6799 | 6957 | 7116 | 7275 | 7433 | 7592 | 159 |
| 4 | 7751 | \%909 | 8067 | 8226 | 8384 | 8542 | $8 \% 01$ | 8859 | 9017 | 9175 | 158 |
| 5 | 9333 | 9491 | 9648 | 9806 | 9964 |  |  | 437 | 0594 | 252 | 158 |
| 8 | 440909 | 1066 | 1224 | 1381 | 1538 | 1695 | 1852 | 2009 | 2166 | 2323 | 157 |
|  | 2180 | 2637 | 2393 | 2950 | 3106 | 3263 | 3419 | 3516 | 3732 | 3889 | 157 |
|  | 4045 | 4201 | $435 \%$ | 4513 | 4669 | 4825 | 4981 | 5137 | 5293 | 5449 | 156 |
|  | 5604 | 5760 | 5915 | 6071 | 6226 | 6382 | 6537 | 6692 | 6818 | 7003 | 155 |
| 2801 | 715 | 7313 | 7468 | 7623 | 7778 | r933 | 8088 | 8242 | 8397 | 8552 | 155 |
|  | 8700 | 8861 | 9015 | 9170 | 9324 | 948 | 9633 | 9787 | 9941 |  |  |
| $\stackrel{2}{3}$ | 45024 | 0403 |  | $0 \% 11$ | 0865 | 1018 | 1172 | 1326 | 1479 | 1633 | 154 |
|  | 1786 | 1910 | 2093 | 2247 | 2400 | 2553 | 2706 | 2859 | 3012 | 3165 | 153 |
| 4 | 3318 | 3471 | 36.4 | 3777 | 3930 | 4082 | 4235 | 4387 | 4540 | 4692 | 153 |
|  | 4845 | 4997 | 5150 | 5302 | 5454 | 5606 | 5758 | 5910 | 6062 | 5214 | 152 |
| 677 | 6366 | 6518 | 6670 | 6821 | 6973 | 7125 | 7276 | 7428 | 7579 | 7431 | 152 |
|  | 7882 | 8033 | 8184 | 8336 | 848? | 8638 | 8789 | 8940 | 9091 | 9242 | 151 |
| 8 | 9392 | 9543 | 9694 |  | 99 | 146 | 0296 | 7 | 0597 | $0 \% 48$ | 151 |
| 9 | 460898 | 1048 | 198 | 1348 | 499 | 1649 | 1799 | 19 | 20 | 2248 | 150 |
| 290 | 2398 | 2548 | 2697 | 2847 | 2997 | 3146 | 3296 | 3445 | 3594 | 3744 | 150 |
| 1 | 3893 | 4042 | 4191 | 4340 | 4490 | 4639 | $4 \% 8$ | 4936 | 5085 | 5234 | 149 |
|  | 5383 | 5532 | 5680 | 5829 | 5977 | 6126 | 6274 | 6423 | 6571 | 6719 | 149 |
| 3 | 6868 | 7016 | 7164 | 7312 | 7460 | 7608 | 7756 | 7904 | 8052 | 8200 | 148 |
|  | 8347 | 8495 | 8643 | $8{ }^{6} 90$ | 8938 | 9085 | 9233 | 9380 | 9527 | 9675 | 148 |
| 4 | 9822 | 9969 |  |  | 0410 |  | 0704 | 0851 | 0998 | 1145 | 147 |
|  | 471292 | 1438 | 1585 | 1732 | 18\%8 | 2025 | 2171 | 2318 | 2464 | 2610 | 146 |
| 6 | 2756 | 2903 | 3049 | 3195 | 3341 | 3487 | 3633 | 374 | 39\%5 | 40 $\sim_{1}$ | 146 |
| 9 | 4216 | 4362 | 4508 | 4653 | 4799 | 4944 | 5090 | 5235 | 5381 | 5526 | 146 |
|  | 5671 | 5816 | 5962 | 6107 | 6252 | 6397 | 6542 | 6687 | 6832 | 6976 | 145 |

Proportional Parts.

| Diff. | 1 | ~ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 161 | 16.1 | 32.2 | 48.3 | 64.4 | 80.5 | 96.6 | 112.7 | 128.8 | 144.9 |
| 160 | 16.0 | 32.0 | 48.0 | 64.0 | 80.0 | 96.0 | 112.0 | 128.0 | 144.0 |
| 159 | 15.9 | 31.8 | 47.7 | 63.6 | 79.5 | 95.4 | 111.3 | 127.2 | 143.1 |
| 158 | 15.8 | 31.6 | $4 \pi .4$ | 63.2 | ${ }^{7} 9.0$ | 94.8 | 110.6 | 126.4 | 142.2 |
| 157 | 15.7 | 31.4 | 47.1 | 62.8 | 78.5 | 94.2 | 109.9 | 125.6 | 141.3 |
| 156 | 15.6 | 31.2 | 46.8 | 62.4 | 78.0 | 93.6 | 109.2 | 124.8 | 140.4 |
| 155 | 15.5 | 31.0 | 46.5 | 62.0 | 77.5 | 93.0 | 108.5 | 124.0 | 139.5 |
| 154 | 15.4 | 30.8 | 46.2 | 61.6 | 77.0 | 92.4 | 107.8 | 123.2 | 138.6 |
| 153 | 15.3 | 30.6 | 45.9 45 | 61.2 60.8 | 76.5 76.0 | 91.8 91.2 | 107.1 106.4 | 12.4 | 137.7 136.8 |
| ${ }_{151}^{152}$ | 15.2 15.1 | 30.4 30.2 | 45.6 45.3 | 60.8 60.4 | 76.0 75.5 | 91.2 90.6 | 105.7 | 1208 | 135.9 |
| 150 | 15.0 | 30.0 | 45.0 | 60.0 | 75.0 | 90.0 | 105.0 | 120.0 | 135.0 |
| 149 | 14.9 | 29.8 | 44.7 | 59.6 | 74.5 | 89.4 | 104.3 | 119.2 | 134.1 |
| 148 | 14.8 | 29.6 | 44.4 | 59.2 | 74.0 | 88.8 | 103.6 | 118.4 | 133.2 |
| 147 | 14.7 | 29.4 | 44.1 | 58.8 | 73.5 | 88.2 | 102.9 | 117.6 | 132.3 |
| 146 | 146 | 29.2 | 43.8 | 58.4 | 73.0 | 87.6 | 102.2 | 116.8 | 131.4 |
| 145 | 14.5 | 29.0 | 43.5 | 58.0 | 72.5 | 87.0 | 101.5 | 116.0 | 130.5 |
| 144 | 14.4 | 28.8 | 43.2 | 57.6 | 72.0 | 86.4 | 100.8 | 115.2 | 129.6 |
| 143 | 14.3 | 28.6 | 42.9 | 57.2 | 71.5 |  |  |  |  |
| 142 | 14.2 | 28.4 | 42.6 | 56.8 | 71.0 | 85.2 84.6 8.6 | 98.4 | 113.6 112.8 | 127.8 126.9 |
| 141 140 | 14.1 14.0 | 28.2 28.0 | 42.3 42.0 | 56.4 56.0 | 70.5 70.0 | 84.6 34.0 | 98.1 98.0 | 112.8 112.0 | 126.9 126.0 |


| N. | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 477121 | \%266 | 7411 | 7555 | \%r00 | 7844 | 7989 | 8133 | 82\%8 | 22 |  |
|  | 8566 | $8 \% 11$ | 8855 | 8999 | 9143 | 9287 | 9431 | 9575 | 971 | 9863 | 144 |
| $\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 8 \\ & 9 \end{aligned}$ | 480007 | 0151 | 0294 | 0438 | 0582 | 0725 | 0869 | 1012 | 1156 | 1299 | 144 |
|  | 1413$28 \% 4$ | 1586 | 1729 | $18 \% 2$ | 2016 | 2159 | 2302 | 2445 | 2588 | 2731 | 143 |
|  |  | 3016 | 3159 | 3302 | 3445 | 3587 | 3730 | 38\%2 | 4015 | 4157 | 143 |
|  | 4300 | 4442 | ${ }^{4585}$ | 4727 | 4869 | 5011 | 5153 | 5295 | 5437 | $55 \% 9$ | 142 |
|  | $\begin{aligned} & 5.21 \\ & r_{1} 138 \end{aligned}$ | T280 | ${ }_{7} 6005$ | ${ }^{6145}$ | 6889 $r$ 7 | 6430 7845 | ${ }^{6592}$ | 6714 | 6855 | 6997 | 142 |
|  | $\begin{aligned} & 8551 \\ & 9958 \end{aligned}$ | 8692 | 8833 | $89 \% 4$ | 9114 | 9255 | ${ }_{9396}$ | ${ }_{9} 953$ | 8269 | 8410 9818 | 141 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 39 | 0380 | 0520 | 0661 | 0801 | 0941 | 1081 | 1222 | 140 |
| 310 | 491362 | 1502 | 1642 | 1782 | 1922 | 2062 | 2201 | 2341 | 2481 | 2621 | 140 |
|  | 2760 4155 | 2900 4994 | 3040 | 3179 | 3319 | 3458 | 3597 | 3737 | 3876 | 4015 | 139 |
| 3 | $\begin{aligned} & 4155 \\ & 5514 \end{aligned}$ | 42983 | 4833 | 4572 | 4711 6099 | 4850 | 4989 | 5128 | 5267 | 5406 | 139 |
| $\begin{aligned} & 4 \\ & 5 \end{aligned}$ | 6930 | \%068 | T200 | ${ }_{7} \mathrm{r} 314$ | ${ }^{7} 483$ | 7621 | ${ }^{6366}$ | ${ }_{6}^{6515}$ | ${ }^{6653}$ | 6.91 | 139 |
|  |  | 8148 | 8586 | 8724 | 8862 | 8099 | 9137 | 9275 | 8035 9412 | 8173 9550 | 138 |
|  | 9687 | 9824 | 9962 |  |  |  |  |  |  |  |  |
|  | 501059 |  |  | 0099 | 0236 | $03 \pi 4$ | 0511 | 0648 | $0 ; 85$ | 0922 | 157 |
| 8 | 2427 | 2564 | $2{ }^{100}$ | ${ }_{2837}^{14}$ | 2973 | 1744 3109 | ${ }_{3} 1880$ | ${ }_{2017}^{208}$ | 2154 | 2291 | 187 |
| 9 | 3791 | $392 \%$ | 4063 | 4199 | 4335 | $44 \% 1$ | $460 \%$ | 4743 | 48.8 | ${ }^{2} 5014$ | 186 |
| 320 | 5150 | 5286 | 5421 | $555 \%$ | 5693 | 5828 | 5964 | 6099 | 6234 | 63\%0 | 36 |
| 1 | 6505 7856 | 6640 | $67 \% 6$ | 6911 | \%046 | \%181 | ${ }_{7}^{5} 316$ | 7451 | ${ }^{6} 586$ | rrat | 135 |
|  | 7856 9203 | 7991 9334 | ${ }_{912126}$ | 8260 | 8395 | 8530 | 8664 | $8{ }^{6} 99$ | 8934 | 9068 | 135 |
| 3 | 9203 | 9336 | $94 \pi$ | 9606 | 40 | 98.4 |  |  |  |  |  |
| 4567789 | 510545 | 0679 | 0813 | 0947 | 1081 | 1215 | 0009 1349 | 1482 | 1616 | 0411 1750 | 134 |
|  | ${ }_{3}^{18818}$ | 2017 | 2151 | 2284 | 2418 | 2551 | 2684 | 2818 | 2951 | 3084 | 33 |
|  |  | 3351 | 3481 | 3617 | $3 \pi 50$ | 3883 | 4016 | 4149 | 4282 | 4415 | 133 |
|  | 4548 5874 | 4681 | 4813 | 4946 | $50 \% 9$ | 5211 | 5344 | 546 | 5609 | 5،41 | 133 |
|  | $\begin{aligned} & 58,4 \\ & 7196 \end{aligned}$ | 6006 $r 328$ | 6139 | 6271 | ${ }^{6103}$ | 6535 | ${ }^{6 C 68}$ | 6800 | 6932 | r064 | 132 |
|  |  | (328 | 7460 | '592 | riat | 78 | '98 | 8119 | 8251 | 8582 | 132 |
| $\begin{array}{r} 330 \\ 1 \end{array}$ | $\begin{aligned} & 8514 \\ & 9828 \end{aligned}$ | $8646$ $9959$ | $8{ }^{8} / 76$ | 8909 | 9040 | 91\%1 | 9303 | 9434 | 9566 | 969\% | 131 |
|  |  |  | 0090 | 0221 | 0353 | 0484 | 0615 | 0745 | 08.6 | 1007 | 131 |
| $\stackrel{3}{3}$ | 521138 | 1289 | 1400 | 1530 | 1661 | 1792 | 192 | 2053 | 2183 | 2314 | 131 |
|  | $3 \sim 46$ | $38 \% 6$ | 4006 | 2835 | 2966 | 3096 | 3226 | 3356 | 3486 | 3616 | 130 |
| 5 | 5045 | 5174 | 5304 | 5434 | 5563 | 4396 | 4526 | 4656 | 4785 | 4915 | 130 |
| 6 | 6339 | 6469 | 6598 | 6727 | 6856 | 6985 | 7114 | \%243 | ${ }^{7} 372$ | 6210 | 129 |
| 7 | 7630 | r759 | \%888 | 8016 | 8145 | $82{ }^{2} 4$ | 8402 | 8531 | 8660 | 8788 | 129 |
| 8 | 8917 | 9045 | 9174 | 9302 | 9430 | 9559 | 9687 | 9815 | 9943 |  | $1 \sim 4$ |
| 9 | 530:00 | 0328 | 0456 | 0584 | 0712 | 0840 | 0968 | 1096 | 122 |  | 128 |

Proportional Parts.

| Diff. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{5}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 139 | 13.9 | 27.8 | 41.7 | 55.6 | 69.5 | 83.4 | 97.3 | 111.2 | 125.1 |  |
| 138 | 13.8 | $2 \pi .6$ | 41.4 | 55.2 | 69.0 | 82.8 | 96.6 | 110.4 | 124.2 |  |
| 137 | 13.7 | $2 \pi .4$ | 41.1 | 54.8 | 68.5 | 82.2 | 95.9 | 109.6 | 123.3 |  |
| 136 | 13.6 | 27.2 | 40.8 | 54.4 | 68.0 | 81.6 | 95.2 | 108.8 | 122.4 |  |
| 135 | 13.5 | 27.0 | 40.5 | 54.0 | 67.5 | 81.0 | 94.5 | 108.0 | 121.5 |  |
| 134 | 13.4 | 26.8 | 40.2 | 53.6 | 67.0 | 80.4 | 93.8 | 107.2 | 120.6 |  |
| 133 | 13.3 | 26.6 | 39.9 | 53.2 | 66.5 | 79.8 | 93.1 | 106.4 | 119.7 |  |
| 132 | 13.2 | 26.4 | 39.6 | 53.8 | 66.0 | 79.2 | 92.4 | 105.6 | 118.8 |  |
| 131 | 13.1 | 26.2 | 89.3 | 52.4 | 65.5 | 78.6 | 92.7 | 104.8 | 117.9 |  |
| 130 | 13.0 | 26.0 | 39.0 | 52.0 | 65.0 | 78.0 | 91.7 | 91.0 | 104.0 | 117.0 |
| 129 | 12.9 | 25.8 | 38.7 | 51.6 | 64.5 | 17.4 | 90.3 | 103.2 | 116.1 |  |
| 128 | 12.8 | 25.6 | 38.4 | 51.2 | 64.0 | 76.8 | 89.6 | 102.4 | 115.2 |  |
| 127 | 127 | 25.4 | 38.1 | 50.8 | 63.5 | 76.2 | 88.9 | 101.6 | 114.3 |  |


| No. 34) L. 531.1 |  |  |  |  |  |  |  |  | [No. 379 L. 5.9. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 340123456 | $\begin{array}{r} 531479 \\ 2754 \\ 4026 \\ 5294 \\ 6588 \\ 7819 \\ 9076 \end{array}$ | $\begin{aligned} & 1607 \\ & 2882 \\ & 4153 \\ & 5121 \\ & 6685 \\ & 7945 \\ & 9202 \end{aligned}$ | $\begin{aligned} & 1734 \\ & 3009 \\ & 4280 \\ & 5547 \\ & 6811 \\ & 80 \pi 1 \\ & 9327 \end{aligned}$ | $\begin{aligned} & 1862 \\ & 3136 \\ & 4407 \\ & 5674 \\ & 6937 \\ & 8197 \\ & 9452 \end{aligned}$ | $\begin{aligned} & 1990 \\ & 3264 \\ & 4534 \\ & 58300 \\ & 7063 \\ & 8322 \\ & 9578 \end{aligned}$ | 2117 <br> 3391 <br> 4661 <br> 5927 <br> 7189 <br> 8448 <br> 9703 | $\begin{aligned} & 2245 \\ & 3518 \\ & 4 \pi 87 \\ & 6053 \\ & 7315 \\ & 8574 \\ & 9829 \end{aligned}$ | 2372 <br> 3645 <br> 4914 <br> 6180 <br> 7441 <br> 8699 <br> 9954 | 2500 | 2627 | 128 |
|  |  |  |  |  |  |  |  |  | $37 \% 2$ | 3899 | 127 |
|  |  |  |  |  |  |  |  |  | 5041 | 5167 | 127 |
|  |  |  |  |  |  |  |  |  | 6306 | 6432 | 126 |
|  |  |  |  |  |  |  |  |  | 7567 | 7693 | 126 |
|  |  |  |  |  |  |  |  |  | 8825 | 8951 | 126 |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & 0079 \\ & 1330 \end{aligned}$ | $\begin{aligned} & 0204 \\ & 1454 \end{aligned}$ | 125 |
| 789 | 540329 | 0455 | 0580 | 0005 | 0830 | 0955 | 1080 | 1205 |  |  |  |
|  |  |  | $\begin{aligned} & 1829 \\ & 3074 \end{aligned}$ |  |  |  | $\begin{aligned} & 2327 \\ & 3 \tilde{2} 1 \end{aligned}$ | $\begin{aligned} & 2452 \\ & 3696 \end{aligned}$ | $\begin{aligned} & 2506 \\ & 3820 \end{aligned}$ |  | 125 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{r} 350 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$ | $\begin{aligned} & 4068 \\ & 5307 \\ & 6543 \\ & 7775 \\ & 9003 \end{aligned}$ | $\begin{aligned} & 4192 \\ & 5431 \\ & 6666 \\ & 7893 \\ & 9126 \end{aligned}$ | $\begin{aligned} & 4316 \\ & 5.505 \\ & 6789 \\ & 8021 \\ & 9219 \end{aligned}$ | $\begin{aligned} & 4440 \\ & 5678 \\ & 6913 \\ & 8144 \\ & 9371 \end{aligned}$ | $\begin{aligned} & 4564 \\ & 5802 \\ & 7036 \\ & 8: 67 \\ & 9194 \end{aligned}$ | $\begin{aligned} & 4688 \\ & 5425 \\ & 7159 \\ & 8389 \\ & 9616 \end{aligned}$ | $\begin{aligned} & 4812 \\ & 6049 \\ & 7282 \\ & 8512 \\ & 9739 \end{aligned}$ | $\begin{aligned} & 4936 \\ & 6172 \\ & 7405 \\ & 8635 \\ & 9861 \end{aligned}$ | $\begin{aligned} & 5060 \\ & 6: 296 \\ & 7529 \\ & 8758 \\ & 9984 \end{aligned}$ | $\begin{aligned} & 5183 \\ & 6419 \\ & 7652 \\ & 8881 \end{aligned}$ | 124124123123 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 550228 | 0351 | 0473 | 0595 | $0 \% 17$ | 0840 | 0962 | 1084 | 1206 | 0106 1328 | 123 |
|  | 1450 <br> 2688 <br> 808 | 15\%2 | 1694 | 1816 | 1938 | 2060 | 2181 | 2303 | 2425 | ${ }_{2} 1347$ | 122 |
|  |  |  | 2911 | 3033 | 3155 | 32764489 | $\begin{aligned} & 3398 \\ & 4610 \end{aligned}$ | 35194731 | $\begin{aligned} & 3640 \\ & 4852 \end{aligned}$ | 3762 | 121 |
|  | $\begin{aligned} & 3883 \\ & 5091 \end{aligned}$ | $\begin{aligned} & 4004 \\ & 5215 \end{aligned}$ | 4126 | 4247 |  |  |  |  |  |  |  |
| 9 |  |  |  | 5157 | 55\%8 | 5699 | 5820 | 5940 | 6061 | 6182 | 121 |
| $\begin{array}{r} 360 \\ 1 \\ 2 \\ 3 \end{array}$ | $\begin{aligned} & 6303 \\ & 7507 \\ & 8709 \\ & 9907 \end{aligned}$ | $\begin{aligned} & 6423 \\ & 7627 \\ & 8829 \end{aligned}$ | $\begin{aligned} & 6544 \\ & 7 \cdot 48 \\ & 8948 \end{aligned}$ | $\begin{aligned} & 6664 \\ & 7868 \\ & 9068 \end{aligned}$ | $\begin{aligned} & 6785 \\ & 7988 \\ & 9188 \end{aligned}$ | $\begin{aligned} & 0905 \\ & 8108 \\ & 9308 \end{aligned}$ | $\begin{aligned} & 7026 \\ & 8228 \\ & 9428 \end{aligned}$ | $\begin{aligned} & 7146 \\ & 8349 \\ & 9548 \end{aligned}$ | $\begin{aligned} & 7267 \\ & 8169 \\ & 9667 \end{aligned}$ | $\begin{aligned} & 7387 \\ & 8589 \\ & 9787 \end{aligned}$ | 120120120 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0026 | 0146 | 0265 | 0385 | 0504 | 0624 | 0743 | 0863 | 0982 | 119 |
| 4 | 561101 | 1221 | 1340 | $\begin{aligned} & 1459 \\ & 2650 \end{aligned}$ | 15782769 | 16982887 | $\begin{aligned} & 1817 \\ & 3006 \end{aligned}$ | $\begin{aligned} & 1936 \\ & 3125 \end{aligned}$ | 2055 | 21743362 | 119119 |
| 5 | 2293 |  |  |  |  |  |  |  |  |  |  |
|  | 3181 | $\begin{aligned} & 3600 \\ & 4784 \end{aligned}$ | 37184903 | 3837 | 3955 | 40745257 | 4192$53 \% 6$ | 43115494 | 4429 | 45485730 | 119 |
| 8 | 4666 |  |  | 6232 | 5139 <br> 6320 <br> 1497 |  |  |  |  |  |  |
| 8 | 5818 | $\begin{aligned} & 5966 \\ & 7144 \end{aligned}$ | $\begin{aligned} & 6031 \\ & 7262 \end{aligned}$ |  |  | 5457 | 6555 | ${ }^{6673}$ | $\begin{aligned} & 6791 \\ & 7967 \end{aligned}$ | $\begin{aligned} & 6909 \\ & 8084 \end{aligned}$ | 118 |
| 9 | 26 |  |  | r379 | 7497 | 7614 | 7732 |  |  |  |  |
| $\begin{array}{r} 370 \\ 1 \end{array}$ | $\begin{aligned} & 8202 \\ & 9374 \end{aligned}$ | $\begin{aligned} & 8319 \\ & 9491 \end{aligned}$ | $\begin{aligned} & 8136 \\ & 9608 \end{aligned}$ | $\begin{aligned} & 8554 \\ & 5725 \end{aligned}$ | $\begin{aligned} & 8671 \\ & 9812 \end{aligned}$ | $\begin{aligned} & 8788 \\ & 9959 \end{aligned}$ | 8905 | 9023 | 9140 | 9257 | 117 |
|  |  |  |  |  |  |  |  | $\begin{aligned} & 0193 \\ & 1359 \end{aligned}$ | 0309 | 0426 |  |
| 2 | 570543 | 0660 | $07 \% 6$ | 0893 | 1010 | $\begin{aligned} & 1126 \\ & 2291 \end{aligned}$ | 1243 |  |  |  | 117 |
| 3 | 1709 | 1825 | 19423104 | $\begin{aligned} & 2058 \\ & 3220 \end{aligned}$ | 21743336 |  | 2407 | 3681 | 14.6 .2639 | 1592 | 116 |
| 4 | 2872 |  |  |  |  | 3152 | 35684726 |  | 3800 | 3915 |  |
|  | 4031 | $\begin{aligned} & 4147 \\ & 5303 \end{aligned}$ | $\begin{aligned} & 4263 \\ & 5419 \end{aligned}$ | $43 \% 9$5534 | 4494 | 4610 |  | 4841 | 4957 | 50\%2 | 116 |
|  | 5188 |  |  |  | 5650 | 5765 | 5880 | 5996 | 6111 | 6226 | 115 |
| 7 | 6341 | 6457 | 6572 | 6687 | 6302 | 6917 | 7032 | 7147 | 726 | 7377 | 115 |
| 8 | 7492 | 7607 | 7722 | 7836 | 7951 | 8066 | 8181 | 8:95 | $8 \cdot 110$ | 8525 | 115 |
| 9 | 86 | 875 | 8868 | 898 | 9097 | 9212 | 93:6 | 9441 | 9555 | 9669 | 114 |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | 12.8 | 25.6 | 38.4 | 51.2 | 64.0 | 76.8 | 89.6 | 102.4 | 115.2 |
| 127 | 12.7 | 25.4 | 38.1 | 50.8 | 63.5 | 76.2 | 89.6 | 101.6 | 114.3 |
| 126 | 12.6 | 25.2 | 37.8 | 50.4 | 63.0 | 75.6 | 88.2 | 100.8 | 113.4 |
| 125 | 12.5 | 25.0 | 37.5 | 50.0 | 62.5 | 75.0 | 87.5 | 100.0 | 112.5 |
| 124 | 12.4 | 24.8 | 37.2 | 49.6 | 62.0 | 74.4 | 86.8 | 99.2 | 111.6 |
| 123 | 12.3 | 24.6 | 36.9 | 49.2 | 61.5 | 73.8 | 86.1 | 98.4 | 110.7 |
| 122 | 12.2 | 24.4 | 36.6 | 48.8 | 61.0 | 73.2 | 85.4 | 97.6 | 109.8 |
| 121 | 12.1 | 24.2 | 36.3 | 48.4 | 60.5 | 72.6 | 84.7 | 96.8 | 108.9 |
| 120 | 12.0 | 24.0 | 36.0 | 48.0 | 60.0 | 72.0 | 81.0 | 96.0 | 108.0 |
| 119 | 11.9 | .8 .8 | 35.7 | 47.6 | 59.5 | 71.4 | 83.3 | 95.2 | 107.1 |


| No. 380. I.. 5\%9.] |  |  |  |  |  |  |  |  | [No. 414 L. 617. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 380 | 579784 | 9898 | 0012 | 0126 | 0241 | 0355 | 0469 | 0583 | 0697 | 0811 | 4 |
| $\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$ | 580925 | 1039 | 1153 | 126\% | 1381 | 1495 | 1608 | 1202 | 1836 | 1950 |  |
|  | $\begin{aligned} & 2063 \\ & 3199 \end{aligned}$ | 2177 | 2291 | 2404 | 2518 | 2631 | 2745 | 2858 | 2972 | 3085 |  |
|  |  | 3312 | 3426 | 3539 | 3652 | 3765 | 3879 | 3992 | 4105 | 4218 |  |
|  | 4331 | 4144 | 4.557 | 4870 | $4 \% 83$ | 4595 | 5009 | 5122 | 5835 | 5348 | 118 |
|  | 5461 | $55 \% 4$ | 5686 | 5799 | 5912 | 6024 | 6137 | 6250 | 6362 | $64 \%$ |  |
|  | 65877711 | 6700 | 6812 | 6925 | 7037 | 7149 | 7262 | 7374 | 7486 | 7599 |  |
|  |  | 7823 | ${ }^{7} 9335$ | 8047 | 8160 9 | $82 \%$ | 8384 | 8496 | 8608 | 8720 | 112 |
|  | $\begin{aligned} & 88322 \\ & 9950 \end{aligned}$ | 8944 | 9056 | $916 \%$ | 92\% ${ }^{\text {a }}$ | 9391 | 9503 | 9615 | 9726 | 9838 |  |
|  |  | 0061 | 0173 | 0284 | 0396 | 0507 | 0619 | 0730 | 0812 | 0953 |  |
| 390 | 591005 | 1176 | 1287 | 1399 | 1510 | 1621 | 1732 | 1843 | 1955 | 2066 |  |
|  | $\stackrel{2177}{3286}$ | 2388 | 2399 | 2510 | 26\%1 | 2732 | 2843 | 29.5 | 3064 | 3175 | 111 |
| 1 |  | 3397 | 3508 | 3618 | 3729 | 3840 | 3950 | 4061 | 4171 | 4282 |  |
| 3 | $\begin{aligned} & 3286 \\ & 4393 \end{aligned}$ | 4503 | 4614 | 473 | 4834 | 4945 | 5055 | 5165 | 5276 | 5386 |  |
| 45 | 4393 <br> 5196 | 5606 | 5717 | 5827 | 5937 | 6017 | ${ }^{6157}$ | ${ }_{\sim}^{6267}$ | 6377 | 6487 |  |
|  | 69597 | 6707 | 6817 | 6927 | 7037 | 7446 | 7256 | 7366 | 7476 | 7586 | 110 |
| 67 | 7695879189 | 7805 | 7914 | 8024 | 8134 | 8243 | 8353 | 8462 | 8572 | 8681 |  |
|  |  | 8900 | 9009 | 9119 | 9228 | 9337 | 9446 | 9556 | 9665 | 974 |  |
| 8 | 9883 | 9992 | 0101 |  |  | 0428 |  |  |  |  | 109 |
| 9 | 600973 | 1082 | 1191 | 1299 | 1408 | 1517 | 1625 | 1734 | 0755 1843 | $\begin{aligned} & 0864 \\ & 1951 \end{aligned}$ |  |
| 400 | 2060 | 2169 | 2277 | 2386 | 2494 | 2603 | 2711 | 2819 | 2928 | 3036 |  |
| $\stackrel{1}{2}$ | 3144 | 3253 | 3361 | 3469 | 3577 | 3686 | 3794 | 3902 | 4010 | 4118 | 108 |
|  | 4226 | 4334 | 4442 | 4550 | 4658 | 4766 | 4874 | 4982 | 5089 | 5197 |  |
| 3 | 53056381 | 5413 | 5521 | 5628 | 5736 | 5844 | 5951 | 6059 | 6166 | 6274 |  |
| 4456 |  | 6489 | 6596 | 6704 | 6811 | 6919 | 7026 | \%133 | 7241 | 7348 |  |
|  | $\begin{aligned} & 745 \\ & 8526 \\ & 9594 \end{aligned}$ | 7562 | ז669 | 7777 | 7884 | 7991 | 8098 | 8205 | 8312 | 8419 | 107 |
|  |  | 8633 | 8740 | 8847 | 8954 | 9061 | 9167 | 9274 | 9381 | 9488 |  |
| r |  | 9.01 | 9808 | 9914 | 00 | 0128 | 0234 | 0341 | 0447 | 0554 |  |
| 8 | 610660 | 0767 | 0873 | $09 \% 19$ | 1086 | 1192 | 1298 | 1405 | 1511 | 1617 |  |
|  | 1723 | 1829 | 1936 | 2042 | 2148 | 2254 | 2360 | 2466 | 25.2 | 2678 | 106 |
| 410 | 2784 | 2890 | 2996 | 3102 | 3207 | 3313 | 3419 | 3525 | 3630 | 8736 |  |
| 1 | 3812 | 3947 | 4053 | 4159 | 4264 | $43 \% 0$ | 4475 | 4581 | 4686 | 4792 |  |
| 233 | 4897 | 5003 | 5108 | 5213 | 5319 | 5424 | 5599 | 5634 | 5740 | 5845 |  |
|  | 5950 | 6055 | 6160 | 6265 | 6.370 | 6476 | 6581 | 6686 | $6{ }^{6} 90$ | 6895 | 105 |
| 3 <br> 4 | 7000 | 7105 | T2310 | 7315 | 7420 | 7525 | 7629 | T 73 | r889 | 7943 |  |

Proportional Parts.

| Dif1. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 118 | 11.8 | 23.6 | 35.4 | 47.2 | 59.0 | 70.8 | 82.6 | 94.4 | 106.2 |
| 117 | 11.7 | 23.4 | 35.1 | 46.8 | 58.5 | 70.2 | 81.9 | 93.5 | 105.3 |
| 116 | 11.6 | 23.2 | 34.8 | 46.4 | 58.0 | 69.6 | 81.2 | 92.8 | 104.4 |
| 115 | 11.5 | 23.0 | 34.5 | 46.0 | 57.5 | 69.0 | 80.5 | 92.0 | 103.5 |
| 114 | 11.4 | 22.8 | 34.2 | 45.6 | 57.0 | 68.4 | 79.8 | 91.2 | 102.6 |
| 113 | 11.3 | 22.6 | 33.9 | 45.2 | 56.5 | 67.8 | 79.1 | 90.4 | 101.7 |
| 112 | 11.2 | 22.4 | 33.6 | 44.8 | 56.0 | 67.2 | 78.4 | 89.6 | 100.8 |
| 111 | 11.1 | 22.2 | 33.3 | 44.4 | 55.5 | 66.6 | 77.7 | 88.8 | 99.9 |
| 110 | 11.0 | 22.0 | 33.0 | 44.0 | 5.0 | 66.0 | 77.0 | 88.0 | 99.0 |
| 109 | 10.9 | 21.8 | 32.7 | 43.6 | 54.0 | 65.4 | 76.3 | 87.2 | 98.1 |
| 108 | 10.8 | 21.6 | 32.4 | 43.2 | 54.0 | 64.8 | 75.6 | 86.4 | 97.2 |
| 107 | 10.7 | 21.4 | 32.1 | 42.8 | 53.5 | 64.2 | 74.9 | 85.6 | 96.3 |
| 106 | 10.6 | 21.2 | 31.8 | 42.4 | 53.0 | 63.6 | 74.2 | 84.8 | 95.4 |
| 105 | 10.5 | 21.0 | 31.5 | 42.0 | 52.5 | 63.0 | 73.5 | 84.0 | 94.5 |
| 104 | 10.4 | 20.8 | 31.2 | 41.6 | 52.0 | 62.4 | 72.8 | 83.2 | 93.6 |

No. 415 L. 618.1
[No. 459 L. 662

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 415 | 618048 | 8153 | 825\% | 8362 | 8466 | $85 \sim 1$ | 86.6 | 8780 | 8884 | 8989 | 105 |
| 6 | 9093 | 9198 | 9302 | 9406 | 9511 | 9615 | 9719 | 9824 | 9928 |  |  |
| 789 | 620136 | 0240 | 0344 | 0448 | 0552 | 0656 | $0 \cdot 60$ | 0864 | 0968 | 10'2 | 104 |
|  | 1176 | 1280 | 1384 | 1488 | 1592 | 1695 | 1799 | 1903 | $200 \%$ | 2110 |  |
|  | 2214 | 2318 | 2421 | 2525 | 2628 | 2732 | 2835 | 2939 | 3042 | 3146 |  |
| 420 | 3249 | 3353 | 3456 | 3559 | 2663 | $3 r 66$ | 3869 | 3973 | 4076 | $41 \% 9$ |  |
| 1 | 4282 | 4385 | 4488 | 4591 | 4695 | 4798 | 4901 | 5004 | 5107 | 5210 | 103 |
| 2 | 5312 | 5415 | 5518 | 5621 | 5784 | 5827 | 5929 | 6082 | 6135 | 6238 |  |
| 3 | 6340 | 6443 | 6546 | 6648 | 6751 | 6853 | 6956 | '7058 | ric1 | 7'263 |  |
| 4 | r'366 | 7468 | 7571 | 7673 | \%rirs | 78.8 | 7980 | 8082 | 8185 | $828 \%$ |  |
| 5 | 8389 | 8491 | 8593 | 8695 | 8797 | 8900 | 900\% | 9104 | 9206 | 9308 | 102 |
| 6 | 9410 | 9512 | 9613 | 9715 | 9817 | 9919 |  |  |  |  |  |
| 789 | $6304 \pm 8$ | 0520 | 0631 | 0733 | 0835 | 0936 | 1038 | 1139 | 1241 | 1342 |  |
|  | 1444 | 1545 | 1647 | 1748 | 1819 | 1951 | 205: | 2153 | 2855 | 2356 |  |
|  | $245 \%$ | 2559 | 2660 | 2761 | 2862 | 2963 | 3064 | 3165 | 3266 | 3367 |  |
| 430 | 3468 | 3569 | 360 | $3 \% 1$ | $38 \% 2$ | 3973 | $40 \% 4$ | 4175 | 4276 | 4376 | 101 |
| 1 | $44^{777}$ | $45 \% 8$ | $46 \% 9$ | $4 \% 9$ | 4880 | 4981 | 5081 | 5182 | 5:883 | 5383 |  |
| 2 | 5484 | 5584 | 5685 | 5785 | 5886 | 5986 | $608{ }^{1}$ | 6187 | 6287 | 6388 |  |
| 3 | 6488 | 6588 | 6688 | 6789 | 6889 | 6989 | \%089 | 「189 | 「290 | 7390 |  |
| 4 | 7490 | 7590 | 7690 | \%r90 | F890 | 7990 | 8090 | 8190 | 8290 | 8389 | 100 |
| 5 | 8489 | 8589 | 3689 | 8789 | 8888 | 8988 | 9088 | 9188 | 9287 | 9387 |  |
| 0 | 9486 | 9586 | 9686 | 9785 | 9885 | 9984 |  |  |  |  |  |
| 9 | 640481 | 0581 | 0680 | 0rr9 | 08\%9 | $09 \% 8$ | 0084 | 0183 1178 | 0283 12.6 | 0382 1375 |  |
|  | 1474 | 1573 | 16\% ${ }^{\text {\% }}$ | 17 | $18 \% 1$ | $19 \% 0$ | 2069 | 2168 | 2267 | 2366 |  |
|  | 2465 | 2563 | 2662 | 2761 | 2860 | 2959 | 3058 | 3156 | 3255 | 3354 | 99 |
| 440 | 3453 | 3551 | 3650 | 3749 | 3847 | 3946 | 4044 | 4143 | 4242 | 4340 |  |
| 1 | 4439 | 4537 | 4636 | 4734 | 4832 | 4931 | 5029 | 5127 | 5226 | 5324 |  |
| $\stackrel{1}{2}$ | 5422 | 5521 | 5619 | 5717 | 5815 | 5913 | 6011 | 6110 | 6208 | 6306 |  |
| 34 | 6404 | 6502 | 6600 | 6698 | $6 \% 96$ | 6894 | 6992 | r089 | '7187 | 71285 | 98 |
|  | r383 | ¢481 | 7579 | 7676 | ry\% | $88 \%$ | r969 | 8067 | 8165 | 8262 |  |
| 4 | 8360 | 84.58 | 8555 | 8653 | $8 \% 0$ | 8848 | 8945 | 9043 | 9140 | 9237 |  |
| 6 | 9335 | 9432 | 9530 | 9627 | 9704 | $98 \% 1$ | 9919 |  |  |  |  |
| 9 | 650308 | 0405 | 0502 | 0599 | 0696 | 0793 | 0890 | 0987 | 1081 | 1181 |  |
|  | 1278 | 1375 | 14\% | 1569 | 1666 | 1762 | 1859 | 1956 | 2053 | 2150 | 97 |
|  | 2246 | 2343 | 2440 | 2536 | 2633 | $2 \% 30$ | 2826 | 2923 | 3019 | 3116 |  |
| 450 | 3213 | 3309 | 3405 | 3502 | 3598 | 3695 | 3591 | 3888 | 3984 | 4080 |  |
| 1 | 41 \% | $42 \% 3$ | 4369 | 4465 | 4562 | 4658 | 4 4 54 | 4850 | 4946 | 5042 |  |
| 2 | 5138 | 5235 | 5331 | $542{ }^{\circ}$ | 5583 | 5619 | $5{ }^{\prime} 15$ | 5810 | 5306 | 6002 | 96 |
| 3 | 6098 | 6194 | 6290 | 6386 | 6482 | 65ır | $66{ }^{6}$ | 0669 | 6864 | 6960 |  |
| 45 | r056 | 7152 | ${ }^{9} 947$ | 7343 | 7438 | 7534 | 7629 | 7725 | 7820 | 7916 |  |
|  | 8011 | 8107 | 8202 | 8398 | 8393 | 8488 | 8.581 | $86 \% 9$ | $8{ }^{174}$ | 88.0 |  |
| 6 | 8965 | 9060 | 9155 | 9250 | 9346 | $9+41$ | 9536 | 9631 | 9726 | 9821 |  |
| 7 | 991 | 0011 | 0106 | 0201 | 0296 | 0391 | ) 486 | 0581 | $06 r 6$ | 071 | 95 |
| 8 | 660865 | 0960 | 1055 | 1150 | 1245 | 1339 | 1434 | 1599 | 1623 | 1718 |  |
|  | 1813 | 1907 | 2002 | 2096 | 2191 | 2286 | 2380 | 2475 | 2569 | 2663 |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 105 | 10.5 | 21.0 | 31.5 | 42.0 | 52.5 | 63.0 | 73.5 | 84.0 | 94.5 |
| 104 | 10.4 | 20.8 | 31.2 | 41.6 | 52.0 | 62.4 | 72 | 8 | 88.2 |
| 103 | 10.3 | 20.6 | 30.9 | 41.2 | 51.5 | 61.8 | 72 | 1 | 82.4 |
| 102.6 |  |  |  |  |  |  |  |  |  |
| 101 | 10.2 | 20.4 | 30.6 | 40.8 | 51.0 | 61.2 | 71.4 | 81.6 | 91.8 |
| 100 | 10.1 | 20.2 | 30.3 | 40.4 | 50.5 | 60.6 | 70 | 7 | 80.8 |
| 90 | 9.9 | 19.0 | 30.0 | 40.0 | 50.0 | 60.0 | 70 | 0 | 80.0 |
| 00.0 |  |  |  |  |  |  |  |  |  |
| 99.7 | 39.6 | 49.5 | 59.4 | 69.3 | 79.2 | 89.1 |  |  |  |


| No. 460 L. 662.] |  |  |  |  |  |  |  |  | [No. 499 L. 698. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 460 | 662758 | 2852 | 2047 | 3041 | 3135 | 3230 | 3324 | 3418 | 3512 | 3607 |  |
| 1 | 3701 | 3795 | 3589 | 3983 | 4078 | $41 \% 2$ | 4266 | 4360 | 4454 | 4548 |  |
| 2 | 4612 | 4736 | 4830 | 4924 | 5018 | 5112 | 5206 | 5299 | 5393 | 5487 | 94 |
| 3 | 5581 | 5675 | 5169 | 5862 | 5956 | 6050 | 6143 | 6237 | 6331 | 6424 |  |
| 4 | 6518 | 6612 | $6 \% 05$ | 6 \%99 | 6892 | 6986 | 7079 | 7173 | 7266 | 7360 |  |
| 5 | 7453 | 7546 | 7610 | r733 | \%826 | 7920 | 8013 | 8106 | 8199 | 8293 |  |
| 6 | 8386 | 849 | 85\%2 | 8665 | 8759 | 8852 | 8945 | 9038 | 9131 | 9224 |  |
| 7 | 9317 | 9410 | 9503 | 9596 | 9689 | 9782 | $98 \%$ | 9967 |  |  |  |
| 8 | $6{ }^{6} 0246$ | 0339 | 0431 | 0524 | 0617 | 0710 | 0802 | 0895 | $\begin{aligned} & 0060 \\ & 0988 \end{aligned}$ | $\begin{aligned} & 0153 \\ & 1080 \end{aligned}$ | 93 |
| 9 | 1173 | 1265 | 1358 | 1451 | 1543 | 1636 | 1728 | 1821 | 1913 | 2005 |  |
| 470 | 2098 | 2190 | 2283 | 2375 | 2467 | 2560 | 2652 | 2744 | 2836 | 2929 |  |
| 1 | 3021 | 3113 | 3205 | 3297 | 3390 | 3482 | 3574 | 3666 | 3758 | 3850 |  |
| 2 | 3942 | 4034 | 4126 | . 4218 | 4310 | 4402 | 4494 | 4586 | 4677 | $4 \% 69$ | 92 |
| 3 | 4861 | 4953 | 5045 | 5137 | 5228 | 5320 | 5112 | 5503 | 5595 | 5687 |  |
| 4 | 578 | 5870 | 5962 | 6053 | 6145 | 6236 | 6328 | 6419 | 6511 | 6602 |  |
| 5 | 6694 | 6785 | 6876 | 6968 | 7059 | 7151 | 7242 | 7333 | 7424 | 7516 |  |
| 6 | 7607 | 7698 | 7789 | 7881 | 7972 | 8063 | 8154 | 8215 | 8336 | 842 \% |  |
| 8 | 8518 | 8609 | 8700 | 8791 | 8882 | 8973 | 9064 | 9155 | 9246 | 9337 | 91 |
| 8 | 9428 | 9519 | 9610 | 9700 | 9791 | 9882 | 9973 |  |  |  |  |
| 9 | 680336 | 0426 | 0517 | $060 \%$ | 0698 | 0789 | 0879 | $0970$ | $\begin{aligned} & 0154 \\ & 1060 \end{aligned}$ | $\begin{aligned} & 0245 \\ & 1151 \end{aligned}$ |  |
| 480 | 1241 | 1332 | 1423 | 1513 | 1603 | 1693 | 1784 | 1874 | 1964 | 2055 |  |
| 1 | 2145 | 2235 | 2326 | 2416 | 2506 | 2596 | 2686 | 2777 | 2867 | 2957 |  |
| 2 | 3047 | 3137 | 3227 | 3317 | 3107 | 3497 | 3587 | 36\% | 3767 | 3857 | 90 |
| 3 | 3947 | 4037 | 4127 | 4217 | 4307 | 4396 | 4486 | $45 \% 6$ | 4666 | 4756 |  |
| 4 | 4845 | 4935 | 5025 | 5114 | 5204 | 5394 | 5.383 | 5473 | 5563 | 5652 |  |
| 5 | 5742 | 5831 | 5921 | 6010 | 6100 | 6189 | 6279 | 6368 | 6458 | 6547 |  |
| 6 | 6636 | 6726 | 6815 | 6904 | 6994 | \%083 | 7172 | 7261 | 7351 | 7440 |  |
| 7 | 7529 | 7618 | F'707 | 7796 | '888 | 7975 | 8064 | 8153 | 8242 | 8331 | 89 |
| 8 | 8420 | 8509 | 8593 | 8687 | 8776 | 8865 | 8953 | 9042 | 9131 | 9220 | 8 |
| 9 | 9309 | 9398 | 9486 | $95 \%$ | 9664 | 9753 | 9841 | 9930 |  |  |  |
| 490 | 690196 | 0285 | 03\%3 | 0462 | 0550 | 0639 | 0728 | 0816 | 0905 | 0993 |  |
| 1 | 1081 | 1170 | 1258 | 1347 | 1435 | 1524 | 1612 | 1760 | 1789 | $18 \uparrow \%$ |  |
| 2 | 1965 | 2053 | 2142 | 2:30 | 2318 | 2406 | 2494 | 2583 | $26 \pi 1$ | 2759 |  |
| 3 | 2347 | 2935 | 3023 | 3111 | 3199 | $328 \%$ | 3375 | 3463 | 3551 | 3639 | 88 |
| 4 | 3727 | 3815 | 3903 | 3991 | 40.8 | 4166 | 4254 | 4342 | 4430 | 4517 |  |
| 5 | 4605 | 4693 | 4781 | 4868 | 4956 | 5044 | 5131 | 5219 | 5307 | 5394 |  |
| $\stackrel{6}{6}$ | 5482 | 5549 | 5657 | 5144 | 583: | 5919 | 6007 | 6094 | 6182 | 6269 |  |
| 7 | 6356 | 6444 | 65.31 | 6618 | $6{ }^{6} 06$ | 6793 | 6880 | 6968 | 7055 | 7142 |  |
| 8 | 7229 | 7317 | \% 404 | 7491 | 7578 | 7665 | r752 | 7839 | 7926 | 8014 |  |
| 9 | 8100 | 8188 | 82\% | E362 | S449 | 8535 | 862\% | $8 \% 09$ | 8796 | 8883 | 87 |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 98 | 9.8 | 19.6 | 29.4 | 39. ${ }^{\text {® }}$ | 49.0 | 55.8 | 68.6 | 78.4 | 88.2 |
| $9{ }^{7}$ | 9.7 | 19.4 | 29.1 | 38.8 | 48.5 | 58.3 | 68.6 | 78.6 | 87.2 |
| 96 | 9.6 | 19.2 | 28.8 | 38.4 | 48.0 | 57.6 | 6 \%. 2 | 76.8 | 86.4 |
| 95 | 9.5 | 19.0 | 28.5 | 38.0 | 47.5 | $5 \% .0$ | 66.5 | 76.0 | 85.5 |
| 94 | 9.4 | 18.8 | 28.2 | 37.6 | $4 \hat{0} .0$ | 56.4 | 65.8 | 75.2 | 84.6 |
| 93 | 9.3 | 18.6 | 27.9 | $3{ }^{\text {\% }}$. 2 | 46.5 | 55.8 | 65.1 | 74.4 | 83.7 |
| 92 | 9.2 | 18.4 | 27.6 | 36.8 | 46.0 | 55.2 | 64.4 | 73.6 | 82.8 |
| 91 | 9.1 | 18.2 | 27.3 | 36.4 | 45.5 | 54.6 | 63.7 | 72.8 | 81.9 |
| 90 | 9.0 | 18.0 | 27.0 | 36.0 | 45.0 | 54.0 | 63.0 | 72.0 | 81.0 |
| 89 | 8.9 | 17.8 | 26.7 | 35.6 | 44.5 | 53.4 | 62.3 | 71.2 | 80.1 |
| 88 | 8.8 | 17.6 | 26.4 | 35.2 | 44.0 | 52.8 | 61.6 | r0.4 | 79.2 |
| 87 | 8.7 | 17.4 | 26.1 | 34.8 | 43.5 | 52.2 | 60.9 | 69.6 | 78.3 |
| 86 | 8.6 | 17.2 | 25.8 | 34.4 | 43.0 | 51.6 | 60.2 | 68.8 | 77.4 |

No. 500 L. 6ł8.]

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $500$ | 698970 | $\begin{aligned} & 9057 \\ & 9924 \end{aligned}$ | 9144 | 9231 | 9317 | 9404 | 9491 | 9578 | 9664 | 9751 |  |
|  | 38 |  | 0011 |  |  |  |  |  |  |  |  |
| 2 | 700704 | 0790 | 0877 | 0098 | 1050 | 0271 1136 | 1 | 1309 | 0531 1395 | 0617 1482 |  |
| 3 | 1568 | 1654 | 1741 | 1827 | 1913 | 1999 | 2086 | $21 \% 2$ | 2258 | 2344 |  |
| 4 | 2431 | 2517 | 2603 | 2689 | $27 \%$ | 2861 | 2947 | 3033 | 3119 | 3205 |  |
| 5 | 3291 | 3317 | 3463 | 3549 | 3635 | $3 \% 21$ | 3807 | 3893 | 3979 | 4065 | 86 |
| 6 | 4151 | 4233 | 4322 | 4408 | 4494 | $45 \%$ | 4665 | $4 \% 51$ | 4837 | 4922 |  |
| 7 | 5008 | 5094 | $51 \% 9$ | 5265 | 5350 | 5436 | 5523 | $560 \%$ | 5693 | $57 \% 8$ |  |
| 8 | 5864 | 5949 |  | 6120 | 6206 | 6291 | 6376 | 6462 | 6547 | 6632 |  |
| 9 | 6718 | 6803 | $\begin{aligned} & 6035 \\ & 6888 \end{aligned}$ | 6974 | r059 | 7144 | r229 | 7315 | 7400 | 7485 |  |
| 510 | 7570 | r655 | rri40 | 7826 | 7911 | ${ }^{7} 996$ | 8081 | 8166 | 8251 | 8336 | 85 |
| 1 | 8421 | 8506 | 8591 | $\begin{aligned} & 8616 \\ & 9521 \end{aligned}$ | $\begin{aligned} & 8761 \\ & 9609 \end{aligned}$ | $\begin{aligned} & 8846 \\ & 9694 \end{aligned}$ | $\begin{aligned} & 8031 \\ & 9 \% 79 \end{aligned}$ | $\begin{aligned} & 9015 \\ & 9863 \end{aligned}$ | $\begin{aligned} & 9100 \\ & 9948 \end{aligned}$ |  |  |
| 2 | 9270 | 9355 | $\begin{aligned} & 8091 \\ & 9440 \end{aligned}$ |  |  |  |  |  |  |  |  |
| 3456789 | 710117 | 0202 | 0287 | 0371 | 0456 | 0540 | 0625 | $0 \% 10$ | 0794 | 08i9 |  |
|  | 0963 | 1048 | 1132 | 1217 | 1301 | 1385 | 14\%0 | 1554 | 1639 | 1223 |  |
|  | 1807 | 1892 | $19 \%$ | 2060 | 2144 | 2099 | 2313 | 2397 | 2481 | 2566 |  |
|  | 2650 | $2 \% 34$ | 2818 | 2902 | 2986 | 3070 | 3154 | 3238 | 3323 | $340 \%$ | 84 |
|  | 3191 | $35 \%$ | 3659 | 3142 | 3826 | 3910 | 3994 | 4078 | 4162 | 4246 | 84 |
|  | 4330 | 4414 | $\begin{aligned} & 4497 \\ & 5335 \end{aligned}$ | 4581 | 4665 | 4749 | 4833 | 4916 | 5000 | 5084 |  |
|  | 5167 | 5251 |  | 5418 | 5502 | 5586 | 5669 | 5753 | 5836 | 5920 |  |
| 520 | 6003 | 6087 | 6170 | 6254 | 6337 | 6421 | 6504 | 6588 | $66 \% 1$ | 6754 |  |
| 1 | 6838 | 6921 | $\begin{aligned} & r .004 \\ & r 837 \end{aligned}$ | r088 | ${ }^{7} 171$ | 7254 | 7338 | 7421 | 7504 | 7587 |  |
| 2 | 7671 | 7754 |  | \%920 | 8003 | 8086 | 8169 | 8253 | 8336 | 8419 | 3 |
| 3 | 8502 | 8585 | $\begin{aligned} & 5837 \\ & 8668 \end{aligned}$ | 8.51 | 8834 | 8917 | 9000 | 9083 | 9165 | 9248 | 83 |
| 4 | 9331 | 9414 | 9497 | 9580 | 9663 | 9745 | 9828 | 9911 | 9994 | 00\%\% |  |
| 5 | \%20159 | 0242 | 0325 | 0407 | 0490 | 05\% | 0655 | 0738 | 0821 | 0903 |  |
| 6 | 0986 | 1068 | 1151 | 1233 | 1316 | 1398 | 1481 | 1563 | 1646 | 1728 |  |
| 7 | 1811 | 1893 | 1975 | 2058 | 2140 | 2222 | 2305 | 2387 | 2469 | 2552 |  |
| 8 | 2634 | 2716 | 2798 | 2881 | 2963 | 3045 | 3127 | 3209 | 3291 | 3374 |  |
| 9 | 3456 | 3538 | 3620 | 3702 | 3184 | 3866 | 3948 | 4030 | 4112 | 4194 | 82 |
| 530 | 4276 | 4358 | 4440 | 4522 | 4604 | 4685 | 4767 | 4849 | 4931 | 5013 |  |
| 1 | 5095 | 5176 | 5258 | 5340 | 5422 | 5503 | 5585 | 5667 | 5748 | 5830 |  |
| 2 | 5912 | 5993 | 6075 | 6156 | 6238 | 6320 | 6401 | 6483 | 6564 | 6646 |  |
| 3 | $6 \% 27$ | 6809 | 6890 | 69 | r053 | 7134 | \% 216 | 7297 | 7379 | \%'460 |  |
| 4 | 7541 | r623 | $\begin{aligned} & 7704 \\ & 8516 \end{aligned}$ | rr85 | ri866 | 7948 | 8029 | 8110 | 8191 | $82 \% 3$ |  |
| 5 | 8354 | 8435 |  | 8597 | 86\%8 | 8759 | 8811 | 81222 | 9003 | 9084 |  |
| 67 | $\begin{aligned} & 9165 \\ & 9974 \end{aligned}$ | 9246 | $\begin{aligned} & 8516 \\ & 9327 \end{aligned}$ | 9408 | 9489 | $95 \%$ | 9651 | 9732 | 9813 | 9893 | 81 |
|  | 596 | 0055 | 0136 | 0217 | 0398 | 03'8 | 0459 | 0540 | 0621 | 0702 |  |
| 8 | 730782 | 0863 | $\begin{aligned} & 0944 \\ & 1750 \end{aligned}$ | $\begin{aligned} & 1024 \\ & 1830 \end{aligned}$ | 1105 | $\begin{aligned} & 1186 \\ & 1991 \end{aligned}$ | $\begin{aligned} & 1266 \\ & 2072 \end{aligned}$ | $\begin{aligned} & 1347 \\ & 2152 \end{aligned}$ | $\begin{aligned} & 1428 \\ & 2233 \end{aligned}$ | 1508 |  |
| 9 | 1589 | 1669 |  |  | 1911 |  |  |  |  |  |  |
| 540 | 2394 | 2474 | 2555 | 2635 | $2 \% 15$ | $2 \% 96$ | $28 \% 6$ | 2956 | 3037 | 3117 | 80 |
| 1 | 3197 | 3278 | 3358 | 3438 | 3518 | 3598 | 3679 | 3759 | 3839 | 3919 |  |
| 2 | 3999 | 4079 | $\begin{aligned} & 4160 \\ & 4960 \end{aligned}$ | 4240 | 4320 | 4400 | 4480 | 4560 | 4640 | 4720 |  |
| 3 | 4800 | 4880 |  | 5040 | 5120 | 5200 | 5279 | 5359 | 5439 | 5519 |  |
| 4 | 5599 | 5679 | $\begin{aligned} & 4960 \\ & 5759 \end{aligned}$ | 5838 | 5918 | 5998 | $60 \% 8$ | 6157 | 6237 | 6317 |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 87 | 8.7 | 17.4 | 26.1 | 34.8 | 43.5 | 52.2 | 60.9 | 69.6 | 78.3 |
| 86 | 8.6 | 17.2 | 25.8 | 34.4 | 43.0 | 51.6 | 60.2 | 68.8 | 77.4 |
| 85 | 8.5 | 17.0 | 25.5 | 34.0 | 42.5 | 51.0 | 59.5 | 68.0 | 76.5 |
| 84 | 8.4 | 16.8 | 25.2 | 33.6 | 42.0 | 50.4 | 58.8 | 67.2 | 75.6 |



Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 | 8.3 | 16.6 | 24.9 | 33.2 | 41.5 | 49.8 | 58.1 | 66.4 | 74.7 |
| 82 | 8.2 | 16.4 | 24.6 | 32.8 | 41.0 | 49.2 | 57.4 | 65.6 | 73.8 |
| 81 | 8.1 | 16.2 | 24.3 | 32.4 | 40.5 | 48.6 | 56.7 | 64.8 | 72.9 |
| 80 | 8.0 | 16.0 | 24.0 | 32.0 | 40.0 | 48.0 | 56.0 | 64.0 | 72.0 |
| 79 | 7.9 | 15.8 | 23.7 | 31.6 | 39.5 | 47.4 | 55.3 | 63.2 | 71.1 |
| 78 | 78 | 15.6 | 23.4 | 31.2 | 39.0 | 46.8 | 54.6 | 62.4 | 70.2 |
| 77 | 7. | 15.4 | 23.1 | 30.8 | 38.5 | 46.2 | 53.9 | 61.6 | 69.3 |
| 76 | 76 | 15.2 | 22.8 | 30.4 | 38.0 | 45.6 | 53.2 | 60.8 | 68.4 |
| 75 | 7.5 | 15.0 | 22.5 | 30.0 | 37.5 | 45.0 | 52.5 | 60.0 | 67.5 |
| 74 | 7.4 | 14.8 | 22.2 | 29.6 | 34.0 | 44.4 | 51.8 | 59.2 | 66.6 |

No. 585 L. $76 \%$.
[No. 629 L. 799.


Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  |  |  |  |  |  |  |  |  |
| 75 | 7.5 | 15.0 | 22.5 | 30.0 | 37.5 | 45.0 | 52.5 | 60.0 | 67.5 |
| 74 | 7.4 | 14.8 | 22.2 | 29.6 | 37.0 | 44.4 | 51.8 | 59.2 | 60.6 |
| 73 | 7.3 | 14.6 | 21.9 | 29.2 | 36.5 | 43.8 | 51.1 | 58.4 | 65.7 |
| 72 | 7.2 | 14.4 | 21.6 | 28.8 | 36.0 | 43.2 | 50.4 | 57.6 | 64.8 |
| 71 | 7.1 | 14.2 | 21.3 | 28.4 | 35.5 | 42.6 | 49.7 | 56.8 | 63.9 |
| 70 | 7.0 | 14.0 | 21.0 | 28.0 | 35.0 | 42.0 | 49.0 | 56.0 | 63.0 |
| 69 | 6.9 | 13.8 | 20.7 | 27.6 | 34.5 | 41.4 | 48.3 | 55.2 | 62.1 |


| No. 630 L. 799.] |  |  |  |  |  |  |  |  | [No. 674 L. 829. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 630 | 799341 | 9409 | 9478 | 9547 | 9616 | 9685 | 9754 | 9323 | 9892 | 9961 |  |
| 1 | 800029 | 0098 | ${ }^{0167}$ | $\bigcirc 0336$ | 0305 | 0373 | 0442 | 0511 | 0580 | 0643 |  |
| $\stackrel{2}{3}$ | 0717 1404 | ${ }^{0786}$ | ${ }^{0854}$ | 0923 1609 | ${ }^{0992}$ | ${ }_{1747}^{1061}$ | ${ }_{1}^{1129}$ | 1198 | 12666 | ${ }_{1}^{1335}$ |  |
| 4 | 2089 | ${ }_{2158}^{14}$ | 2046 | ${ }_{2295}^{1009}$ | ${ }_{2363}^{164}$ | ${ }_{243}^{1747}$ | ${ }_{2500}^{1815}$ | ${ }_{2}^{1858}$ | ${ }_{2637}^{1952}$ | $\xrightarrow{2021}$ |  |
| 5 | 274 | 2842 | 2910 | 2979 | 3017 | 3116 | 3184 | 3252 | 3321 | 3389 |  |
| ${ }_{6}^{6}$ | 3457 | 3595 | 3594 | 3662 | 3730 | 3798 | 3867 | 3935 | 4003 | 4071 |  |
| ${ }_{8}^{7}$ | ${ }_{4821}^{4139}$ | 4208 | ${ }^{42 \% 6}$ | 4344 | 4412 | ${ }_{51480}$ | 4548 | ${ }^{4616}$ | 4685 | 4753 |  |
| ${ }_{9}^{8}$ | 4821 5501 | 4889 5569 | ${ }^{4957}$ | 5025 | 5\%73 | ${ }_{5841}^{5161}$ | ${ }_{5908}^{5298}$ | 5297 5976 | $5365$ | 5433 6112 | 68 |
| 640 | 806180 | 6248 | 6316 | 6384 | 6451 | 6519 | 6587 | 6655 |  |  |  |
|  | ${ }^{6858}$ | 6926 | 6994 | r061 | 7129 | 7197 | 7264 | 7332 | 7400 | ${ }_{7467}$ |  |
| 2 3 3 | 7535 | ${ }^{7603}$ | 7670 | 738 | r806 | 7873 | 7941 | 8008 | 8076 | 8143 |  |
| 4 | 8811 8886 | 8 | ${ }_{9021}^{8346}$ | 8414 9088 | ${ }_{9151}^{8181}$ | 8549 9223 | 8616 9290 | 8684 <br> 9358 <br> 8 | ${ }^{8751}$ | 8818 |  |
| 5 | 9560 | $962 \%$ | 9694 | 9762 | ${ }_{9829}$ | 9896 | ${ }_{9964}$ |  |  | 9492 |  |
| 6 | 810233 | 0300 | 0367 | -0434 | 0501 |  |  | 0031 | 0098 | 65 |  |
| 7 | 0904 | 0971 | 1039 | 1106 | 11T3 | 1240 | ${ }_{1307}$ | $13{ }^{1} 4$ | 1441 | ${ }^{0837} 1508$ | 68 |
| 8 | 1575 | 1642 | 1709 | 1776 | 1813 | 1910 | 1977 | 2044 | 2111 | ${ }_{21 r 8}$ |  |
| 9 | 2245 | 2312 | 2379 | 2445 | 2512 | 2579 | 2646 | $2{ }^{1} 13$ | 2780 | 2847 |  |
| 650 | 2913 | 2980 | 3047 | 3114 | 3181 | 3247 | 3314 | 3381 | 3448 | 3514 |  |
| $\stackrel{1}{2}$ | 3581 4248 | ${ }_{4314}^{3648}$ | 3714 4381 | ${ }^{3781} 4$ | 3818 | 3914 | 3981 | 4018 | 4114 | 4181 |  |
| ${ }_{3}^{2}$ | ${ }_{4}^{4248}$ | ${ }_{4}^{4314} 4$ | ${ }_{5046}^{4381}$ | ${ }_{5113}^{4447}$ | 4514 5179 | 4581 5246 | 4647 5312 | - 4714 | 4780 5445 | 4847 5511 |  |
| 4 | 5578 | 5644 | $5 \% 11$ | 5 T77 | 5813 | 5910 | 59.6 | 6042 | 6109 | 6175 |  |
| ${ }_{6}$ | 6241 | 6308 | 6374 | 6410 | 6506 | 6573 | 6639 | 6705 | 6771 | 6838 |  |
| 7 | 7565 | ${ }_{7631}$ | ${ }_{7} 698$ | \% 10 | ${ }_{\sim} 1630$ | ${ }_{7}$ | ${ }_{7} 7301$ | ${ }^{7367}$ | ${ }^{7433}$ | 7499 |  |
| 8 | 88286 | 8292 | 8358 | 8124 | 8190 | ${ }_{8556}$ | 8622 | 8028 <br> 8688 | 8094 <br> 8754 | 8160 8820 |  |
| 9 | 8885 | 8951 | 9017 | 9083 | 9149 | 9215 | 9281 | ${ }_{9346}$ | 9412 | ${ }_{9478}$ | 66 |
| 660 | 9544 | 9610 | 9676 | 9741 | 9802 | 9873 | 9939 |  |  |  |  |
|  | 820201 | 0267 | 0333 | 0399 | 0.684 | 0530 | 0595 | ${ }_{0}^{0004}$ | 0070 0727 | 0136 0792 |  |
| $\stackrel{2}{3}$ | 0858 | 0924 | 0989 | 1055 | 1120 | 1186 | 1251 | 1317 | 1382 | 1448 |  |
| 3 <br> 4 <br> 4 | ${ }_{\substack{1514 \\ 2168}}$ | ${ }_{2023}^{159}$ | ${ }_{2}^{1645}$ | 1710 | 1775 | 1841 | 1906 | 1972 | 2037 | 2103 |  |
| 5 | 2822 | ${ }_{2887}^{2233}$ | 2952 | 31818 | ${ }_{2083}^{2430}$ | 2495 3148 | $\xrightarrow{2560}$ | 2626 329 329 | ${ }_{3344}^{2691}$ | 2756 <br> 3109 |  |
| 6 | 3474 | 3539 | 3605 | 3670 | 3735 | 3800 | 3865 | 3930 | 3996 | 4061 |  |
| 7 | ${ }_{4}^{4126} 4$ | ${ }_{4811}^{4191}$ | 4256 | ${ }_{4}^{4321}$ | ${ }^{4386}$ | 4451 | 4516 | 4581 | 4646 | 4711 | 65 |
| 9 | 5426 | 5191 | 5556 | 5621 | ${ }^{5636}$ | $\begin{aligned} & 501 \\ & 5751 \end{aligned}$ | 5166 | 58880 | $\stackrel{5296}{5945}$ | $\begin{aligned} & 5361 \\ & 6010 \end{aligned}$ |  |
| \% | ${ }_{6}^{6075}$ | 5140 | 6204 | 6269 | 6334 | 6399 | 6464 | 6528 | 6593 | 6658 |  |
| ${ }_{2}^{1}$ | 6723 7369 | ${ }_{7434}^{6787}$ | ${ }_{7499}^{6852}$ | ${ }_{7}^{6917}$ | ${ }_{7681}^{6981}$ | ${ }_{7}^{7046}$ | ${ }_{7111}^{7757}$ | ${ }_{7175} 717$ | 7240 | ${ }^{7} 305$ |  |
| 3 | 8015 | 8080 | 8144 | 8209 | 8273 | 8338 | 8402 | 8167 | 8531 | 8595 |  |
| 4 | 8660 | 8724 | 8789 | 8853 | 8918 | 8982 | 9016 | 9111 | 9175 | 9239 |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 6.8 | 13.6 | 20.4 | 27.2 | 34.0 | 40.8 | 47.6 | 544 | 61.2 |
| 67 | 6.7 | 13.4 | 20.1 | 26.8 | 33.5 | 40.2 | 46.9 | 53.6 | 60.3 |
| 66 | 6.6 | 13.2 | 19.8 | 26.4 | 33.0 | 39.6 | 46.2 | 528 | 59.4 |
| 65 | 6.5 | 13.0 | 19.5 | 26.0 | 32.5 | 39.0 | 45.5 | 52.0 | 58.5 |
| 64 | 6.4 | $1 ¢ .8$ | 19.2 | 25.6 | 32.0 | 38.4 | 44.8 | 51 z | 57.6 |

No. 675 L. 829.?


Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | \% | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65 | 6.5 | 13.0 | 19.5 | 26.0 | 32.5 | 39.0 | 45.5 | 52.0 | 58.5 |
| 64 | 6.4 |  | 19.2 | 25.6 | 33.0 | 38.4 | 44.8 | 51.2 | 57.6 |
| 63 | 6.3 | 12.6 | 18.9 | 25.2 | 31.5 | 37.8 | 44.1 | 50.4 | 56.7 |
| 62 | 6.2 | 12.4 | 18.6 | 24.8 | 31.0 | 37.2 | 43.4 | 49.6 | 55.8 |
| 61 | 6.1 | 12.2 | 18.3 | 24.4 | 30.5 | 36.6 | 42.7 | 48.8 | 54.9 |
| 60 | 6.0 | 12.0 | 18.0 | 24.0 | 30.0 | 36.0 | 42.0 | 48.0 | 54.0 |


[No. 809 L. 908.


Profortional Parts.

| Diff. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 57 | 5.7 | 11.4 | 17.1 | 22.8 | 28.5 | 34.2 | 39.9 | 45.6 | 51.3 |
| 56 | 5.6 | 11.2 | 16.8 | 22.4 | 28.0 | 3.2 | 3.9 | 45.8 | 50.4 |
| 55 | 5.5 | 11.0 | 16.0 | 22.0 | 27.0 | 33.6 | 39.2 | 44.8 |  |
| 54 | 5.4 | 10.8 | 16.2 | 21.6 | 27.0 | 33.4 | 38.5 | 44.0 | 49.5 |

No．810 L．908．］
［No． 854 L． 931.

| N． | － 0 | 1 | 2 | 3 | 4 | 6 | 6 | 7 | 8 | 9 | Diff． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 810 | 908485 | 8539 | 8592 | 8646 | 8699 | 8753 | 8807 | 8860 | 8014 | 896.7 |  |
| 1 | 9021 | 9074 | 9128 | 9181 | 9235 | 9289 | 9342 | 9396 | 9449 | 9503 |  |
| 2 | 95 9ั6 | 9610 | 9663 | 9716 | $97 \% 0$ | $98 \% 3$ | 9877 | 9930 | 9984 |  |  |
| 3 | 910091 | 0144 | 0197 | 0951 | 0304 | 0358 | 0411 | 0464 | 0518 | 0037 |  |
| 4 | $06 \% 4$ | 0678 | 0731 | $0 \% 84$ | 0838 | 0891 | 0944 | 0398 | 1051 | 1104 |  |
| 5 | 1158 | 1211 | 1264 | 1317 | 1371 | 1424 | $14 \% 7$ | 1530 | 1584 | 1637 |  |
| 6 | 1690 | 1743 | 1797 | 1850 | 1903 | 1956 | 2009 | 2063 | 2116 | 2169 |  |
| 7 | 2222 | 2275 | 2328 | 2381 | 2435 | 2488 | 2541 | 2594 | 2647 | 2700 |  |
| 8 | $2 \% 153$ | 2806 | 2859 | 2913 | 2966 | 3119 | $30 \% 2$ | 3125 | 3178 | 3231 |  |
| 9 | 3284 | 3337 | 3390 | 3443 | 3496 | 3549 | 3602 | 3655 | 3708 | 3761 |  |
| 820 | 3814 | 3867 | 3920 | 3973 | 4026 | 4079 | 4132 | 4184 | 4237 | 4290 |  |
| 1 | 4343 | 4396 | 4449 | 4502 | 4555 | 4608 | 4660 | 4713 | 4766 | 4819 |  |
| 2 | $48 \% 2$ | 4925 | 4977 | 5030 | 5083 | 5136 | 5189 | 5241 | 5294 | 5347 |  |
| 3 | 5400 | 5453 | 5505 | 5558 | 5611 | 5664 | 5710 | 5769 | 5822 | 5875 |  |
| 4 | 5927 | 5980 | 6033 | 6085 | 6138 | 6191 | 6243 | 6296 | 6349 | 6401 |  |
| 5 | 6454 | 6507 | 6559 | 6612 | 6664 | 6717 | $67 \%$ | C822 | 6875 | 6927 |  |
| 6 | 6980 | 7033 | \％085 | 7138 | 7190 | r243 | 「295 | 7348 | 7400 | 7453 |  |
| 7 | 7506 | 7558 | 7611 | 7603 | $7 \% 16$ | r＇f68 | 7820 | 78.3 | 7925 | 7978 |  |
| 8 | 8030 | 8083 | 8135 | 8188 | 8240 | 8293 | 8345 | 8397 | 8450 | 8502 |  |
| 9 | 8555 | 8607 | 8659 | 8712 | 8764 | 8816 | 8869 | 8921 | 8973 | 9026 |  |
| 830 | 9078 | 9130 | 9183 | 9235 | 9387 | 9340 | 9392 | 9444 | 9496 | 9549 |  |
| 1 | 9601 | 9653 | $9 \% 06$ | 9758 | 9810 | 9862 | 9914 | 996 |  |  |  |
| 2 | 920123 | 0176 | 02， 0 | 0280 | 0332 | 0384 | 0436 | 0489 | 0019 | $00{ }^{2} 1$ |  |
| 3 | 0645 | 0697 | $0{ }^{\text {r }} 49$ | 0801 | 0853 | 0906 | 0058 | 1010 | 10541 | 1114 |  |
| 4 | 1166 | 1218 | $12 \sim 0$ | 1322 | 1374 | 1426 | $14 \% 8$ | 1530 | 1582 | 1634 |  |
| 5 | 1686 | 1738 | 1790 | 1842 | 1894 | 1946 | 1998 | 2050 | 2102 | 2154 |  |
| 6 | 2206 | 2058 | 2310 | 2362 | 2414 | 2466 | 2518 | 2570 | 2622 | 2664 |  |
| 7 | 2725 | $27 \% 7$ | 2829 | 2881 | 2933 | 2985 | 3037 | 3089 | 3140 | 3192 |  |
| 8 | 3244 | 3296 | 3348 | 3399 | 3451 | 3503 | 3555 | 3607 | 3658 | 3710 |  |
| 9 | 3762 | 3814 | 3865 | 3917 | 3969 | 4021 | $40 \% 2$ | 4124 | 4176 | 4228 |  |
| 810 | 42\％9 | 4331 | 4383 | 4434 | 4486 | 4538 | 4589 | 4641 | 4693 | 4744 |  |
| 1 | 4796 | 4848 | 4899 | 4951 | 5003 | 5054 | 5106 | 5157 | 5209 | 5261 |  |
| 2 | 5312 | 5364 | 5415 | 5467 | 5518 | $55 \%$ | 5621 | 5673 | 5725 | 576 |  |
| 3 | 5828 | 5879 | 5931 | 5982 | 6034 | 6085 | 6137 | 6188 | 6240 | 6291 |  |
| 4 | 6342 | 6394 | 6445 | 6497 | 6548 | 6600 | 6651 | 6.02 | 6754 | 6805 |  |
| 5 | 6857 | 6908 | 6959 | r011 | r062 | \％114 | 7165 | 7216 | 「268 | 7319 |  |
| 6 | $73 \% 0$ | 7422 | 7473 | ri524 | 75.6 | r627 | 7678 | 7730 | 「＇81 | r＇832 |  |
| 7 | 7883 | 7935 | 7986 | 8037 | 8088 | 8140 | 8191 | 8242 | 8293 | 8345 |  |
| 8 | 8396 | 8447 | 8498 | 8549 | 8601 | 8652 | 8703 | 8754 | 8805 | 8857 |  |
| 9 | 8908 | 8959 | 9010 | 9061 | 9112 | 9163 | 9215 | 9266 | 9317 | 9368 |  |
| 850 | 9419 | 9470 | 9521 | 957\％ | 9623 | 9674 | 9725 | $97 \% 6$ | 9827 | 9879 |  |
| 1 | 9930 | 9981 |  |  |  |  |  |  |  |  |  |
|  |  |  | 0032 | 0083 | 0134 | 0185 | 0236 | 0287 | 0338 | 0389 |  |
| 2 | 930440 | 0491 | 0542 | 0592 | 0643 | 0694 | 0745 | $0 \% 96$ | 084＇ | 0898 |  |
| 3 | 0949 | 1000 | 1051 | 1102 | 1153 | 1204 | 1254 | 1305 | 1356 | 1407 |  |
| 4 | 1458 | 1509 | 1560 | 1610 | 1661 | 1712 | 1763 | 1814 | 1865 | 1915 |  |

Proportional Parts．

| Diff． | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| 53 | 5.3 | 10.6 | 15.9 | 21.2 | 26.5 | 31.8 | 37.1 | 42.4 | 47.7 |
| 52 | 5.2 | 10.4 | 15.6 | 20.8 | 26.0 | 31.2 | 36.4 | 41.6 | 46.8 |
| 51 | 5.1 | 10.2 | 15.3 | 20.4 | 20.5 | 30.6 | 35.7 | 40.8 | 45.9 |
| 50 | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 |

No. 855 L. 931.1
No. 899 L. 954.

| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 355 | 931966 | 2017 | 2008 | 2118 | 2169 | 2220 | 2271 | 2322 | 2372 | 2423 |  |
| 6 | 2474 | 2524 | 2575 | 2626 | 2677 | 2727 | 2778 | 2829 | 2879 | 2930 |  |
| 7 | 2981 | 3031 | 3082 | 3133 | 3183 | 3234 | 3285 | 3335 | 3386 | $343 \%$ |  |
| 8 | 3487 | 3538 | 3589 | 3639 | 3690 | 3740 | 3791 | 3841 | 3892 | 3943 |  |
| 9 | 3993 | 4044 | 4094 | 4145 | 4195 | 4246 | 4296 | 434 | 4397 | 4448 |  |
| 860 | 4498 | 4549 | 4599 | 4650 | 4700 | 4751 | 4801 | 4852 | 4902 | 4953 |  |
| 1 | 5003 | 5054 | 5104 | 5154 | 5205 | 5255 | 5306 | 5356 | 5406 | 5457 |  |
| 2 | 5507 | 5558 | 5608 | 5658 | 5709 | 5759 | 5809 | 5860 | 5910 | 5960 |  |
| 3 | 6011 | 6061 | 6111 | 6102 | 6212 | 6262 | 6313 | ${ }_{6}^{6363}$ | 6413 | 6463 |  |
| 4 | 6514 | 6564 | 6614 | 6665 | 6715 | 6765 | 6815 | 6865 | 6916 | 6966 |  |
| 5 | 7016 | 7066 | 7116 | 7167 | 2717 | 7267 | \%317 | 7367 | 7418 | ${ }^{7} 468$ |  |
| 6 | 7518 | 7568 | 7618 | 8668 | \% 81818 | 7769 8269 | 7819 8320 | 7869 $83 \% 0$ | 7919 8420 | 7969 8170 | 50 |
| 8 | 8019 | 88069 | 8119 8620 | 8169 | 8219 $8 \% 0$ | 8269 8750 | 88820 | ${ }^{8370}$ | 8420 8920 | 8970 |  |
| 9 | 9020 | 9070 | 9120 | $91 \% 0$ | 9220 | 9270 | 9320 | 9369 | 9419 | 9469 |  |
| 870 | 9519 | 9569 | 9619 | 9669 | 9719 | 9769 | 9819 | 9869 | 9918 | 9968 |  |
| 1 | 9.10018 | 0068 | 0118 | 0168 | 0218 | 0267 | 0317 | 0367 | 0417 | 0467 |  |
| 2 | 0516 | 0566 | 0616 | 0666 | 0716 | 0765 | 0815 | 0865 | 0915 | 0964 |  |
| 3 | 1014 | 1064 | 1114 | 1163 | 1213 | 1263 | 1313 | 1362 | 1412 | 1462 |  |
| 4 | 1511 | 1561 | 1611 | 1660 | 1710 | 1760 | 1809 | 1859 | 1909 | 1958 |  |
| 5 | 2008 | 2058 | 2107 | 2157 | 2207 | 2256 | 2306 | 2355 | 2405 | 2455 |  |
| 6 | 2504 | 2354 | 2603 | 2653 | 2702 | 2752 | 2801 | 2351 | 2901 | 2950 |  |
| 7 | 3000 | 3049 | 3099 | 3148 | 3198 | 3247 | 3297 | 3346 | 3396 | $3+45$ |  |
| 8 | 3495 | 3544 | 3593 | 3643 | 3692 | $3{ }^{2} 42$ | 3791 | 3841 | 3890 | 3939 |  |
| 9 | 3989 | 4038 | 4088 | 4137 | 4186 | 4236 | 4285 | 4335 | 4384 | 4433 |  |
| 880 | 4483 | 4532 | 4581 | 4631 | 4680 | 4729 | 4759 | 4828 | 4877 | 4927 |  |
| 1 | 4976 | 5025 | 5074 | 5124 | 5173 | 5222 | 5ఇn2 | 5321 | 5370 | 5419 |  |
| 2 | 5469 | 5518 | 5567 | 5616 | 5665 | 5715 | 5764 | 5813 | 5862 | 5912 |  |
| 3 | 5961 | 6010 | 6059 | 6108 | 6157 | 6207 | 6256 | 6305 | 6354 | 6403 |  |
| 4 | 6452 | 6501 | 6501 | 6600 | 6649 | 6698 | $6 \pi 47$ | 6796 | 6845 | 6894 |  |
| 5 | 6943 | 6992 | 7041 | 7090 | $\stackrel{7139}{ }$ | 7189 | 7238 | 7287 | \% 3386 | 7385 | 49 |
| 6 | 7434 | 7483 | 7532 | 7581 | 7630 | 7679 | ${ }^{77} 28$ | \%ri7 | 7826 | 7875 |  |
| 7 | 7924 | 7973 | 8022 | 8070 | 8119 | 8168 | 8817 | 8266 | 8815 |  |  |
| 8 | 8413 8902 | 8462 8951 | 8511 | 8560 9048 | 8608 9097 | 8657 9146 | 8706 9195 | 8755 9244 | 8804 9292 | 8853 9341 |  |
| 890 | 9390 | 9439 | 9488 | 9536 | 9585 | 9634 | 9683 | 9731 | 9780 | 9829 |  |
| 1 | $98{ }^{4} 8$ | 9926 | 3975 | 0024 | 0073 | 0121 | 0170 | 0219 | 0267 | 0316 |  |
|  | 950365 | 0414 | 0462 | 0511 | 0560 | 0608 | 0657 | 0706 | 0754 | 0803 |  |
| 3 | 0851 | 0900 | 0949 | 0997 | 1046 | 1095 | 1143 | 1192 | 1240 | 1289 |  |
| 4 | 1338 | 1386 | 1435 | 1483 | 1532 | 1580 | 1629 | 1677 | $1 \% 26$ | 1775 |  |
| 5 | 1823 | 1872 | 1920 | 1969 | 2017 | 2066 | 2114 | 2163 | 2211 | 2260 |  |
| 6 | 2308 | 2356 | 2405 | 2453 | 2502 | 2550 | 2599 | $264{ }^{\text {2 }}$ | 2696 | 2744 |  |
| 7 | 2792 | 2841 | 2889 | 2938 | 2986 | 3034 | 3083 | 3131 | 3180 | 3224 |  |
| 8 | $32 \sim 6$ | 3325 | 3373 | 3421 | 34 T 0 | 3518 | 3566 | 3615 | 3663 | $3 \sim 11$ |  |
| 9 | 3760 | 3808 | 3856 | 3905 | 3953 | 4001 | 4049 | 4098 | 4146 | 4194 |  |

Proportional Parts.

| Diff. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | 5.1 | 10.2 | 15.3 | 20.4 | 25.5 | 30.6 | 35.7 | 40.8 | 45.9 |
| 50 | 5.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 |
| 49 | 4.9 | 9.8 | 14.7 | 19.6 | 24.5 | 29.4 | 34.3 | 39.2 | 4.1 |
| 48 | 4.8 | 9.6 | 14.4 | 19.2 | 24.0 | 28.8 | 33.6 | 38.4 | 43.2 |



| No. 945 L. 9\%5.] |  |  |  |  |  |  |  |  | [No. 989 L. 995. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| 945 | 975432 | 54\%8 | 5524 | 5570 | 5616 | 5662 | 5707 | 5753 | 5799 | 5845 |  |
| 9 | 5891 | E937 | 5983 | 6029 | $60 \% 5$ | 6121 | 6167 | 6212 | 6258 | 6304 |  |
| 8 | 6350 | 6396 | 6442 | 6488 | 6583 | $65 \%$ | 6625 | 6671 | 6717 | 6763 |  |
| 8 | 6808 | 6854 | 6900 | 6946 | 6992 | 7037 | 7083 | 7129 | 7175 | 722 |  |
| 9 | 7266 | 7312 | \%358 | 7403 | 7449 | 7495 | \%541 | 7586 | 7632 | 7678 |  |
| 950 <br> 1 <br> 2 <br> 3 <br> 4 | rrit | 7769 | 7815 | 7861 | 「906 | 7952 | 7998 | 8043 | 8089 | 8135 |  |
|  | 8181 | 8226 | 82\%2 | 8317 | 8363 | 8409 | 8454 | 8500 | 8546 | 8591 |  |
|  | 8637 | 8683 | 8728 | 874 | 8819 | 8865 | 8911 | 8956 | 9002 | 9047 |  |
|  | 9093 | 9138 | 9184 | 9230 | 9275 | 9321 | 9.56 | 9412 | 9457 | 9503 |  |
|  | 9548 | 9594 | 9639 | 9685 | 9730 | 9776 | 9821 | 9867 | 9912 | 9958 |  |
| 567789 | 980003 | 0049 | 0094 | 0140 | 0185 | 0231 | 02\%6 | 0322 | 0367 | 0412 |  |
|  | 0458 | 0503 | 0549 | 0594 | 0640 | 0685 | 0730 | 076 | 0821 | 0867 |  |
|  | 0912 | 0957 | 1003 | 1048 | 1093 | 1139 | 1184 | 1229 | 1275 | 1320 |  |
|  | 1366 | 1411 | 1456 | 1501 | 1547 | 1502 | $16: 37$ | 1683 | 1728 | 1773 |  |
|  | 1819 | 1864 | 1903 | 1954 | 2000 | 2045 | 2090 | 2135 | 2181 | 2226 |  |
| 960 | 2271 | 2316 | 2362 | 2407 | 2452 | 2497 | 2543 | 2588 | 2633 | 2678 |  |
| 122 | 2723 | $2{ }^{2} 69$ | 2814 | 2859 | 2904 | 2949 | 2994 | 3040 | 3085 | 3130 |  |
|  | 3175 | 3220 | 3265 | 3310 | 3356 | 3401 | 3446 | 3491 | 3536 | 3581 |  |
| $\stackrel{2}{3}$ | 3626 | 3671 | 3716 | 3762 | 3807 | 3852 | 3897 | 3942 | 3987 | 4032 |  |
| 45 | 4077 | 4122 | 4167 | 4212 | 4257 | 4302 | 4347 | 4392 | 4437 | 4482 |  |
|  | 4597 | $45 \% 2$ | 4617 | 4662 | 4707 | 4752 | 4797 | 4842 | 4887 | 4932 | 45 |
| 6 | 4977 | 5022 | 5067 | 5112 | 5157 | 5202 | 5247 | 5:92 | 5337 | 5382 |  |
| 6 | 5426 | 5471 | 5516 | 5561 | 5606 | 5651 | 5696 | 5741 | 5186 | 5830 |  |
| 8 | 5875 | 5920 | 5965 | 6010 | 6055 | 6100 | 6144 | 6189 | 6234 | 6279 |  |
| 9 | 6324 | 6369 | 6413 | 6458 | 6503 | 6548 | 6593 | 6637 | 6682 | 6727 |  |
|  | 6772 | 6817 | 6861 | 6906 | 6951 | 6996 | r040 | r085 | 7130 | 7175 |  |
| 9712 | r219 | 7264 | 7309 | 7353 | 7398 | 7443 | 7488 | 7532 | 7577 | 7622 |  |
|  | r'666 | 7711 | 7756 | 7800 | 7845 | 7890 | 7934 | \%979 | 5024 | 8068 |  |
| ${ }_{3}^{2}$ | 8113 | 8157 | 8202 | 8247 | 8291 | 8336 | 8381 | 8425 | 8470 | 8514 |  |
| 4 | 8559 | 8604 | 8648 | 8693 | 8737 | 8782 | 8826 | 8871 | 8916 | 8960 |  |
|  | 9005 | 9049 | 9094 | 9138 | 9183 | 9227 | ${ }_{92 \%} 9$ | ${ }_{9} 9316$ | 9361 | 9405 |  |
| 67 | 9450 | 9494 | 9539 | 9583 | 9628 | $96 \%$ | 9717 | 9761 | 9806 | 9850 |  |
|  |  |  |  | 0028 | 00\%2 | 0117 | 0161 | 0206 | 0250 | 0294 |  |
| 8 | 990339 | 0383 | 0428 | 04\% 2 | 0516 | 0561 | 0605 | 0650 | 0694 | $0 \div 38$ |  |
|  | 0783 | 0827 | 0871 | 0916 | 0960 | 1004 | 1049 | 1093 | 1137 | 1182 |  |
| 980 | 1226 | $12 \% 0$ | 1315 | 1359 | 1403 | 1448 | 1492 | 1536 | 1580 | 1625 |  |
| 980 1 | 1669 | 1713 | 1758 | 1802 | 1846 | 1890 | 1935 | 1979 | 2023 | 2067 |  |
| 233 | 2111 | 2156 | 2200 | 2244 | 2288 | 2333 | $23 \%$ | 2121 | 2465 | 2503 |  |
|  | 2554 | 2598 | 2642 | 2686 | 2730 | 274 | 2819 | 2863 | 2907 | 2951 |  |
| 3 | 2995 | 3039 | 3083 | 3127 | 3172 | 3216 | 3260 | 3304 | 3348 | 3392 |  |
| 5 | 3436 | 3480 | 35.4 | 3568 | 3613 | 3657 | $3 \hat{0} 01$ | 3745 | 3789 | 3833 |  |
|  | 3877 | 3921 | 3965 | 4009 | 4053 | 4097 | 4141 | 4185 | 4229 | 4273 |  |
| 7 | 4317 | 4361 | 4405 | 4449 | 4493 | 4537 | 4581 | 4625 | 4669 | 4713 | 44 |
|  | 4757 | 4801 | 4845 | 4889 | 4933 | 4977 | 5021 | 5065 | 5108 | 5152 |  |
| 9 | 5196 | 5240 | 5284 | 5328 | 5372 | 5416 | 5460 | 5504 | 5547 | 5591 |  |
| Proportional Parts. |  |  |  |  |  |  |  |  |  |  |  |
| Diff | 1 | 2 | 3 |  | 4 | 5 | 6 | 7 |  | 8 | 9 |
| 46 | 4.6 | 9.2 |  |  | 18.4 . | 23.0 | 27.6 |  | . 2 | 36.8 | 41.4 |
| 45 | 4.5 | 9.0 |  |  | 18.0 | 22.5 | 27.0 |  | . 5 | 360 | 40.5 |
| 44 | 4.4 | 8.8 |  |  | 17.6 | 22.0 | 26.4 |  | . 8 | 35.2 | 39.6 |
| 43 | 4.3 | 8.6 |  | 9 | 17. | 21.5 | 25.8 |  | . 1 | 34.4 | 38.7 |

No. 990 L. 995.]
[No. 999 L. 999.

| N. | 0 | 1 | 2 | 8 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 990 | 995635 | 5679 | 5\%23 | 5767 | 5811 | 5854 | 5898 | 5942 | 5986 | 6030 |  |
| 1 | 6074 | 6117 | 6161 | 6205 | 6249 | 6293 | 6337 | 6380 | 6424 | 6468 | 44 |
| 2 | 6512 | 6555 | 6599 | 6643 | 6687 | 6731 | 6774 | 6818 | 6862 | 6906 |  |
| 3 | ${ }^{6942}$ | 6993 | 7037 | 7080 | 7124 | 7168 | 7212 | 7255 | 7299 | 7343 |  |
| 4 | 7386 | 7430 | 7474 | 7517 | 7561 | 7605 | 7648 | 7692 | 7736 | \%7\%9 |  |
| 5 | 7823 | 7867 | 7910 | 7954 | 7998 | 8041 | 8085 | 8129 | 8172 | 8216 |  |
| ${ }^{6}$ | 8259 | 8303 | 8347 | 8390 | 8434 | 8477 | 8521 | 8564 | 8808 | 8652 |  |
| 7 | 8695 | 8739 | 8782 | 8826 | 8869 | 8913 | 8956 | 9000 | 9043 | 9087 |  |
| 9 | ${ }_{9}^{9131}$ | 9174 | 9218 | ${ }_{9} 9261$ | 9305 | 9348 | 9392 | 9435 | 9479 | 9522 |  |
| 9 | 9565 | 9609 | 9652 | 9696 | 9739 | 9783 | 9826 | 9870 | 9913 | 9957 | 43 |

HYPERBOLIC LOGARITHILS.

| No. | Log. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.01 | . 0099 | 1.45 | . 3716 | 1.89 | . 6366 | 2.33 | . 8458 | 2.76 | 1.0188 |
| 1.02 | . 0198 | 1.46 | . 3 r 84 | 1.90 | . 6419 | 2.34 | . 8502 | 2.78 | 1.0182 |
| 1.03 | . 0296 | 1.47 | . 3853 | 1.91 | . 6471 | 2.35 | . 8544 | 2. 29 | 1.0260 |
| 1.04 | . 0392 | 1.48 | . 3920 | 1.92 | . 6583 | 2.36 | . 858 i | 2.80 | 1.0296 |
| 1.05 | . 0488 | 1.49 | . 3988 | 1.93 | . 6575 | 2.37 | . 8689 | 2.81 | 1.0339 |
| 1.06 | . 0583 | 1.50 | . 4055 | 1.94 | . 6627 | 2.38 | . 8671 | 2.82 | 1.0367 |
| 1.07 | . 0677 | 1.51 | . 4121 | 1.95 | . $66 \% 8$ | 2.39 | . 8713 | 2.83 | 1.0403 |
| 1.08 | . $07 \%$ | 1.52 | . 4187 | 1.96 | . 6729 | 2.40 | . 8755 | 2.84 | 1.0438 |
| 1.09 | . 0862 | 1.53 | . 4253 | 1.97 | . 6 r80 | 2.41 | . 8796 | 2.85 | 1.0473 |
| 1.10 | . 0953 | 1.54 | . 4318 | 1.98 | . 6831 | 2.42 | . 8838 | 2.86 | 1.0508 |
| 1.11 1.12 | . 1044 | 1.55 | . 4383 | 1.99 | . 6881 | 2.43 | . 8879 | 2.87 | 1.0543 |
| 1.13 | . 1222 | 1.57 | .4447 | 2.00 | . 6931 | 2.44 | . 8920 | 2.88 | 1.0578 |
| 1.14 | . 1310 | 1.58 | . 4511 | 2.01 2.02 | . 6981 | 2.45 | . 8961 | 2.89 | 1.0613 |
| 1.15 | . 1398 | 1.59 | . 4637 | 2.02 | . 7080 | 2.46 2.47 | . 9002 | 2.90 2.91 | 1.0647 |
| 1.16 | . 1484 | 1.60 | . 4700 | 2.04 | . 7129 | 2.48 2.48 | . .9042 | 2.91 | 1.0682 |
| 1.17 | . 1570 | 1.61 | . 468 | 2.05 | . 71 188 | 2.49 | . 9123 | 2.93 | 1.0750 |
| 1.18 | . 1655 | 1.62 | . 4824 | 2.06 | - 61987 | $\stackrel{1}{2.50}$ | . 9163 | 2.94 | $1.0 \% 80$ $1.0 \% 84$ |
| 1.19 | . 1740 | 1.63 | . 4586 | 2.07 | .72\% | 2.51 | .9203 | 2.95 | 1.0518 |
| 1.20 | .1823 | 1.64 | . 4947 | 2.08 | .7324 | 2.52 | . .9243 | 2.96 | 1.0852 |
| 1.21 | .1906 | 1.95 | . 5008 | 2.09 | .7372 | 2.53 | . 9282 | 2.97 | 1.0886 |
| 1.22 | . 1988 | 1.66 | . 5068 | 2.10 | . 7419 | 2.54 | .9822 | 2.98 | 1.0919 |
| 1.23 | . 2070 | 1.67 | . 5128 | 2.11 | .7467 | 2.55 | . 9361 | 2.98 2.99 | 1.0953 |
| 1.24 | . 2151 | 1.68 | . 5188 | 2.12 | . 7014 | 2.56 | . 9400 | 3.00 | 1.0986 |
| 1.25 | . 2231 | 1.69 | . 5248 | 2.13 | . 7561 | 2.57 | . 9439 | 3.01 | 1.1019 |
| 1.26 | . 2311 | 1.70 | . 5306 | 2.14 | . 608 | 2.58 | . 9478 | 3.02 | 1.1053 |
| 1.2i | . 2390 | 1.71 | . 5365 | 2.15 | . 7655 | 2.59 | . 94717 | 3.02 | 1.1053 |
| 1.28 | -2469 | 1.72 | . 5423 | 2.13 | . 7101 | 2.60 | . 9555 | 3.04 | 1.1119 |
| $1 . \therefore 9$ | - .2546 | 1.73 | . 5481 | $\underset{\sim}{2.17}$ | . .7747 | 2.61 | . 9594 | 3.04 3.05 | 1.1119 |
| 1.30 | . 2624 | 1.74 | . 50539 | 2.18 | . 7793 | 2.62 | . 9632 | 3.06 | 1.1184 |
| 1.31 | . $2 \% 00$ | 1.75 | . 5596 | 2.19 | . 7839 | 2.63 | . 96 \% 0 | 3.0 \% | $1.121 \%$ |
| 1.82 | .27.6 | 1.76 | . 5653 | 2. $\because 0$ | . 1885 | 2.64 | . 9708 | 3.06 3.08 | 1.1218 1.1249 |
| 1.33 1.34 | . 2882 | 1.77 | . 5710 | 2.21 | . 7930 | 2.65 | . 9746 | 3.09 | 1.1282 |
| 1.34 1.35 | . $292 \%$ | 1.78 1.79 | . 5766 | 2. 22 | . 7975 | 2.66 | . 9783 | 3.10 | 1.1314 |
| 1.36 | . $30 \% 5$ | 1.89 1.80 | .58:2 | $\stackrel{2}{2} \times 3$ | . 8020 | ${ }_{2}^{2.67}$ | . 9821 | 3.11 | 1.1346 |
| 1.37 | . 3148 | 1.81 | . 58938 | 2.24 2.25 | . 8065 | $\stackrel{2.68}{2.69}$ | . 9858 | 3.12 | 1.1378 |
| 1.38 | . 3221 | 1.82 | . 5988 | 2.26 | . 81094 | 2.69 2.70 | . 9895 | 3.13 | 1.1410 |
| 1.39 | . 3293 | 1.83 | . 6043 | 2.26 | . 815198 | 2.70 2.71 | . 9933 | 3.14 | 1.1442 |
| 1.40 | . 3365 | 1.84 | . 6098 | 2.28 | . 8.8242 | 2.70 | .9969 1.0006 |  | $1.14 \% 4$ |
| 1.41 | . 3436 | 1.85 | . 6158 | 2.29 | .8286 | 2.12 | 1.0006 1.0043 | 3.16 3.17 | 1.1506 |
| 1.42 | .3507 | 1.86 | . 6206 | 2.30 | . 8329 | 2.13 | 1.0043 1.0080 | 3.17 3.18 | 1.1537 |
| 1.43 | . $35 \% 7$ | 1.87 | . $6: 59$ | 2.31 | .837.3 | 2.75 | 1.0116 | 3.18 3.19 | 1.1569 1.1600 |
| 1.44 | . 3646 | 1.88 | . 6313 | 2.38 | .8416 | 2.76 | 1.0116 1.0152 | 3.18 3.20 | $\begin{aligned} & 1.1600 \\ & 1.1632 \end{aligned}$ |


| No, | Log. | No. | Log. | No. | Log. | No. | Log. | No. | Log. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.21 | 1.1663 | 3.87 | 1.3533 | 4.53 | 1.5107 | 5.19 | 1.646r | 5.85 | 1.7664 |
| 3.22 | 1.1694 | 3.88 | 1.3558 | 4.54 | 1.5129 | 5.20 | 1.6487 | 5.86 | 1.7681 |
| 3.23 | 1.1725 | 3.89 | 1.3584 | 4.55 | 1.5151 | 5.21 | 1.6506 | 5.87 | 1.7699 |
| 3.24 | 1.1756 | 3.90 | 1.3610 | 4.56 | 1.5173 | 5.12 | 1.6525 | 5.88 | 1.7716 |
| 3.25 | 1.1787 | 3.91 | 1.3635 | 4.5 \% | 1.5195 | 5.23 | 1.6544 | 5.89 | 1.7\%33 |
| 3.26 | 1.1817 | 3.92 | 1.3661 | 4.58 | 1.5217 | 5.24 | 1.6563 | 5.90 | 1.7750 |
| 3.27 | 1.1848 | 3.93 | 1.3686 | 4.59 | 1.5239 | 5.25 | 1.6582 | 5.91 | 1. 1766 |
| 3.28 | 1.1878 | 3.94 | 1.3712 | 4.60 | 1.5261 | 5.26 | 1.6601 | 5.92 | 1.7783 |
| 3.29 | 1.1909 | 3.95 | 1.3737 | 4.61 | 1.5982 | 5.27 | 1.6620 | 5.93 | 1. 8800 |
| 3.30 | 1.1939 | 3.96 | 1.3762 | 4.62 | 1.5304 | 5.28 | 1.6639 | 5.94 | 1.781\% |
| 3.31 | 1.1969 | 3.97 | 1.3788 | 4.63 | 1.53 .26 | 5.29 | 1.6658 | 5.95 | 1.7834 |
| 3.32 | 1.1999 | 3.98 | 1.3813 | 4.64 | 1.5347 | 5.30 | 1.6687 | 5.96 | 1.7851 |
| 3.33 | 1.2030 | 3.99 | 1.3838 | 4.65 | 1.5369 | 5.31 | 1.6696 | 5.97 | 1. $186 \pi$ |
| 3.34 | 1.2060 | 4.00 | 1.3863 | 4.66 | 1.5390 | 5.32 | 1.6715 | 5.98 | 1.7884 |
| 3.35 | 1.2090 | 4.01 | 1.3888 | $4.6{ }^{4}$ | 1.5412 | 5.33 | 1.6734 | 5.99 | 1.f901 |
| 3.36 | 1.2119 | 4.02 | 1.3913 | 4.68 | 1.5433 | 5.34 | 1.6752 | 6.00 | 1. 7918 |
| 3.37 | 1.2149 | 4.03 | 1.3938 | 4.69 | 1.5454 | 5.35 | 1.6771 | 6.01 | 1.7934 |
| 3.38 | 1.2179 | 4.04 | 1.3962 | 4.70 | 1.5476 | 5.36 | 1.6790 | 6.02 | 1.7951 |
| 3.39 | 1.2208 | 4.05 | 1.3987 | 4.71 | 1.5497 | 5.37 | 1.6808 | 6.03 | 1. $796 \%$ |
| 3.40 | 1.2238 | 4.06 | 1.4012 | 4.72 | 1.5518 | 5.33 | 1.6827 | 6.04 | 1. 2981 |
| 3.41 | 1.2267 | 4.07 | 1.4036 | 4.73 | 1.5539 | 5.39 | 1.6845 | 6.05 | 1.8001 |
| 3.42 | 1.2296 | 4.08 | 1.4061 | 4.74 | 1.5560 | 5.40 | 1.6864 | 6.06 | 1.8017 |
| 3.43 | 1.2326 | 4.09 | 1.4085 | 4.75 | 1.5581 | 5.41 | 1.6882 | 6.07 | 1.8034 |
| 3.44 | 1.2355 | 4.10 | 1.4110 | 4.76 | 1.5602 | 5.42 | 1.6901 | 6.08 | 1.8050 |
| 3.45 | 1.2384 | 4.11 | 1.4134 | 4.77 | 1.5523 | 5.43 | 1.6919 | 6.09 | 1.8066 |
| 3.46 | 1.2413 | 4.12 | 1.4159 | 4.78 | 1.5644 | 5.44 | 1.6938 | 6.10 | 1.8083 |
| 347 | 1.2442 | 4.13 | 1.4183 | 4.79 | 1.5665 | 5.45 | 1.6956 | 6.11 | 1.8099 |
| 3.48 | 1.2170 | 4.14 | 1.4207 | 4.80 | 1.5686 | 5.46 | 1.6974 | 6.12 | 1.8116 |
| 3.49 | 1.2499 | 4.15 | 1.4231 | 4.81 | 1.5107 | 5.45 | 1.6993 | 6.13 | 1.8132 |
| 3.50 | 1.2528 | 4.15 | 1.4255 | 4.8:3 | 1.5\%28 | 5.48 | 1.7011 | 6.14 | 1.8148 |
| 3.51 | 1.2556 | 4.17 | 1.4279 | 4.83 | 1.5148 | 5.49 | 1. 7029 | 6.15 | 1.8165 |
| 3.52 | 1.2585 | 4.18 | 1.4303 | 4.84 | 1.5189 | 5.50 | 1.704 ${ }^{\text {r }}$ | 6.16 | 1.8181 |
| 3.53 | 1.2613 | 4.19 | 1.432\% | 4.85 | 1.5790 | 5.51 | 1. 7066 | 6.17 | 1.8197 |
| 3.54 | 1.2641 | 4.20 | 1.4351 | 4.86 | 1.5810 | 5.5. | 1. 7084 | 6.18 | 1.8213 |
| 3.55 | 1.2669 | 4.21 | 1.4375 | 4.87 | 1.5831 | 5.53 | 1.7102 | 6.19 | 1.82\%9 |
| 3.56 | 1.2698 | 4.22 | 1.4398 | 4.88 | 1.5851 | 5.54 | 1.7120 | 6.20 | 1.824 .5 |
| $35 \%$ | 1.2726 | 4.23 | 1.4422 | 4.89 | 1.5872 | 5.55 | 1.7138 | 6.21 | 1.8262 |
| 358 | 1.2754 | 4.24 | 1.4446 | 4.90 | 1.5892 | 5.56 | 1. ${ }^{\text {r }} 1156$ | 6.22 | 1.82r8 |
| 359 | 1.2782 | 4.25 | 1.4469 | 4.91 | 1.5913 | $5.5{ }^{\text {r }}$ | 1. 7174 | 6.23 | 1.8294 |
| 3.60 | 1.2809 | 4.26 | 1.4493 | 4.92 | 1.5933 | 5.58 | 1.7192 | 6.24 | 1.8310 |
| 3.61 | 1.2837 | 4.27 | 1.4516 | 4.93 | 1.5953 | 5.59 | 1.7210 | 6.25 | 1.8326 |
| 3.62 | 1.2865 | 4.28 | 1.4540 | 4.94 | 1.5974 | 5.60 | 1.7228 | 6.26 | 1.8342 |
| 3.63 | 1.2892 | 4.29 | 1.4563 | 4.95 | 1.5994 | 5.61 | 1.7246 | 6.27 | 1.8358 |
| 3.64 | 1.2920 | 4.30 | 1.4586 | 4.96 | 1.6014 | 5.62 | 1.7263 | 6.28 | 1.83\%4 |
| 3.65 | 1.2947 | 4.31 | 1.4609 | 4.97 | 1.6034 | 5.63 | 1.7281 | 6.29 | 1.8390 |
| 3.66 | 1.2975 | 4.32 | 1.4633 | 4.98 | 1.6054 | 5.64 | 1.7299 | 6.30 | 1.8405 |
| 3.67 | 1.3002 | 4.33 | 1.4656 | 4.99 | $1.60{ }^{\text {r }} 4$ | 5.65 | 1.7317 | 6.31 | 1.8421 |
| 3.68 | 1.3029 | 4.34 | $1.46{ }^{\text {r }} 9$ | 5.00 | 1.6094 | 5.66 | 1.7334 | 6.32 | 1.8437 |
| 3.69 | 1.3056 | 4.35 | 1.4502 | 5.01 | 1.6114 | 5.67 | 1.7352 | 6.33 | 1.8453 |
| 3.70 | 1.3083 | 4.36 | 1.4725 | 5.02 | 1.6134 | 5.68 | 1.7370 | 6.34 | 1.8469 |
| 3.71 | 1.3110 | 4.37 | 1.4788 | 5.03 | 1.6154 | 5.69 | 1.7387 | 6.35 | 1.8485 |
| 3.72 | 1.3137 | 4.38 | $1.47{ }^{1} 0$ | 5.04 | 1.6174 | 5. 50 | 1. 7405 | 6.36 | 1.8500 |
| 3.73 | 1.3164 | 4.39 | 1.493 | 5.05 | 1.6194 | 5.71 | 1.7422 | 6.37 | 1.8516 |
| 3.74 | 1.3191 | 4.40 | 1.4816 | 5.06 | 1.6314 | 5.72 | 1.7440 | 6.38 | 1.8532 |
| 3.75 | $1.3 \geqslant 18$ | 4.41 | 1.4839 | 5.07 | 1. $6: 233$ | 5.73 | 1. $745 \sim$ | 6.39 | 1.854\% |
| 3.76 | 1.3244 | 4.42 | 1.4861 | 5.08 | 1.6253 | 5. 14 | 1.74 55 | 6.40 | 1.8563 |
| 3.77 | 1.3271 | 4.43 | 1.4884 | 5.09 | 1.6273 | 5.75 | 1. 1492 | 6.41 | $1.85 \% 9$ |
| 3.78 | $1.329 \%$ | 4.44 | 1.4907 | 5.10 | 1.6:292 | 5.76 | 1. 7509 | 6.42 | 1.8594 |
| 3.79 | 1.3324 | 4.45 | 1.4929 | 5.11 | 1.6312 | 5.78 | 1.7527 | 6.43 | 1.8610 |
| 3.80 | 1.3350 | 4.46 | 1.4951 | 5.12 | 1.6332 | 5.78 | 1.7544 | 6.44 | 1.8625 |
| 3.81 | 1.3376 | 4.47 | 1.4974 | 5.13 | 1.6351 | 5.79 | 1.7561 | 6.45 | 1.8641 |
| 3.82 | 1.3403 | 4.48 | 1.4996 | 5.14 | 1.6371 | 5.80 | 1.75\%9 | 6.43 | 1.8656 |
| 3.83 | 1.3429 | 4.49 | 1.5019 | 5.15 | 1.6390 | 5.81 | 1.7596 | 6.47 | $1.86{ }^{2}$ |
| 3.84 | 1.3455 | 4.50 | 1.5041 | 5.16 | 1.6109 | 5.82 | 1.7613 | 6.48 | 1.8687 |
| 3.85 | 1.3181 | 4.51 | 1.5063 | 5.17 | 1.6429 | 5.83 | 1.r630 | 6.49 | 1.8703 |
| 3.86 | 1.3507 | 4.52 | 1.5085 | 5.18 | 1.6148 | 5.84 | 1.7647 | 6.50 | 1.8718 |


| No. | Log. | No. | Log. | No. | Isog. | No. | Log. | No. | Log. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.51 | 1.8733 | 7.15 | 1.9671 | 7.79 | 2.0528 | 8.66 | $2.158 \%$ | 9.94 | 2.2966 |
| 6.52 | 1.8749 | 7.16 | 1.9685 | 7.80 | 2.0541 | 8.68 | 2.1610 | 9.96 | 2.2986 |
| 6.53 | 1.8764 | '7.17 | 1.9699 | 7.81 | 2.0554 | 8.70 | 2.1633 | 9.98 | 2.3006 |
| 6.54 | $1.87 \% 9$ | 7.18 | 1.9713 | 7.82 | 2.0567 | 8.72 | 2.1656 | 10.00 | 2.3026 |
| 6.55 | 1.8795 | 7.19 | 1.9727 | \%.83 | 2.0580 | 8.74 | 2.16\%9 | 10.25 | 2.32\%9 |
| 6.56 | 1.8810 | \%.20 | $1.9 \% 41$ | 7.84 | 2.0592 | 8.76 | 2.160 | 10.50 | 2.3513 |
| 6.57 | 1.8825 | 7.21 | 1.9754 | 7.85 | 2.0605 | 8.18 | $2.1 \% 25$ | 10.75 | $2.3 \sim 49$ |
| 6.58 | 1.8840 | 7.22 | 1.9769 | 7.86 | 2.0618 | 8.80 | 2.1748 | 11.00 | 2.3979 |
| 6.59 | 1.8856 | 7.23 | 1.9782 | 7.87 | 2.0631 | 8.8. | $2.1 \% 70$ | 11.25 | 2.4201 |
| 6.60 | 1.8871 | 7.24 | 1.9796 | 7.88 | 2.0643 | 8.84 | 2.1793 | 11.50 | 2.4430 |
| 6.61 | 1.8886 | 7.25 | 1.9810 | \%.89 | 2.0656 | 8.86 | 2.1815 | 11.75 | 2.4636 |
| 6.63 | 1.8901 | 7.26 | 1.9824 | 7.90 | 2.0669 | 8.88 | 2.1838 | 12.00 | 2.4849 |
| 6.63 | 1.8916 | 7.27 | 1.9838 | 7.91 | 2.0681 | 8.90 | 2.1861 | 12.25 | 2.5052 |
| 6.64 | 1.8931 | 7.28 | 1.9851 | 7.92 | 2.0694 | 8.92 | 2.1883 | 12.50 | 2.5262 |
| 6.65 | 1.8946 | 7.29 | 1.9865 | 7.93 | 2.0707 | 8.94 | 2.1905 | 12.75 | 2.5455 |
| 6.66 | 1.8961 | 7.30 | 1.9879 | \%.94 | 2.0719 | 8.96 | 2.1928 | 13.00 | 2.5649 |
| 6.67 | 1.8976 | \%.31 | 1.9893 | 7.95 | 2.0632 | 8.98 | 2.1950 | 13.25 | 2.5840 |
| 6.68 | 1.8991 | \%.32 | 1.9906 | \%.96 | 2.0744 | 9.00 | $2.19{ }^{\circ}$ | 13.50 | 2.6027 |
| 6.69 | 1.9006 | $\underset{ }{7} .33$ | 1.9920 | \%.97 | 2.0657 | 9.02 | 2.1994 | 13.75 | 2.6211 |
| 6.70 | 1.9021 | 7.34 | 1.9933 | 7.98 | 2.0669 | 9.04 | 2.2017 | 14.00 | 2.6391 |
| 6.71 | 1.9036 | 7.35 | 1.8947 | 7.99 | 2.0782 | 9.06 | 2.2039 | 14.25 | 2.6567 |
| 6.72 | 1.9051 | 7.36 | 1.9961 | 8.00 | 2.0694 | 9.08 | 2.2061 | 14.50 | 2.6740 |
| 6.73 | 1.9066 | 7.37 | 1.9974 | 8.01 | 2.0807 | 910 | 2.2083 | 14.75 | 2.6913 |
| 6.74 | 1.9081 | 7.88 | 1.9988 | 8.02 | 2.0819 | 9.12 | 2.2105 | 15.00 | 2.7081 |
| 6.75 | 1.9095 | 7.39 | 2.0001 | 8.03 | 2.0832 | 9.14 | 2.2127 | 15.50 | $2 \% 408$ |
| 6.76 | 1.9110 | 7.40 | 2.0015 | 8.04 | 2.0844 | 9.16 | 2.2148 | 16.00 | 2.7\%26 |
| 6.77 | 1.9125 | 7.41 | 2.0028 | 8.05 | 2.0857 | 918 | 2. 2170 | 16.50 | 2.8034 |
| 6.78 | 1.9140 | 7.42 | 2.0041 | 8.06 | 2.0869 | 9.30 | 2.2192 | 1700 | 2.8332 |
| 6.79 | 1.9155 | 7.43 | 2.0055 | 8.07 | 2.0582 | 9.23 | 2.2214 | 17.50 | 2.86:1 |
| 6.80 | 1.9169 | \%.44 | 2.0069 | 8.08 | 2.0894 | 9.24 | 2.2235 | 18.00 | 2.8904 |
| 6.81 | 1.9184 | 7.45 | 2.0082 | 8.09 | 2.0906 | 9.26 | 2.2257 | 18.50 | 2.9178 |
| 6.82 | 1.9199 | 7.46 | 2.0096 | 8.10 | 2.0919 | 9.28 | 2.2う9 | 19.00 | 2.9444 |
| 6.83 | 1.9213 | 7.47 | 2.0108 | 8.11 | 2.0931 | 9.30 | 2. $\because 300$ | 19.50 | $2.9 \% 03$ |
| 6.84 | 1.9228 | 7.48 | 2.0122 | 8.12 | 2.0943 | 9.32 | 2. 2332 | 20.00 | $2.995 \sim$ |
| 6.85 | 1.9242 | 7.49 | 2.0136 | 8.13 | 2.0956 | 9.34 | 2.2343 | 21 | 3.0445 |
| 6.86 | $1.925 \hat{}$ | 7.50 | 2.0149 | 8.14 | 2.0968 | 9.36 | 2.2364 | 22 | 3.0910 |
| 6.87 | 1.9272 | 7.51 | 2.0162 | 8.15 | 2.0980 | 9.38 | 2.2386 | 23 | 3.1355 |
| 6.88 | 1.9286 | 7.52 | $2.01 \sim 6$ | 8.16 | 2.0992 | 9.40 | $2.240{ }^{\circ}$ | 24 | 3.1\%81 |
| 6.89 | 1.9301 | 7.53 | 2.0189 | 8.17 | 2.1005 | 9.42 | 2.2428 | 25 | 3.2189 |
| 6.90 | 1.9315 | 7.54 | $2.020 \pm$ | 8.18 | 2.1017 | 9.44 | 2.2450 | 26 | 3.9581 |
| 6.91 | 1.9330 | $\stackrel{7}{7} .55$ | 2.0215 | 8.19 | 2.1029 | 9.46 | $2.24 \% 1$ | 27 | 3.2958 |
| 6.92 | 1.9314 | $\stackrel{7}{7} 56$ | 2.0229 | 8.20 | 2.1041 | 9.48 | 2.2492 | 28 | 3.3323 |
| 6.93 | 1.9359 | 7.57 | 2.0242 | 8.22 | 2. 1066 | 9.50 | 2.2513 | 29 | 3.3673 |
| 6.94 | 1.9373 | 7.58 | 2.0255 | 8.24 | 2.1090 | 9.52 | 2.2534 | 30 | 3.4012 |
| 6.95 | 1.9387 | 7.59 | 2.0268 | 8.26 | 2.1114 | 9.54 | 2.9555 | 31 | 3.4340 |
| 6.96 | 1.940 a | 7.60 | 2.0281 | 8.28 | 2.1138 | 9.50 | 2.25\%6 | 32 | 3.4840 3.465 |
| $6.9{ }^{\text {a }}$ | 1.9416 | \%.61 | $\stackrel{3}{2} .0295$ | 8.30 | 2.1163 | 9.58 | 2.2597 | 33 | 3.4965 |
| 6.98 | 1.9430 | 7.62 | 2.0308 | 8.32 | 2.1187 | 9.60 | 2.2618 | 34 | 3.4505 3.5263 |
| 6.99 | 1.9445 | 7.63 | 2.0321 | 8.34 | 2.1211 | 9.62 | 2.2638 | 35 | 3.5553 |
| 7.00 7.01 | 1.9459 1.9473 | 7.64 | 2.0334 | 8.36 | 2.1235 | 9.64 | 2. 2659 | 36 | 3.5835 |
| 7.01 7.02 | 1.9473 1.9488 | 7.65 | 2.0347 | 8.38 | 2.1258 | 9.66 | 2.2680 | 37 | 3.6109 |
| 7.01 $\sim$ $\sim$ $\sim$ | 1.9488 | 7.66 | 2.0360 | 8.40 | 2.1282 | 9.68 | 2.2701 | 38 | 3.6376 |
| 7.0.3 7.04 | 1.9502 1.9516 | $\begin{array}{r}7.67 \\ \hline\end{array}$ | 2.0373 | S.42 | 2.1306 | 9.70 | $2.2 \% 21$ | 39 | 3.6636 |
| $\underset{7.05}{7}$ | 1.9516 1.9530 | 7.68 7.69 | 2.0386 | 8.44 | 2.1330 | 9.7\% | 2.2742 | 40 | 3.6889 |
| 7.06 | 1.9544 | 7.65 | 2.0399 | 8.46 | $\underset{2}{2.1353}$ | 9.74 | 2.2762 | 41 | 3.7136 |
| F. 07 | 1.9559 | 7.71 | 2.0495 | 8.50 | ${ }_{2} 2.1401$ | 9.76 | 2.2783 | 42 | 3.7377 |
| \%.08 | $1.95 \%$ | 7.72 | $\underline{2} .0438$ | 8.50 | 2.1401 2.1424 | 9.78 9.80 | 2.2803 | 43 | 3.7612 |
| 7.09 | 1.9587 | 7.73 | 2.0451 | 8.54 | 2.1424 | 9.80 9.82 | $2.28 \% 4$ 3.2844 | 44 | 3.7842 |
| \%.10 | 1.9601 | 7.74 | 2.0464 | 8.56 | $2.14 \% 1$ | 9.84 | 2.2865 | 46 | 3.8061 3.8286 |
| 7.11 | 1.9615 | 7.75 | $2.04 \% 7$ | 8.58 | $\underset{\sim}{2.1494}$ | 9.86 | 2.2885 | 47 | 3.85501 |
| 7.12 | $1.96: 9$ | 7.76 | 2.0490 | 8.60 | 2.1518 | 9.88 | 2.2905 | 48 | 3.8712 |
| \%.13 | 1.9643 | 7.77 | 2.0503 | 8.62 | 2.1541 | 9.90 | 2.2925 | 49 | 3.8918 |
| 7.14 | 1.9657 | 7.78 | 2.0516 | 8.64 | 2.1564 | 9.92 | 2.2946 | 50 | 3.8918 3.9120 |

NATURAL TREGONOIEETRICAL FUNCTIONS.

| $\bigcirc$ | M. | Sine. | Co-Vers. | osec. | Tang. | Cotan. | Secant. | Ver. Sir. | Cosine. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | . 00000 | 1.0000 | Infinite | . 00000 | Infinite | 1.0000 | . 00000 | 1.0000 | 90 |  |
|  | 15 | . 00436 | . 99564 | 299.18 | . 00436 | 2<9.18 | 1.0000 | . 00001 | . 99999 |  | 5 |
|  | 30 | .00873 | . 99127 | 114.59 | .008\%3 | 114.59 | 1.0000 | . 000004 | . 99996 |  | 0 |
|  | 45 | . 01309 | . 98691 | ¢6.397 | . 01309 | 176.390 | 1.0001 | . 00009 | . 99991 |  | 5 |
| 1 | 0 | . 01745 | . 98255 | 57.299 | . 01745 | 57.290 | 1.0001 | . 00015 | . 99995 | 89 | 0 |
|  | 15 | .02181 | . 97819 | 45.810 | .02182 | 45.829 | 1.0002 | . 00024 | . 99976 |  | 5 |
|  | 30 | . 02618 | . 97382 | 38.202 | . 02618 | 38.188 | 1.0003 | . 00034 | . 99966 |  | 30 |
|  | 45 | . 03051 | . 96946 | 32.746 | . 03055 | 32.730 | 1.0005 | . 00047 | . 99953 |  | 5 |
| $\pm$ | 0 | . 03190 | . 96510 | 28.651 | .03492 | 28.636 | 1.0006 | . 00061 | . 99939 | 88 | 0 |
|  | 15 | .03926 | . 96074 | $25.4 \% 1$ | . 03929 | 25.452 | 1.0008 | . $0007 \%$ | . 99923 |  | 45 |
|  | 30 | . 04362 | . 95633 | $2 \cdot 2.9 \cdot 6$ | . 04366 | 22.904 | 1.0009 | . 00095 | . 99905 |  | 30 |
|  | 45 | . 04798 | . 95202 | 20.843 | . $0480 \cdot 3$ | 20.819 | 1.0011 | . 00115 | . 99885 |  | 15 |
| 3 | 0 | . 0.5234 | . 94 i66 | 19.107 | . 05211 | 19.081 | 1.0014 | . 0013 | . 99863 | 87 | 0 |
|  | 15 | . 05669 | .94331 | 17.639 | . 05678 | 17.611 | 1.0016 | . 00161 | . 99839 | 87 | 45 |
|  | 30 | . 06105 | . 93895 | 16.380 | . 06116 | 16.350 | 1.0019 | . $0018{ }^{7}$ | . 99813 |  | 30 |
|  | 45 | . 06510 | . 93460 | 15.290 | .06554 | 15.257 | 1.0021 | . 00214 | . $99 \% 86$ |  | 15 |
| 4 | 0 | .06966 | . 93024 | 14.336 | . 06993 | 14.301 | 1.0024 | .0024 | . 99756 | 86 | 0 |
|  | 15 | . 07411 | . 93259 | 13.494 | . 07431 | 13.457 | 1.0028 | .00275 | . 99 \% 25 |  | 45 |
|  | 30 | . 07846 | . 92154 | 12.745 | . 07870 | 12.706 | 1.0031 | . 00308 | . 9969 : |  | 30 |
|  | 45 | .08281 | . $91{ }^{17} 19$ | 12.066 | . 08309 | 12.035 | 1.0034 | . 00343 | . 99656 |  | 15 |
| 5 | 0 | . 08716 | . 91284 | 11.474 | . 08749 | 11.430 | 1.0038 | . 00381 | . 99619 | 85 | 0 |
|  | 15 | . 09150 | . 90850 | 10.929 | . 09189 | 10.883 | 1.0042 | . 00420 | . 99580 |  | 45 |
|  | 30 | . 09555 | . 90415 | 10.433 | . 096:9 | 10.385 | 1.0046 | . 00460 | . 99540 |  | 30 |
|  | 45 | . 10019 | . 89981 | 9.9812 | . 10069 | 9.9310 | 1.0051 | . 00503 | . 99497 |  | 15 |
| 6 | 0 | . 10453 | .8954~ | 9.5668 | . 10510 | 9.5144 | 1.0055 | . 00548 | . 99152 | 84 | 0 |
|  | 15 | . 10887 | . 89113 | 9.1855 | -10952 | 9.1309 | 1.0060 | . 00594 | . 99406 |  | 45 |
|  | 30 | . 11320 | . 88680 | 8.8337 | . 11393 | 8.7769 | 1.0065 | . 00643 | . 99357 |  | 30 |
|  | 45 | . 117184 | . 88.46 | 8.5079 | . 11836 | 8.4490 | 1.0070 | . 00693 | . $9930{ }^{\circ}$ |  | 15 |
| 7 | 0 | . 12187 | . 87813 | 8.2055 | . $122 \% 8$ | 8.1443 | 1.0075 | . 00745 | . 99255 | 83 | 0 |
|  | 15 | . 12620 | . 87380 | 7.9210 | . $12 \%$ | 7.8606 | 1.0081 | . 00800 | . 99200 | 83 | 45 |
|  | 30 | . 1305.3 | . 8694 | 7.6613 | . 13165 | 7.5958 | 1.0086 | . 00856 | . 99144 |  | 30 |
|  | 45 | . 13185 | . 86515 | 7.4156 | . 13609 | 7.3479 | 1.0092 | . 00913 | . 99086 |  | 15 |
| 8 | - | . 13917 | . 86083 | 7.1853 | . 14054 | 7.1154 | 1.0098 | . 00973 | . 99027 | 82 | 0 |
|  | 15 | . 14349 | .85651 | 6.9690 | . 14499 | 6.8969 | 1.0105 | . 01035 | . 98965 |  |  |
|  | 45 |  | .85\%19 | . 665 | . 14945 | 6.6912 | 1.0111 | . 01098 | . 98902 |  |  |
| 9 | 0 | . 15643 | . 84.357 | 6.3924 | . 15833 | 6.3138 | 1.0118 1.0125 | . 01164 | . 98836 |  |  |
|  | 15 | . $160 \% 4$ | . 83926 | 6.2311 | . 16286 | 6.1402 | 1.0132 | . 01300 | . 98 \%00 |  |  |
|  | 30 | . 16505 | . 83495 | 6.0589 | . 16731 | 5.9758 | 1.0139 | . 01371 | . 98629 |  |  |
|  | 45 | . 16935 | . 83065 | 5.9049 | . 17183 | 5.8197 | 1.0147 | . 01444 | . 98556 |  |  |
| 10 | 0 | . 17365 | . 82635 | 5.7588 | . 17633 | 5.6713 | 1.0154 | . 01519 | . 98481 | 80 |  |
|  | 15 | . 17794 | . 82206 | 5.6198 | . 18083 | 5.5301 | 1.0162 | . 01596 | . 98404 |  |  |
|  | 30 | .18224 | . 81776 | 5.4874 | . 18534 | 5.3955 | 1.0170 | . 01675 | . 98325 |  |  |
|  | 45 | .1865? | . 81348 | 5.3612 | - 18986 | $5.26 \%$ | 1.0179 | . 01755 | . 98245 |  |  |
| 11 | 0 | .19081 | . 80919 | 5.2408 | . 19438 | 5.1446 | 1.0187 | . 01837 | . 98163 | 79 |  |
|  | 15 | . 19509 | . 80491 | 5.1258 | . 19891 | 5.0273 | 1.0196 | . 01921 | . 98079 |  |  |
|  | 30 | . 19937 | . 80063 | 5.0158 | . 20345 | 4.9152 | 1.0205 | . 02008 | . 97992 |  |  |
|  | 45 | . 20364 | . 79636 | 4.9106 | . 20800 | $4.80 \% 7$ | 1.0214 | . 02095 | . 97905 |  |  |
| 12 | 0 | .20791 | . 79209 | $4.809 \%$ | - 21256 | 4.7046 | 1.0223 | . 02185 | . 97815 | 78 |  |
|  | 15 | . 21218 | . 78782 | 4.7130 | . 21712 | $4.605 \%$ | 1.0233 | .04277 | . 97723 |  | 5 |
|  | 30 | . 21644 | .78356 | 4.6202 | - 22169 | 4.5107 | 1.0243 | . 02370 | . 96630 |  |  |
| 13 | 45 | -220\%0 | . 77930 | 4.5311 | - 22628 | 4.4194 | 1.0253 | . 02466 | . 97534 |  |  |
|  | 15 | -22495 | . 77505 | 4.4454 | - 23087 | 4.3315 | 1.0263 | . 02563 | . 97437 | $7 \%$ | 0 |
|  | 15 | -22920 | . 77080 | 4.3630 | . 23547 | 4.2468 | 1.0273 | . 02662 | . 97338 |  |  |
|  | 30 45 | . 23345 | . 76655 | 4.2837 | . 24008 | 4.1653 | 1.0284 | . 02763 | . 97237 |  | 30 |
|  | 45 | . 23769 | . 76231 | 4.2072 | - 24470 | 4.0867 | 1.0295 | . 02866 | . 97134 |  | 5 |
| 14 | - 15 | . 24192 | . 75808 | 4.1336 | . 24933 | 4.0108 | 1.0306 | . 02970 | . 97030 | 76 | 0 |
|  | 15 | . 24615 | . 75385 | 4.0625 | . 25397 | 3.9375 | 1.0317 | . $030{ }^{7} 7$ | . 96923 |  | 5 |
|  | 30 | . 25038 | . 74962 | 3.9939 | . 25862 | 3.8667 | 1.0329 | . 03185 | . 96815 |  | 0 |
|  | 45 | . 25460 | . 74540 | $3.927 \%$ | . 26328 | 3.7983 | 1.0341 | . 03295 | . 95705 |  |  |
| 15 | 0 | .25882 | . 74118 | 3.8637 | .26795 | 3.7320 | 1.0353 | . 03407 | . 96593 | 75 | 0 |
|  |  | Cosine | er. Sin. | Secant. | Cotan. | Tang. | Cosec. | -Vers. | Sine. | - |  |

From $75^{\circ}$ to $90^{\circ}$ read from bottom oftable upwards.

| - | M. | Sine. | Co-Vers. | Cosec. | Tang. | Cotan. | Secant. | Ver. Sin. | Cosine. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 0 | . 25882 | . 74118 | 3.863 r | $26 \% 95$ | 3.7320 | 1.0353 | . 0340 ri | . 96593 | 75 |  |
|  | 15 | . 26303 | . 73697 | 3.8018 | . 27662 | 3.66880 | 1.0365 | . 03521 | . $964 \% 9$ |  | 45 |
|  | 30 | . 26724 | . 73276 | 3.7420 | . $27 \% 3$ | 3.6059 | $1.03 \%$ | . 03637 | . 96363 |  | 36 |
|  | 45 | . 27144 | . 28856 | 3.6840 | . $28: 03$ | $3.545 \%$ | 1.0390 | . 03754 | . 96246 |  | 15 |
| 16 | 0 | . 27564 | . 72436 | 3.6280 | . 28614 | $3.48 \% 4$ | 1.0403 | . 03874 | . 96126 | 74 | 0 |
|  | 15 | . 27983 | . $\% 2017$ | $3.5 \% 36$ | . $2914 \sim$ | 3.4308 | 1.0416 | . 03995 | . 96005 |  | 5 |
|  | 30 | . 28102 | . 71598 | 3.5:29 | . 29621 | 3.3759 | 1.0429 | . 04118 | . 95882 |  | 30 |
|  | 45 | . $288 \% 0$ | . 71180 | 3.4699 | . 30096 | 3.3226 | 1.0143 | . 04243 | . 9575 \% |  | 5 |
| 17 | 0 | . 29:337 | .70763 | 3.4203 | . $305 \sim 3$ | 3.2709 | 1.0457 | . 043 rio | . 95630 | 73 | 0 |
|  | 15 | . 29654 | . $\% 0346$ | 3.3722 | . 31051 | 3.2305 | 1.0471 | . 04498 | . 95502 |  | 45 |
|  | 30 | $.300 \% 0$ | . 69929 | 3.3255 | . 31530 | 3.1716 | 1.0485 | . 04628 | . 95372 |  | 30 |
|  | 45 | . 30486 | . 69514 | 3.2801 | . 32010 | 3.1240 | 1.0500 | . 04760 | . 95240 |  | 15 |
| 18 | 0 | . 30902 | . 69098 | 3.2361 | . 32492 | 3.0 \%rir | 1.0515 | . 04894 | . 95106 | 72 | 0 |
|  | 15 | .31316 | . 68684 | $3.193 \%$ | . 32975 | 3.0326 | 1.0530 | . 05030 | . 94970 |  | 5 |
|  | 30 | . 31730 | . $68{ }^{2} 0$ | 3.1515 | . 33459 | 2.9887 | 1.0545 | . 05168 | . 94832 |  | 30 |
|  | 45 | . 32144 | . 67856 | 3.1110 | . 33945 | 2.9459 | 1.0560 | . 05307 | . 94693 |  | 15 |
| 12 | 0 | . 3255 'r | . 6443 | 3.0615 | . 34433 | 2.9042 | $1.05 \sim 6$ | . 05448 | . 94552 | 71 | 0 |
|  | 15 | $.32969$ | . 67031 | 3.0331 | . 34921 | 2.8636 | 1.0592 | . 05591. | . 94409 |  | 45 |
|  | 30 | . 33381 | . 66619 | $2.995 \%$ | . 35412 | 2.8239 | 1.0608 | . 05 T36 | . 94264 |  | 30 |
|  | 45 | . 33192 | . 66208 | 2.9593 | . 35904 | 2.7852 | 1.0625 | . 05882 | . 94118 |  | 15 |
| 20 | 0 | . 34202 | . 65798 | $\cong .9238$ | . 3639 テ | 2.745 | 1.0642 | . 06031 | . 93969 | 70 | 0 |
|  | 15 | .34612 | . 65388 | 2.8892 | . 36832 | 2.7106 | 1.0659 | . 06181 | . 93819 |  | 45 |
|  | 30 | .35021 | . 64979 | 2.8554 | . 37388 | 2.6746 | $1.06{ }^{\prime} 6$ | . 06333 | . 93667 |  | 30 |
|  | 45 | . 35429 | . 64571 | 2.8 .25 | . 3788 ¢ | 2.6395 | 1.0694 | . 06486 | . 93514 |  | 15 |
| 21 | 0 | . 35837 | . 64163 | 2.7904 | . 38386 | 2.6051 | 1.0711 | . 06642 | . 93358 | 69 | 0 |
|  | 15 | . 36244 | . 63 \% 56 | 2.7591 | . 38888 | $2.5 \% 15$ | $1.07 \% 9$ | . 06799 | .93:01 |  | 45 |
|  | 30 | . 36650 | . 63.350 | 2.7285 | . 39391 | 2.5386 | $1.0 \sim 48$ | . 06958 | . 93042 |  | 30 |
|  | 45 | . 3 r056 | . 62944 | 2.6986 | . 39896 | 2.5065 | $1.0 r 66$ | . $0 \% 119$ | . 92881 |  | 15 |
| 22 | 0 | . $3 \sim 461$ | . 62539 | 2.6695 | . 40403 | 2.451 | $1.0 \% 85$ | . 07088 | . $9 \cdot 2 \mathrm{c} 18$ | 68 | 0 |
|  | 15 | . 37865 | . 62135 | 2.6410 | . 40911 | 2. 4443 | 1.0804 | . 01446 | . 92554 |  | 45 |
|  | 30 | . 38268 | . 61732 | 2.6131 | . 41421 | 2.4142 | 1.0824 | . 07612 | . 92388 |  | 30 |
|  | 45 | . 3867 i | . 61329 | 2.5859 | . 41933 | 2.3847 | 1.0844 | . $0 \% \% 80$ | .92220 |  | 15 |
| 22 | 0 | . 39073 | . 6092 r | 2.5593 | . $4244{ }^{\circ}$ | 2.3559 | 1.0864 | . 07950 | . 92050 | 67 |  |
|  | 15 | . 39474 | . $605 \pm 6$ | 2.5333 | . 42963 | $2.32 \% 6$ | 1.0884 | . 08121 | . 91879 |  | 45 |
|  | 30 | . 39875 | 60125 | $2.50 \% 8$ | . 43181 | 2.2998 | 1.0904 | . 08294 | .91706 |  | 30 |
|  | 45 | . 40275 | . 59795 | 2.4809 | . 44001 | 2 2\% ${ }^{2}$ | 1.0925 | . 08469 | . 91531 |  | 15 |
| 24 | 0 | . 40674 | . $593 \geq 6$ | 2.4586 | .44523 | 2.2460 | 1.0946 | . 08645 | . 91355 | 66 | 0 |
|  | 15 | . $4100 \%$ | . 58328 | $\underset{\sim}{2} .4348$ | . $4504{ }^{\circ}$ | 2. 2199 | 1.0968 | . 088.2 | .91176 |  | 45 |
|  | 30 | . 41469 | . 58531 | 2.4114 | . 45553 | 2.1943 | 1.0989 | . 09004 | . 90996 |  | 30 |
|  | 45 | 41866 | . 58134 | 2.3886 | . 46101 | 2.1692 | 1.1011 | . 09186 | . 90814 |  | 15 |
| 25 | 0 | . 42262 | . 5 Tri38 | 2.3662 | . 46631 | 2.1445 | 1.1034 | . 09369 | . 90631 | 65 | 0 |
|  | 15 | . $4265 \%$ | . 57343 | 2.3443 | . 47163 | 2.1203 | 1.1056 | . 09554 | . 90446 |  | 45 |
|  | 30 | . 43051 | . 56949 | 2.3228 | . 4 ¢ 69 r | 2.0965 | $1.10{ }^{\text {r }} 9$ | . 09741 | . 90259 |  | 30 |
|  | 45 | . 43445 | . 56555 | 2.3018 | . 48234 | 2.0732 | 1.1102 | . 09930 | . $900 \%$ |  | 15 |
| $\because 6$ | 0 | . 43337 | . 56163 | 2. 1812 | . 4878 | 2.0503 | 1.1126 | . 10121 | . $898 \% 9$ | 64 | 0 |
|  | 15 | . 44229 | . 55 \%'1 1 | 2. 2610 | . 49314 | $2.02 \% 8$ | 1.1150 | . 10313 | . $8968 \%$ |  | 45 |
|  | 30 | . 41620 | . 55.380 | 2.2412 | . 49858 | 2.0057 | $1.11{ }^{\text {r }} 4$ | . $1050{ }^{\text {r }}$ | . 89493 |  | 36 |
|  | 45 | . 45010 | . 54990 | 2.201r | . 50404 | 1.9840 | 1.1198 | . 10802 | . 89298 |  | 15 |
| 27 | 0 | . 45.399 | . 54601 | 2. 2027 | . 50952 | 1.9026 | 1.1223 | . 10899 | . 89101 | 63 | 0 |
|  | 15 | . 45887 | . 54213 | 2.1840 | . 51503 | 1.9416 | 1.1248 | . 11098 | . 88902 |  | 45 |
|  | 30 | . 46175 | . $538: 5$ | 2.165\% | . $5205 \sim$ | 1.9210 | $1.12{ }^{4} 4$ | . 11299 | . $88 \% 01$ |  | 30 |
|  | 45 | . 46561 | . 53439 | 2.1477 | . 52612 | $1.900 \%$ | 1.1300 | . 11501 | . 88499 |  | 15 |
| 28 | 0 | . 46947 | . 53053 | 2.1300 | . 53171 | $1.880{ }^{\text {f }}$ | 1.1326 | . 11705 | . 88295 | 62 | 0 |
|  | 15 | . 47332 | . 52668 | $2.112 \%$ | . 53132 | 1.8611 | 1:1352 | . 11911 | . 88089 |  | 45 |
|  | 30 | . 48716 | . 52084 | $2.095 \%$ | . $5+295$ | 1.8418 | 1.13\%9 | . 12118 | . $8 \% 88 \%$ |  | 30 |
|  | 45 | . 48099 | . 51901 | 2.0790 | . 51862 | 1.8208 | 1.1406 | . 12327 | . 87673 |  | 15 |
| 29 | 0 | $.48481$ | . 51519 | $2.06{ }^{2} \%$ | . 55131 | 1.8040 | 1.1433 | . 12538 | . 87462 | 61 | 0 |
|  | 15 | $\|.48862\|$ | . 51138 | $\stackrel{2}{2} .0466$ | . 56003 | 1.7856 | 1.1461 | . 12750 | . 87250 |  | 45 |
|  | 30 | . 49242 | . 50 \% 58 | 2.0308 | . $565 \sim$ | 1. ${ }^{1} 665$ | 1.1490 | . 12964 | . 87036 |  | 30 |
|  | 45 | . 49622 | . 50378 | 2.0152 | . $5 \sim 155$ | 1.7496 | 1.1518 | . 13180 | . $868: 0$ |  | 15 |
| 30 | 0 | . 50000 | . 50000 | $\stackrel{2}{2} .0000$ | . 5 \% 735 | $1.73 \geqslant 0$ | 1.1547 | . 1339 | . 86603 | 60 | 0 |
|  |  | Cosine. | Ver. Sin. | Secant. | Cotan. | Tang. | Cosec. | Co-Vers. | Sine. | - | M. |

From $60^{\circ}$ to $75^{\circ}$ read from bottonn oftable upwards.

| - | M. | Sine. | Co-Vers. | $\operatorname{Cos} \theta \mathrm{c}$. | Tang. | Cotan. | Secant. | Ver. Sin. | Cosine. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 0 | . 50000 | . 50000 | 2.0000 | . 57735 | $1.73 \geqslant 0$ | 1.1545 | . 13397 | . 86603 | 60 | 0 |
|  | 15 | 1.50377 | . 49623 | 1.9850 | . 58318 | 1.7147 | 1.1576 | . 13616 | . 86384 |  | 45 |
|  | 30 | . 50754 | . 49246 | 1.9703 | . 58904 | 1.6975 | 1.1606 | . $138: 3$ | . 86163 |  | 30 |
|  | 45 | . 51129 | . 488 \%1 | 1.9558 | . 59494 | 1.6808 | 1.1636 | . 14059 | . 85941 |  | 15 |
| 31 | 0 | . 51504 | . 48496 | 1.9416 | . 60086 | 1.6643 | 1.1666 | . 14283 | . $85 \times 1{ }^{\text {r }}$ | 59 | 0453015 |
|  | 15 | . $518{ }^{\text {mir }}$ | . 48123 | 1.9276 | . 60681 | $1.64 \% 9$ | $1.169 \%$ | . 14509 | . 85491 |  |  |
|  | 30 | . 52250 | . $47 \sim 0$ | 1.9139 | . 61280 | 1.6319 | 1.1728 |  | . 85264 |  |  |
|  | 45 | . $5: 6 \cdot 1$ | . 47389 | 1.9004 | . 61882 | 1.6160 | 1.1760 | . 14965 | . 85035 | 58 |  |
| 32 | 0 | . 52992 | . 46008 | $1.88 \% 1$ | . $6248{ }^{7}$ | 1.6003 | 1.1792 | . 15195 | . 84805 |  | 0 |
|  | 15 | . 533361 | . 46639 | 1.8740 | . 63095 | 1.5849 | 1.1824 | . $1549 \%$ | . 81573 |  | 45 |
|  | 30 | . 53730 | . $462 \% 0$ | 1.8612 | . $6370 \%$ | 1.5697 | $1.185 \sim$ | . 15661 | . 84839 |  | 30 |
|  | 45 | . $5409 \sim$ | . 4590.3 | 1.8485 | . 64322 | 1. 554 | 1.1890 | . 15896 | 84104 | 57 | 15 |
| 33 | 0 | . 54464 | . 45536 | 1.8361 | . 64941 | 1.5399 | 11924 | . 16133 | . $83866^{4}$ |  | 0 |
|  | 15 | . 54899 | . $451 \% 1$ | 1.8238 | . 65563 | 1.5253 | 1.1958 | . 163.1 | . $836 \div 9$ |  | 45 |
|  | 30 | \|. 55194 | . 44806 | 1.8118 | . 66188 | 1.5108 | 1.1992 | . 16611 | . 833889 |  | 30 |
|  | 45 | . $55.55 \%$ | . 44443 | 1.7999 | . 66818 | 1.4966 | 1.202\% | . 16853 | . $8314 \%$ | 56 | 150453015 |
| 34 | 0 | . 55919 | . 44081 | 1.7883 | . 67451 | 1.4826 | 1.2062 | . 17096 | . 82904 |  |  |
|  | 15 | . $56: 880$ | . 43720 | 1.7768 | . 68087 | 1.468 | 1.2098 | . 17341 | . 82659 |  |  |
|  | 30 | . 56611 | . 43359 | 1.7655 | . 68 \% 28 | 1.4550 | 1.2134 | . 1758 r | . 82413 |  |  |
|  | 45 | . 57000 | . 43000 | 1.7544 | . 69372 | 1.4415 | 1.2171 | . $1: 835$ | . 82165 |  |  |
| 35 | 0 | . 57358 | . 42642 | 1.7431 | . 00021 | 1.4281 | 1.2208 | . 1808. | . 81915 | 55 | , |
|  | 15 | . 57715 | . 42285 | 1.73: | . 70673 | 1.4150 | 1.2245 | . 18336 | . 81664 |  | 45 |
|  | 30 | . 58070 | . 41930 | 1.9290 | . 71329 | 1.4019 | 1.2283 | . 18588 | . 81412 |  | 30 |
|  | 45 | . 5812 | . 41575 | 1.7116 | 71990 | 1.3891 | 1.232: | . 18843 | . 8115 \% |  | 15 |
| 36 | 0 | . 5819 | . 41221 | 1.7013 | 72654 | 1.3764 | 1.2361 | . 19098 | . 80902 | 54 | 0 |
|  | 15 | . 59131 | . 40869 | 1.6912 | . 73.323 | 1.3638 | 1.2400 | . 19356 | . 80644 |  | 45 |
|  | 30 | . $5948 ?$ | . 40518 | 1.6812 | . 73996 | 1.3514 | 1.2440 | . 19614 | . 80386 |  | 30 |
|  | 45 | . 59832 | . 40168 | 1.6113 | .74673 | 1.3392 | 1.2480 | . $198 \% 5$ | . $801: 5$ |  | 15 |
| 37 | 0 | . 60181 | . 39819 | 1.6616 | . 75355 | 1.3270 | 1.2521 | . 20136 | . 79864 | 53 | 1545 |
|  | 15 | . 60529 | . 39471 | 1.6521 | . 76042 | 1.3151 | 1.2563 | . 20400 | . 79600 |  |  |
|  | 30 | .608~6 | . 39124 | 1.642 T | . 76733 | 1.3082 | 1. 2605 | . 20665 | . 79335 |  | 30 |
|  | 45 | . 61222 | . $387 \pi 8$ | 1.6334 | . 77428 | 1.2915 | 1.2647 | . 20931 | . 79069 |  | 15 |
| 38 | 0 | . 61566 | . 38134 | 1.6243 | . 78129 | 1.2799 | 1.2690 | . 21199 | . 18801 | 52 | 0 |
|  | 15 | . 61909 | . 38091 | 1.6153 | . 78834 | 1.9685 | 1.2734 | . 21468 | . 78532 |  | 55 |
|  | 30 | . 63251 | . 37749 | 1.6064 | . 79543 | 1.2572 | 1.27 \% 8 | . 21.09 | . 78261 |  | $8^{\text {- }}$ |
|  | 45 | . $6 \cdot 592$ | . 37408 | 1.5976 | . 80358 | 1.2160 | 1.289: | . $2 \geqslant 010$ | . 79988 |  | 15 |
| 39 | 0 | .6*393 | . 37068 | 1.5893 | .809~8 | 1.2349 | 1.9898 | . 22085 | . ${ }^{\prime} 1415$ | 51 |  |
|  | 15 | . 63271 | . 36729 | 1.5805 | . 81703 | 1.2239 | 1.2913 | . 2.2501 | . 21439 |  | 45 |
|  | 30 | . 63608 | . 36392 | $1.5 \% 21$ | .82431 | 1.2131 | 1.2960 | . 22838 | .77162 |  | 30 |
|  | 45 | .633944 | . 36056 | 1.56392 | . 83169 | 1.2004 | $1.300 \%$ | . 23116 | . 68884 | 50 | 15 |
| 40 | 0 | . $642 \sim 9$ | . 35721 | 1.5557 | .883910 | 1.1918 | 1.3054 | .23396 | . 76601 |  | 0 |
|  | 15 | . 64612 | . 35388 | 1.5479 | . 81656 | 1.1812 | 1.3102 | . 2363 | . 76323 |  | 45 |
|  | 30 | . 64945 | . 35055 | 1.5398 | . 85408 | 1.1708 | 1.3151 | . 23959 | . 76041 |  | 30 |
|  | 45 | . 65276 | . 3454 | 1.5330 | . 86165 | 1.1606 | 1.3200 | . $21: 44$ | .75756 |  | 15 |
| 41 | 0 | . 65506 | . 31394 | 1.5212 | . 86939 | 1.1504 | 1.3550 | . 24529 | $.754 \% 1$ | 49 | 0 |
|  | 15 | . 65935 | . 34065 | 1.5166 | . 87698 | 1.1403 | 1.3301 | . 24816 | .55184 |  | 45 |
|  | 30 | . 66202 | . 33738 | 15092 | .884~2 | 1.1303 | 1.3352 | . 25104 | . 74896 |  | 30 |
|  | 45 | . 66588 | . 33412 | 1.5018 | .89253 | 1.1201 | 1.3104 | . 25.394 | . $\% 4606$ |  | 15 |
| 49 | 0 15 | . 66913 | . 33087 | 1.4945 | . 90040 | 1.1106 | 1.3456 | . 25686 | . 24314 | 48 | 0 |
|  | 15 | . 67237 | . 32163 | $1.48 \% 3$ | .90834 | 1.1009 | 1.3509 | . 25978 | - 74023 |  | 45 |
|  | 30 | . 67559 | . 32441 | 1.4802 | .91633 | 1.0913 | 1.356:3 | .262\% | . $73 \% 28$ |  | 30 |
|  | 45 | . 67880 | . 32120 | 1.4732 | .90439 | 1.0818 | 1.3618 | . 26568 | . 78432 | 47 | 15 |
| 43 | 0 | . 65200 | . 31800 | 1.4663 | .93251 | 1.07 .24 | $1.36 \%$ | . 26865 | .73135 |  | 0 |
|  | 15 | . 68518 | . 31482 | 1.4595 | . $940 \% 1$ | 1.0630 | 1.3129 | . 2 ¢16:3 | . $7 \% 8: 3$ |  | 45 |
|  | 30 | . 68835 | . 31165 | 1.4527 | . 94896 | 1.0538 | 1.3\%86 | .2ヶ463 | . 72533 |  | 30 |
|  | 45 | .69151 | . 30849 | 1.4461 | .95\%29 | 1.0446 | $1.381: 3$ | . 2764 | . 72.36 |  | 15 |
| 44 | 0 | . 69466 | . 30534 | 1.4396 | . 96569 | 1.0355 | 1.3902 | . 28066 | . 71934 | 46 | 0 |
|  | 15 | . 69 亿79 | . 30291 | 1.4331 | . 97416 | 1.0206 | 1.3961 | . $283{ }^{\circ} 0$ | . 71630 |  | 453015 |
|  | 80 | . 70091 | . 29909 | 1.4267 | . 98270 | 1.0176 | 1.4020 | . $886 \%$ | . 71395 |  |  |
|  | 45 | . 70401 | . 29599 | 1.4204 | .99131 | 1.0088 | 1.4081 | . 28981 | . 71019 |  | 15 |
| 45 | 0 | . 70711 | . 29289 | 1.4142 | $1.0000^{\circ}$ | 1.0000 | $1.414 *$ | . 29289 | . 70711 | 45 | 0 |
|  |  | Cosine. | Ver. Sin. | Secant. | Cotan. | Tang. | Cosec. | Co-Vers. | Sine. | $\bigcirc$ | M. |

From $45^{\circ}$ to $60^{\circ}$ read from bottom of table upwards.

LOGARETHMEC SHNES，E＇FC．

| Deg． | Sine． | Cosec． | Versin． | Tangent． | Cotan． | Covers． | Secant． | Cosine． | Deg． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | In．Neg． | Infinite | In．Neg． | In．Ner． | Infinite． | 10.00000 | 10.00000 | 10.00000 | 90 |
| 1 | 8.24186 | 11.75814 | 6.18271 | 8.24192 | 11．75808 | 9．99235 | 10.00007 | 9.99993 | 89 |
| 2 | 8.54282 | 11.45718 | 6．78474 | 8.54308 | 114569 | 9.98457 | 10.00026 | 9．599\％4 | 88 |
| 3 | 8.71880 | 11.28120 | 7.13687 | 8.71940 | 11.28060 | 9.97665 | 10.00060 | 9.99940 | $8 \%$ |
| 4 | 8.84358 | 11.15642 | $7.3866 \%$ | 8.84464 | 11.15536 | 9.96860 | 10.00106 | 9.99894 | 86 |
| 5 | 8.94030 | 11.05970 | 7.58039 | 8.94195 | 11．05805 | 9.96040 | 10.00166 | 9.99834 | 85 |
| 6 | 9.01923 | 10.9807 | 7．73863 | 9.02162 | 10.97838 | 9.95205 | 10.00239 | 9．99761 | 84 |
| 7 | 9.08589 | 10.91411 | 7.87238 | 9.08914 | 10.91086 | 9.94356 | 10.00325 | 9．996\％ | 83 |
| 8 | 9.14356 | 10.85644 | $7.988 \% 0$ | $9.14 \% 80$ | $10.85: 20$ | 9.93492 | 10.00425 | $9.995 \%$ | 82 |
| 9 | 9.19433 | $10.8056 \%$ | 8.09032 | 9．19971 | 10．800：9 | 9.92612 | 10.00538 | 9.99462 | 81 |
| 10 | $9.2396{ }^{7}$ | 10.76033 | 8.18162 | 9.24632 | 10．75368 | $9.91 \% 17$ | 10.00665 | 9.99335 | 80 |
| 11 | 9．28060 | 10．71940 | $8 . \therefore 6418$ | 9.28865 | 10．71135 | 9.90805 | 10.00805 | 9.99195 | \％ 9 |
| 12 | 9.31788 | 10．68212 | 8.33950 | 9．33\％ 4 \％ | 10.67253 | 9.8987 | 10.00960 | 9.99040 | \％ |
| 13 | 9．35209 | 10．64 91 | $8.408 \%$ | 9.36336 | 10.63664 | 9.88933 | 10.01128 | 9．988\％ | 7 |
| 14 | 9.38368 | 10.61632 | 8．4\％282 | 9.3967 | 10.60323 | 9．87971 | 10.01310 | 9.98690 | 76 |
| 15 | 9.41300 | 10.58700 | 8.53943 | 9.42805 | 10．5\％195 | 9.86992 | 10.01506 | 9.98494 | \％ |
| 16 | 9.44034 | 10.55966 | 8.58814 | 9.45750 | 10．54250 | 9.85996 | 10.01716 | 9．98こ84 | \％ 4 |
| 17 | 9.46594 | 10.53406 | 8.64043 | 9.48534 | 10.51466 | 9.84981 | 10.01940 | 9.98060 | 73 |
| 18 | 9.48998 | 10.510 \％ | 8．68969 | 9.51178 | 10．488\％ | 9.83947 | 10.02179 | 9.97821 | 72 |
| 19 | 9．51：64 | $10.48 * 36$ | 8．73625 | 9.53697 | 10.46303 | 9.82894 | $10.0: 433$ | 9.97567 | 71 |
| 20 | 9.53405 | 10.46595 | 8．78037 | 9.56107 | 10．43893 | 9.81821 | $10.02 \% 1$ | 9．92299 | \％ 0 |
| 21 | 9.55433 | 10.44567 | 8．82230 | 9.58418 | 10．41582 | 9．80729 | 10.02985 | 9.97015 | 69 |
| 22 | 9.57358 | 10.42642 | 8.86203 | 9.60641 | 10．39359 | 9． 59615 | 10.03283 | $9.96 \uparrow 17$ | 68 |
| 23 | 9.59188 | 10.40812 | 8.90034 | $9.62 \% 85$ | 10．3ヶ215 | 9．78481 | 10.03597 | 9.96403 | 67 |
| 24 | 9.60931 | 10.39069 | $8.936{ }^{\circ} 9$ | 9.64858 | 10.35142 | 9.77325 | 10．0392？ | 9.96073 | 66 |
| 25 | 9.62595 | 10．3ヶ405 | $8.971 r 0$ | $9.668 c^{\sim}$ | 10.33133 | 9．7614¢ | 10．042\％2 | 9．95\％ 28 | 65 |
| 26 | 9.64184 | 10.35816 | 9.00521 | 9.68818 | 10．3118： | 9.54945 | 10.04634 | 9.95366 | 64 |
| 27 | $9.65 \% 05$ | 10.34295 | 9.03 ¢ 40 | 9.70717 | 10．29283 | 9．73\％20 | 10.05012 | 9.94988 | 63 |
| 28 | 9.67161 | 10．3：889 | 9.06838 | 9．7256 | 10．2743：3 | 9．72471 | 10.05407 | 9.94593 | 62 |
| 29 | 9.68557 | 10.31443 | $9.098 \% 3$ | 9．74375 | 10.25635 | 9.71197 | 10.05818 | 9．94182 | 61 |
| 30 | 9.69897 | 10.30103 | 9.12702 | 9．76144 | 10.23856 | 9．6989 | 10.06247 |  | 60 |
| 31 | 9.71184 | 10.28816 | 9.15483 | 9． 78.7 | 10．2：123 | $9.685 \sim 1$ | 10.06693 | 9.9330 T | 59 |
| 32 | 9.72421 | 10.27579 | $9.181 \% 1$ | 9． 995 ¢9 | 10.20421 | 9．6\％ 217 | $10.0 \sim 158$ | 9.92842 | 58 |
| 33 | 9.73611 | 10.26389 | $9.20 \% 11$ | 9.81252 | 10.18748 | 9.65836 | $10.0 \begin{gathered}\text { che }\end{gathered}$ | 9．92359 | ， |
| 34 | 9.74756 | 10.25244 | 9.23290 | 9.82899 | 10.17101 | 9.64425 | 10.08143 | 9.91857 | 56 |
| 35 | 9．75859 | 10.24141 | $9.25 \% 31$ | 9.84523 | $10.154 \%$ | 9.62984 | 10.08664 | 9.91336 | 55 |
| 36 | 9．6692 | 10．230\％8 | 9.28099 | 9.86126 | 10.13874 | 9.61512 | 10.09204 | 9.90796 | 54 |
| 37 | 9．719946 | 10． 2054 | 9.30398 | 9.8 ¢ 711 | 10.12289 | 9.60008 | 10.09765 | 9．90：235 | 53 |
| 38 | 9． 78934 | 10.21066 | 9.32631 | 9.89281 | 10.10719 | $9.584 \% 1$ | 10.10347 | 9.89653 | 52 |
| 39 | 9． 29887 | 10.20113 | 80： | 9.908 | 10.09163 | 9.56900 | 10.10950 | 9.89050 | 51 |
| 40 | $9.8080 \%$ | 10.19193 | 9.36913 | 9.92381 | 10．0～619 | 9.55293 | 10.11575 | 9.88425 | 50 |
| 41 | 9.81694 | 10.18306 | 9.38968 | 9.93916 | 10.06084 | 9.53648 | 10.12222 | $9.87 \% 18$ | 49 |
| 42 | 9.83551 | 10.17449 | 9.40969 | 9.95444 | 10.04556 | 9.51966 | 10.12893 | 9.87107 | 48 |
| 43 | 9.83378 | 10.16622 | 9.42918 | 9.96966 | 10.03034 | 9.50243 | 10.13587 | 9.86413 | 47 |
| 44 | 9.84177 | 10.15823 | 9.44818 | 9.98484 | 10.01516 | 9.48479 | 10.14307 | 9.85693 | 46 |
| 45 | 9.84949 | 10.15052 | $9.466{ }^{1}$ | $\underline{10.00000}$ | 10.00000 | 9.46871 | 10.15052 | 9.84949 | 45 |
|  | Cosine． | Secant． | Covers． | Cotan． | Tangent． | Versin． | Cosec． | Sine． |  |

## MATERIALS.

## THE CHEMLCAL ELEMENTS.

Tha Common Elements (42).

|  | Name. |  | $\begin{aligned} & \text { 耳 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Name. | 过 |  | Name. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al | Aluminum | $2 \% .1$ | F | Fluorine |  | Pd | Palladium | 106. |
| Sb | Antimolly | 120.4 | Au | Gold | 197.2 |  | Phosphorus |  |
| As | Arsenic | 75.1 | H | Hydrogen | 1.01 | Pt | Platinum | 191.9 |
| Ba | Barium | 137.4 | I | Iodine | 126.8 | K | Potassium | 39.1 |
| Bi | Bismuth | 208.1 | $\mathrm{I} \cdot$ | Iridium | 193.1 | Si | Silicon | 28.4 |
| B | Boron | 10.9 | Fe | Iron | 55. | Ag | Silver | 10\%.9 |
| Br | Bromine | 79.9 | Pb | Lead | 206.9 | Na | Sodium | 23. |
| Cd | Cadmium | 111.9 | Li | Lithium | 7.03 | Sr | Strontium | 87.6 |
| Ca | Calcium | 40.1 | Mg | Magnesium | 24.3 |  | Sulphur | 32.1 |
| C | Carbon | 12. | Mn | Manganese | 55. | Sn | Tin | 119. |
| Cl | Chlorine | 35.4 | Hg | Mercury | 200. | Ti | Titaninm | 48.1 |
| Cr | Chromium | 52.1 | Ni | Nickel | 58.7 | W | Tungsten | 184.8 |
| Co | Cobalt | 59. | N | Nitrogen | 14. | Va | Vanadium | 51.4 |
| Cu | Copper | 63.6 | O | Oxygen | 16. | Zı | Zinc | 65.4 |

The atomic weights of many of the elements vary in the decimal place as given by different authorities. The above are the most recent values referred to $\mathrm{O}=16$ and $\mathrm{H}=1.008$. When H is taken as $1, \mathrm{O}=15.8 \%$, and the other figures are diminished proportionately. (See Jour. Am. Chem. Noc., March, 1896.)

## The Rave Filments (2\%).

| Beryllium, Be. | Glucinum, G. | Rubidium, Rb. | Thallium, Tl. |
| :--- | :--- | :--- | :--- |
| Cæsium, CS. | Indium, In. | Ruthenium, Ru. | Thorium, Th. |
| Cerium, Ce. | Lanthanum, La. | Samarium, Sm. | Uranimm, U. |
| Didymium, D. | Molybdenum, Mo. | Scandium, Sc. | Ytterbium, Yr. |
| Erbium, E. | Nobimm, Nb. | Selenium, Se. | Yttrium, Y. |
| Gallium, Ga. | Osmium, Os. | Tantalum, Ta. | Zirconium, Zr. |
| Gerınanium, Ge. | Rhodium, R. | Tellurium, Te. |  |

## SPECEFIC GRAVITY.

The specific gravity of a substance is its weight as compared with the weight of an equal bulk of pure water.

## To find the specific gravity of a substance.

$W=$ weight of body in air'; $w=$ weight of body submerged in water.

$$
\text { Specific gravity }=\frac{W}{W-w}
$$

If the substance be lighter than the water, sink it by means of a heavier substance, and deduct the weight of the heavier substance.
Specific-gravity determinations are usually referred to the standard of the weight of water at $63^{\circ} \mathrm{F} .62 .355 \mathrm{lbs}$. per cubic foot. Some experimenters have used $60^{\circ} \mathrm{F}$. as the standard, and others $32^{\circ}$ and $39.1^{\circ} \mathrm{F}$. There is no general agreement.
Given sp.gr. referred to water at $39.1^{\circ} \mathrm{F}$., to reduce it to the standard of $62^{\circ} \mathrm{F}$. multiply it by 1.00112.
Given sp. gi. referred to water at $62^{\circ} \mathrm{F} . . \mathrm{t}$ f find weight per cubic foot mul. tiply by 62.355 . Given weight per cubic foot, to find sp. gr. multiply by 0.016037 . Given sp. gr., to find wright per cubic inch multiply by .036085.

## Weight and Specific Gravity of Metals.

|  | Specific Gravity. Range according to several Authorities. | Specific Gravity. Approx. Mean Value, used in Calculation of Weight. | Weight per Cubic Foot, lbs. | Weight per Cubic Inch, lbs. |
| :---: | :---: | :---: | :---: | :---: |
| Aluminum. | 2.56 to 2.71 | 2.67 | 166.5 | . 0963 |
| Antimony | 6.66 to 6.86 | 6.6\% | 421.6 | . 2439 |
| Bismuth............... | 9.74 to 9.90 | 9.82 | 612.4 | . 3544 |
|  | 7.8 to 8.6 | $\left\{\begin{array}{l}8.60 \\ 8.40 \\ 8.36 \\ 8.20\end{array}\right.$ | 536.3 <br> 523.8 <br> 521.3 <br> 511.4 | .3103 <br> . 3031 <br> . 3017 <br> . 2959 |
| Bronze $\left\{\begin{array}{l}\text { Copper, } 95 \text { to } 80 \\ \text { Tin, } \\ 5 \text { to } 00\end{array}\right\}$ | 8.52 to 8.96 | 8.853 | 552. | . 3195 |
| Cadmium.................... <br> Calcium | 8.6 to 8.7 | 8.65 | 539. | . 3121 |
| Chromium |  |  |  |  |
| Cobalt.. | 8.5 to 8.6 |  |  |  |
| Gold, pure | 19.245 to 19.361 | 19.258 | 1200.9 | . 6949 |
| Copper. | 8.69 to 8.92 | 8.853 | 552. | . 319.5 |
| Iridium... | 22.38 to 23. |  | 1396. | . $80 \% 6$ |
| Iron, Cast Wrought | 6.85 to 7.48 | 7. 218 | 450. | . 2604 |
| Lead. . ${ }^{\text {a }}$. | 7.4 4 to 7.9 | 7.70 | 480. | . 2159 |
| Manganese. | 11.0r to 11.44 | 11.38 | 709.7 | . 4106 |
| Magnesium............ | 1.69 to $1 . i 5$ | 1.75 | 109. | . 0641 |
| Mercury $\quad\left\{\begin{array}{l}30^{\circ} \\ 60\end{array}\right.$ | 13.60 to 13.62 | 13.62 | 849.3 | . 4915 |
| Mercury............ $\left\{\begin{array}{r}60^{\circ} \\ 2120\end{array}\right.$ | $13.3{ }^{13.58}$ | 13.58 | 846.8 | . 4900 |
| Nickel..................... | $18.3 r^{\text {a }}$ to 13.38 $8.2 \% 9$ to 8.93 | 13.38 | 834.4 | . 4828 |
| Platinum. | 20.33 to 22.07 | 8.8 | 548. | . 31.5 |
| Potassium | 0.865 |  | 1347.0 | . 7758 |
| Silver. Sorliun | 10.4r4 to 10.511 | 10.505 | 655.1 | . 3791 |
| Steel | 7.69* to 7.032+ |  | 489.6 | 2834 |
| Tin..... | 7.291 to 7.409 | ' 7.350 | 458.3 | 265\% |
| Titanium.............. . . | 5.3 |  |  |  |
|  | $\begin{array}{ll} 17 . & \text { to } 17.6 \\ 6.86 & \text { to } 7.20 \end{array}$ | 7.00 | , | 25 |

* Hard and burned.
$\pm$ Very pure and soft. The sp. gr. decreases as the carbon is increased.
In the first column of figures the lowest are usually those of cast metals, which are more or less porous; the highest are of metals finely rolled or drawn into wire.


## Specific Gravity of Liquids at $60^{\circ} \mathrm{F}$.



## Compression of the following Wluids under a Pressure of 15 los. per Square Inch.

Water................ . 00004663

Alcohol............. . 0000216 $|$| Ether................ . 00006158 |
| :--- |
| Mercury........... . . 00000265 |

## The Hydrometer.

The hydrometer is an instrument for determining the density of liquids. It is usually made of glass, and consists of three parts: (1) the upper part, a graduated stem or fine tube of uniform diameter; (2) a bulb, or enlargement of the tube, containing air; and (3) a small bulb at the bottom, containing shot or mercury which causes the instrument to float in a vertical position. The graduations are figures representine either specific gravities, or the numbers of an arbitrary scale, as in Baumés, Twaddell's, Beck's, and other hydrometers.
There is a tendency to discard all hydrometers with arbitrary scales and io use only those which read in terms of the specific gravity directly.

Baume's Hydrometer and Specific Gravities Comparca.

|  | Liquids Heavier than Water, sp. gr'. | Liquids <br> Lighter <br> than <br> Water, <br> sp. gr. |  | Liquids Heavier than Water, sp. gr. | Liquids <br> Lighter <br> than <br> Water, <br> sp. gr: |  | Liquids <br> Heavier than <br> Water, <br> sp. gr. | Liquids <br> Lighter <br> than <br> Water, <br> sp . gr. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.000 |  | 19 | 1.143 | . 912 | 38 | 1.333 | . 839 |
| 1 | 1.007 |  | 20 | 1.152 | . 936 | 39 | 1.345 | . 834 |
| $\stackrel{1}{2}$ | 1.013 |  | 21 | 1.160 | . 930 | 40 | 1.357 | . 830 |
| 3 | 1.020 |  | 22 | 1.169 | . 924 | 41 | 1.369 | .825 |
| 4 | 1.027 |  | 23 | $1.1 \% 8$ | . 918 | 42 | 1.382 | .820 |
| 5 | 1.034 |  | 24 | 1.188 | . 913 | 44 | 1.407 | . 811 |
| 6 | 1.041 |  | 25 | 1.197 | . 907 | 46 | 1.434 | .802 |
| 7 | 1.048 |  | 26 | 1.206 | . 901 | 48 | 1.462 | . 794 |
| 8 | 1.056 |  | $2 \pi$ | 1.216 | . 896 | 50 | 1.490 | . 88 |
| 9 | 1.063 |  | 28 | 1.226 | . 890 | 52 | 1.520 | . 777 |
| 10 | 1.070 | 1.000 | 29 | 1.236 | . 885 | 54 | 1.551 | . 768 |
| 11 | 1.078 | . 993 | 30 | 1.246 | . 880 | 56 | 1.583 | . 760 |
| 12 | 1.086 | . 986 | 31 | 1.256 | . 874 | 58 | 1.617 | . 753 |
| 13 | 1.094 | . 980 | $3 \cdot$ | 1.267 | . 869 | 60 | 1.652 | . 745 |
| 14 | 1.101 | . 973 | 33 | 1.277 | . 864 | 65 | 1.747 |  |
| 15 | 1.109 | . 967 | 34 | 1.288 | . 859 | ro | 1.854 |  |
| 16 | 1.118 | . 960 | 35 | 1.299 | . 854 | 75 | 1.974 |  |
| 17 | 1.126 | . 954 | 36 | 1.310 | . 849 | 76 | 2.000 |  |
| 18 | 1.134 | . 948 | 37 | 1.322 | . 844 |  |  |  |

Specific Gravity and Weight of Wood.

|  | Specific Gravity. | Weight per Foot, lbs. |  | Specific Gra | vity. | Weight Cubic Foot, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alder | 0.56 to 0.80 $\begin{array}{r}\text { Avge. } \\ .68\end{array}$ | 42 | Hornbeam. | .76 | Avge. | 47 |
| Appl | . $\% 3$ to . 79 .r6 | 47 | Juniper | . 56 | . 56 | 35 |
| Ash | . 60 to . 8 t . $\%$ | 45 | Larch | . 56 | . 56 | 35 |
| Bamboo.. | . 31 to . 40 . 35 | 22 | Lignum vitæ | . 65 to 1.33 | 1.00 | 62 |
| Beech.. | . 62 to . 85 .13 | 46 | Limden...... | . 604 |  | :37 |
| Birch | . 56 to . 74 . 65 | 41 | Locust. | . 728 |  | 46 |
| Box, | . 91 to 1.331 .12 | 70 | Manogany. | . 56 to 1.06 | . 81 | 51 |
| Cedar | .49 to . 75 . 62 | 39 | Maple | . 57 to . 79 | . 68 | 43 |
| Cherry. | .61 to . 72.66 | 41 | Mulberry | . 56 to . 90 | . 73 | 46 |
| Chestnut | .46 to . 66 . 56 | 35 | Oak, Live | . 96 to 1.26 | 1.11 | 69 |
| Cork. | .24 ${ }^{2}$ | 15 | " White | . 69 to . 86 | . 77 | 48 |
| Cypress.. | .41 to . 66 . 53 | 33 | " Red. | . 73 to . 75 | . 74 | 46 |
| Dogwood.. | . 66 \% . 66 | 47 | Pine, White.. | . 35 to .55 | . 45 | 28 |
| Ebony . | 1.13 to 1.331 .23 | 76 | " Yellow. | . 46 to . 76 | . 61 | 38 |
| Elm.... | . 55 to .78 . 61 | 38 | Poplar....... | . 38 to . 58 | . 48 | 30 |
| Fir | .48 to . 70 . 59 | 37 | Spruce...... | . 40 to . 50 | . 45 | 28 |
| Gum. | . 84 to 1.00 . 92 | 57 | Sycamore | . 59 to .62 | . 60 | 37 |
| Hackmatack | . 59 . 59 | 37 | Teak. | . 66 to . 98 | . 82 | 51 |
| Hemlock | .36 to . 41 . 38 | 24 | Walnut | . 50 to .67 | . 58 | 36 |
| Hickory | . 69 to 94 . 96 | 48 | Willow | .49 to . 59 | . 54 | 34 |
| Holly. | .i6 .76 | 47 |  |  |  |  |

## Welght and Specific Gravity of Stones, Brick, Cement, etc.



## Specific Gravity and Weight of Gases at Atmospheris Pressure and $32^{\circ} \mathrm{F}$.

(For other temperatures and pressures see pp. 459, 479.)

|  | Density, <br> Air $=1$. | Density, $\mathrm{H}=1$ | Grammes per Litre. | $\begin{aligned} & \text { Lbs. per } \\ & \text { Cu. Ft. } \end{aligned}$ | Cubic Ft. per Lb. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Air | 1.0000 | 14.444 | 1.2931 | .080723 | 12.388 |
| Oxygen, O | 1.1052 | 15.963 | 1.4291 | . 08921 | 11.209 |
| Hydrogen, H | 0.0692 | 1.000 | 0.0895 | . 00559 | 178.931 |
| Nitrogen, N | 0.9701 | 14.012 | 1.2544 | .04831 | 12.7\%0 |
| Carbon monoxide, CO. | 0.96 c 1 | 13.968 | 1.2505 | .07807 | 12.810 |
| Carbon dioxide, $\mathrm{CO}_{2}$. | 1.5197 | 21.950 | 1.9650 | . 132267 | 8.152 |
| Methane, marsh-gas, $\mathrm{CH}_{4}$ | 0.5530 | 7.987 | 0.7150 | . 04464 | 22.429 |
| Eihylene, $\mathrm{C}_{2} \mathrm{H}_{4}$ | 0.9674 | 13.973 | 1.2510 | .0r809 | 12.805 |
| Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$ | 0.898: | 12.913 | 1.1614 | .07251 | 13.792 |
| Ammonia, $\mathrm{NH}_{3}$. | 0.5889 | 8.506 | 0.7615 | . 0455 | 21.036 |
| Water vapor, $\mathrm{H}_{2} \mathrm{O}$ | 0.6218 | 8.981 | 0.8041 | . 05020 | 19.92\% |

## PROPERTENS OF TRYE USEEUK METALS．

Aluminum，A1．－Atomic weight 27．1．Specific gravity 2.6 to 2．7． The lightest of all the useful metals except magnesium．A soft，ductile， malleable metal，of a white color，approaching silver，but with a bluish cast． Very non－corrosive．Tenacity about one third that of wrought－iron．For－ merly a rare metal，but since 1890 its production and use have greatly in－ creased on account of the discovery of cheap processes for reducing it from the ore．Melts at atrout $1160^{\circ} \mathrm{F}$ ．For further description see Aluminum， under Strength of Materials．

Antimony（Stibium），Sb．－At．wt．120．4．Sp．gr．6．7 to 6．8．A brittle metal of a bluish－white color and highly crystalline or laminated structure． Melts at $842^{\circ} \mathrm{F}$ ．Heated in the open air it burns with a bluisll－white flame． Its chief use is for the manufacture of certain alloys，as type－metal（anti－ mony 1，lead 4），britannia（antimony 1，tin 9），and various anti－friction metals（see Alloys）．Cubical expansion by heat from $32^{\circ}$ to $212^{\circ} \mathrm{F}$ ．， 0.0070 ． Specific heat 050 ．

IBismuth，Bi．－At．wt．208：1．Bismuth is of a peculiar light reddish color，highly crystalline，and so britile that it cau readily be pulverized．It melts at $510^{\circ}$ F．，and boils at abont $2: 300^{\circ} \mathrm{F}$ ．Sp．gr． 9.823 at $54^{\circ} \mathrm{F}$ ．，and 10.055 just above the melting－point．Specific heat abont .0301 at ordinary temperatures．Coefficient of cubical expansion from $32^{\circ}$ to $212^{\circ}, 0.0040$ ．Con－ ductivity for heat about $1 / 56$ and for electricity only about $1 / 80$ of that of silver．Its tensile strength is about 6400 lbs ．per square inch．Bismuth ex－ pands in cooling，and Tribe has shown that this expansion does not take place until after solidification．Bismuth is the most diamagnetic element known，a sphere of it being repelled by a magnet．

Cadmiumm，Cd．－At．wt．112．Sp．gr． 8.6 to 8．7．A bluislı－white metal， lustrous，with a fibrous fracture．Melts below $500^{\circ} \mathrm{F}$ ．and volatilizes at about $680^{\circ} \mathrm{F}$ ．It is used as an ingredient in some fusible alloys with lead， tin．and lismuth．Cubical expansion from $32^{\circ}$ to $212^{\circ} \mathrm{F} ., 0.0094$ ．
Copper，Cu．－At．wt．6：3．2．Sp．gr． 8.81 to 8．95．Fuses at abont $190^{\circ} 0^{\circ}$ F．Listinguished from all orher metals by its reddish color．Very ductile and malleable，and its tenacity is next to iron．Tensile strength 20.000 to $30,000 \mathrm{lbs}$ ．per square inch．Heat conductivity $73.6 \%$ of that of silver，and sur perior to that of other metals．Electric conductivity equal to that of gold and silver．Expansion by heat from $3: 2^{\circ}$ to $212^{\circ} \mathrm{F}$ ．， 0.0051 of its volume． Specific heat ．093．（See Copper under Strength of Materials：also Alloys．）
Gold（Aurum），Aen。At．wt．197．2．Sp．gr．，when pure and pressed in a die，19．34．Melts at about $1915^{\circ} \mathrm{F}$ ．The most malleable and ductile of all metals．One ounce Troy may be beaten so as to cover 160 sq ．ft．of surface． The average thickness of golc leaf is $1 / 28: 2000$ of an inch，or 100 sq ．ft．per ounce．One grain may be drawn into a wire 500 ft ．in length．The ductil－ ity is destroyed by the presence of $1 / 2000$ part of lead，bismuth，or antimony． Gold is hardeued by the addition of silver or of copper．In U．S．gold coin there are 90 parts gold and 10 parts of alloy，which is chiefly copper with a little silver．By jewelers the fueness of gold is expressed in carats，pure gold being 24 carats，three fourths fine 18 carats，etc．
耳ridinm．－Iridium is one of the rarer metals．It has a white lustre，re－ sembling that of steel；its hardness is about equal to that of the ruby；in the cold it is quite brittle，but at a white heat it is somewhat malleable．It is one of the Keaviest of metals，having a specitic gravity of $2 火 .38$ ．It is ex－ tremely infusible and almost absolutely inoxidizable．
For uses of iridium，methods of manufacturing it，etc．，see paper by W．D． Dudley on the＂Iridium Industry，＂Trans．A．I．M．E． 1884.
Iron（Ferrum），四 ${ }^{2}$ e．At．wt． 56 ．Sp．g1．：Cast， 6.85 to 7.48 ；Wrought， 7.4 to \％．9．Pure iron is extremely infusible，its melting point being above $3000^{\circ} \mathbf{F}^{\prime}$ ，but its fusibility increases with the addition of carbon，cast iron fus－ ing about $2500^{\circ} \mathrm{F}$ ．Conductivity for heat 11．9，and for electricity 12 to 14.8 ， silver being 100．Expansion in bulk by heat：cast iron ． 0033 ，and wrought iron .0035 ，from $32^{\circ}$ to $2122^{\circ} \mathrm{F}$ ．Specific heat：cast iron ．1298，wrought iron .1138 ， steel 1165 ．Cast iron exposed to continued heat becomes permanently ex－ panded $11 / 2$ to 3 per cent of its length．Grate－bars sliould therefore be allowed about 4 per cent play．（For other properties see Iron and Steel under Strengtlı of Materials．）
Lead（Plumbum），PPo．－At．wt．208．9．Sp．gr． 11.07 to 11.44 by different authorities．Melts at about $625^{\circ} \mathrm{F}$ ．，softens and becomes pasty at about $61 \tau^{\circ} \mathrm{F}$ ．If broken by a sudden blow when just below the melting－point it is quite brittle and the fracture appears crystalline．Lead is very malleable
and ductile, butits tenacity is such that it can be drawn into wire with great difficulty. Tensile strength, 1600 to 2400 lbs . per square inch. Its elasticity is very low, and the metal flows under very slight strain. Lead dissolves to sone extent in pure water, but water containing carbonates or sulphates forms over it a film of insoluble salt which prevents further action.

Magnesium, Mg.-At. wt. "4. Sp. gr. 1.69 to 1.75 . Silver-white, brilliant, malleable, and ductile. It is one of the lightest of metals, weighing only about two thirds as much as aluminum. In the form of filings, wire, or thin ribbons it is highly combustible, burning with a light of dazzling brilliancy, useful for signai-lights and for flash-lights for photographers. It is nearly non-corrosive, a chin film of carbonate of magnesia forming on exposure to damp air, which protects it from further corrosion. It may be alloyed with aluminum, 5 per cent $M g$ added to Al giving about as much increase of strength and hardness as 10 per cent of copper. Cubical expansion by heat 0.0083 , from $32^{\circ}$ to $2120^{\circ} \mathrm{F}$. Melts at $1200^{\circ} \mathrm{F}$. Specific heat . 25.
Manganese, MER.--At. wt. 55. Sp. gr. 7 to 8. The pure metal is not used in the arts, but alloys of manganese and iron, called spiegeleisen when containing below 25 per cent of manganese, and ferro-manganese when containing froll 25 to 90 per cent, are used in the manuf cture of steel. Metallic manganese, when alloyed with iron, oxidizes rapidly in the air, and its func. tion in steel manufactire is to remove the oxygen from the bath of steel whether it exists as oxide of iron or as occluded gas.
Mercury (Hydrargyrum), HI.-At. wt. 199.8. A silver-white metal, liquid at temperatures above- $39^{\circ} \mathrm{F}$., and boils at $680^{\circ} \mathrm{F}$. Unchangeable as gold, silver, and platinum in the atmosphere at ordinary temperatures, but oxidizes to the red oxide when near its boiling-point. Sp. gr.: when liquid 13.58 to 13.59 , when frizen 14.4 to 14.5 . Easily tarnished by sulphur fumes, also by dust, from which it may be freed by straining through a cloth. No metal except iron or platinum should be allowed to touch mercury. The smallest portions of tin, lead, zinc, and even copper to a less extent, cause it to tarnish and lose its perfect liquidity. Coefficient of cubical expansion from $32^{\circ}$ to $212^{\circ}$ F. 0182 ; per deg. .000101 .
Nickel, Ni.-At. wt. 58.3. Sp. gi. 8.27 to 8.93. A silvery-white metal with a strong lustre, not tarnishing on exposure to the air. Ductile, hard, and as tenacious as iron. It is attracted to the magnet and may be made magnetic like iron. Nickel is very difficult of fusion, melting at about $3000^{\circ} \mathrm{F}$. Chiefly used in alloys with copper, as german-silver, nickel-silver, etc., and recently in the manufacture of steel to increase its hardness and strength, also for nickel-plating. Cubical expansion from $32^{\circ}$ to $212^{\circ} \mathrm{F}$., 0.0038 . Specific heat. 109 .

Platinum, Pt.-At. wt. 195. A whitislı steel-gray metal, malleable. very ductile, and as unalterable by ordinary agencies as gold. When fused and refined it is as soft as copper. Sp. gr. :21.15. It is fusible only by the oxyhydrogen blowpipe or in strong electric currents. When combined with iridium it forms an alloy of great hardness, which has been used for gunvents and for standard weights and measures. The most important uses of platimum in the arts are for vessels for chemical laboratories and manufactories, and for the connecting wires in incandescent electric lamps. Cubical expansion from $33^{\circ}$ to $212^{\circ} \mathrm{F} ., 0.002 \tilde{\sim}$, less than that of any other metal except the rare metals, and almost the same as glass.
Silver (Argentum), Ag.-At. wt. 107.7. Sp. gr. 10.1 to 11.1, according to condition and purity. It is the whitest of the metals, very nalleable and ductile, and in hardness intermediate between gold and copper. Nelts at abont $1550^{\circ} \mathrm{F}$. Specific heat .056 . Cubical expansion from $33^{\circ}$ to $212^{\circ} \mathrm{F}$., 0.0058. As a conductor of electricity it is equal to copper. As a conductor of heat it is superior to all other metals.
Tin (Stannum) Sn.-At. wt. 118. Sp. gr. \%.293. White, lustrous, soft, malleable, of little strength, tenacity about 3500 lbs . per square inch. Fuses at $442^{\circ} \mathrm{F}$. Not sensibly volatile when melted at ordinary heats. Heat conductivity 14.5 , electric conductivity 12.4 ; silver being 100 in each case. Expansion of volume by heat .0069 from $3 \%^{\circ}$ to $212^{\circ}$ F. Specific heat. 055 . Its chief uses are for coating of slieet-iron (called in plate) and for making alloys with copper and other metals.

Zine, Zn.-At. wt. 65 . Sp. gr. 7.14. Melts at $780^{\circ}$ F. Volatilizes and burns in the air when melted, with bluish-white fumes of zinc oxide. It is ductile and malleable, but to a much less extent than copper, and its tenacity, about 5000 to 6000 lbs . per square inch, is about one tenth that of wrought iron. It is practically non-corrosive in the atmosphere, a thin film of carbonate of zinc forming upon it. Cubical expansion between $32^{\circ}$ and $212^{\circ} \mathrm{F}$.,

0．0088．Specific heat ．096．Electric conductivity 29 ，heat conductivity 36， silver being 100．Its principal uses are for coating iron surfaces，called ＂galvanizing，＂and for making brass and other alloys．

Table Showing the order of
Malleability，Ductility，Tenacity．Infusibility．

| Gold | Platinum | Iron | Platinum |
| :--- | :--- | :--- | :--- |
| Silver | Silver | Copper | Iron |
| Aluminum | Iron | Aluminum | Copper |
| Copper | Copper | Platinum | Gold |
| Tin | Gold | Silver | Silver |
| I，ead | Aluminum | Zinc | Aluminum |
| Zinc | Zinc | Gold | Zinc |
| Platinum | Tin | Tin | Lead |
| Iron | Lead | Lead | Tin |

## WEIGHT OF RODS，HARS，PLATES，TURES，AND 

Notation：$b=$ breadth，$t=$ thickness，$s=$ side of square，$d=$ external iiameter，$d_{1}=$ internal diameter，all in inches．
Sectional areas ：of square bars $=s^{2}$ ；of flat bars $=b t$ ；of round rods $=$ ．$\% 854 d^{2}$ ；of tubes $=.7854\left(d^{2}-d_{1}{ }^{2}\right)=3.1416\left(d t-t^{2}\right)$ ．
Voluine of 1 foot in length ：of square bars $=12 s^{2}$ ；of flat bars $=12 b t$ ；of round bars $=9.4248 d^{2}$ ；of tuves $=9.4248\left(d^{2}-d_{1}{ }^{2}\right)=37.699\left(d t-t^{2}\right)$ ，in cu．in． Weight per foot length $=$ volume $\times$ weisht per cubic inch of the material． Weight of a sphere $=$ diam．${ }^{3} \times .5236 \times$ weight per clibic inch．

| Material． |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cast iron | 7.218 | 450. | 37.5 | $31 / 8 .{ }^{2}$ | 31／8bt | ． 2604 | 15－16 | $2.454 d^{2}$ | 1363d ${ }^{\text {8 }}$ |
| Wrought Iron | 7.7 | 480. | 40. | $31 / 3{ }^{2}$ | $31136 t$ | ． 2779 |  | $2.618 d^{2}$ | ． $1455 d^{3}$ |
| Steel．．．．．．．．．． | 7.854 | 489.6 |  | $45^{2}$ | $13.40 t$ | ． 2833 | 1.02 | $2.670 \mathrm{~d}^{2}$ | ． $1484 d^{3}$ |
| Copper \＆Bronze $\}$ （copper and tin） | 8.855 | 552. | 46. | $3.833 s^{2}$ | $3.8334 t$ |  |  | 3.011 | ． $1673 d^{3}$ |
| Brass $\left\{\begin{array}{l}65 \text { Copper．．} \\ 35\end{array}\right.$ | 8.393 | 593．2 | 43.6 | 3．633s ${ }^{2}$ | ．6336t | ． 3029 | 1.09 | $2.854 d^{2}$ | ．1580 $d^{3}$ |
|  | 11.38 | \％09．6 | 59.1 | $4.93 s^{2}$ | 4．93bt | ． 4106 | 1.48 | $3.870{ }^{2}$ | ．2150d ${ }^{3}$ |
| Aluminu | 2.67 | 166.5 | 13.9 | $1.16 s^{2}$ | $1.16 b t$ | ． 0963 | 0．347 | $0.908 \mathrm{~d}^{2}$ | ． $0504 d^{3}$ |
| Glass． | 2.62 | 163.4 | 13.6 | $1.13 s^{2}$ | $1.130 t$ | ． 0945 | 0.34 | ｜0．891 ${ }^{2}$ | ． $0495 d^{\text {s }}$ |
| Pine Wood，dry | 0.481 | 1 30.0 |  | ｜0．21s ${ }^{2}$ | 0．21bt | ． 0174 | 1－16 | $0.154 d^{2}$ | ． $0091{ }^{\text {d }}$ |

Weight per cylindrical in．， 1 in ．long，$=$ coefficient of $d^{2}$ in ninth col．$\div 12$ ．
For tubes use the coefficient of $d^{2}$ in ninth column，as for rods，and multiply it into $\left(d^{2}-d_{1}^{2}\right)$ ；or multiply it by $4\left(d t-t^{2}\right)$ ．

For hollow spheres use the coefficient of $d^{3}$ in the last column and multiply it into $\left(d^{3}-d_{1}{ }^{3}\right)$ ．

For hexagons multiply the weight of square bars by 0.866 （short diam．of hexagon＝side of square）．For octagons multiply by 0.8234 ．

## IMEASUURES AND WECGRETS OF VAREOUS MATEERALS（APPROXHILA胃时）。

Brickwork．－Brickwork is estimated by the thousand，and for various thicknesses of wall runs as follows：

81／4－in．wall，or 1 brick in tbickness， 14 bricks per superficial feet．

| $123 / 4{ }^{\text {＂}}$ | ＂ | ＂11／2＂ |  |  | 21 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | ＂ | $2{ }^{2}$ | ＂ | ＂ | 28 | ＂ | 6 | ، |  |
| 2112 | ＂ | ＂21／2＂ | ＂ | ＂ | 35 | ＇6 | ＂ | ＂ | ‘ |

An ordinary brick measures about $81 / 4 \times 4 \times 2$ inches，which is equal to 66 cubic inches，or 26.2 bricks to a cubic foot．The average weight is $41 / 2 \mathrm{lbs}$ ．

Wuel.-A bushel of bituminous coal weighs 76 pounds and contains 2688 cubic inches $=1.554$ cubic feet. 29.47 bushels $=1$ gross ton.

A bushel of coke weighs $4 \hat{0} \mathrm{lbs}$. ( 35 to 42 lbs .).
One acre of bituminous coal contains 1600 tons of 2240 lbs . per foot of thickness of coal worked. 15 to 25 per cent must be deducted for waste in mining.


A bushel of charcoal.-In 1881 the American Charcoal-Iron Workers' Association adopted for use in its official publications for the standard bushel of charcoal $2 \pi 48$ cubic inches, or 20 pounds. A ton of charcoal is to be taken at 2000 pounds. This figure of 20 pounds to the bushel was taken as a fair average of different bushels used throughout the country, and it has since been established by law in some States.

## Ores, Carths, etc.

13 cubic feet of ordinary gold or silver ore, in mine...... $=1$ ton $=2000 \mathrm{lbs}$.
20 " " " broken quartz.................................... $=1$ ton $=2000 \mathrm{lbs}$. 18 feet of gravel in bank
$=1$ ton.
27 cubic feet of gravel when dry...................................................... $=1$ ton.

${ }_{17}{ }^{7}$ " ، clay ........ ........................................................................... $=1$ ton. 1 ton.
Cement.-English Portland, sp. gr. 1.25 to 1.51, per bbl.... 400 to 430 lbs . Rosendale, U. S., a struck bushel .................. 62 to 70 lbs .
Lime.-A struck bushel.... ....................................... 72 to 75 lbs.
Grain. - A struck bushel of wheat $=60 \mathrm{lbs} . ;$ of corn $=56 \mathrm{lbs}$; of oats $=$ 30 lbs .

Salt.-A struck bushel of salt, coarse, Syracuse, N. Y. = 56 lbs.; Turk's Island $=76$ to 80 lbs .

## Weight of Earth Filling.

(From Howe's "Retaining Walls.")
Average weight in lbs. per cubic foot.
Earth, common loam, loose.

$$
72 \text { to } 80
$$

"، "، "، shaken.................................. 82 to 92

Gravel
Sand.......................................................................... 90 to 106
Soft flowing mud............................................... . . 104 to 120
Sand, perfectly wet............................................. 118 to 129
COMMEROLAL SHZES OF IRON BARS.

## Flats.

| Width. | Thickness. | Width. | Thickness. | Width. | Thickness. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | $1 / 8$ to 5/8 | 17/8 | $1 / 2$ to 11/2 | 4 | 14 to 2 |
| \%8 | $1 / 8$ to 3.4 | 2 | 1/8 to $13 / 4$ | 41/2 | 14 to 2 |
| 111 | 18 to $15 / 16$ | $21 / 4$ |  |  |  |
| 118 | 1/8 to 1 | 238 | 1/4 to 118 | $51 / 2$ | 14 to 2 |
| 118 18 | 18 to $11 / 8$ | 216 | $3 / 16$ to $13 / 4$ | 6 | 14 to 2 |
| $13 / 8$ | $1 / 8$ to 118 | 25.8 | 1/4 to $11 / 8$ | $7^{61 / 3}$ | $1 / 4$ to 2 |
| 15 | 1/4 to 134 | 3 | $\begin{aligned} & 1 / 4 \text { to } 1 / 8 \\ & 1 / 4 \end{aligned}$ | $71 / 2$ | 144 to 2 |
| $13 / 4$ | $3 / 16$ to 11/3 | $31 / 8$ | 14 to 2 |  |  |

Rounds： $1 / 4$ to $13 / 8$ inches，advancing by 16 ths，and $13 / 8$ to 5 inches by 8ths．

Squares： $5 / 16$ to $11 / 4$ inches，advancing by 16 ths，and $11 / 4$ to 3 inches by 8 th．
lialf rounds： $7 / 16,1 / 2,5 / 8,11 / 16,3 / 4,1,11 / 8,11 / 4,11 / 2,13 / 4,2$ inches．
Hexagons： $3 / 4$ to $11 / 3$ inches，advancing by 8 ths．
Ovals： $1 / 2 \times 1 / 4,5 / 8 \times 5 / 16,3 / 4 \times 3 / 8,7 / 8 \times 7 / 16$ inch．
Half ovals： $1 / 2 \times 1 / 8,5 / 8 \times 5 / 32,3 / 4 \times 3 / 16,7 / 8 \times 7 / 32,11 / 2 \times 1 / 2,13 \times 5 / 4$ ， $17 / 8 \times 5 / 8$ inch．

Round－edge flats： $11 / 2 \times 1 / 2,13 / 4 \times 5 / 8,17 / 8 \times 5 / 8$ inch．
Bands： $1 / 2$ to $11 / 8$ inches，advancing by 8 ths， 7 to 16 B ．W．gauge．
$11 / 4$ to 5 inches，advancing by 4 ths， 7 to 16 gauge up to 3 inches， 4 to 14 gauge， $31 / 4$ to 5 inches．

## WEIGHTS OF SQUARE AND ROUND RARS OF WROUGHET IRON IN POUNDS PER LINEAL FOOT．

Iron weighing 480 lbs ．per cubic foot．For steel add 2 per cent．

|  |  | ヶペロ <br>  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  | 11／16 | 24.08 | 18.91 | 9／8 | 96.30 | 75.64 |
| 1／16 | ． 013 | ． 010 |  | 25.21 | 19.80 | $7 / 1$ | 98.55 | 77.40 |
|  | ． 053 | ． 041 | 13／16 | 26.37 | 20.71 |  | 100.8 | 79.19 |
| 3／16 | ． 117 | ． 092 | \％／8 | 27.55 | 21.64 | $9 / 16$ | 103.1 | 81.00 |
|  | ． 208 | ． 164 | 15／16 | 28.76 | 22.59 | $5 /$ | 105.5 | 82.83 |
|  | ． 326 | ． 256 |  | 30.00 | 23.56 | 11／16 | 107.8 | 84.69 |
|  | ． 469 | ． 368 | 1／16 | 31.26 | 24.55 |  | 110.2 | 86.56 |
| 7／16 | ． 638 | ． 501 | 1／8 | 32.55 | 25.57 | 13／16 | 112.6 | 88.45 |
| $1 \%$ | ． 833 | ． 654 | $3 / 16$ | 43.87 | ${ }_{9}^{26.60}$ |  | 115.1 | ． 36 |
| 9／16 | 1.055 | ． 828 | 5 | 35.21 | 27.65 | 15／16 | 117.5 | 92.29 |
| 5／8 | 1.302 | 1.023 | 5／16 | 36.58 | 28.73 |  | 120.0 | 94.25 |
| 11／16 | 1.576 | 1.237 | 3／8 | 37.97 | 29.82 | $1 / 8$ | 125.1 | 98．22 |
| $3 / 4$ | 1.875 | 1.473 | 7／16 | 39.39 | 30.94 | 3 | 130.2 | 102.3 |
| 13／16 | 2.201 | 1.728 |  | 40.83 | 3 | 18 | 130.5 | 106.4 110.6 |
|  | 2.552 | 2.004 | $9 / 16$ | 42.30 | 33.23 34.40 | 5 | 146.3 | 114.9 |
| 15／16 | ${ }_{3}^{2.930}$ | 2.301 2.618 | 11／8 | 43.80 45.33 | 34.40 35.60 | 5 | 151.9 | 119.3 |
| $1 / 16$ | 3.333 <br> 3.763 | $\stackrel{2.618}{2.955}$ | 11／16 | 45.33 46.88 | 35.60 36.82 | 78 | 157.6 | 123.7 |
| 1／16 | 3.763 4.219 | 2.955 3.313 | 13／16 | 48.45 | 38.05 | 7 | 163.3 | 128.3 |
| 3／16 | 4.701 | 3.692 | 18／8 | 50.05 | 39.31 | 1／8 | 169.2 | 132.9 |
|  | 5.208 | 4.091 | 15／16 | 51.68 | 40.59 | 14 | 175.2 | 137.6 |
| 5／1 | 5.742 | 4.510 |  | 53.33 | 41.89 | $3 / 8$ | 181.3 | 142.4 |
| $3 / 8$ | 6.302 | 4.950 | 1／16 | 55.01 | 43.21 | 13 | 187.5 | 147.3 |
| $7 / 1$ | 6.888 | 5.410 | $1 / 8$ | 56．72 | 44.55 | 58 | 193.8 | 15．${ }^{\text {2 }}$ |
|  | 7.500 | 5.890 | 3／16 | 58.45 | 45.91 | 34 | 200.2 | 157.2 |
| $9 / 1$ | 8.138 | 6.392 |  | 60.21 | 47.29 |  | 206.7 | 162.4 |
| 5／8 | 8.802 | 6.913 | 5／16 | 61.99 | 48.69 |  | 213.3 | 167.6 |
| 11／1 | 9.492 | 7.455 | 3／8 | 63.80 | 0.11 |  | 226.9 | 178.2 |
| $3 / 4$ | 10.21 | 8.018 | $7 / 16$ | 65.64 | 51.55 |  | 240.8 | 189.2 |
| 13／16 | 10.95 | 8.601 | 120 | 67.50 | 53.01 | $3 / 4$ | 255.2 | 200.4 |
| 7／8 | 11． $\mathrm{T}^{2}$ | 9.204 | $9 / 16$ | 69.39 | 54.50 |  | $2 \pi 0.0$ | 212.1 |
| 15／16 | 12.51 | 9.828 | d | 71.30 | 56.00 |  | 380.8 | $\stackrel{224.0}{236.3}$ |
|  | 13.33 | 10.47 | 11／16 | 73.24 | ${ }_{59.07}$ |  | 316.9 | 248.9 |
| $1 / 8$ | 15.05 | 11.82 | 13／16 | 77.20 | 60.63 | 10 | 333.3 | 261.8 |
| 3／16 | 15.95 | 12.53 | 7／8 | 79.22 | 62.22 |  | 350.2 | 275.1 |
| $1 / 4$ | 16.88 | 13.25 | 15／16 | 81.26 | 63.82 | 12 | 367.5 | 288.6 |
| 5 | 17.83 | 14.00 | ， | 83.33 | 65.45 |  | 385.2 | 302.5 |
|  | 18.80 | 14．77 | 1／16 | 85.43 | 67.10 | 11 | 403.3 | 316.8 |
| $7 / 1$ | 19.80 | 15.55 | 1／8 | 87.55 | 68.76 |  | 421.9 | 331.3 |
|  | 20.83 | 16.36 | $3 / 16$ | 89.70 | 70.45 |  | 440.8 | 346.2 361.4 |
| 9／16 | ${ }_{22}^{21.89}$ | 17.19 18.04 | 5／16 | 91.88 94.08 | 72.16 73.89 | $12^{4 / 4}$ | 480.2 | 37. |

## MATERIALS.


Widths．

| 完 |  <br>  |
| :---: | :---: |
| $\stackrel{\square}{\square}$ |  <br>  |
| \％ |  <br>  |
| ถั่ | कに <br>  |
| 成 |  <br>  |
| \％${ }^{\circ}$ |  <br>  |
| 号 |  <br>  |
| 家 |  <br>  |
| 商 |  <br>  |
| \％ | MK <br>  |
| 今 |  <br>  |
| $\%_{0}^{\circ}$ |  <br>  |
| 啇 | － <br>  |
| 歓 |  <br>  |
| 发 |  <br>  |
| Eio |  <br>  |
|  |  |

Other sizes，－Weight of other sizes can easily be obtained from the above table by means of combinations or divisions． 881.88
B．
Bin

## WEIGITE OF IRON AND STHEL SHEETS. Weights per Square Foot.

(For weights by Decimal Gauge, see page 32.)

| Thickness by Birmingham Gauge. |  |  |  | Thickness by American (Brown and Sharpe's) Gauge. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Gauge. | Thickness in Inches. | Iron. | Steel. | No. of Gauge. | Thickness in Inches. | Iron. | Steel. |
| 0000 | . 454 | 18.16 | 18.52 | 0000 | . 46 | 18.40 | 18.77 |
| 000 | . 425 | 17.00 | 17.34 | 000 | . 4096 | 16.38 | 16.71 |
| 00 0 | . 38 | 15.20 13.60 | 15.50 13.87 | 00 | . 3648 | 14.59 13.00 | 14.88 13.26 |
| 1 | . 3 | 12.00 | 12.24 | 1 | . 2893 | 11.57 | 11.80 |
| 2 | . 284 | 11.36 | 11.59 | 2 | . 2576 | 10.30 | 10.51 |
| 3 | . 259 | 10.36 | 10.5 ก | 3 | . 2294 | 9.18 | 9.36 |
| 4 | . 238 | 9.52 | 9.71 | 4 | . 2043 | 8.17 | 8.34 |
| 5 | . 22 | 8.80 | 8.98 | 5 | . 1819 | 7.28 | 7.42 |
| 6 | . 203 | 8.12 | 8.28 | 6 | . 1620 | 6.48 | 6.61 |
| 7 | . 18 | 7.20 | 7.34 | 7 | . 1443 | 5.77 | 5.89 |
| 8 | . 165 | 6.60 | 6.73 | 8 | . 11285 | 5.14 | 5.24 |
| 9 | . 148 | 5.92 | 6.04 | 9 | . 1144 | 4.58 | 4.67 |
| 10 | . 134 | 5.36 | 5.47 | 10 | . 1019 | 4.08 | 4.16 |
| 11 | . 12 | 4.80 | 4.90 | 11 | . 0907 | 3.63 | 3.70 |
| 12 | . 109 | 4.36 | 4.45 | 12 | . 0808 | 3.23 | 3.30 |
| 13 | . 095 | 3.80 | 3.88 | 13 | . $0 \% 20$ | 2.88 | 2.94 |
| 14 | . 083 | 3.32 | 3.39 | 14 | . 0641 | 2.56 | 2.62 |
| 15 | .072 | 2.88 | 2.94 | 15 | .05\%1 | 2.28 | 2.33 |
| 16 | . 065 | 2.60 | 2.65 | 16 | . 0508 | 2.03 | 2.07 |
| 17 | . 058 | 2.32 | 2.37 | 17 | . 0453 | 1.81 | 1.85 |
| 18 | . 049 | 1.96 | 2.00 | 18 | . 0403 | 1.61 | 1.64 |
| 19 | .042 | 1.68 | 1.71 | 19 | . 0359 | 1.44 | 1.46 |
| 20 | . 035 | 1.40 | 1.43 | 20 | .0320 | 1.28 | 1.31 |
| 21 | . 032 | 1.28 | 1.31 | 21 | . 0285 | 1.14 | 1.16 |
| 22 | . 028 | 1.12 | 1.14 | 22 | . 0253 | 1.01 | 1.03 |
| 23 |  | 1.00 | 1.02 | 23 | . 0226 | . 904 | . 922 |
| 24 | . 022 | . 88 | . 898 | 24 | . 0201 | . 804 | . 820 |
| 25 | . 02 | . 80 | . 816 | 25 | . 0179 | . 716 | . 730 |
| 26 | . 018 | . 72 | . 734 | 26 | . 0159 | . 636 | . 649 |
| 27 | . 016 | . 64 | . 653 | 27 | . 0142 | . 568 | . 579 |
| 28 | . 014 | . 56 | . 571 | 28 | . 0126 | . 504 | . 514 |
| 29 | . 013 | . 52 | . 530 | 29 | . 0113 | . 452 | . 461 |
| 30 | . 012 | . 48 | . 490 | 30 | . 0100 | . 400 | . 408 |
| 31 32 | . 01 | .40 .36 | . 408 | 31 32 | . 0088 | . 356 | .363 .326 |
| 33 | . 008 | . 32 | . 326 | 33 | . 0071 | . 284 | . 290 |
| 34 | . 007 | . 28 | . 286 | 34 | . 0063 | . 252 | . 257 |
| 35 | . 005 | . 20 | . 204 | 35 | . 0056 | . 224 | . 228 |
| Specific gravity |  |  |  |  |  | Iron. Steel. |  |
|  |  |  |  |  |  |  |  |
| Weight per cubic |  |  | oot. | $480 .$ |  | 7.854 489.6 .2833 |  |

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wires should always state the weight per square foot, or the thickness in thousandths of an inch.

$\frac{1}{40.00}$







 ぶ









§ $\infty$


## 0 1 1













## WEEGHISS OF STEEL BLOOMS.

Soft steel. 1 cubic inch $=0.284 \mathrm{lb} .1$ cubic foot $=490.75 \mathrm{lbs}$.

| Sizes. | Lengths. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1^{\prime \prime}$ | $6^{\prime \prime}$ | $12^{\prime \prime}$ | 18" | 24" | $30^{\prime \prime}$ | $36^{\prime \prime}$ | $42^{\prime \prime}$ | 48' | 54' | $60^{\prime \prime}$ | $66^{\prime \prime}$ |
| $12^{\prime \prime} \times 4^{\prime \prime}$11$\times 6$ | 13.63 | 82 | 164 | 245 | 327 | 409 |  |  |  |  |  |  |
|  | 18.75 | 113 | 225 | 338 | 450 | 563 | 675 | ${ }_{788}^{573}$ | 654 900 | 736 1013 | 818 | 900 1238 |
|  | 15.62 | 94 | 188 | 281 | 375 | 469 | 562 | 656 | 750 | 1013 | ${ }^{1125}$ | 1031 |
|  | 12.50 | 75 | 150 | 225 | 300 | 375 | 450 | 525 | 600 | 675 | 750 | ${ }^{1} 825$ |
| 10 | 19.88 | 120 | 239 | 358 | $4 \%$ | 596 | 715 | 835 | 955 | 1074 | 1193 | 1312 |
|  | 17.04 | 102 | 204 | 307 | 409 | 511 | 613 | 716 | 818 | 920 | 102\% | 1125 |
|  | 14.20 | 85 | 176 | 256 | 341 | 426 | 511 | 596 | 682 | 767 | 852 | ${ }^{1937}$ |
|  | 11.36 8.52 | 68 | 136 | 205 | 273 | 341 | 409 | 477 | 546 | 614 | 682 | 750 |
|  |  | 51 | 10: | 153 | 204 | 255 | 306 | 358 | 409 | 460 | 511 | 562 |
|  | 17.89 | 107 | 215 | 322 | 430 | 537 | 644 | 751 | 859 | 966 | 1073 | 1181 |
|  | 15.34 12.78 | 92 | 184 | 276 | 368 | 460 | 552 | 644 | 736 | $8: 8$ | 920 | 1012 |
|  | 12.78 | 76 | 15.3 | 230 | 307 | 383 | 460 | 537 | 614 | 690 | 767 | 844 |
|  |  | 61 | 123 | 184 | 245 | $30 \%$ | 368 | 429 | 490 | 552 | 613 | 674 |
| $8$ | 18.18 | 109 | 218 | 327 | 436 | 545 | 655 | \%64 | 873 | 982 | 1091 | 1200 |
|  | 15.9 ${ }^{13.63}$ | 95 | 191 | 286 | 382 | 477 | 572 | 668 | 763 | 859 | 954 | 1049 |
|  | 13.63 11.36 | 88 | 164 136 | 245 | ${ }_{2}^{327}$ | 409 | 491 | 573 | 654 | ¢ 36 | 818 | 900 |
|  | 11.36 9.09 | $\stackrel{68}{55}$ | 136 | 205 | 273 218 | ${ }_{3}^{371}$ | 409 | 477 | 546 | 614 | 683 | 750 |
|  | 9.05 | 55 | 109 | 164 | 218 | 273 | 327 | $38 \cdot$ | 436 | 491 | 545 | 600 |
| 7 | 13.92 | 83 | 167 | 251 | 334 | 418 | 501 | 585 | 668 | 752 | 835 | 919 |
|  | 11.93 | 72 | 143 | 215 | 286 | 358 | 430 | 501 | 573 | 644 | 716 | 788 |
|  | 9.94 7 7 | 60 | 119 | 179 | 238 | 298 | 358 | 417 | 477 | 536 | 596 | 656 |
|  | 7.95 5.96 | 48 36 | 79 | ${ }_{10}^{143}$ | 191 | 239 | 286 | 334 | 382 | 429 | 4 T | 525 |
|  | 5.96 | 36 | 72 | 10ヶ | 143 | 179 | 214 | 250 | 286 | 322 | 358 | 3.93 |
| $61 / 2 \times 61 / 2$ | 12. | 72 | 144 | 216 | 488 | 360 | 432 | 504 | $5 \sim 6$ | 648 | 720 | 792 |
| 6 | ${ }^{7} 1.38$ | 44 | 89 | 133 | 174 | 221 | 266 | 310 | 354 | 399 | 443 | 487 |
|  | 10.22 | 61 | 123 | 184 | 245 | $30 \sim$ | 368 | 429 | 490 | 551 | 613 | $6{ }^{\text {¢ }} 4$ |
|  | 6.82 | 41 | -88 | 123 | 164 | ${ }_{2} 25$ | 2075 | 358 | 409 | 460 | 511 | 562 |
|  | 5.11 | 31 | 61 | 92 | 123 | 153 | 184 | $\stackrel{214}{ }$ | 327 | 368 | 409 | 450 |
| $51 / 2 \times 51 / 2$ |  |  |  |  |  |  |  |  |  |  |  | \% |
| $5 \times 4$ | 8.5.25 | 52 | 103 | 155 | 206 | 258 | 309 | 361 | 412 | 464 | 515 | 567 |
| $5 \times 5$ | $\begin{array}{r}\text { \% } \\ 7 \\ 7 \\ \hline\end{array}$ | 37 43 | 85 | 112 | 150 170 | 188 213 | 2:35 | $\stackrel{262}{ }$ | 300 | 337 | 375 | 412 |
| $\times 4$ | 5.68 | 34 | 68 | 102 |  | 170 | 256 205 | 293 | 341 273 | ${ }_{30} 38$ | 426 | 469 |
| $41 / 3 \times 416$ |  |  |  |  |  |  |  |  |  | 301 | 341 | 375 |
| $\times 4$ | 5.11 | 35 | 69 | 104 | 138 | 173 | 207 | 242 | 276 | 311 | 345 | 380 |
| $4 \times 4$ | 4.54 | $\underset{2}{21}$ | 55 | 8 | 109 | ${ }_{136}^{153}$ | 184 | 215 | 246 | $2 \pi 6$ | 307 | 338 |
| +31/2 | 3.97 | 24 | 48 | 72 | 96 | 119 | 143 | 167 | 181 | 215 | 2\% 2 | 300 |
| $\times 3$ | 3.40 | 20 | 41 | 61 | 82 | 102 | 122 | 143 | 163 | 184 | 204 | 224 |
| $31 / 2 \times 31 / 2$ | 3.48 | 21 | 42 | 63 | 84 |  |  |  | 167 | 188 | 209 | 230 |
| $\times 3$ $\times 3$ | 3.98 | 18 | 36 | 54 | 72 | 89 | 107 | 125 | 143 | 161 | 179 | 197 |
| $3 \times 3$ | 2.56 | 15 | 31 | 46 | 61 | \% 7 | 92 | 108 | 1:3 | 138 | 154 | 169 |

SHRES ANR WELGHRTS OF S'REUCTURAL SHAPES.
Minimum, Maximum, and Internediate Weights and Dimensions of Carnegie Steel I-EBms.

| $\begin{gathered} \text { Sec- } \\ \text { tion } \\ \text { tudex } \end{gathered}$ | $\begin{aligned} & \text { Depth } \\ & \text { of } \end{aligned}$ Beam. | Weight per Foot. | Flange Width. | Web Thickness. |  | Depth of Beam | $\begin{aligned} & \text { Weight } \\ & \text { per } \\ & \text { Foot. } \end{aligned}$ | Flange Width. | Web Thick. ness. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B1 | ins. | lbs. | ins. | ins. |  | ins. | 11 s . | ins. | ins. |
|  | 24 | 10095 | 7.7$\%$ | 0.75 |  | " | 17.25 | 3.583.45 | 0.480.35 |
|  |  |  |  |  | B19 |  |  |  |  |
| " | " | 95 90 | $\underset{7}{7.13}$ | $\begin{aligned} & 0.69 \\ & 0.63 \end{aligned}$ | " | " | 12.25 | 3.45 | 0.3 .5 0.23 |
| " | " | 85 | \%.07 | 0.57 | B*1 | 5 | $\begin{aligned} & 14.75 \\ & 12.25 \end{aligned}$ | 3.29 | -0.50 |
|  | 20 | 80 | 7.006.40 | 0.50 | " |  |  | 3.15 | 0.36 |
| B3 |  | \% 70 |  | 0.550.650.58 |  | 4 | $\begin{array}{r} 12.25 \\ 9.25 \end{array}$ | 3.00 | 0.21 |
|  | " |  | 6.40 6.33 |  | -63 |  | 10.5 | 2.88 | 0.41 |
| " |  | 60 65 | 6.25 | 0.58 0.50 | " | 4 | 9.58.58.5 | $\stackrel{2}{2.81}$ |  |
| B80 | 18 | 6065 | 6.26 | 0.50 0.72 |  | ": |  |  | $\begin{aligned} & 0.34 \\ & 0.26 \end{aligned}$ |
|  |  |  | 6.186.10 |  | В ${ }^{6} 7$ | " | 7.5 | 2.73 3.66 | $\begin{aligned} & 0.26 \\ & 0.19 \end{aligned}$ |
| " | "6 | 65 60 |  |  |  | 3 | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ |  | 0.36 |
| B7 |  | 60 55 | 6.00 | $\begin{aligned} & 0.56 \\ & 0.46 \end{aligned}$ | B7\% |  |  | 2.42 | 0.26 |
|  | 15 | 55 | 5.75 | 0.46 0.66 | " | " | $\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$ | ${ }_{2} .33$ | 0.17 |
|  |  | 5045 | 5.655.55 | 0.560.46 | B2 | 20 | 100 | 7.28 | 0.880.81 |
| " | " |  |  |  |  | " | 9590 | 7.217.14 |  |
| " | " | 42 | 5.50 | 0.46 0.41 | " |  |  |  | 0.74 |
| B9 | 12 | 3531.5 | $\begin{aligned} & 5.09 \\ & 5.00 \end{aligned}$ | $\begin{aligned} & 0.44 \\ & 0.35 \end{aligned}$ | " | " | 85 | 7.06 |  |
|  |  |  |  |  |  | 15 | 80 | 7.00 |  |
| B11 | 10 | 4035 | 5.10 | 0.75 | B4 |  | 100 | 6.77 | $\begin{aligned} & 0.60 \\ & 1.18 \end{aligned}$ |
|  | " 6 |  | 4.954.81 | 0.600.46 |  | " |  | 6.686.58 | 1.090.99 |
| " |  | 35 30 |  |  |  |  | 90 |  |  |
| 12 | " | 20 | 4.66 | 0.31 | ، | " | 85 | 6.48 | 0.89 |
| B13 | " | 3530 | $\begin{aligned} & 4.77 \\ & 4.61 \end{aligned}$ | 0.730.57 | B5 | " | 80 | 6.40 | 0.810.880.8 |
| '6 |  |  |  |  |  | 15 | 75 | 6.29 |  |
| " | " | 25 | $\begin{aligned} & 4.45 \\ & 4.33 \end{aligned}$ | 0.410.29 |  | " | 70 | 6.19 | 0.78 |
| " |  |  |  |  | " | " | 65 | 6.10 | 0.69 |
| B15 | 8 | 25.5 | 4.27 | 0.54 | " | 12 | 60 | 6.00 | 0.59 |
|  | " | 23 | 4.18 | 0.45 | B8 | 12 | 55 | 5.61 | 0.82 |
| " | " | 20.5 | 4.09 | 0.36 |  | " | 50 | 5.49 | 0.70 |
| " | " | 18 | 4.00 | 027 | " | " | 45 | 5.37 | 0.58 |
| B17 | 7 | 20 | 3.87 | 046 |  | " | 40 | 5.25 | 0.46 |
| " |  | ${ }_{15}^{17.5}$ | 3.76 3.66 | 0.35 0.25 |  |  | B2, B4, | 5, and | B8 are |
|  | $\cdots$ | 15 | 3.66 | 0.25 | $\begin{aligned} & \text { : sp } \\ & \text { "spe } \\ & \text { "sta } \end{aligned}$ | cial ${ }^{\prime}$ ndard. | beams, | he other | 's are |

Sectional area $=$ weight in lbs. per ft. $\div 3.4$, or $\times 0.2011$.
Weight in los. per foot $=$ sectional area $\times$ 3.4.
Maximum and Timimen Weights and Dimensions of Carnegie steel Deck Beams.

| Section Index. | DepthofBeam,inches. | Weight per Foot, lbs. |  | Flange Width. |  | Web <br> Thickness. |  | Increase of Web and Flange per 1b. increase of Weight. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. | Min. | Мах. | Min. | Max. |  |
| B100 | 10 | 27.23 | 35.\%0 | 5.25 | 5.50 | . 38 | . 63 | .0:9 |
| B101 | 9 | 26.00 | 30.00 | 4.91 | 5.07 | . 44 | 57 | .033 |
| B102 | 8 | 20.15 | 24.48 | 5.00 | 5.16 | 31 | . 47 | . 037 |
| B103 | 7 | 18.11 | 23.46 | 4.87 | 5.10 | 31 | . 54 | . 042 |
| B105 | 6 | 15.30 | 18.36 | 4.38 | 4.53 | . 28 | . 43 | . 049 |

## Minimum, Maximum, and Intermediate Weights and Dimensions of Carncgie Standard Channels.

| $\begin{aligned} & \dot{y} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  | $\begin{aligned} & \text { © } \\ & \text { E. } \\ & \text { E } \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | 15 | 55 | 3.82 | 0.82 | C5 | 8 | 16. |  |  |
|  |  | 50 | 3.72 | 0.72 |  | " | 13.75 | $\underset{2}{2.35}$ | 0.31 |
| " | " | 45 | 3.62 | 0.62 | " | " | 11.25 | 2.26 | 0.22 |
| " | " | 40 | 3.52 | 0.52 | C6 | 7 | 19.75 | 2.51 | 0.63 |
| " | "، | 35 | 3.43 | 0.43 |  |  | 1\%.25 | 2.41 | 0.53 |
| C2 | 12 | 43 | 3.40 3.40 | 0.40 | " | " | 14.75 | 2.30 | 0.42 |
| C | 12 | 35 | 3.42 3.30 3. | 0.66 |  | " | 12.25 | $2 \cdot 20$ | 0.32 |
| " | " | 30 | 3.30 | 0.61 | C7 | " | 9.75 | 2.09 | 0.21 |
| " | " | 25 | 3.05 | 0.51 | ${ }^{\text {c/ }}$ | 6 | 15.50 | 2.28 | 0.56 |
| " | " | 20.5 | 2.94 | 0.88 | " | " |  | 2.16 | 0.44 |
| C:3 | 10 | 35 | 3.18 | 0.8 | ، | " | 10.50 | 2.04 1.92 | 0.32 0.20 |
|  |  | 30 | 3.04 | 0.68 | C 8 | 5 | 11.50 | $\stackrel{1}{2.04}$ | 0.48 |
|  | " | 25 20 | ${ }_{2}^{2.89}$ | 0.53 |  | " |  | 1.89 | 0.33 |
| 6 | " | 20 | $\stackrel{2}{2.74}$ | 0.38 | C0 | " | 6.50 | 1.75 | 0.19 |
| C4 | 9 | 15 25 | 2.60 2.82 | 0.24 0.62 | C9 | 4 | 7.25 | 1.73 | 0.33 |
|  | $\because$ | 20 | 2.65 | 0.45 | $\because$ | " | 6.25 | 1.65 | 0.25 |
| $\because$ | " | 15 | 2.49 | 0.29 | C\% |  | 5.25 | 1.58 | 0.18 |
|  | " | 13.25 | 2.43 | 0.23 | \% | " | 6 | 1.60 | 0.36 |
| C5 | 8 | 21.25 | 2.62 | 0.58 | " | " | 4 | 1.50 | 0.26 |
|  | ، | 18.75 | 2.53 | 0.49 |  |  | 4 | 1.41 | 0.17 |

Weights and Dimensions of Carnegie Steel Z-Bars.

|  |  | Size. |  |  | $\begin{aligned} & 5 \\ & ⿹_{0}^{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | Size. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \dot{0} \\ & \stackrel{0}{2} \end{aligned}$ |  |  |  |  | 20 |  |
| Z1 | $3 / 8$ $\% 16$ | $\begin{array}{ll}3 & 1 / 2 \\ 8 & 9\end{array}$ |  | 15.6 18.3 | \%6 | $13 / 16$ | 3 3 5/16 | $51 / 16$ | 26.0 |
| " |  | ${ }^{3} 35 / 8$ | $\begin{array}{lll}6 & 1 / 16 \\ 6 & 1 / 8\end{array}$ | 18.3 21.0 | 27 | 13/16 | 3 $3 / 3 / 8$ | 5 1/8 | 28.3 |
| Z2 | $9 / 16$ | 318 |  | 21.0 | 21 | 5/46 | $\begin{array}{ll}3 & 1 / 16 \\ 3 & 1 / 6\end{array}$ | 4 | 8.2 |
|  | \% | ก 9116 | 6 1/16 | 22.4 | " | 5/16 | $\begin{array}{ll}3 & 1 / 8 \\ 3 & 3 / 16\end{array}$ | 4 4 1/16 | 10.3 |
|  | 11/16 | $35 / 8$ | $61 / 8$ | 28.0 | Z8 | $\tau_{18}$ | 3 3/10 | 4 4 1/8 | -12 4 |
| Z3 |  | $31 \%$ | 6 | $\because 9.3$ |  | $11 / 2$ | ${ }^{3} 11 / 8$ | $41 / 16$ | 13.8 15.8 |
| " | 13/16 | 3 9/16 | ${ }^{6} 1 / 16$ | 32.0 |  | $9 / 16$ | ${ }^{3} 81 / 16$ | $41 / 8$ | 17.8 |
| Z 4 |  | $\begin{array}{ll}3 & 5 / 8 \\ 3 & 1 / 8 \\ 3\end{array}$ | ${ }_{5}^{6} 11 / 8$ | $3+.6$ | Z9 | $5 / 8$ | $31 / 16$ | 4 | 18.9 |
| 24 | 3 | $31 / 4$ 3 3 |  | 11.6 |  | 11/16 | $31 / 8$ | $41 / 16$ | 20.9 |
| " | \%/16 | ${ }_{3}^{3} 51 / 16$ | $51 / 16$ 5 | 13.9 |  | $3 / 4$ | $33 / 16$ | $41 / 8$ | 22.9 |
| Z 5 |  | $31 / 4$ |  | 16.4 | Z10 |  | $2{ }^{2} 11 / 16$ |  | 6.7 |
|  | $9 / 16$ | 35/16 | ${ }_{5}^{5} 1 / 16$ | 20.2 |  | 5/16 | $\stackrel{3}{2}$ | ${ }_{3} 31 / 16$ | 8.4 |
| 76 | 5/8 | 3 3 <br> 3 3 | $51 / 8$ | 22.6 |  | \%/16 | ${ }_{2}^{2} 11 / 16$ |  | 9.7 11.4 |
| Z6 | 11/16 | $31 / 4$ |  | 23.7 | Z12 | 1/2 | 2 $11 / 16$ | ${ }_{3}{ }^{1 / 16}$ | 11.4 12.5 |
|  |  |  |  |  |  | $9 / 16$ | $23 / 4$ | $31 / 16$ | 14.2 |

Pencoyd Steel Angles.
EVEN LEGS.


UNEVEN LEGS.

| Size in Inches. | Approximate Weight in Pounds per Foot for Various Thicknesses in Inches. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{l\|l\|} 1 / 8 \\ 1 / 3 / 185 \end{array}$ | $1 / 45$ | $3 / 8$ | $\begin{aligned} & \tilde{r} / 16 \\ & .4375 \end{aligned}$ | $\begin{aligned} & 1 / 2 \\ & .50 \end{aligned}$ | $\left\|\begin{array}{\|c\|c\|c\|} 9 / 5625 \end{array}\right\|$ | $\begin{aligned} & 5 / 8 \\ & .025 \end{aligned}$ | $11 / 16$ <br> .6875 | 3/4 | $13 / 16$ .8125 | 78 | \| $15 / 16$ | ${ }_{1.00}^{1}$ |
|  |  |  |  |  | 23.0 | 25.8 | 28.7 | 31.7 | 33.8 | 36.6 | 39.5 |  | 45.6 |
| $7 \times 31 / 2$ |  |  |  |  | 17.0 | 19.0 | 21.0 | 23.0 | 24.8 | 26.7 | 28.6 |  | 32.5 |
| $612 \times 4$ |  |  | 12.9 | 15.0 | 17.0 | 19.0 | 21.2 | 23.4 | 25.6 | 27.8 | 29.8 | 31.9 |  |
| $6{ }^{6} \times 4$ |  |  | 12.2 | 14.3 | 16.3 | 18.1 | 20.1 | 22.0 | :23.8 | 25.6 |  | 29.4 |  |
| $6 \times 312$ |  |  | 11.6 |  |  | 17.1 | 19.0 |  |  |  |  |  |  |
| ${ }_{5}^{51 / 2 \times 31 / 2} \times 1$ |  |  | 11.0 |  | 14.6 | 16.2 | 17.9 |  |  |  |  |  |  |
| $\begin{array}{ll}5 \\ \times 1 \\ 5 & \times 31 / 2\end{array}$ |  |  | 10.3 |  | 13.6 | 15.2 | 16.8 |  |  |  |  |  |  |
| $\begin{array}{ll}5 & \times 31 / 2 \\ 5 & \times 3\end{array}$ |  | 8.7 8.2 | 9.7 | 11.2 | 12.8 | 14.2 | 15.7 | 17.2 | 18.7 |  |  |  |  |
| [ ${ }^{\times} \times 14$ |  | 7.7 | 9.1 | 10.5 | 11.9 | 13.3 | 14.7 |  | 17.4 |  |  |  |  |
| $4{ }_{4} \times 12 \times 3192$ |  | 7.7 | 9.1 | 10.5 | 11.9 | 13.3 | 14.7 | 16.0 |  |  |  |  |  |
| $4 \times 3$ <br> $1 \times 2$ |  | 7.1 | 8.5 |  | 11.1 | 12.4 | 13.8 |  |  |  |  |  |  |
| $31 / 2 \times 3$ |  | $9^{6.6}$ | 7.8 | 9.1 | 10.3 | 11.6 | 12.9 |  |  |  |  |  |  |
| $31 / 2 \times 21 / 2$ |  | 4. 56.1 | 7.2 | 8.3 | 9.4 |  |  |  |  |  |  |  |  |
| $31 / 2 \times 2$ |  | 4.5 <br> 4.5 <br> 5.5 <br> 5.5 <br> 15 |  |  | 8.7 |  |  |  |  |  |  |  |  |
| 3 3 3 |  | 4.15 | 5.9 |  | 7.9 |  |  |  |  |  |  |  |  |
| $21 \times 2$ |  | 3.64 .5 | 5.4 | 6.2 |  |  |  |  |  |  |  |  |  |
| $21 / 4 \times 11 / 2$ |  | 3.93 .7 | 4.4 |  |  |  |  |  |  |  |  |  |  |
| $2 \times 11 / 2$ | 2.1 | 2.93 .6 | 4.3 |  |  |  |  |  |  |  |  |  |  |
| $2 \times 11 / 4$ |  | 2.63 .3 | 3.9 |  |  |  |  |  |  |  |  |  |  |

ANGLE-COVERS.

| Size in Inches. | 3/16 | $1 / 4$ | 5/16 | 3/8 | ri/16 | 1/2 | 9/16 | 5/8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4.8 | 5.9 | 7.1 | 8.9 | 9.3 | 10.4 | 11.5 |
| $234 \times 234$ |  | 4.4 | 5.5 | 6.6 | 7.7 | 8.8 |  |  |
| $21 / 2 \times 21 / 2$ | 3.0 | 4.0 | 5.0 | 6.0 | \%.0 |  |  |  |
| $21 / 4 \times 21 / 4$ | $\stackrel{2}{2.6}$ | 3.5 | 4.4 | 5.3 4 4 |  |  |  |  |
| $2 \times 2$ | 2.4 | 3.2 | 4.0 | 4.8 |  |  |  |  |

SQUARE-ROOT ANGLES.

| Size in Inches. | Approximate Weight in Pounds per Foot for Various Thickuesses in Iuches. |  |  |  |  |  |  | Size in Inches. | Approxımate Weight in Pounds per Foot for Various Thicknesses in Inches. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4 | $5 / 16$ .3125 | 3/8 | $7 / 16$ <br> $.43 \%$ | 3/2 | . $9 / 16$ |  |  |  | $3 / 16$ $.18 i 5$ |  | 5/16 | $3 / 6$ 375 |
| $41 \times 4$ $31 / 2 \times 31 / 2$ |  | 7.1 | 9.8 8.5 | 11.4 | 13.0 11.4 |  |  | $2 \times 2$ $13 / 4 \times 13 / 4$ |  |  |  | 4.1 3.6 | 4.9 |
| $3 \times 3$ | 4.9 | 6.1 | 7.2 | 8.3 | 9.4 |  |  | $11 \% \times 1 \%$ |  | 1.80 | 2.4 | 3.0 |  |
| $23 / 4 \times 23 / 4$ | 4.5 | 5.6 | 6. 7 | 7.8 | 8.9 |  |  | $11 / 4 \times 114$ |  | 1.53 | 2.04 | 2.55 |  |
| - $21 / 2 \times 21 / 4$ | 4.1 3.6 | 5.1 4.5 | 6.1 5.4 |  | 8. |  |  | $1 \times 1$ |  | 1.16 |  |  |  |

Pencoyd Tees.


Hencoyd Miscellaneous Shapes.

| Section Number. | Section. | Size in Inches. | Weight per Foot in Pounds. |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 211 \mathrm{MI} \\ & 210 \mathrm{M} \\ & 260 \mathrm{M} \end{aligned}$ | Heavy rails. Floor-bar's. | $\begin{aligned} & 6 \\ & 31 / 16 \times 4 \times 31 / 16 \times 1 / 4 \text { to } 1 / 2 \\ & 1 / 2 \times 6 \times 21 / 2 \times 1 / 4 \text { to } 3 / 8 \end{aligned}$ | $\begin{aligned} & 50.0 \\ & 7.1 \text { to } 14.8 \\ & 9.8 \text { to } 14.7 \end{aligned}$ |

SHZES ANB WEIGHES OF ROOFING MATHRIALS. Corrugated Iron. (The Cincinnati Corrugating Co.) SCHEDULE OF WEIGHTS.

|  | Thickness in decimal parts of an inch. Flat. | Weight per 100 sq. ft. Flat, Painted | Weight per 100 sq. ft. Corrugated and Painted. | Weight per 100 sq. ft. Corrugated and Galvanized. | Weight in oz. per sq.ft. Flat, Galvan ized. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. 28 | . 015625 | $691 / 2 \mathrm{lbs} .$ | $70 \mathrm{lbs},$ | 86 lbs. | $121 / 2 \mathrm{oz} .$ |
| No. ${ }^{24}$ | . 0285 | 100 | 111 ، | 127 " | 1815 |
| No. 2.2 | . 03125 | 125 | 138 | 154 " | $221 / 3$ |
| No. 20 | .0375 | 150 " | 165 " | 182 " | 261 |
| No. 18 | . 05 | 200 | 220 " | 236 | $341 /{ }^{\text {" }}$ |
| No. 16 | .06\% | 250 | 275 | 291 | 4:1\% |

The above table is on the basis of sheets rolled according to the U.S. Standard Sheet-metal Gauge of 1893 (see page 31). It is also on the basis of $242 \times 5 / 8 \mathrm{in}$. corrugations.
To estimate the weight per 100 sq . ft . on the roof when lapped one corrugation at sides and 4 in. at ends, add approximately $121 / 2 \%$ to the weights per 100 sq. ft., respectively, given above.
Corrugations $21 / 2$ in. wide by $1 / 2$ or $5 / 8 \mathrm{in}$. deep are recognized generally as the standard size for both roofing and siding; sheets are manufactured nsually in lengths $6,7,8,9$, and 10 ft . and have a width of $261 / 2$ or 26 in. outside width-ten corrugations, -and will cover 2 ft . when lapped one corrngation at sides.
Ordinary corrugated sheets should have a lap of $11 / 2$ or 2 corrugations sidelap for roofing in order to secure water-tight side seams; if the roof is rather steep $11 / 2$ corrugations will answer.
Some manufacturers make a special high-edge corrugation on sides of sheets (The Cincinnati Corrugating Co ), and thereby are enabled to secure a water-proof side-lap with one corrugation only, thus saving from $6 \%$ to $12 \%$ of material to cover a given area.
The usual width of flat sheets used for making the above corrugated material is $281 / 4$ inches.

No. 28 gauge corrugated iron is generally used for applying to wooden buildings; but for applying to iron framework No. it gauge or heavier slould be adopted.

Few manufacturers are prepared to corrugate heavier than No. 20 gauge, but some have facilities for corrugating as heavy as No. 12 gauge.
Terr feet is the limit in length of corrugated slieets.
Galvanizing sheer iron adds about $21 / 2 \mathrm{oz}$. to its weight per square foot.

## Corrugated Arehes.

For corrngated curved sheets for floor and ceiling construction in fireproof buildings, No. 16,18 , or 20 gauge iron is commonly used, and sheets may be curved from 4 to 10 in . rise-the higher the rise the stronger the arch.

By a series of tests it has been demonstrated that corrugated arches give the nost satisfactory results with a base length not exceeding 6 ft ., and $\frac{\mathrm{E}}{}$ ft, or even less is preferable where great strength is required.
These corrugated arches are usuahly made with $21 / 2 \times 5 / 8 \mathrm{in}$. corrugations, and iu same width of sheet as above mentioned.

## Terra-Cotta.

Porous terra-cotta roofing $3^{\prime \prime}$ thick weighs 16 lbs . per square foot and $\Omega^{\prime \prime}$ thick, 12 lbs. per square foot.

Ceiling made of the same material $2^{\prime \prime}$ thick weighs 11 lbs . per square foot.

## tiles.

Flat tiles $61 / 4^{\prime \prime} \times 1012^{\prime \prime} \times 5 / 8^{\prime \prime}$ weigh from 1480 to 1850 lbs . per square of roof ( 100 square feet), the lap being one-half the length of the tile.
Tiles with grooves and fillets weigh from $\tau 40$ to 925 lbs . per square of roof.
Pan-tiles $141 \Omega^{\prime \prime} \times 1012^{\prime \prime}$ laid $10^{\prime \prime}$ to the weather weigh 850 lbs . per square.

## Tin Plate-Tinned Sheet Steel.

The usual sizes for roofing tin are $14^{\prime \prime} \times 20^{\prime \prime}$ and $20^{\prime \prime} \times 28^{\prime \prime}$. Without allowance for lap or waste, tin roofing weighs from 50 to 62 lbs . per square.
Tin on the roof weighs from 62 to 75 lbs . per square.
Roofing plates or terne plates (steel plates coated with an alloy of tin and lead) are made only in IC and IX thicknesses ( 29 and 27 Birmmgham gauge). "Coke" and "charcoal" tin plates, old names used when iron made with coke and charcoal was used for the tinned plate, are still used in the trade, although steel plates have been substituted for iron: a coke plate now commonly meaning one made of Bessemer steel, and a charcoal plate one of open-hearth steel. The thickness of the tin coating on the plates varies with different "brands."
For valuable information on Tin Roofing, see circu:ars of Merchant \& Co., Philadelphia.
The thickness and weight of tin plates were formerly designated in the trade, both in the United States and England, by letters, such as I.C., D.C., I.X., D.X., etc. "A new system was introduced in the United States in 1898, known as the "American base-box system." The base-box is a package containing $3:, 000$ square inches of plate. The actual boxes used in the trade contain $60,1: 0$, or 240 sheets, according to the size. The number of square inches in any given box dıvided by 32,000 is known as the "box ratio." This ratio multiplied by the weight or price of the base-box gives the weight or price of the given box. Thus the ratio of a box of 120 sheets $14 \times 20 \mathrm{in}$. is $33,600 \div 32,000=1.05$, and the price at $\$ 3.00$ base is $\$ 3.00 \times 1.05=\$ 3.15$. The following tables are furnished by the American Tin Plate Co., Chicago, In.

## Comparison of Ganges and Weights of 'rin Plates.

(Based on U.S. Standard Sheet-metal Gauge.)

## AMERICAN BASE-BOX.

( $32,000 \mathrm{sq.iu}$.)
Weight
55 lbs.
Gauge.

| 55 lbs . | No. 38.00 |
| :---: | :---: |
| 60 | " $36 . \%$ |
| 65 | " 35.64 |
| 70 | " 34.92 |
| \% 5 | " 34.20 |
| 80 " | " 33.48 |
| 85 | " 3:. 16 |
| 90 | " 32.04 |
| 95 | " 31.32 |
| 100 | " 30.80 |
| 110 | " ${ }^{6} 30.08$ |
| 130 | " 28.64 |
| 140 " | " 27.92 |
| 160 " | " 26.48 |
| 180 | " 25.5.3 |
| 200 | " 24.80 |
| 220 | " 21.08 |
| 240 |  |
| 260 | " 22.64 |
| 280 | " 21.92 |
| 140 |  |
| 180 " | " 25.52 |
| 2:0 | " 24.08 |
| 240 | " 23.36 |
| 280 | " 21.92 |

ENGLISH BASE-BOX.
( $31,360 \mathrm{sq}$. in.)

| Gauge. | Weight. |
| :---: | :---: |
| No. 38 | .44 libs. |
| 37.00 | 57.84 |
| 36.00 | 61.24 |
| 35.00. | 68.05 |
| 34.00. | \%4.85) " |
| 33.24. | $80.00 \times$ |
| 32.50. | 85.00 " |
| 31.7\%. | 90.00 " |
| 31.04. | 95.00 " |
| 30.65. | 100.00 " I.C. |
| 30.06 . | 108.00 " I.C. |
| 28.74. | 126.00 " I X.L |
| 28.00. | 136.00 "، I.X. |
| 26.46 | $157.00{ }^{\text {c }}$ I. 2 X . |
| 25.46. | 175.00 " I. 3X. |
| 24.68. | $199.00 \times$ I. 4X. |
| 23.91. | 2:0.00 " I 5x. |
| 23.14. | 241.00 " I. 6X. |
| 22.37. | 262.00 " I. $\sim$ X. |
| 21.60 | 283.00 " I.8X. |
| 27.86 | 139.00 " D.C. |
| 25.38. | 180.00 " D.X. |
| 24.24. | 211.00 " D. 2 X |
| 23.12. | 2 2 2.00 " D. 3 |
|  | 273.00 " D. 4 X |

American Packages 'in Plate.

| Inches Wide. | Length. | Sheets per Box | Inches Wide. | Length. | Sheets per Box |
| :---: | :---: | :---: | :---: | :---: | :---: |
| to $163 / 8$ | Square. | 240 | 12 "1834 | $171 / 4$ and longer. | 120 |
|  | Square. | 120 | 13 " 133 | To 16 int long, incl. | 240 |
| 26 "، 30 | Square. | 60 | 13 to $133 / 4$ | $161 / 4$ and longer. | 120 |
|  | All lengths. | ${ }_{2} 240$ | $\begin{array}{ll}14 & \text { " } 143 \\ 14\end{array}$ | To 15 in. long, incl. | 240 |
| 11 " 1134 | 181/4 and longer. | $\stackrel{240}{120}$ |  | $151 / 4$ and longer. Ail lengths. | 120 |
| 12 "123/4 | To $1 \%$ in. long, incl. | 240 | ${ }^{26}$ " $30^{\text {t }}$ | All lengths. | 60 |

Small sizes of light base weights will be packed in double boxes.

Slate.
Number and superficial area of slate required for one square of roof.
( 1 square $=100$ square feet.)

| $\begin{gathered} \text { Dimensions } \\ \text { in } \\ \text { Inches. } \end{gathered}$ | Number per Square. | Superficial Area in Sq. Ft. | Dimensions ill Inches. | Number per Square. | Superficial Area in Sq. Ft. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 12$ | 533 | 267 | $12 \times 18$ | 160 | 240 |
| $7 \times 12$ | 457 |  | $10 \times 20$ | 169 | 235 |
| $8 \times 12$ | 400 |  | $11 \times 20$ | 154 |  |
| $9 \times 12$ | 355 |  | $12 \times 20$ | 141 |  |
| r $\times 14$ | $3{ }^{3} 4$ | 254 | $14 \times 20$ | 121 |  |
| $8 \times 14$ | 327 | ... ......... | $16 \times 20$ | 137 |  |
| $9 \times 14$ | 291 |  | $12 \times 22$ | 126 | 231 |
| $10 \times 14$ | 261 |  | $14 \times 22$ | 108 |  |
| $8 \times 16$ | ${ }^{27 \%}$ | 246 | $12 \times 24$ | 114 |  |
| $8 \times 16$ $10 \times 16$ | 246 221 |  | 14×24 | 98 86 |  |
| $10 \times 16$ $9 \times 18$ | 213 | 240 | $16 \times 21$ | 89 | 225 |
| $10 \times 18$ | 192 |  | $16 \times 26$ | 78 |  |

As slate is usually laid, the number of square feet of roof covered by one slate can be obtained from the following formula:
$\frac{\text { width } \times(\text { length }-3 \text { inches) }}{288}=$ the number of square feet of roof covered.
Weight of slate of varlous lengths and thicknesses required for one square of roof:

| Length in Inches. | Weight in Pounds per Square for the Thickness. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 / 8^{\prime \prime}$ | 3-16" | $1 / 4^{\prime \prime}$ | $3 / 8^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $5 / 8^{\prime \prime}$ | $34^{\prime \prime}$ | $1^{\prime \prime}$ |
| 12 | 483 | 724 | 967 | 1450 | 1936 | 2419 | 2902 | $38 \% 2$ |
| 14 | 460 | 688 | 920 |  |  | 2301 |  | 3683 |
| 16 | 445 | 667 | 890 | 1336 | 1784 | $2 \div 9$ | 2670 | 3567 |
| 18 | 434 | 650 | 869 | 1303 | 1740 | 2174 | 2607 | 3480 |
| 20 | 425 | 6.37 | 851 | 1276 | 1704 | 2129 | 2553 | 3408 |
| 22 | 418 | 626 | 836 | 1254 | $16 \% 5$ | 2093 | 2508 | 3350 |
| 24 | 412 | 61.4 | 825 | 1238 | 1653 | 2066 | 2478 | 3306 |
| 26 | $40 \%$ | 610 | 815 | 12:2 | 1631 | 2039 | 2445 | 3263 |

The weights given above are based on the number of slate required for one square of roof, taking the weight of a cubic foot of slate at 175 pounds.

## Pine Shingles.

Number and weight of pine shingles required to cover one square of roof:

| Number of Inches Fxposed to Weather. | Number of Shingles per Scuare of Roof. | Weight in Pounds of Shingle on One-square of Roofs. | Remarks. |
| :---: | :---: | :---: | :---: |
|  | 900 | 216 | The number of shingles per square is |
| 41/2 | 800 | 192 | for common gable-roofs. For hip- |
| 5 | 720 | 173 | roofs add five per cent. to these figures. |
| $51 / 2$ | 655 | 157 | The weights per square are based on |
| 6 | 600 | 144 | the number per square. |

## Skylight Glass.

The weights of various sizes and thicknesses of fluted or rough plate-glass required for one square of roof.

| Dimensions in <br> Inches. | Thickness in <br> Inclies. | Area <br> in Square Feet. | Weight in Lbs. per <br> Square of Roof. |
| :---: | :---: | :---: | :---: |
|  | $3-16$ | 3.997 | 250 |
|  | $1 / 4$ | 6.246 | 350 |
| $20 \times 100$ | $3 / 8$ | 13.880 | 500 |
| $94 \times 156$ | $1 / 2$ | 101.768 | 700 |

In the above table no allowance is made for lap.
If ordinary window-glass is used, single thick glass (about 1-16") will weigh about 82 lbs. per square, and donble thick glass (about $1 / 8^{\prime \prime}$ ) will weigh about 164 lbs . per square, no allowance being made for lap. A box of ordinary window-glass contains as nearly 50 square feet as the size of the panes will admit of. Panes of any size are made to order by the manufacturers, but a great variety of sizes are usually kept in stock, ranging from $6 \times 8$ inches to $36 \times 60$ inches.

## APRROXIMATE WEIGHTSS OF VARIOUS ROOF COVEHEINGS.

For preliminary estimates the weights of varions roof coverings may be taken as tabulated below (a square of roof $=10 \mathrm{ft}$. square $=100 \mathrm{sq}$. ft. ):

Name.
Cast-iron plates ( $3 / 8^{\prime \prime}$ thick)
Copper. .............................................. 80-125
Felt and asphalt
Felt and gravel .............................................. 100
Iron, corrugated......................................... . $800-1000$
Iron, galvanized, flat.................................. 100-375
Lath and plaster. .... ...................................... 100- 350
$\begin{array}{ll}\text { Sheathing, pine, } .^{\prime \prime} \text { thick yellow, no.......... } & \text { 900-1000 } \\ 300\end{array}$
Spruce, $1^{\prime \prime}$ thick... " southeru.. 400
Sheathing, chestnut or maple, 1, " hick....... 200
Sheet iron (1-16" hickory, or oak, $1^{\prime \prime}$ thick.... 500
400
Sheet iron (1-16," thick)...................... ${ }_{66}{ }_{600}^{500}$
Shingles, pine.................................. 500

200
Sheet lead. $2-16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ thick)............ $250-700$
Thatch................................................... 500-800
Tin.......................................................... 650
Tiles, flat.................................................. 70-125
"، (grooves and fillets).............................. $1500-2000$
". pan.............. $100-1000$
" with mortar................................. 1000
Zinc.
with mortar... ............................. $2000-3000$
Approximate Loads per Square Foot for Roofs of Spans under 75 Feet, Hincluding Weight of Truss.
(Carnegie Steel Co.)
Roof covered with corrugated sheets, unboarded......... 8 lbs .
Roof covered with corrugated sheets, ou boards.
11 "
Roof covered with slate, on laths
Same, on boards, $11 / 4$ in. thick................................................. 13 . 16 "
Roof covered with shingles, on laths..................................... 16 " 10 "
Add to above if plastered below rafters............................... 10 "
Snow, light, weiglis per cubic foot......... ...................... to 10 " 12
For spans over' 75 feet add 4 lbs. to the above loads per square foot.
It is customary to add 30 lbs . per square foot to the above for snow and wind when separate calculations are not made.

WEIGHTE OF CAST-HRON PIPES ORE COLUIINS.
In Lbs. per Lineal root.
Cast iron $=450 \mathrm{lbs}$. per cubic foot.


The weight of the two flanges may be reckoned $=$ weight of one foot

## WEIGHTS OF CAST-IRON PIPE TO LAY 12 HEET LENGTH.

Weights are Gross Weights, including Hub.
(Calculated by F. H. Lewis.)

| Thickness. |  | Inside Diameter. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. | Equiv. Decinals. | $4^{\prime \prime}$ | $6^{\prime \prime}$ | $8^{\prime \prime}$ | $10^{\prime \prime}$ | $12^{\prime \prime}$ | 14" | $16^{\prime \prime}$ | $18^{\prime \prime}$ | $20^{\prime \prime}$ |
| 13883: | . 375 | 209 | 304 | 400 |  |  |  |  |  |  |
| 7-16 | .43\% 5 | ${ }_{2} 28$ | 3.31 | 435 |  |  |  |  |  |  |
| 15-32 | . 4687 | 266 | ${ }_{386}$ | 505 | 581 | 692 | 804 |  |  |  |
| 112 | . 5 | 286 | 414 | 541 | 668 | 795 | 922 | 1050 | 1177 |  |
| 17-32 | . 53125 | 306 | 442 | 5.7 | 712 | 846 | 983 | 1118 | 1253 |  |
| 9-16 | . 5625 | $3: 7$ | 470 | 613 | 756 | 899 | 1043 | 1186 | $13: 9$ |  |
| 19-32 | . 59335 |  | 498 | 649 | 801 | 951 | 1103 | 1254 | 1405 |  |
| ${ }_{11}^{5 / 8}$ | . 685 |  |  | 686 | 845 | 1003 | 1163 | 1322 | 1481 |  |
| 11-16 | . 6875 |  |  |  | 935 | 1110 | 1285 | 1460 | 1635 | 1810 |
| $1{ }^{3}-16$ | . 8125 |  |  |  | 1026 | 1216 | 1408 1531 | 1598 | 1789 1945 | 1980 2152 |
|  | . 875 |  |  |  |  | 14324 | 15031 | 1738 | 1945 |  |
| 15-16 | . 9375 |  |  |  |  | 1432 | 178 | 1879 | $\stackrel{2101}{2259}$ | ${ }_{2}^{2324}$ |
| 1 |  |  |  |  |  |  | 1909 | 2163 | 2418 | $\xrightarrow{2498}$ |
| $11 / 8$ | 1.125 |  |  |  |  |  |  |  | 2738 | 2672 3024 |
| 114 | 1.25 |  |  |  |  |  |  |  | 3062 | :3330 |
| 13/8 | 1.375 |  |  |  |  |  |  |  | 3389 | 3\%39 |

Thickness.

| Inches. | Equiv. Decimals. |
| :---: | :---: |
| $5 / 8$ | . 625 |
| 11-16 | . 6875 |
| $3 / 4$ | . 75 |
| 13-16 | . 8125 |
| 7/8 | . 875 |
| 15-16 | . 9375 |
| 1 | 1. |
| 11/8 | 1.125 |
| $11 / 4$ | 1.25 |
| 138 | 1.375 |
| 11.2 | 1.5 |
| $15 / 8$ | 1.625 |
| $13 / 4$ | 1.75 |
| 17\% | 1.875 |
| 2 | 2. |
| $21 / 4$ | 2.25 |
| 21. | 2.5 |
| 234 | 2.75 |

Inside Diameter.

| $22^{\prime \prime}$ | $24^{\prime \prime}$ | $2 \pi^{\prime \prime}$ | $30^{\prime \prime}$ | $33{ }^{\prime \prime}$ | $36^{\prime \prime}$ | 42' | $48^{\prime \prime}$ | $60^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1799 |  |  |  |  |  |  |  |  |
| 1985 | 2160 | 2422 |  |  |  |  |  |  |
| 2171 | 2362 | 2648 | 2934 | 3221 | 3507 |  |  |  |
| 2359 | 2565 | 2875 | 3186 | 3496 | 3806 | 4426 |  |  |
| ${ }_{2}^{2} 47$ | $\stackrel{2769}{ }$ | 3103 | ${ }_{3}^{3137}$ | 3771 | 4105 | 4773 | 5442 |  |
| $273 \%$ | 2975 | 3332 | 3690 | 4048 | 4406 | 512: | 5839 |  |
| 2927 | 3180 | 3562 | 3942 | 43:25 | 4708 | 5412 | 6236 |  |
| 3310 | 3598 | 4027 | 4456 | 4886 | 5316 | 6176 | \%034 |  |
| \|3698 | 4016 | 4492 | $49 \% 0$ | 5447 | 59:4 | 6880 | 7833 | 974\% |
|  | 4439 |  |  | 6015 | 6540 | \% 591 | 8640 | $10 \% 40$ |
|  |  | 5439 | 6012 | 6584 | 7158 | 8303 | $944 \%$ | 11738 |
|  |  |  | 6539 | 7159 | 7782 | 90:32 | 10260 |  |
|  |  |  |  | 7\%37 | 8405 | 9742 10468 | 11076 | 13750 |
|  |  |  |  |  |  | 11197 | ${ }_{12725}^{11898}$ | 14762 $157 \% 6$ |
|  |  |  |  |  |  |  | 14385 | 17821 |
|  |  |  |  |  |  |  |  | 19880 |
|  | . |  |  |  |  |  |  | 21956 |

## CAST-FIEON PIPE FITTINGE. Approximate Weight.

(Addyston Pipe and Steel Co., Cincinnati, Ohio.)

| Size in Inches. | Weight in Lbs. | Size in <br> Inches. | Weight in Lbs | size in <br> Inches. | Weight in Lbs. | Size in Inches. | Weight in Lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CROSSES. |  | TEES. |  | SLEEVES. |  | REDUCERS. |  |
| 2 | 40 | $8 \times 4$ | 220 | 2 | 10 | $8 \times 3$ | 116 |
| 3 | 110 | $8 \times 3$ | 220 | 3 | 25 | $10 \times 8$ | 21: |
| $3 \times 2$ | 90 | 10 | 390 | 4 | 45 | $10 \times 6$ | 170 |
| 4 | 120 | $10 \times 8$ | 330 | 6 | 6.5 | $10 \times 4$ | 160 |
| $4 \times 3$ | 114 | $10 \times 6$ | 370 | 8 | 80 | $12 \times 10$ | $3: 2$ |
| $4 \times 2$ | 90 | $10 \times 4$ | 350 | 10 | 140 | $1 \because \times 8$ | 250 |
| 6 | $\mathfrak{2 0 0}$ | $10 \times 3$ | 310 | 12 | 190 | $12 \times 6$ | 250 |
| $6 \times 4$ | 160 | 1: | 600 | 14 | 208 | $12 \times 4$ | 250 |
| $6 \times 3$ | 160 | $12 \times 10$ | 555 | 16 | 350 | $14 \times 12$ | $4 \% 5$ |
| 8 | 325 | $12 \times 8$ | 515 | 18 | 375 | $14 \times 10$ | 440 |
| $8 \times 6$ | 280 | $12 \times 6$ | 550 | 20 | 500 | $14 \times 8$ | 390 |
| $8 \times 4$ | 265 | $12 \times 4$ | 525 | 24 | \%10 | $14 \times 6$ | 285 |
| $8 \times 3$ | 2.5 | $14 \times 12$ | 650 | 30 | 965 | $16 \times 18$ | 475 |
| 10 | 575 | $14 \times 10$ | 650 | 36 | 1200 | $16 \times 10$ | 435 |
| $10 \times 8$ $10 \times 6$ | 415 450 | $14 \times 8$ $14 \times 6$ | 575 545 | $90^{\circ}$ ELBOWS. |  | $20 \times 16$ $60 \times 14$ | 690 |
| $10 \times 4$ | 390 | 14×6 | 545 | - | 14 | $10 \times 14$ $20 \times 12$ | 575 |
| $10 \times 3$ | 350 | $14 \times 3$ | 490 | 3 | 34 | $20 \times 8$ | 400 |
| 12 | 740 | 16 | 790 | 4 | 55 | $24 \times 20$ | 990 |
| $12 \times 10$ | 650 | $16 \times 14$ | 850 | 6 | 120 | $30 \times 24$ | 1305 |
| $12 \times 8$ | 620 | $16 \times 12$ | 850 | 8 | 150 | $30 \times 18$ | 1385 |
| $12 \times 6$ | 540 | $16 \times 10$ | 850 | 10 | 260 | $36 \times 30$ | 1730 |
| $12 \times 4$ | 525 | $16 \times 8$ | 755 | 12 | 310 | ANGLE REDUCERS FOR GAS. |  |
| $12 \times 3$ | 495 | $16 \times 6$ | 680 | 14 | 450 |  |  |
| $14 \times 10$ | 750 | $16 \times 4$ | 655 | 16 | 660 |  |  |
| $14 \times 8$ | 635 | 18 | 1235 | 18 | 850 | $6 \times 4$ | 95 |
| $14 \times 6$ | 570 | 20 | $14 \% 5$ | 20 | 900 | $6 \times 3$ | 70 |
| 16 | 1100 | $20 \times 16$ | 1115 | $\stackrel{2}{4}$ | 1400 | 5 PIPES. |  |
| $16 \times 14$ | 10:0 | $20 \times 12$ | 1025 | 30 | 3000 |  |  |
| $16 \times 12$ | 1000 | $20 \times 10$ | 1090 | $1 / 8$ or $45^{\circ}$ BENDS. |  | 4 | 105 |
| $16 \times 120$ | 1010 885 | $20 \times 8$ | 900 |  |  | U | 190 |
| $16 \times 8$ | rion | $20 \times 6$ $20 \times 4$ | 875 845 | 3 | 30 70 | PLUGS. |  |
| $16 \times 4$ | 650 | $20 \times 10$ | 1465 | 6 | 95 | 2 | 3 |
| 18 | 1560 | $24 \times 10$ | 2000 | 8 | 150 | 3 | 10 |
| 20 | 1790 | $24 \times 12$ | 1425 | 10 | 200 |  | 10 |
| $20 \times 12$ | 1350 | $24 \times 8$ | $13 \% 5$ | 12 | 290 | 6 | 15 |
| $20 \times 10$ | 1225 | $24 \times 6$ | 1450 | 16 | 510 | 8 | 30 |
| $20 \times 8$ | 1000 | 30 | 30:5 | 18 | $\stackrel{580}{ }$ | 10 | 46 |
| $20 \times 6$ | 1000 | $30 \times 24$ | 2640 | 20 | 780 | 12 | 66 |
| $20 \times 4$ | 1000 | $30 \times 20$ | 2200 | 24 | 1425 | 14 | 90 |
| 24 | 2400 | $30 \times 12$ | 2035 | 30 | 2000 | 16 | 100 |
| $24 \times 20$ | 2020 | $30 \times 10$ | 2050 | $\begin{gathered} 1 / 16 \text { or } 221 / /^{\circ} \\ \text { BENDDS. } \end{gathered}$ |  | 1820 | 130 |
| $\because 4 \times 6$ | 1340 | $30 \times 6$ | 1825 |  |  | 150 |
| $30 \times 20$ $30 \times 12$ | $\begin{array}{r}2635 \\ 2250 \\ \hline\end{array}$ | 36 $36 \times 30$ | 5140 4200 |  |  |  | 24 30 | 185 370 |
| $30 \times 8$ | 1995 | $36 \times 12$ | 4050 | $8 \quad 155$ |  | CAPS. |  |
| TEES. |  | $\begin{aligned} & 45^{\circ} \text { BRANCH } \\ & \text { PIPES. } \end{aligned}$ |  | $12 \quad 260$ |  | 3 20 |  |
| 2 | 28 |  |  | 16 | 450 | 4 | 25 |
| 3 | 80 |  |  | 24 | 1280 | 6 | 60 |
| $3 \times 2$ | 76 | 3 | 90 | 30 | 2000 | 8 | 75 |
| 4 | 100 | 6 | 125 | REDUCERS. |  | 10 12 | 100 |
| $4 \times 3$ | ${ }_{80}^{90}$ | ${ }_{6}^{6} \times 6 \times 4$ | 20.5 |  |  | 12 | 120 |
| ${ }_{6}^{4 \times 2}$ | $\begin{array}{r}87 \\ 150 \\ \hline\end{array}$ | ${ }_{8}^{6 \times 6 \times 4}$ | 145 330 | $\begin{aligned} & 3 \times 2 \\ & 4 \times 3 \\ & 4 \times 2 \\ & 6 \times 4 \\ & 6 \times 3 \\ & 8 \times 6 \\ & 8 \times 4 \\ & \hline \end{aligned}$ | $\begin{array}{r} 25 \\ 42 \\ 40 \\ 95 \\ 70 \\ 126 \\ 116 \\ \hline \end{array}$ |  |  |
| $6 \times 4$ | 145 | $8 \times 6$ | 3:30 |  |  | 4 | DRIP BOXES. |
| $6 \times 3$ | 145 | 24 | $2 \sim 65$ |  |  | 6 | 330 |
| $6 \times 2$ | 75 | $24 \times 24 \times 20$ | $2: 45$ |  |  | 8 | 375 |
| 8 | 300 | 30 | 4170 |  |  | 10 | $8 \% 5$ |
| $8 \times 6$ | 270 | 36 | 10300 |  |  | 20 | 1420 |

WEIGETS OF CAST-IRON WATER- AND GAS-PIPE.
(Addyston Pipe and Steel Co., Cincinnati, Ohio.)

| $\begin{aligned} & E \dot{\mathscr{Q}} \\ & \text { N } \\ & \dot{0}=0 \end{aligned}$ | Standard Water-pipe. |  |  | $\begin{aligned} & \text { E. } \\ & \text { Nu } \\ & \text { Nin } \end{aligned}$ | Standard Gas-pipe. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Per Foot. | Thickness. | Per <br> Length. |  | Per Foot. | Thickness. | Per Length. |
| 2 | , | 5/16 | 63 | 2 | 6 | $1 / 4$ | 48 |
| 3 | 15 | 3/8 | 180 | 3 | 121/2 | 5/16 | 150 |
| 3 | ${ }_{\sim}^{17}$ | $1 / 2$ | 204 |  |  |  |  |
| 4 | $\stackrel{20}{20}$ | $1 / 2$ | 264 | 4 | 17 | 3/8 | 204 |
| ${ }_{8}^{6}$ | 33 | 1/8 | 396 | 6 | 30 | 7/16 | 360 |
| 8 | 42 | $1 / 2$ | 504 | 8 | 40 | т/16 | 480 |
| 10 | 60 | $9 / 16$ | \% 20 | 10 | 50 | 7/16 | 600 |
| 12 | \% 5 | 9/16 | 900 | 12 | \%0 | 1/2 | 840 |
| 14 | $11 \%$ | $3 / 4$ | 1400 | 14 | 84 | $9 / 16$ | 1000 |
| 16 | 125 | 3 | 1500 | 16 | 100 | 9/16 | 1200 |
| 18 | $16 \%$ | \% 18 | 2000 | 18 | 134 | 11/16 | 1600 |
| 20 | 200 | $1^{15 / 16}$ | 2400 | $\stackrel{20}{20}$ | 150 | 11/16 | 1800 |
| 24 | 250 | 1 | 3000 | 24 | $18 \pm$ | $3 / 4$ | $\because 200$ |
| 30 | 350 | $11 / 8$ | 4:00 | 30 | 250 | $3 / 4$ | 3000 |
| 36 | 475 | $13 / 8$ | 5700 | 36 | 350 | 7/8 | 4200 |
| $4{ }_{4}^{48}$ | 600 | 13\% | 7200 | 42 | 417 | 15/16 | 5000 |
| 60 | 1330 | ${ }_{2}^{1 / 2}$ | 15960 | 60 | 542 900 | 118 | 6500 |
| 72 | 1835 | $21 / 4$ | $\stackrel{\text { 2 }}{ } 220 \div 0$ | $7{ }^{\text {\% }}$ | 1:50 | 11.8 | 15000 |

## THICKNESS OF CAST-IRON WATER-PIPES.

P. H. Baermann, in a paper read before the Engineers' Club of Philadelphia in $188^{\circ}$, gave twenty different formulas for determining the thickness of cast-iron pipes under pressure. The formulas are of three classes:

1. Depending upon the diameter only.
2. Those depending upon the diameter and head, and which add a ern. stant.
3. Those depending upon the diameter and head, contain an additive or subtractive term depending upon the diameter, and add a constant.

The more modern formulas are of the third class, and are as follows:

$$
\begin{aligned}
& t=.00008 h d+.01 d+.36 \ldots . . . \text {.......... Shedd, } \\
& t=.00006 h d+.0133 d+.296 \ldots \ldots . . . . . \text {. Warren Foundry, No. 2. } \\
& t=.000058 h d+.015 \pm d+.312 \ldots . . . \text {.........Francis, No. 3. } \\
& t=.000048 h d+.013 c l+.32 \ldots . . \text {........... Dupuit, No. } 4 . \\
& t=.00004 h{ }^{2}+.1 \sqrt{l}+.15 \ldots . . . \text {........Box, } \quad \text { No. } 5 . \\
& t=.000135 h d+.4-.0011 d \ldots \text {.............Whitman, No. } 6 . \\
& t=.00006(h+230) d+.333-.0033 d \ldots \text {..... Fanning, No. } 7 . \\
& t=.00015 h d+.25-.005 \% d \text {...............Meggs, No. } 8 .
\end{aligned}
$$

In which $t=$ thickness in inches, $h=$ head in feet, $d=$ diameter in inches.
Rankine, "Civil Engineering," p. 721, says: "Cast-iron pipes should be made of a soft and tough quality of iron. Great attention should be paid to moulding them correctly, so that the thickness may be exactly uniform all round. Each pipe should be tested for ir-bubhles and flavs by ringing it with a hammer, and for atrength by exposing 't to "ou e th, intended greatest workiug pressure.": The rule for computing the .hickness of a pipe to resist a given working pressure is $t=\frac{r p}{f}$, where $r$ is the radius in inches, $p$ the pressure in pounds per square inch, and $f$ the tenacity of the iron ner square inch. When $f=18000$, aud a factor of safety of 5 is used, the above expressed in terms of $d$ and $h$ becomes

$$
t=\frac{.5 d .433 h}{3600}=\frac{d h}{16628}=.00006 d h
$$

[^3]
## Thickness of Metal and Weight per Length for Different Sizes of Cast-iron Pipes under Various Heads of Water.

(Warren Foundry and Machine Co.)

| Size. | $\text { Ft. } \stackrel{50}{\text { Head. }}$ |  | Ft. Head. |  | 150 <br> Ft. Head. |  | $\begin{gathered} 200 \\ \text { Ft. Head. } \end{gathered}$ |  | $\begin{aligned} & \text { Ft. Head. } \end{aligned}$ |  | $\stackrel{300}{\text { Ft. Head. }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { wig } \\ & \text { dy } \\ & \text { ed } \\ & \text { EUO } \end{aligned}$ |  |  |  |
| 3 | . 3 | 14 | . 3 | 149 |  |  | . 371 | 15 | . 380 | 161 | . 390 | 66 |
| 4 | . 361 | 19. | . 373 | 204 | . 285 | 211 | . 397 | 21.6 | . 409 | 226 | . 421 | 35 |
| 5 | . 37 | 254 | . 393 | 265 | . 408 | $2 \% 5$ | . 423 | 286 | . 438 | 298 | . 453 | 09 |
| 6 | . 39 | 315 | . 411 | 330 | . 429 |  | . 447 | 361 | . 465 | 374 | .483 | 393 |
| 8 | . 422 | 445 | . 450 | $4{ }^{7} 5$ | . 474 | 502 | 498 | 529 | . 522 | 557 | . 546 | 84 |
| 10 | . 459 | 600 | . 489 | 641 | . 519 | 682 | . 549 | 723 | . 579 | 766 | . 609 | 808 |
| 12 | . 491 | r68 | . 527 | , | . 563 | 8 | . 599 | 944 | . 635 | 1004 | . 671 | 1064 |
| 14 |  | $95 ?$ | . 566 | 1031 | . 608 | 1111 | . 650 | 1191 | . 692 | $12 \pi 2$ | . 734 | 1352 |
| 16 | . 557 | 1152 | . 604 | 1253 | . 65 | 1360 | . 700 | 1463 | 748 | 1568 | . 796 | $16{ }^{\text {ris }}$ |
| 18 | . 589 | $13 \% 0$ | . 643 | 1500 | . 697 | 1630 | . 751 | 1761 | . 805 | 1894 | . 853 | 2026 |
| 20 | .62\% | 1603 | . 682 | 1763 | . 742 | 1924 | . 802 | 2086 | . 862 | 2248 | . 922 | 2412 |
| 24 | . 687 | 2120 | . 859 | 2349 | . 831 | 2580 | . 903 | 2811 | 975 | 3045 | 1.047 | 324 |
| 30 | . 785 | 3020 | . 875 | $33 \times 6$ | . 965 | 3735 | 1.055 | 4095 | 1.145 | 4458 | 1.235 | 4822 |
| 36 | . 882 | $40 \sim 0$ | . 990 | 4581 | 1.098 | 5096 | 1.206 | 5613 | 1.314 | 6133 | 1.422 | 6656 |
| 42 | . 980 | 526 | . 106 | 595 | 1.232 | $665 \%$ | 1.358 | r360 | 1.484 | $80 \%$ |  | 8804 |
| 48 | . 078 | 66 | . 222 | \% 5 | 1.36 | 84 | . 5 | 93 | 1.654 | 10269 |  | 11195 |

All pipe cast vertically in dry sand; the 3 to 12 inch in lengths of 12 fect, all larger sizes in lengths of 12 feet 4 inches.

## Safe Pressures and Equivalent Heads of Water for Castiron Pipe of Different Sizes and Thicknesses.

(Calculated by F. H. Lewis, from Fanning's Formula.)

| Thickuess. | Size of Pipe. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | 18' |  | 20' |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7-16 | 112258 | 49112 | $18 \quad 42$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1-2 | ${ }_{2}^{24} 4$ | 124 | 74.171 | 44 101 <br> 80  |  |  |  |  |  |  |  |  |  |  |
| 5-8 | 3365 | 274631 | 186 | 89 105 <br> 132 304 <br> 180  | 62 99 |  | 74 |  |  |  |  |  |  |  |
| 11-16 | ..... | ... | - | 177.408 | 137 | 316 | 106 | 244 |  |  | 66 | 152 | 51 | 11 |
| 3-4 |  |  |  | 2.4516 | 174 | 401 | 138 |  | 112 |  | 91 | 210 | 74 | 170 |
| 13-16 |  |  | ... |  | 21? | 488 | 170 | 392 | 140 | 323 | 116 | 267 | 96 | 221 |
| $7-8$ |  |  |  |  | 249 | 574 | 202 | 465 | 168 | 387 | 141 | 325 | 119 |  |
| 15-16 |  |  | - | . |  |  | 234 | 538 |  | 452 | 166 | 382 | 141 | 325 |
| 1 |  |  |  |  |  |  | 266 |  |  |  | 191 | 440 | 164 | 378 |
| 1-8 |  |  |  |  |  |  |  |  |  |  | 21 | 497 | 209 |  |
| 11-1 |  |  |  |  |  |  |  |  |  |  |  |  | 25 | 589 |

Safe Pressures, etc., for Cast-iron Pipe.-(Continued.)


Note.-The absolute safe static pressure which may be put upon pipe is given by the formula $P=\frac{2 T}{D} \times \frac{S}{5}$, in which formula $P$ is the pressure per square inch; $T$, the thickness of the shell; $S$, the ultimate strength per square inch of the metal in tension; and $D$, the inside diameter of the pipe. In the tables $S$ is taken as 18000 pounds per square inch, with a working strain of one fifth this amount or 3600 pounds per square inch. The formula for the absolute safe static pressure then is: $P=\frac{7200 T}{D}$.
It is, however, usual to allow for "water-ram" by increasing tho thickness enough to provide for 100 pounds
additional static pressure, and, to insure sufficient metal for additional static pressure, and, to insure sufficient metal for good casting and for wear and tear, a further increase equal to $.333\left(1-\frac{D}{100}\right)$.
The expression for the thickness then becomes:

$$
T=\frac{(P+100) D}{\sigma_{200}}+.333\left(1-\frac{D}{100}\right)
$$

and for safe working pressure

$$
P=\frac{\gamma 200}{D}\left(T-.383\left(1-\frac{D}{100}\right)\right)-100 .
$$

The additional section provided as above represents an increased value under static pressure for the different sizes of pipe as follows (see table in margin). So that to test

| Size |  |
| :---: | :---: |
| of |  |
| Pipe. |  | Lbs. the pipes up to one fifth of the ultimate strength of the material, the pressures in the marginal table should be added to the pressure-values given in the table above.

RIVETED HYIRAULIC PIPE.
(Pelton Water Wheel Co.)
Weight per foot with safe head for various sizes of double-riveted pipe.


810
607
760
485
605
405
$50 \overline{3}$
630
346
43
540
378
660
$\stackrel{36}{36}$
$58 \%$
$3 i S$
5.30
607

680
$2 \%$
344
480
553
50

| 615 |
| :--- |
| 65. |
| 5 |

316
$44^{2}$
506
83
201
407

216
$2 \sim 1$
$3 i 8$
433
485
202
20
202
352
405
453
190
237
372
379
425
168
210
210
9
12
81
101
10
1
1
146
161
18
1
14
15
151
171
10
1912
$192_{2}^{2}$
191
$1121 / 4$
$191 / 2$
10
$201 / 2$
2
11
14
191
2
25
11
2
26
16
221
$281 \%$
$181 / 2$

Thick. of Metal,
 Equivalent

It.ches.

| Head in F'eet |
| :--- |
| Pipe will |
| Safely Stand. |




193
$211 / 2$
3112
32
35
173
22
$31 \%$

| 319 | $\vdots 9$ |
| :--- | :--- |
| 376 | 50 |

## STANDARD RIPE FLANGES.

Adopted August, 1894, at a conference of committees of the American Society of Mechanical Engineers, and the Master Steam and Hot Water Fitters' Association, with representatives of leading manufacturers and users of pipe.-Trans. A. S. M. E., xxi. 29 . (The standard dimensions given have not yet, 1901, been adopted by some manufacturers on account of their unwillinguess to make a change in their patterns.)

The list is divided into two groups; for medium and high pressures, the first ranging up to $\% \mathrm{lbs}$. per square inch, and the second up to 200 lbs .


Notes.-Sizes up to 24 inches are designed for 200 lbs. or less.
Sizes from 24 to 48 inches are divided into two scales, one for 200 lbs , the other for less.
The sizes of bolts given are for high pressure. For medium pressures the diameters are $1 / 8 \mathrm{in}$. less for pipes 2 to 20 in . diameter inclusive, and $1 / 4 \mathrm{in}$. less for larger sizes, except 48 -in. pipe, for which the size of bolt is $13 / 8$ in.
When two lines of figures occur under one heading, the single colunns are for both medium and high pressures. Begimning witly af inches, the left-hand columns are for medium and the right-hand lines are for high pressures.
The sudden increase in diameters at 16 inches is due to the possible insertion of wronght-iron pipe, making with a nearly constant width of gasket a greater diameter desirable.
When wrought-iron pipe is used, if thinner flanges than those given are sufficient, it is proposed that bosses be used to bring the nuts up to the standard lengths. This avoids the use of a reinforcement around the pipe.
Figures in the 3d, 4th, 5th, and last columns refer only to pipe for high pressure.
In drilling valve flanges a vertical line parallel to the spindles should be midway between two holes on the upper side of the flanges.

PLANGE DIVIENSEONS, ETC., FOR EXTRA HEAVY


Adopted by a Conference of Manufacturers, June 28, 1901.

| $\begin{aligned} & \text { Size of } \\ & \text { lipe. } \end{aligned}$ | Diam. of Flange. | Thickness of Flange. | Diameter of Bolt Circle. | Number of Bolts. | Size of Bolts. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. | Inche.s. | Inches. | Inches. |  | Inches. |
| $\stackrel{2}{2}$ | $61 / 3$ | 7/8 |  | 4 | 5/8 |
| $21 / 2$ | 51/8 |  | $5 \%$ | 4 | 3 |
| ${ }_{3}^{31}$ | ${ }_{9} 1 / 4$ | $11 / 8$ | 65 | 8 | 58 |
| $41 / 2$ | 9 10 | $11 / 4$ | \% $71 / 8$ | 8 | $3 / 8$ |
| 41/3 | 101/2 | 15-16 | $81 / 3$ | 8 | 3 |
| 5 | 11 | 13/8 | 914 | 8 | 3 |
| ${ }_{\sim}^{6}$ | 121/2 | 1 \%-16 | 1058 | 12 | 3 |
| $\frac{7}{8}$ | 14 | 116 | 117\% | 12 | 88 |
| 8 | 15 | 15/8 | 13 | 12 | 7/8 |
| 9 | 16 | 13 | 14 | 12 | 88 |
| 10 | $171 / 2$ | ${ }_{2}^{17 / 8}$ | 1514 | 16 | 88 |
| 12 | 20 | 2 |  | 16 | 78 |
| 14 | $291 \%$ | $21 / 8$ | 20 | $\stackrel{20}{20}$ | 1/8 |
| 15 | 231\% | ${ }^{2}$ 3-16 | 21 | 20 | 1 |
| 16 | 25 | 21/4 | 201/3 | 20 | 1 |
| 18 | 27 | $23 / 8$ | 2112 | 21 | 1 |
| 20 | 291/2 | 21. | 263 | 24 | $11 / 3$ |
| 20 | $311 / 3$ | 25,8 | $28 \%$ | 28 | 11/8 |
| 24 | 34 | 23/4 | 3114 | 28 | 11/8 |

MIMENSIONS OF PEPE TLANGES ANB CAST-TRON PIPES.
(J. E. Codman, Engineers' Club of Philadelphia, 1889.)

|  |  |  |  |  |  | Thickness of Pipe. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Frac. | Dec. |  |  |
| $\stackrel{2}{2}$ | 61 | 434 | 34 | 4 | 5/8 | 3/8 | $3 \div 3$ | 6.96 | 4.41 |
| 3 | 71/3 | $57 / 8$ | 3 | 4 | 5/8 | 13-32 | . 396 | 11.16 | 5.93 |
| 4 | 9 | 7 | $3 / 4$ | 6 | 11-16 | 7-16 | .4:0 | 15.84 | 7.66 |
| 5 | 934 | 8 | 3 | 6 |  | T-16 | . 443 | 21.00 | 9.63 |
| 6 | 1034 | $91 / 8$ | $3 / 4$ | 8 |  | 15-32 | . 466 | 26.64 | 11.82 |
| 8 | 1314 | 113/8 | 3 | 10 | 13-16 | $1 / 2$ | . 511 | $\bigcirc 39.36$ | 16.91 |
| 10 | 1514 | 131.4 | 3 | 10 |  | 9-16 | . 550 | 54.00 | 23.00 |
| 12 | 173/4 | 153/4 | 788 | 12 | 15-16 | 19-32 | . 603 | 7056 | 30.13 |
| 14 | 20 | 18 | 78 | 14 |  | 21-32 | . 619 | 89.04 | 38.34 |
| 16 | 22 | 20 | 78 | 16 | 1-1-16 | 11-16 | . 695 | 109.44 | 47.20 |
| 18 | 24 | 2214 | 7/8 | 16 | 11/8 | 34 | . 741 | 131.6 | 58.23 |
| 20 | 27 | $241 /$ | 1 | 18 | $13-16$ | 2-3-32 | . 787 | 156.00 | \%0.00 |
| 22 | 283/4 | $261 / 2$ | 1 | 20 | 11/4 | $27-32$ | . 833 | 182.16 | 83.05 |
| 24 | 311/4 | 283/4 | 1 | 22 | 1 5-16 | 7/8 | .859 | 210.24 | 97.42 |
| 26 | 3314 | 31 | 1 | 24 |  | 15-16 | . 925 | 240.24 | 113.18 |
| 28 | 351/2 | $331 / 4$ | 1 | 24 | 1 1-16 | 31-32 | 971 | 272.16 | 130.35 |
| 30 | 38 | $351 /$ | 1 | 26 | 1 9-16 |  | 1.01\% | 306.00 | 149.00 |
| 32 | 40 | 3112 | 11/8 | 28 | 15/8 | $11-16$ | 1.063 | 341.76 | 169.17 |
| 34 | 421/4 | 40 | $11 / 8$ | 30 | $111-16$ | 11/8 | 1.109 | 379.44 | 190.90 |
| 36 | 45 | 42 | $11 / 8$ | 3:3 |  | $115-32$ | 1.155 | 419.04 | 214.26 |
| 38 | 47 | 44 | $11 / 8$ | 32 | $113-16$ | $13-16$ | 1.201 | 460.56 | $\stackrel{230.27}{ }$ |
| 40 | 49 | 46 | 138 | 34 | 178 | $11 / 4$ | 1.247 | 504.00 | 266.00 |
| 42 | 5114 | 481/4 | 11/8 | 31 | 1 15-16 | 1 5-16 | 1.293 | 549.36 | 29449 |
| 44 | 531/3 | 5014 | 11/4 | 36 |  | 111.32 | 1.339 | 596.64 | 324.78 |
| 46 | 553/4 | 523/4 | 114 | 38 | 2 1-16 | 13/8 | 1385 | 645.84 | 356.94 |
| 48 | 58 | 55 | 11/4 | 40 | 21/8 | 1 7-16 | 1.431 | 696.96 | 391.00 |

## $D=$ Diameter of pipe. All dimensions in inches.

Formulat. -Thickness of flange $=0.033 D+0.56$; thickness of pipe $=$ $0.023 D+0.327$; weight of pipe ber foot $=0.24 D^{2}+3 D$; weight of flange $=$ $.0015^{13}+0.1 D^{2}+D+2$; diameter of flange $=1.125 D+4.25$; diameter of boil iircie $=1.092 D+2.566$; diameter of bolt $=0.011 D+0.73$; number of bolts $=0,78 D+2,56$.

| Length ol' l'erf. Thread. |  <br>  <br>  |
| :---: | :---: |
| No. of Threads perInch. |  |
| Weight of Water per. Lin. Ft. of Pipe. |  <br>  $\begin{array}{r} \text { n } \\ \end{array}$ |

 Lilı. Ft.
U.S.

Galloils pel F t. of lipe. ए

of
of lipe
cont'g



For discussion of the Briggs Standard of Wrought-iron Pipe Dimensions, see Report of the Committee of the A. S. M. E. in "Standard Pipe and Pipe Threads," 1886. Trans., Vol. VIII, p. 29. The diameter of the bottom of the thread is derived from the formula $D-(0.05 D+1.9) \times \frac{1}{n}$, in which $D=$ outside diameter of the tubes, and $n$ the number of threads to the inch. The diameter of the top of the thread is derived from the formula $0.8 \frac{1}{n} \times 2+d$, or $1.6 \frac{1}{n}+d$, in which $d$ is the diameter at the bottom of the thread at the end of the pipe.
The sizes for the diameters at the bottom and top of the thread at the end of the pipe are as follows:

| Diam. of Pipe, Nominal. | Diam. at Bot- tom of Thread. |  |  | Diam. at Bot Thread. | $\begin{gathered} \text { Diam. } \\ \text { at Top } \\ \text { of } \\ \text { Thread. } \end{gathered}$ | Diam. of Pipe, Nominal. | Diam. tom of Thread. | Diam. of <br> Thread. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in. |
| 1/8 | . 334 | . 393 | 21/3 | 2.6:0 | 2.820 | 8 | 8.334 | 8.534 |
| $1 / 4$ | . 433 | . 522 | 3 | 3.241 | 3.441 | 9 | 9.327 | 9.527 |
| 38 | . 568 | . 658 | 31/2 | 3.738 | 3.938 | 10 | 10.445 | 10.645 |
| 12 | . 701 | . 815 |  | 4.234 | 4.434 | 11 | 11.439 | 11.639 |
| $3 / 4$ | . 911 | 1.025 | 4120 | 4.731 | 4.931 | 12 | 12.433 | 12.633 |
| 1 | 1.144 | 1.283 | 5 | 5.290 | 5.490 | 13 | 13.675 | 13.875 |
| $11 / 4$ | 1.488 | 1.627 | 6 | 6.346 | ${ }_{\sim}^{6} 546$ | 14 | 14.669 | 14.869 |
| 11/2 | 1.727 | 1.866 | 7 | 7.310 | 7.540 | 15 | 15.663 | 15.863 |
| 2 | 2.223 | 2.339 |  |  |  |  |  |  |

Having the taper, length of full-threaded portion, and the sizes at bottom and top of thread at the end of the pipe, as given in the table, taps and dies can be made to secure these points correctly, the length of the imperfect threaded portions on the pipe, and the length the tap is run into the fittings beyond the point at which the size is as given, or, ill other words, beyond the end of the pipe, having no effect upon the standard. The angle of the thread is $60^{\circ}$, and it is slightly rounded off at top and bottom, so that, instead of its depth being 0.866 its pitch, as is the case with a full V-thread, it is $4 / 5$ the pitch, or equal to $0.8 \div n, n$ being the number of threads per inch.
Taper of conical tube ends, 1 in 32 to axis of tube $=3 / 4$ inch to the foot total taper.

## WROUGHT-EEON WEEDED TUBES, EKTTRA STRRONG. Standard Dimensions.

| Nominal Diameter. | Actual Out side Diameter. | Thickness, Extra Strong. | Thickness, Double Extra Strong. | Actual Inside Diameter, Extra Strong. | Actual Inside Diameter, Double Extra Strong. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. | Inches. | Inches. | Inches. |  | ches |
| 1/8 | $0.40 \overline{5}$ | 0.100 | Inches. | O.205 | ches |
| 14 | 0.54 | 0.123 |  | 0.294 |  |
| $3 / 8$ | 0.675 | 0.127 |  | 0.421 |  |
| 1. | 0.84 | 0.149 | 0.298 | $0.54{ }^{\text {P }}$ | 0.244 |
| $3 / 4$ | 1.05 | 0.157 | 0314 | 0.736 | 0.422 |
| 1. | 1.315 | 0.189 | 0264 | 0.951 | 0.587 |
| 114 | 1.66 | 0.194 | 0.388 | 1.272 | 0.884 |
| ${ }_{2}^{11 / 2}$ | ${ }^{1.9} 2.375$ | 0.203 0.221 | 0.406 0.442 | 1.494 | 1.088 |
| $21 / 2$ | $\stackrel{3}{2.875}$ | 0.221 0.280 | 0.442 0.550 | 1.933 2.315 | 1.491 1.755 |
| 3 | 3.5 | 0.304 | 0608 | ${ }^{2} 892$ | 2.284 |
| 31/2 | 4.0 | 0.321 | 0.642 | 3.358 | 2.716 |
| 4 | 4.5 | 0.341 | 0.682 | 3.818 | 3.136 |

STANDARD SIZES, ETC., OF LAP-WELDED CHAR-

(National Tube Works.)

|  |  | $\qquad$ |  |  | Internal Area. | Exter Are | rnal ea. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in. | in. | in. | , | in. | sq. in, $\mathrm{sq} . \mathrm{ft}$. | sq. in. | $s q . f t$ | ft. | , | . | OS. |
|  | . 810 | . 095 | 2.545 | 3.142 | . 515.0036 | $.885$ | $.0055$ | 4.479 | 3.820 | 4.149 | . 90 |
| 1 1-4 | 1.060 | . 095 | 3.330 | 3.927 | .882 .0061 | 1.227 | . 0085 | 3.604 | 3.056 | 3.330 | 1.15 |
| 1-2 | 1.310 | . 095 | 4.115 | 4.712 | 1.348 | 1.767 | . 0123 | 2.916 | 2.517 | 2.732 | 1.40 |
| 13 3-4 | 1.560 | . 095 | 4.901 | 5.498 | 1.911 | 2.405 | . 0167 | 2.418 | 2.153 | 2.316 | 1.65 |
| 2 | 1.810 | . 095 | 5.686 | 6.283 | 2.5730179 | 3.142 | . 0218 | 2.110 | 1.910 | 2.010 | 1.91 |
| 2 1-4 | 2.060 | . 095 | 6.479 | 7.069 | 3.333 . 0231 | 3.976 | , 0276 | 1.854 | 1.698 | 1.776 | 2.16 |
| 2 1-2 | 2.282 | . 109 | 7.169 | 7.854 | 4.090 .0284 | 4.909 | . 0341 | 1.674 | 1.528 | 1.601 | 2.75 |
| 2 3-4 | $2.53{ }^{2}$ | . 109 | 7.955 | 8.639 | 5.035 . 0350 | 5.910 | . 0412 | 1.508 | 1.389 | 1.449 | 3.04 |
| 3 | 2.782 | .109 | 8.710 | 9.425 | 6.079 .0422 | 7.069 | 0491 | 1.373 | 1.273 | 1.322 | 3.33 |
| 3 1-4 | 3.010 | . 120 | 9.456 | 10.210 | 7.116 .0494 | 8.296 | . 0576 | 1.269 | 1.175 | 1.222 | 3.96 |
| 3 1-2 | 3.260 | . 120 | $10.24 \%$ | 10.996 | 8.347 . 0580 | $9.6 \geqslant 1$ | . 0668 | 1.17\% | 1.091 | 1.13\% | 4.28 |
| 3 3-4 | 3.510 | 120 | 11.027 | 11.781 | 9.676 | 11.045 | . 0767 | 1.088 | 1.019 | 1.054 | 4.60 |
|  | 3.739 | . 134 | 11.724 | 12.566 | $10.939 \quad 0760$ | 12.566 | 0873 | 1.024 | . 955 | . .990 | 5.47 |
| 4 1-2 | 4.232 | . 134 | 13.295 | 14.137 | 14.066 | 15.904 | .1104 | . .903 | . 849 | . 876 | 6.17 |
| 5 | 4.704 | .148 | 14.778 | 15.708 | 17.379 | 19.635 | . 1364 | . 812 | . 764 | . 788 | 7.58 |
| 6 | 5.670 | . 165 | 17.813 | 18.850 | $25.250-1750$ | 28. 074 | . 1963 | . 674 | . 637 | . 656 | 10.16 |
| 8 | 6.670 | . 165 | 20.954 | 21.991 | 34.942 . 2427 | 38.485 | . 2673 | . 573 | . 546 | . 560 | 11.90 |
| 8 | 7.670 | . 165 | 24.026 | 25.133 | 46.204 . 3209 | 50.266 | 3491 | . 498 | . 477 | . 488 | 13.65 |
| 10 | 8.640 | . 180 | 27.143 | $28 \quad 274$ | 58.630 .4072 | 63.617 | . 4418 | . 442 | . 424 | . 433 | 16.76 |
| 10 | 9.594 | . 203 | 30.141 | 31.416 | 72.292 . 5020 | 78.540 | . 5454 | . 398 | . 382 | . 390 | 21.00 |
| 11 | 10.560 | . 220 | 33.175 | 34.558 | 87.583 .608\% | 95.033 | 6600 | . $36 \pm$ | . 347 | . 355 | 25.00 |
| 13 | 11.542 | .269 | 36.260 | 37.699 | 104.629 . 7266 | 113.098 | . 7854 | . 331 | . 318 | . 325 | 28.50 |
| 14 | 12.524 | . 233 | 39.345 | 40.821 | 123.190 . 8555 | 132.733 | .9217 | . 305 | . 294 | . 300 | 32.06 |
| 15 | 14.482 | . 218 | 42.424 | 43.982 | 143.224 . 9946 | 153.938 | 1.0690 | . 283 | . 273 | . 278 | 36.00 |
| 16 | 15.458 | . 271 | 45.497 48.563 | 47.121 | $16 \pm .721$ 1. 1439 | 176.715 | 1.2272 | . 264 | . 255 | 260 | 40.60 |
| 17 | 16.432 | . 284 | 51.623 | 53. | 187.6711 .3033 | 201.062 | 1.3963 | . 247 | .239 | . 243 | 45.20 |
| 8 | 17.416 | .29\% | 54.714 | 56.549 | 212.066 2.38 .225 1.4727 | 226.981 | 1.5763 | . 232 | -225 | . 229 | 49.90 |
| 9 | 18.400 | . 300 | 57.805 | 59.690 | 265.905 1. 4466 | 283.570 | 1.7671 | . 219 | . 212 | . 216 | 54.8\% |
|  | 19.360 | . 320 | 60.821 | 62.832 | 294.375 | 283.529 314.159 | 1.9690 2.1817 | . 208 | .201 | . 205 | 59.48 |
| 1 | 30.320 | . 340 | 63.837 | 65.974 | $3 2 4 . 2 9 4 \longdiv { 2 . 2 5 9 0 }$ | 346.361 | 2.1053 | . 188 | . 191 | . 194 | 66.77 |

In estimating the effective steam-heating or boiler surface of tubes, the surface in contact with air or gases of combustion (whether internal or external to the tubes) is to be taken.
For heating liquids by steam, superheating steam, or transferring heat from one liquid or gas to another, the mean surface of the tubes is to be taken.

To find the square feet of surface, $S$, in a tube of a given length, $L$, in feet, and diameter, $d$, in inches, multiply the length in feet by the diameter in inches and by .2618. Or, $S=\frac{3.1416 d L}{12}=.2618 d L$. For the diameters in the table below, multiply the length in feet by the figures given opposite the diameter.

| Inches, Diameter: | Square Feet per Foot Length. | Inches, Diameter. | Square Feet per Foot Length. | Inches, Diameter. | Square Feet per Foot Length. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 4$ | . 0654 | 214 | . 5890 | 5 | 1.3090 |
| 12 | . 1309 | 21. | . 6545 |  | 1.5708 |
| 3/4 | . 1963 | 234 | . 7199 | 7. | 1.8326 |
| 1 | . 2618 | 3 | . 7854 | 8 | 2.0944 |
| $11 / 4$ | . 3272 | 314 | . 8508 | 9 | ${ }^{2} .3562$ |
| $11 / 2$ | . 3927 | 31 | . 9163 | 10 | 2.6150 |
| $13 / 4$ | . 4581 | $33 / 4$ | . 9817 | 11 | 2.8798 |
| 2 | . 5236 | 4 | $1.04 \% 2$ | 12 | 3.14100 |

## REVETED IRON PRPE.

(Abendroth \& Root Mfg. Co.)
Sheets punched and rolled, ready for riveting, are packed in convenient form for shipment. The following table shows the iron and rivets required for punched and formed sheets.

| Number Square Feet of Iron required to make 100 Lineal Feet Punched and Formed Sheets when put together. |  |  |  | Number Square Feet of Iron required to make 100 Lineal Feet Punched and Formed Sheets when put together. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter in Inches. | Width of Lap in lnches. | Square Feet. |  | Dianneter in Inches. | Width of Lap in Inches. | Square Feet. |  |
| 3 | 1 | 90 | 1,600 | 14 | 11/2 | 397 | 2,800 |
| 4 | 1 | 116 | 1,700 | 15 | 11\% | 423 | $\because, 900$ |
| 5 | 11/2 | 150 | 1.800 | 16 | 11/2 | 45: | 3,000 |
| 6 | 11/2 | 178 | 1,900 | 18 | 11\% | 506 | 3,200 |
| 7 | 11\% | 206 | 2,000 | 20 | 11\% | 562 | 3,500 |
| 8 | 11/2 | 234 | 2,200 | 22 | 11/2 | $61 \%$ | 3,700 |
| 9 | $11 \%$ | 258 | 2,300 | 24 | $11 / 2$ | $6 \% 0$ | 3,900 |
| 10 | 11\% | 289 | 2,400 | 26 | 11/2 | 525 | 4,100 |
| 11 | 11/2 | 314 | 2,500 | 28 | 11/2 | \%99 | 4.400 |
| 12 | 11/2 | 343 | 2,600 | 30 | $11 / 2$ | 836 | 4.600 |
| 13 | 11/2 | 369 | 2,700 | 36 | 11/3 | 998 | 5,200 |

WEIGHRT OF ONE SQUARE FOOTH OF SEEGETHIRON EOR RIVETED FIPE.

Thickness by the Firmingham Wireatauge.

| No. of Gauge | Thickness in Decimals of an Inch. | Weight in lbs., Black. | Weight in lbs., Galvanized. | No. of Gauge. | Thick- ness in Decimals of an Incl. | Weight in lbs., Black. | Weight <br> inl libs., <br> ized. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | . 018 | . 80 | . 91 | 18 | . 049 | 1.82 | 2.16 |
| 24 | .0:2 | 1.00 | 1.16 | 16 | . 065 | 2.50 | 267 |
| 22 | . $0: 38$ | 1.25 | 1.40 | 14 | . 083 | 3.12 | 3.34 |
| 20 | .035 | 1.56 | 1.67 | 12 | . 109 | 4.37 | 4.73 |

## SPIRAL RIVETED PIPE.

(Abendroth \& Root Mfg. Co.)

| Thickness. |  | Diam- <br> eter. <br> Inches. | Approximate Weight <br> in lbs. per Foot in <br> Lengtlo. | Approximate Burst- <br> B. W. G. <br> No. | Inches. Pressure in lbs. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| per Square Inch. |  |  |  |  |  |

The above are black pipes. Galvauized weighs 10 to $30 \%$ heavier.
Double Galvanized Spiral Riveted Flanged Pressure Pipe, tested to 150 lbs . hydraulic pressure.




## DIMENSIONS OF SPIRAL PIPE FITTINGS.

| Inside Diameter. | Outside <br> Diameter Flanges. | Number Bolt-holes. | Diameter Bolt-holes. | Diameter Circles on which Boltholes are Drilled. | Sizes of Bolts. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ins. | ins. |  | ins. | ins. | ins. |
| 3 | 6 | 4 | 1/2 | 43/4. | 7/16×13/4 |
| 4 | 7 | 8 | $1 / 2$ | $515 / 16$ | $7 / 16 \times 19$ |
| 5 | 8 | 8 | 12 | ${ }^{6} 15 / 16$ | $7 / 16 \times 134$ |
| 6 | 87/8 | 8 | $5 / 8$ | 7\%/8 | $1 / 2 \times 19$ |
| 8 | 10 | 8 | 58 |  | $15 \times 13 / 4$ |
| 8 9 | 111 | 8 | 5 | 10 | $1 / 2 \times 2$ |
| + ${ }^{8}$ | 13 14 | 8 | 5 | $111 / 4$ | 112 $\times 2$ |
| 11 | 15 | 12 | 58 | 1338 | 10 $\times 2$ |
| 12 | 16 | 12 | 5 | 141/4 | $15 \times 2$ |
| 13 | 17 | 12 |  |  | $1 / 2 \times 2$ |
| 14 | 177/8 | 12 | 58 | $161 / 4$ | $1{ }^{1 / 2 \times 216}$ |
| 15 16 | ${ }_{21}^{19} 3 / 16$ | 12 | 5 | $17 / 16$ | $12 \times 21 / 2$ |
| 16 18 | 213/16 | 12 | $\begin{gathered} 5 \% 8 \\ 11 / 16 \end{gathered}$ | 191/4 | 1\% $\times 21 \%$ |
| 20 | $251 / 8$ | 16 | 11/16 | 23118 | 1120 $\times 12$ |
| 22 | $281 / 4$ | 16 | 1/4 | $2_{26}$ | $58 \times 21$ |
| 24 | 30 | 16 | $3 / 4$ | $273 / 4$ | $5 / 8 \times 21 / 2$ |

SEAMHESS BRASS TUBE. HRON-PIPE SIZES.
(For actual dimensions see tables of Wrought-iron Pipe.)

| Nominal <br> Size. | Weight <br> per Foot. | Nom. <br> Size. | Weight <br> per Foot. | Nom. <br> Size. | Weight <br> per Foot. | Nom. <br> Size. | Weight <br> per Foot. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ins. | lbs. | ins. | lbs. | ins. | lbs. | ins. | lbs. |
| $1 / 8$ | .25 | $3 / 4$ | 1.25 | 2 | 4.0 | 4 | 12.00 |
| 14 | .43 | 111 | 1.70 | $21 / 2$ | 5.75 | $41 / 2$ | 13.90 |
| 38 | .62 | 114 | 2.50 | 3 | 8.30 | 5 | 15.75 |
| 18 | .90 | 112 | 3. | 312 | 10.90 | 6 | 18.31 |

SEATHLESS DRAWN HRASS TUBING.
(Randolph \& Clowes, Waterbury, Comn.)
Outside diameter $3 / 16$ to $\quad \mathbf{3} / 4$ inches. Thickness of walls 8 to 25 Stubs' Gauge, length 12 feet. The following are the standard sizes:

| Outside <br> Diameter: | Length Feet. | Stubbs' or Old Gauge | Outside <br> Dialleter. | Length Feet. | Stubbs' or Old Gauge. | Outside Diameter. | Length Feet. | Stubbs or Old Gauge. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 4$ | 12 | 20 | 13/8 | 12 | 14 | 25/8 | 12 | 11 |
| 5-16 | 12 | 19 | 11/9 | 12 | 14 | $23 / 4$ | 12 | 11 |
| 3/8 | 12 | 19 | 15,8 | 12 | 13 | 3 | 12 | 11 |
| 18 | 12 | 18 | $13 / 4$ | 12 | 13 | 31/4 | 12 | 11 |
| $5 \%$ | 12 | 18 | 1 13-16 | 12 | 13 | 31. | 12 | 11 |
| 38 | 12 | 17 | 17/8 | 12 | 12 | 4 | 10 to 12 | 11 |
| 13-16 | 12 | 17 | ${ }_{1}^{15-16}$ | 12 | 12 |  | 10 to 12 | 11 |
| 7/8 | 12 | 17 | $\stackrel{2}{2}$ | 12 | 12 | $51 / 4$ | 10 to 12 | 11 |
| 15-16 | 12 | 17 | 21/8 | 12 | 12 | $51 / 2$ | 10 to 12 | 11 |
| 1 | 12 | 16 | 21/4 | 12 | 12 | $53 / 4$ | 10 to 12 | 11 |
| 11/8 | 12 | 16 | 23/8 | 12 | 12 | 6 | 10 to 12 | 11 |
| 11/4 | 12 | 15 | $21 / 2$ | 12 | 11 |  |  |  |

## HENT AND COHLED PIPES.

(National Yipe bending Co., New Haven, Conn.) COILS AND BENDS OF IRON AND STEEL PIPE.

| Size of pipe...........Inches <br> Least outside diameter. of <br> coil...............Inches | $1 / 4$ | $3 / 8$ | $1 / 2$ | $3 / 4$ | 1 | $11 / 4$ | $11 / 2$ | 2 | $21 / 2$ | 3 |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |

Lengths continuous welded up to 3 -in. pipe or coupled as desired. COILS AND BENDS OF DRAWN BRASS AND COPPER TUBING.

Size of tube, outside diameter..... Inches
Least outside diameter of coil.....Inches


Size of tube, outside diameter.....Inches
Least outside diameter of coil.....Inches
Lengths continuous brazed, soldered, or coupled as desired. $90^{\circ}$ BENDS. EXTRA-HEAVY WROUGHT-IRON PIPE.


The radii given are for the centre of the pipe. "Centre to end" means the perpendicular distance from the centre of one end of the bent pipe to a plane passing across the other end. Standard iron pipes of sizes 4 to 8 in . are bent to radii 8 in. larger than the radii in the above table; sizes 9 to 12 in . to radii 12 in . larger.

Welded Solid Drawn-steel Tubes, imported by P. S. Justice \& C $\cdot .:$ Pliladelphia, are made in sizes from $1 / 2$ to $41 / 2$ in. external diameter, varying by , fths, and with thickness of walls from $1 / 16$ to $11 / 16 \mathrm{in}$. The maximum length is 15 feet.

## WEIGII OF BRASS, COPPER, AND ZINC TURING. Per Foot.

Thickness by Brown \& Sharpe's Gauge.

| Brass, No. 17. |  | Brass, No. 20. |  | Copper. <br> Lightning-rod Tube, No. 23. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inch. | Lbs. | $\begin{gathered} \text { Inch. } \\ 1 / 8 \\ 3-16 \\ 1 / 4 \\ 5-16 \\ 3 / 8 \\ 7-16 \\ 1 / 2 \\ 9-16 \\ 5 / 8 \\ 3 / 4 \\ 1 / 8 \\ 11 \\ 114 \\ 11 / 2 \end{gathered}$ | Lbs..032.039.063.106.126.158.189.208.220.252.284.378.500.580 | Inch. |  |
| \% ${ }^{1 / 4}$ | . 107 |  |  | 1/2. | L. 16. |
| 3/8 | . 185 |  |  | 9-16 | . 1.6 |
| ${ }_{7}-16$ | . 234 |  |  | 11-8 | . 186 |
| $91 / 2$ | . 266 |  |  | 11-16 | . 211 |
| 5/8 | . 333 |  |  |  |  |
| 3 | . 377 |  |  | Zin |  |
| $1^{7 / 8}$ | . 462 |  |  |  |  |
| $11 / 8$ | . 672 |  |  |  |  |
| 114 | . 740 |  |  | 1/2 | . 161 |
| $11 /$ | . 915 |  |  |  |  |
| $13 / 4$ | . 9880 |  |  | 3/4 | . 234 |
|  |  |  |  |  | . 2711 |
| $3^{21 / 2}$ | 1.506 <br>  |  |  | 114 | .311 .380 |
|  | 2.188 |  |  | 112 | . 452 |

## LEAD PIPE IN LENGTHS OF 10 FEET.

| In. | 3-8 Thick. |  | 5-16 Thick. |  | $1 / 4$ Thick. |  | 3-16 Thick. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 b . | oz. | 1 b . | oz. | lb. | oz. | 1 b. | oz. |
| $\stackrel{21}{31 / 2}^{1 / 2}$ | 17 20 | 0 | 14 16 | 0 | 11 | 0 | 8 | 0 |
| $31 / 2$ | 22 | 0 | 18 | ${ }_{0}^{0}$ | 12 | 0 0 | 9 | ${ }_{8}^{0}$ |
| 4 | 25 | 0 |  | 0 | 16 | 0 | -989 | 8 |
| ${ }_{5} 1 / 2$ | 31 | 0 |  |  | 18 20 | 0 0 | 14 | 0 |

## LEAT WASTE-1PIPE.

$11 / 2 \mathrm{in}$., 2 lbs . per foot.
${ }_{3}^{2}$ "، 3 and 4 lbs . per foot. $5 \mathrm{in} 8,$.10 , and 12 lbs.

## LEAD AND TIN TUBING.

$1 / 8$ inch.
$1 / 4$ inch.

## SHEET LCAD.

Weight per square foot, $21 / 2,3,31 / 2,4,41 / 2,5,6,8,9,10 \mathrm{lbs}$. and upwards. Other weights rolled to order.

## 18LOCK-TIN PIPE.

$3 / 8$ in., $41 / 2,61 / 2$ and 8 oz . per fout.
18
5
3
3

1 in., 15, and 18 oz . per foot.
114 " $11 / 4$ and $11 / 2 \mathrm{lbs}$. "
$11 / 2 " 2$ and $21 / 2$ lbs. "
$\underset{\sim}{2}$ " $21 / 2$ and 3 lbs. "

LIGAD AND TIN-LINED LEAD PEPE.
(Tathan \& Bros., New York.)

 FOIS A GHVEN HEADOI WATHR.
(Tatham \& Bros., New York.)

| H | Pressure per sq. inch. | Calibre and Weight per Foot. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of Feet Fall. |  | Letter. | $3 / 8$ inch. | $1 / 2 \mathrm{inch}$ | / inch. | $3 / 4$ inch. | 1 inclı. | 11/4in. |
| 30 ft . | 15 lbs . | D | 10 oz. | $3 / 4 \mathrm{lb}$. | 1 lb . | 11/4 lbs. | 2 lbs. | $21 / 2 \mathrm{lbs}$. |
| 50 ft . | 25 lbs. | U | 12 oz . | $1{ }^{16}$ | $11 / 2 \mathrm{lbs}$. | $13 / 4 \mathrm{lbs}$. | $21 / 2 \mathrm{lbs}$. | 3 lbs . |
| 75 ft . | 38 lbs . | B | 1 lb . | 11/4 lbs. | $2^{1} \mathrm{lbs}$. | $21 / 4 \mathrm{lbs}$. | $31 / 4 \mathrm{lbs}$. | $33 / 4 \mathrm{lbs}$. |
| 100 ft . | 50 lbs . | A | $11 / 1 \mathrm{lbs}$. | $13 / 4 \mathrm{lbs}$. | $21 / 2 \mathrm{lbs}$. | 3 lbs | 4 lbs. | $43 / 4 \mathrm{lbs}$. |
| 150 ft . | 75 lbs . | AA | $11 / 2 \mathrm{lls}$. | ${ }^{2} \mathrm{lbs}$. | $23 / 4 \mathrm{lls}$. | $31 / 2 \mathrm{lbs}$. | $43 / 4 \mathrm{lbs}$ | 6 libs. |
| 200 ft . | 100 Jbs. | A A A | 13/4 lbs. | bs. | $31 / 2 \mathrm{los}$. | $43 / 4 \mathrm{lbs}$. | 6 lbs . | $63 / 4 \mathrm{lbs}$. |

## To find the thickness of lead pipe required when the

 head of water is given. (chadwick Lead Works).Rule.-Multiply the head in fee by size of pipe wanted, expressed decimally, and divide by 750; the quotient will give thickness required, in onehundredths of an inch.
Example.-Required thickness of half-inch pipe for a head of 25 feet.

$$
25 \times 0.50 \div 750=0.16 \text { inch. }
$$

Brown \& Slarpe's Gauge
(From tables of leading manufacturers.)

| No. of Gauge. | Size of Each No. | Weight, of 1000 Lin | ire per Feet. | Weight of Plates per Square Foot. |  | No. of Gauge. | Size of Each No. | Weight of Wire per 1,000 Lineal Feet. |  | Weight of Plates per Square Foot. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Copper. | Brass. | Copper. | Brass. |  |  | Copper. | Brass. | Copper. | Brass. |
|  | Inch. | Lbs. | Lbos. | Lbos. | Lbs. |  |  |  |  |  |  |
| 0000 | . 46000 | 640.5 | 605.28 | $\because 0.84$ | $19.69$ | 21 | inch. $.02846: 3$ | $\stackrel{1}{2} \mathrm{bs}$. | Lbs. <br> b 214 | Lbs. | Lbs. |
| 50 | . 40964 | 508.0 | 479.91 | 18.55 | 17.09 17.53 | $\xrightarrow{21}$ | .02846\% | 2.45 1.94 | 2.317 | 1.29 | $1.22$ |
| 00 | .36480 | 402.0 | 380.77 | 16.52 | 15.61 | 2.3 | .0205 21 | 1.94 | 1.838 | 1.15 | 1.08 |
| 0 | . 32486 | 319.5 | 301.82 | 14.70 | 13.90 | 24 | . 020100 | 1.04 1.9 .3 | 1.457 | 1.02 | . 966 |
| 1 | .28930 | 253.3 | 239.45 | 13.10 | 12.38 | 24 | . 019000 | 1.23 | 1.155 | . 911 | . 860 |
| 2 | .25\%63 | 200.9 | 189.8\% | 11.67 | 11.03 | $\stackrel{26}{26}$ | . 01594 | -970 | . 916 | . 811 | . 766 |
| 3 | .22942 | 159.3 | 150.59 | 10.39 | 9.8: | 27 | . 014195 | .769 | . 787 | . 727 | . 689 |
| 4 | . 20431 | 126.4 | 119.38 | 9.25 | 8.74 | 28 | . 014195 | . 610 | . 5 \% 6 | . 643 | . 608 |
| 5 | . 18194 | 100.2 | 94.67 | 8.24 | 8.74 7.79 | 28 | .01195 | . 484 | .45r | . 573 | . 541 |
| 6 | .16202 | 79.46 | $r 5.08$ | 7.34 | .6 .93 | 30 | .011254 | . 383 | .36) | .510 | .482 |
| 7 | .14428 | 63.01 | 59.55 | 6.54 | 6.93 6.18 | 31 | .010025 | .304 | . 287 | . 454 | . 499 |
| 8 | . 12849 | 49.98 | 4\%.22 | 5.82 | 5. 50 | 31 39 | .008928 | . 241 | . 228 | . 404 | . 382 |
| 9 | . 1144.3 | 39.64 | 37.44 | 5.18 | 5.00 4.90 | 32 | . 007950 | . 191 | .181 | . 360 | . 340 |
| 10 | . 10189 | 31.43 | 29.69 | 4.62 | 4.90 4.36 | 33 34 | .007080 | .152 | .143 | .391 | . 303 |
| 11 | .090742 | 24.92 | 23.55 | 4.11 | 4.36 3.88 | 34 | .006304 | . 120 | .114 | . 286 | .2\%0 |
| 12 | . 080808 | $19.7 \%$ | 18.68 | 4.11 3.66 | 3.88 3.46 | 35 | .005614 | .096 | .0902 | . 954 | . 240 |
| 13 | . 071961 | 15.65 | 14.81 | 3.06 3.26 | 3.46 3.08 | 36 37 | . 005000 | .0757 | . 0715 | . 226 | . 214 |
| 14 | .064084 | 12.44 | 11.75 | 2. 90 | 2.08 | 37 | . 004453 | . 0600 | . 0567 | . 202 | . 191 |
| 15 | .05\%068 | 9.86 | 11.75 9.39 | 2.90 2.59 | 2.44 2.44 | 39 | .003965 | .0476 | . 0450 | . 180 | . 170 |
| 16 | .0508\%0 | 7.82 | 7.32 7.59 | 2.59 2.30 | 2.44 2.18 | 40 | .003531 | .03r5 | .035 ${ }^{\text {r }}$ | .160 | . 151 |
| 17 | .04525 | 6.20 | 5.86 | 2.30 2.05 | 2.18 1.94 | 40 | . 003144 | . 0299 | . $0: 883$ | .142 | .135 |
| 18 | . 040303 | 4.92 | 4.65 | 1.83 | 1.\% | Specific gravity..... |  |  |  |  |  |
| 19 | . 035590 | 3.90 | 3.68 | 1.63 | 1.5 |  |  | 8.880 | 3.386 | 8.698 | 8.218 |
| 20 | . 031961 | 3.09 | $2.9 \%$ | 1.45 | 1.37 | Weight p | cubic Ft. | 555. | 224.16 | 543.6 | 513.6 |

## WEIGHT OF ROUND BOLT COPRER.

Per Foot.

| Inches. | Pounds. | Inches. | Pounds. | Inches. | Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $3 / 8$ | .425 | 1 | 3.02 | $15 / 2$ | 7.99 |
| 18 | .756 | $11 / 8$ | 3.83 | 13 | 9.27 |
| $5 / 8$ | 1.18 | 114 | 4.72 | $13 / 8$ | 10.64 |
| 34 | 1.70 | 13 | 5.72 | 2 | 12.10 |
| $7 / 8$ | 2.31 | $11 / 2$ | 6.81 |  |  |
|  |  |  |  |  |  |

WEIGHT OF SHEET AND BAIC BRASS.

| Thickness, Side or Diam. | Sheets per sq. ft. | Square <br> Bars 1 <br> ft. long. | Round Bars 1 ft long. | Thickness, Side or Diam. | Sheets per sq.ft. | Square <br> Bals 1 <br> ft. long | Round Bars 1 ft.long. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. |  |  |  | Inches. |  |  |  |
|  | 2.72 5.45 | . 014 | . 011 | $\begin{aligned} & 11-16 \\ & 11 / 8 \end{aligned}$ | 46.32 49.05 | 4.10 4.59 | 3.22 3.61 |
| 3-16 | 8.17 | . 128 | . 100 | $1{ }_{3} 16$ | 51.77 | 5.12 | 4.02 |
| $1 / 4$ | 10.90 | . 237 | . 178 | $11 /$ | 54.50 | 5.67 | 4.45 |
| 5-16 | 13.6 | . 355 | . 278 | 1 5-16 | 57.22 | 6.26 | 4.91 |
| 3/8 | 16.35 | . 510 | . 401 | 13/8 | 59.95 | 6.86 | 5.39 |
| 7-16 | 19.07 | . 695 | . 545 | 1 \%-16 | 62.67 | 7.50 | 5.89 |
| 1/2 | 21.80 | . 907 | . 112 |  | 65.40 | 8.16 | 6.41 |
| $9-16$ | 24.52 | 1.15 | . 903 | 1 9-16 | 68.12 | 8.86 | 6.95 |
| 5/8 | 27.25 | 1.42 | 1.11 | 15/8 | 70.85 | 9.59 | 7.53 |
| 11-16 | 29.97 | 1.72 | 1.35 | $111-16$ | 73.57 | 10.34 | 8.12 |
| $3 / 4$ | 3.90 | 2.04 | 1.60 | $13 / 4$ | 76.30 | 11.12 | 8.73 |
| 13-16 | 35.42 | 2.40 | 1.88 | 1/3-16 | 79.02 | 11.93 | 9.36 |
| 7/8 | 33.15 | 2.78 | 2.18 |  | $81 . \% 5$ | 12.76 | 10.01 |
| 15-16 | 40.87 | 3.19 | $\mathfrak{2 . 5 0}$ | $15-16$ | 84.47 | 13.63 | 10.\%0 |
| 1 | 43.60 | 3.63 | 2.85 |  | 87.20 | 14.52 | 11.40 |

COIIPOSHTION OF VARIOUS GRADES OF ROLHED HRASS, E'TC.

| Trade Name. | Copper | Zinc. | Tin. | Lead. | Nickel. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Common high brass. | 61.5 | 38.5 |  |  |  |
| Yellow metal. | 60 | 40 | . |  |  |
| Cartridge brass. | 662/3 | 331/3 |  |  |  |
| Low brass. | 80 | 20 |  |  |  |
| Clock brass | 60 | 40 |  | 11/2 |  |
| Drill rod. | 60 | 40 |  | $11 / 2$ to 2 |  |
| Spring brass | 662/3 | 3313 | 112 |  |  |
| 18 per cent German silve | 611/2 | 201/2 |  | ...... | 18 |

The above table was furnished by the superintendent of a mill in Connecticut in 1894. He says: While each mill has its own proportions for various mixtures, depending upon the purposes for which the product is intended, the figures given are about the average standard. Thus, between cartridge brass with $331 / 3$ per cent zinc and common high brass with $381 / 2$ per cent zinc, there are any number of different nixtures known generally as "high brass," or specifically as "spinming brass," "drawing brass," etc., wherein the amount of zinc is dependent upon the amount of scrap used in the mixture, the degree of working to which the metal is to be subjected, etc.
AMERIOAN STANTARD SHEES OF DROP-SHOT.

|  | Diameter. |  |  | Diameter. |  |  | Diameter. | $\left\lvert\, \begin{aligned} & 0 \\ & \frac{0}{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fine Dust. | 3-100" | 10781. | No. 8 | 8 Trap Shot | 472 | No. S... . | 15-100" | 86 |
| Dust.... | 4-100 | 4565 | "8 | 8 9-100' ${ }^{\prime \prime}$ | 399 | " 1... . | 16-100 | 71 |
| No. ${ }^{12}$. | 5-100 $6-100$ | $\stackrel{3326}{1346}$ | " ${ }^{6}$ | $7{ }^{7}$ Trap Shot | 3.35 | " ${ }^{\text {B }}$. ${ }^{\text {a }}$ | 17-100 | 59 |
| " 10. | ${ }_{\text {Trap }}^{\text {6-100 }}$ Shot |  | ${ }^{6} \mathrm{C}$ | ${ }^{\text {¢ }}$ 10-100 $11-100$ | 291 | $\because{ }^{*} \mathrm{BB}$ B | 18-100 | 50 |
| " 10. |  | 1058 | $\because 5$ | 6 11-100 | 218 | $"$ BBB <br>   | $19-100$ $20-100$ | 42 36 |
| " 9. | Trap Shot | 688 | " 4 | $413-100$ | $13: 2$ | " TT.. | 21-100 | 31 |
|  | 8-100" | 568 | " 3 | 3 14-100 |  | " F... | 2:-100 | 27 |
|  |  |  |  |  |  | " FF.. | 23-100 | 24 |

COMTE CESED H UCK-SKITR.

|  | Diameter. | No. of Balls to the lb . |  | Diameter. | No. of Balls to the lb. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. 3 | 25-100' | 284 | No 00.... ... | $34-100^{\prime \prime}$ |  |
| " ${ }^{\text {a }}$ | 27-100 | 238 | " $000 . . .$. . | 9-100 | 98 |
| "1. | 30-100 | 173 | Balls ........ | 38-100 | 85 |
|  | $3:-100$ | 140 |  | 44-100 | 50 |

SCRE EW-THIREADS, SHELERES ORE U. S. STANDARD.
In 1864 a committee of the Franklin Institute recommended the adoption of the system of screw-threadis and bolts which was devised by Mr. William Sellers, of Philadelphia. This same system was subsequentiy adopted as the standard by both the Army and Navy Departments of the United States, and by the Master Mechanics' and Master Car Builders' Associations, so that it may now be regarded, and in fact is called, the United States Standard.
The rule given by Mr. Sellers for proportioning the thread is as follows : Divide the pitch, or, what is the same thing, the side of the thread, into eight equal parts; take off one part from the top and fill in one part in the bottom of the thread; then the flat top and bottom will equal one eighth of the pitch, the wearing surface will be three quarters of the pitch, and the diameter of screw at bottom of the thread will be expressed by the for

$$
\text { diameter of bolt }-\frac{1.299}{\text { no. threads per inch }}
$$

For a sharp V thread with angle of $60^{\circ}$ the formula is

$$
\text { diameter of bolt }-\frac{1.433}{\text { no. of threads per inch }} \text {. }
$$

The angle of the thread in the Sellers system is $60^{\circ}$. In the Whitworth or English system it is $55^{\circ}$, and the point and root of the thread are rounded.

Screw-'Elereais, United States Standard.

| $\stackrel{. \ddot{n}}{\dot{\theta}}$ |  |  |  | $\stackrel{\text { gin }}{\stackrel{\rightharpoonup}{a}}$ |  | $\dot{\text { 플 }}$ | 込 |  | 圱 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 4$ | 20 | 3/4 | 10 |  |  |  |  | $213-16$ |  |
| 5-16 | 18 | 13-16 | 10 | ${ }_{1}{ }^{5} 516$ | 6 | $2^{10-16}$ | 41/2 | $3_{3}{ }^{13-16}$ | $31 / 2$ $31 / 2$ |
| $3 / 8$ | 16 | $8 / 8$ | 9 | $13 / 8$ | 6 |  | $41 / 2$ | $31 / 4$ | 31\% |
| ${ }^{7}-16$ | 14 13 | 15-16 | 8 | 11. | 6 | ${ }^{\circ} 5-16$ | $41 / 2$ | 3 5-16 | $31 / 4$ |
| 9-16 | 12 | ${ }_{1}^{1} 1$-16 | 8 | 158 | 51/3 | $13 / 8$ |  | $31 / 2$ | 314 |
| 5/8 | 11 | 11/8 | $\dot{7}$ | 138 |  |  |  |  |  |
| 11-16 | 11 |  |  |  |  |  |  |  |  |

U. S. OR SELLERS SYSTEM OF SCREW-THREADS. 205

Screw-Threads, Whitworth (Englishi) Standard.

U. S. ORE SELLERS SYSTEMM ON SCREW-THREADS.

BOLTS AND THREADS.

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ins. |  | Ins. | In |  |
|  | 20 | . 185 | 2 | . 049 |
|  | 18 | .240 | . 0074 | . $07 \%$ |
| $3 / 8$ | 16 | . 294 | . $00 \% 8$ | . 110 |
| r-16 | 14 | . 344 | . 0089 | . 150 |
|  | 13 | . 400 | . 0096 | . 196 |
| 9-16 | 12 | . 454 | . 0104 | . 24.9 |
| 5 | 11 | . 507 | . 0113 | . $30{ }^{\circ}$ |
| 34 | 10 | . 620 | . 0125 | . 412 |
|  | 9 | . 731 | . 0138 | . 601 |
|  | 8 | . 837 | . 0156 | . 585 |
|  | $\dot{4}$ | 1.9 | . 0178 | . 994 |
| 13/8 | 6 | 1.065 | . 01.8 | 1.22\% |
| $11 /$ | 6 | 1.244 | . 0308 | 1.767 |
| 15\% | 51/2 | 1.389 | . 0222 r | 2.064 |
| 13/4 | 5 | 1.491 | . 0250 | 2.405 |
| 17/8 |  | 1.616 | . 0250 | 2.761 |
| - | 41/2 | 1.712 | 02 2 亿 | 3.142 |
| $21 / 4$ | 412 | 1.962 | .02\% | 3.976 |
| $21 / 2$ | 4 | 2.176 | . 0312 | 4.909 |
| $23 / 4$ | 4 | 2.426 | . 0312 | 5.940 |
| 3 | $31 / 2$ | 2.629 | . $035{ }^{\circ}$ | 7.069 |
| $31 / 4$ | $31 / 2$ | 2.879 | . 035 r | 8.296 |
| $31 / 2$ | $31 / 4$ | 3.100 | . 0384 | 9.6:1 |
| 3:4 | 3 | $3.31 \%$ | . 0413 | 11.045 |
| 4 | 3 | 3.567 | 0413 | 12.566 |
| $41 / 4$ | $23 / 8$ | 3. 198 | . 0435 | 14.156 |
| $41 / 2$ | 234 | 4.028 | . 0454 | 15.904 |
| 43/4 | $25 / 8$ | 4.256 | . $04 \sim 6$ | 17.\%21 |
| 5 | 21/2 | 4.480 | . 050 | 19.635 |
| 51/4 | $21 / 2$ | 4.730 | . 0500 | 21.648 |
| 51 | 238 | 4.953 | .05:6 | 23.758 |
| $5 \%$ | 238 | 5.203 | .0526 | 25.96 r |
| 6 | 21/4 | 5.423 | . 0555 | 28.244 |

HEX. NUTS AND HEADS.

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Ins. | Ins. | Ins. | Ins, | Ins. |
| 1/2 | \%-16 | 37 | 3-16 |  |
| 19-32 | $1{ }_{1}^{1}-32$ | 11-16 5-16 |  | 10-12 |
| 11-16 |  | 51-64 3/8 | 5- | 6:3-64 |
| 25-3: | 93-3? | $9-10$ - | 3/8 | 17.64 |
| \%/818 | 13-16 | 11 | T-1 | $115-6$ |
| 32 | 29-3: | 11/8 ${ }^{1 / 2}$ | $1 / 2$ | $1 \stackrel{3}{1} 3-6$ |
|  |  | $17-32$ | 9-16 | 11/2 |
| $11 / 4$ | $13-1$ | $17-16$ | 11-16 | $149-6$ |
|  | $13 / 8$ | 121-3:2 78 | 13-16 | 2 1-3: |
|  | 19 | 17/8 | 15-16 | 2 19-6 |
| 6 | $13 / 4$ | 23-32 11 | 1 1-16 | 2 9-16 |
|  | $115-16$ | 25-16 11 | 13-16 | ${ }^{2} 53-64$ |
| 3 |  | 21.13213 | 1 5-16 | 3 3-3: |
|  |  | $23 / 4$ | $1{ }^{1}$ 7-16 | 3:3-6 |
| 29-16 |  | 2 31-32 | 1 9-16 | 35/8 |
|  | 2 11-16 | 3 3-16 13 | $111-16$ | $35 \%$ |
|  | $27 / 8$ | $313-321 \%$ | 113-16 | $45-3 \%$ |
|  | 3 1-16 | 35/8 | 115-16 | $42 \%-6$ |
|  | 3 ${ }^{\text {r }}$-16 | 41-16 21 | 23-16 | 4 61-64 |
|  | 3 13-16 | 412 2112 | \% $\sim_{1}-16$ | $531-64$ |
| 1 | 4 3-16 | $429-32.23 / 4$ | ${ }^{2} 11-16$ | 6 |
| 45/8 | 4 9-16 | $53 / 8$ | ${ }_{2}^{2} 15-16$ | $611-32$ |
|  | 4 15-16 | 5 13-1631 | 3 3-16 | -1-16 |
|  | 5 5-16 | $67-6431$ | 3 ${ }^{3}-16$ | 739.6 |
|  | 5 11-16 | 6 21-32 33/4 | 3 11-16 | 81/8 |
| 618 | 6 1-16 | \% 3-32 4 | 3 15-16 | 8 41-64 |
|  | $6{ }_{6}^{6}-16$ | \% 9-1? 41 | 43 -16 | $93-$ |
|  | 6 13-16 | 7 31-32 $41 / 2$ | + $71-10$ | $93 / 4$ |
|  | $73-16$ | 8 13-32 43/4 | $411-16$ | 101/4 |
|  | \% :-16 | $82 \%-325$ | 4 15-16 | 10 49-64 |
|  | 7 15-16 | 9 9-32 51/4 | 5 3-16 | 11 23-64 |
|  | $85-16$ | 983-32 51\% | $57-16$ | 117/8 |
| 01 | 8 811-16 | $105-32.534$ | 5 11-16 | 1238 |
| 91/8 | 9 1-16 | 10-19-32 6 | 5 15-16 | 1215 |

## LIMIT GAUGES FOR IRON FOR SCREW THHREADS.

In adopting the Sellers, or Franklin Iustitute, or United States Standard, as it is variously called, a difficulty arose from the fact that it is the habit of iron manufacturers to make iron over-size, and as there are no over-size
screws in the Sellers system, if iron is ton large it is necessary to cut it a way with the dies. So great is this difficulty, that the practice of making taps and dies over-size has become very general. If the Sellers system is adopted it is essential that iron should be obtained of the correct size, or very nearly so. Of course no high degree of precision is possible in rolling iron, and when exact sizes were demandel, the question arose how much allowable variation?there should be from the true size. It was proposed to make limitganges for inspecting iron with two openings, one larger and the other smaller than the standard size, and then specify that the iron shonld enter the large end and not enter the small one. The following table of dimensions for the limit-gauges was commended by the Master Car-Builders' Association and adonterl hy letter ballot in 1883.

| Size of Iroli. | Size of Large End of Gauge. | Size of Small End of Gauge. | Difference. | Size of Iron. | Size of Large End of Gauge. | Size of Small End of Gauge. | Difference. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/4in. | 0.2550 | 0.2450 | 0.010 |  | 0.6330 | $0.61 \% 0$ | 0.016 |
| 5-16 | 0.3180 | $0.30 \% 0$ | 0.011 |  | 0.7585 | 0.6415 | 0.01 \% |
| 3/8 | 0.3810 | 0.3690 | 0.012 | 8 | 0.8840 | 0.8660 | 0.018 |
| 7-16 | 0.4440 | 0.4310 | 0.013 |  | 1.0095 | 0.9905 | 0.019 |
| 1/20 | $0.50 \sim 0$ | 0.4930 | 0.014 | 11/8 | 1.1350 | 1.1150 | 0.020 |
| 9-16 | $0.5 i 00$ | 0.5550 | 0.015 | 11/4 | 1.2605 | 1.2395 | 0.021 |

Caliper gauges with the above dimensions, and standard reference gauges
for testing them, are made by The Pratt $\&$ Whitney Co.

##  TRON FOR U. S. S'RANDAED BOLTS.

Am. Mach., May 12, 1882.
By the adoption of the Sellers or U.S. Standard thread taps and dies keep their size much longer in use when flatted in accordance with this system than when made sliarp "V," though it has been found advisable in practice in most cases to make the taps of somewhat larger outside diameter than the nominal size, thus carrying the threads further towards the $V$-shape and giving corresponding clearance to the tops of the threads when in the nuts or tapped holes.
Makers of taps and dies often have calls for taps and dies, U.S. Standard, "for rough iron."
An examination of rough iron will show that much of it is rolled out of round to an amount exceeding the limit of variation in size allowed.
In view of this it may be desirable to know what the extreme variation in iron may be, consistent with the maintenance of U.S. Standard threads, i.e., threads which are standard when measured upon the angles, the only place: where it seems advisable to have then fit closely. Mr. Chas. A. Bauer, the general manager of the Warder, Bushnell \& Glessner Co., at Springfield, Olio, in 1884 adopted a plan which may be stated as follows: All bolts, whether cut from rough or finished stock, are standard size at the bottom and at the sides or angles of the threads, the variation for fit of the nut and allowance for wear of taps being made in the machine taps. Nits are punched with holes of such size as to give 85 per cent of a full thread, experience showing that the metal of wrought nuts will then crowd into the threads of the taps sufficiently to give practically a full thread, while if punclied smaller some of the netal will be cut out by the tap at the boltom of the threads, which is of course imdesirable. Machine taps are made enough larger than the nominal to bring the tops of the threads up sharp, plus the amount allowed for fit and wear of taps. This allows the iron to be enough above the nominal diameter to bring the threads up full (sharp) at top, while if i is small the only effect is to give a flat at top of threads; neither condition affecting the actial size of the thread at the point at which it is intended 50 bear. Limit ganges are furnished to the mills, by which the iron is rolled, the maximun size being shown in the third column of the table. The minimum diameter is not given, the tendency in rolling being nearly always to exceed the nominal diameter.
In making the taps the threaded portion is turned to the size given in the eiglith column of the table, which gives 6 to 7 thousandths of an inch allowance for in and wear of tap. Just above the threaded portion of the tap a

SIZES OF SCREW-THREADS FOR BOLTS AND TAPS. $20^{\prime \prime}$
place is turned to the size given in the ninth column, these sizes being the same as those of the regular U. S. Standard bolt, at the bottom of the thread, plus the amount allowed for fit and wear of tap; or, in other words, $d^{\prime}=\mathrm{U}$. S. Standard $d+\left(D^{\prime}-D\right)$. Ganges like the one in the cut, Fig. is, are furnished for this sizing. In finishing the threads of the tap a tool


Fig. 72.
is used which has a removable cutter finished accurately to gauge by grind. ing, this tool being correct U.S. Standard as to angle, and flat at the point. It is fed in and the threads chased until the flat point just touches the portion of the tap which has been turned to size $d^{\prime \prime}$. Care having been taken with the form of the tool, with its grinding on the top face (a fixture being provided for this to insure its being ground properly), and also with the setring of the tool properly in the lathe, the result is that the threads of the tap are correctly sized without further atteution.

It is evident that one of the points of advantage of the Sellers system is sacrificed. i.e., instead of the taps being flatted at the top of the threads they are sharp, and are consequently not so durable as they otherwise would be ; but practically this disadvantage is not found to be selious, and is far overbalanced by the greater ease of getting iron within the prescribed limits; while any rough bolt when reduced in size at the top of the threads, by filing or otherwise, will fit a hole tapped with the U.S. Standard hand taps, thus affording proof that the two kinds of bolts or screws made for the two different kinds of work are practically interchangeable. By this system $\frac{1}{4}^{\prime \prime}$ iron can be $.005^{\prime \prime}$ smaller or $.0108^{\prime \prime}$ larger than the nominal diameter, or, in other words, it may have a total variation of $.0158^{\prime \prime}$, while $1 \frac{1}{4 \prime \prime}$ iron can be $.0105^{\prime \prime}$ smaller or . $0309^{\prime \prime}$ larger than nominal-a total variation of $.0414^{\prime \prime}$ and within these limits it is found practicable to procure the iron.
STANDARD SIRES OF SCHEUW-THREADS FOR BOLTS AND TAPS.
(Chas. A. BAUER.)

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $n$ | D | d | $h$ | $f$ | $D^{\prime}-D$ | $D^{\prime}$ | $d^{\prime}$ | H |
|  |  | Iuches. | Inches | Inches. | Inches. | Inches. | Inches. | Inches. | Inches. |
| 1/4 | 20 | . 2608 | . 1855 | .03r9 | .0062 | . 006 | . 2668 | . 1915 | . 2024 |
| 3/8 | 16 | . 3885 | . 2938 | . 0154 | .0078 | . 006 | . 3945 | . 2998 | . 3139 |
| 7-16 | 14 | . 4530 | . $344{ }^{\circ}$ | . 0511 | . 0089 | . 006 | . 4590 | . 3507 | . $366^{\circ} 0$ |
| 1/2 | 13 | . 5166 | . 4000 | . 0582 | .0096 | . 006 | . 5226 | .4060 | . 4236 |
| $9-16$ | 12 | . 5805 | . 4543 | . 0631 | . 0104 | . 007 | . 5875 | . 4613 | . 4802 |
| 5/8 | 11 | . 6447 | . 5069 | . 0689 | . 0114 | . 007 | . 6517 | . 5139 | . 5346 |
| 3 | 10 | . 7717 | . 6201 | . 0 ¢̈5 | . 0125 | . 007 | . 7787 | . 6271 | . 6499 |
| \% | 9 | . 8991 | .730\% | . 0842 | . 0139 | . 007 | . 9061 | . 7374 | . 76330 |
|  | 8 | $1.02 \pi 1$ | . 8376 | . $094 \%$ | . 0156 | . 007 | 1.0341 | . 8446 | . 87.31 |
| 11/8 | 7 | 1.1559 | . 9394 | . 1083 | . 0179 | . 007 | 1.1629 | . 9464 | . 9789 |
| 11/4 | 7 | 1.2809 | 1.0644 | . 1083 | . 0179 | .00\% | $1.28 \% 9$ | 1.0714 | 1.1039 |

$A=$ nominal diameter of bolt.
$D=$ actual diameter of bolt.
$d=$ diameter of bolt at bottom of thread.
$n=$ number of threads per inch.
$f=$ flat of bottom of thread.
$h=$ depth of thread.
$D^{\prime}$ and $d^{\prime}=$ diameters of tap.
$H=$ hole in nué before tapping.

$$
\begin{aligned}
& D=A+\frac{.2165}{n} . \\
& d=A-\frac{1.20904}{n} \\
& H=\frac{.75 \%}{n}=\frac{D-d}{2} . \\
& f=\frac{.125}{n} . \\
& H=D^{\prime}-\frac{1.288}{n}=D^{s}-.85\left(2 h_{0}\right)
\end{aligned}
$$

## STANDALED SETT-SCREWS AND CAP-SCREWS.

American, Hartford, and Worcester Machine-Screw Companies. (Compiled by W. S. Dix.)



Round and Filister Head

| Diam. of Head. |  | Lengths (under Head). | Diam. of Head. | Lengths (including Head). |
| :---: | :---: | :---: | :---: | :---: |
| (A) | 3-16 | $3 / 4$ to $21 /$ |  |  |
| (B) | 134 | $\frac{34}{3}$ to to 384 | 15880 | 34 to $2^{4}$ |
| (D) | \% ${ }^{1} 8$ | 34 to 3 | 15-32 | 34 to 214 |
| (E) | 9-16 | $3 / 4$ to $31 /$ | $5 / 8$ | 34 to 234 |
| (F) | 5\% | $3{ }^{4}$ to 334 | $13-16$ | $3 / 4$ to 3 1 to 3 |
| (G) | 3/4 | 3 to 4 | 13-1/8 | 11/4 to 3 |
| (H) | 13-16 | 1 to $41 / 4$ | 1 | 11/4 to 3 |
| (1) |  | 114 to $41 / 2$ |  | $13 / 4$ to 3 |
| (K) | $11 / 8$ | l1/ 13 to $43 / 48$ | 13/8 | - ${ }^{2}$ to 3 |
|  | 11/4 | 13/4 to 5 |  |  |


| Button-head Capserews. |  |
| :---: | :---: |
| Diam. of Head. | Lengths (under Head). |
| 7-32 (.225) | $3 / 4$ to $13 / 4$ |
| 5-16 | 3 to ${ }^{2}$ |
| \%-16 | 34 to 214 |
| 9-16 | 34 to $21 / 2$ |
| \% 3 | $3{ }^{3 / 4} 41038$ |
| 13-16 | 1 to 3 |
| 15-16 | 11/4 to 3 |
| 1 | $11 / 6$ to 3 |
| 11/4 | $13 / 2$ to 3 |

* For cast iron. For numbers of twist-drills see p. 29.

Threads are U. S. Standard. Cap screws are threaded $3 / 4$ length up to and including $1^{\prime \prime}$ diam. $\times 4^{\prime \prime}$ long, and $1 / a$ length above. Lengths increase by $14^{\prime \prime}$ each regular size between the limits given. Lengths of heads, except flat The angle of the cone of screws.
of $53^{\circ}$ with the top.

STANDARD MACHENE SCREWS.

| No. | Threads per Inch. | Diam, of Body. | Diam. of Flat Head. | Diam. of Round Head. | Diam. of Filister Head. | Lengths. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | From | To |
| 2 | 56 | .0812 | . 1631 | . 1544 | .1332 | 3-16 | $1 / 2$ |
| 3 | 48 | . 0973 | . 1894 | . 1786 | . 1545 | 3-16 | 5/8 |
| 4 | 32, 36,40 | . 1105 | - 2158 | -2028 | . 1747 | 3-16 | 3/4 |
| 5 | 32, 36, 40 | . 1236 | . 2421 | 22\%0 | . 1985 | 3-16 | 8 |
| 6 | 30, 32 | . 1368 | . 2684 | . 2512 | . 2175 | 3-16 |  |
| 7 | 30, 32 | . 1500 | . 2947 | . 2754 | . 2392 | $1 / 4$ | $11 / 8$ |
| 8 | 30, 32 | . 1631 | . 3210 | . 2936 | . 2610 | $1 / 4$ | $11 / 4$ |
| 9 | 24, 30, 32 | . 1763 | . 3474 | . 3238 | . 2805 |  | 138 |
| 10 | 24, 30, 3: | . 1894 | . 3737 | . 3180 | . 3035 | 14 | $11 / 2$ |
| 12 | 20, 24 | . 2158 | . 4263 | . 3922 | . 3445 | 3/8 | $13 / 4$ |
| 14 | 20, 24 | .2421 | . 4790 | . 4364 | . 3885 | $3 / 8$ |  |
| 16 | 16, 18, 20 | . 2684 | . 5316 | . 4866 | . 4300 | $3 / 8$ | 214 |
| 18 | 16, 18 | . 2947 | . $581{ }^{2}$ | . 5248 | . 47110 | $1 / 2$ | 21, |
| 20 | 16, 18 | . 3210 | . 6368 | . 5690 | . 5200 | $1 / 8$ | $23 / 4$ |
| 22 | 16, 18 | . 3474 | . 6894 | . 6106 | . 5555 | 1.2 |  |
| 24 | 14, 16 | . 3737 | . 7120 | . 65223 | . 6005 | 1/2 |  |
| 26 | 14, 16 | . 4000 | . 8420 | . 6938 | . 6425 |  | 3 |
| 28 | 14, 16 | . 4263 | .7946 $.84: 3$ | . 7354 | .6920 .7240 | $1^{7 / 8}$ | 3 |
| 30 | 14, 16 | .4520 | .84i3 | -rt\% | . 7240 | 1 | 3 |

Lengths vary by 16 ths from $3-16$ to $1 / 2$, by Sths from $1 / 2$ to $11 / 2$, by 4 this from 132 to 3.

## SHZES AND WEIGHTS OF SQUARE AND HEXAGONAL NUTS.

United States Standard Sizes. Chanafered and rrimmed. Punched to suit U. S. Standard 'raps.

|  |  | W000EE |  |  |  | Square. |  | Hexagon. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\equiv \dot{\infty}$ | むid | $\Xi u$ | ¢ |
|  |  |  |  |  |  | $0$ | 5 | 울 | $\pm$ |
|  |  |  | 13-64 | 11-16 | 9-16 | \%2\%0 | 0138 | 7615 | . 0131 |
| 5-16 | 19-32 | 5-16 |  | 13-16 | 11-16 | $4 \% 00$ | . 0231 | 5200 | 0192 |
| 3/8 | 11-16 | 3/8 | 19-64 |  | 13-16 | 2350 | . 0426 | 3000 | . 0333 |
| 7-16 | 25-32 | \%-16 | 11-32 | $11 / 8$ | 7/8 | 1630 | . 0613 | 2000 | . 050 |
| 1/2 | 78 | $1 / 2$ | 25-64 | 114 |  | 1120 | . 0893 | 1430 | . 070 |
| $9-16$ | 31-32 | 9-16 | 29-64 | 138 | 11/8 | 890 | .1124 | 1100 | . 091 |
| 5/8 | $11-16$ | 5/8 | 33-64 | 11.2 |  | 640 | . 156 | \%40 | . 135 |
| 3 | $11 / 4$ | $3 /$ | 39-64 | $13 / 4$ | ${ }_{1}$ \%-16 | 380 | .263 | 450 | -22 |
|  | 1 ?-16 | $7 / 8$ | 47-6t | $2{ }^{1}$-16 | 1 11-16 | 280 | . $35 \%$ | 309 | . 324 |
|  | 15/8 | 1 | 53-64 | $2 \quad 5-16$ | $17 / 8$ | 170 | . 588 | 216 | . 403 |
| -1/8 | 1 13-16 | 11/8 | 59-64 | $2{ }^{2}$ 9-16 | 2 1-16 | 130 | . 769 | 148 | . 676 |
| 11/4 | 2 | $11 / 4$ | $1 \quad 1-16$ | ${ }^{2} 13-16$ | $2{ }^{2} 5-16$ | 96 | 1.04 | 111 | . 901 |
| $13 / 8$ | $23-16$ | $13 / 8$ | 1 1-32 | $31 / 8$ | $21 / 2$ | 70 | 1.43 | 85 | 1.18 |
| $11 \%$ | 23/8 | 11. | 1 9-32 | $33 \%$ |  | 58 | 1.72 | 68 | 1.47 |
| 158 | - ${ }^{2}$-16 | $15 \%$ | $113-32$ |  | ${ }_{\sim}^{2} 15-16$ | 44 | 2.27 | 56 | 1.79 |
| 134 | 234 | $13 / 4$ | $11 \times$ | 378 | 3 3-16 | 34 | $\stackrel{2}{24}$ | 40 | $\stackrel{1}{2} 50$ |
| 17\% | 2 15-16 | 17\% | 15\% | 41/8 |  | 30 | 3.33 | 37 | 2.70 |
| 2 | 31/8 | $\stackrel{1}{2}$ | $123-32$ | $4{ }^{\frac{1}{2}-16}$ |  | 23 | 4.35 | $\stackrel{29}{29}$ | 3.45 |
| $21 / 4$ | 31\% | $21 / 4$ | 1 15-16 | $415-16$ | 4.1-16 | 19 | 5.26 | 21 | 4.76 |
| 212 | 3\%\% | 21. | 2 3-16 | 51/2 | 41/2 | 12 | 8.83 | 15 | ${ }^{6.67}$ |
| $23 / 4$ | 41/4 | $23 / 4$ | $2{ }^{7} 716$ | 6 | $415-16$ |  | 11.11 |  | 9.09 |
| 3 | 45\% | 3 | $25 / 8$ | 612 | 5 5-16 | 71/3 | 13.64 | 81/ | 11.76 |


| 62 |  |
| :---: | :---: |
| $\stackrel{y}{c \mid}$ |  |
| $6$ |  |
| $\stackrel{\infty}{\infty 01}$ |  |
| $\underset{\sim}{ \pm}$ |  |
| $\approx$ |  |
|  |  |
| $\cdots$ |  |
| $\cdots$ |  |
| ${ }_{10}^{\infty}$ |  |
| $0$ |  |
| S？ |  |
| $\omega$ |  |
| ${ }_{\infty}^{\infty}$ |  |
| $\stackrel{0}{-1}$ |  |
|  |  |
|  |  |

TRACK BOLTS． With United States Standard Hexagon Nuts．

| Rails used． | Bolts． | Nuts． | No．in Keg， 200 lbs ． | Kegs per Mile． |
| :---: | :---: | :---: | :---: | :---: |
| 45 to $85 \mathrm{lbs} . . .\{$ | $3{ }^{3} \times 1 \times 41 / 4$ | $11 / 4$ | 230 | 6.3 |
|  | $\frac{3}{3} \times 1 \times 33 / 4$ | $11 / 4$ | 240 254 | ${ }_{5.7}^{6 .}$ |
|  | $3 / 3 \times 31 / 1 /$ | $11 / 1$ | 260 | 5.5 |
|  | ${ }^{3} 4 \times 31 / 4$ | $11 / 4$ | 266 | 5.4 |
|  |  | 1／4 | 283 | 5.1 |
| 30 to $40 \mathrm{lbs} . . .\{$ | 鱽 $5 \times 31 / 2$ | $\begin{array}{ll}1 & 1-16 \\ 1 & 1-16\end{array}$ | 37.5 | 4. |
|  | $58 \times 23 / 4$ | 1 1－16 | 435 | 3.7 |
|  | $5 / 8 \times 21 / 2$ | 1 1－16 | 465 | 3.1 |
| 20 to 30 lbs ． | $112 \times 3$ | $7 / 8$ | 715 | 2. |
|  | 119 $\times 21 / 2$ | 78 | 760 | 2. |
|  | $11 / 2 \times 2$ | 88 | 800 | 2. |

## CONE-HEAD BOILER RIVETS, WELGIT PER 100.

(Hoopes \& Townsend.)

| Diam., in., | 1/2 | 9/16 | 5/8 | 11/16 | $3 / 4$ | 13/16 | 7/8 | 1 | 11/8* | 11/4* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Length. | 1 lbs . | lbs. | lbs. | lbs. | 1bs. | lbs. | lbs. | lbs. | lbs. | lbs. |
| $3 / 8{ }^{\text {inch }}$ | $\begin{aligned} & 8.75 \\ & 0.35 \end{aligned}$ | $\begin{aligned} & 18 . \pi \\ & 14.4 \end{aligned}$ | 16.20 17.22 |  |  |  |  |  |  |  |
| $1^{1 / 8}$ " | 10.00 | 15.2 | 18.25 | 21.70 | 26.55 |  |  |  |  |  |
|  | 10.70 | 16.0 | 19.28 | 23.10 | 28.00 |  |  |  |  |  |
| 114 | 11.40 | 16.8 | 20.31 | 24.50 | 29.45 | ${ }^{37} .0$ | 46 | 60 |  |  |
| $13 / 8$ " | 12.10 | 17.6 | 21.34 | 25.90 | 30.90 | 38.6 | 48 | 63 | 95 |  |
| $11 /{ }^{1}$ | 12.80 | 18.4 | 22.37 | 27. 30 | 3:. 35 | 40.2 | 50 | 5 | 98 101 | 133 |
| 158 ${ }^{15}$ | 13.50 14.20 | ${ }_{20} 19.2$ | $\stackrel{33.40}{ }$ | 28.70 30.10 | 33.80 35.25 | 41.9 | 52 54 | 67 69 | 101 | $13 \%$ 141 |
| $134 \%$ | 14.20 | 20.0 | 24.43 | 30.10 | 36.70 | 45.2 | 56 | ${ }_{71}$ | 107 | 145 |
| ${ }_{2}^{13 / 8}$ " | 14.90 15.60 | 21.6 | 2.49 | 32.90 | 38.15 | 47.0 | 58 | 74 | 110 | 149 |
| 21/8 | 16.30 | 22.4 | 27.52 | 34.30 | 39.60 | 48.7 | 60 | 7 | 114 | 15:3 |
| 214 | 17.00 | 23.2 | 28.55 | 35.70 | 41.05 | 50.3 | 62 | 80 | 118 | 157 |
| $23 / 8$ | 17.\%0 | 24.0 | 29.58 | 37.10 | 42.50 | 51.9 | 64 | 83 | $1: 1$ | 161 |
| 21. | 18.40 | 24.8 | 30.61 | 38.50 | 43.95 | 53.5 | 66 | 86 | 124 | 16.5 |
| 25/8 " | 19.10 | 25.6 | 31.64 | 39.90 | 45.40 | 55.1 | 68 | 89 | 127 | 169 |
| $23 / 4$ | 19.80 | 26.4 | 32.67 | 41.30 | 46.85 | 56.8 | 70 | 92 | 130 | 173 |
| 25/8 | 20.50 | 27.2 | 33.70 | 42.00 | 48.30 | 58.4 | 72 | 95 | 133 | 117 |
| 3 " | 21.20 | 28.0 | 34.73 | 44.10 | 49.75 | 60.0 | 74 | 98 | 137 | 181 |
| $31 / 4$ | 22.60 | 29.7 | 36.79 | 46.90 | 52.65 | 63.3 | 78 | 103 | 144 | 189 |
| $31 /{ }^{3}$ | 24.00 | 31.5 | 38.85 | 49. 70 | 55.55 | ${ }^{66.5}$ | 82 | 108 | 151 | 197 |
| $33 / 4$ | 25.40 | 33.3 | 40.91 | 59.50 | 58.45 | ${ }^{69.8}$ | 86 90 | 113 | 158 | $\stackrel{205}{213}$ |
|  | 26.80 | 35.2 36.9 | 42.97 | 58.10 | 61.35 64.25 | 13.0 76.3 | 94 | 124 | 172 | $\stackrel{\sim}{2}$ |
| $41 / 4$ | $\stackrel{29}{29.60}$ | 38.6 | 47.09 | 60.90 | 67.15 | 79.5 | 98 | 130 | 179 | 229 |
| 43 | 31.00 | 40.3 | 49.15 | 63.70 | 70.05 | 82.8 | 102 | 136 | 186 | 237 |
| 5 | 32.40 | 42.0 | 51.21 | 66.50 | 72.95 | 86.0 | 106 | 142 | 193 | 245 |
| $51 / 4$ | 33.80 | 43.7 | 53.27 | 69.20 | 75.85 | 89.3 | 110 | 148 | $\stackrel{00}{0}$ | 254 |
| 51.6 | 35.20 | 45.4 | 55.33 | 72.00 | \%8.75 | 92.5 | 114 | 154 | 206 | 263 |
| $53 / 4$ | 36.60 | $4 \pi .1$ | 57.39 | 74.80 | 81.65 | 95.7 | 118 | 160 | 212 | 272 |
| 6 " | 38.00 | 48.8 | 59.45 | 77.60 | 84.55 | 99.0 | 122 | 166 | 218 | 281 |
| 61/2 | 40.80 | 52.0 | ${ }^{67} .57$ | 83.30 | ${ }^{90.35}$ | 105.5 | 130 | 177 188 | 231 | 297 314 |
| 7 | 43.60 | 55.2 | 67.69 | 88.90 | . 96.15 | 112.0 | 138 | 188 | 245 | 314 |
| Heads. | 5.50 | 8.40 | 11.50 | 13.20 | 18.00 | 23.0 | 29.0 | 38.0 | 56.0 | 77.5 |

[^4]
## TURNBUCKLES.

(Cleveland City Forge and Iron Co.)
Standard sizes made with right and left threads. $D=$ outside diameter


Fig. 73.
of screw. $A=$ length in clear between heads $=6$ ins. for all sizes. $B=$ length of tapped heads $=13,2$ nearly,$\quad C=6$ ins, $+3 D$ nearly.

SIZES OF WASHERS.

| Diameter in inches. | Size of Hole, in inches. | Thickness, Birmingham Wire-gauge. | Bolt in inches. | No. in 100 lbs . |
| :---: | :---: | :---: | :---: | :---: |
| 5/8 | 5-16 | No. 16 | 14 | 29,300 |
| $1^{3 / 4}$ | 3/8-16 | ،6 16 | 5-16 | 18,000 |
| $11 / 2$ | \%-16 | "6 14 | $3 / 8$ | 7,600 |
| $11 \%$ | $5 / 8$ | 6. 11 | 1/9 ${ }^{-16}$ | 3,300 |
| 11.8 | 11-16 | -11 | $5{ }^{9-16}$ | 2,180 |
| $13 / 4$ | 13-16 | - 11 | 9 | 2,350 |
| 2 | 31-32 | * 10 | \% | 1,680 |
| $21 / 2$ | 11/8 | " 8 | $1{ }^{8}$ | 1,140 |
| 23.4 | $11 / 4$ | 68 | 11/8 | 470 |
| 3 3 | 13/8 | 4 | $11 / 4$ | 360 |
| 3 | 11\% | 46 | 138 | 360 |

TRACK SPHKES.

| Rails used. | Spikes. | Number in Keg, 200 lbs. | Kegs per Mile, Ties 24 in . between Centres. |
| :---: | :---: | :---: | :---: |
|  | $51 / 2 \times 9-16$ | 380 | 30 |
| 40 <br> 35 <br> 1640 | $5 \times 9-16$ | 400 | $\stackrel{37}{27}$ |
| 24 " 35 | $5 \times 1 / 2$ | 490 | 22 |
| 24 2430 | $41 / 2 \times 1 / 2$ | 550 | 20 |
| 18 " 24 | $41 / 2 \times 7-16$ $4 \times 7-16$ | 88 | 15 |
| 16 " 20 | $31 / 2 \times 3 / 8$ | 1250 | 13 |
| 14 " 16 | $3 \times 8$ | 1350 | 9 |
| $8{ }^{8}$ " 12 | $21 / 2 \times 3 / 8$ | 1550 | 8 |
| 8 " 10 | $21.2 \times 5-16$ | 2260 | 5 |

STRRET HAILWAY SHIKES.

| Spikes. | Number in Keg, 200 lbs. | Kegs per Mile, Ties 24 in. <br> between Centres. |
| :---: | :---: | :---: |
| $51 / 2 \times 9-16$ <br> $5 \times 1 / 2$ <br> $412 \times \tau-16$ | 400 |  |

## BOA豆 SPIKES.

Number in Keg of 200 lbs .

| Length. | $1 / 4$ | 5-16 | 9/8 | 13 |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{5}^{4}$ inch. | 2375 |  |  |  |
| $\begin{array}{ll}5 & \text { " } \\ 6\end{array}$ | 2050 | 1230 |  |  |
| 6 7 | 18:5 | 1175 | 800 | 450 |
| 8 " |  | 990 880 | 650 | 375 |
| 9 ، |  | 880 | 600 | 335 |
| $10 \quad 4$ |  |  | 48 | 300 $2 \% 5$ |

## WROUGITT SPIKES.

Number of Nails in Keg of 150 Pounds.

| Size. | 1/4in. | 5-16 in. | $3 / 8 \mathrm{in}$. | $7-16 \mathrm{in}$. | $1 / 2 \mathrm{in}$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{3}^{3}$ inches. | 2250 |  |  |  |  |
| $4{ }^{4}$ " | 1890 1650 | 1135 |  |  |  |
| ${ }_{5}^{41 / 2}$ "6 $\quad$ "..... | 1464 1380 | 1064 930 |  | -. ... |  |
| " | 1380 1292 | 930 868 |  |  |  |
| ". $\quad$ "...... | 1161 | 662 | 482 | 445 |  |
| " ${ }^{4}$ |  | 635 | 455 | 384 | 256 |
| 10 |  | 573 | 424 391 | ${ }_{300}$ | ${ }_{20}^{240}$ |
| 11. |  |  |  | $\underset{249}{ }$ | 203 |
|  |  |  |  | 236 | 180 |

WHRE SPIKES.

| Size. | Approx. Size of Wire Nails | $\begin{aligned} & \mathrm{Ap} . \text { No. } \\ & \text { in } 1 \mathrm{lb} . \end{aligned}$ | Size. | Approx. Size of Wire Nails. | $\begin{aligned} & \text { Ap. No. } \\ & \text { in } 1 \text { lo. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 d Spike | 3 in . No. 7 |  | 60 d |  |  |
| ${ }_{20 \mathrm{~d}}^{16 \mathrm{~d}}$ "، | $31 / 2$ c " 6 <br> 4 6 6  | ${ }_{36}^{35}$ | $61 / 2 \mathrm{in} .6$ | 61/2 |  |
| 30d ${ }^{\text {a }}$ |  | $\stackrel{26}{20}$ |  |  |  |
| 40d " | $5{ }^{5}$ "، ${ }^{\text {a }} 3$ | 15 | ، | $\begin{array}{llll}8 \\ 9 & \text { ، } & \text { c } & 00\end{array}$ | 16 |
| 50d " | $51 / 2$ " ${ }^{\text {" }} 2$ | 12 |  |  | 暏 |

## LENGTH AND NUMBER OF CUT NAILS TO THE POUND.



| $\begin{aligned} & \dot{0.0} \\ & \stackrel{N}{V} \end{aligned}$ |  |  |  |  |  |  | $\stackrel{\otimes}{\text { ® }}$ |  |  |  | $\qquad$ Light. | d Oval Car ail. <br> Heary |  |  |  | - | $\stackrel{80}{\#}$ | \% |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3/4 |  |  |  |  |  |  | 1500 1000 | , | ... |  |  |  | 714 |  |  | 2100 1780 |  | 3/4 | …… |
| 2d........ | 11 | 1200 | 876 | 710 |  | 1558 | 1550 | 875 | 1350 |  |  |  | 411 |  |  |  |  |  |  | 20. ${ }^{\text {d }}$ |
| 3d common | $11 / 4$ | 720 | $\ddot{568}$ |  |  | 980 | 1140 | 775 560 | 913 |  |  |  |  | 251 |  |  |  |  | 11/8 | 3d fine 8d c'm |
|  | 138 |  |  |  |  |  |  | 390 |  |  |  |  |  |  |  |  |  |  | $13 / 8$ |  |
| $4 \mathrm{4d}$ | 11.2 | 432 | 357 | 274 |  | 760 | 760 | 350 | 584 |  | 274 | 165 | 209 | 165 |  |  |  |  | $11 / 2$ | 4 d |
| 5d | ${ }_{2}^{13 / 4}$ | 300 <br> 252 <br> 18 |  | ${ }_{157}^{235}$ | 142 | 575 350 |  |  | 410 310 |  | 142 | 118 | 142 | 142 | $2{ }_{2}^{20}$ |  |  |  | $13 / 4$ | 5 d |
| $7 \mathrm{6d}$ | $\stackrel{2}{21} 4$ | 252 186 | 204 | 157 139 | [124 | 350 <br> $2{ }^{2} 5$ <br> 15 |  |  | 310 <br> 238 <br> 18 | 157 139 | 124 92 | 103 76 |  | 103 | 1804 |  |  |  | ${ }_{2}^{2}$ | 6d |
| 8 d | 218 | 132 |  | 99 | 82 | 190 |  |  | 170 | 19 99 | 82 | 69 |  |  |  | 99 |  |  | 21 | ${ }^{7 d}$ |
| 9 d | $23 / 4$ | 105 | 90 | 90 | 62 | 173 |  |  | 150 | 90 | 62 | 54 |  |  | 114 | 90 |  |  | 23/4 | 9 d |
| 10d | 3 | 87 | 69 | 83 | 50 | 137 |  |  | 121 | 67 | 57 | 50 |  |  |  | 69 |  | 50 | 3 | 10d |
| 12d. | 31/4 | 66 | 53 | 64 | 38 | 98 |  |  | 97 | 53 | 47 | 38 |  |  |  |  |  |  | 31/4 | 12d |
| 16 d . | $31 / 2$ | 51 | 43 | 59 | 30 | 81 |  |  | 72 | 43 | 43 | 35 |  |  |  |  |  | 35 | 31/2 | 16 d |
| 20 d . | 4 | 35 | 31 | 43 | 23 | 71 |  |  | 54 | .... | 31 | 26 |  |  | ... |  |  | 26 | 4 | 20d |
| $30 \mathrm{~d} .$ | ${ }_{5}^{41 / 2}$ | 27 | 24 |  | ... |  |  |  | 46 36 | $\cdots$ | $\stackrel{21}{28}$ | 24 |  |  |  |  |  | 20 | 41/3 | 30 d |
| 50d.......... | $51 / 2$ | 15 |  |  |  |  |  |  | 3 |  | 17 | 14 |  |  |  |  |  | 15 | $51 / 3$ | 40d |
| 60d. | 6 | 12 |  |  |  |  |  |  |  |  | 15 | 13 |  |  |  |  |  | 10 | 6 | 60d |

APRROXIMATE NUMBER OF WHRE NALLS PER POUND.

| Wire Gauge. B. W. G. | Length, inches. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1 / 4$ | 3/8 | $1 / 2$ | 58 | $3 / 4$ | 1 | 11/4 | 11/2 | 13/4 | 2 | 21/2 | 3 | 31/2 | 4 | 41/2 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 00 |  |  |  |  |  |  | 33 | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  | 34 | $\stackrel{21}{29}$ | 23 | 20 | 17 | 14 | 12 | 10 | 9 10 | 8 <br> 9 | 7 | 6 7 | 5 | $41 / 2$ | 41 | $33 / 4$ |  |
| 1 |  |  |  |  |  | 57 | 45 | 38 | 32 | 28 | 23 | 19 | 16 | 14 | 13 | 11 | -8 | 8 | 51.2 | 5 | 413 | 4 | $31 / 2$ |
| 3 |  |  |  |  |  | 65 | 52 | 44 | 37 | 32 | 26 | 28 | 19 | 16 |  | 13 | 11 | 9 | 8 |  |  | 6 | 41.2 |
| 4 |  |  |  |  | 100 | 76 | 60 | 50 | 43 | 38 | 30 | 25 | 22 | 19 | 17 | 15 | 13 | 11 | 8 |  |  |  | 51/2 |
| 5 |  |  | 211 | 169 | 120 | 90 | 72 | 60 | 51 | 45 | 36 | 30 | 26 | 23 | 20 | 18 | 15 | 13 | 11 | 10 |  |  | ... |
| 6 |  |  | $24 \%$ | 197 | 141 | 106 | 85 | 71 | 60 | 53 | 42 | 35 | 30 | 26 | 24 | 21 | 18 | 35 |  |  |  |  |  |
| 7 |  |  | 299 | 197 | 164 200 | 123 | 99 | 82 | 71 | 62 | 50 | 41 | 35 | 31 | 28 | 25 | 21 | 18 |  |  |  |  |  |
| 8 |  |  | 345 | 275 | 200 | 149 | 120 | 100 | 85 | 75 | 60 | 50 | 43 | 37 |  | 30 | 25 |  |  |  |  |  |  |
| 9 |  |  | 414 | 275 | $\underset{\sim}{209}$ |  | 137 | 115 | 98 | 86 | 69 | 57 | 49 | 43 | 39 | 35 | 29 |  |  |  |  |  |  |
| 10 |  | 663 | 496 | ${ }_{3}{ }^{*}$ | 276 | 207 | 165 | 138 | 118 | 103 | 89 | 69 | 59 | 52 |  | 41 |  |  |  |  |  |  |  |
| 11 |  | 837 | 628 | 39. | 333 | 248 | 198 | 165 | 142 | 124 | 99 | 83 | 71 | 62 | 55 | 50 |  |  |  |  |  |  | -• |
| 12. |  | 1096 | 828 | $50 \%$ | 418 | 314 | 251 | 209 | 179 | 157 | 125 | 105 | 90 | 79 | \% 0 |  |  |  |  |  |  |  |  |
| 13 |  | 1429 | $10 \%$ | 857 | ${ }_{7} 714$ | 411 | 329 | 274 | 235 | $\because 04$ | 164 |  | 117 | 103 | . . . |  |  |  |  |  |  |  |  |
| 14 | 2840 | 1893 | 14:0 | 1136 | 947 | 710 | 568 | 473 | 406 | 268 | 214 |  | 153 |  |  |  |  |  |  |  |  |  |  |
| 15. | 3504 | 2336 | 1752 | 1402 | 1168 | 876 | 701 | 584 | 500 | 3.00 438 | 284 | 236 |  |  |  |  |  |  |  |  |  |  |  |
| 16 | 4571 | 3048 | 2280 | 1828 | 1583 | 1143 | 913 | 761 | 653 | 571 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17. | 6233 | 4156 | 3116 | 2495 | $20 \% 7$ | 1558 | 1.246 | 1038 | 830 | $\underset{\sim}{\text { ry }}$ |  | These approximate numbers are an average only, and the figures given may be varied either way by changes in the dimensions of the heads or points. Brads and no-head nails will run more to the pound nails will run less. than the table shows, and large or thick-headed |  |  |  |  |  |  |  |  |  |  |  |
| 18 | $82 \sim 6$ | 5517 | 4138 | 3310 | 2058 | 2069 | 1655 | 1038 1379 | 1182 | ${ }^{1} 9$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19............ | 10668 | 7112 | 5334 | 4267 | 35.56 | 2667 | 2133 | 1788 | 1182 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20............ | 15000 | 10000 | 7500 | 6000 | 5000 | 3750 | 3000 | 178 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21. | $17 \% 77$ | 11850 | 8888 | \%111 | 5926 | 4444 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 29. | 22856 | 15237 | 11428 | 9143 | 7618 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

SHEE，WEHGHT，LENGEY，AND STRENGTHE OFIRON WIRE．
（Trenton Iron Co．）

| No．by Wire Gauge． | Diant． in Deci－ mals of One Inch． | Area of Section in Decimals of One Inch． | Feet to the Pound． | Weight of One Mile in pounds． | Tensile Strength（Ap． proximate）of Charcoal Iron Wire in Pounds． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Bright． | Annealed． |
| 00000 | ． 450 | ． 15904 | 1.863 | 2833.248 | 12598 | 9449 |
| 0000 | ． 400 | ． 12566 | 2.358 | 2238.878 | 9955 | 7466 |
| 000 | ． 360 | ． 10179 | 2.911 | 1813.574 | 8124 | 6091 |
| 00 | ． 330 | ． 08553 | 3.465 | 1583.861 | 6880 | 5160 |
| 0 | ． 305 | ． 07306 | 4.057 | $1301.6 \% 8$ | 5926 | 4445 |
| 1 | ． 285 | ．06379 | 4.645 | $1136.6 \% 8$ | 5226 | 3920 |
| 2 | ． 265 | ． 05515 | 5.374 | 982555 | 45 T 0 | 3425 |
| 3 | ． 245 | ． 01714 | 6.286 | 839.912 | 3948 | 2960 |
| 4 | ． 225 | ． 03976 | 7.454 | \％ 08.365 | 3374 | 2530 |
| 5 | ． 205 | ． 03301 | 8.976 | 588.139 | 2839 | 2130 |
| 6 | ． 190 | ． 02835 | 10.453 | 505.084 | 2416 | 1860 |
| 7 | ． 175 | ． 02405 | 12.393 | 425．4T2 | 2136 | 1600 |
| 8 | ． 160 | ． 02011 | 14.736 | 358.3008 | 1813 | 1360 |
| 9 | ． 145 | ． 01651 | 17.950 | $\bigcirc 94.1488$ | 1507 | 1130 |
| 10 | ． 130 | ． 01327 | 22.333 | 236.4384 | 1233 | 925 |
| 11 | ． 1175 | ． 01084 | 27.340 | 193.1424 | 1010 | 758 |
| 12 | ． 105 | ． 00866 | 34.219 | 154．2816 | 810 | 607 |
| 13 | ． 0925 | ． 00672 | 44.092 | 119.7504 | 631 | 4 T 3 |
| 14 | ． 080 | ． 00503 | 58.916 | 89.6016 | $4 \pi 4$ | 356 |
| 15 | ． 0 กั0 | ． 00385 | 76.984 | $68.58 \%$ | 372 | 280 |
| 16 | ． 061 | ． 00292 | 101.488 | 52.0050 | 292 | 220 |
| 17 | ． 0525 | ． 00216 | 137.154 | 33.4912 | 222 | 165 |
| 18 | ． 045 | ． 00159 | 186.335 | 23.3378 | 169 | 127 |
| 19 | ． 040 | ． 0012566 | 235.081 | 22.3802 | 137 | 103 |
| 20 | ． 035 | ．0009621 | 308.079 | 17.1389 | 107 | 80 |
| 21 | ． 031 | ．000～T547 | 392.772 | 13.4409 |  |  |
| 22 | ． 028 | ． 0006157 | 481.234 | 10.9718 | Fig | － |
| $\stackrel{23}{ }$ | ． 0205 | ． 0001909 | 603.863 745.710 | 8.7437 7.0805 | ¢ 00 |  |
| 25 | ． 020 | ． 0003142 | 943.396 | 5.5963 | 弱気 | 요 |
| 26 | ． 018 | ． $000 \% 2545$ | 1164.689 | 4.5334 | 9 | ${ }^{\circ}$ |
| 27 | ． 017 | ．00022\％ | 1305.670 | 4.0439 |  | 주ํ． |
| 28 | ． 016 | ． 0002211 | 1476.869 | 3.5819 | Eiv | 阯 |
| 29 | ． 015 | ．0001767 | 1676.989 | 3.1485 | － | \％궁 |
| 30 | ． 014 | ． 0001539 | 1925． $3 \geqslant 1$ | 2．7424 | 5 \％ | 为枵 |
| 31 | ． 013 | ． 000132 T | 2233.653 | 2.3649 | 50 | T® |
| 32 | ． 012 | ． 00001131 | $26: 0.607$ 3119.092 | 2.0148 | O | W\％ |
| 33 | ． 011 | ． 0000950 | 3119.092 3743.584 | $1.69: 8$ 1.3992 | 范号 | 管 |
| 35 | ． 0095 | ． 00007088 | 4182.508 | 1.2624 | 8 | ¢ |
| 36 | ． 009 | ．00006363 | 4657.728 | 1.1336 | － | － |
| 37 | ． 0085 | ． 00000565 | 52.32 .035 | 1.0111 | \％ | \％．․․ |
| 38 39 | ． 0008 | .0000500 r ． 00004418 | 5896.147 | ． 89.786 | \％ | 边 |
| 40 | ． 007 | ．00003848 | \％698．253 | ． 6858 \％ |  |  |

## GALVANHRED IRON WHRE TOR TELEGRAPH AND TELEPHONE LINES.

(Trenton Iron Co.)
Weight per Mile-Ohm.-This term is to be understood as distinguishing the resistance of material only, and means the weight of such material required per mile to give the resistance of one olm. To ascertain the mileage resistance of any wire, divide the "weight per' mile-ohm" by the weight of the wire per mile. Thus in a grade of Extra Best Best, of which the weight per mile-olım is 5000 , the mileage resistance of No. 6 (weight per mile 525 lbs.) would be about $91 / 2$ ohms; and No. 14 steel wire. 6500 lbs . weight per mile-ohn ( 95 lbs . weight per mile), would show about 69 olms.

## Sizes of Wire used in Telegraph and Telephone Lines.

No. 4. Has not been much used until recently; is now used on important lines where the multiplex systems are applied.
No. 5. Little used in the United States.
No. 6. Used for important circuits between cities.
No. 8. Medium size for circuits of 400 miles or less.
No. 9. For similar locations to No. 8, but on somewhat shorter circuits ; until lately was the size most largely nised in this country.
Nos. 10, 11. For shorter circuits, railway telegraphs, private lines, police and fire-alarm lines, etc.

No. 12. For telephone lines, police and fire-alarm lines, etc.
Nos. 13, 14: For telephone lines and short private lines: steel wire is used most generally in these sizes.

The coating of telegrapl wire with zinc as a protection against oxidation is now generally admitted to be the most efficacious method.
The grades of line wire are generally known to the trade as "Extra Best Best"(E. B. B.), "Best Best"(B. B.), aud "Steel."
"Extra Best Best" is made of the very best iron, as nearly pure as any commercial iron, soft, tough, uniform, and of very high conductivity, its weight per mile-olim being about 5000 lbs .

The "Best Best" is of iron, showing in mechanical tests almost as good cesults as the F. B. B., but not quite as soft, and being somewhat lower in conductivity; weight per mile-ohm about $5 \pi 00 \mathrm{lbs}$.

The Trenton "Steel" wire is well suited for" telephone or short telegraph lines, and the weight per mile-ohm is about 6500 lbs .

The following are (approximately) the weights per mile of various sizes of ralvanized telegraph wire, drawn by Trenton Iron Co.'s gauge:

| No. | 4, | 5, | 6, | 7, | 8, | 9, | 10, | 11, | 12, | 13, | 14. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lbs. | 720, | 610, | 525, | 450, | 375, | 310, | 250, | 200, | 160, | 125, | 95. |

## TEESTS OF TELEGRAPH UVIRE.

The following datil are taken from a table given by Mr. Prescott relating to tests of E, B. B. galvanized wire furnished the Western Union Telegraph Co.:

| Size of Wire. | Diam. <br> Parts of One Inch. | Weight. |  | Length. Feet per <br> pound | Resistance. <br> Temp. ${ }^{2} 5.8^{\circ}$ Falnr. |  | Ratio of Brealing Weight to Weight per mile. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Grains. per foot | Pounds per mile |  | Feet per ohm. | Ohms per mile. |  |
| 4 | .238 | 1043.2 | 886.6 | 6.00 | 958 | 5.51 |  |
| 5 | . 220 | 891.3 | 673.0 | 7.85 | \% | 7.26 |  |
| 6 | . 203 | 758.9 | $5 \% .3$ | 9.20 | 618 | 8.54 | 3.05 |
| 7 | . 180 | 596.7 | 449.9 | 11.\% 0 | 57 S | 10.86 | 3.40 |
| 8 | . 165 | 501.4 | 378.1 | 14.00 | 409 | 12.92 | 3.07 |
| 9 | . 148 | 403.4 | 304.2 | 17.4 | 328 | 16.10 | 3.88 |
| 10 | . 134 | 330.7 | 249.4 | 21.2 | 269 | 19.60 | 3.87 |
| 11 | .120 .109 | $\stackrel{265.2}{218.8}$ | 200.0 | 26.4 | 216 | 24.42 | 2.97 |
| 12 14 | .109 .083 | 218.8 126.9 | 165.0 95.7 | 32.0 | 179 | 29.60 | 3.43 |
| 14 | . 083 | 126.9 | 95.7 | 55.2 | 104 | 51.00 | 3.05 |

[^5]$-1-10$

| Gauge Number. | Diameter, | Sectional Area in Circular Mils. $=$ diam $^{2}$. | Weight. |  | Length. |  | Resistance. |  | $\begin{aligned} & \text { Gauge } \\ & \text { Number. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lbs. per Foot. | Lbs. per Ohm. | Feet per Lb. | Feet per Ohm. | Ohms per Lb. | Ohms per Foot. |  |
| 0000 | . 454 | 206116 | . 633925 | 12486.73 | ] 6027 | 19966.55 | .00008027 | .00005008 | 0000 |
| 000 | . 425 | 180625 | . 516766 | ${ }^{9569.13}$ | ]. 82885 | 17996.15 | .000101500 | .00000571992 | 000 00 |
| ${ }_{0}^{00}$ | . 34 | 144400 | ${ }^{.} 3499288$ | ${ }_{3918.60}$ | 2.8577 | 11198.17 | .00025228 | .0000893 | 0 |
| 1 | ${ }_{3}$ | 990000 | . 272435 | 2375.17 | 3.6706 | 8718.3 | . 00042102 | . 000114701 | 1 |
| 2 | . 284 | 80656 | . 24415 | 1952.03 | 4.0958 | 7813.15 | .00001929 | -00012799 | 3 |
| 3 | . 229 | ${ }_{6}^{6881}$ | - 202964 | ${ }_{\substack{1318.288 \\ 9+86}}$ | ${ }_{5}^{4.937}$ | ${ }_{5}^{6487.11}$ | . 001010685 | .000182665 | ${ }_{4}$ |
| ${ }_{5}^{4}$ | . 238 | 56664 48400 | . 176514 | 6888.494 | 6.8255 | ${ }_{4688.51}$ | . 00145245 | .000212795 |  |
| 6 | . 203 | 41209 | . 124742 | 497.631 | 8.0165 | 3989.26 | .002000:39 | .00025067 | 6 |
| 7 | . 18 | 32400 | .099076 | ${ }_{217}^{307.83}$ | 10.1962 | ${ }^{31388} 5$ | -003248067 | . 0000318196178 | 8 |
| ${ }_{9}^{8}$ | . 148 | ${ }_{21904}^{2725}$ | .066305 | 110.754 | 15.0818 | 2122.82 | . 0071046 | . 000471073 | 9 |
| 10 | . 134 | 17956 | . 054354 | 94.5433 | 18.3979 | $1739 . \pm$ | .0105722 | .00057491 | 10 |
| 11 | . 12 | 14100 | . $0+3595$ | 60.805 | ${ }_{27}^{22.941}$ | 1394.53 | . 01.446 | . 000071688 | 11 |
| 12 | . 109 | ${ }_{9}^{11881}$ | . 033793964 | ${ }_{23}^{43.39837}$ | 27.8056 36.6046 | ${ }^{1150.91} 8$ | . 0441815696 | . 00008143884 | 13 |
| 14 | .083 | 6889 | .020853 | 14.9819 | 47.9547 | 667.338 | . 0718596 | . 0014985 | 14 |
| 15 | . 072 | 5184 | . 015692 | ${ }_{5}^{7.88012}$ | ${ }_{78}^{63.7267}$ | ${ }_{409}^{502.216}$ | . 1218909 | . 000199134 | 15 16 |
| 16 | .065 | ${ }_{3364}^{4225}$ | . 0127889 | 5.23433 3.31726 | 78.1923 88.232 | 409276 325.87 | . 190144 | . 00030443887 | ${ }_{17}^{16}$ |
| 18 | . 059 | ${ }_{2401}$ | . 007268 | $1.690+3$ | ${ }_{137.586}$ | 232.585 | . 591566 | . 0042995 | 18 |
| 19 | . 012 | 1764 | .005340 | . 912492 | 187.266 | 170.879 | 1.0959 | . 005858.1 | 19 |
| 20 | . 035 | 1225 | .003708 | . 41013105 | 269.687 | ${ }_{99}^{118.656}$ |  | . 0008427 |  |
| 21 22 | . 0328 | 1024 784 | . 0003099 | . 307405 | 322.585 421.407 | 99. 75.976 | 3.25304 | ${ }_{\text {. }}^{.010087}$. 0131672 | 21 |
| 23 | .025 | 625 | . 001893 | .114549 | 528.54 | ${ }_{60}^{60.5438}$ | 8.7299 | ${ }^{.016517}$ | 23 |
| 24 25 | . 0202 | 484 400 | . 0001465 | . 004686894 | ${ }^{682.594}$ | 49.885 38.748 | ${ }_{21.3111}^{14.5589}$ | . 023138878 | $\stackrel{24}{25}$ |
| ${ }_{26}$ | . 018 | $32 \pm$ | . 00009807 | . 030786 | 1019.68 | 31.386 | 32.4885 | . 0318615 | 27 |
| 27 | . 016 | 256 | . 00007749 | . 0192165 | 1290.489 | 24.7987 18.9866 | ${ }_{88}^{53.0389}$ | . 040303246 | $\stackrel{27}{27}$ |
| ${ }_{29}^{28}$ | . 013 | 196 169 | . 000005116 | . 0111268375 | 1685.488 1954.652 | ${ }_{16.371}^{18.9866}$ | 119.397 | . 061083 | 29 |
| 30 | . 012 | 144 | . 0004359 | .00608035 | 2294.104 | 13.949 | 164.46 | 071688 | 30 |
| ${ }_{32}^{31}$ | . 01 | 100 | .0003027 | . 0002932366 | 3303.60 4078 403 | ${ }_{7}^{9.68765}$ | 341.034 519.763 | . 1274446 | ${ }_{32}^{31}$ |
| 33 | .008 | 64 | . 00001937 | .0012013 | 5160.78 | 6.1998 | 832.426 | . 1613 | 33 |
| 34 | . 007 | 49 | . 00001483 | . 00070739395 | ${ }^{6743.088}$ | 4.7466 | 1420.6 | . 21068 | 34 35 |
| 35 36 | . 0004 | 25 16 | .00007568 .00004843 | $\begin{array}{r} .000183 .69 \\ .000074894 \\ \hline \end{array}$ | ${ }_{20647.12}^{1314.16}$ | 2. 212199 | ${ }_{13321.406}$ | . 64528 | ${ }_{36}$ |




| Gauge | Diameter | Sect. Area in Circular | Weight. |  | Length.-Feet. |  | Kesistance.-Ohms. |  | Gauge Number. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number. | Inch. | Mils. | Lbs. per Foot. | I.bs. per Ohm. | Per Lb. | Per Ohm. | Per Font. | Per Lb. |  |
| 0000 | . 46 | 211600. | . 640525 | 13129.29 | 1.56122 | 20497.7 | . 000048786 | . 0000761656 | 0000 |
| 000 | . 40964 | 167805. | . 507955 | 8256.95 | 1.9687 | 16255. 27 | . 000061519 | . 00012111 | 000 |
| 00 | . 3648 | 133079. | . 40284 | 5193.13 | 2.4894 | 12891.37 | .0000775713 | .000192562 | 00 |
| 0 | . 32186 | 1055.34. | . 319457 | 3265.84 | 3.1303 | 10223.08 | . 000097818 | . 0003062 | 0 |
| 1 | . 2893 | 83694. | . 2533348 | 2054.015 | 3.94714 | 8107.49 | . 000123342 | .000476866 .000774113 | 1 |
| 2 | . 25763 | 66.373. | . 200915 | 1291.80 | 4.97722 | 6429.58 | . 00015553 | .000774113 .00123102 | 2 |
| 3 | . 22942 | 52634. | . 159325 | 812.709 | 6.2765 | 5098.61 | . 000196132 | .00123102 | 3 |
| 4 | .20131 | 41743. | . 126357 | 522.839 | 7.9141 9.97983 | 4043.6 3906.61 | . 0009478.34 | .00191263 .00311227 | 4 5 |
| 5 | .18194 | 33102. | . 10022 | 321.309 202.062 | ${ }^{9.97983}$ | 3206.61 2542.89 | .000311856 .000393255 | .00311227 .00494898 | 5 |
| ${ }_{7} 7$ | . 16202 | 26251. | .0794616 .0630134 | 202.062 127.07 | 12.5847 15.8696 | 2542.89 2015.51 | . 0003393255 | . 00494898 | 6 7 |
| 8 | . 12849 | 16510. | . 0499957 | 129.9258 | 20.0097 | 1599.3 | . 000625276 | . 0125116 | 8 |
| 9 | . 11443 | 13094. | . 039637 | 50.2886 | 25.229 | 1268.44 | 00078837 | . 0198852 | 9 |
| 10 | . 10189 | 10382. | . 0314256 | 31.6036 | 31.8212 | 1055.66 | . 00099437 | . 031642 | 10 |
| 11 | . 090742 | 8234. | .024925 | 19.88 2 | 40.1202 | 797.649 | . 0012537 | . 0502987 | 11 |
| 12 | . 080808 | 6530. | . 0197665 | 12.5034 | 50.5906 | 632.555 | 0015809 | . 0799783 | 12 |
| 13 | . 071961 | 5178. | . 0156753 | 7.86319 | 63.7948 | 501.63 | . 0019935 | . 127172 | 13 |
| 14 | . 064084 | 4107. | . 0124314 | 4.51033 | 80.4415 | 397.822 | .0025137 | . 221713 | 14 |
| 15 | . 057068 | 3257. | . 0098584 | 3.11015 | 101.4365 | 315.482 | . 00316975 | . 321528 | 15 |
| 16 | . 05082 | 2583. | . 0078179 | 1.95501 | 127.12 | 250.184 | .00399707 | . 511507 | 16 |
| 17 | . 045257 | 2048. | . 0062 | 1.23013 | 161.29 | 198.409 | . 0050401 | . 812918 | 17 |
| 18 | . 040303 | 1624. | . 004917 | . 773677 | 203.374 | 157.35 | . 0063553 | 1.29253 | 18 |
| 19 | . 03589 | 1288. | . 0038991 | . 486524 | 256.468 | 124.777 | . 00801426 | 2.0554 | 19 |
| 20 | . 031961 | $10: 21$. | . 0030922 | . 305979 | 323.399 | 98.9533 | . 0101058 | 3.2682 | 20 |
| 21 | . 028462 | 810. | . 0024522 | . 192429 | 407.815 | 78.473 | .0127432 | 5.19671 | 21 |
| 22 | . 025347 | 642. | . 0019448 | . 121037 | 514.193 | 62.236 | . 0160678 | 8.26197 | 22 |
| 23 | .022571 | 509. | . 0015421 | . 076105 | 648.452 | 49.3504 | . 0:202633 | 13.13974 | 23 |
| 24 | . 0201 | 404. | . 001223 | . 0478684 | 817.688 | 39.1365 | . 0255516 | 20.89323 | 24 |
| 25 | . 0179 | 320. | . 0009699 | . 0301038 | 1031.038 | 31.0381 | . 0322184 | 33.2184 | 25 |
| 26 | . 01594 | 254. | . 0007691 | . 0168719 | $1300 \cdot 180$ | 24.6131 | . 0106288 | 53.8247 | 26 |
| 27 | . 014195 | 201. | . 0006099 | . 0119056 | 1639.49 | 19.5191 | . 0512318 | 83.994 | 27 |
| 28 | . 012641 | 159.8 | . 0004837 | . 0071748 | 2067.364 | 15.4793 | . 0646023 | 133.5563 | 28 |
| 29 | . 011257 | 126.7 | .0003836 | . 0047087 | 2606.959 | 12.2854 | . 081464 | 212.373 | 29 |
| 30 | . 010025 | 100.5 | . 0003042 | . 00296174 | 3287.084 | 9.7355 | . 102717 | 337.639 | 30 |
| 31 | .008928 | 79.7 | . 0002413 | . 0018306 | 4414.49 | 7.72143 | . 12951 | 536.7515 | 31 |
| 32 | . 00795 | 63. | . 0001913 | . 00117133 | 5226.915 | 6.19243 | . 163334 | 853.732 | 32 |
| 33 | . 00708 | 50.1 | . 0001517 | . 0000736789 | 6590.41 | 4.85575 | . 205942 | 1357.241 | 33 |
| 34 | . 006304 | 39.74 | . 0001203 | . 0004631 | 8312.8 | 3.84966 | . 25976 | 2159.361 | 34 |
| 35 | . 005614 | 31.5 | . 00000951 | . 000291272 | 10481.77 | 3.05305 | . 327541 | 3433.21 | 35 |
| 36 | . 005 | 25. | . 00007568 | . 000183269 | 13214.16 | 2.4217 | . 41293 | 5456.45 | 36 |
| 37 | . 004453 | 19.8 | . 00006003 | . 000115298 | 16659.97 | 1.92086 | . 520601 | 8673.2 | 37 |
| 38 | . 003965 | 15.72 | . 00004759 | . 0000724741 | 21013.25 | 1.52292 | . 656635 | 13798.04 | 38 |
| 39 | . 003531 | 12.47 | . 00003774 | . 0000455828 | 26496.237 | 1.20777 | . 88797 | 21938.11 | 39 |
| 40 | . 003144 | 9.98 | .00003992 | . 0000369803 | $334 \% 0.63$ | 0.97984 | 1.04435 | 27041.4 | 40 |

HARD-DRAWN COPRER THEEGHEAPHE ETRE.
(J. A. Roebling's Sons Co.)

Furnished in half-mile coils, either bare or insulated.

| Size, B. \& S. Gauge. | Resistance in Ohms per Mile. | Breaking Strength. | Weight per Mile. | Appcoximate Size of E B. B. Iron Wire equal to Copper. |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 4.30 | 625 | 209 |  |
| 10 | 5.40 | 525 | 166 | 3 \% |
| 11 | 6.90 | 420 | 131 | 4 \% |
| 12 | - 8.70 | 330 | 104 | $\begin{aligned} & 4 \\ & 6 \\ & \text { 良 } \end{aligned}$ |
| 13 | - 10.90 | 280 | 83 | $61 / \text { त्र }$ |
| 14 | 13.70 | 213 | 66 |  |
| 15 | 17.40 | 170 | 52 | $\begin{aligned} & 8 \\ & 9 \\ & 9 \end{aligned}$ |
| 16 | 22.10 | 130 | 41 | $\begin{array}{rr} 9 \\ 10 & \overbrace{0}^{2} \\ \hline \end{array}$ |
|  |  |  |  |  |

In handling this wire the greatest care should be observed to avoid kinks, bends, scratches, or cuts. Joints shonld be made only with McIntire Connectors.

On account of its conductivity being about five times that of Ex. B. B. Iron Wire, and its breaking strength over three times its weight per mile, copper may be used of which the section is smaller and the weight less than an equivalett iron wire, allowing a greater number of wires to be strung on the poles.

Besides this advantage, the reduction of section materially decreases the electrostatic capacity, while its non-magnetic character lessens the self-induction of the line, both of which features tend to increase the possible speed of signalling in telegraphing. and to give greater clearness of enunciation over telephone lines, especially those of great length.
INSULATED COPPEEE WHRE, WEATHERPROOF INSULATHON.

| Num. bers, B. \& S. Gauge. | Double Braid. |  |  | Triple Braid. |  |  | Approximate <br> Weights, <br> Pounds. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Outside Diameters in 32ds Inch. | Weights, Pounds. |  | Outside <br> Diame- <br> ters in 3:ds Inch. | Weights, Pounds. |  |  |  |
|  |  | $\begin{aligned} & 1000 \\ & \text { Feet. } \end{aligned}$ | Mile. |  | $\begin{aligned} & 1000 \\ & \text { Feet. } \end{aligned}$ | Mile. | Reel. | Coil. |
| 0000 | 20 | 716 | 3 3 81 | 24 | 975 | 4092 |  | 250 |
| 000 | 18 | 575 | 3036 | 22 | 630 | $33 \geqslant 6$ | $\stackrel{2000}{2000}$ |  |
| 00 | 17 | 465 | 2455 | 18 | 490 | 2587 | 500 | 250 |
| 0 | 15 | 375 | 1980 | 17 | 400 | 2112 | .500 | 250 |
| 1 | 15 | 285 | 1505 | 16 | 306 | 1616 | 500 | 250 |
| 2 | 14 | 245 | 1291 | 15 | 268 | 1415 | 500 | 250 |
| 3 | 13 | 190 | 1003 | 14 | 210 | 1109 | 500 | 250 |
| 4 | 11 | $15: 2$ | 803 | 10 | 164 | 866 | 250 | 125 |
| 5 | 10 | 120 | 634 | 11 | 145 | 766 | 260 | 130 |
| 6 | 9 | 98 | 518 | 10 | $11 \%$ | 591 | 275 | 140 |
| 8 | 8 | 66 | 349 | 9 | 78 | 412 | 200 | 100 |
| 10 | 7 | 45 | 238 | 8 | 55 | 290 | 200 | 100 |
| 12 | 6 | 30 | 158 | 7 | 35 | 185 | , | 25 |
| 14 | 5 | 20 | 106 | 6 | 26 | 137 | ... | 25 |
| 18 | 4 | 11 | r4 | 5 | 20 | 106 |  | 25 |
| 18 | 3 | 10 | 53 | 4 | 16 |  |  | 25 |

Power Cables. Lead Incased, Jute or Paper Insulated. (John A. Roebling's Sous Co.)

| Nos, <br> B.\&S. G. | Circular Mils. | Outside Diam. Inches. | Weights, 1000 feet. Pounds. | Nos. B. \&S.G. | Circular Mils. | Outside <br> Diam. <br> Inches. | Weights, 1000 feet Pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1000000 | $113 / 16$ | 6685 |  | 300000 |  | 3060 |
|  | 900000 | $123 / 32$ | 6228 |  | 250000 | $13 / 16$ | 273 |
|  | 800000 | 1 $21 / 32$ | 5713 | 0000 | 211600 | $13 / 32$ | 2533 |
|  | 750000 | 15/8 | 5543 | 000 | 168100 | $11 / 16$ | 2300 |
|  | 700000 | $119 / 32$ | 5315 | 00 | 133925 |  | 2021 |
|  | 650000 | $19 / 16$ | 5089 | 0 | $1056 \cdot 5$ | 15/16 | 17\% |
|  | 600000 | $117 / 32$ | 4851 | 1 | 83521 | 29/32 | 163:3 |
|  | 550000 | 11/2 | 46:30 |  | 66564 |  | 148: |
|  | 500000 | 17/16, | 4278 | 3 | 52441 | 25/32 | 1360 |
|  | 450000 | $13 / 8$ | 3923 | 4 | 41616 |  | 1251 |
|  | 400000 | $111 / 32$ | 3619 | 6 | 26214 | 11/16 | 1046 |
|  | 350000 | $15 / 16$ | 3416 |  |  |  |  |

Stranded Weather-proof Feed Wire.

| Circular Mils. | Outside Diam. Inches. | Weights. Pounds. |  |  | Circular Mils. | Outside <br> Diam. <br> Inches. | Weights. Pounds. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & 1000 \\ & \text { feet. } \end{aligned}$ | Mile. |  |  |  | 1000 feet. | Mile. |  |
| 1000000 | 11/6 | 3550 | 18\%44 | 800 | 550000 | $13 / 16$ | 2043 | $10 \% 87$ | 1200 |
| 900000 | $113 / 32$ | $3 \geqslant 15$ | 16975 | 800 | 500000 | 11/8 | $18 \% 5$ | 9900 | $13: 0$ |
| 800000 | $111 / 32$ | 2880 | 15206 | 850 | 450000 | $13 / 32$ | 1 r 03 | 8992 | 1400 |
| 750000 | $15 / 16$ | $2 \uparrow 13$ | $143: 5$ | 850 | 400000 | 11/16 | 1530 | $80: 8$ | 1450 |
| $700000$ | ${ }_{1} 19 / 32$ | 2545 | 13438 | 900 | 350000 |  | 1358 | 7170 | 1500 |
| $\begin{aligned} & 650000 \\ & 600000 \end{aligned}$ | $11 / 4 / 32$ | 2378 2210 | 12556 | 900 1000 | 300000 250000 | 15/16 | 1185 | 6254 | 1600 |
|  | 1 7/02 | 210 | 11008 | 1000 | 250000 | 29/32 | 1012 | 5343 | 1600 |

The table is calculated for concentric strands. Rope-laid strands are larger.

## Approximate Rules for the Resistance of Copper wire.

-The resistance of any copper wire at $\ddot{N}^{\circ} \mathrm{U}^{\circ} .00^{\circ} 60^{\circ} \mathrm{K}$., according to Matthiessen's standard, is $R=\frac{10.3 i l}{d^{2}}$, in which $R$ is the resistance in internatinal ohms, $l$ the length of the wire in feet, and $d$ its diameter in mils. $.1 \mathrm{mil}=1 / 1000$ inch.)
A No 10 Wirr, A.W.G., 1019 in . diameter (practically 0.1 in ), 1000 ft . in length. has a resistance of 1 ohm at $68^{\circ} \mathrm{F}$. and weighs 31.4 lbs .

If a vire of a given length and size by the American or Brown \& Sharpe gauge has a certain resistamce, a wire of the same length and three numbers higher has twice the resistance, six numbers higher four tintes the resistance, etc.
$\begin{array}{llllllllll} & \text { Wira gauge, } A . W . G . ~ N o . . . . . ~ & 000 & 1 & 4 & 7 & 10 & 13 & 16 & 19\end{array}$ $\begin{array}{rlcccccccc}\text { Relative resistance } \ldots \ldots . . . . & 16 & 8 & 4 & \underset{4}{2} & 1 & 1 / 2 & 1 / 4 & 1 / 8 & 1 / 16 \\ \text { Section or weight.. } & 1 / 16 & 1 / 8 & 1 / 4 & 1 / 2 & 1 & 2 & 4 & 8 & 16\end{array}$

Approximate rules for resistance at any temperature :

$$
R_{t}=R_{0}(1+.004 t) ; \quad R_{t}=\frac{9.6(1+.004 t) l}{d^{2}} ;
$$

$\boldsymbol{R}_{0}=$ resistance at $0^{\circ}, R_{t}=$ resistance at the temperature $t^{\circ}{ }^{\circ},, l=$ length in feet, $d=$ diameter in ${ }^{t}$ mils. (See Copper Wire Table, p. 1034.)

# GALVANHZED STEEL-WIRE STREAND. For Smokestack Guys, Signal Strand, ete. 

> (J. A. Roebling’s Sons Co.)

This strand is composed of 7 wires, twisted together into a single strand.

|  |  | ( |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in. | lbs. |  |  |  |  |  |  |  |
| $1{ }^{1 / 2} 2$ | 51 48 | $8,3: 0$ 4,500 | 9/3:3 | 18. | 2,600 | in. | lbs. |  |
| \%/16 | 48 | 7.500 | 17/64 | 15 | 2,250 | 9/64 | 31\% | 525 |
| 3/8 | 30 | 6,000 4,700 | $1 / 4$ $r / 3$ 2/2 | 111\% | 1.250 | 1/8 | $21 / 4$ | 3 3\% |
| 5/16 | 21 | 4,300 3,300 | 5/3 $3 / 16$ | 83/4 | 1,300 1,000 | 3/32 | $2^{4}$ | 320 |

For special purposes these strands can be made of 50 to 100 per cent greater tensile strength. When used to run over sheaves or pulleys the use

## FLEXIBLE STEEL-WIRE CABLES FOR VESSELS.

## (Trenton Iron Co., 1886.)

With numerous disadvantages, the system of working ship' anchors with chain cables is still in vogue. A heavy chain cable contributes to the hold-ing-power of the anchor, and the facility of increasing that resistance by paying out the cable is prized as an advantage. The requisite holdingpower is obtained, howevel, by the combined action of a comparatively light anchor and a correspondingly great mass of chain of little service in proportion to its weight or to the weight of the anchor. If the weight and size of the anchor were increased so as to give the greatest holding-power required, and it were attached by means of a light wire cable, the combined weight of the cable and anchor would be much less than the total weight of English shipbuilders have taken thity of handing would be much greater. the largest and most serviceable vessels are this direction, and many of cables. They have given complete sasels afloat are fitted with steel-wire

The Trenton Iron Co.'s cables are made of guaranteed to fulfil Lloyd's requirements. They are cast-steel wire, and subdivided into six strands of twelve wires they are composed of 72 wires flexibility, hempen centres are introduced in the strands to obtain great completed cable.

## FLEXIBLE STEEL-WIRE HATWSERS.

These hawsers are extensively used, They are made with six strands of twelve wires each, hemp centres being inserted in the individual strands as well as in the completed rope. The material employed is crucible cast steel, galvanized, and gnaranteed to fulfil Lloyd's requirements. They are only one third the weight of hempen hawsers; and are sufficiently pliable to work round any bitts to which hempen rope of equivalent strength can be applied.
13 -inch tarred Russian hemp hawser weighs about 39 los . per fathom.
10 -inch white manila hawser weighs about 20 lbs . per fathom.
$11 / 8$-inch stud chain weighs about 68 lbs . per fathom.
4 -inch galvanized steel hawser weighs about 12 lbs. per fathom.
Each of the above named has about the same tensile strength.

## SPECIFICATIONS FOR GALVANIREDIRON WIRE． Issued by the British Postal Telegraph Authorities．

| Weight per Mile． |  |  | Diameter． |  |  | Tests for Strength and Ductility． |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | ed． |  | Allowed． |  |  |  |  |  | $\begin{gathered} \text { For Breaking Weight not } \\ \text { less than- } \end{gathered}$ |  |  |  |
|  | 药 | 品 荮 感 |  |  | 药 | 豙 | 淢 |  |  |  |  | $\begin{aligned} & \text { Z } \\ & \text { 获 } \\ & \text { ت̈̉̉ } \end{aligned}$ |  |
| lbs． | lbs． | s． | mils． | mils． | mils． | 1 l |  | lbs． |  | lbs． |  | ohms． |  |
| 300 | 767 | 833 | 242 |  |  |  | 15 |  | 14 |  | 13 | 6.75 | 5400 |
| 600 | $5 \% 1$ | 629 | 209 | 204 | 214 | 1860 | 17 | 1910 | 16 | 1960 |  | 9.00 | 5400 |
| 450 | 424 | 477 | 181 | $1: 6$ | 186 | 1390 | 19 | 1425 | 18 | 1460 |  | 12.00 | 5400 |
| 400 | 377 | 424 | 171 | 166 | 176 | 1240 | $\stackrel{2}{2}$ | 12 T 0 | 20 |  |  | 13.50 | 5400 |
| 200 | 190 | 213 | 121 |  | 125 | 6：0 | 30 | $6: 38$ | 28 |  |  | 27.00 | 5400 |

STMEENGTH OT PYANO－TWHES．
The average strength of English piano－wire is given as follows by Web－ ster，Horsfals \＆Jean：

| Numbers in Music－ wire Gauge． | Equivalents in Fractions of Inches in Diameters． | Ultimate Tensile Strength in Pounds． | Numbers in Music－ wire Gauge． | Equivalents in Fractions of inches in Diameters． | Ultimate． Tensile Strength in Pounds． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | ． 039 | 225 | 18 | ． 041 | 395 |
| 13 | ． 031 | 250 | 19 | ． 043 | 425 |
| 14 | ． 033 | 285 | 20 | ． 045 | 500 |
| 15 | ． 035 | 305 | 21 | ． 047 | 540 |
| 16 | ． 037 | 340 | 22 | ． 052 | 650 |
| 17 | ． 039 | 360 |  |  |  |

These strengths range from 300,000 to 340,000 lbs．per sq．in．The compo－ sition of this wire is as follows：Carbon， 0.5 \％ 0 ；silicon， 0.090 ；sulphur，c 011 ； phospliorus， 0.018 ；manganese， 0.425.
${ }^{66}$ PLOUGH99－STEEEL WIRE．
The term＂plough，＂given in England to steel wire of high quality，was derived from the fact that such wire is used for the construction of ropes used for ploughing purposes．It is to be hoped that the term will not be used in this country，as it tends to confusion of terins．Plough－steel is known here in some steel－works as the quality of plate steel used for the mould－boards of ploughs，for which a very ordinary grade is good enongh．
Experiments by Dr：．Percy on the English plough－steel（so－called）gave the following results：Specific gravity， 7.814 ；carbon， 0.828 per cent；manga－ nese， $0.58 \%$ per cent；silicon， 0.143 per cent；sulphur， 0.009 per cent；phos－ phorus，nil；copper， 0.030 per cent．No traces of chromium，titanium，or tungsten were found．The breaking strains of the wire were as follows：

$$
\begin{array}{lcccc}
\text { Diameter, inch. ........... } & .093 & .132 \\
\text { Pounds per sq. inch....... } & .159 & \mathbf{2 5 7}, 600 & 224,000 & .191,600
\end{array}
$$

The elongation was only from 0.75 to 1.1 per cent．

## WHRES OF DIEFERENT METALS AND ALLOYS．

（J．Bucknall Smitl＇s Treatise on Wire．）
Brass Wire is commonly composed of an alloy of $13 / 4$ to 2 parts of oopper to 1 part of zinc．The tensile strength ranges from 20 to 40 tons per square inch，increasing with the percentage of zinc in the alloy．

German or Nickel Silver，an alloy of copper，zinc，and nickel，is practically brass whitened by the addition of nickel．It has been drawn into wire as fine as ．002＇diam．

Platinum wire may be drawn into the finest sizes．On account of its high priceitsuse is practically confined to special scientifle instruments and electrical appliances in which resistances to high temperature，oxygen，and． acids are essential．It expands less than other metals when heated，whicn property permits its being sealed in glass without fear of cracking．It is therefore used in incandescent electric lamps．
Phosphormbronze Wire contains from 2 to 6 per cent of tin and from $1 / 20$ to $1 / 8$ per cent of phosphorus．The presence of phosphorus is dertimental to electric conductivity．
＇66Delta－metal 99 wire is made from an alloy of copper，iron，and zinc． Its strength ranges from 45 to 62 tons per square inch．It is used for some kinds of wire rope，also for wire ganze ${ }_{\text {。 }}$ It is not subject to deposits of ver－ digris．It has great toughness，even when its tensile strength is over 60 tons per square inch．
Aluminum Wire．－Specific gravity ．268．Tensile strength only about 10 tons per square inch．It has been drawn as fine as 11,400 yards to the nunce，or ． 042 grains per yard．

Aluminum 1 ronze， 40 copper， 10 aluminum，has high strength and ductility；is inoxidizable，sonorons．Its electric conductivity is 12.6 per cent．

Silicon Bronze，patented in 1882 by L．Weiler of Paris，is made as follows：Fluosilicate of potash，pounded glass，chloride of sodium and cal－ clum，carbonate of soda and lime，are heated in a plumbago crucible，and after the reaction takes place the contents are thrown into the molten bronze to be treated．Silicon－bronze wire has a conductivity of from 40 to 38 per cent of that of copper wire and four times more than that of iron， while its tensile strength is nearly that of steel，or 28 to 55 tons per square inch of section．The conductivity decreases as the tensile strenglh in－ creases．Wire whose conductivity equals 95 per cent of that of pure copper gives a tensile strength of 28 tons per square inch，hut when its conductivity is 34 per cent of pure copper，its strength is 50 tons per square inch．It is being largely used for telegraph wires．It has great resistance to oxidation．

Ordinary Drawn and Annealed Copper Wire has a streugth of from 15 to 20 tons per square inch．

## SPECIFICATIONS FORE HARE－DRAWN COPPER WIRE．

The British Post Office authorities require that hard－drawn copper wire supplied to them shall be of the lengths，sizes，weights，strengtbs，and con－ ductivities as set forth in the annexed table．

| Weight per Statute Mile． |  |  | Approximate Equiva－ lent Diameter． |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 思 药 合 |  |  |  |  |
| lbs． | lbs． | lbs． | mils． | mils． | mils． | lbs． |  |  | bs |
| 100 | 9\％1／3 | $10.1 / 2$ | 79 | \％8 | 80 | 3330 | 30 | 9.10 | 50 |
| 150 200 | $1461 / 4$ 195 | ${ }_{205}^{1533} 4$ | 97 112 | 951／2 | ${ }^{98}$ | 490 | 25 | 6.05 | 50 |
| 200 400 | 19.5 390 | 205 410 | 112 158 | $1101 / 1 / 2$ $1551 / 2$ | $1131 / 4$ | 650 | 20 | 4.53 | 50 |
|  |  | 410 | 158 | 1551／2 | 1601／4 | 1300 | 10 | 2.27 | 50 |

## WIRE ROPES.

List adopted by manufacturers in 189\%. See pamphlets of John A. Roebling's Sons Co., Trenton Iron Co., and other makers.

Rliable Hoisting Rope.
With 6 strands of 19 wires each.
IRON.

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 214 | 63/4 | 8.00 | 74 | 15 | 14 | 13 |
| 2 | 2 | 6 | 6.30 | 65 | 13 | 13 | 12 |
| 3 | 13/4 | 51/2 | 5.25 | 54 | 11 | 12 | 10 |
| 4 | 15\% | 5 | 4.10 | 44 | 9 | 11 | 81/3 |
| 5 | $11 / 2$ | $43 / 4$ | 3.65 | 39 | 8 | 10 | $71 / 2$ |
| 51/3 | 13/8 | $43 / 8$ | 3.00 | ${ }^{33}$ | $61 / 2$ |  | 7 |
| 6 | 114 |  | 2.50 | $\stackrel{2}{20}$ | 51/2 | $81 \%$ | 61.6 |
| 7 | $11 / 8$ | $31 / 2$ | 2.00 | 20 | 4 | $71 / 3$ | ${ }_{5} 1$ |
| 8 | 1 | $31 / 8$ 23 | 1.58 1.20 | 16 | ${ }^{31}$ | $61 \%$ $51 \%$ | 51/4 |
| 9 10 | 78 | 23/4 | 1.20 0.88 | 11.50 8.64 | 91/8 | 51/2 | $41 / 2$ |
| 101/4 | 5 | $\stackrel{2}{2}^{1 / 4}$ | 0.60 | 5.13 | $11 / 4$ | $33 / 4$ | 31/2 |
| 101/2 | 9-16 | 15/8 | 0.48 | $4.2 \pi$ | $3 / 4$ | 31.2 | $23 / 4$ |
| 1034 | 12 | 112 | 0.39 | 3.48 | 12 | 3 | $21 / 4$ |
| $10 a$ | 7-16 | 13/8 | 0.29 | 3.00 | 3/8 | 23/4 | $\stackrel{2}{1}$ |
| 107/8 | 3/8 | $11 / 4$ | 0.23 | 2.50 | 14 | 212 | 1313 |


| Cast steel. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $21 / 4$ | 63/4 | 8.00 | 155 | 31 | ...... | 81/2 |
| 2 | 2 | 6 | 6.30 | 125 | 25 | ........ |  |
| 3 | 134 | 51/2 | 5.25 | 106 | 21 |  | r1/4 |
| 4 | $15 \%$ | 5 | 4.10 | - 86 | 17 | 15 | 61 |
| 5 | $11 / 2$ | 434 | 3.65 | 77 | 15 | 14 | $53 /$ |
| 51/2 | 13\% | 43/8 | 3.00 | 63 | 12 | 13 | $51 / 2$ |
| 6 | 114 | 4 | 2.50 | 52 | 10 | 12 | 5 |
| 7 | 11/8 | 31/2 | 2.00 | 42 | 8 | 11 | 41/2 |
| 8 | 1 | 318 | 1.58 | 33 | 5 | $91 / 2$ | ${ }_{4}^{4}$ |
| 9 |  |  | 1.20 | 25 | 5 | $81 / 2$ | $31 / 2$ |
| 10 | 3 | $21 / 4$ | 0.88 | 18 | $31 / 2$ |  | $\stackrel{3}{21}$ |
| 1014 | $\stackrel{58}{9-16}$ | $\stackrel{2}{2}$ | 0.60 0.48 | 12 9 | 21/2 | $53 / 4$ | 21/4 |
| 101\% | 9-16 | 15/8 | 0.48 0.39 | 9 | $13 / 4$ | ${ }_{41}{ }^{1}$ | 1919 |
| $103 / 4$ $10 a$ | $\stackrel{1}{7}-16$ | 1138 | 0.39 0.29 | ${ }^{7} 16$ | 11/2 | $41 / 2$ 33 | 11/4 |
| 107/8 | 3/8 | $11 / 4$ | 0.23 | 412 | 88 | 31/2 |  |

## Cable-Traction Ropes.

According to English practice, cable-traction ropes, of about $31 / 2 \mathrm{in}$. in circumference, are commonly constructed with six strands of seveu or fifteen wires, the lays in the strands varying from, say. 3 in . to $31 / 2 \mathrm{in}$., and the lays in the ropes from, say, $71 / 2 \mathrm{in}$, to 9 in . In the United States, however, strands of nineteen wires are generally preferred, as being more flexible; but, on the other hand, the smaller external wires wear ont more rapidly. The Market-street Street Railway Company, San Francisco, has used ropes 11/4 in. in diameter, composed of six strands of ninereen steel wires, weighing $21 / 2 \mathrm{lbs}$. per foot, the longest continuous length being $24,125 \mathrm{ft}$. The Chicago City Railroad Company has employed cables of ilentical construction, the longest length being $27,700 \mathrm{ft}$. On the New York and Brooklyn Bridge cablerailwsy steel ropes of $11,500 \mathrm{ft}$. long, cuntaining 114 wires, have been used.

## Transmission and Standing Rope．

With 6 strands of 7 wires each．

IRON．

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 11／2 | 43／4 | 3.37 | 36 | 9 | 10 | 13 |
| 12 | 13／8 | $43 / 8$ | 2.77 | 30 | 71\％ | 9 | 12 |
| 13 | 114 | 4 | 2.28 | 25 | $61 / 4$ | $81 / 2$ | 103／4 |
| 14 | 11／8 | 31／2 | 1.82 | 20 | 5 | $71 / 2$ | $91 \%$ |
| 15 | 1 | $31 / 8$ | 1.50 | 16 | 4 | $61 \%$ | $81 / 2$ |
| 16 | 7／8 | 23／4 | 1.12 | 12.3 | 3 | $53 / 4$ | $71 / 2$ |
| 17 | 3／4 | $21 / 4$ | 0.92 | 8.8 | 21／4 | $43 / 4$ | $63 / 4$ |
| 18 | 11－16 | $21 / 8$ | 0.70 | 7.6 | 2 | 41\％ | 6 |
| 19 | $5 / 8$ | $\stackrel{2}{2}^{8}$ | $0.5 \%$ | 5.8 | 11／2 | 4 | $51 / 4$ |
| 20 | 9－16 | 15／8 | 0.41 | 4.1 | 1 | $31 / 4$ | 41.2 |
| 21 | $1 / 2$ | 11／2 | 0.31 | 2.83 | $3 / 4$ | $23 / 4$ | 4 |
| 22 | ？－16 | 13／8 | 0.93 | 2.13 | 16 | 21.6 | $31 / 4$ |
| 23 | 3／8 | 11／4 | 0.21 | 1.65 | ， | $21 / 4$ | $23 / 4$ |
| 24 | 5－16 | 1 | 0.16 | 1.38 |  | 2 | 21. |
| 25 | 9－32 | 8／8 | 0.125 | 1.03 | － | $13 / 4$ | 21／4 |

CAST STEEL．

| 11 | 11／2 | 43／4 | 3.37 | 62 | 13 | 13 | 81／ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 13／8 | 43／8 | 2.76 | 52 | 10 | 12 | 8 |
| 13 | 11／4 | 4 | 2.28 | 44 | 9 | 11 | 71／4 |
| 14 | 11／8 | 312 | 1.82 | 36 | 71／2 | 10 | 61／4 |
| 15 | 1 | $31 / 8$ | 1.50 | 30 | 6 | 9 | 53／4 |
| 16 | 7／8 | 23／4 | 1.12 | 22 | 41／2 | 8 | 5 |
| 17 | \％ 1 | $21 / 4$ | 0.92 | 17 | 31／2 | 7 | 41／2 |
| 18 | 11－16 | $21 / 8$ | 0.70 | 14 | 3 | 6 | 4 |
| 19 |  | $\stackrel{\sim}{2}$ | $0.5 \sim$ | 11 | $21 / 4$ | 51／2 | 31／6 |
| 20 | 9－16 | 15／8 | 0.41 | 8 | $13 / 4$ | $43 / 4$ | 3 |
| 21 | $1 / 2$ | 11／2 | 0.31 | 6 | $11 / 2$ | 4 | $21 /$ |
| 22 | \％－16 | 13／8 | 0.23 | 41／6 | $11 / 4$ | $31 / 2$ | 21， |
| 23 | 3／8 | $11 / 4$ | 0.21 | 4 | 1 | 314 | $\tilde{2}^{\prime \prime}$ |
| 24 | 5－16 | 1 | 0.16 | 3 | $3 / 4$ | $23 / 4$ | 13／6 |
| 25 | 9－32 | 8／8 | 0.12 | 2 | $1 / 2$ | $21 / 4$ | 11\％ |

## Plough－Steel Rope．

Wire ropes of very high tensile strength，which are ordinarily called ＂Plongh－steel Ropes，＂are made of a high grade of crucible steel，which， when put in the form of wire，will bear a strain of from 100 to 150 tons per square inch．

Where it is necessary to use very long or very heavy ropes，a reduction of the dead weight of ropes becomes a matter of serious consideration．

It is advisable to reduce all bends to a minimum，and to use somewhat larger drums or sheaves than are suitable for an ordinary crucible rope hav ing a strength of 60 to 80 tons per square inch．Before using Plough－stee Ropes it is best to have advice on the subject of adaptability．

## MATERIALS.

## Plough-Steel Rope.

With 6 strands of 19 wires each.

| Trade Number. | Diameter in inches. | Weight per foot in pounds. | Breaking Strain in tons of 2000 lbs | Proper Work ing Load. | Min. Size of Drum or Sheave in feet. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $21 / 4$ | 8.00 | 240 | 46 | 9 |
| 2 | 2 | 6.30 | 189 | 37 | 8 |
| 3 | $13 / 4$ | 5.25 | 157 | 31 | $71 / 2$ |
| 4 |  | 4.10 | 123 | 25 | 6 |
| 5 | $11 / 2$ | 3.65 | 110 | 22 | 51/2 |
| $51 / 3$ | $13 / 8$ | 3.00 | 90 | 18 | $51 / 4$ |
| ${ }_{7}$ | 114 | $\stackrel{2}{2} 50$ | 75 | 15 | 5 |
| 8 | 11/8 | 2.00 | 60 | 12 | 41/2 |
| 8 | 1 | 1.58 | 47 | $\stackrel{9}{\sim}$ | $41 / 4$ |
| 9 10 | 7/8 | 1.20 0.88 | 37 27 | \% | 334 |
| $101 /$ | 54888 | 0.88 0.60 | 27 18 | 5 | ${ }_{3}^{31 / 2}$ |
| 1012 | 9-16 | 0.44 | 13 | 236 | $21 / 2$ |
| 103/4 | 1/2 | 0.39 | 10 | 2 |  |

With 7 Wires to the Strand.

| 15 | 1 | 1.50 | 45 | 9 | $51 / 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | $7 / 8$ | 1.12 | 33 | $61 / 2$ | 5 |
| 17 | $3{ }^{3}$ | 0.92 | 25 | 5 | 4 |
| 18 | 11-16 | 0.70 | 21 | 4 | 31/2 |
| 19 | $\stackrel{5}{9} 16$ | 0.57 | 16 | 334 | 3 |
| $\stackrel{1}{21}$ | 1/9-16 | 0.41 0.31 | 12 9 | 21. | $23 / 8$ |
| $\stackrel{1}{2}$ | \%-16 | 0.31 0.23 | 5 | 178 | $\stackrel{21 / 2}{2}$ |
| 23 | 3/8 | 0.21 | 4 | $1{ }^{1 / 8}$ | 11/3 |

## Galvanized Iron Wire Rope.

For Ships' Rigging and Guys for Derricks.
CHARCOAL ROPE.

| Circumference in inches. | Weight per Fathom in pounds. | Cir. of new Manila Rope of equal Strength | Breaking Strain in tons of 2000 pounds | Circumference in inches | Weight per Fathom in pounds. | Cir. of new Manila Rope of equal Strength. | Breaking Strain in tons of 2000 pounds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51/2 | $261 / 3$ | 11 | 43 | 21/3 | 51\% | 5 | 9 |
| 51/4 | 241/2 | 1012 | 40 | $21 / 4$ | $41 \%$ | 43/4 | 8 |
| 5 | 22 | $10^{\sim}$ | 35 |  | $31 \%$ | 41 |  |
| 434 | 21 | 91/2 | 33 | $13 / 4$ | 21/3 | 33 | 5 |
| $41 / 8$ | 19 | 9 | 30 | 11. | $\stackrel{2}{2}^{2}$ | 3 | 31/2 |
| +1/4 | 161/3 | $81 / 2$ | 26 | $11 / 4$ | 134 | $21 / 2$ | $21 / 2$ |
| 4 | 1414 | 8 | 93 | 11/8 | $11 / 4$ | $21 / 4$ | $21 / 4$ |
| 334 | 1234 | $71 / 2$ | 20 | 1 | 78 | $\stackrel{1}{2}$ | $\stackrel{2}{1 / 4}^{1}$ |
| $31 /$ | 1034 | $61 / 2$ | 16 | 7/8 | 3 | $13 / 4$ | 3 |
|  |  |  |  | 3 | 12 | $11 /$ |  |
| 3 | 8 | $53 / 4$ | 12 | 5 | 3/8 | $11 / 4$ | 5/8 |
| 23/4 | $63 / 4$ | $51 / 4$ | 10 | 12 | 1/4 | 11/8 | $3 / 8$ |

Galvanized Cast-steel Facht Rigging.

| Circumference in inches. | Weight per Fathom in pounds. | Cir. of new Manilla Rope of equal Strength | Break. ing Strain in tons of 2000 pounds | Circum- ference in inches | Weight per Fathom in pounds. | Cir, of new Manilla Rope of equal Strength. | Breaking Strain in tous of 2000 pounds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 141/4 | 13 | 66 | 2 |  | 61/2 | 14 |
| $31 / 2$ | 103/4 | 11 | 43 | 13/4 | 21\% | $51 / 4$ | 10 |
| 3 | 8 | 41\% | 32 | 115 | ${ }_{2}^{2}$ | $43 / 4$ | 8 |
| $23 / 4$ | 63/4 | $81 / 2$ | 27 | 13/8 | 17/8 | $41 / 4$ | $61 /$ |
| 21.2 | 51.2 | 8 | 22 | 11/4 | 13/4 | $33 / 4$ | $51 / 2$ |
| $21 / 4$ | 41/3 | 7 | 18 | $1{ }^{1 / 4}$ | 7/8 | 3 | $31 / 2$ |

Steel Hawsers.
For Mooring, Sea, and Lake Towing.

| Circumference. | Breaking Strength. | Size of Manilla Hawser of equal Strength. | Circumference. | Breaking Strength. | Size of Manilla Haw ser of equal Strengil. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. $21 / 2$ 233 3 | Tons. 15 18 29 | $\begin{gathered} \text { Inclies. } \\ 61 / 2 \\ 7 \\ 81 / 2 \end{gathered}$ | Inches. 316 4 | Tons. $\stackrel{29}{35}$ 35 | $\begin{gathered} \text { Inches. } \\ 9 \\ 10 \end{gathered}$ |

## Steel Flat Ropes.

(J. A. Roebling's Sons Co.)

Steel-wire Flat Ropes are composed of a number of strands, alternately twisted to the riyht and left, laid alongside of each other, and sewed together with soft iron wires, These ropes are used at times in place of romnd ropes in the shafts of mines. They wind upon themselves on a narrow wiudingdrum, which takes up less room than one necessary for a round rope. The soft-iron sewing-wires wear out sooner than the steel strands, and then it becomes necessary to sew the rope with new iron wires.

| Width and Thickness in inches. | Weight per foot in pounds. | Streugth in pounds. | Width and Thickness in inches. | Weight per foot in pounds | Strength in pounds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 8 \times 2$ | 1.19 | 35,700 | $1 / 2 \times 3$ | 2.38 | 71,400 |
| $388 \times 21 / 2$ | 1.86 | 55.800 | $1 / 2 \times 31 / 2$ | ${ }_{2} .97$ | 89,000 |
| $3 / 8 \times 3$ | 2.00 | 60,000 | $15 \times 4$ | 3.30 | 99,000 |
| $3 / 8 \times 31 / 2$ | 2.50 | 75,000 | 1/2 $\times 41 / 2$ | 4.00 | 120,000 |
| $338 \times 4$ | 2.86 | 85,800 | $1 / 2 \times 5$ | 4.2 \% | 128,000 |
| $338 \times 41 / 2$ | 3.12 | 93,600 | $11 / 2 \times 51 / 2$ | 4.82 | 144,600 |
| $38 \times 5$ | 3.40 | 100,000 | $1 / 2 \times 6$ | 5.10 | 153,000 |
| $3 / 8 \times 51$ ' | 3.90 | 110,000 | $1 / 2 \times 7$ | 5.90 | 1\%\%,000 |

For safe working load allow from one fifth to one seventh of the breaking stress.

## ${ }^{66}$ Lang Lay ${ }^{\prime}$ Rope.

In wire rope, as ordinarily made, the component strands are laid up into rope in a direction opposite to that in which the wires are laid into strands; that is, if the wires in the strands are laid from right to left, the strands are laid into rope from left to right. In the "Lang Lay,' sometimes known as "Universal Lay," the wires are laid into strands and the strands into rope in the same direction; that is, if the wire is laid in the strands from right to left, thestrands are also laid into rope from right to left. Its use has been fombd desirable under certain conditions and for certain purposes, mostly for hanlage plants, inclined planes, and street railway cables, although it has also beell used for vertical hoists in mines, etc. Its advantages are that

## GALVANIKED STESELGARHES.

For Suspension Bridges. (Roebling's.)

|  |  |  | Diameter in inches. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25/8 | 220 | 13 |  | 155 |  |  |  |  |
| $21 /$ | 200 | 11.3 | 2 | 110 | 6.5 | $15 \%$ | \% 5 | 4.35 |
| 23/8 | 180 | 10 | 17/8 | 100 | 5.8 | 11\% | 65 | 3.7 |

## COMEARATIVE STRENGTHS OR FLEXIBLE GAKVANIKED GTEEL-WIRE HAWSERS,

## With Chain Cable, Tarred Russian Hemp, and White Manila Ropes.

| Patent Flexible Steel-wire Hawsers and Cables. |  |  |  | Chain Cable. |  |  |  | Tarred Russian Hemp Rope. |  |  | White Manilla Ropes. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\dot{N}$ |  |  |  | * |  |  | $\stackrel{\text { ¢ }}{\substack{\text { ® }}}$ |  |  |
| 1 | 34 | $13 / 1$ | ${ }^{6}$ |  |  |  |  |  |  |  |  |  |  |
| $11 / 4$ | 13 | $21 / 2$ | ${ }_{9}^{71 \%}$ | 16 | 14 |  | 6 | $31 / 2$ |  |  |  | ${ }_{2}^{13 / 4}$ |  |
| $13 / 4$ | ${ }^{19}$ | $51 / 2$ | 101/2 | 9-16 |  | 513 | $71 / 4$ |  |  |  |  |  |  |
| 2 | $23 / 4$ |  | 12 |  |  |  |  | 53/4 | 8 |  |  |  |  |
| 21 | 33 | 9 | 131/2 | 10-16 | 21 | 7 | 91/3 | 61. | 10 |  |  | 4 | 101 |
| 21 | $41 / 2$ | 12 | 15 |  |  |  |  |  | 13 |  |  |  |  |
| $23 / 4$ | $51 / 2$ | 15 | 161/2 | 11-16 |  | 81/3 | 123/4 | ${ }_{9} 12$ | 16 | 14 |  |  | 15 |
| 31 | 7 | 18 | 18 | 12-16 |  | 1016 | 151/8 |  | 19 | :61/2 |  |  |  |
| 31/4 | 8 | $\stackrel{2}{2}$ | 191/2 |  |  |  | 178 -10 | 10 | 23 |  |  | 13 | $223 /$ |
| 31/2 | 12 | 26 | ¢! | 15-16 |  | 15 8-10 | $237-10$ | 11 | 28 |  |  | 14122 | 25 |
| 4 | 12 | 33 | 24 |  | 54 |  | 27 | 12 | 33 | 29 | 10 | 18 | 311 |
| 41/2 | 15 | 39 | 27 | 138 |  | 293/4 | 341/8 | 13 | 39 | 34 |  | 22 | 381 |
|  | 2316 | 64 | 30 | $117 \%-32$ |  | 371 | 551\% | 15 | 56 | 50 | 123/4 | $293 / 4$ | 51 |
| 51.2 | 23 | 74 | 33 | 15/8 | 14.3 | 471 | 661 | 17 | 67 | 60 | 131/2 | 3512 |  |
|  | ${ }^{33}$ | 88 | 36 | $13 / 4$ | 166 | 5518 | 7r1/ | 19 | 84 | ${ }^{2} 2$ | 15 | 42 | \%376 |
| $61 / 2$ | 37 | 102 | 33 | 1 15-16 | 2046 | $67 \%$ | 941/2 | 21 | 106 | 89 |  |  |  |
|  | 41 | 116 | 42 | 2 1-16 | 231 | $761 \%$ | 1071 1-10 | 23 | 123 | 106 |  |  |  |
| $71 / 2$ | 47 | 130 | 45 | 2 3-16 | 256 | $861 / 8$ | 1201\% | 24 | 134 | 115 |  |  |  |
|  | 53 | 150 | 48 | 2 5-16 | 280 | 961/4 | 1343/4 | 25 |  | 125 |  |  |  |

Note.-This is an old table, and its authority is uncertain. The figures in the fourth columu are probably much too small for durability.
it is somewhat more flexible than rope of the same diameter and composed of the same number of wiges laid up in the ordinary manner; and (especially) that owing to the fact that the wires are laid more axially in the rope, longer surfaces of the wire are exposed to wear, and the endurance of the rope is thereby increased. (Trenton Iron Co.)

## Notes on the Use of Wire Rope.

(J. A. Roebling's Sons Co.)

Several kinds of wire rope are manufactured. The most pliable variety contains nineteen wires in the strand, and is generally used for hoisting and running rope. The ropes with twelve wires and seven wires in the strand are stiffer, and are better adapted for standing rope, guys, and rigging. Orders should state the use of the rope, and advice will be given. Ropes are made up to three inches in diameter, upon application.

For safe working load, allow one fifth to one seventh of the ultimate strength, according to speed, so as to get good wear from the rope. When substituting wire rope for liemp rope, it is good economy to allow for the former the same weight per foot which experience has approved for the latter.

Wire rope is as pliable as new hemp rope of the same strength; the for. mer will therefore run over the same-sized sheaves and pulleys as the latter. But the greater the diameter of the sheaves, pulleys, or drums, the longer wire rope will last. The minimum size of drum is given in the table.

Experience has demonstrated that the wear increases with the speed. It is, therefore, better to increase the load than the speed.

Wire rope is manufactured either with a wire or a hemp centre. The latter is more pliable than the former, and will wear better where there is short bending. Orders should specify what kind of centre is wanted.

Wire rope must not be coiled or uncoiled like hemp rope.
When mounted on a reel, the latter should be mounted on a spindle or flat turn-table to pay off the rope. When forwarded in a small coil, without reel, roll it over the ground like a wheel, and run off the rope in that way. All untwisting or kinking must be avoided.

To preserve wire rope, apply raw linseed-oil with a piece of sheepskin, wool inside; or mix the oil with equal parts of Spanish brown or lamp-black.

To preserve wire rope under water or under ground, take mineral or vegetable tar, and add one bushel of fresh-slacked lime to one barrel of tar, which will nentralize the acid. Boil it well, and saturate the rope with the hot tar. 'To give the mixture body, add some sawdust.

The grooves of cast-iron pulleys and sheaves should be filled with wellseasoned blocks of hard wood, set on ent, to be renewed when worn out. This end-wood will save wear and increase adhesion. The smaller pulleys or rollers which support the ropes on inclined planes should be constructed on the same plan. When large sheaves run with very great velocity, the grooves should be lined with leather, set on end, or with India rubber. This is done in the case of sheaves used in the transmission of power between distant points by means of rope, which frequently runs at the rate of 4000 feet per minute.

Steel ropes are taking the place of iron ropes, where it is a special object to combine lightness with strength.

But in substituting a steel rope for an iron running rope, the object in view should be to gain an increased wear from the rope rather than to reduce the size.

## Locked Wire Rope.

Fig, 74 shows what is known as the Patent Locked Wire Rope, made by the Trenton Iron Co. It is claimed to wear two to three times as long as an


Fig. 74.
ordinary wire rope of equal diameter and of like material. Sizes made are from $1 / 2$ to $11 / 2$ inches diameter.

## CRANE CHAINS.

(Bradlee \& Co., Philadelphia.)

| "D. B. G." Special Crane. |  |  |  |  |  |  | Crane. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| $1 / 4$ | 25-32 | 7/8 |  | 193 | 3864 | 1288 | 1680 | 0 | 20 |
| 5-16 | $27-32$ |  | $11-16$ | 2898 | 5796 | 1932 | 2520 | 5040 | 1680 |
| 3/8 | 31-32 | $17-10$ | 114 | 4186 | $83 \% 2$ | 2790 | 3640 | 7280 | 2427 |
| 7-16 | 15-32 |  | $13 / 8$ | 5.96 | 11592 | 3864 | 5040 | 10080 | 3360 |
| $1 / 2$ | 111-32 | 21/2 | $111-16$ | \%728 | 15456 | 5182 | 6720 | 13440 | 4480 |
| 9-16 | $115-32$ | $3:-10$ | 17/8 | $\bigcirc 660$ | 19320 | 6440 | 8400 | 16800 | 5600 |
|  | 123-32 | 41/8 | ${ }^{2} 1$ 1-16 | 11914 | 23828 | 7942 | 10360 | 20720 | 6907 |
| 11-16 | $12{ }^{2}-32$ | \% | $21 / 4$ | 14490 | 28980 | 9660 | 12600 | $25: 00$ | 8400 |
|  | 131-32 | $57 / 8$ | 21/2 | 1;388 | 34776 | 11592 | 15120 | 30240 | 10080 |
| 1:316 | ${ }^{2} 3-32$ | ${ }^{6} 7$ \%-10 | $211-16$ | $20: 86$ | 40 \%\% | 13524 | 17610 | 35280 | 11:60 |
| 8/8 | ${ }_{2}^{2}$ \% -32 |  | 27/8 | 23484 | 44968 | 14989 | 20440 | 40880 | 136:27 |
| 15-16 | 2 15-32 |  | 3 1-16 | $2587^{2}$ | 51 ¢ 44 | 17248 | 23520 | 4.040 | 15680 |
|  | 2 19-32 | 10 7-10 | $31 / 4$ | 29568 | 59136 | 19712 | 26880 | 53760 | 1\%920 |
| 11-16 | 2 23-32 | 112-10 | $35-16$ | $33 \pm 64$ | 66538 | 22176 | 30240 | 60480 | 20160 |
|  | 2 2 2 -32 | 121/2 | 33/4 | 31576 | 75152 | 25050 | 34160 | 683:0 | 2erti |
| 1 3-16 | 3 5-32 | 13 \%-10 | 328 | 41888 | $83 \% 76$ | 2 c 925 | 38080 | r6160 | $2538 \%$ |
|  | 3 - $\uparrow$-32 | 16 | 418 | 46200 | 92400 | 30800 | 42000 | 84000 | 28000 |
| 1 15-16 | 3 15-32 | 161/2 | $43 / 8$ | 50512 | $1010 \% 4$ | 333674 | 45920 | 91840 | 30613 |
| 13/8 | 35/8 | 184-10 | 49-16 | 55548 | 111496 | 37165 | 50680 | 101360 | 33787 |
| ${ }_{11}{ }^{\text {T-16 }}$ | 3 25-32 | $19 \%$-10 | 43/4 | 60368 | 120736 | 40:45 | 54880 | 109760 | 36587 |
| 112 | 3 31-32 | 217-10 | 5 | 665?8 | 133055 | 4435\% | 60480 | 120960 | 40320 |

The distance from centre of one link to centre of next is equal to the inside length of link, but in practice $1 / 3: 2$ inch is allowed for weld. This is approximate, and where exactness is required, chain should be made so.

Fur Chain Sheaves. - The diameter, if possible, should be not less than twenty times the diameter of chain used.
Example.-For 1 -inch chain use 20 -incli sheaves.

## WEIGHTS OF LOGS, LUMBER, ETC.

 Weigint of Green Logs to Scale 1,000 Fect, Board IIeasure.| Yellow pine (Southern) | 8,000 to 10,000 |
| :---: | :---: |
| Norway pine (Michigan) | \%,000 to 8.000 |
| White pine (Michigan) $\{$ off of | 6,000 to 7,000 |
| White pine (Pennsylvania), bark off | 5,000 to 6,000 |
| Hemlock (Pennsylvania), bark off | 6,000 to \%,000 " |

Four acres of water are required to store $1,000,000$ feet of logs.
Weight of 1,000 Neet of Lumber, Hoard Measure.
Yellow or Norway pine.................. Dry, $3.000 \mathrm{lbs}_{6 .}$ Green, $5,000 \mathrm{lbs}$.
White pine

## Weight of 1 Cord of Seasoned Wood, 128 Cubic Feet per Cord.



## SIKES OF FIRE-BRICK.



9-inch straight............ $9 \times 41 / 2 \times 21 / 2$ inches.
Soap...................... $9 \times 21 / 2 \times 21 / 2$
Checker... ................... $9 \times 3 \times 3 \times 6$
2-inch
Split... ..................... $9 \times 41 / 2 \times 11 / 4$ "
Jamb....................... $9 \times 41 / 2 \times 21 / 2 \quad$ "
No. 1 key.................... $9 \times 21 / 2$ thick $\times 41 / 2$ to 4 inches wide.

No. 2 key
113 bricks to circle 12 feet inside diam. inches wid............ $3 \times 21 / 2$ thick $\times 41 / 2$ to $31 / 2$ 63 bricks to circle 6 ft . inside diam.
No. 3 key................... $9 \times 21 / 2$ thick $\times 41 / 2$ to 3 inches wide.

38 bricks to circle 3 ft . inside diam.
No. 4 key'.................. $9 \times 21 / 2$ thick $\times 41 / 2$ to $21 / 4$ inches wide.

25 bricks to circle $11 / 2 \mathrm{ft}$. inside diam.
No. 1 wedge (or bullhead). $9 \times 41 / 2$ wide $\times 21 / 2$ to 2 in . thick, tapering length wise.

98 bricks to circle 5 ft . inside diam.
No. 2 wedge............... $9 \times 41 / 2 \times 21 / 2$ to $11 / 2 \mathrm{in}$. thick. 60 bricks to circle $21 / 2 \mathrm{ft}$. inside diam.
No. 1 arch............... $9 \times 41 / 2 \times 21 / 2$ to 2 in. thick, tapering breadthwise. 72 bricks to circle 4 ft . inside diam.
No. 2 arch 42 bricks to circle in ft. inside diam.
No. 1 skew................ 9 to $7 \times 41 / 2$ to $21 / 2$. Bevel on one end.
No. 2 skew Equal bevel on both edges.
No. 3 skew. T............ $9 \times 21 / 2 \times 41 / 2$ to $11 / 2$. Taper on one edge.
24 inch circle $\ldots . . . . .$.
Edges curved, 9 bricks line a 24 -inch circle.
36 -inch circle $\ldots . . . . . . .$.
13 bricks line a 36 -inch circle.
48 -inch circle $\ldots \ldots \ldots \ldots . .83 / 4$ to $71 / 4 \times 41 / 2 \times 21 / 2$. 17 bricks line a 48 -inch citcle.
$131 / 2$-inch straight......... $1312 \times 21 / 2 \times 6$.
$131 / 2$ inch key No. $1 . . . .131 / 2 \times 21 / 2 \times 6$ to 5 inch. 90 bricks turn a $12-\mathrm{ft}$. circle.
$131 / 2$-inch key No. $2 \ldots . . .131 / 2 \times 21 / 2 \times 6$ to $43 / 8$ inch. 52 bricks turn a $6-\mathrm{ft}$. circle.
Bridge wall, No. $1 \ldots \ldots . .13 \times 612 \times 6$.
Bridge wall, No. $2 . . . . . . . .13 \times 61 / 2 \times 3$.
Mill tile ... ............... 18, 20 , or $24 \times 6 \times 3$.
Stock-hole tiles..............18, 20 , or $24 \times 9 \times 4$.
18-inch block .............. $18 \times 9 \times 6$.
Flat back ................. $9 \times 6 \times 21 / 2$.
Flat back arch............... $9 \times 6 \times 31 / 2$ to $21 / 2$. $2 \gtrsim-i n c h$ radius, 56 bricks to circle.
Locomotive tile ........... $32 \times 10 \times 3$. $31 \times 10 \times 3$. $34 \times 8 \times 3$. $36 \times 8 \times 3$. $40 \times 10 \times 3$.
Tiles, slabs, and blocks, various sizes 12 to 30 inches long, 8 to 30 inches wide, 2 to 6 inches thick.

Cupola brick, 4 and 6 inches high, 4 and 6 inches radial width, to line shells 23 to 66 in diameter.

A 9 -inch straight brick weighs 7 lbs . and contains 100 cubic inches. $(=120$ lbs. per cubic foot. Specific gravity 1.93.)
One cubic foot of wall requires 179 -inch bricks, one cubic yard requires 460. Where keys, wedges, and other "shapes" are used, add 10 per cent in estimating the number required.

One ton of fire－clay should be sufficient to lay 3000 ordinary bricks．To secure the best results，fire－bricks should be laid in the same clay from which they are manufactured．It should be used as a thin paste，and not as mor．＊ tar．The thinner the joint the better the furnace wall．In ordering bricks the service for which they are required should be stated．

## NUMEER OF FIRE－HRICK REQUIRED FOR VARIOUS CIRCLES．

|  | KEY BRICKS． |  |  |  |  | ARCH BRICKS． |  |  |  | WEDGE BRICKS． |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \dot{\circ} \\ & \dot{\circ} \\ & \dot{Z} \end{aligned}$ | $\left\lvert\, \begin{gathered} \circ \\ 0 \\ 0 \\ \ddot{z} \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} \circ i \\ \dot{Z} \\ \dot{Z} \end{gathered}\right.$ | $\stackrel{\text { ¢ }}{\stackrel{\circ}{\text { a }}}$ | \＃゙ |  | $\begin{array}{r}+ \\ \vdots \\ \dot{8} \\ \hline\end{array}$ | ठे | $\begin{aligned} & \text { स्ञ } \\ & \text { सें } \end{aligned}$ |  | $\stackrel{\square}{\dot{\circ}}$ | के | Э⿹\zh26灬 ¢ |
| ft．in． |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{ll}1 \\ { }_{2} & 6 \\ 2\end{array}$ | 25 |  |  |  | 25 |  |  |  |  |  |  |  |  |
|  | $1 \%$ | ${ }_{25}^{13}$ |  |  | 30 | 42 |  |  | 42 |  |  |  |  |
| 2 3 3 | 9 | 25 |  |  | 34 | 31 | 18 |  | 49 | 60 |  |  | 60 |
| 36 |  | 32 |  |  | 48 | 21 | 36 |  | 57 | 48 | 20 |  | 68 |
| 40 |  |  | $\stackrel{1}{21}$ |  | 42 | 10 | 54 |  | 64 | 36 | 40 |  | 76 |
| 46 |  |  | 32 |  | 51 |  | 72 |  | 72 | 24 | 59 |  | 83 |
| 50 |  |  | 42 |  | 51 |  | 72 | 8 | 80 | 12 | 79 |  | 91 |
| 56 |  |  | $\stackrel{4}{43}$ |  | 55 |  | 72 | 15 | 87 |  | 98 |  | 98 |
| 60 |  |  | ${ }^{63}$ |  | 69 |  | 72 | 23 | 95 |  | 98 | 8 | 106 |
| 66 |  |  | 58 | 9 | 67 |  | ${ }^{7}$ | 30 | 102 |  | 98 | 15 | 113 |
| 70 |  |  | 52 | 19 | $\stackrel{7}{7}$ |  | ${ }^{2}$ | 38 | 110 |  | 98 | 23 | 121 |
| 76 |  |  | 47 | 29 | 76 |  | \％2 | 45 | 117 |  | 98 | 30 | 128 |
| 80 |  |  | 42 | 38 | 80 |  | 72 | 53 | 125 |  | 98 | 38 | 136 |
| 86 |  |  | 37 | 47 | 84 |  | 72 | 60 | 132 |  | 98 | 46 | 144 |
| 90 |  |  | 31 | 57 | 88 |  | 72 | 68 | 140 |  | 98 | 53 | 151 |
| 96 |  |  | 26 | 66 | 92 |  | 72 | 75 83 8 | 147 |  | 98 | 61 | 159 |
| 100 |  |  | 21 | \％6 | $9{ }_{9}$ |  | ${ }_{\sim}^{2}$ | 8.3 90 | 155 |  | 98 | 68 | 166 |
| 106 |  |  | 16 | 85 | 101 |  | ${ }^{2}$ | 90 | 16 |  | 98 | 76 | 174 |
| 110 |  |  | 11 | 94 | 105 |  | 72 | 105 | 170 |  |  | 83 | 181 |
| 116 |  |  | 5 | 104 | 109 |  | 22 | 113 113 | 18 |  | 98 | 91 | 189 |
| 120 |  |  |  | 113 | 113 |  | T2 | 121 | 185 |  | 98 | 98 | 196 |
| 126 |  |  |  | 113 | 117 |  |  |  |  |  | 98 | 106 | 204 |

For larger circles than 12 feet use 113 No． 1 Key，and as many 9 －inch brick as may be needed in addition．

## ANALYSES OF MT．SAVAGE FIRE－CLAY．

## MAGNESIA BRICKS.

"Foreign Abstracts " of the Institution of Civil Engineers, 1893, gives a paper by C. Bischof on the production of magnesia bricks. The material most in favor at present is the magnesite of Styria, which, although less pure considered as a source of magnesia than the Greek, has the property of fritting at a high temperature without melting. The composition of the two substances, in the natural and burnt states, is as follows:

| Magnesite. | Styrian. | Greek. |
| :---: | :---: | :---: |
| Carbonate of magnesia. | 90.0 to $96.0 \%$ | 94.46\% |
| "" " lime.. | 0.5 to 2.0 | 4.49 |
| " " iron | 3.0 to 6.0 | FeO 0.08 |
| Silica. | 1.0 | 0.52 |
| Manganous oxide | 0.5 | Water 0.54 |
| Burnt Magnesite. |  |  |
| Magnesia. | 77.6 | 82.46-95.36 |
| Lime. | 7.3 | 0.83-10.92 |
| Alumina and ferric oxide | 13.0 | 0.56-3.54 |
| Silica.. | 1.2 | 0.73-7.98 |

At a red heat magnesium carbonate is decomposed into carbonic acid and caustic magnesia, which resembles lime in becoming hydrated and recarbonated when exposed to the air, and possesses a certain plasticity, so that it can be moulded when subjected to a heavy pressure. By long-continued or stronger heating the material becomes dead-burnt, giving a form of magnesia of high density, sp. gr. 3.8 , as compared with 3.0 in the plastic form, which is unalterable in the air but devoid of plasticity. A mixture of two volumes of dead-burnt with one of plastic magnesia can be moulded into bricks which contract but little in firing. Other binding materials that have been used are: clay up to 10 or 15 per cent; gas-tar, perfectly freed from water, soda, silica, vinegar as a solution of magnesium acetate which is readily decomposed by heat, and carbolates of alkalies or lime. Among magnesium compounds a weak solution of magnesium chloride may also be used. For setting the bricks lightly burnt, caustic magnesia, with a small proportion of silica to reuder it less refractory, is recommended. The strength of the bricks may be increased by adding iron, either as oxide or silicate. If a porous product is required, sawdust or starch may be added to the mixture. When dead-burnt magnesia is used alone, soda is said to be the best binding material.

See also papers by A. E. Hunt, Trans. A.I. M. E., xvi, 720, and by T. Egleston, Trans. A. I. M. E., xiv, 458.

Asbestos.-J. T. Donald, Eng. and M. Jour., June 27, 1891.
Analysis.
Canadian. Italian. Broughton. Templeton.

| Silica. | 40.30\% | 40.5\%\% | 40.52\% |
| :---: | :---: | :---: | :---: |
| Magnesia. | 43.37 | 41.50 | 42.05 |
| Ferrous oxide | . 87 | 2.81 | 1.97 |
| Alumina... | 2.27 | . 90 | 2.10 |
| Water. | 13.72 | 13.55 | 13.46 |
|  | 100.53 | 99.33 | 100.10 |

Chemical analysis throws light upon an important point in connection with asbestos, i.e., the cause of the harshness of the fibre of some varieties. Asbestos is principally a hydrous silicate of magnesia, i.e., silicate of magnesia combined with water. When harsh fibre is analyzed it is found to contain less water than the soft fibre. In fibre of vely fine quality from Black Lake analysis showed $14.38 \%$ of water, while a harsh-fibred sample gave only $11.70 \%$. If soft flbre be heated to a temperature that will drive off a portion of the combined water, there results a substance so brittle that it may be crumbled between thumb and finger. There is evidently some connection between the consistency of the fibre and the amount of water in its composition.

## STRENGTH OF IMATERIALS.

Stress and Strain.-There is much confusion among writers on strength of materials as to the definition of these terms. An external force applied to a body, so as to pull it apart, is resisted by an internal force, or resistance, and the action of these forces canses a displacement of the molecules, or deformation. By some writers the external force is called a stress. and the internal force a strain; others call the external force a strain, and the internal force a stress: this confusion of terms is not of importance, as the words stress and strain are quite commonly used synony monsly, but the use of the word strain to mean molecular displacement, deformation, or distortion, as is the custom of some, is a corruption of the language. See Engineering News, June 23, 1892. Definitions by leading authorities are given below.
Stress.-A stress is a force which acts in the interior of a body, and re= sists the external forces which tend to cliange its shape. A deformation is the amount of change of shape of a body caused by the stress. The word strain is often used as synonymons with stress and sometimes it is also used to desiguate the deformation. (Merriman.)
The force by which the molecules of a body resist a strain at any point is called the stress at that point.
The summation of the displacements of the molecules of a body for a given point is called the distortion or strain at the point considered. (Burr).

Stresses are the forces which are applied to bodies to bring into action their elastic and cohesive properties. These forces cause alterations of the forms of the bodies upon which they act. Strain is a name given to the kind of alteration produced by the stresses. The distinction between stress and strain is not always observed, one being used for the other. (Wood.)

Stresses are of different kinds, viz. : tensile, compressive, transverse, torsional, and shearing stresses.

A tensile stress, or pull, is a force tending to elongate a piece. A commessive stress, or push, is a force tending to shorten it. A transverse stress tends to bend it. A torsional stress tends to twist it. A shearing stress tends to force one part of it to slide over the adjacent part.

Tensile, compressive, and shearing stresses are called simple stresses. Transverse stress is compounded of teusile and compressive stresses, aud torsional of tensile and shearing stresses.

To these five varieties of stresses might be added tearing stress, which is either tensile or shearing, but in which the resistance of different portions of the material are brought into play in detail, or one after the other, instead of simultaneously, as in the simple stresses.

Cfirets of Stresses. -The following general laws for cases of simple tension or compression have been established by experiment. (Merriman):

1. When a small stress is applied to a body, a snall deformation is produced, and on the removal of the stress the body springs back to its original form. For small stresses, then, materials may be regarded as perfectly elastic.
2. Under small stresses the deformations are approximately proportional to the forces or stresses which produce them, and also approximately proportional to the length of the bar or body.
3. When the stress is great enough a deformation is produced which is partly permanent, that is, the body does not spring back entirely to its riginal form on removal of the stress. This permanent part is termed a set. In such cases the deformations are not proportional to the stress.
4. When the stress is greater still the deformation rapidly increases and the body finally ruptures.
5. A sudden stress, or shock, is more injurious than a steady stress or than a stress gradually applied.
Elastic Limit.-The elastic limit is defined as that point at which the deformations cease to be proportional to the stresses, or, the point at which the rate of stretch (or other leformation) begins to increase. It is also defined as the point at which the first permanent set becomes visible. The last definition is not considered as good as the first, as it is found that with some materials a set occurs with any load, no matter how small, and that with others a set which might be called permanent vanishes with lapse of time, and as it is impossible to get the point of first set without removing
the whole load after each increase of ioad, which is frequently inconvenient. The elastic limit, defined, however, as the point at which the extensions begin to increase at a higher ratio than the applied stresses, nsually corresponds very nearly with the point of first measnrable permanent set.

Apparent Glastic Limit.-Prof. J. B. Johnson (Materials of Construction, p. 19) defines the "apparent elastic limit" as "the point on the stress diagram [a plotted diagram in which the ordinates represent loads and the abscissas the corresponding elongations] at which the rate of deformation is $50 \%$ greater than it is at the origin," [the minimum rate]. An equivalent definition, proposed by the anthor, is that point at which the nodulus of extension (length $\times$ increment of load per unit of section - increment of elongation) is two thirds of the maximum. For steel, with a modulus of elasticity of $30,000,000$, this is equivalent to that point at which the increase of elongation in an 8 -inch specimen for 1000 lbs. per sq. in. increase of load is 0.0004 in .

Yield-point. -The term yield-point has recently been introduced into the literature of the strength of materials. It is defined as that point at which the rate of stretch suddenly increases rapidly. The difference between the elastic limit, strictly defined as the point at which the rate of stretch begins to increase, and the yield-point, at which the rate increases suddenly, may in some cases be considerable. This difference, however, will not be discovered in short test-pieces unless the readings of elongations are made by an exceedingly fine instrument, as a micrometer reading to $\frac{1}{10000}$ of an inch. In using a coarser instrument, snch as calipers reading to $1 / 100$ of an inch, the elastic limit and the yield-point will appear to be simultaneous. Unfortunately for precision of language, the term yield-point was not introduced until long after the term elastic limit had been almost universally adopted to signify the same physical fact which is now dofined by the term yield-point, that is, not the point at which the first cliange in rate, observable Gnly by a microscope, occurs, but that later point (more or less indefinite as to its precise position) at which the increase is great enough to be seen by the naked eye. A most convenient method of determining tho point at which a sudden increase of rate of stretch occurs in short specimens, when a testing-machine in which the pulling is done by screws is used, is to note the weight on the beam at the instant that the beam "drops." During the earlier portion of the test, as the extension is steadily increased by the uniform but slow rotation of the screws, the poise is moved steadily along the beam to keep it in equipoise; suddenly a point is reached at which the beam drops, and will not rise until the elongation has been considerably increased by the further rotation of the screws, the advancing of the poise meanwhile being suspended. This point corresponds practically to the point at which the rate of elongation suddenly increases, and to the point at which an appreciable permanent set is first found. It is also the point which has hitherto been called in practice and in text-books the elastic limit, and it will probably continue to be so called, althongh the use of the newer term "yield-point" for it, and the restriction of the term elastic limit to mean the earlier point at which the rate of stretch begins to increase, as determinable only by micrometric measurements, is more precise and scientific.

In tables of strength of materials hereafter given, the term elastic limit is used in its customary meaning, the point at which the rate of stress has begnn to increase, as observable by ordinary instruments or by the drop of the beam. With this definition it is practically synonymous with yieldpoint.
Coeffeient (or Modulus) of Elasticity.-This is a term expressing the relation between the amount of extension or compression of a material and the load producing that extension or compression.
It is defined as the load per unit of section divided by the extension per unit of length.
Let $P$ be the applied load, $l$ the sectional area of the piece, $l$ the length of the part extended, $\lambda$ the amount of the extension, and $E$ the coefficient of elasticity. Then $P \div k=$ the load on a unit of section; $\lambda \div l=$ the elongation of a unit of length.

$$
E=\frac{P}{k} \div-\frac{1}{l}=\frac{P l}{k \lambda} .
$$

The coefficient of elasticity is sometimes defined as the figure expressing the load which would be necessary to elongate a piece of one square inch section to double its original length, provided the piece would not break. and the ratio of extension to the force producing it remained constant. This definition follows from the formula above given, thus: If $k=$ one square inch, $l$ and $\ell$ each $=$ one inch, then $E=P$.
Within the elastic limit, when the deformations are proportional to the
stresses, the coefficient of elasticity is constant, but bey ond the elastic limit
it decreases rapidly.
In cast iron there is generally no apparent limit of elasticity, the deformations increasing at a faster rate than the stresses, and a permanent set being produced by small loads. The coefficient of elasticity therefore is not constant during any portion of a test, but grows smaller as the load increases. The same is true in the case of timber. In wrought, iron and steel, however, there is a well-defined elastic limit, and the coefficient of elasticity within that limit is nearly constant.
Resilience, or Work of Resistance of a Mraterial. -Within the elastic limit, the resistance increasing uniformly from zero stress to the stress at the elastic limit, the work done by a load applied gradually is equal to one half the product of the final stress by the extension or other deformation. Beyond the tlastic limit, the extensions increasing more rapidly than the loads, and the strain diagram approximating a parabolic form, the work is approximately equal to two thirds the product of the maximum stress by the extension.
The amount of work required to break a bar, measured usually in inchpounds, is called its resilience; the work required to strain it to the elastic limit is called its elastic resilience. (See page 2\%.)

Under a load applied suddenly the momentary elastic distortion is equal to twice that caused by the same load applied gradually.

When a solid material is exposed to percussive stress, as when a weight falls upon a beam transversely, the work of resistance is measured by the product of the weight into the total fall.
Elevation of Ultimate Resistance and Elastic Limit.-It was first observed by Prof. R. H. Thurston, and Commander L. A. Beardslee, U. S. N., independently, in 1873 , that if wronght iron be subjected to a stress beyond its elastic limit, but not beyond its ultimate resistance, and then allowed to "rest" for a definite interval of time, a considerable increase of elastic limit and ultimate resistance may be experienced. In other words, the application of stress and subsequent "rest " increases the resistance of wrought iron.
This "rest " may be an entire release from stress or a simple holding the test-piece at a given intensity of stress.
Commander Beardslee prepared twelve specimens and subjected them to an intensity of stress equal to the ultimate resistance of the material, without breaking the specimens. These were then allowed to rest, entirely free from stress, from 24 to 30 hours, after which period they were again stressed until broken. The gain in ultimare resistance by the rest was found to vary from 4.4 to $1 \%$ per cent.
This elevation of elastic and ultimate resistance appears to be peculiar to iron and steel: it has not been found in other metals.
Relation of the Elastic Kimit to Emiurance under Ree peated Stresses (condensed from Engineering, August 7, 1891).When engineers first began to test materials, it was soon recognized that if a specimen was loaded beyond a certain point it did not recover its origi. nal dimensions on removing the load, but took a permanent set; this point was called the elastic limit. Since below this point a bar appeared to recover completely its original form and dimensions on removing the load, it ap. peared obvious that it had not been injured by the load, and hence the working load might be deduced from the elastic limit by using a small factor of safety.

Experience showed, however, that in many cases a bar would not carry safely a stress any where near the elastic limit of the material as determined by these experiments, and the whole theory of any connection between the elastic limit of a bar and its working load became almost discredited, and engineers employed the ultimate strength only in deducing the safe working load to which their structures might be subjected. Still, as experience accumulated it was observed that a higher factor of safety was required for a live load than for a dead one.

In $18 \% 1$ Wöhler published the results of a number of experiments on bars of iron and steel subjected to live loads. In these experinents the stresses were put on and renloved from the specimens without impact, but it was, nevertheless, found that the breaking stress of the materials was in every case nuch below the statical breaking load. Thus, a bar of Krupp's axle steel having a tenacity of 49 tons per square inch broke with a stress of 28.6 tons per square inch, when the load was completely removed and replaced without impact 170,000 times. These experiments were made on a large
number of different brands of iron and steel, and the results were concordant in showing that a bar would break with an alternating stress of only, say, one third the statical breaking strength of the material, if the repetitions of stress were sufficiently numerous. At the sanne time, however, it appeared from the general trend of the experiments that a bar would stand an indefinite number of alternations of stress, provided the stress was kept

Prof. Bauschinger defines the elastic limit as the point at which stress ceases to be sensibly proportional to strain, the latter being measured with a mirror apparatus reading to $\frac{1}{5000}$ th of a millimetre, or about $\frac{1}{100000} \mathrm{in}$. This limit is always below the yield-point, and may on occasion be zero. On loading a bar above the yield-point, this point rises with the stress, and the rise continues for weeks, months, and possibly for years if the bar is left at rest under its load. On the other hand, when a bar is loaded beyond its true elastic limit, but below its yield-point, this limit rises, but reaches a maximum as the yield-point, is approached, and then falls rapidly, reaching even to zero. On leaving the bar at rest under a stress exceeding that of its primitive breaking-down point the elastic limit begins to rise again, and may, if left a sufficient time, rise to a point much exceeding its previous
value.

This property of the elastic limit of changing with the history of a bar has done niore to discredit it than anything else, nevertheless it now seems as if it, owing to this very property, were once more to take its former place in the estimation of engineers, and this time with fixity of tenure. It had long been known that the limit of elasticity might be raised, as we have said, to almost any point within the breaking load of a bar. Thus, in some experiments by Professor Styffe, the elastic limit of a puddled-steel bar was raised $16,000 \mathrm{lbs}$. by subjecting the bar to a load exceeding its primitipe slastic limit.

A bar has two limits of elasticity, one for tension and one for compression. Bauschinger loaded a nuıber of bars in tension until stress ceased to bo sensibly proportional to strain. The load was then removed and the bar tested in compression until the elastic limit in this direction had been exceeded. This process raises the elastic limit in compression, as wonld be found on testing the bar in compression a second time. In place of this, however, it was now again tested in tension, when it was found that the artificial raising of the limit in compression had lowered that in tension below its previous value. By repeating the process of alternately testing in tension and compression, the two limits took up points at equal distances from the line of no load, both in tension and compression. These limits Bauschinger calls natural elastic limits of the bar, which for wrought iron correspond to a stress of about $81 / 2$ tons per square inch, but this is practically the limiting load to which a bar of the same material can be strained alternately in tension and compression, without breaking when the loading is repeated sufficiently often, as determined by wöhler's method.
As received from the rolls the elastic limit of the bar in tension is above the natural elastic limit of the bar as defined by Bauschinger, having been artificially raised by the deformations to which it has been subjected in the process of manufacture. Hence, when subjected to alternating stresses, the limit in tension is immediately lowered, while that in compression is raised until they both correspond to equal loads. Hence, in Wohler's experiments, in which the bars broke at loads nominally below the elastic limits of the material, there is every reason for conclinding that the loads were really greater than true elastic limits of the material. This is confirmed by tests on the connecting-rods of engines, which of course work under alternating stresses of equal intensity. Careful experiments on old rods show that the elastic limit in compression is the same as that in tension, and that both are far below the tension elastic limit of the material as received from the rolls.
The common opinion that straining a metal beyond its elastic limit injures it appears to be untrue. It is not the mere straining of a metal beyond one elastic limit that injures it, but the straining, many times repeated, beyond its two elastic limits. Sir Benjamin Baker lias shown that in bending a shell plate for a boiler the metal is of necessity strained beyond its elastic limit, so that stresses of as much as $\gamma$ tons to 15 tons per square inch may obtain
in it as it comes from the rolls, and unless the plate is annealed these in it as it comes from the rolls, and unless the plate is ammealed, these stresses will still exist after it has been built into the boiler. In such a case, however, when exposed to the additional stress due to the pressure inside
the boiler, the oferstrained portions of the plate will relieve themselves by stretching and taking a permanent set, so that probably after a year's working very little difference could be detected in the stresses in a plate built into the boiler as it came from the bending rolls, and in one which had been annealed, before riveting into place, and the first, in spite of its having been strained beyond its elastic limits, and not subsequently annealed, would be as strong as the other.

## Resistance of Metals to Repeated Shocks.

More than twelve years were spent by Wöhler at the instance of the Prussian Government in experimenting upou the resistance of iron and steel to repeated stresses. The results of his experiments are expressed in what is known as Wöhler's law, which is given in the following words in Dubois's translation of Weyrauch:
" Rupture may be caused not only by a steady load which exceeds the carring strength, but also by repeated applications of stresses, none of which are equal to the carrying strength. The differences of these stresses are measures of the disturbance of continuity, in so far as by their increase the minimum stress which is still necessary for rupture diminishes."

A practical illustration of the meaning of the first portion of this law may be given thus: If 50,000 pounds once applied will just break a bar of iron or steel, a stress very much less than 50,000 pounds will break it if repeated sufficiently ofteu.

This is fully confirmed by the experiments of Fairbairn and Spangenberg, as well as those of Wöhler; and, as is remarked by Weyrauch, it may be considered as a long-known result of common experience. It partially accounts for what Mr. Holley has called the "intrinsically ridiculous factor" of safety of six."

Another "long-known result of experience" is the fact that rupture may be caused by a succession of shocks or impacts, none of which alone would be sufficient to cause it. Iron axles, the piston-rods of steam hammers, and other pieces of metal subject to continuonsly repeated shocks, invariably break after a certain length of service. They have a "life" which is lim. ited.

Several years ago Fairbairn wrote: "We know that in some cases wrought iron subjected to continuous vibration assumes a crystalline structure, and that the cohesive powers are much deteriorated, but we are ignorant of the causes of this change." We are still ignorant, not only of the causes of this change, but of the conditions under which it takes place. Who knows whether wrought iron subjected to very slight continuous vibration will endure forever? or whether to insure final rupture each of the continuous small shocks must amount at least to a certain percentage of single heavy shock (both measured in foot-pounds), which would cause rupture with one application? Wöhler found in testing iron by repeated stresses (not impacts) that in one case 400,000 applications oi' a stress of 500 centners to the square inch caused rupture, while a similar bar remained sound after $48,000,000$ applications of a stress of 300 centners to the square inch ( 1 centner $=110.2$ lbs.).

Who knows whether or not a similar law holds true in regard to repeated shocks? Suppose that a bar of iron would break under a single impact of 1000 foot-pounds, how many times would it be likely to bear the repetition of 100 foot-pounds, or would it be safe to allow it to remain for fifty years subjected to a continual succession of blows of even 10 foot-pounds each ?

Mr. William Metcalf published in the Metallurgical Review, Dec. 18i7, the results of some tests of the life of steel of different percentages of carbou under impact. Some small steel pitmans were made, the specifications for which required that the unloaded machine should run $41 / 2$ hours at the rate of 1200 revolutions per minute before breaking.
The steel was all of uniform quality, except as to carbon. Here are the results: The

$$
\begin{aligned}
& .30 \mathrm{C} . \mathrm{ran}_{.49 \mathrm{C} .} 1 \mathrm{~h} .21 \mathrm{~m} \text {. Heated and bent before breaking. } \\
& .43 \mathrm{C} \text {. "، } 4 \mathrm{~h} .57 \mathrm{~m} \text {. Broke without heating. } \\
& .65 \mathrm{C} \text {. " } 3 \mathrm{~h} .50 \mathrm{~m} \text {. Broke at weld where imperfect. } \\
& .80 \mathrm{C} \text {. " } 5 \text { h. } 40 \mathrm{~m} \text {. } \\
& .84 \mathrm{C} \text {. " } 18 \mathrm{~h} \text {. } \\
& \text {. } 8 \pi \mathrm{C} \text {. Broke in weld near the end. } \\
& .96 \mathrm{C} \text {. Ran } 4.55 \mathrm{~m} \text {., and the machine broke down. }
\end{aligned}
$$

Some other experiments by Mr. Metcalf confirmed his conclusion, viz.
that high-carbon steel was better adapted to resist repeated shocks and vibrations than low-carbon steel.
These results, however, would scarcely be sufficient to induce any euginee: to use .84 carbon steel in a car-axle or a bridge-rod. Further experiments are needed to confirm or overthrow them.
(See description of proposed apparatus for such an investigation in the author's paper in Trans. A. I. M. E., vol. viii, p. $\mathfrak{i}$, from which the above extract is taken.)

## Suresses Produced by Suddenly Applied Forces and

## (Mansfield Merriman, R. R. \& Eng. Jour., Dec. 1889.)

Let $P$ be the weight which is dropped from a height $h$ upon the end of a bar, and let $y$ be the maximum elongation which is produced. The work performed by the falling weight, then, is

$$
W=P(h+y)
$$

and this must equal the internal work of the resisting molecular stresses. The stress in the bar, which is at first 0 , increases up to a certain limit $Q$. which is greater than $P$; and if the elastic limit be not exceeded the elongation increases uniformly with the stress, so that the internal work is equal to the mean stress $1 / \approx Q$ multiplied by the total elongation $y$, or

$$
W=1 / 2 Q y .
$$

Whence, neglecting the work that may be dissipated in heat,

$$
1 / 2 Q y=P l+P y
$$

If $e$ be the elongation due to the static load $P$, within the elastic limit $y=\frac{Q}{P} e$; whence

$$
\begin{equation*}
Q=P\left(1+\sqrt{1+2 \frac{h}{e}}\right), \tag{1}
\end{equation*}
$$

which gives the momentary maximum stress. Substituting this value of $Q$, there results

$$
\begin{equation*}
y=e\left(1+\sqrt{1+2 \frac{\pi}{e}}\right) \tag{2}
\end{equation*}
$$

which is the value of the momentary maximum elongation.
A shock results when the force $P$, before its action on the bar, is moving with velocity, as is the case when a weight $P$ falls from a height $h$. The above formulas show that this height $h$ may be small if $e$ is a small quantity, and yet very great stresses and deformations be produced. For instance, let $h=4 e$, then $Q=4 P$ and $y=4 e$; also let $h=12 e$, then $Q=6 P$ and $y=6 e$. Or take a wrought-iron bar 1 in . square and 5 ft . long: under a steady load of 5000 lbs . this will be compressed about 0.012 in ., supposing that no lateral flexure occurs; but if a weight of 5000 lbs . drops upon its end from the small height of 0.048 in . there will be produced the stress of $\because 0,000$ lbs.

A suddenly applied force is one which acts with the uniform intensity $P$ upon the end of the bar, but which has no velocity before acting upon it. This corresponds to the case of $h=0$ in the above formulas, and gives $Q=$ $2 P$ and $y=Q e$ for the maximum stress and maximum deformation. Prob. ably the action of a rapidly-moving train upon a bridge produces stresse of this character.

Increasing the Rensile strength of Iron Pars by rewist ing them. - Ernest L. Ransome of San Francisco has obtained an English Patent, No. $162: 21$ of 1888 , for an " improvement in strengthening and testing wronght metal and steel rods or bars, consisting in twisting the same in in cold state. . . Any defect in the lamination of the metal which would otherwise be concealed is revealed by twisting, and imperfections are shown at once. The treatment may be applied to bolts, suspension-rods or bars subjected to tensile strength of any description."

Results of tests of this process were reported by Lieutenant F. P. Gilmore, U. S. N., in a paper read before the Technical Society of the Pacific Coast, published in the Transactions of the Society for the month of December, 3885. The experiments include trials with thirty-nine bars, twenty-uine of which were variously twisted, ir rom three-eighths of one turn to six turns per foot. The test-pieces were cut from one and the same bar, and accurately
measured and numbered. From each lot two pieces without twist wern tested for tensile strength and ductility. One group of each set was twisterf until the pieces broke, as a guide for the amount of twist to be given those to be tested for tensile strain.

The following is the result of one set of Lieut. Gilmore's tests, on iron bars 8 in. long, $\boldsymbol{\sim} 19$ in. diameter.

| No. of Bars. | Conditions. | $\begin{aligned} & \text { Twists } \\ & \text { in } \\ & \text { Turns. } \end{aligned}$ | Twists per ft | Tensile Strength. | Tensile per sq. in. | Gain per cent. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Not twisted. | 0 | 0 | 22,000 | 54,180 |  |
| $\stackrel{ }{2}$ | Twisted cold. | 1/2 | $3 / 4$ | 23,900 | 59,020 | 9 |
|  |  | 1 | $11 / 2$ | 25,800 | 63,500 | 17 |
| $\stackrel{2}{1}$ |  | $\stackrel{2}{21}$ | 3 | 26,300 | 64,750 | 19 |
| 1 |  | 21/2 | $33 / 4$ | 26,400 | 65,000 | 20 |

Tests that corroborated these results were made by the University of California in 1889 and by the Low Moor Iron Works, England, in 1890.

## TENSHLE STRENGTEE.

The following data are usually obtained in testing by tension in a testing. machine a santple of a material of construction:
The load and the amount of extension at the elastic limit.
The maximum load applied before rupture.
The elongation of the piece, measured between gauge-marks placed a stated distance apart before the test; and the reduction of area at the point of fracture.

The load at the elastic limit and the maximum load are recorded in pounds per square inch of the original area. The elongation is recorded as a percentage of the stated length between the gauge-marks, and the reduction area as a percentage of the original area. The coefficient of elasticity is calculated from the ratio the extension within the elastic limit per inch of length bears to the load per square inch producing that extension.
On account of the difficulty of making accuratemeasurements of the fractured area of a test-piece, and of the fact that elongation is more valuable than reduction of area as a measure of ductility and of resilience or work of resistance before rupture, modern experinienters are abandoning the custom of reporting reduction of area. The "strength per square inch of fractured section "formerly frequently used in reporting tests is now almost entirely abandoned. The data now calculated from the results of a tensile test for commercial purposes are: 1. Tensile strength in pounds per square inch of original area. 2 . Elongation per cent of atated length between gauge-marks, usually 8 inches. 3. Elastic limit in pounds per square inch of original area.
The sholt or grocived test specimen gives with most metals, especially with wrought iron and steel, an appaient tensile strength much higher than the real strength. This form of test-piece is now almost entirely abandoned.
The following results of the tests of six specimens from the same $11 / 4^{\prime \prime}$ steel bar illustrate the apparent elevation of elastic limit and the changes in other properties due to change in length of stems which were turned down in each specimen to . $798^{\prime \prime}$ diameter. (Jas. E. Howard, Eng. Congress 1893 Section G.)

| Description of Stem. | Elastic Limit, Lbs. per sq. ln. | Tensile Strength, Lbs. per Sq. In. | Contraction of Area, per cent. |
| :---: | :---: | :---: | :---: |
| 1.00' ${ }^{\prime \prime}$ long..... $\quad$. | 64,900 | 94,400 | 49.0 |
| . 50 \% | 65,320 | 97,800 | 43.4 |
| Semicircular groove, | 68,000 | 102,420 | 39.6 |
| . $4^{\prime \prime}$ r radius.......... | 75,000 | 116,380 | 31.6 |
| Semicircular groove, |  |  | 31.6 |
| V-shaped groove | 86,000, about 90,000 , about | $\begin{aligned} & 131,960 \\ & 117,000 \end{aligned}$ | Indererminate. |

Tests plate made by the author in 1879 of straight and grooved test-pieces of boiler-plate steel cut from the same gave the following results:

$$
\begin{aligned}
& 5 \text { straight pieces, } 56,605 \text { to } 59,012 \mathrm{lbs} \text {. T. S. A ver. } 57,566 \mathrm{lbs} \text {. } 64,341 \text { to } 67,400{ }_{6} \text { grooved }
\end{aligned}
$$

Excess of the short or grooved specimen, 21 per cent, or $12,114 \mathrm{lbs}$.
Measurement of Elongation.-In order to be able to compare records of elongation, it is necessary not only to have a uniform length of section between gauge-marks (say 8 inches), but to adopt a uniform nethod of measuring the elongation to compensate for the difference between the apparent elongation when the piece breaks near one of the gauge-marks, and when it breaks midway between them. The following method is recommended (Trans. A. S. M. E., vol. xi., p. 622):

Mark on the specimen divisions of $1 / 2$ inch each. After fracture measure from the point of fracture the length of 8 of the marked spaces on each fractured portion (or $7+$ on one side and $8+$ on the other if the fracture is not at one of the marks). The sum of these measurements, less 8 inches, is the elongation of 8 inches of the original length. If the fracture is so near one end of the specimen that $7+$ spaces are not left on the shorter portion, then take the measurement of as many spaces (with the fractional part next to the fracture) as are left, and for the spaces lacking add the measurement of as many corresponding spaces of the longer portion as are necessary to make the $7+$ spaces.

Shapes of Specimens for rensile rests.-The shapes shown in Fig. 75 were recommended by the author in 1882 when lie was connected


No. 1. Square or flat bar, as rolled.


No. 2. Round bar, as rolled.


No. 3. Standard shape for flats or squares. Fillets $1 / 2$ inch radius.

No. 4. Standard shape for rounds. Fillets $1 / 2 \mathrm{in}$. radius.

No. 5. Government shape for marine boiler-plates of iron. Not recommended for other tests, as results are generally in error.
Fig. 75.
with the Pittsburgh Testing Laboratory. They are now in most general use, the earlier forms, with 5 inches or less in length between shoulders, being almost entirely abandoned.

Precautions Required in making Tensile Tests.-The testing-machine itself should be tested, to determine whether its weighing apparatus is accurate, and whether it is so made and adjusted that in the test of a properly made specimen the line of strain of the testing-machine is absolutely in line with the axis of the specimen.
The specimen should be so shaped that it will not give an incorrect record of strength.
It should be of uniform ninimum section for not less than five inches of its length.

Regard must be had to the cima occupied in making tests of certain materials. Wronght iron and soft steel can be made to show a higher than their actual apparent strength by keeping them under strain for a great length of time.

In testing soft alloys, copper, tin, zinc, and the like, which flow under constant strain their highest apparent strength is obtained by testing them rapidly. In recording tests of such materials the length of time occupied in the test should be stated.

For very accurate measurements of elongation, corresponding to increments of load during the lests, the electric contact micrometer, described in Trans. A. S. M. E., vol. vi., p. 479, will be found convenient. When readings of elongatiou are then taken during the test, a strain diagram may be plotted from the reading, which is useful in comparing the qualities of different specimens. Such strain diagrams are made antomatically by the new Olsen testing-1nachine, described in Jour. Frank. Inst. 1891.
The coefficient of elasticity should be deduced from measurement observed between fixed increments of load per unit section, say between 2000 and 12,000 pounds per square inch or between 1000 and 11,000 pounds instead of between 0 and 10,000 pounds.

## COMLPRESSHVE STRRENGTM.

What is meant by the term "compressive strength " has not yet been settled by the authorities, and there exists more confusion in regard to this term than in regard to any other used by writers on strength of materials. The reason of this may be easily explained. The effect of a compressive stress upon a material varies with the nature of the material, and with the shape and size of the speciment tested. While the effect of a tensile stress is to produce rupture or separation of particles in the direction of the line of strain, the effect of a compressive stress on a piece of material may be either to canse it to fly into splinters, to separate into two or more wedge-shaped pieces and fly apart, to bulge, buckle, or bend, or to flatten out and utterly yesist rupture or separation of particles. A piece of specnlum metal under compressive stress will exhibit no change of appearance until rupture takes place, and then it will fiy to pieces as suddenly as if blown apart by grupowder. A piece of cast iron or of stone will generally split into wedgeslaped fragments. A piece of wrought iron will buckle or bend. A piece of woorl or zinc inay bulge, bnt its action will depend npon its shape and sice. A piece of lead will flatten out and resist compression till the last degree; that is, the inore it is compressed the greater becomes its resistance.

Air and other gaseous bodies are compressible to any extent as long as they retain the gaseous condition. Water not confined in a vessel is compressed by its own weight to the thickness of a mere film, while when confined in a vessel it is almost incompressible.
It is probable, although it has not been determined experimentally. that solid bodies when coufined are at least as incompressible as water. When they are not confinell, the effect of a compressive stress is not only to shorten them, but also to increase their lateral dimensions or bulge them. Lateral strains are therefore induced by compressive stresses.
The weight per square inch of original section required to produce any given amount or percentage of shortening of any material is not a constant quantity, but varies with both the length and the sectional area, with the shape of this sectional area, and with the reiation of the area to the length. The " compressive strength" of a material, if this term be supposed to mean the weight in pounds per square inch necessary to cause rupture, may vary with every size and slape of specimen experimented upon. Still more difficult would it be to state what is the "compressive strengtl "of a material which does not rupture at all, but flattens out. Suppose we are testing a cylinder of a soft metal like lead, two inches in length and one inch in dianeter, a certain weight will shorten it one per cent, another weight ten per. cent, another fifty per cent, but no weight that we can place npon it whll rupture it, for it will flaten ont to a thin sheet. What, then, is its compressive strength? Again, a similar cylinder of soft wrought iron wonld probably eompress a few per cent, bulging eveuly all around; it would then commence to bend, but at first the bend would be imperceptible to the eye and too small to be measured. Soon this bend would be great enough to be noticed, and finally the piece might be bent nearly double, or otherwise distorted. What is the "compressive strength " of this piece of iron? Is it the weight per square inch which compresses the piece one per cent or five per cent, that which causes the first bending (impossible to be discovered), or that which causes a perceptible bend?
As showing the confusion concerning the definitions of compressive strength, the following statements from different authorities on the strength of wrought iron are of interest.
Wood's Resistance of Materials states, "comparatively few experiments have been made to determine how much wrought iron will sustain at the point of crushing. Hodgkinson gives 65,000 , Rondulet 70,800, Weisbach $7^{\prime} 2,000$

Rankine 30,000 to 40,000 . It is generally assumed that wrought iron will resist about two thirds as much crusling as to teusion, but the experiments fail to give a very definite ratio."

Mr. Whipple, in his treatise on bridge-building, states that a bar of good wrouglit iron will sustain a tensile strain of about 60,000 pounds per square inch, and a compressive strain, in pieces of a length not exceeding twice the least diameter, of about 90,000 pounds.
The following values, said to be deduced from the experiments of Major Wade, Hodgkinson, and Capt. Meigs, are giveu by Haswell:


Stoney states that the strength of short pillars of any given material, all having the same diameter, does not vary much, provided the lengtl of the piece is not less than one and does not exceed four or five dianeters, and that the weight which will just crush a short prism whose base equals one square inch, and whose height is not less than 1 to $11 / 2$ aud does not exceed 4 or 5 diameters, is called the crushing strength of the material. It would be well if experimenters would all agree upon some such definition of the term "crushing strength," and insist that all experiments which are made for the purpose of testing the relative values of different materials in compression be made on specimens of exactly the same shape and size. An arbitrary size and shape should be assumed and agreed upon for this puro pose. The size mentioned by Stoney is definite as regards area of section, viz., one square inch, but is indefinite as regards length, viz., from one to five diameters. In some metals a specimen five diameters long would bend, and give a much lower apparent strength than a specimen having a length of one diameter. The words "will just crush " are also indefinite for ductile materials, in which the resistance increases without limit if the piece tested does not bend. In snch cases the weight, which causes a certain percentage of compression, as five, ten, or fifty per cent, should be assumed as the crusling strength.

For future experiments on crushing strength three things are desirable: First, an arbitrary staudard sliape and size of test specimen for comparison of all materials. Secondly, a standard limit of compression for ductile materials, which shall be considered equivalent to fracture in brittle materials. Thirdly, an accurate knowledge of the relation of the crusling strength of a specimen of standard shape and size to the crushing strength of specimens of all other shapes and sizes. The latter can only be secured by a very extensive and accurate series of experiments upon all kinds of materials, and on specimens of a great number of different shapes and sizes.

The author proposes, as a standard shape and size, for a compressive test specimen for all metals, a cylinder one inch in length, and one lialf square inch in sectional area, or 0.598 inch diameter; and for the limit of compression equivalent to fracture, ten per cent of the original length. The term "compressive strength," or "compressive strength of staudard specimen," would then mean the weight per square inch required to fracture by compressive stress a cylinder one inch long and 0.598 inch diameter, or to reduce its length to 0.9 inch if fracture does not take place before that reductiou in length is reached. If such a standard, or any standard size whatever, had been used by the earlier authorities on the strength of materials, we never would have had such discrepancies in their statements in regard to the compressive strength of wrought iron as those given above.
The reasons why this particularsize is recommended are: that the sectional area, one-lialf square inch, is as large as can be taken in the ordinary test-ing-machines of 100,000 pounds capacity, to include all the ordinary metals of construction, cast and wrought iron, and the softer steels; and that the length, one inch, is convenient for calculation of percentage of compression. If the length were made two inches, many materials would bend in testing. and give incorrect results. Even in cast iron Hodgkimson fomid as the mean of several experiments on various grades, tested in specimens $3 / 4$ inch in height, a compressive strength per square inch of 94,730 pounds, while the mean of the same number of specimens of the same irons tested in pieces $11 / 2$ inches in height was only 88,500 pounds. The best size and shape of standard specimen should, however, be settled upon only after consultation and agreement among several authorities.

The Committee on Standard Tests or the American Society of Mechanical Engineers say (vol. xi., p. 624):
"Although compression tests have heretofore been made on diminutive sample pieces, it is highly desirable that tests be also made on long pieces from 10 to 20 diameters in length, corresponding more nearly with actual practice, in order that elastic strain and cliange of shape may be determined by using proper measuring apparatus.

The elastic limit, modulus or coefficient of elasticity, maximun and ultimate resistances, should be determined, as well as the increase of section at various points, viz., at bearing surfaces and at crippling point.

The use of long compression-test pieces is reconmended, because the investigation of short cubes or cylinders has led to no direct application of the constants obtained by their use in computation of actual structures, which have always been and are now designed according to empirical formulæ obtained from a few tests of long columns."

## COLUMNS, PILLARS, OR STRUTS.

## Hodgkinson's Formula for Columms.

$P=$ crushing weight in pounds; $d=$ exterior diameter in inches; $d_{1}=\mathrm{in}$. terior diameter in inches; $L=$ length in feet.

Both ends rounded, the
Kind of Column. length of the column exceeding 15 times its diameter.
$\left.\begin{array}{c}\text { Solid cylindrical col- } \\ \text { umns of cast iron..... }\end{array}\right\}$

$$
P=33,380 \frac{d^{3 \cdot 76}}{L^{1 \cdot 7}}
$$

$$
P=29,120 \frac{d^{3.76}-d_{1}{ }^{3.76}}{L^{1 \cdot 7}}
$$

umns of wrought iron. $\}$

$$
P=95,850 \frac{d^{3 \cdot 78}}{L^{2}}
$$

Solid square pillar of $\}$ Dantzic oak (dry)....
Solid square pillar of red deal (dry)

Both ends flat, the length of the column exceeding 30 times its diameter.

$$
\begin{aligned}
& P=98,920 \frac{d^{3 \cdot 55}}{L^{1 \cdot 7}} \\
& P=99,320 \frac{d^{\cdot \cdot 55}-d^{2 \cdot 55}}{L^{1 \cdot 7}} \\
& P=299,600 \frac{d^{3 \cdot 55}}{L^{2}} \\
& P=24,540 \frac{d^{4}}{L^{2}} \\
& P=17,510 \frac{d^{4}}{L^{2}}
\end{aligned}
$$

The above formulæ apply only in cases in which the length is so great that the column breaks by bending and not by simple crushing. If the column be shorter than that given in the table, and more than four or flve times its diameter, the strength is found by the following fornula :

$$
W=\frac{P C K}{P+3 / 4 C K},
$$

in which $P=$ the value given by the preceding formulæ, $K=$ the transverse section of the column in square inches, $C=$ the ultimate compressive resistance of the material, and $W=$ the crushing strength of the column.

Hodgkinsou's experiments were nade upon comparatively short columns, the greatest length of cast-iron columns being $60 \frac{1}{2}$ inches, of wrought irou 903 inches.
The following are some of his conclusions:

1. In all long pillars of the same dimensions, when the force is applied in the direction of the axis, the strength of one which has flat ends is about three times as great as one with roun ed ends.
2. The strength of a pillar with ne nd rounded and the other flat is an arithmetical mean between the two given in the preceding case of the same dimensions.
3. The strength of a pillar having both ends firmly fixed is the same as one of half the length with both ends romed.
4. The strength of a pillar is not increased more than one seventh by enlarging it at the middle.

Gordon's formulse deduced from Hodgkinson's experiments are more generally used than Hodgkinson's own. They are:

Columns with both ends fixed or flat, $P=\frac{f S}{1+a \frac{l^{2}}{r^{2}}}$;
Columns with one end flat, the other end round, $P=\frac{f S}{1+1.8 a \frac{l^{2}}{r^{2}}}$;
Columns with both ends round, or hinged, $P=\frac{f S}{1+4 a \frac{l^{2}}{r^{2}}}$;
$S=$ area of cross-section in inches;
$P=$ ultimate resistance of column, in pounds;
$f=$ crnshing strength of the material in lbs. per square inch;
$r=$ least radius of gyration, in inches, $r^{2}=\frac{\text { Moment of inertia }}{\text { area of section }}$;
$l=$ length of column in inches;
$a=$ a coefficient depending upon the material;
$f$ and $a$ are usually taken as constants; they are really empirical variables, dependent upon the dimensions and character of the column as well as upon the material. (Burr.)

For solid wrought-iron columns, values commonly taken are: $f=36,000$ to 40,000; $\alpha=1 / 36,000$ to $1 / 40,000$.

For solid cast-iron columns, $f=80,000, a=1 / 6400$.
For hollow cast-iron columns, fixed ends, $p=\frac{80,000}{1+\frac{1}{800} \frac{l^{2}}{d^{2}}}, l=$ length and $d=$ diameter in the same unit, and $p=$ strength in lbs. per square inch.

The coefficient of $l^{2} / d^{2}$ is given various values, as $1 / 400,1 / 500,1 / 600$, and $1 / 800$, by different writers. The use of Gordon's formula, with any coefficients derived from Hodgkinson's experiments, for cast-iron columns is to be deprecated. See Strength of Cast-iron Columns, pp. 250, 251.

Sir Benjamin Baker gives,
For mild steel, $\quad f=67,000 \mathrm{lbs} ., \quad a=1 / 22,400$.
For strong steel, $f=114,000 \mathrm{lbs}$., $a=1 / 14,400$
Prof. Burr considers these only loose approximations for the ultimate resistances. See his formulæ on p. 259.

For dry timber Rankine gives $f=7200 \mathrm{lbs}$., $a=1 / 3000$.

## MORIENT OF TNERTEA ANDIRADEUS OF GYRATION.

The moment of inertia of a section is the sum of the products of each elementary area of the section into the square of its distance from an assumed axis of rotation, as the neutral axis.

The radius of gyration of the section equals tine square root of the quotient of the moment of inertia divided by the area of the section. If $\mathbb{R}=$ radius of gyration, $I=$ moment of inertia and $A=$ area,

$$
R=\sqrt{\frac{I}{A}} . \quad \frac{I}{A}=R^{2}
$$

The moments of inertia of various sections are as follows:
$d=$ diameter, or outside diameter; $d_{1}=$ inside diameter; $b=$ breadth; $h=$ depth $; b_{1}, h_{1}$, inside breadth and diameter;
Solid rectangle $I=1 / 12 b h^{3}$;
Solid square $I=1 / 12 b^{4}$;
Solid cylinder $I=1 / 64 \pi d^{4}$;
Hollow rectangle $I=1 / 12\left(b h^{3}-b_{1} h_{1}{ }^{3}\right)$;
, Hollow cylmder $I=1 / 64 \pi\left(a-d_{1}^{4}\right)$.

[^6]moment of inertia divided by the distance from the neutral axis to the fibres farthest removed from that axis; or

Section modulus $\quad=\frac{\text { Moment of inertia }}{\text { Distance of extreme fibre from axis. }} \quad Z=\frac{I}{y}$.
Moment of resistance $=$ section modulus $\times$ unit stress on extreme fibre.
Troment of 耳nertia of Compound Shapes. (Pencord Iron Works.)-The monent of inertia of any section about any axis is equal to the $I$ about a parallel axis passing through its centre of gravity + (the area of the section $\times$ the square of the distance between the axes).
By this rule, the moments of inertia or radii of gyration of any single sections being known, corresponding values may be obtained for any combination of these sections.
Radius of Gyration of Compound Shapes,--In the case of a pair of any shape without a web the value of $R$ can always be found without considering the monent of inertia.
The radius of gyration for any section around an axis parallel to another axis passing through its centre of gravity is found as follows:
Let $r=$ radius of gyration around axis through centre of gravity; $R=$ radius of gyration alound another axis parallel to above; $d=$ distance between axes: $R=\sqrt{d^{2}+r^{2}}$.

When $r$ is small, $l$ may be taken as equal to $l l$ without material error.
Graphical Wrethod for Tinding Radits of Gyration.-Benj. F. La Kue, Eug. News, Feb, \&, 1893, gives a short graphical method for finding the radins of gyration of hollow, cylindrical, and rectanguiar columis, as follows:
For cylindrical columns:
Lav off to a scale of 4 (or 40) a right-angled triangle, in which the base equals the outer diameter, and the altitude equals the inner diametar of the column, or vice verst. The hypothenuse, measured to a scale of unity (or 10), will be the radius of gyration sought.

This depends upou the formula

$$
G=\sqrt{\frac{\text { Mom. nf Inertia }}{\text { Area }}}=\frac{\sqrt{D^{2}+d^{2}}}{4},
$$

in which $A=$ area and $D=$ diameter of outer circle, $a=$ area and $d=$ diameter of inner circle, and $G=$ radius of gyration. $\sqrt{D^{2}+d^{2}}$ is the expression for the hypothenuse of a right-angled triangle, in which $D$ and $r$ are the base and altitude.

The sectional area of a hollow round column is . $8854\left(D^{2}-d^{2}\right)$. By constructing a right-angled triangle in which $D$ equals the hypothenuse and $i$ equals the altitude, the base will equal $\sqrt{\overline{D^{2}}-d^{2}}$. Calling the value of this expression for the base $B$, the area will equal . $i 854 B^{2}$.

Value of $G$ for square columns:
Lay off as before, but using a scale of 10, a right-augled triangle of which. the base equals $D$ or the side of the outer square, and the altitude equals $d$, the side of the inner square. With a scale of 3 measure the hypothenuse, which will be, approximately, the radius of gyration.

This process for square columns gives an excess of slightly more than $4 \%$. By deducting $4 \%$ from the result, a close approsimation will be obtained.

A very close result is also obtained by measmring the hypothenuse with the same scale by which the base and allitude were laid off, and multiplying by the decimal 0.29 ; more exactly, the decimal is $0.2886 \%$.
The formula is

$$
G^{*}=\sqrt{\frac{\text { Mom. of inertia }}{\text { Area }}}=\frac{1}{\sqrt{12}} \sqrt{D^{2}+d^{2}},=0.28867 \sqrt{D^{2}+d^{2}} .
$$

This may also be applied to any rectangular column by using the lesser diameters of an unsupported column, and the greater diameters if the column is supported in the direction of its least dimensions.

## ELETHENTS OF USUAE SECRIONS.

Moments refer to hormontal axis throngl centre of gravity. Thls table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked $*$ are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. $A=$ area of section; $b=$ breadth $; h=\operatorname{depth} ; D=$ diameter.

| Shape | of Section. | Moment of Inertia. | Section Modulus. | Square of Least Radius of Gyration. | Least Radius of Gyration. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Solid Rectangle. | $\frac{b h^{3}}{12}$ | $\frac{b h^{2}}{6}$ | $\frac{(L e a s t ~ s i d e) ~}{\text { 2* }}$ * | $\frac{\text { Least side * }}{3.46}$ |
| 胥 | Hollow Rectangle. | $\frac{b h^{3}-b_{1} h_{1}{ }^{3}}{12}$ | $\frac{b h^{9}-b_{1} h_{1}{ }^{3}}{6 h}$ | $\frac{h^{2}+h_{1}{ }^{2}}{12}$ | $\frac{h+h^{1}}{4.89}$ |
| $\left(-0^{0}-\right)$ | Solid Circle. | $\frac{A D^{2}}{16}$ * | $\frac{A D}{}^{*}$ | $\frac{D^{2}}{}{ }^{*} 6$ | $\frac{D}{4}^{*}$ |
|  | Hollow Circle. $A$, area of large section; $a$, area of small section. | $\frac{A D^{2}-a d^{2}}{16}$ | $\frac{A D^{2}-a d^{2}}{8 D}$ | $\frac{D^{2}+d^{2} *}{16}$ | $\frac{D+2}{5.64}$ |
|  | Solid Triangle. | $\frac{b h^{3}}{36}$ | $\frac{b h^{2}}{24}$ | The least of of the two: $\frac{h^{2}}{18}$ or $\frac{b^{2}}{24}$ | The least of the two: $\frac{h}{4.24} \text { or } \frac{b}{4.2}$ |
|  | Even Angle. | $\frac{A h^{2}}{10.2}$ | $\frac{A h}{7.2}$ | $\frac{b^{2}}{25}$ | $\frac{b}{5}$ |
|  | Uneven Angle. | $\frac{A h^{2}}{9.5}$ | $\frac{A h}{6.5}$ | $\frac{(h b)^{2}}{13\left(h^{2}+b^{2}\right)}$ | $\frac{h b}{2 . G(h+b)}$ |
| $\Omega_{-}^{-1}$ | Even Cross. | $\frac{A h^{2}}{19}$ | $\frac{A h}{9.5}$ | $\frac{h^{2}}{22.5}$ | $\frac{h}{4.74}$ |
|  | Even Tee. | $\frac{A h^{2}}{11.1}$ | $\frac{A h}{8}$ | $\frac{b^{2}}{22.5}$ | $\frac{b}{4.64}$ |
| an 1 | I Beam. | $\frac{A h^{2}}{6.66}$ | $\frac{A h}{3.2}$ | $\frac{b^{2}}{21}$ | $\frac{b}{4.58}$ |
| $\sqrt[2]{1}$ | Channel. | $\frac{A h^{2}}{7.34}$ | $\frac{A h}{3.67}$ | $\frac{b^{2}}{12.5}$ | $\frac{b}{3.54}$ |
| $a_{6}^{1}$ | Deck Beam. | $\frac{A h^{2}}{6.9}$ | $\frac{A h}{4}$ | $\frac{b^{2}}{36.5}$ | $\frac{b}{6}$ |

Distance of base from centre of gravity, solid triangle, $\frac{h}{3}$; even angle, $\frac{h}{3.3}$; uneven angle, $\frac{h}{3.5}$; even tee, $\frac{h}{3.3}$; deck beam, $\frac{h}{2.3}$; all other shapes given in the table, $\frac{h}{2}$ or $\frac{D}{2}$.

## The Strength of Cast-iron Columns.

Hodgkinson's experiments (first published in Phil. Trans. Royal Socy ${ }_{\text {o }}$ 1840, and condensed in Tredgold on Cast Iron, 4th ed., 1846), and Gordon's formula, based upon them, are still used (1898) in designing cast-iron columis. That they are entirely inadequate as a basis of a practical formula suitable to the present metlods of casting columns will be evident from what follows.
Hodgkinson's experiments were made on nine "long" pillars, about $71 / 2$ ft. long, whose external riameters ranged from 1.14 to 2.23 in ., and average thickness from 0.29 to 0.35 in . the thickness of each column also varying,
 from 1.08 to 1.26 in .. all of them less than $1 / 4 \mathrm{jn}$. thick. The iron used was Low Moor, Yorkshire, No. 3, said to be a good iron, not very hard, earlier experiments on which had given a tensile strength of 14,535 and a crushing strength of 109,801 lbs. per sq. in. The results of the experiments on the "long", pillars were reduced to the equivalent breaking weight of a solid pillar 1 in . diameter and of the same length, $71 / 2 \mathrm{ft}$., which ranged from 2969 to $358 \% \mathrm{lbs}$. per $8 q$. in., a range of over 12 per cent, although the pillars were made from the same iron and of nearly uniform dimensions. From the 13 experiments on "short" pillars a formula was derived, and from it were obtained the "calculated" breaking weights, the actual brealking weights ranging from about 8 per cent above to about 8 per cent below the calculated weights, a total range of about 16 per cent. Modern cast-iron columns, such as are used in the construction of buildings, are very different in size, propnrtions, and quality of iron from the slender "long" pillars used in Hodgkinson's experiments. There is usually no check. by actual tests or by disinterested iuspection, upon the quality of the material. The tensile, contpressive, and iransverse strength of cast iron varies through a great range (the tensile streugth ranging from less than 10,000 to over $40,000 \mathrm{lbs}$. per sq. in.), with variations in the chemical composition of the iron, according to laws which are as yet very imperfectly understood, and with variations in the method of melting and of casting. There is also a wide variation in the strength of iron of the same melt when cast into bars of different thicknesses. It is therefore impossible to predict even approximately, from the datagiven by Hodgkinson of the strength of columns of Low Moor iron in pillars $71 / 2 \mathrm{ft}$. Jong, 2 in . diam., and $1 / 3 \mathrm{in}$. thick, what will be the strength of a column made of American cast irou, of a quality not stated, in a chlume 16 ft . long, 12 or 15 in . diam., and from $3 / 4 \mathrm{in}$. to $11 / 2 \mathrm{in}$. thick.
Another difficulty in obtaining a practical formula for the strength of castiron columns is due to the uncertainty of the quality of the casting, and the danger of hidden defects, such as intermal stresses due to unequal cooling, cinder or dirt, blow-holes, "cold-shuts," and cracks on the inner surfare, which cannot be discovered by external inspection. Variation in thickness, due to rising of the core during casting, is also a common defect.
In addition to the above theoretical or cepriori objections to the use of Gordon's formula, based on Hodgkinson's experinents, for cast-iron colmmens, we have the data of recent experiments on full-sized columns. nade by the Building Department of New York City (Eng'g News, Jan. 13 and 20,1893 ). Ten columis in all were tested, six $15-\mathrm{inch}, 190 \frac{1}{4}$ iuches long, two 8 -inch, 160 inches long, and two 6 -inch, 120 inches long. The tests were made on the large hydraulic machine of the Ploenix Bridge Co., of 2,000,000 pounds capacity, which was calibrated for frictional error by the repeated testing within the elastic limit of a large Phoenix column, and the comparison of these tests with others made on the government machine at the Watertown Arsenal. The average frictional error was calculated to be 15.4 per cent, but Engineering Neus, revising the data, makes it 1\%.1 per cent, with a variation of 3 per cent either way from the average with different loads. The results of the tests of the volumes are given orr the opposite page.

## Column No. 6 was not broken at the highest load of the testing inachine.

Columns Nos. 3 and 4 were taken from the Ireland Building, which collapsed on August 8, 1895: the other four 15 -inch columns were made from drawings prepared by the Building Department, as nearly as possible duplicates of Nos. 3 and 4. Nos. 1 and 2 were made by foundry in New York with no knowledge of their ultimate use. Nos. 5 and 6 were made by A foundry in Brooklyn with the knowledge that they were to be tested. Nos. 7 to 10 were made from drawings fixnuished by the Department.

TESTS OF CAST-IRON COLUMNS.

| Number. | Dian. Inches. | Thickness. |  |  | Breaking Load. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Max. | Min. | Average. | Pounds. | Pounds per sq. iu. |
| 1 | 15 | $15 / 16$ | 1 | 1 | 1,356,000 | 30,830 |
| 2 | 15 | 15/16 | 1 | 11/8 | 1,330,000 | 27,700 |
| 3 | 15 | 11/4 | 1 | 11/8 | 1,198,000 | 24,900 |
| 4 | 151/8 | $17 / 32$ | 1 | 11/8 | 1,246,000 | 25,200 |
| 5 | 15 | $111 / 16$ | 1 | $111 / 64$ | $1,638,000$ | 32,100 |
| 6 | ${ }^{15}$ |  | 11/8 | $13 / 16$ | 2,08\%, $0000+$ | $40.400+$ |
| 8 | ${ }^{3} / 4.4$ to $81 / 4$ | $11 / 4$ $13 / 32$ | 518 | $13 / 61$ | 651,000 | 31,900 |
| 8 | $61 / 16$ | $13 / 32$ $15 / 32$ | $11 / 2$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 9\end{aligned} 1 / 64$ | 612,800 | 26,800 |
| 10 | $63 / 32$ | $11 / 8$ | 11/8/16 | $13 / 64$ <br> 1 | 400.000 455,200 | 22,700 26,300 |

Applying Gordon's formula, as used by the Building Department,
$\dot{S}=\frac{80000 a}{1+\frac{1}{400} \frac{l^{2}}{d^{2}}}$, to these columns gives for the brealzing strength per square inch of the 15 -inch columns 57,143 pounds, for the 8 -inch columns 40,000 pounds, and for the 6 -inch columns 40,000 . The strength of columns Nos. 3 and 4 as calculated is 128 per cent more than their actual strength; their actual strength is less than 44 per cent of their calculated strength; and the factor of safety, supposed to be 5 in the Building Law, is only 2.0 for central loading, no account being taken of the likelilsood of eccentric loading.

Prof. Lanza, in his Applied Mechanics, p. Bid, quotes the records of 14 tests of cast-iron mill columns. made on the Watertown testiug-machine in 1887-88, the breaking strength per square inch ranging from 25,100 to 63,310 pounds, and showing no relation between the breaking strength per square inch and the climensions of the columns. Only 3 of the 14 columns had a strength exceeding 33,500 pounds per square inch. The average strength of the other 11 was 29,600 pounds per square inch. Prof. Lanza says that it is evident that in the case of such columns we cannot rely upon a crushing strength of greater than 25,000 or 30,000 pounds per square inch of area of section.

He recommends a factor of safety of 5 or 6 with these figures for crushing strength, or 5000 pounds per square inch of area of section as the highest allowable safe load, and in addition makes the conditions that the length of the column shall not be greatly in excess of 20 times the diameter, that the thickness of the metal shall be such as to insure a good strong casting, and that the sectional area should be increased if necersary to insure that the extreme fibre ctress due to probable eccentric loading shall not be greater than 5000 pounds per square inch.

Prof. W. H. Burr (Eng'! Nenos, June 30, 1898) gives a formula derived from plotting the results of the Watertown and Phoenixville tests, above described, which represents the average strength of the columns in pounds per square inch. It is $p=30,500-160 l / d$. It is to be noted that this is an average value, and that the actual strength of many of the columns was much lower. Prof. Burr says: "If cast-iron columns are designed with anything like a reasonable and real margin of safety, the amount of metal required dissipates any supposed economy over columns of mild steel."

Transverse Strength of Cast-iron Water-pipe. (Technology Quurterly, Sept. 189\%.)-Tests of 31 cast-iron pipes by transverse stress gave a maximum outside fibre stress, calculated from maximum load, assuming each half of pipe as a beam fixed at the ends, ranging from 12,800 lbs. to $26,300 \mathrm{lbs}$. per sq. in.

Bars 2 in. Wide cut from the pipes gave moduli of rupture ranging from 28,400 to $51,400 \mathrm{lbs}$. per sq. in. Fpur of the tests, bars and pipes:

| Moduli of rupture of bar........... 88,400 | 34,400 | 40,000 | 51,400 |  |
| :--- | :--- | :--- | :--- | :--- |
| Fibre stress of pipe... $\ldots \ldots \ldots \ldots \ldots$ | 18,300 | 12,800 | 14,500 | 26,300 |

These figures show a great variation in the strength of both bars and pipes, and also that the strength of the bar does not bear any definite relation to the strength of the pipe.

## Safe Load, in ', Columns, with Turned Capitals and Bases.

Londs being not eccentric, and length of column not exceeding 20 times the diameter. Based on ultimate crushing strength of $25,000 \mathrm{lbs}$. per sq. in. and a factor of safety of 5 . (For eccentric loads see page 254.)

| Thick- | Diameter, inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 18 |
| 5/8 | $\left\lvert\, \begin{aligned} & 26.4 \\ & 30.9 \end{aligned}\right.$ |  | 42.7 | 48.6 | 54.5 |  |  |  |  |  |  |  |
| $7 / 8$ | 35.2 | 42.1 | 48.3 | 55.8 | 62.7 | 69.6 | 76.5 |  |  |  |  |  |
| 11 | 39.2 | 47.1 | 55.0 | 6?. 8 | ${ }^{70.7}$ | 78.5 | 86.4 | 94.2 | 102.1 | 110.0 |  |  |
| 11/8 |  |  | 60.8 |  |  |  |  |  | 113.8 | 122.6 | 131.4 |  |
| 114 |  |  |  |  | 85.9 | 95.7 | 105.5 | 115.3 | 125.2 |  | 144.8 | 164.4 |
| $18 / 8$ |  |  |  |  |  | 103.9 | 114. $\sim$ | 125.5 | 136.3 | 147.1 | 157.9 | 179.5 |
| 119 |  |  |  |  |  |  | 123.7 | 135.5 | 147.3 | 159.0 | 170.8 | 194.4 |
| ${ }_{2}^{13 / 4}$ |  |  |  |  |  |  |  |  | 168.4 | 182.1 | 195.8 | 223.3 |
|  |  |  |  |  |  |  |  |  |  | 204.2 | 219.9 | 251.3 |

For lengths greater than 20 diameters the allowable loads should be decreased. How much they shouk be decreased is uncertain, since sufficient data of experiments on full-sized very long columns, from which a formula for the strength of such columns might be derived, are as yet lacking. There is, however, rarely, if ever, any need of proportioning cast. iron columns with a length exceeding 20 diameters.

## Safe Loads in Tons of 2000 Pounds for Cast-iron Columng.

(By the Building Laws of New York City, Boston, and Chicago, 1897.)

$$
\begin{aligned}
& \text { Square columns...... }\left\{\begin{array}{lll}
\text { New York. } & \text { Boston. } & \text { Chicago. } \\
\frac{8 a}{1+\frac{l^{2}}{500 d^{2}}} & \frac{5 a}{1+\frac{l^{2}}{106 \pi l^{2}}} & \frac{5 a}{1+\frac{l^{2}}{800 d^{2}}} \\
\frac{8 a}{1+\frac{l^{2}}{400 d^{2}}} & \frac{5 a}{1+\frac{l^{2}}{800 d^{2}}} & \frac{5 a}{1+\frac{l^{2}}{600 d^{2}}}
\end{array}\right.
\end{aligned}
$$

$a=$ sectional area in square inches; $l=$ unsupported length of column is inches; $d=$ side of square columm or thickness of round column in inches.

Tho safe load of a 15 -inch round columu $1 \frac{1}{2}$ inches diameter, 16 feet long. according to the laws of these cities would be, in New York, 361 tons; in Boston, 264 tons; in Chicago, 250 tons.
The allowable stress per square inch of area of such a column would be, in New York, 11,350 pounds; in Boston, 8300 pounds; in Chicago, 7850 pounds. A safe stress of 5000 pounds per square inch would give for the safe load on the column 159 tons.
Strength of Brackets orf Cast-iron Columns.-The columns tested by the New York Building Department referred to above had brackets cast upon them, each bracket consisting of a rectangular shelf supported by one or two triangular ribs. These were tested after the columms had been broken in the principal tests. In 17 out of 22 cases the brackets broke by tearing a hole in the body of the column, instead of by shearing or tiansverse breaking of the bracket itself. The results were surprisingly low and very irregular. Reducing them to strength per square inch of the total vertical section through the shelf and rib or ribs, they ranged from 2450 to 5600 lbs ., averaging 4200 lbs , for a load concentrated at the end of the shelf, and 4100 to $10,900 \mathrm{lbs}$., averaging 8000 lbs ., for a distributed load. (Eng'g News, Jan. 20, 1898.)

Safe Loads, in Toms, for Round Cast Colimmes.
(In accordance with the Building Laws of Chicago.*)


From tables published by The Expauded Metal Co., Chicago, 1897.)

## ECCENTRIC LOADING OF COLUMNS.

In a given rectangular cross-section, such as a masonry joint under pressure, the stress will be distributed uniformly over: the section only when the resultant passes through the centre of the section; any deviation from such a central position will bring a maximum unit pressure to one edge and a minimum to the other; when the distance of the resultant from one edge is one third of the entire width of the joint, the pressure at the nearer edge is twice the mean pressure, while that at the farther edge is zero, and that when the resultant approaches still nearer to the edge the pressure at the farther edge becomes less than zero; in fact, becomes a tension, if the material (mortar, etc., there is capable of resisting tension. Or, if, as usual in masonry joints, the material is practically incapable of resisting tension, the pressure at the nearer edge, when the resultant approaches it nearer than one third of the width, increases very rapidly and dangerously, becoming theoretically infinite when the resultant reaches the edge.
With a given position of the resultant relatively to one edge of the joint or section, a similar redistribution of the pressures throughout the section may be brought about by simply adding to or diminisling the width of the ction.
Let $P=$ the total pressure on any section of a bar of uniform thickness.
$w=$ the width of that section $=$ area of the section, when thickness $=1$.
$p=P / w=$ the mean unit pressure on the section.
$M=$ the maximum unit pressure on the section.
$m=$ the minimum unit pressure on the section.
$d=$ the eccentricity of the resultant $=$ its distance from the centre of
de section. the section.

$$
\text { Then } M=p\left(1+\frac{6 d}{w}\right) \text { and } m=p\left(1-\frac{6 d}{w}\right) \text {. }
$$

When $d=\frac{1}{6} w$ then $M=2 p$ and $m=0$.
When $d$ is greater than $1 / 6 w$, the resultant in that case being less than one third of the width from one edge, $p$ becomes negative. (J. C. Trautwine, Jr., Engineering News, Nov. 23, i893.)
Eccentric Loading, of Castiron Columns.- Prof. Lanza writes the author as follows: The table on page 25" applies when the resultant of the loads upon the column acts along its central axis, $i . e$., passes through the centre of gravity of every section. In buildings and other construc. tions, however, cases frequently occur when the resultant load does not pass throigh the centre of gravity of the section; nnd then the pressure is not evenly distributed over the section, but is greatest on the side where the resultant acts. (Examples occur when the loads on the floors are not uniformly distributed.) In these cases the outside fibre stresses of the column should be computed as follows, viz.:
Let $P=$ total pressure on the section;
$d==\begin{gathered}\text { eccentricity of resultant } \\ \text { of the section }\end{gathered}$ its distance from the centre of gravity
$A=$ area of the section, and $l$ its moment of inertia about an axis in its plane, passing through its centre of gravity, and perpendicular to $d$ (see page 26f);
$c_{1}=$ distance of nost compressed and $c_{2}=$ that of least compressed fibre from above stated axis;
$\delta_{1}=$ maximum and $s_{2}=$ minimum pressure per unit of area. Then

$$
s_{1}=\frac{P}{A}+\frac{(P d) c_{1}}{I} \quad \text { and } \quad s_{2}=\frac{P}{A}-\frac{(P d) c_{2}}{I}
$$

Having assumed a certain trial section for the column to be designed, $s_{1}$ should be computed, and, if it exceed the proper safe value, a different section should be used for which $s_{1}$ does not exceed this value.
The proper safe value, in the case of cast-iron columns whose ratio of length to dianeter does not greatly exceed 20 , is 5000 pounds per square inch when the eccentricity used in the computation of $s_{1}$ is liable to occur frequently in the ordinary uses of the structure; but when it is one which can ouly occur in rare cases the value 8000 pounds per square inch may be used. A loug cap on a column is more conducive to the production of eccentricity of loading than a short one, hence a long cap is a source of weakness
in a column.

ULTELATE STRENGTHE OF WROUGHT-IRON COLUIINS.
(Pottsville Iron and Steel Co.)
Computed by Gordon's formula, $p=\frac{f}{1+C\left(\frac{l}{r}\right)^{2}}$.
$p=$ ultimate strength in lbs. per square inch;
$l=$ length of column in inches;
$r=$ least radius of gyration in inches;
$f=40,000$;
$C=1 / 40,000$ for square end-bearings; $1 / 30,000$ for one pin and one square bearing; $1 / 20,000$ for two pin-bearings.
For safe working load on these colmmus use a factor of 4 when used in buildings, or when subjected to dead load only; but when used in bridges the factor should be 5 .

WROUGHT-IRON COLUMNS.

| $\frac{l}{r}$ | Ultimate Strength in lbs. per square inch. |  |  | $\frac{l}{r}$ | Safe Strength in lbs. per square inch-Factor of 5 . |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { Square }}{\text { Ends. }}$ | Pin and Square End. | Pin Ends. |  | Square Ends. | Pin and Square End. | Pin Ends. |
| 10 | 39944 | 39866 | 39800 | 10 | 7989 | 7973 | 7960 |
| 15 | 39776 | 39702 | 39554 | 15 | 7955 | \%940 | 7911 |
| 20 | 39604 | 39472 | 39214 | 20 | 7921 | 7894 | 7813 |
| 25 | 39384 | 39182 | 38788 | 25 | 787 | 7836 | T 758 |
| 30 | 39118 | 38834 | 38\%\%8 | 30 | 7821 | 7767 | ${ }^{7} 656$ |
| 35 | 38810 | 38430 | 37690 | 35 | 7762 | 7686 | 7538 |
| 40 | 38460 | 37974 | 37036 | 40 | 7692 | 7595 | 7407 |
| 45 | 38072 | 37470 | 36332 | 45 | 7614 | 7494 | T264 |
| 50 | 37646 | 36928 | 35525 | 50 | 7529 | 7386 | $\bigcirc 105$ |
| 55 | ${ }_{3669} 7186$ | 36336 | 34744 | 55 | 7437 | 7267 | 6949 |
| 60 | 36697 | 35714 | 33898 | 60 | 7339 | 7143 | $6{ }_{6} 80$ |
| 65 | 36182 | $344 \%$ | 33024 | 65 | 7236 | 6896 | 6605 |
| 70 | 35634 | 34384 | 32128 | 70 | 7127 | $68{ }^{7}$ | 6426 |
| 75 | 35076 | 33682 | 31218 | 75 | 7015 | 6736 | 6244 |
| 80 | 34482 | 32966 | 30288 | 80 | 6896 | 6593 | 6058 |
| 85 | 338883 | 32236 | 29384 | 85 | 6777 | 6447 | 58.7 |
| 90 | 33264 | 31496 | 28470 | 90 | 6653 | 6299 | 5694 |
| 95 | 32636 | 30750 | 27562 | 95 | 6527 | 6150 | 5512 |
| 100 | 32000 | 30000 | 26666 | 100 | 6400 | 6000 | 5333 |
| 105 | 31357 | 29250 | $25 \% 86$ | 105 | 6271 | 5850 | 5157 |

Maximum Permissible Stresses in columns used in buildings. [Building Ordiuances of City of Chicago, 1893.)
For riveted or other forms of wrought-iron columns:

$$
S=\frac{12000 c}{1+\frac{l^{2}}{36000 r^{2}}} . \quad \begin{aligned}
& l=\text { length of column in inches; } \\
& r=\text { least radius of gyration in inches } \\
& a=\text { ar column in square inches }
\end{aligned}
$$

For riveted or other steel columns, if more than $60 r$ in length:
$S=1 r, 000-\frac{60 l}{r}$.
If less than $60 r$ in length: $\quad S=13,500 a$.
For wooden posts:

$$
\begin{aligned}
& \begin{array}{rlrl}
S=\frac{a c}{1+\frac{l^{2}}{250 d^{2}}} & \quad \begin{aligned}
a & =\text { area of post in square inches; } \\
d & =\text { least side of rectangnlar post in inches; } \\
l & =\text { length of post in inches; }
\end{aligned} \\
& & \text { l } 600 \text { for white or Norway pine; }
\end{array} \\
& c=\left\{\begin{array}{l}
600 \text { for white or Norway pine; } \\
80 \text { for oak; } \\
900 \text { for long-leaf yellow pine. }
\end{array}\right.
\end{aligned}
$$

## HBULT COLUMNS.

From experiments by T. D. Lovett, discussed by Burr, the values of $f$ and $a$ in several cases are deternined, giving empirical forms of Gordon's formula as follows: $p=$ pounds crushing strength per square inch of section, $l=$ length of column in inches, $r=$ radius of gyration in inches.


Phocnix


Fig. 76.

## Flat Ends.



## Pin Ends.

$p=\cdots \ldots \ldots \ldots \ldots \frac{39,000}{1+\frac{1}{17,000} \frac{l^{2}}{r^{2}}}(5) \quad \frac{42,000}{1+\frac{1}{22,100} \frac{l^{2}}{r^{2}}}(7) \quad \frac{36,000}{1+\frac{1}{21,500} \frac{l^{2}}{r^{2}}}$
$p=\frac{36,000}{1+\frac{1}{15,000} \frac{l^{2}}{r^{2}}}(3)$

## Pin Ends, Svelled.

## Round Ends.

$p=$

$$
\begin{equation*}
\frac{42,000}{1+\frac{1}{12,500} \frac{l^{2}}{r^{2}}}(8) \quad \frac{36,000}{1+\frac{1}{11,500} \frac{l^{2}}{r^{2}}} \tag{11}
\end{equation*}
$$

With great variations of stress a factor of safety of as high as 6 or 8 may be used, or it may be as low as 3 or 4 , if the condition of stress is uniform or essentially so.
Burr gives the following general principles which govern the resistance of built columns :
The material should be disposed as far as possible from the neutral axis of the cross-section, thereby increasing $r$;
There should be no initial internal stress;
The individual portions of the column should be mutually supporting;
The individual portions of the column should be so firmly secured to each other that no relative motion can take place, in order that the column may fail as a whole, thus maintaining the original value of $r$.
Stoney says: "When the length of a rectangular wrought-iron tubular column does not exceed 30 times its least breadth, it fails by the bulping or buckling of a short portion of the plates, not by the flexure of the pillar as a whole."
In Trans. A. S. C. E., Oct. 1880, are given the following formulæ for the ultimate resistance of wrought-iton columns designed by C. Shaler Smith:

## Wlat Ends.



## One Pin End.

$$
\begin{equation*}
p=\frac{38,500}{1+\frac{1}{3000} \frac{l^{2}}{d^{2}}} \text { (13) } \frac{40,000}{1+\frac{1}{2250} \frac{l^{2}}{l^{2}}} \text { (16) } \frac{36,500}{1+\frac{1}{2250} \frac{l^{2}}{d^{2}}} \text { (19) } \frac{36,500}{1+\frac{1}{1500} \frac{l^{2}}{d^{2}}} \tag{13}
\end{equation*}
$$

## Two Pin Ends.

$p=\frac{37,500}{1+\frac{1}{1900} \frac{l^{2}}{d^{2}}}(14) \frac{36,600}{1+\frac{1}{1500} \frac{l^{2}}{d^{2}}}(17) \frac{36,500}{1+\frac{1}{1750} \frac{l^{2}}{d^{2}}}(20) \frac{36,500}{1+\frac{1}{1200} \frac{l^{2}}{d^{2}}}$
The "cominon" column consists of two channels, opposite, with flanges outward, with a plate on one side and a lattice on the other.
The formula for "square" columns may be nsed without much error for the common-chord section composed of two channel-bars and plates, with the axis of the pin passing through the centre of gravity of the crosssection. (Burr).
Compression members composed of two channels connected by zigzag bracing may be treated by formulæ 4 and 5 , using $f=36,000$ instead of 39,000 .
Experiments on full-sized Phœenix colnmns in 1873 showed a close agreement of the results with formulæ 6-8. Experiments on full-sized Phoenix columns on the Watertowir testing-machine in 1881 showed considerable discrepancies when the value of $l \div r$ became comparatively small. The following modified form of Gordon's formula gave tolerable results through the whole range of experiments:

Phœnix columns, flat end, $p=\frac{40,000\left(1+\frac{2 r}{l}\right)}{\frac{1}{1+50,000} \frac{r^{2}}{r^{2}}}$.
Plotting results of three series of experiments on Phœnix columns, a more simple formula than Gordon's is reached as follows :

Phonix columns, flat ends, $p=39,640-46 \frac{l}{r}$, when $l \div r$ is from 30 to 140 ;

$$
p=64,700-4600 \sqrt{\frac{\bar{l}}{r}} \text { when } 2+r \text { is less than } 30 .
$$

## Dimensions of Phomix Columng.

## (Phœuix Iron Co.)

The dimensions are subject to slight variations, which are unavoidable in rolling iron shapes
The weights of columns given are those of the 4,6 , or 8 segments of which they are composed. The rivet heads add from $2 \%$ to $5 \%$ to the weights given. Rivets are spaced 3,4 , or 6 in . apart from centre to centre, and somewhat more closely at the ends than to wards the centre of the cohmn.
$G$ columns have 8 segments, $E$ columus 6 segments, $C, B^{2}, B^{1}$, and $A$ have 4 segments. Least radius of gyration $=D \times .3636$.
The safe loads given are computed as being one-fourth of the breaking load, and as producing a maximum stress, in an axial direction, on a squareend column of not more than $14,000 \mathrm{lbs}$. per sq. in. for lengths of 90 radii and under.

Dimensions of Phonix Steel Columns.
(Least radius of gyration equals $D \times .36: 6$.)

| One Segment. |  | Diameters in Inches. |  |  | One Column. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 3 / 16 \\ 1 / 4 \\ 5 / 16 \\ 3 / 8 \end{gathered}$ | $\begin{array}{r} 9.7 \\ 12.2 \\ 14.8 \\ 17.8 \end{array}$ | 3\%/8 | $\begin{aligned} & 41 \\ & 418 \\ & 41 / 4 \\ & 43 / 8 \end{aligned}$ | $\begin{array}{ll} \hline 6 & 1 / 16 \\ 6 & 3 / 16 \\ 6 & 5 / 16 \\ 6 & 7 / 16 \end{array}$ | $\begin{aligned} & 3.8 \\ & 4.8 \\ & 5.8 \\ & 6.8 \end{aligned}$ | $\begin{aligned} & 12.9 \\ & 16.3 \\ & 19.7 \\ & 23.1 \end{aligned}$ | 1.45 1.50 1.55 1.59 | $\begin{aligned} & 18.2 \\ & 23.9 \\ & 30.0 \\ & 35.9 \end{aligned}$ |
| $\begin{gathered} 1 / 4 \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \end{gathered}$ | $\begin{aligned} & 16.3 \\ & 19.9 \\ & 23.5 \\ & 2 \pi .5 \\ & 30.6 \\ & 34.2 \\ & 37.7 \end{aligned}$ | B. ${ }_{4} 1 / 8$ | $53 / 8$ $51 / 8$ 5088 $53 / 4$ $5 \%$ 6 618 $61 / 8$ | $\begin{aligned} & 81 / 8 \\ & 83 / 16 \\ & 855 / 16 \\ & 87 / 16 \\ & 81 / 2 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline 11 / 16 \end{aligned}$ | 6.4 7.8 9.8 10.6 12.0 13.4 14.8 | $\begin{aligned} & 21.8 \\ & 26.5 \\ & 31.3 \\ & 36.0 \\ & 40.8 \\ & 45.6 \\ & 50.3 \end{aligned}$ | 1.95 1.00 2.04 2.09 2.13 2.18 2.23 | 36.4 45.1 51.4 63.9 73.3 83.2 93.1 |
| $\begin{gathered} 1 / 4 \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \end{gathered}$ | $\begin{aligned} & 18.9 \\ & 22.9 \\ & 27.0 \\ & 31.1 \\ & 35.2 \\ & 39.3 \\ & 43.3 \end{aligned}$ | $\xrightarrow{6} \begin{aligned} & \text { B. } 21 / 16\end{aligned}$ | 6 $9 / 16$ <br> 6 $11 / 16$ <br> 6 $13 / 16$ <br> 6 $15 / 16$ <br> 7 $1 / 16$ <br> $\zeta$ $3 / 16$ <br> 7 $5 / 16$ |  | $\begin{array}{r} 7.4 \\ 9.0 \\ 10.6 \\ 12.2 \\ 13.8 \\ 15.4 \\ 17.0 \end{array}$ | 25.2 30.6 36.0 41.5 46.9 52.4 57.8 | 2.39 2.43 2.48 2.52 2.54 2.61 2.61 2.66 | 48.3 59.5 70.7 82.3 93.9 105.8 111.9 |
| $\begin{gathered} 1 / 4 \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13 / 16 \\ 7 / 8 \\ 118 \\ 11 / 8 \\ 11 / 4 \end{gathered}$ | $\begin{aligned} & \hline 251 / 2 \\ & 31 \\ & 36 \\ & 41 \\ & 46 \\ & 51 \\ & 56 \\ & 62 \\ & 68 \\ & 73 \\ & 78 \\ & 89 \\ & 99 \\ & 109 \end{aligned}$ | \% 7 C | $\begin{array}{lll}7 & 13 / 16 \\ 7 & 15 / 16 \\ 8 & 1 / 16 \\ 8 & 3 / 16 \\ 8 & 5 / 16 \\ 8 & 7 / 16 \\ 8 & 9 / 16 \\ 8 & 11 / 16 \\ 8 & 13 / 6 \\ 8 & 15 / 16 \\ 9 & 1 / 16 \\ 9 & 5 / 16 \\ 9 & 9 / 16 \\ 9 & 13 / 16\end{array}$ |  | 10.0 12.1 14.1 16.0 18.0 19.9 21.9 24.8 26.6 28.6 30.6 34.8 38.8 42.6 | 34.0 41.3 44.0 54.6 61.3 68.0 74.6 $8 \% .6$ 90.6 $9 \pi .3$ 104.0 118.6 13.2 145.3 | 2.84 <br> 2.88 <br> 2.93 <br> 2.97 <br> 3.97 <br> 3.01 <br> 3.06 <br> 3.11 <br> 3.16 <br> 3.20 <br> 3.24 <br> 3.29 <br> 3.34 <br> 3.48 <br> 3.54 | 70.0 85.1 98.8 112.5 126.3 140.0 153.7 170.2 186.7 200.3 214.3 244.3 271.7 299.2 |
| $\begin{gathered} 1 / 4 \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \\ 9 / 16 \\ 5 / 8 \\ 11 / 16 \\ 3 / 4 \\ 13316 \\ 7 / 8 \\ 17 \\ 11 / 8 \\ 11 / 4 \end{gathered}$ | 28 32 37 37 42 47 52 57 62 68 73 78 88 98 108 | ${ }_{11} \stackrel{\text { E }}{1 / 16}$ | 11 $9 / 16$ <br> 11 $11 / 16$ <br> 11 $13 / 16$ <br> 11 $15 / 16$ <br> 12 $1 / 16$ <br> 12 $3 / 16$ <br> 12 $5 / 16$ <br> 12 $7 / 16$ <br> 12 $9 / 16$ <br> 12 $11 / 16$ <br> 12 13 <br> 13 $1 / 16$ <br> 13 $5 / 16$ <br> 13 $9 / 16$ |  | $\begin{aligned} & 16.5 \\ & 19.1 \\ & 21.7 \\ & 24.7 \\ & 27.6 \\ & 30.6 \\ & 33.5 \\ & 36.4 \\ & 40.0 \\ & 43.0 \\ & 45.9 \\ & 51.7 \\ & 57.6 \\ & 63.5 \end{aligned}$ | 56.0 65.0 74.0 84.0 4.0 104.0 11.0 124.0 136.0 146.0 156.0 176.0 196.0 216.0 | 4.20 4.25 4.29 4.34 4.38 4.43 4.48 4.52 4.56 4.61 4.66 4.73 4.84 4.93 | 115.3 133.8 15.4 173.4 193.6 214.1 234.6 20.3 28.3 380.0 300 321.2 363.4 403.6 444.7 |
| $\begin{gathered} 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 2 \end{gathered}$ | $\begin{aligned} & 31 \\ & 36 \\ & 41 \\ & 46 \\ & \hline \end{aligned}$ | $\underset{145 / 8}{G}$ | $\qquad$ | $\qquad$ | $\begin{aligned} & \ddot{21.2} \\ & 28.1 \\ & 32.0 \\ & 36.0 \end{aligned}$ | $\begin{array}{r} 82.6 \\ 96.0 \\ 109.3 \\ 122.6 \end{array}$ | $\begin{aligned} & 5.54 \\ & 5.59 \\ & 5.64 \\ & 5.68 \\ & \hline \end{aligned}$ | $\begin{aligned} & 170.2 \\ & 19 \% \\ & 20 . ~ \\ & 20.1 \\ & 252.6 \end{aligned}$ |


| One Segment. |  | Diameters in Inches. |  |  | One Column. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| 9/16 | 51 |  | 1534 | 1934 | 39.9 | 136.0 | 5.73 | 280.0 |
| 5/8 | 56 |  | $157 / 8$ | 1978 | 43.8 47 | 149.3 162.6 |  | 307.4 334.9 |
| 11/16 | 61 66 |  | 16 $161 / 6$ | 20 | 47.7 51.7 | 162.6 176.0 | 5.82 5.88 | 334.9 362.4 |
| $13 / 4$ | 66 71 |  | 161/8 | $201 / 8$ | 51.7 55.6 | 176.0 189.3 | 5.88 5.91 | 362.4 389.8 |
| $7 / 8$ | 76 | $145 / 8$ | 1638 | 2038 | 59.6 | 202.6 | 5.95 | 417.3 |
| 18 | 86 |  | 165/8 | 2058 | 67.4 | 29.3 | 6.04 | $4{ }^{4} 2.1$ |
| 11/8 | 96 |  | 167\% | 20\%8 | \%5.3 | 255.0 | 6.13 | 527.3 |
| $11 / 4$ | 106 |  | 171/8 | 21 | 83.1 | 25.2 6 | 6.27 | 583.0 |
| $13 / 8$ | 116 |  | $1 \% 3 / 8$ | 211/4 | 90.9 | 309.3 | 6.32 | 636.9 |

Working Formula for Wrought-iron and Steel Struts of various Forms.- Burr gives the following practical formulæ, which he believes to possess advantages over Gordon's:

Kind of Strut.

$$
\begin{align*}
& p=\text { Ultimate } \\
& \text { Strength, } \\
& \text { los. per sq. in. } \\
& \text { of Section. } \tag{2}
\end{align*}
$$

Flat and fixed end iron angles and tees 44000-140 $\frac{l}{r}$ (1)
$p_{1}=$ Working
Strength = $1 / 5$ Ultimate, los. per sq. in. of Section.

Hinged-end iron angles and tees.......46000-175 $\frac{l}{r}$
(3) $9200-35 \frac{l}{r}$

Flat-end iron channels and I beams....40000-110 $\frac{l}{r}$
(5) $8000-22 \frac{l}{r}$.

Flat-end mild-steel angles................52000-180 $\frac{l}{r}$
(7) $10400-36 \frac{l}{r}$

Flat-end high•steel angles................ $66000-290 \frac{l}{r}$
(9) $15200-58 \frac{l}{r}$

Pin-end solid wrought iron columns....32000-80 $\left.\frac{l}{r}\right\}$
(11) $6400-16 \frac{l}{r}$

$$
\begin{equation*}
\left.\left.32000-2 \pi \% \frac{l}{d}\right\}^{(11)} \quad 6400-55 \frac{l}{d}\right\}^{1} \tag{12}
\end{equation*}
$$

Equations (1) to (4) are to be used only between $\frac{l}{r}=40$ and $\frac{l}{r}=200$

$$
\begin{aligned}
& \text { " (7) to (10) " } \quad \text { " " " " " " }=40 \text { " " }=200 \\
& \text { " (11) and (12) " " " " } \\
& \begin{aligned}
\because \quad & =20 \quad " \quad \% \\
\text { or } \quad \frac{l}{d} & =6 \text { and } \frac{l}{d}=65
\end{aligned}
\end{aligned}
$$

Steel columns, properly made of steel ranging in specimens from 65,000 to $73,000 \mathrm{lbs}$. per square inch should give a resistance 25 to 33 per cent in excess of that of wrought-iron columns with the same value of $l+r$, provided that ratio does not exceed 140.

The unsupported width of a plate in a compression member should not exceed 30 times its thickness.
In built columns the transverse distance between centre lines of rivets securing plates to angles or channels, etc.. should not exceed 35 times the plate thickness. If this width is exceeded, longitudinal buckling of the
plate takes place, and the column ceases to fail as a whole, but yields in detail.
The same tests show that the thickness of the leg of an angle to which latticing is riveted should not be less than $1 / 9$ of the length of that leg or side if the column is purely and wholly a compression member. The above limit may be passed somewhat in stiff ties and compression members designed to carry transverse loads.

The panel points of latticing should not be separated by a greater distance than 60 times the thickness of the angle-leg to which the latticing is riveted, if the column is wholly a compression member.

The rivet pitch should never exceed 16 times the thickness of the thinnest metal pierced by the rivet, and if the plates are very thick it should never nearly equal that value.
Merriman's Rational Formula for Columms (Eng. Neus,
July 19,1894 ).

$$
\begin{align*}
C & =\frac{B}{1-\frac{n B}{\pi^{2} E} \frac{l^{2}}{r^{2}}}  \tag{1}\\
B & =\frac{C}{1+\frac{n C}{\pi^{2} E} \frac{l^{2}}{r^{2}}} \tag{2}
\end{align*}
$$

$B=$ unit-load on the column $=$ total load $P \div$ area of cross-section $A$; $C=$ maximun compressive unit-stress on the concave side of the column. $l=$ length of the column; $r=$ least radius of gyration of the cross-section $E=$ coefficient of elasticity of the material: $n=1$ for both ends romnd. $n=4 / 9$ for one end round and one fixed; $n: 3$ for both ends fixed. This formula is for use with strains within the fatstic linnit only: it does not hold good when the strain $C$ exceeds the elastli imit.
Prof. Merrimau takes the mean value of $E$ for timber $=1,500,000$, for cast iron $=15,000,000$, for wronght-iron $=25,000,050$, and for steel $=30,000,000$, and $\pi^{2}=10$ as a close enough approximation. With these values he conputes the following tables from formula (1):

## I.-Wrought-iron Columns wit, Fitund Ends.

| Unitload. | Maximum Compressive ${ }^{\text {İnil-stress } C \text { C }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{P}{A}$ or $B$. | $\frac{l}{r}=20$ | $\frac{l}{r}=40$ | $\frac{l}{r}=60$ | $\frac{l}{r}=80$ | $\frac{l}{r}=10 n$ | $\frac{l}{i}:=12$ | $=140$ | $\frac{l}{r}=160$ |
| 5,000 | 5,040 | 5,170 | 5,390 | 5,730 | 6,250 | S.780 |  |  |
| 6,000 | 6,055 | 6,240 | 6,560 | \%,090 | \%,890 | $9,0 \geqslant 0$ | 21, | ic, |
| 7,000 8,000 | 7,080 8,100 | 7,330 | 7.780 | 8,530 | 9.20 | 11,610 | 15,510 | 4, \%ex |
| 8,000 9,000 | 8,100 | 8,430 9550 | 9.040 | 10,060 | 11,660 | 14,640 | 81,460 |  |
| 10,000 | 10,160 | 10,680 | 10,340 11,680 | 11,690 | 11,060 | 18,350 |  |  |
| 11.000 | 11,200 | 13, 550 | 13,070 | 13.440 15.310 | $16,6 \pi 0$ 19,640 | 23,090 |  |  |
| 12,000 | 12,240 | 13,000 | 14,500 | 17,320 | 23,080 |  |  |  |
| 13,000 | 13,280 | 14,180 | 15,990 | 19,480 |  |  |  |  |

## II.-Wrought-iron Columns with Fixed Ends.

| Unitload. | Maximum Compressive Unit-stress $C$. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{P}{A}$ or $B$. | $\frac{l}{r}=20$ | $\frac{l}{r}=40$ | $\frac{l}{r}=60$ | $\frac{l}{r}=80$ | $\frac{l}{r}=100$ | $\frac{l}{r}=120$ | $\frac{l}{r}=140$ | $\frac{l}{r}=160$ |
| 6,000 | 6,010 | 6,060 | 6,130 | 6,240 | 6,380 | 6,570 |  |  |
| 7,000 | \%,020 | r,080 | r,180 | 7,330 | 7,530 | 6,580 7,180 | 6,800 8,110 | 7,090 8,530 |
| 8,000 | 8,025 | 8,100 | 8,2 20 | 8,430 | 8,\%00 | 9,040 | 8,110 <br> 190 | 10,060 |
| 9,000 | 9,030 | 9,130 | 9,300 | 9,550 | 9,890 | 10,340 | 10,930 | 11,690 |
| 10,000 | 10,040 | 10,160 | 10,3\%0 | 10,\%10 | 11,110 | 11,680 | 12,440 | 13,440 |
| 11,000 | 11,050 | 11,200 | 11,450 | 11,830 | 12,360 | 13,0\%0 | 14,020 | 15,310 |
| 12,000 13,000 | 12,060 | 12,240 | 12,540 | 13,000 | 13,640 | 14,510 | 15,690 | 17,3:0 |
| 14,000 | $13,0 \% 0$ 14,080 | 13,280 14,320 | 13,640 14,140 | 14,210 15,380 | 14,940 16,280 | 15,990 | 17,440 | 19.480 |
|  | 1,080 | 14,320 | 14,140 | 15,380 | 16,280 | 17,530 | 19,990 | 21,8:0 |

III.-Steel Colinins with Round Ends.

| Unitload. | Maximum Compressive Unit-stress $C$. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{P}{A} \text { or } B .$ | $\frac{l}{\gamma}=20$ | $\frac{l}{r}=40$ | $\frac{l}{r}=60$ | $\frac{l}{r}=80$ | $\frac{l}{r}=100$ | ${ }_{r}^{l}=120$ | $\frac{l}{r}=140$ | $\frac{l}{r}=160$ |
| 6,000 | 6,050 | 6,200 | 6,4\%0 | 6,880 | 7,500 |  |  |  |
| 7,000 | 7,070 | 7,2\%0 | 7,650 | 8,230 | 9,130 | 8,430 10,540 | 9,870 12,900 | 12,300 |
| 8,000 | 8,090 | 8,380 | 8,770 | 9,650 | 10,870 | 12,990 | 12,760 | 14,590 |
| 9,000 | 9,110 | 9,450 | 10,090 | 11,140 | 12,850 | 15,850 | 16,760 | 24,590 |
| 10,000 | 10,130 | 10,560 | 11,360 | 12,710 | 15,000 | 19,230 | 28,850 |  |
| 11,000 12,000 | 11,160 12,200 | 11,690 12,800 | 12,670 | 14,370 | 17,3\%0 | 23,300 | 28,850 |  |
| 13,000 | 13,330 | 12,820 $13,9 \% 0$ | 14,020 15,400 | 16,130 18,000 | 120,000 22,940 | 28,300 | ... |  |
| 14,000 | 14,250 | 15,130 | 16,830 | 19,960 | 26,250 |  |  |  |

IV.-Steel Columns with Fixed Ends.

| Unitload. | Maximum Compressive Unit-stress $C$. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{P}{A} \text { or } B .$ |  | $\frac{l}{r^{2}}=40$ | $\frac{l}{r}=60$ | $\frac{l}{r}=80$ | $\frac{l}{r}=100$ | $\frac{l}{r}=120$ | $\frac{l}{r}=140$ | $\frac{l}{r}=160$ |
| 7,000 | 7,020 | 7,0\%0 | 7,150 | 7.270 |  |  |  |  |
| 8,000 | 8,020 | 8,090 | 8,200 | 8,380 |  | 8,650 | 7,900 | 8,230 |
| 9,000 | 9,030 | 9,110 | 9,250 | 8,380 9,450 | 8,570 9,730 | 8,770 10,090 | 9,200 10,550 | 9,650 |
| 10,000 | 10,030 | 10,180 | 10,310 | 10,560 | 10,910 | 10,090 | 10,550 11,810 | 11,140 |
| 11,000 | 11,040 | 11,160 | 11,380 | 11,690 | 12,110 | 12,6\%0 | 11,810 13,410 | 12,710 $14,3 \% 0$ |
| 12,000 | 12,050 | 12,200 | 12,450 | 12,820 | 13,330 | 14,020 | 14,930 | 16,130 |
| 13,000 14,000 | 13,060 14,070 | 13,230 | 13,530 | 13,9\%0 | 14,580 | 15,400 | 16,500 | 17,990 |
| 14,000 | 14,070 15,080 | 14,250 15,310 | 14,610 | 15,130 | 15,850 | 16,830 | 18,150 | 19,960 |
| 15,000 | 15,080 | 15,310 | 15,110 | 16,310 | 17,140 | 18,290 | 19,8\%0 | 22,060 |

The design of the cross-section of a column to carry a given load with maximum unit-stress $C$ may be made by assuming dimensions, and then
computing $C$ by formula (1). If the agreement between the specified and computed values is not sufficiently close, new dimensions must be chosen, and the computation be repeated. By the use of the above tables the work will be siortened.

The formula (1) may be put in another form which in some cases will ab. breviate the numerical work. For $B$ substitute its value $P \div A$, and for $A r^{2}$ write $I$, the least moment of inertia of the cross-section; then

$$
\begin{equation*}
I-\frac{P}{C} r^{2}=\frac{n P l^{8}}{\pi^{2} E} \tag{3}
\end{equation*}
$$

In which $I$ and $r^{2}$ are to be determined.
For example, let it be required to find the size of a square oak column with fixed ends when loaded with $24,000 \mathrm{lbs}$. and 16 ft . long, so that the maximum compressive stress $C$ shall be 1000 lbs . per square inch. Here $I=24,000, C=1000, n=1 / 4, \pi^{2}=10, E=1,500,000, l=16 \times 12$, and (3) becomes

$$
I-24 r^{2}=14.75
$$

Now let $x$ be the side of the square; then

$$
I=\frac{x^{4}}{12} \quad \text { and } \quad r^{2}=\frac{x^{2}}{12}
$$

so that the equation reduces to $x^{4}-24 x^{2}=17 \%$ from which $x^{2}$ is found to be 29.92 sq. in., and the side $x=5.47$ in. Thus the unit-load $B$ is about 802 lbs. per square inch.

## WORKING STREAINS ALLOIVED IN BRIDGE MHEDBERS.

Theodore Cooper gives the following in his Bridge Specifications:
Compression members shall be so proportioned that the maximum load shall in no case cause a greater strain than that determined by the follow. ing formula :

$$
\begin{aligned}
P & =\frac{8000}{1+\frac{l^{2}}{40,000 r^{2}}} \text { for square-end compression members; } \\
P & =\frac{8000}{1+\frac{l^{2}}{30,000 r^{-2}}} \text { for compression members with one pin and one square end; } \\
P & =\frac{8000}{1+\frac{l^{2}}{20,000 r^{2}}} \text { for compression members with pin-bearings; }
\end{aligned}
$$

(These values may be increased in bridges over 150 ft . span. See Cooper's Specifications.)

$$
P=\text { the allowed compression per square inch of cross-section }
$$

$l=$ the length of compression member, in inches;
$r=$ the least radius of gyration of the section in inches.
No compression member, however, shall have a length exceeding 45 times its least width.
Tension Members.-All parts of the structure shall be so proportioned that the maximum loads shall in no case cause a greater tension than the following (except in spans exceeding 150 feet):

## Pounds per

sq. in.
On lateral bracing................................................ 15,000
On solid rolled beams, used as cross floor-beams and stringers. 9,000
On bottom chords and main diagonals (forged eye-bars)..... 10,000
On bottom chords and main diagonals (plates or shapes), net section.

8,000
On counter rods and long verticals forged eye-bars)...........................000
On counter and long verticals (plates or shapes), net section.. 6,500
On bottom flange of riveted cross-girders, net section .........
8,000
On bottom flange of riveted longitudinal plate girders over 20 ft . long, net section

8,000


Members subject to alternate strains of tension and compression shall be proportioned to resist each kind of strain. Both of the strains shall, however, be considered as increased by an amount equal to $8 / 10$ of the least of the two strains, for determining the sectional area by the above allowed strains.
The Phœenix Bridge Co. (Standard Specifications, 1895) gives the following :
The greatest working stresses in pounds per square inch shall be as follows:

## Tension.

## Steel.

Iron.

$$
\begin{aligned}
& P=9,000\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right] \begin{array}{c}
\text { For bars, } \\
\text { forged ends. }
\end{array} P=\pi, 500\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right] \\
& P=8,500\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right] \begin{array}{c}
\text { Plates or } \\
\text { shapes net. }
\end{array} \quad P=7,000\left[1+\frac{\text { Min. stress }}{\text { Max. stress }}\right]
\end{aligned}
$$

$\underset{7,500}{8,500}$ pounds. Floor-beam hangers, forged ends........... $\quad \tau, 000$ pounds.
7,500 " Floor-beam hangers, plates or shapes, net

90,000 " Outside fibres of pins.................................. 15,000
$\because 0,000$ " Pins for wind-bracing...................................... 2.,500
20,000 " Lateral bracing................................................. 15,000 "

## Shearing.



## Bearing.

16,000 pounds. Projection semi-intrados pins and rivets.... 12,000 pounds. Hand-driven rivets 20\% less unit stresses. For bracing increase nnit stresses $50 \%$.

Compression.
Lengths less than forty times the least radius of gyration, $P$ previously found. See Tension.
Lengths more than forty times the least radius of gyration, $P$ reduced by following formulæ:

For both ends fixed,

$$
b=\frac{P}{1+\frac{l^{2}}{36,000 r^{2}}}
$$

For one and hinged,

$$
i=\frac{P}{1+\frac{l^{2}}{24,000 r^{2}}} .
$$

For both ends hinged,

$$
b=\frac{P}{1+\frac{l^{2}}{18,000 r^{2}}}
$$

$P=$ permissible stress previously found (see Tension); $b=$ allowable working stress per square inch; $l=$ length of member in inches; $r=$ least radius of gyration of section in inches. No compression member, however, shall have a length exceeding 45 times its least width.


For spans over 200 feet in length the greatest allowed workilig stresses per square inch, in lower-chord and end main-web eye-bars, shall be taken at

$$
10,000\left(1+\frac{\text { min. total stress }}{\text { max. total stress }}\right)
$$

whenever this quantity exceeds 13,200 .
The greatest allowable stress in the main-web eye-bars nearest the centre of such spans shall be taken at 13,200 pounds per square inch; and those for the intermediate eye-bars shall be found by direct interpolation between the preceding values.
The greatest allowable working stresses in steel plate and lattice girders and rolled beams shall be taken as follows :

## Pounds per

sq.in.
Upper flange of plate girders (gross section)....................... 10,000
Lower flange of plate girders (net section)............... ........ 10,000
In counters and long verticals of lattice girders (net section).. 9,000
In lower chords and main diagonals of lattice girders (net section)

10,000
In bottom flanges of rolled beams......................................... . 10,000
In top flanges of rolled beams............................................ 10,000

## RESISTANCR OF HOLLOW CYLINDERS TO COLHAPSE.

Fairbairn's empirical formula (Phil. Trans. 1858) is

$$
\begin{equation*}
p=9,675,600 \frac{t^{2.19}}{l . l} \tag{i}
\end{equation*}
$$

where $p=$ pressure in lbs. per square inch, $t=$ thickness of cylinder, $a=$ diameter, and $l=$ length, all in inches ; or,

$$
\begin{equation*}
p=806,300 \frac{t^{2 \cdot 19}}{L d}, \text { if } L \text { is in feet. } \tag{2}
\end{equation*}
$$

He recommends the simpler formula

$$
\begin{equation*}
p=9,6 \pi 5,600 \frac{t^{2}}{l \bar{d}} \tag{3}
\end{equation*}
$$

as sufficiently accurate for practical purposes, for tubes of considerable diameter and length.
The diameters of Fairbairn's experimental tubes were $4^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$, and $12^{\prime \prime}$, and their lengths, between the cast-iron ends, ranged between 10 inches and 60 inches.
His formula (3) has been generally accepted as the basis of rules for ascertaining the strength of boiler-flues. In some cases, however, limits are fixed to its application by a supplementary formula.
Lloyd's Register contains the following formmse for the strength of circular boiler-flues, viz.,

$$
\begin{equation*}
P=\frac{89,600 t^{2}}{L d} \tag{4}
\end{equation*}
$$

The English Board of Trade prescribes the following formula for circular flues, when the longitudinal joints are welded, or made with riveted buttstraps, viz.,

$$
\begin{equation*}
P=\frac{00,000 t^{2}}{(T+1) d} \tag{5}
\end{equation*}
$$

For lap-joints and for inferior workmanship the numerical factor may be reduced as low as 60,000 .

The rules of Lloyd's Register, as well as those of the Board of Trade, prescribe further, that in no case the value of $P$ must exceed the amount given by the following equation, viz.,

$$
\begin{equation*}
P=\frac{8000 t}{d} \tag{6}
\end{equation*}
$$

In formulæ (4), (5), (6) $P$ is the highest working pressure in pounds per square inch, $t$ and $d$ are the thickness and diameter in inches, $L$ is the length of the flue in feet mcasured between the strengthening rings, in case it is fitted with such. Formula (4) is the same as formula (3), with a factor of safety of 9 . In formula (5) the length $L$ is increased by 1 ; the influence which this addition has on the value of $P$ is, of course, greater for short tubes than for long ones.

Nystrom has deduced from Fairbairn's experiments the following formula for the collapsing streng th of flues :

$$
\begin{equation*}
p=\frac{4 T t^{2}}{d \sqrt{L}} \tag{*}
\end{equation*}
$$

where $p, t$, and $d$ have the same meaning as in formula (1), $L$ is the length in feet, and $T$ is the tensile strength of the metal in pounds per square inch.

If we assign to $T$ the value 50,000 , and express the length of the flue in inches, equation (7) assumes the following form, viz.,

$$
\begin{equation*}
p=692,800 \frac{t^{2}}{a \sqrt{l}} \tag{8}
\end{equation*}
$$

Nystrom considers a factor of safety of 4 sufficient in applying his formula. (See "A New Treatise on Steam Engineering," by J. W. Nystrom, p. 106.)
Formula (1), (4), and (8) have the common defect that they make the collapsing pressure decrease indefinitely with increase of length, and vice versa. M. Love has deduced from Fairbairn's experiments an equation of a different form, which, reduced to English measures, is as follows, viz.,

$$
\begin{equation*}
p=5,358,150 \frac{t^{2}}{l d}+41,906 \frac{t^{2}}{d}+1323 \frac{t}{d} \tag{9}
\end{equation*}
$$

where the notation is the same as in formula (1).
D. K. Clark, in his "Manual of Rules," etc., p. 696, gives the dimensions of six flues, selected from the reports of the Manchester Steam-Users Association, 1862-69, which collapsed while in actual use in boilers. These flucs varied from 24 to 60 inches in diameter, and from 3-16 to $\% / 8$ inch in thickness. They consisted of rings of plates riveted together, with one or two longitudinal seams, but all of them unfortified by intermediate flanges or strengthening rings. At the collapsing pressures the flues experienced compressions ranging from 1.53 to 2.17 tons, or a mean compression of $1.8: 2$ tons per square inch of section. From these data Clark deduced the following formula "for the average resisting force of common boiler-flues," viz.,

$$
\begin{equation*}
p=t^{2}\left(\frac{50,000}{d}-500\right) \tag{10}
\end{equation*}
$$

where $p$ is the collapsing pressure in pounds per square inch, and $d$ and $t$ are the diameter and thickness expressed in inches.
C. R. Roelker, in T an Nostrand's Magazine, March, 1881, discussing the above and other formnlæ, shows that experimental data are as yet insufficient to determine the value of any of the formulæ. He says that Nystrom's formula, (8), gives a closer agreement of the calculated with the actual collapsing pressures in experiments on flues of every description than any of the other forınulæ.

## Collapsing Pressure of Plain Hron Tubes or Flues.

## (Clark, S. E., vol, i. p. 643.)

The resistance to collapse of plain-riveted flues is directly as the square of the thickness of the plate, and inversely as the square of the diameter. The support of the two ends of the flue does not practically extend over a length of tube greater than twice or three times the diameter. The collapsing pressure of long tubes is therefore practically independent of the length.

Instances of coliapsed flues of Cornish and Lancashire boilers collated by Clark, showed that the resistance to collapse of fues of $\frac{3}{8}$-inch plates, 18 to 43 feet long, and 30 to 50 inches diameter, varied as the 1.75 power of the


For collapsing pressures of plain iron flue-tubes of Cornish and Lanca shire steam-boilers, Clark gives:

$$
P=\frac{200,000 t^{2}}{d^{1 \cdot 72}}
$$

$P=$ collapsing pressure, in pounds per square inch;
$t=$ thickness of the plates of the furnace tube, in inches.
$d=$ internal diameter of the furnace tube, in inches.
For short lengths the longitudinal tensile resistance may be effective in augmenting the resistance to collapse. Flues efficiently fortified by flange. joints or hoops at intervals of 3 feet may be enabled to resist from 50 lbs . to 60 lbs . or folbs. pressure per square inch more than plain tubes, accord-
ing to the thickness of the plates.
Strenct
Strength of Smail Trubes.-The collapsing resistance of solid. drawn tubes of small diameter, and from . 134 inch to .109 inch in thickness, has been tested experimentally by Messrs. J. Russell \& Sons. The results for wrought-iron tubes varied from 14.33 to 20.07 tons per square-inch section of the metal, a veraging 18.20 tons, as against 17.57 to 24.28 tons, averaging 22.40 tons, for the bursting pressure.
(For strength of Segmental Crowns of Furnaces and Cylinders see Clark, S. E., vol. i, pp. 649-651 and pp. 627, 628.)

Formula for Corrugated Furnaces (Eng'g, July 24, 1891, p. 102). - As the result of a series of experiments on the resistance to collapse of Fox's corrugated furnaces, the Board of Trade and Lloyd's Registry altered their formulæ for these furnaces in 1891 as follows:

Board of Trade formula is altered from

$$
\frac{12,500 \times T}{D}=W P \text { to } \frac{14,000 \times T}{D}=W P
$$

$T=$ thickness in inches;
$D=$ mean diameter of furnace;
$W P=$ working pressure in pounds per square inch.
Lloyd's formula is altered from

$$
\frac{1000 \times(T-2)}{D}=W P \text { to } \frac{1234 \times(T-2)}{D}=W P
$$

$T=$ thickness in sixteenths of an inch;
$D=$ greatest diameter of furnace;
$W P=$ working pressure in pounds per square inch.

## TRANSVERSE STERENGTHE.

In transverse tests the strength of bars of rectangular section is found to vary directly as the breadth of the specimen tested, as the square of its depth, and inversely as its length. The deflection under any load varies as che cube of the length, and inversely as the breadth and as the cube of the depth. Represented algebraically, if $S=$ the strength and $D$ the deflection, $l$ the length, $b$ the breadth, and $d$ the depth,

$$
S \text { varies as } \frac{b d^{2}}{l} \text { and } D \text { varies as } \frac{l^{3}}{b d^{3}}
$$

For the purpose of reducing the strength of pieces of various sizes to a common standard, the term modulus of rupture (represented by $R$ ) is used. Its value is obtained by experiment on a bar of rectangular section
supported at the ends and loaded in the middle and substituting numerical values in the following formula:

$$
R=\frac{3}{2} \frac{P l}{b d^{2}}
$$

In which $P=$ the breaking load in pounds, $l=$ the length in inches, $b$ the breadth, and $d$ the depth.
The modulus of rupture is sometimes defined as the strain at the instant of rupture upon a unit of the section which is most remote from the neutral axis on the side which first ruptures. This definition, however, is based upon a theory which is yet in dispute among authorities, and it is better to define it as a numerical value, or experimental constant, found by the application of the formula above given.

From the above formula, making $l 12$ inches, and $b$ and $d$ each 1 inch, it follows that the modulus of rupture is 18 times the load required to break a bar one inch square, supported at two points one foot apart, the load being applied in the middle.

Coefficient of transverse strength $=\frac{\text { span in feet } \times \text { load at }}{\text { breadth in inches } \times(\text { depth in inches })^{2}}$. $=\frac{1}{18}$ th of the modulus of rupture.
Fundamental Formulat for Flexure of Beams (Merriman).
Resisting shear = vertical shear;
Resisting moment $=$ bending moment;
Sum of tensile stresses = sum of compressive stresses;
Resisting shear $=$ algebraic sum of all the vertical components of the internal stresses at any section of the beam.
If $A$ be the area of the section and $S_{s}$ the shearing unit stress, then resisting shear $=A S_{s}$; and if the vertical shear $=V$, then $V=A S s$.
The vertical shear is the algebraic sum of all the external vertical forces on one side of the section considered. It is equal to the reaction of one support, considered as a force acting upward, minus the sum of all the vertical downward forces acting between the support and the section.
The resisting moment = algebraic sum of all the moments of the internal horizontal stresses at any section with reference to a point in that section, $=\frac{S I}{c}$, in which $S=$ the horizontal unit stress, tensile or compressive as the case may be, upon the fibre most remote from the neutral axis, $c=$ the shortest distance from that fibre to said axis, and $I=$ the moment of inertia of the cross-section with reference to that axis.
The bending moment $M$ is the algebraic sum of the moment of the external forces on one side of the section with reference to a point in that section $=$ moment of the reaction of one support minus sum of moments of loads between the support and the section considered.

$$
M=\frac{S I}{c}
$$

The bending moment is a compound quantity = product of a force by the corstance of its point of application from the section considered, the distance being measured on a line drawn from the section perpendicular to the direction of the action of the force.
Concerning the above formula, Prof. Merriman, Eng. News, July 21, 1894, says: The formula just quoted is true when the unit-stress $S$ on the part of the beam farthest from the neutral axis is within the elastic limit of the material. It is not true when this limit is exceeded, because then the neutral axis does not pass through the centre of gravity of the cross-section, and because also the different longitudinal stresses are not, proportional to their distances from that axis, these two requirements being involved in the deduction of the formula. But in all cases of design the permissible unitstresses should not exceed the elastic limit, and hence the formula applies rationally, without regarding the ultimate strength of the material or any of the circumstances regarding rupture. Indeed so great reliance is placed upon this formula that the practice of testing beams by rupture has been almost entirely abandoned, and the allowable unit-stresses are mainly derived from tensile and compressive tests.
Beam.
GENERAL

| Beam. | Rectangular Beam. |  | Beam of any Section. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Breaking Load. | Deflection for Load $P$ or $W$. | Maximum Moment of Stress. | Moment of Rupture. | Deflection. |
| Fixed at one end, load at the other............ | $P=\frac{1}{6} \frac{R b d d^{2}}{l}$ | $\frac{4 P l^{3}}{E b d^{3}}$ | $\mathrm{Pl}=$ | $\underline{R I}$ | $\frac{1}{3} \frac{P l^{3}}{E I}$ |
| Same with load distributed uniformly......... | $W=\frac{1}{3} \frac{R b d^{2}}{l}$ | $\frac{3}{2} \frac{W l^{3}}{E b d^{3}}$ | $\frac{1}{2} W l=$ | $\underline{R I}$ | $\frac{1}{8} \frac{W l^{3}}{E I}$ |
| Supported at ends, loaded in middle.......... | $P=\frac{2}{3} \frac{R b d^{2}}{l}$ | $\frac{P l^{3}}{4 E b d l^{3}}$ | $\frac{1}{4} P l=$ | $\frac{R I}{c}$ | $\frac{1}{48} \frac{P l^{3}}{E I}$ |
| Same loaded uniformly | $W=\frac{4}{3} \frac{R b d^{2}}{l}$ | $5{ }^{5} \mathrm{Wl}^{3}$ | 1 | $\underline{R I}$ | $5 \mathrm{Wl}^{3}$ |
| Same, loaded at middle, and also \} with uniform load, | $2 P+W=\frac{4}{3} \frac{R b d^{2}}{l}$ | $\frac{1}{4}\left(P+\frac{1}{8} W\right) \frac{l^{3}}{E b d^{3}}$ | $\left(\frac{1}{4} P+\frac{1}{8} W\right) l=$ | $\frac{R I}{c}$ | $\frac{1}{48}\left(P+\frac{5}{8} W\right) \frac{l^{3}}{E 1}$ |
| Fixed at both ends, loaded in middle......... | $P=\frac{4}{3}-\frac{R b d d^{2}}{l}$. | $\frac{1}{16} \frac{P l^{3}}{E b d^{3}}$ | $\frac{1}{8} P l=$ | $\frac{R I}{c}$ | $\frac{P}{192} \frac{l^{3}}{E I}$ |
| Same, Barlow's Experiments.................. | $P=\frac{R b l^{2}}{l}$ |  | $\frac{1}{6} P l=$ | $\frac{R I}{c}$ |  |
| Same, uniformly loaded........................ | $W=\frac{2 R b d^{2}}{}$ |  | $\frac{1}{1} W l=$ | $\underline{R I}$ | $\underline{W}{ }^{13}$ |
| Fixed at one end, supported | $W=l$ | $\overline{32} \overline{E b d^{3}}$ | $\frac{12}{12}=$ | $\bar{c}$ | $\overline{384}$ E1 |
| Fixed at one end, supported at the other, loaded at . 6341 from fixed end, $\} \cdots \cdots$ |  | $\frac{.1148 P l^{3}}{E b d^{3}}$ | $\frac{3}{8}(2 \sqrt{3}-3) P l=$ | $\frac{R I}{c}$ | $\frac{P}{105} \frac{l^{3}}{E} I$ |
| Same uniformly loaded......................... | $W=\frac{4}{3} \frac{R b d^{2}}{l}$ | $\frac{.0648 W l^{3}}{E b d^{3}}$ | $\left.\frac{1}{8} W\right\urcorner=$ | $\frac{R I}{c}$ | $\underset{\text { (nearly). }}{\frac{W}{185}} \frac{l^{3}}{E I}$ |

Formulx for Transverse Strength of Beams.-Referring to table on preceding page,
$P=$ load at middle;
$W=$ total load, distributed uniformly;
$l=$ length,$b=$ breadth, $d=$ depth, in inches;
$E=$ modulus of elasticity;
$\boldsymbol{R}=$ modulus of rupture, or stress per square inch of extreme fibre;
$I=$ moment of inertia;
$c=$ distance between neutral axis and extreme fibre.
For breaking load of circular section, replace $b d^{2}$ by $0.59 d^{3}$.
For good wrought iron the value of $R$ is about 80,000 , for steel about 120,000, the percentage of carbon apparently having no influence. (Thurston, Iron and Steel, p. 491).
For cast iron the value of $R$ varies greatly according to quality. Thurston found 45,740 and 67,980 in No. 2 and No. 4 cast iron, respectively.

For beams fixed at both ends and loaded in the middle, Barlow, by experiment, found the maximum moment of stress $=1 / 6 \mathrm{Pl}$ instead of $1 / 8 P l$, the result given by theory. Prof. Wood (Resist. Matls. p. 155) says of this case: The phenomena are of too complex a character to admit of a thorough and exact analysis, and it is probably safer to accept the results of Mr. Barlow in practice than to depend upon theoretical results.

## APPROXIMA GE GREATEST SAFE LOADS IN LBS. ON STEEL BEATIS. (Pencoyd Iron Works.)

Based on fibre strains of $16,000 \mathrm{lbs}$. for steel. (For iron the loads should be one-eighth less, corresponding to a fibre strain of $14,000 \mathrm{lbs}$. per square inch.)
$L=$ length in feet between supports;
$A=$ sectional area of beam in square inches;
$D=$ depth of beam in inches.

| Shape of Section. | Greatest Safe Load in Pounds. |  | Deflection in Inches. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Load in Middle. | Load Distributed. | Load in Middle. | Load Distributed. |
| Solid Rectangle. | $\frac{890 A D}{L}$ | $\frac{1 \pi 50 A D}{L}$ | $\frac{w L^{3}}{3 \approx A D^{2}}$ | $\frac{w L^{3}}{52 A D^{2}}$ |
| HollowRectangle. | $\frac{890(A D-a d)}{L}$ | $\frac{1780(A D-a d)}{L}$ | $\frac{w L^{3}}{32\left(A D^{2}-a d^{2}\right)}$ | $\frac{w L^{3}}{52\left(A D^{2}-a d^{2}\right)}$ |
| Solid Cylinder. | $\frac{66 \sim A D}{L}$ | $\frac{1333 A D}{L}$ | $\frac{w L^{3}}{24 A D^{2}}$ | $\frac{w L^{3}}{38 A \bar{D}^{2}}$ |
| Hollow Cylinder. | $\frac{66 \%}{}(A D-a d)$ | $\frac{1333(A D-a d)}{L}$ | $\frac{w L^{3}}{24\left(A D^{2}-a d^{2}\right)}$ | $\frac{w L^{3}}{38\left(A D^{2}-a d^{2}\right)}$ |
| Even-legged Angle or Tee. | $\frac{885 A D}{L}$ | $\frac{1 ; \% 0 \mathrm{AD}}{L}$ | $\frac{w L^{3}}{32 A D^{2}}$ | $\frac{w L^{3}}{5 \approx A D^{2}}$ |
| Channel or Z bar. | $\frac{1525 A D}{L}$ | $\frac{3050 A D}{L}$ | $\frac{w L^{3}}{53 A D^{2}}$ | $\frac{w L^{3}}{85 A D^{2}}$ |
| Deck Beam. | $\frac{1380 \mathrm{AD}}{L}$ | $\frac{2 \cdot 60 \mathrm{AD}}{L}$ | $\frac{w L^{3}}{50 A D^{2}}$ | $\frac{w L^{3}}{80 A D^{2}}$ |
| 1 Beam. | $\frac{1695 . A D}{L}$ | $\frac{3390 A D}{L}$ | $\frac{w L^{3}}{58 A D^{2}}$ | $\frac{w L^{3}}{93 A D^{2}}$ |
| I | II | III | IV | V |

The above formulæ for the strength and stiffness of rolled beams of various sections are intended for convenient application in cases where strict accuracy is not required.

The rules for rectangular and circular sections are correct, while those for the flanged sections are approximate, and limited in their application to the standard shapes as given in the Pencoyd tables. When the section of any beam is increased above the standard minimum dimensions, the flanges remaining unaltered, and the web alone being thickened, the tendency will be for the load as found by the rules to be in excess of the actual; but within the limits that it is possible to vary auy section in the rolling, the rules will apply without any serious inaccuracy.
The calculated safe loads will ke approximately one half of loads that would injure the elasticity of the materials.
The rules for deflection apply to any load below the elastic limit, or less than double the greatest safe load by the rules.
If the beams are long without lateral support, reduce the loads for the ratios of width to span as follows:

Length of Beam. 20 times flange width.

| 30 | 66 | 66 | 66 |
| :--- | :--- | :--- | :--- |
| 40 | 66 | 66 | 66 |
| 50 | 66 | 66 | 66 |
| 60 | 66 | 66 | 66 |
| 70 | 66 | 66 | 66 |

Proportion of Calculated Load forming Greatest Safe Load.

Whole calculated load.

| $9-10$ | $"$ | 6 |
| :--- | :--- | :--- |
| $8-10$ | $"$ | $\because$ |
| $7-10$ | 6 | $\because$ |
| $6-10$ | 6 | 6 |

These rules apply to beams supported at each end. For beams supported otherwise, alter the coefficients of the table as described below, referring to the respective columns indicated by number.

## Changes of Coefficients for Special Forms of Reams.

| Kind of Beam. | Coefficient for Safe Load. | Coefficient for Deflec. tion. |
| :---: | :---: | :---: |
| Fixed at one end, loaded at the other. | One fourth of the coeffcient, col. II. | One sixteenth of the coefficient of col. IV. |
| Fixed at one end, load evenly distributed. | One fourth of the coeffcient of col. III. | Five forty-eighths of the coefficient of col. V. |
| Both ends rigidly fixed, or a continuous beam, with a load in middle. | Twice the coefficient of col. II. | Four times the coefficient of col. IV. |
| Both ends rigidly fixed, or a continuous beam, with load evenly distributed. | One and one-half times the coefficient of col. III. | Five times the coefficient of col. V. |

## ELASTLC RESHLIENCE.

In a rectangular beam tested by transverse stress, supported at the ends and loaded in the middle,

$$
\begin{aligned}
P & =\frac{2}{3} \frac{R b d^{2}}{l} ; \\
\Delta & =\frac{1}{4} \frac{P l^{3}}{E v d^{3}} ;
\end{aligned}
$$

in which, if $P$ is the load in pounds at the elastic limit, $R=$ the modulus of transverse strength, or the strain on the extreme fibre, at the elastic limit. $E=$ modulus of elasticity, $\Delta=$ deflection, $l, b$, and $d=$ length, breadth, and depth in inches. Substituting for $P$ in (2) its value in (1), we have

$$
\Delta=\frac{1}{6} \frac{R l^{2}}{E d^{\circ}}
$$

The elastic resilience $=$ half the product of the load and deflection $=1 / 2 P \Delta$, and the elastic resilience per cubic inch

$$
=\frac{1}{2} \frac{P \Delta}{l b d} .
$$

Substituting the values of $P$ and $\Delta$, this reduces to elastic resilience per cubic inch $=\frac{1}{18} \frac{R^{2}}{E}$, which is independent of the dimensions; and therefore the elastic resilience per cubic inch for transverse strain may be used as a modulus expressing one valuable quality of a material.
Similarly for tension:
Let $P=$ tensile stress in pounds per square inch at the elastic limit;
$e=$ elongation per unit of length at the elastic limit;
$E=$ modulus of elasticity $=P \div e$; whence $e=P \div E$.
Then elastic resilience per cubic inch $=1 / 2 Y^{\prime} e=\frac{1}{2} \frac{P^{2}}{E}$.

## BEAIS OF UNIFORII STRENGTH THEROUGHIOUT THEER LENGTH.

The section is supposed in all cases to be rectangular throughout. The beams shown in plan are of uniform depth throughout. Those shown in olevation are of uniform breadth throughout.
$B=$ ireadth of beam. $D=$ deptli of beam.


Fixed at one end, loaded at the other; curve parabola, vertex at loaded end; $B D^{2}$ proportional to distance from loaded end. The beam may be reversed, so that the upper edge is parabolic, or both edges may be parabolic.

Fixed at one end, loaded at the other; triangle, apex at loaded end; $B D^{2}$ propor; tional to the distance from the loaded end.
Fixed at one end; load distributed; triangle, apex at unsupported end; $B D^{2}$ proportional to square of distance from unsupported end.

Fixed at one end; load distributed; curves two parabolas, vertices touching each other at unsupported end; $B D^{2}$ proportional to distance from unsupported end.
Supported at both ends; load at any one point; two parabolas, vertices at the points of support, bases at point loaded; $B D^{2}$ proportional to distance from nearest point of support. The upper edge or both edges may also be parabolic.
Supported at both ends; Joad at any one point; two triangles, apices at points of support, bases at point loaded; $B D^{2}$ proportional to distance from the nearest point of support.
Supported at both ends; load distributed: curves two parabolas, vertices at the middle of the beam; bases centre line of beam; $B D^{2}$ proportional to product of distances from points of support.

Supported at both ends; load distributed; curve semi-ellipse; $B D^{2}$ proportional to the product, of the distances from the points of support.

#  Explanation of Tables of the Properties of I Beams, Channels, Angles, Deckebeams, Bulb Angles, $Z$ Bars, Tees, Trongh and Coringated Plates. 

(Tne Carnegie Steel Co., Limited.)

The tables for I beams and channels are calculated for all standard weights to which each pattern is rolled. The tables for deck-beams and angles are calculated for the minimum and maximum weights of the various shapes, while the properties of $Z$ bars are given for thicknesses differing by $1 / 16$ inch.

For tees, each shape can be rolled to one weight only.
Column 12 in the tables for I beanis and channels, and column 9 for deck-beams, give coefficients by the help of which the safe, uniformly distributed load may be readily determined. To do this, divide the coefficient given by the span or distance between supports in feet. If the weight of the deck-beams is intermediate between the minimmm and maximum weights given, add to the coefficient for the minimum weight the value given for one pound increase of weight multiplied by the number of pounds the section is heavier than the minimum.
If a section is to be selected (as will usually be the case), intended to carry a certain load for a lengtll of span already determined on, ascertain the coefficient which this load and span will require, and refer to the table for a section having a coefficient of this value. The coefficient is obtained by multiplylng the load, in pounds miformly distributed, by the span length in feet.
In case the load is not nniformly distributed, but is concentrated at the middle of the span, multiply the load by 2 , and then consider it as uniformly distributed. The deflection will be $8 / 10$ of the deflection for the latter load.
For other cases of loading obtain the bending moment in ft .-lbs.; this multiplied by 8 will give the coefficient required.
If the loads are quiescent, the coefficients for a fibre stress of $16,000 \mathrm{lbs}$. per square inch for steel may be used; but if moving loads are to be provided for, a coefficient of $12,500 \mathrm{lbs}$. shonld be taken. Inasmuch as the effects of impact may be very considerable (the stresses produced in an unyielcing inelastic material by a load suddenly applied being double those produced by the same load in a quiescent state), it will sometimes be advisable to use still smaller fibre stresses than those given in the tables. In such cases the coefficients may be determined by proportion. Thus, for a fibre stress of $8,000 \mathrm{lbs}$. per square inch the coefficient will equal the coefficient for 16,000 lbs. fibre stress, from the table, divided by 2 .
The section moduli, column 11, are used to determine the fibre stress per square inch in a bean, or other shape, subjected to bending or transverse stresses, by simply dividing the bending moment expressed in inch-pounds by the section modulus.

In the case of Thapes with the neutral axis parallel to the flange, there will be two section moduli, and the smaller is given. The fibre stress calculated from it will, therefore, give the larger of the two stresses in the extreme fibres, since these stresses are equal to the bending moment divided by the section modulus of the section.

For Z bars the coefficients (C) nay be applied for cases where the bars are snbjected to transverse loading, as in the case of roof-purlins.

For angles, there will be two section modnli for each position of tbe neutral axis, since the distance between the nentral axis and the extreme fibres has a different value on one side of the axis from what it has on the other. The section modulus given in the table is the smaller of these two values.

Column 12 in the table of the properties of standard channels, giving the distance of the center of gravity of channel from the outside of web, is used to obtain the radius of gyration for columns or struts consisting of two channels latticed, for the case of the nentral axis passing through the centre of the cross-section parallel to the webs of the channels. This radius of gyration is equal to the distance between the centre of gravity of the channel and the centre of the section, i.e., neglecting the monents of inertia of the channels aronnd their own axes, thereby introducing a slight error on the side of safety.
(For much other important information concerning rolled structural shapes, see the "Pocket Companion" of The Carnegie Steel Co., Limited, Pittsburg, Pa., price \$2.)

Properties of Curnegie Standard reams-steol.

$L=$ safe loads in los., uniformly distributed: $l=$ span in feet;
$M=$ moment of forces in $\mathrm{ft} .-\mathrm{lbs} . ; C=$ coefficient given above.
$L=\frac{C}{l} ; \quad M=\frac{C}{8} ; \quad C=L l=8 M=\frac{8 f S}{17} ; \quad f=$ fibre stress.

Properties of Special I Beams-Steel.

| 1 | $\pm$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left\|\begin{array}{c} \text { g } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$ |  | $\begin{aligned} & .0 \\ & 0.3 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & E \end{aligned}$ |  |  |  |  |  |  |  |
|  | in. | lbs. | sq. in | in. | in. | 1 | $I^{\prime}$ | $r$ | $r$ | $S$ | C |
| B2 | $\because 0$ | 100 | 29.41 | 0.88 | 7.28 | 1655.8 | 52. 65 | 7.50 | 1.34 | 165.6 | 1766100 |
|  |  | 95 | $2{ }^{2} .94$ | 0.81 | 7.21 | 16068 | 50.78 | 7.58 | 1.35 | 160.7 | 1713900 |
|  | " | 90 | 26.47 | 0.74 | 7.14 | 1557.8 | 48.98 | 7.67 | 1.36 | 155.8 | 1661500 |
| " | " | 85 | 25.00 | 0.66 | 7. 06 | 1508.7 | 47.25 | 7.77 | 1.34 | 150.9 | 1609300 |
|  |  | 80 | 123.73 | 0.60 | 7.00 | 1466.5 | 45.81 | 7.86 | 1.39 | 146.7 | 15643.00 |
| B4 | 15 | 100 | $\because 9.41$ | 1.18 | 6.76 | 900.5 | 50.98 | 5.53 | 1.31 | 120.1 | 1280700 |
|  |  | 95 | 2". 94 | 1.08 | 6.67 | $8 \% .9$ | 48.37 | 5.59 | 1.32 | 116.4 | 1241500 |
| ' | " | 90 | 26.47 | 0.99 | 6.58 | 845.4 | 45.91 | 5.65 | 1.32 | 112.7 | 120:300 |
| " |  | 85 | 25.00 | 0.89 | 6.48 | 817.8 | 43.57 | 5.72 | 1.32 | 109.0 | 1163000 |
|  |  | 80 | 23.81 | 0.81 | 6.40 | 795.5 | 41.76 | 5.78 | 1.32 | 106.1 | 1131300 |
| B5 | 15 | 75 | $2 \geqslant .06$ | 0.88 | 6.29 | 691.2 | 30.68 | 5.60 | 1.18 | $9: 2$ | 983000 |
|  |  | \% 0 | 20.59 | 0.88 | 6.19 | 663.6 | 29.00 | 5.68 | 1.19 | 88.5 | 943800 |
| " | - | 65 | 19.12 | 0.59 | 6.10 | 636.0 | 27.42 | 577 | 1.20 | 84.8 | 904600 |
|  |  | 60 | 17.67 | 0.59 | 6.00 | 609.0 | 25.96 | 5.87 | 1.21 | 81.2 | 866100 |
| B8 | 12 | 55 | 16.18 | 0.82 | 5.61 | $3: 1.0$ | 17.46 | 4.45 | 1.04 | 53.5 | $5 \% 0600$ |
|  |  | 50 | 14.71 | 0.70 | 5.49 | 303.3 | 16.12 | 4.54 | 1.05 | 50.6 | 539200 |
| " |  | 45 | 13.24 | 0.58 | 5.37 | 288.7 | 14.89 | 4.65 | 1.06 | 47.6 | 507900 |
|  |  | 40 | 11.84 | 0.46 | 5.25 | 268.9 | 13.81 | 4.77 | 1.08 | 44.8 | 478100 |

Properties of Cariegie Trough Plates-Steel.

| Section Index. | $\begin{gathered} \text { Size, } \\ \text { in } \\ \text { Inches. } \end{gathered}$ | $\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Foot. } \end{gathered}$ | Area of Sec tion. | Thickness in Inches. | Moment of Inertia, Neutral Axis Parallel to Length. | Section Modulus Axis as before. | Radius of Gyra tion, Axis as before. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | lbs. | sq. in. |  | ${ }_{3}$ | S | r |
| M10 | 919 $\times 334$ | 16.32 | 5.3 | $9 / 16$ | 3.68 | 1.38 | 0.91 |
| M11 | $91.2 \times 3.4$ | $18.0{ }^{\text {a }}$ | 5.8 | 9/16 | 4.13 | 1.57 | 0.91 |
| M13 | $91 / 2 \times$ | 21.42 |  |  | 4.81 | 1.75 | 0.90 |
| M13 | $932 \times 334$ | 21.42 | 6.3 | 11/10 | 5.02 5.46 | 1.96 | 0.90 |
| M14 | $91 \% \times 3 \% 4$ | 23.15 | 6.8 | 3/4 | 5.46 | 2.15 | 0.90 |

Properties of Carnegie Corrugated Plates-Steel.

| Section Index. | $\begin{gathered} \text { Size, } \\ \text { zn } \\ \text { Inches. } \end{gathered}$ | $\begin{gathered} \text { Weight } \\ \text { per } \\ \text { Foot. } \end{gathered}$ | Area of Sec tion. | Thickness in Inches. | Moment of Inertia, Neutral Axis Parallel to Length. | Section Modulus, Axis as before. | Radius of Gyration, Axis as before. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{8}^{1 \mathrm{lbs} .}$ | sq. in. |  | ${ }_{0.64}^{1}$ | ${ }_{0}^{S}$ |  |
| M130 | $\begin{array}{ll}83 / 4 & \times 11 \\ 83 / 4 & \times 11\end{array}$ | 8.06 10.10 | 2.4 3.0 | 1/4/16 | 0.64 0.95 | 0.80 1.13 | 0.52 0.57 |
| M3: | $83 / 4 \times 11 / 8$ | 12.04 | 3.5 | $3 / 8$ | 1.25 | 1.42 | 0.62 |
| M33 | $123 / 16 \times 23$ | 1\%.75 | 5.2 | 號 | 4. 99 | 3.33 | 0.96 |
| M34 | $123 / 16 \times 93 / 4$ | 20.71 | 6.1 | 7/16 | 5.81 | 3.90 | 0.98 |
| M35 | $123 / 16 \times 23 / 4$ | 23.67 | 70 | 12 | 6.82 | 4.46 | 0.99 |


| ~ |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { H } \\ & \text { ※ } \end{aligned}$ | 枵宜 |  <br>  |
| $\stackrel{H}{i}$ | 皆它它 |  |
| $\stackrel{\stackrel{\rightharpoonup}{4}}{\stackrel{1}{2}}$ | $\stackrel{\circ}{\circ} \mathrm{C} \dot{\theta}$ |  <br>  |
| $\stackrel{\text { Hi }}{\mathbf{i}}$ | $\stackrel{\sim}{\square}$ |  <br>  |
| $\underset{\text { in }}{\substack{\text { in }}}$ | $\stackrel{\text { 号 }}{\sim}$ |  |
|  |  |  |
| i |  |  |
| + + | $\stackrel{6}{8}$ |  <br>  |
| $\begin{gathered} \text {-i } \\ \stackrel{\text { Br }}{2} \end{gathered}$ | $\stackrel{\text { ¢ }}{\text { cien }}$ |  |
|  |  |  <br>  |
|  |  |  |
| $\begin{aligned} & \text { - } \\ & \text { in } \\ & \text { in } \end{aligned}$ | 皆 |  |
|  |  |  |
|  | $\begin{aligned} & \text { ang } \\ & =0.0_{0}^{0} \\ & \infty \end{aligned}$ |  |
| $\stackrel{\text { rin }}{\substack{\text { in }}}$ | $\begin{aligned} & \text { er } \\ & \stackrel{8}{8} \end{aligned}$ |  <br>  |
| － | 宽 |  <br>  |
|  |  |  <br>  |
| － | $\begin{aligned} & \text { ex } \\ & \stackrel{0}{0} \end{aligned}$ | に雨 <br>  |
| －ұәәя u！ S7．1oddns чәวм»วя әจивาร！ |  |  |


| Distance between | $24^{\prime \prime}$ I. | $20^{\prime \prime}$ |  | $18^{\prime \prime}$ I. |  | $15^{\prime \prime} \mathrm{I}$. |  | $12^{\prime \prime}$ |  | $10^{\prime \prime} \mathrm{I}$ | Distance | $9^{\prime \prime} \mathrm{I}$. | $8^{\prime \prime}$ I. | $\tau^{\prime \prime}$ I. | $6^{\prime \prime}$ I. | $5^{\prime \prime} \mathrm{I}$. | $4^{\prime \prime}$ I. | $3^{\prime \prime} \mathrm{I}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supports in Feet. | 80 lbs . | 80 lbs. Special. | 651 bs. | 55 lbs . | S0lbs. Special. | 601 bs. Special. | 42 lbs . | 40 lbs . Special. | $\begin{aligned} & 31.5 \\ & \text { lbs. } \end{aligned}$ | 25 lbs. | Supports in Feet. | 21 lbs. | 18 lbs. | 15 lbs. | $\begin{aligned} & 12.25 \\ & \text { lbs. } \end{aligned}$ | 9.75 lbs. | \% $\begin{gathered}\text { T. } \\ \text { libs. }\end{gathered}$ | $\begin{aligned} & 5.5 \\ & \text { lbs. } \end{aligned}$ |
| 12 | 128.9 | 108.6 | 86.6 | 65.5 | \%8.6 | 60.1 | 43.6 | 33.2 | 26.6 | 18.1 | 5 | 80.5 | 60.7 | 44.2 | 31.0 | 20.6 | 12.7 | 7.0 |
| 13 | 109.8 | 92.6 | 73.8 | 55.8 | 67.0 | 51.3 | 37.2 | 28.3 | 29.7 | 15.4 | 6 | 55.9 | 42.1 | $30 . \%$ | 21.5 | 14.3 | 8.8 | 4.9 |
| 14 | 94.7 | \%9.8 | 63.7 | 48.1 | 57.7 | 44.2 | 32.1 | 24.4 | 19.6 | 13.3 | 7 | 41.1 | 31.0 | 22.5 | 15.8 | 10.5 | 6.5 | 3.6 |
| 15 | 82.5 | 69.5 | 55.5 | 41.9 | 50.3 | 38.5 | $2 \% .9$ | 21.3 | $1 \% .1$ | 11.6 | 8 | 31.5 | 23.7 | 17.3 | 12.1 | 8.1 | 5.0 | 2.8 |
| 16 | \%2.5 | 61.1 | 48.7 | 36.8 | 44.2 | 33.8 | 24.5 | 18.7 | 15.0 | 10.2 | 9 | 24.9 | 18.7 | 13.6 | 9.6 | 6.4 | 3.9 | 2.2 |
| 17 | 64.2 | 54.1 | 43.2 | 32.6 | 39.2 | 30.0 | 21.7 | 16.5 | 13.3 | 9.0 | 10 | 20.1 | 15.2 | 11.1 | 7.8 | 5.2 | 3.2 | 1.8 |
| 18 | 57.3 | 48.3 | 38.5 | 29.1 | 34.9 | 26.7 | 19.4 | 14.8 | 11.8 | 8.0 | 11 | 16.6 | 12.5 | 9.1 | 6.4 | 4.3 | $\stackrel{\sim}{2} .6$ | 1.5 |
| 19 | 51.4 | 43.3 | 34.6 | 26.1 | 31.3 | 24.0 | 17.4 | 13.2 | 10.6 | 7.2 | 12 | 14.0 | 10.5 | 7.7 | 5.4 | 3.6 | ~. $\sim$ | 1.2 |
| 20 | 46.4 | 39.1 | 31.2 | 23.6 | 28.3 | 21.7 | 15.7 | 32.0 | 9.6 | 6.5 | 13 | 11.9 | 9.0 | 6.5 | 4.6 | 3.1 | 1.9 | 1.0 |
| 21 | 42.1 | 35.5 | 28.3 | 21.4 | 25.7 | 19.6 | 14.2 | 10.8 | 8.7 | 5.9 | 14 | 10.3 | 7.7 | 5.6 | 4.0 | 2.6 | 1.6 | 0.9 |
| 22 | 38.4 | 32.3 | 25.8 | 19.5 | 23.4 | 17.9 | 13.0 | 9.9 | 7.9 | 5.4 | 15 | 9.0 | 6.7 | 4.9 | 3.4 | 2.3 | 1.4 |  |
| 23 | 35.1 | 29.6 | 23.6 | 17.8 | 21.4 | 16.4 | 11.9 | 9.0 | 7.3 | 4.9 | 15 | 9.0 | 0.1 | 4.9 | 3.4 | 2.3 | 1.4 | .... |
| 24 | 32.2 | 27.2 | 21.7 | 16.4 | 19.6 | 15.0 | 10.9 | 8.3 | 6.7 | 4.5 | 16 | 7.9 | 5.9 | 4.3 | 3.0 | 2.0 | 1.2 | $\ldots$ |
| 25 | 23.7 | 25.0 | 20.0 | 15.1 | 18.1 | 13.9 | 10.1 | 7.7 | 6.1 | 4.2 | 17 | 7.0 | 5.3 | 3.8 | 2.7 | 1.8 | 1.1 |  |
| 26 | $2 \hat{1} .5$ | 23.1 | 18.5 | 13.9 | 16.7 | 12.8 | 9.3 | 7.1 | 5.7 | 3.9 | 18 | 6.2 | 4.7 | 3.4 | 2.4 | 1.6 | . 98 | . |
| 27 | 25.5 | 21.5 | 171 | 12.9 | 15.5 | 11.9 | 8.6 | 6.6 | 5.9 | 3.6 | 19 | 5.6 | 4.2 | 3.1 | 2.2 | 1.4 |  |  |
| 28 | 23.7 | 20.0 | 15.9 | 12.0 | 14.4 | 11.0 | 8.0 | 6.1 | 4.9 | 3.3 | 20 | 5.0 | 3.8 | 2.8 | 1.9 | 1.3 |  |  |
| 29 | 23.1 | 18.6 | 148 | 11.2 | 13.5 | 10.3 | 7.5 | 5.7 | 4.6 | 3.1 | 21 | 4.6 | 3.4 | 2.5 | 1.8 | 1.2 |  |  |
| 30 | 20.6 | 17.4 | 13.9 | 10.5 | 12.6 | 9.6 | 7.0 | 5.3 | 4.3 | 2.9 | 20 | 3.8 | 3.1 | 2.3 | 1.6 | 1.1 |  | . |

Properties of Standard Channels--Steel.

|  | 2 | 8 | 4 - 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 4 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$ |
|  | lbs. |  |  | $I$ | I |  |  |  |  |  |
|  | 55. | 16.18 | O 82 3.82 | 430.2 | 12.19 | 5.16 | ${ }_{.868}$ | 5 ${ }_{\text {¢ }}$. 4 | ${ }_{611900}^{C}$ | $\stackrel{x}{8}$ |
|  | 50. | 14.71 | 0.523 .72 | 402.7 | 11.22 | 5.23 | $8 \% 3$ | 53. ${ }^{\text {¢ }}$ | $5 \% 2: 00$ | . 803 |
|  | 40. | 13.24 | 0.6.2 3.62 | 375.1 | 10.29 | 5.32 | . 883 | 50.0 | 533500 | . 788 |
|  | 40. | 11.76 10.29 |  | 35.5 3.20 .5 3 | 9.39 8.48 | 5.43 | . 8903 | 46.3 | 494200 | . 783 |
|  | 33. |  | 0.40 3.40 | 3:0.0 | 8.48 | 5.58 | . 908 | 42.7 | 455000 | . 889 |
| 12 | 40. | 11.76 | 0.763.42 | 197.0 | 8.23 | 5.62 | 91 | 41.7 | 4445 | r91 |
|  | 35. | 10.29 | 0.643 .30 | 179.3 | 5.90 | 4.09 4.18 | . 751 | 32.8 | 350200 | . 722 |
|  | 30. | 8.82 | 0.51.3.1\% | 161.7 | 5.21 | 4.28 | \%68 | ${ }_{26}^{29.9}$ | 318800 |  |
|  | 25. | 7.35 | 0.393.05 | 144.0 | 4.53 | 4.43 | . 785 | 24.0 | 256100 | 677 |
|  | 20.5 | 603 | . 282.94 | 128.1 | 3.91 | 4.61 | 805 | 21.4 | 227800 | 668 .604 |
| 10 | 35. | 10.29 | 0.823 .18 | 115.5 | 4.66 | 3.35 | 6\% | 23.1 | 2216400 | . 695 |
|  | 30. | 8.83 | 0.68,3.04 | 103.2 | 3.99 | 3.42 | .672 | 20.6 | 220300 | . 651 |
|  | 25. | 7.350 | 0.532.89 | 91.0 | 3.40 | $3.5 \cdot$ | . 680 | 18.2 | 194100 | . 620 |
|  | 20. | 5.88 | 0.382 .74 | 78.7 | 2.85 | 3.66 | . 696 | 15.7 | 168000 | . 609 |
|  | 15. | 4.46 | 0.242 .60 | 66.9 | 2.30 | 3.87 | . 118 | 13.4 | 142 \%00 | . 639 |
| 9 | 25. | 7.350 | 0.612 .81 | \%0.7 | 2.98 | 3.10 | . 637 | 15.7 | $16 \sim 600$ | . 615 |
|  | 20. | 5.880 | 0.45 2.65 | 60.8 | 2.45 | 3.21 | . 646 | 13.5 | 144100 | . 585 |
|  | 15. | 4.410 | 0.29 2. 49 | 50.9 | 1.95 | 3.40 | 665 | 11.3 | 120500 | . 590 |
|  | 131/4 | 3.89 | 0.232 .43 | 47.3 | 1.77 | 3.49 | . $6{ }^{6} 4$ | 10.5 | 112200 | . 607 |
|  | 1814 | 6.25 | 582.62 | 47.8 | 2.25 | 2.71 | . 600 | 11.9 | $12 \sim 400$ | . 587 |
|  | 161/4 | 4.78 | - 0.402 .44 | 49.8 39.9 | 1.78 | 2.83 | . 6103 | 11.0 | 116900 | . 567 |
|  | 133/4 | 4.040 | 0.312 .35 | 36.0 | 1.55 | $\stackrel{3.88}{2.98}$ | . 619 | 10.0 9.0 | 106400 96000 |  |
|  | 111/4 | 3.3510 | 0.22,2.26 | 32.3 | 1.33 | 3.11 | . 630 | 8.1 | 96000 86100 | ${ }^{.557}$ |
| 7 | $193 / 4$ | 5.81 | $0.63,2.51$ | 33.2 | 1.85 | 2.39 | . 565 | 9.5 | 101100 | . 583 |
|  | 1714 | 5.070 | 0.532 .41 | 30.2 | 1.6 .2 | 2.44 | . 561 | 8.6 | 92000 | . 55 |
|  | 1234 | 4.34 | 0.42 2. 30 | 27.2 | 1.40 | $\stackrel{2}{2.50}$ | . 568 | 7.8 | 88800 | . 535 |
|  | 19144 | ${ }^{3.60} 80$ | 0.32 0.212 .20 0.29 | 24.2 | 1.19 | $\stackrel{2.59}{8.20}$ | . 545 | 6.9 | \% 3700 | . $5: 8$ |
| , | 15.5 | 4.56 | 0.562 .28 | 19.5 | 1.29 | $2.18{ }^{\text {2 }}$ | .586 .529 | 6.0 | 668 | . 546 |
|  | 13. | 3.820 | 0.442 .16 | 17.3 | 1.07 | 2.13 | . 529 | 6.5 5.8 | 69500 | 5 |
|  | 10.5 | 3.090 | 0.3:2.04 | 15.1 | 0.88 | 2.21 | . 534 | 5.8 | 61000 53800 | . 503 |
|  | 8. | 2.380 | 0.201 .92 | 13.0 | 0.6 | 2.34 | . 542 | 4.3 | 46:00 | . 50.3 |
| 5 | 11.5 | 3.380 | 0.482 .04 | 10.4 | 0.82 | 1.75 | . 493 | 4.2 | 44400 | . 508 |
|  | 9. | 2.650 | 0.331 .89 | 8.9 | 0.64 | 1.83 | . 493 | 3.5 | 37900 | . 481 |
|  | ${ }_{7}^{6.5}$ | 1.950 | $0.191 .{ }^{15}$ | 7.4 | 0.48 | 1.95 | . 498 | 3.0 | 31600 | 489 |
| 4 | \%1/4 | 2.130 | 0.321 .32 | 4.6 | 0.44 | 1.46 | . 455 | 23 | 24400 | .463 |
|  | $61 / 4$ | 1.840 | 0.251 .65 | 4.8 | 0.38 | 1.51 | . 454 | 2.1 | 22300 | . 458 |
| " | 51/4 | 1.550 | 0.181 .58 | 3.8 | 0.32 | 1.56 | . 45.3 | 1.9 | 20:00 | . 464 |
| 3 | 6. 5. | 1.660 1.470 | $\begin{array}{lll}0.36 & 1.60 \\ 0.26 & 1.50\end{array}$ | 2.1 | 0.31 | 1.08 | . 421 | 1.4 | 14700 | . 459 |
|  |  | 1.190 |  | 1.8 | 0.85 | 1.12 | . 415 | 1.2 | 13100 | . 443 |
|  | 4. | 1.190 | $0.17 \mid 1.41$ | 1.6 | 0.20 | 1.17 | . 409 | 1.1 | 11600 | . 443 |

$L=$ safe load in lbs., uniformly distributed; $l=$ span in feet;
$M=$ moment of forces in $\mathrm{ft}$. .lbs.; $C=$ coefficient given above.
$L=\frac{C}{l} ; \quad M=\frac{C}{8} ; \quad C=L l=8 M=\frac{8 f S}{12} ; \quad f=$ fibre stress.

Carnegie Deck-beanns.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| in. | lbs. | sq.in. | in. | in. | I | $S$ | $r$ | $C$ | $I^{\prime}$ |  |
| 10 | 35. 0 | 10.5 | . 63 | 5.50 | 139.9 | 25.7 | 3.64 | $2 \% 4100$ | 7.41 | 0.84 |
| 10 | 27.23 | 8.0 | . 38 | 5.25 | 118.4 | 21.2 | 3.83 | 226100 | 6.12 | 0.87 |
| 9 | 30.00 | 8.8 | . 5 r | 5.07 | 93.2 | 19.6 | 3.25 | 208500 | 5.18 | 0.75 |
| 9 | 26.00 | T. 6 | . 44 | 4.94 | 85.2 | $17 . \%$ | 3.35 | 18:100 | 4.61 | 0.76 |
| 8 | 24.48 | 7.2 | . 4 ri | 5.16 | 62.8 | 14.1 | 2.97 | 150100 | 4.45 | 0.79 |
| 8 | 20.15 | 5.9 | . 31 | 5.00 | 55.6 | 12.2 | 3.08 | 129800 | 3.90 | 0.82 |
| 7 | 23.46 | 6.9 | . 54 | 5.10 | 45.5 | 11.7 | 2.57 | 124600 | 4.30 | 0.79 |
| 7 | 18.11 | 5.3 | 31 | 4.81 | 38.8 | 9.7 | 2.70 | 103000 | 3.55 | 0.82 |
| 6 | 18.36 | 5.4 | . 43 | 4.53 | 26.8 | 8.2 | 2.25 | 8700 | 2.13 | 0.72 |
| 6 | 15.3C | 4.5 | . 28 | 4.38 | 24.0 | 7.3 | 2.33 | Tr400 | 2.38 | 0.43 |

Add to coefficient $C$ for every lb. increase in weight of beam, for 10 -in. beams, $4900 \mathrm{lbs} . ; 9$-in., $4500 \mathrm{lbs} . ; 8$-in., $4000 \mathrm{lbs} . ; 7$-in., $3400 \mathrm{lbs} ., 6$-in., 3000 lbs.

Carnegie ibulb Angles.

| 10 | 126.50 | 8.80 | . 48 | 3.5 | 104. ${ }^{\text {a }}$ | 19.9 | 3.66 | $211 \% 00$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 21.80 | 6.41 | . 44 | 3.5 | 69.3 | 14.5 | 3.33 | 154200 |  |  |
|  | 19.23 | 5. 66 | . 41 | 3.5 | 48.8 | 11.7 | 2.95 | 124800 |  |  |
| 7 | 18.25 | 5.37 | . 44 | 3.0 | 34.9 | 9.6 | 2.56 | $10 \gtrsim 300$ |  |  |
| 6 | 17.20 | 5.06 | . 50 | 3.0 | 23.9 | 7.6 | 2.16 | 80500 |  |  |
|  | 13.75 | 4.04 | . 38 | 3.0 | 20.1 | 6.6 | 2.21 | $\% 0400$ |  |  |
| 6 | 12.30 | 3.62 | . 31 | 3.0 | 18.6 | 5.7 | 2.28 | 60400 |  |  |
| 5 | 10.00 | 2.94 | . 31 | 2.5 | 10.2 | 4.1 | 1.86 | 43300 |  |  |

Cariegie T Shapes.


Carnegie $\mathbf{T}$ shapes-(Continued).

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| $4 \times 216$ | $\overline{7} \mathrm{lbs}$ |  |  |  | ${ }_{0}{ }_{0}$ | 0.r0 | 18 | ${ }^{\text {S }}$ | $r^{\prime}$ | 80 |
| $4 \times 1.12$ | 5.8 | 1.71 | ${ }_{0} 0.56$ | 1.0 0.81 0.8 |  | $0 . \% 0$ | 1.8 | 0.88 0.71 | 0.91 | 4380 3350 |
|  | 7.9 | 2.31 | 0.48 | 0.60 | 0.40 | 0.52 | 2.1 | 0.81 1.05 | 0.94 0.96 | 3350 3180 |
| - | 6.6 | 1.95 | 0.51 | 0.54 | 0.34 | 0.51 | 1.8 | 0.88 | 0.95 | 2r00 |
| $31 / 2 \times 4$ | 198 | 3.75 | 1.25 | 5.5 | 1.98 | 1.21 | 1.89 | 1.08 | $0 . \%$ | $158 \% 0$ |
| $31 / 2 \times 4$ | 9.9 | $\stackrel{2}{2} .91$ | 1.19 | 4.3 | 1.55 | 1.22 | 1.42 | 0.81 | 0.70 | 12380 |
| $31 / 2 \times 31 / 2$ | 11.7 | 3.45 | 1.06 | 3. $\%$ | 1.52 | 1.04 | 1.89 | 1.08 | 0.64 | 12000 |
| $31 / 2 \times 31 / 2$ | 9.2 | 2.70 | 1.01 | 3.0 | 1.19 | 1.05 | 1.42 | 0.81 | 0.73 | 9530 |
| $31.9 \times 31 / 2$ | ${ }_{11}{ }^{-8}$ | 2.04 | 0.98 | $\stackrel{2}{9} \cdot 8$ | 0.93 | 1.19 | 1.07 | 0.61 | 0.73 | \%450 |
| 319 $\times 3$ | 11.73 | $3.45$ | 1.01 | $\stackrel{2}{2.9}$ | 1.43 | 0.92 | 1.74 | 1.00 | 0.72 | $114 \% 0$ |
| $31 / 2 \times 3$ $31 / 2 \times 3$ | 10.9 8.5 | 3.21 2.49 |  | $\stackrel{2}{1.4}$ | 1.13 | 0.87 | 1.88 | 1.08 | 0.77 | 9050 |
| $31.2 \times 3$ | 7.8 | 2.28 | 0.78 | 1.9 | 0.88 0.7 | 0.88 0.89 | 1.41 1.18 | 0.81 0.68 | 0.75 0.76 | 7040 590 |
| $3 \times 4$ | 11.8 | 3.48 | 1.32 | 5.2 | 1.94 | 1.23 | 1.21 | 0.68 | 0.76 0.59 | 5190 |
| $3 \times 4$ | 10.6 | 3.12 | 1.32 | 4.8 | 1.78 | 1.25 | 1.09 | 0.72 | ${ }_{0} 0.60$ | $142 \% 0$ |
| $3 \times 4$ | 9.3 | 2.73 | 1.29 | 4.3 | 1.57 | 1.26 | 0.93 | 0.62 | 0.59 | 12540 |
| $3 \times 31 / 2$ | 10.9 | 3.21 | 1.12 | 3.5 | 1.49 | 1.06 | 1.20 | 0.80 | 0.62 | 11910 |
| 3 $\times$ $\times 31 / 2$ | 8.8 | 2.88 | 1.11 | 3.3 | 1.37 | 1.08 | 1.31 | 0.88 | 0.68 | 10990 |
| $3 \times 31 / 2$ 3 | 8.5 | 2.49 | 109 | 2.9 | 1.21 | 1.09 | 0.93 | 0.62 | 0.61 | 9680 |
| 3 $\times 3$ <br> 3 $\times 3$ | 10.0 9.1 | $\underset{2}{2.94}$ | 0.93 | 2.3 | 1.10 | 0.88 | 1.20 | 0.80 | 0.64 | 8780 |
| $3 \times 3$ 3 | 7.8 | 2.28 | 0.82 | 2.1 | 1.01 0.86 | 0.90 0.90 | 1.08 0.90 | 0.72 0.60 | 0.64 | 8110 |
| $3 \times 3$ | 6.6 | 1.95 | 0.86 | 1.6 | 0.74 | 0.90 | 0.75 | ${ }_{0}^{0.60}$ | 0.63 0.62 | 6900 5900 |
| $3 \times 21 / 2$ | 7.2 | 2.10 | 0.71 | 1.1 | 0.60 | 0.72 | 0.89 | 0.60 | 0.66 | 4800 |
| $3 \times 21$ | ${ }_{6}^{6.1}$ | 1.80 | 0.68 | 0.94 | 0.52 | 0.73 | 0.75 | 0.50 | 0.65 | 4100 |
| $23 / 4 \times 2$ | 7.4 | 2.16 | 0.53 | 1.1 | 0.75 | 0.71 | 0.62 | 0.45 | 0.54 | 6000 |
| $23 / 4 \times 13 / 4$ | ${ }^{6} .6$ | 1.95 | 0.64 | 0.56 | 0.50 | 0.53 | 0.61 | 0.44 | 0.56 | 4000 |
| $21 / 2 \times 3$ $21 \% 3$ | 7.2 | 2.10 | 0.97 | 1.8 | 0.87 | 0.92 | 0.54 | 0.43 | 0.51 | 6960 |
| 21/2 $\times 3$ | 6.1 | 1.80 | 0.92 | 1.6 | 0.76 | 0.94 | 0.44 | 0.35 | 0.51 | 6110 |
| $212 \times 234$ | 6.7 5.8 | 1.98 | 0.87 0.83 | 1.4 1.2 | 0.60 | 0.84 0.83 | 0.66 0.44 | 0.53 0.35 | 0.58 0.51 | 5860 |
| $21 / 2 \times 21 / 2$ | 6.4 | 1.89 | 0.76 | 1.0 | 0.59 | 0.74 | 0.53 | +0.42 | ${ }_{0}^{0.51}$ | 4800 |
| ${ }^{21} 12 \times 216$ | 5.5 | 1.62 | 0.74 | 0.87 | 0.50 | 0.74 | 0.44 | 0.35 | 0.52 | 4000 |
| $21 / 2 \times 114$ | 2.9 | 0.84 | 0.29 | 0.094 | 0.09 | 0.31 | 0.29 | 0.23 | 0.58 | r00 |
| $214 \times 214$ | 4.9 | 1.44 | 0.69 | 0.66 | 0.42 | 0.68 | 0.33 | 0.30 | 0.48 | 3360 |
| $21 / 4 \times 21 / 4$ | 4.1 | $1.201$ | 0.66 | 0.51 | 0.32 | 0.67 | 0.25 | 0.22 | 6.47 | 2600 |
| 2 $\times 2$ $\times 2$ $\times 2$ | 4.3 3.7 | 1.26 1.08 | 0.63 0.59 | 0.45 0.36 | 0.33 0.25 | 0.60 | 0.23 | 0.23 | 0.43 | 2610 |
| $\times 11 / 2$ | 3.1 | 0.90 | 0.42 | 0.36 0.16 | 0.25 0.15 | 0.60 0.42 | 0.18 0.18 | 0.18 0.18 | 0.42 | 2000 1000 |
| $13 / 4 \times 13 / 4$ | 3.1 | 0.90 | 0.54 | 0.23 | 0.19 | 0.51 | 0.12 | 0.18 0.14 | 0.45 0.37 | 1200 1550 |
| $134 \times 114$ | 3.6 | 1.050 | 0.91 | 0.12 | 0.15 | 0.33 | 0.19 | 0.22 | 0.41 | 1150 |
| $134 \times 11$ | 1.94 | 0.57 | 0.33 | 0.07 | 0.08 | 0.35 | 0.09 | 0.11 | 0.40 | $6: 2$ |
| 11\% $11 / 2$ | 2.6 1.84 | 0.75 0.54 | 0.42 | 0.15 | 0.14 | 0.49 | 0.08 | 0.10 | 0.34 | 1150 |
| 11/2 $\times 11 / 2$ | 1.84 3.0 | 0.54 | 0.44 0.40 | 0.11 0.10 | 0.11 | 0.45 | 0.06 | 0.07 | 0.31 | 860 |
| $11 / 2 \times 11 / 4$ | 2.24 | 0.66 | 0.38 | 0.09 | 0.10 | 0.35 0.36 | 0.10 0.08 | 0.13 0.10 | 0.34 0.34 | 940 |
| $11 / 2 \times 11$ | 1.73 | 0.510 | 0.35 | 0.07 | 0.08 | 0.36 | 0.06 | ${ }_{0} .07$ | 0.34 0.33 | 600 |
| $11 / 2 \times 11 / 8$ | 1.33 | 0.390 | 0.35 | 0.04 | 0.05 | 0.33 | 0.03 | 0.04 | 0.29 | 420 |
| $11 / 2 \times 3 / 4$ | 1:33 | 0.390 | - 20 | 0.01 | 0.03 | 0.19 | 0.05 | 0.07 | 0.37 | 210 |
| $11 / 4 \times 11 / 4$ | 2.04 | 0.60 | . 40 | 0.08 | 0.10 | 0.36 | 0.05 | 0.07 | 0.27 | \%60 |
| $1{ }^{1 / 4 \times 11 / 4} \times 1$ | 1.58 | 0.450 | 0.38 | 0.06 0.08 | 0.07 | $03 \%$ | 0.03 | 0.05 | 0.26 | $5 ¢ 0$ |
| $\times 11 / 2$ $\times 1$ $\times 1$ | 1.12 1.23 | 0.33 0.36 | 0.50 | 0.08 0.03 | 0.08 0.05 | 0.48 0.49 | 0.91 | 0.02 | 0.19 | 605 |
| $\times 1$ | 0.87 | 0.26 | -.29 | 0.02 | 0.05 0.03 | 0.49 | ${ }_{0}^{0.02}$ | 0.04 | 0.21 | 370 |

Properties of Standard and Special Angles or Minimun and Maximum Thicknesses and Weigints．

ANGLES WITH EQUAL LEGS．

| 1 | $\because$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \dot{n} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \dot{C} \\ & \dot{B} \\ & E \end{aligned}$ |  |  | HOO |  |  |  |  |
| in． | in． |  | sq．in． | in． | $I$ | S | $r$ | $r^{\prime \prime}$ |
| $6 \times 6$ | 7／8 | 33.1 | 9.74 | 1． 8. | 31.92 | \％．64 | 1.81 | 1.17 |
| f）$\times 6$ | $r / 16$ | 17.2 | 5.06 | 1.66 | 17.65 | $4.0{ }^{\prime}$ | 1.87 | 1.19 |
| ＊5 $\times 5$ | 7／8 | ฉั．2 | 7.99 | 1.5 \％ | 17．75 | 5.17 | 1.49 | 0.98 |
| ＊ $5 \times 5$ | 3／8 | 12.3 | 3.61 | 1.39 | 8.74 | 2.42 | 1.56 | 0.99 |
| $4 \times 4$ | 13／16 | 19.9 | 5.84 | 1．89 | 8.14 | 3.01 | 1.18 | 0.80 |
| $4 \times 4$ | $5 / 16$ | 8.2 | 2.40 | 1.12 | 3.71 | 1.29 | 1.84 | 0.82 |
| $31 / 2 \times 31 / 2$ | 13／16 | 17.1 | 5.03 | 1.13 | 5.25 | 2.25 | 1.02 | 0.69 |
| $31 \% \times 31 \%$ | 3／8 | S． 5 | 2.48 | 1.01 | $2.8 \%$ | 1.15 | $1.0 \%$ | 0.70 |
| $3 \times 3$ | 5／8 | 11.4 | 3.36 | 0.98 | 2．62 | 1.30 | 0.88 | 0.59 |
| $3 \times 3$ | 1／4 | 4.9 | 1.44 | 0.84 | 1．84 | 0.58 | 0.93 | 0.60 |
| ＊23／4 $\times 23 / 4$ | $1 / 2$ | 8.5 | 2.50 | 0.87 | 1.67 | 0.89 | 0.82 | 0.54 |
| ＊23／4 $\times 23 / 4$ | $1 / 4$ | 4.5 | 1.31 | 0.78 | 0.93 | 0.48 | 0.85 | 0.55 |
| $21 / 2 \times 21 / 2$ | 16 | 7.7 | 2.25 | 0.81 | 1．23 | 0.73 | 0.14 | 0.49 |
| 21／2 $\times 21 / 2$ | $1 / 4$ | 4.1 | 1.19 | 0.72 | 0.70 | 0.40 | 0.78 | 0.50 |
| ＊21／4 $\times 21 / 4$ | 12 | 6.8 | 2.00 | 0.74 | $08{ }^{\circ}$ | 0.58 | 0.66 | 0.48 |
| ＊$\sim 1 / 4 \times 81 / 4$ | $1 / 4$ | 3.7 | 1.06 | 0.66 | 0.51 | 0.32 | 0.69 | 0.46 |
| $\because$ | 7／16 | 5.3 | 1.56 | 0.66 | 0.54 | 0.40 | 0.59 | 0.39 |
| $\underset{\sim}{2} \times \stackrel{1}{\sim}$ | $3 / 16$ | 2.5 | 0.70 | 0.57 | 0.28 | 0.19 | 0.62 | 0.40 |
| $13 / 4 \times 13 / 4$ | \％／16 | 4.6 | 1.30 | 0.59 | 0.35 | 0.30 | 0.51 | 0.35 |
| $13 / 4 \times 13 / 4$ | $3 / 16$ | 2.1 | 0.62 | 0.51 | 0.18 | 0.14 | 0.54 | 0.36 |
|  |  | 3.4 | 0.99 | 0.51 | 0.19 | 0.19 | 0.44 | 0.31 |
| $11 / 2 \times 11 / 3$ | 3／16 | 1.8 | 0.53 | 0.44 | 0.11 | 0.104 | 0.46 | 0.39 |
| $11 / 1 \times 11 / 4$ | $5 / 16$ | 2.4 | 0.69 | 0.42 | 0.09 | 0.109 | 0.36 | 0.55 |
| $11 / 4 \times 11 / 4$ | 1／8 | 1.0 | 0.30 | 0.35 | 0.044 | 0.049 | 0.38 | 0.26 |
| ＊ $11 / 8 \times 11 / 8$ | 5／16 | 2.1 | 0.61 | 0.39 | 0.063 | 0．05 ${ }^{\text {r }}$ | 0.32 | 0.24 |
| ＊11／8×11／8 | 1／8 | 0.9 | 0.27 | 0.32 | $0.03 ?$ | 0.039 | 0.34 | 0.23 |
| $1 \times 1$ | $1 / 4$ | 1.5 | 0.44 | 0.34 | 0.037 | 0.056 | 0.29 | 0.20 |
| $1 \times 1$ | $1 / 8$ | 0.8 | 0.24 | 0.30 | 0.032 | 0.031 | 0.31 | 0.21 |
| ＊7／8×7／8 | 3／16 | 1.0 | 0.20 | 0.29 | 0.019 | 0.033 | 0.96 | 0.18 |
| ＊7／8× $7 / 8$ | 1／8 | 0.7 | 0.21 | 0.26 | 0.014 | 0.023 | 0.26 | 0.19 |
| $3 / 4 \times 3 / 4$ | 3／16 | 0.8 | 0.25 | 0.26 | 0.012 | 0.024 | 0.92 | 0.16 |
| $3 / 4 \times 3 / 4$ | 1／8 | 0.6 | 0.17 | 0.23 | 0.009 | 0.017 | 0.23 | $0.1{ }^{\circ}$ |
| ＊9／8×5／8 | $1 / 8$ | 0.5 | 0.14 | 0.20 | 0.005 | 0.011 | 0.18 | 0.13 |

## Properties or Standard and Special Angles of Minimum and Maximum Thickness and Weights．

ANGLES WITH UNEQUAL LEGS．

| 1 | $\underline{2}$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Moments of Inertia． I |  | Section Modulus． $S$ |  | Radii of Gyration． $r$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| ＊rinches． | inch． | 1 lbs. | s.in. |  |  |  |  |  |  |  |
| ${ }_{*}^{* 7} \times 31$ |  | 39381 | 9.50 4.40 | 7.53 3.95 | ${ }^{45.34}$ | 2.96 1.47 | ${ }^{10.58}$ | 0.89 0.95 | $\stackrel{2.19}{2.26}$ | ． 88 |
| $6 \times 4$ | 78 | 27.2 | 7.99 | 9.75 | 2r．ri3 | 3.39 | \％． 7.15 | 1.11 | 1.86 |  |
| $6 \times 4$ | 3／8 | 12.3 | 3.61 | 4.90 | 13.47 | 1.60 | 3.32 | 1.17 | 1.93 | ． 88 |
| $6 \times 31$ | $7 / 8$ | 25.7 | 7.55 | 6.55 | 26.38 | 2.59 | 6.98 | 0.93 | 1.87 | ． 8 |
| $6 \times 31$ | 38 | $11 . \%$ | 3.42 | 3.34 | 12.86 | 1.23 | 3.25 | 0.99 | 1.94 | ．14 |
| ＊5 $\times 4$ | 78 | 24．8 | 7.11 | 9.23 | 16.42 | 3.31 | 4.99 | 1.14 | 1.52 | ． 88 |
| ＊5 $\times 4$ | 3／8 | 11.0 | 3.23 | 4.67 | 8.14 | 1.57 | 2.34 | 1.20 | 1.59 | ． 86 |
| $5 \times 319$ | $7 / 8$ | 22.7 | 6.67 | 6.21 | 15.67 | 2.52 | 4.88 | 0.96 | 1.53 | \％ |
| $5 \times 31 / 3$ | \％ | 10.4 | 3.05 | 3.18 | 7.78 | 1.21 | 2.29 | 1.02 | 1.60 | ． 6 |
| $5 \times 3$ | 13／16 | 19.9 | 5.84 | 3.71 | 13.98 | 1.74 | 4.45 | 0.80 | 1.55 | ． 66 |
| $5 \times 3$ | 5／16 | 8.2 | 2.40 | 1.75 | 6.26 | 0.75 | 1.89 | 0.85 | 1.61 | ． 66 |
| ＊41／2×3 | 13／16 | 18.5 | 5.43 | 3.60 | 10.33 | 1.71 | 3.62 | 0.81 | 1.38 | 67 |
| ＊ $419 \times 3$ | 8 | 9.1 | 2.67 | 1.98 | 5.50 | 0.88 | 1.83 | 0.86 | 1.44 | ． 66 |
| ${ }_{4} \times 1 \times 319$ | 13／16 | 18.5 | 5.43 | 5.49 | 7.78 | 2.30 | 2.92 | 1.01 | 1.19 | ． 74 |
| ＊${ }^{\text {a }} \times 31 / 2$ | 3／8 | 9.1 | 2.67 | 2.99 | 4.18 | 1.18 | 1.50 | 1.06 | 1.25 | － |
| $4 \times 3$ | 13／16 | 17.1 | 5.03 | 3.47 | 7.34 | 1.68 | 2.87 | 0.83 | 1.21 | ． 66 |
| $4 \times 3$ | 5／16 | 7.1 | 2.09 | 1.65 | 3.38 | 0.74 | 1.23 | 0.89 | 1.27 | ． 65 |
| $31 / 2 \times 3$ | 13／16 | 15.7 | 4.63 | 3．33 | 4.98 | 1.65 | 2.20 | 0.85 | 1.04 | ． 65 |
| $31 / 2 \times 3$ | 5／16 | 6.6 | 1.93 | 1.58 | 2．3：3 | 0.62 | 0.96 | 0.90 | 1.10 | ． 63 |
| $31 / 2 \times 21 / 2$ | 11／16 | 12.4 | 3.65 | 1.72 | 4.13 | 0.99 | 1.55 | 0.67 | 1.06 | ． 58 |
| $31 / 2 \times 21 / 2$ | 1／4 | 4.9 | 1.44 | 0.78 | 1.80 | 0.41 | 0.75 | 0.74 | 1.12 | ． 54 |
| ＊314 $\times 2$ | 9／16 | 9.0 | 2.64 | 0.75 | 2.64 | 0.53 | 1.30 | 0.53 | 1.00 | ． 45 |
| ＊31／4×2 | $1 / 4$ | 4.3 | 1.25 | 0.40 | 1.36 | 0.26 | 0.63 | 0.5 \％ | 1.04 | ． 44 |
| $3 \times 21 / 2$ | 9／16 | 9.5 | 2.8 | 1.42 | 2.28 | 0.82 | 1.15 | 0.72 | 0.91 | 54 |
| $3 \times 21 / 2$ | $1 / 4$ | 4.5 | 1.31 | 0．74 | 1.17 | 0.40 | 0.56 | 0.75 | 0.95 | ． 53 |
| ＊3 $\times 2$ | $1 / 2$ | 7.7 | 2.25 | 0.67 | 1.92 | 0.47 | 1.00 | 0.55 | 0.92 | ． 40 |
| ＊3 $\times$～ | $1 / 4$ | 4.0 | 1.19 | 0.39 | 1.09 | 0.25 | 0.54 | 0.56 | 0.95 | ． 46 |
| $21 / 2 \times 2$ |  | 6.8 | 2.00 | 0.64 | 1.14 | 0.46 | 0.70 | 0.56 | 0.75 | ． 44 |
| 2118 $\times 2$ | $3 / 16$ | 2.8 | 0.81 | 0.29 | 0.51 | 0.20 | 0.29 | 0.60 | 0.79 | ． 43 |
| ＊214×11／2 |  | 5.5 | 1.63 | 0.26 | 0.82 | 0.26 | 0.59 | 0.40 | 0.71 | ． 39 |
| ＊214 $\times 1 . \%$ | $3 / 16$ | 2.3 | 0.67 | 0.12 | 0.34 | 0.11 | 0.23 | 0.43 | 0.72 | ． 40 |
| ＊2 $\times 13 / 8$ |  | 2.7 | 0.78 | 0.12 | 0.37 | 0.12 | 0.23 | 0.39 | 0.63 | ． 30 |
| ＊2 $\times 13 / 8$ | 3／16 | 2.1 | 0.60 | 009 | 0.24 | 0.09 | 0.18 | 0.40 | 0.63 | ． 29 |
| ${ }_{*}^{*} 13 / 8 \times 1$ |  | 1.8 | 0.53 | 0.04 | 0.09 | 0.05 | 0.09 | 0.27 | 0.41 | ． 25 |
| ＊13881 | 1／8 | 1.0 | 0.28 | 0.02 | 0.05 | 0.03 | 0.06 | 0.29 | 0.44 | ．22 |

## Kroperties of Carnegie $Z$ Bars．

（For dimensions see table on page 178．）

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | Ibs． | sq．in． | I | I | $S$ | S | 0 | $r$ | $r$ |  |  |
| Z1 | 15.6 | 4.59 | 95.32 | 9.11 | 8.44 | 2.75 | 2.35 | 1.41 | 0.83 | 90，000 | 6r，500 |
|  | 18.3 | 5.39 | $\because 9.80$ | 10.95 | 9.83 | $3.2 \%$ | 2.35 | 1.43 | 0.84 | 104，800 | －8，600 |
|  | 21.0 | 6.19 | 34.36 | 12．87 | 11．3： | 3.81 | 2.36 | 1.44 | 0.84 | 119，700 | 89，800 |
| Z2 | 22.7 | 6.68 | 34.64 | 12.59 | 11.55 | 3.91 | 2．28 | 1.37 | 0.81 | 123，200 | 92，400 |
|  | 25.4 | T．46 | 38.86 | 14.42 | 12.85 | 4.43 | 2．98 | 1.39 | 0.82 | 136，\％00 | 10：，600 |
| $\checkmark$ | 28.0 | 8.25 | 43.18 | 16.34 | 14.10 | 4.98 | 2.29 | 1.41 | 0.84 | 150，400 | 112，800 |
| Z．3 | 29.3 | 8.63 | 42．1？ | 15.44 | 14.04 | 4.94 | 2． 21 | 1.34 | 0.81 | 149.800 | 112，300 |
|  | 32.0 | 9.40 | 46.13 | 17.27 | 15．9．2 | 5.47 | 2．20 | 1.36 | 0.82 | 162.300 | 121，500 |
| ＂ | 34.6 | 10.17 | 50.22 | 19.18 | 16.40 | 6.02 | 2．2． | $1.3{ }^{\text {r }}$ | 0.83 | 174，900 | 131，200 |
| Z4 | 11.6 | 3.40 | 13.36 | 6.18 | 5.34 | 2.00 | 1.98 | 1.35 | 0.75 | 5\％，000 | 42，500 |
| $\cdots$ | 13.9 | 4.10 | 16.18 | \％． 65 | 6.39 | 2.45 | 1.99 | 1.37 | 0.76 | 68，200 | 51，100 |
| ${ }^{6}$ | 16.4 | 4.81 | 19.07 | 9.80 | 7.44 | 2.92 | 1.99 | 1.38 | 0.77 | 79，400 | 59，500 |
| Z5 | 17.8 | 5.25 | 19.19 | 9.05 | 7.68 | 3.03 | 1.91 | 1.31 | 0.74 | 81，900 | 61，400 |
| ＂ | 20.2 | 5.94 | $\stackrel{1}{2} .83$ | 10.51 | 8.60 | 3.47 | 1.91 | 1.33 | 0.75 | 91，900 | 69，000 |
| ، | 2． 6 | 6.64 | 24.53 | 12．06 | 9.54 | 3.94 | 1.92 | 1.35 | 0.76 | 10：2，100 | \％6，600 |
| Z6 | 23.7 | 6.96 | 23.68 | 11.37 | $9.4{ }^{-1}$ | 3.91 | 1.84 | 1.28 | 0.73 | 101，000 | 75，800 |
|  | 26.0 | r．61 | $\because 6.16$ | 12．83 | 10.34 | 4.37 | 1.85 | 1.30 | 0.75 | 110，300 | 82，100 |
| 6 | 28.3 | 8.33 | 25.70 | 14.36 | 11．20 | 4.84 | 1.86 | 1.31 | 0．\％6 | 119，500 | 89，600 |
| Z\％ | 8.2 | 2.41 | 6.28 | 4.23 | 3.14 | 1.44 | 1.62 | 1.33 | $0.6 \%$ | 33，500 | 35，100 |
|  | 10.3 | 3.03 | 7．94 | 5.46 | 3.91 | 1.81 | 1.62 | 1.34 | 0.68 | 41，700 | 31，300 |
| ＇6 | 12．4 | 3.66 | 9.63 | 6.76 | $4.6{ }^{\circ}$ | $\stackrel{\text { 2．}}{\sim}$ 6 | 1.62 | 1.36 | 0.69 | 49，800 | 37，400 |
| 28 | 13.8 | 4.05 | 9.66 | 6.73 | 4.83 | 2.37 | 1.55 | 1.29 | 0.66 | 51，500 | 38，600 |
| ＇6 | 15.8 | 4.66 | 11.18 | \％．96 | 5.50 | 2.815 | 1.55 | 1.31 | 0.67 | 58，500 | 44，000 |
| ＂ | 17.9 | 5.27 | 12． 74 | 9.26 | 6.15 | 3.19 | 1.55 | 1.33 | 0.69 | 65，900 | 49，400 |
| Z9 | 18.9 | 5.55 | 12．11 | 8．73 | 6.05 | 3.18 | 1.48 | 1.25 | 0.66 | 64，500 | 48，400 |
| ＂ | 20.9 | 6.14 | 13．52 | 9.95 | 6.65 | 3.58 | 1.48 | 1.27 | 0.67 | \％0，900 | 53，200 |
| ، | 23.9 | 6.75 | 14．9 ${ }^{\prime}$ | 11.24 | 7.26 | 4.00 | 1.49 | 1.29 | 0.69 | 77，400 | 58，100 |
| Z10 | 6.7 | 1.97 | 2.87 | 2.81 | 1.92 | 1.10 | 1.21 | 1.19 | 0．5\％ | 20，500 | 15，400 |
| 6 | 8.4 | 2.48 | 3.64 | 3.64 | 2.38 | 1.40 | 1． 21 | 1．$\because 1$ | 0.56 | 25，400 | 19，000 |
| Z11 | 9.7 | 2． 86 | 3.85 | 3.92 | 2.57 | 1.57 | 1.16 | 1.17 | 0.55 | 2～，400 | 20，600 |
| ، | 11.4 | 3.36 | 4.57 | 4.75 | ․ 98 | 1.88 | 1.17 | 1.19 | 0.56 | 31，800 | 23，800 |
| Z12 | $12.5$ | 3.69 | 4.59 | 485 | 3.06 | 1.99 | 1.12 | 1.15 | 0.55 | 3：，600 | 24，500 |
|  | 14．2 | 4.18 | 5.26 | 5.70 | 3.43 | 2.31 | 1．12 | 1.17 | 0.56 | 36，600 | 2\％，400 |

Dimensions of lightest weight bars of each size：Z1，Z：3，and Z3，depth of web 6 in ．，width of flange $31 / 2$ in．，thickness of metal respectively $3 / 8.9 / 16$ ， and $3 / 4 \mathrm{in}$ ．； $\mathrm{Z} 4, \mathrm{Z} 5, \mathrm{Z} 6,5 \times 31 / 4 \times 5 / 16,12$ ，and $11 / 16 \mathrm{in}$ ．；$Z 7, Z 8, Z 9,4 \times 31 / 16$ $\times 1 / 4, \tau / 16$, and $5 / 8 \mathrm{in}$ ；Z $10, \mathrm{Z11}, \mathrm{Z1}, 3 \times 211 / 16 \times 1 / 4,3 / 2$ ，and $1 / 2 \mathrm{in}$ ．Each dimension is increased $1 / 16 \mathrm{in}$ ．in the next heavier weight．

## FLOORING MATERIAL.

For fire-proof flooling, the space between the floor-beams may be spanned with brick arches, or with hollow brick made especially for the purpose, the latter being much lighter than ordinary brick.
Arches 4 inches deep of solid brick weigh about 70 lbs . per square foot, including the concrete levelling material, and substantial floors are thus made up to 6 feet span of arch, or much greater span if the skew backs at the springing of the arch are made deeper, the rise of the arch being preferably not less than $1 / 10$ of the span. Hollow brick for Hoors are usually in depth about $1 / 8$ of the span, and are used up to, and even exceeding, spans of 10 feet. The weight of the latter material will vary from 20 lbs. per square foot for 3 -foot spans up to 60 lbs . per square foot for spans of 10 feet. Full particulars of this construction are given by the manufacturers. For supporting brick floors the beams should be securely tied with rods to resist the lateral pressure.
In the following cases the loads, in addition to the weight of the floor itself, may be assumed as:


Roofs, allowing thirty pounds per square foot for wind and snow:
For corrugated iron laid directly on the purlins... 37 lbs . per sq. ft .
For corrugated iron laid on bcards.................. 40 lbs " " "
For slate nailed to lathis.................................. $43 \mathrm{lbs} .{ }^{6}$
For slate nailed on boards.............................. 46 lbs. " "
If plastered below the rafters, the weight will be about ten pounds per square fout additional.

## THE-RODS FOR BEAIIS SUPPORTENG BRICK ARCHES.

The horizontal thrust of brick arches is as follows:

$$
\begin{aligned}
\frac{1.5 W S^{2}}{R} & =\text { pressure in pounds. per lineal foot of arch: } \\
W & =\text { load in pounds. per square foot } \\
S & =\text { span of arch in feet; } \\
R & =\text { rise in inches. }
\end{aligned}
$$

Place the tie-rods as low through the webs of the beams as possible and spaced so that the pressure of arches as obtained above will not produce a greater stress than $15,000 \mathrm{lbs}$. per square inch of the least section of the bolt,

## TORSIONAL STIRENGTHH.

Let a horizontal shaft of diameter $=d$ be fixed at one end, and at the other or free end, at a distance $=l$ from the fixed end, let there be fixed a horizontal lever arm with a weight $=P$ acting at a distance $=a$ from the axis of the shaft so as to twist it; then $P a=$ moment of the applied force.
Resisting moment = twisting moment $=\frac{S J}{c}$, in which $S=$ unit shearing resistance, $J=$ polar moment of inertia of the section with respect to the axis, and $c=$ distance of the most remote fibre from the axis, in a crosssection. For a circle with diameter $d$,

$$
J=\frac{\pi d^{4}}{32} ; \quad c=1 / 2 d
$$

$$
P o=\frac{S J}{c}=\frac{\pi d^{3} S}{16}=\frac{d^{3} S}{5.1}=.1963 d^{3} S ; \quad d=\sqrt[3]{\frac{5.1 P \alpha}{K}}
$$

For hollow shafts of external diameter $d$ and internal diameter $d_{1}$

$$
P a=.1963 \frac{d^{4}-d_{1}^{4}}{d} S ; \quad d=\sqrt[3]{\frac{5.1 P a}{\left(1-\frac{d_{1}^{4}}{d^{4}}\right) S}} .
$$

For a square whose side $=d$,

$$
J=\frac{d^{4}}{6} ; \quad c=d \sqrt{1 / 2} ; \quad \frac{S J}{c}=P a=\frac{d^{3} S}{4.2426}=0.236 d^{3} S
$$

For a rectangle whose sides are $b$ and $d$,

$$
J=\frac{b d^{3}}{12}+\frac{b^{3} d}{12} ; \quad c=1 / 2 \sqrt{b^{2}+d^{2}} ; \quad \frac{S J}{c}=P a=\frac{\left(b d^{3}+b^{3} d\right) S}{6 \sqrt{b^{2}+d^{2}}} .
$$

The above formulæ are based on the supposition that the shearing resistance at any point of the cross-section is proportional to its distance from the axis; but this is true only within the elastic limit. In materials capable of flow, while the particles near the axis are strained within the elastic limit those at some distance within the circumference may be strained nearly to the ultimate resistance, so that the total resistance is something greater than that calculated by the formulæ. (See Thurston, "Matls. of Eng.," Part II. p. 52\%.) Saint Venant finds for square shafts $P a=0.208 d^{8} S$ (Cotterill. "Applied Mechanics," pp. 348, 355). For working strength, however, the formulæ may ve used, with $S$ taken at the safe working unit resistance.

For a rectangle, sides $b$ (longer) and $d$ (shorter) and area $A$,

$$
P a=\frac{S A^{2}}{3 b+1.8 \vec{l}}
$$

The ultimate torsional shearing resistance $S$ is about the same as the direct shearing resistance, and may be taken at 20,000 to $25,000 \mathrm{lbs}$. per square inch for cast ircu, $45,000 \mathrm{lbs}$. for wrought iron, and 50,000 to $150,000 \mathrm{lbs}$. for steel, according to its carbon and temper. Large factors of safety should be taken, especially when the direction of stress is reversed, as in reversing engines, and when the torsional stress is combined with other stresses, as is usual in shafting. (See "Shafting.")

Elastic Resistance to Torsion.-Let $l=$ length of bar being twisted, $d=$ diameter, $P=$ force applied at the extremity of a lever arm of length $=a, P a=$ twisting moment, $G=$ torsional modulus of elasticity, $\theta=$ angle through which the free end of the shaft is twisted, measured in are of radius $=1$.

For a cylindrical shaft

$$
P a=\frac{\pi \theta G d^{4}}{32 l} ; \quad \theta=\frac{3 \Im P a l}{\pi d^{4} G} ; \quad G=\frac{32 P a l}{\theta \pi d^{4}} ; \quad \frac{32}{\pi}=10.186
$$

If $\alpha=$ angle of torsion in degrees,

$$
\theta=\frac{a \pi}{180} ; \quad a=\frac{180 \theta}{\pi}=\frac{180 \times 33 P a l}{\pi^{2} d^{4} G}=\frac{583.6 P a l}{d^{4} G} .
$$

The value of $G$ is given by different authorities as from $1 / 3$ to $2 / 5$ of $E$, the modulus of elasticity for tension.

## COTIBIN ED STRESSES.

## (From Merriman's "Strength of Materials.")

Combined Tension and Flexure.-Let $A=$ the area of a bar subjected to both tension and flexure, $P=$ tensile stress applied at the ends, $P \div A=$ unit tensile stress, $S=$ unit stress at the fibre on the tensile side most remote from the neutral axis, due to flexure alone, then maximum tensile unit stress $=(P \div A)+S$. A beam to resist combined tension and flexure should be designed so that $(P \div A)+S$ shall not exceed the proper allowable working unit stress.

Combined Compression and Flexure.- If $P \div A=$ unit stress due to compression alone, and $S=$ unit compressive stress at fibre most remote from neutral axis, due to flexure alone, then maximum compressive unit stress $=(P \div A)+S$.

Combined Tension (or Compression) and Shear.-If ap,
plied tension (or compression) unit stress $=p$, applied shearing unit stress $=v$, then from the combined action of the two forces

$$
\text { Max. } S= \pm \sqrt{v^{2}+1 / 4 p^{2}}, \quad \text { Maximum shearing unit stress; }
$$

Max. $t=1 / 2 p+\sqrt{v^{2}+1 / 4 p^{2}}, \quad$ Maximum tensile (or compressive) unit stress.
Combined Flexure and Torsion.-If $S=$ greatest unit stress due to flexure alone, and $S s=$ greatest torsional shearing unit stress due to torsion alone, then for the combined stresses

Max. tension or compression unit stress $t=1 / 2 S+\sqrt{S_{s^{2}}+1 / 4 S^{2}}$;

$$
\text { Max. shear } s= \pm \sqrt{S s^{2}+1 / 4 S^{2}}
$$

Formula for diameter of a round shaft subjected to transverse load while trausmitting a given horse-power (see also Shafts of Engines):

$$
d^{3}=\frac{16 M}{\pi t}+\frac{16}{t} \sqrt{\frac{M^{2}}{\pi^{2}}+\frac{402,500,000 H^{2}}{n^{2}}}
$$

where $M=$ maximum bending moment of the transverse forces in poundinches, $H=$ horse-power transmitted, $n=$ No. of revs. per minute, and $t=$ the safe allowable tensile or compressive working strength of the material.
Combined Compression and Torsion. -For a vertical round shaft carrying a load and also transmitting a given horse-power, the resultant maximum compressive unit stress

$$
t=\frac{4 P}{\pi d^{2}}+\sqrt{321,000^{2} \frac{H^{2}}{u^{2} d^{6}}+\frac{16 P^{2}}{\pi^{2} d^{4}}}
$$

in which $P$ is the load. From this the diameter $d$ may be found when $t$ and the other data are given.
Stress due to Temperature. - Let $l=$ length of a bar, $A=$ its sectional area, $c=$ coefficient of linear expansion for one degree, $t=$ rise or fall in temperature in degrees, $E=$ modulns of elasticity, $\lambda$ the change of length due to the rise or fall $t$; if the bar is free to expand or contract, $\lambda=$ ctl.

If the bar is held so as to prevent its expansion or contraction the stress produced by the change of temperature $=S=\operatorname{Act} E$. The following are average values of the coefficients of linear expansion for a change in temperature of one degree Fahrenheit:

$$
\begin{aligned}
& \text { For brick and stone....a}=0.0000050, \\
& \text { For cast iron.......... } a=0=0.0000062, \\
& \text { For wrought iron ...... } a=0.0000067, \\
& \text { For steel....................... }
\end{aligned}
$$

The stress due to temperature should be added to or subtracted from the stress cansed by other external forces according as it acts to increase or to relieve the existing stress.
What stress will be caused in a steel bar 1 inch square in area by a change of temperature of $100^{\circ}$ F.? $S=\operatorname{ActE}=1 \times .0000065 \times 100 \times 30,000,000=$ $19,500 \mathrm{lbs}$. Suppose the bar is under tension of $19,500 \mathrm{lbs}$. between rigid abutments before the change in temperature takes place, a cooling of $100^{\circ} \mathrm{F}$. will double the tension, and a heating of $100^{\circ}$ will reduce the tension to zero.

## S'IRENGTHEF FLAT PLATES.

For a circular plate supported at the edge, uniformly loaded, according to Grashof,

$$
f=\frac{5}{6} \frac{r^{2}}{t^{2}} p ; \quad t=\sqrt{\frac{5 r^{2} p}{6 f}} ; \quad p=\frac{6 f t^{2}}{5 r^{2}} .
$$

For a circular plate fixed at the edge, uniformly loaded,

$$
f=\frac{2}{3} \frac{r^{2}}{t^{2}} p ; \quad t=\sqrt{\frac{3}{3} \frac{r^{2} p}{f}} ; \quad p=\frac{3 f t^{2}}{2 r^{2}} ;
$$

in which $f$ denotes the working stress; $r$, the radius in inches; $t$, the thick ness in inches; and $p$, the pressure in pounds per square inch.

For mathematical discussion, see Lanza, "Applied Mechanics," p. 900, etc.
Lanza gives the following table, using a factor of safety of 8 , with tensile strength of cast iron 20,000 , of wrought iron 40,000 , and of steel 80,000 :

Supported.
$\begin{array}{ll}\text { Cast iron..........t }=.018570 \mathrm{r} \sqrt{p} & t=.0163300 \mathrm{r} \sqrt{p} \\ \text { Wrought iron......t }=.0117850 \mathrm{r} \sqrt{p} & t=.0105410 \mathrm{r} \sqrt{p} \\ \text { Steel.............t }=.0091287 \mathrm{r} \sqrt{p} & t=.0081649 \mathrm{r} \sqrt{p}\end{array}$
For a circular plate supported at the edge, and loaded with a concentrated load $P$ applied at a circumference the radius of which is $r_{0}$ :

$$
\text { for } \begin{aligned}
f & =\left(\frac{4}{3} \log \frac{r}{r_{0}}+1\right) \frac{P}{\pi t^{2}}=c \frac{P}{\pi t^{2}} \\
\frac{r}{r_{0}} & =10 \quad 20 \quad 30 \quad 40 \\
c & =4.07 \quad 5.00 \\
t & =\sqrt{\frac{c P}{\pi f}} ; \quad 50.53 \\
& 5.92 \quad 6.22 ;
\end{aligned}
$$

The above formulæ are deduced from theoretical considerations, and give thicknesses much greater than are generally used in steam-engine cylinderheads. (See empirical formulæ under Dimensions of Parts of Engines.) The theoretical formulæ seem to be based on incorrect or incomplete hypotheses. but they err in the direction of safety.
The Strength of Unstayed Flat Surfaces.-Robert Wilson (Eng.g, Sept. 24, 18if) draws attention to the apparent discrepancy between the results of theoretical investigations and of actual experiments on the strength of unstayed flat surfaces of boiler-plate, such as the unstayed flat crowns of domes and of vertical boilers.
Rankine's "Civil Engineering" gives the following rules for the strength of a circular plate supported all round the edge, prefaced by the remark that " the formula is founded on a theory which is only approximately true, but which nevertheless may be considered to involve no error of practical importance:"

$$
M=\frac{W b}{6 \pi}=\frac{P b^{3}}{24} .
$$

Here
$M=$ greatest beuding moment ;
$W=$ total load uniformly distributed $=\frac{P b^{2} \pi}{4} ;$
$b=$ diameter of plate in inches ;
$P=$ bursting pressure in pounds per square inch.
Calling $t$ the thickness in inches, for a plate supported round the edges,

$$
M=\frac{1}{6} 42,000 b t^{2} ; \quad \therefore \frac{P b^{2}}{Z 4}=\% 000 t^{2} .
$$

For a plate fixed round the edges,

$$
\frac{2}{3} \frac{P b^{2}}{24}=8000 t^{2} ; \text { whence } P=\frac{t^{2} \times 63,000}{r^{2}}
$$

where $r=$ radius of the plate.
Dr. Grashof gives a formula from which we have the following rule:

$$
P=\frac{t^{2} \times 72,000}{r^{2}}
$$

This formula of Grashof's has been adopted by Professor Unwin in his "Enements of Machine Design." These formulæ by Rankine and Grashof may be regarded as being practically the same.
On trymg to make the rules given by these authorities agree with the results of his experience of the strength of unstayed flat ends of cylindrical boilers and domes that had given way after long use, Mr. Wilson was led to believe that the above rules give the breaking strength much lower than it
actually is. He describes a number of experiments made by Mr. Nichols of Kirkstall, which gave results varying widely from each other, as the method of supporting the edges of the plate was varied, and also varying widely from the calcnlated bursting pressures, the actual results being in all cases very much the higher. Some conclusions drawn from these results are:

1. Although the bursting pressure has been found to be so high, boilermakers must be warned against attaching any inportance to this, since the plates deflected ahmost as soon as any pressure was put upon them and sprang back again on the pressure being taken off. This springing of the plate in the course of time inevitably results in grooving or channelling, which, especially when aided by the action of the corrosive acids in the water or steam, will in time reduce the thickness of the plate, and bring about the destruction of an unstayed surface at a very low pressure.
2. Since flat plates commence to deflect at very low pressures, they should never be used without stays; but it is better to dish the plates when they are not stayed by flues, tubes, etc.
3. Against the commonly accepted opinion that the limit of elasticity should never be reached in testing a boiler or other structure, these experiments show that an exception should be made in the case of an unstayed flat end-plate of a boiler, which will be safer when it lias assumed a permanent set that will prevent its becoming grooved by the coutiuual variation of pressure in working. The hydraulic pressure in this case simply does what should have been done before the phate was fixed, that is, dislies it.
4. These experiments appear to show that the mode of attaching by flange or by an inside or outside angle-iron exerts an important influence on the manner in which the plate is strained by the pressure.

When the plate is secured to an angle-iron, the stretching under pressure is, to a certain extent, concentrated at the line of rivet-holes, and the plate partakes rather of a beam supported than fixed round the edge. Instead of the strength increasing as the square of the thickness, when the plate is attached by an angle-iron, it is probable that the strength does not increase even directly as the thickness, since the plate gives way simply by stretching at the rivet-holes, and the thicker the plate, the less uniformly is the strain borne by the different layers of which the plate may be considered to be made up. When the plate is flanged, the flange becomes compressed by the pressure against the body of the plate, and near the rim, as shown by the concrary flexure, the inside of the plate is stretched more than the outside, and it may be by a kind of shearing action that the plate gives way along the line where the crushing and stretching meet.
5. These tests appear to show that the rules dednced from the theoretical investigations of Lamó, Rankine, and Grashof are not confirmed by experiment, and are therefore not trustworthy.

The rules of Lamध, etc., apply only within the elastic limit. (Eng'g, Dec, 13, 1895.)

Unbraced Wrought-iron Heads of Poilers, etc. (The Locomotine, Feb. 1890). - Few experiments have been made on the strength of Hat heads, and our knowledge of them comes largely from theory. Experiments have been made on small plates 1-16 of an inch thick, yet the data so obtained cannot be considered satisfactory when we consider the far thicker heads that are used in practice, althongh the results agreed well with Ranlrine's formula. Mr. Nichols lias made experiments on larger heads. and from them he has deduced the following rule: "To find the proper thickness for a flat unstayed head, multiply the area of the head by the pressure per square inch that it is to bear safely, and multiply this by the desired factor of safety (say 8); then divide the product by ten times the tensile strength of the material used for the head." His rule for finding the bursting pressure when the dimensions of the head are given is: "Multiply the thickness of the end-plate in inches by ten times the teusile strength of the material used, and divide the prodnct by the area of the head in inches."

In Mr. Nichols's experiments the average tensile strength of the iron used for the heads was 44,800 pounds. The resnlts he obtained are given below, with the calculated pressure, by his rule, for comparison.

1. An unstayed flat boiler-head is $3 \not 11 / 2$ inches in diameter and $9-16$ inch thick. What is its bursting pressure? The area of a circle $341 / 2$ inches in diameter is 935 square inches; then $9-16 \times 44,800 \times 10=252,000$, and $252,000 \div$ $935=270$ pounds, the calculated bursting pressure. The head actually burst at 280 pounds.
2. Head $341 / 2$ inches in diameter and $3 / 8$ inch thick. The area $=935$ square inches; then, $3 / 8 \times 44,800 \times 10=168,000$, and $168,000 \div 935=180$ pounds, calculated bursting pressure. This head actually burst at 200 pounds.
3. Head $201 / 4$ inches in diameter, and $3 / 8$ incl thick. The area 541 square inches. Then, $3 / 8 \times 44,800 \times 10=168,000$, and $168,000 \div 541=311$ pounds. This head burst at $3 \% 0$ pounds.
4. Head $281 / 2$ inches in diameter and $3 / 8$ inch thick. The area $=638$ square inches; then, $3 / 2 \times 44,800 \times 10=168,000$, and $168,000 \div 638=263$ pounds. The actual bursting pressure was 300 pounds.

In the third experiment, the amount the plate bulged under different pressures was as follows :
$\begin{array}{lllllllll}\text { At pounds per sq. in.... } 10 & 20 & 40 & 80 & 120 & 140 & 170 & 200\end{array}$
$\begin{array}{llllllll}\text { Plate bulged............1/32 } & 1 / 10 & 1 / 8 & 1 / 4 & 3 / 8 & 1 / 2 & 5 / 8 & 3 / 4\end{array}$
The pressure was now reduced to zero, "and the end sprang back 3-16 inch, leaving it with a permanent set of $9-16 \mathrm{inch}$. The pressure of 200 lbs . was again applied on 36 separate occasions during an interval of five days, the bulging and permanent set being noted on each occasion, but without any appreciable difference from that noted above.

The experiments described were confined to plates not widely different in their dimensions, so that Mr. Nichols's rule cannot be relied upon for heads that depart much from the proportions given in the examples.
Thickness of Flat Cast-iron Plates to resist $\mathbf{B u}$ ursting Pressures.-Capt. John Ericsson (Church's Life of Ericsson) gave the following rules: The proper thickness of a square cast-iron plate will be obtained by the following: Multiply the side in feet (or decimals of a foot) by $1 / 4$ of the pressure in pounds and divide by 850 times the side in inches; the quotient is the square of the thickness in inches.

For a circular plate, multiply 11-14 of the diameter in feet by $1 / 4$ of the pressure on the plate in pounds. Divide by 850 times 11-14 of the diameter in inches. [Extract the square root.]

Prof. Wm. Harkness, Eng'g News, Sept. 5, 1895, shows that these rules can be put in a more convenient form, thus:

$$
\begin{aligned}
& \text { For square piates } T=0.00495 S \sqrt{p}, \\
& \text { and } \\
& \text { For circular plates } T=0.00439 D \sqrt{p},
\end{aligned}
$$

where $T=$ thickness of plate, $S=$ side of the square, $D=$ diameter of the circle, and $p=$ pressure in lbs. per sq. in. Protessor Harkness, however, doubts the value of the rules, and says that no satisfactory theoretical solution has yet been obtained.
Strength of Stayed Surfaces.-A flat plate of thickness $t$ is sup. ported uniformly by stays whose distance from centre to centre is $a$, uniform load $p \mathrm{lbs}$. per square inch. Each stay supports $p a^{2} \mathrm{lbs}$. The greatest stress on the plate is

$$
f=\frac{2}{9} \frac{a^{2}}{t^{2}} p .(\text { Unwin }) .
$$

## SPHERICAL SHELLS AND DOIIED ROHLER-HEADS.

To find the Thickness of a Spherical Shell to resist a given Pressure. -Let $d=$ diameter in inches, and $p$ the internal pressure per square inch. The total pressure which tends to produce rupture around the great circle will be $1 / 4 \pi d^{2} p$. Let $S=$ safe tonsile stress per square inch, and $t$ the thickness of metal in inches; then the resistance to the pressure will be $\pi d t S$. Since the resistance must be equal to the pressure.

$$
1 / 4 \pi d^{2} p=\pi d t S . \quad \text { Whence } t=\frac{p d}{4 S}
$$

The same rule is used for finding the thickness of a hemispherical head to a cylinder, as of a cylindrical boiler.
Thickness of a Domed Head of a boiler. - If $S=$ safe tensile stress per square inch, $l=$ diameter of the shell in inches, and $t=$ thickness of the shell, $t=p d \div 2 S$; but the thickness of a kemispherical head of the same diameter is $t=p d \div 4 S$. Hence if we make the radius of curvature of a domed head equal to the diameter of the boiler, we shall have $t=$ $\frac{2 p d}{4 S}=\frac{p d}{2 S}$, or the thickness of such a dumed head will be equal to the thickness of the shell.

Stresses in Steel Plating due to Water=pressuro, as in plating of vessels and bulkheads (Engineering, May 2:), 1891, page 629).
Mr. J. A. Yates has made calculations of the stresses to which steel plates are subjected by external water-pressure, and arrives at the following conclusions:

Assume $2 a$ inches to be the distance between the frames or other rigid supports, and let $d$ represent the depth in feet, below the surface of the water, of the plate mimder consideration, $t=$ thickness of plate in inches, $D$ the deflection from a straight line under pressure in inches, and $P=$ stress per square inch of section.
For outer bottom and ballast-tank plating, $a=420 \frac{t}{d}, D$ slıould not be greater than $.05 \frac{2 \alpha}{12}$, and $\frac{P}{2}$ not greater than 2 to 3 tons; while for bulkheads, etc., $a=2352 \frac{t}{d}, D$ should not be greater than $.1 \frac{2 \pi}{12}$, and $\frac{P}{i}$ not greater than 7 tons. To illustrate the application of these formulæ the following cases have been taken :

| For Outer Bottom, etc. |  |  | For Bulkheads, etc. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Thick. ness of Plating. | Depth below Water. | Spacing of Frames should not exceed | Thickness of Plating | Depth of Water. | Maximum Spac ing of ligid Stiffeners. |
| $\begin{aligned} & \text { in, } \\ & 1 / 8 \\ & 1 / 8 \\ & 1 / 8 \\ & 38 \\ & 38 \\ & 1 / 8 \\ & 14 \\ & 14 \end{aligned}$ | ft. 20 10 18 9 10 5 | in. <br> $\begin{array}{cc}\text { About } & 21 \\ \text { ". } & 42 \\ \text { " } & 18 \\ \text { " } & 36 \\ \text { " } & 20 \\ & 40\end{array}$ | in $1 / 2$ $3 / 8$ 38 $1 / 8$ 114 $1 / 8$ | ft. 20 20 10 20 10 10 | $\begin{array}{rc} \text { ft. } & \text { in. } \\ 9 & 10 \\ 7 & 4 \\ 14 & 8 \\ 4 & 10 \\ 9 & 8 \\ 4 & 10 \end{array}$ |

It would appear that the course which should be followed in stiffening bulkheads is to fit substantially rigid stiffening frames at comparatively wide intervals, and only work such light angles between as are necessary for making a fair job of the bulkhead.

## THICK HOLLOW CYLENDERS UNDER TTENSION.

Burr, "Elasticity and Resistance of Materials," p. 36, gives
$t=$ thickness; $r=$ interior radius ;
$h=$ maximum allowable hoop tension at the
interior of the cylinder;
$p=$ intensity of interior pressure.

Merriman gives

$$
\begin{align*}
& s=\text { unit stress at inner edge of the annulus; } \\
& r=\text { interior radius } ; t=\text { thickness } ; \\
& l=\text { length. } \tag{1}
\end{align*}
$$

The total stress over the area $2 t l=2 s l \frac{r t}{r+t}$.
The total interior pressure which tends to rupture the cylinder is $2 r l \times p$. If $p$ be the unit pressure, then $p=\frac{s t}{r+t}$, from which one of the quantities $s, p, r$, or $t$ can be found when the other three are given.

$$
s=\frac{p(r+t)}{t} ; \quad r=\frac{(s-p) t}{p} ; \quad t=\frac{r p}{s-p}
$$

In eq. (1), if $t$ be neglected in comparison with $r$, it reduces to $2 s l t$, which is the same as the formula for thin cylinders. If $t=r$, it becomes slt, or only half the resistance of the thin cylinder.
The formulx given by Burr and by Merriman are quite different, as will be seen by the following example : Let maximum unit stress at the inner edge of the annulus $=8000 \mathrm{lbs}$. per square inch, radius of eylinder $=4$ inches, interior pressure $=4000 \mathrm{lbs}$. per' square inch. Required the thickness.

By Burr, $\quad t=4\left\{\left(\frac{8000+4000}{8000-4000}\right)^{\frac{1}{2}}-1\right\}=4(\sqrt{3}-1)=2.928$ inches.
By Merriman, $t=\frac{4 \times 4000}{8000-4000}=4$ inches.
Limit to Useful Thickness of Hollow Cylinders (Eng'g, Jan. 4, 1884). -Professor Barlow lays down the law of the resisting powers of thick cylinders as follows:
"In a homogeneous cylinder, if the metal is incompressible, the tension on every concentric layer, caused by an interual pressure, varies inversely as the square of its distance from the centre."
Suppose a twelve-inch gun to have walls 15 inches thick.

$$
\frac{\text { Pressure on exterior }}{\text { Pressure on interior }}=\frac{6^{2}}{21^{2}}=1: 12.25 .
$$

So that if the stress on the interior is $121 / 4$ tons per square inch, the stress on the exterior is only 1 ton.

Let $s=$ the stress on the inner layer, and $s_{1}$ that at a distance $x$ from the axis; $r=$ internal radius, $R=$ external radius.

$$
s_{1}: s:: r^{2}: x^{2}, \text { or } s_{1}=s \frac{r^{2}}{x^{2}}
$$

The whole stress on a section 1 inch long, extending from the interior to the exterior surface, is $S=s r \times \frac{R-r}{R}$.
In a 12 -inch gun, let $s=40$ tons, $r=6 \mathrm{in}$., $R=21 \mathrm{in}$.

$$
S=40 \times 6 \times \frac{21-6}{21}=1 \% 2 \text { tons. }
$$

Suppose now we go on adding metal to the gun outside: then $R$ will become so large compared with $r$, that $R-r$ will approach the value $R$, so that the fraction $\frac{R-r}{R}$ becomes nearly unity.

Hence for an infinitely thick cylinder the useful strength could never exceed $S r$ (in this case 240 tons).
Barlow's formula agrees with the one given by Merriman.
Another statement of the gun problem is as follows: Using the formula

$$
p=\frac{s t}{r+t}
$$

$s=40$ tons, $t=15 \mathrm{in} ., r=6 \mathrm{in} ., p=\frac{40 \times 15}{21}=28 \frac{4}{7}$ tons per sq. in., $28 \frac{4}{7} \times$
radius $=1 \%$ tons, the pressure to be resisted by andion inch radius $=1 \% 2$ tons, the pressure to be resisted by a section 1 inch long of the thickness of the gun oll one side. Suppose thickness were doubled, making $t=30 \mathrm{in} .: p=\frac{40 \times 30}{36}=331 / 3$ tons, or an increase of only 16 per cent.
For short cast-iron cylinders, such as are used in hydraulic presses, it is doubtful if the above formulæ hold true, since the strength of the cylindrical portion is reinforced by the end. In that case the bursting strength would be higher than that calculated by the formula. A rule used in practice for such presses is to make the thickness $=1 / 10$ of the inner circumference, for pressures of 3000 to 4000 lbs . per square inch. The latter pressure would bring a stress upon the inner layer of $10,350 \mathrm{lbs}$. per square inch, as calculated by the formula; which would necessitate the use of the
best charcoal-iron to make the press reasonably safe. best charcoal-iron to make the press reasonably safe.

## THIN CYLINDERS UNDER TENSION.

Let $p=$ safe working pressure in lbs. per sq. in.;
$d=$ diameter in inches;
$T=$ tensile strength of the material, lbs. per sq. in.;
$t=$ thickness in inches ;
$f=$ factor of safety;
$c=$ ratio of strength of riveted joint to strength of solid plate.

$$
f p d=2 T t c ; \quad p=\frac{2 T t c}{d f} ; \quad t=\frac{f p d}{2 T c} .
$$

If $T=50000, f=5$, and $c=0.7$; then

$$
p=\frac{14000 t}{d} ; \quad t=\frac{d p}{14000} .
$$

The above represents the strength resisting rupture along a longitudinal seam. For resistance to rupture in a circumferential seam, due to pressure on the ends of the cylinder, we have $\frac{p \pi d^{2}}{4}=\frac{T t \pi d c}{f}$;

$$
\text { whence } p=\frac{4 T t c}{d f}
$$

Or the strength to resist rupture around a circumference is twice as great as that to resist rupture longitudinally; hence boilers are commonly singleriveted in the circumferential seams and double-riveted in the longitudinal seams.

## HOLLOW COPPER RALIS.

Hollow copper balls are used as floats in boilers or tanks, to control feed and discharge valves, and regulate the water-level.
They are spun up in halves from slieet copper, and a rib is formed on one half. Into this rib the other half fits, and the two are then soldered or brazed together. In order to facilitate the brazing, a hole is left on one side of the ball, to allow air to pass freely in or out; and this hole is made use of afterwards to secure the float to its stem. The original thickness of the metal may be ansthing up to about $1-16$ of an inch, if the spinning is done on a hand lathe, though thicker metal may be used when special machinery is provided for forming it. In the process of spinning, the metal is thinned down in places by stretching; but the thinnest place is neither at the equator of the ball (i.e., along the rib) nor at the poles. The thinnest points lie along two circles, passing around the ball parallel to the rib, one on each side of it, from a third to a half of the way to the poles. Along these lines the thickness may be 10,15 , or 20 per cent less than elsewhere, the rednction depend ing somewhat on the skill of the workman.

The Locomotive for October, 1891, gives two empirical rules for determining the thickness of a copper ball which is to work under an external pressure, as follows:

$$
\text { 1. Thickness }=\frac{\text { diameter in inches } \times \text { pressure in pounds per sq. in. }}{16,000} .
$$

2. Thickness $=\frac{\text { diameter } \times \sqrt{\text { pressure }}}{1240}$.

These rules give the same result for a pressure of 166 lbs . only. Example: Required the thickness of a 5 -inch copper ball to sustain


## HOLDING-POWERE OF NAILS, SPIKES, AND SCREWS.

## (A. W. Wright, Western Society of Engineers, 1881.)

Spikes.-Spikes driven into dry cedar (cut 18 months):

| Size of sp | $5 \times 1 / 4 \mathrm{in}$. sq. $6 \times 1 / 46 \times 1 / 25 \times 3 / 8$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Length drivenin | 41/4 in. | 5 in. | 5 in. | $41 / 4 \mathrm{in} .$ |
| Pounds resistance to drawing. Av'ge, lbs |  | 821 | 1691 | 1202 |
| From 6 to 9 tests each......... $\left\{\begin{array}{l}\text { Max. " } \\ \text { Min. }\end{array}\right.$ | $1159$ | 923 766 | 2129 1120 | 1556 |

A. M. Wellington found the force required to draw spikes $9 / 16 \times 9 / 16 \mathrm{in}$., driven $41 / 4$ inches into seasoned oak, to be 4281 lbs .; same spikes, etc., in un. seasoned oak, 6523 lbs.
"Professor" W. R. Johnson found that a plain spike $3 / 8$ inch square driven $33 / 8$ incles into seasoned Jersey yellow pine or unseasoned chestnut required about 2000 lbs . force to extract it; from seasoned white oak about 4000 and from well-seasoned locust 6000 lbs."

Experiments in Germany, by Funk, give from 2465 to 3940 lbs. (mean of many experiments about 3000 lbs .) as the force necessary to extract a plain $1 / 2$-inch square iron spike 6 inches long, wedge-pointed for one inch and driven $41 / 2$ inches into white or yellow pine. When driven 5 inches the force required was about $1 / 10$ part greater. Similar spikes $9 / 16$ inches square, 7 inches long, driven 6 inches deep, required from $3: 00$ to $6 \% 45$ lbs. to extract them from pine; the mean of the results being $48 \% 3 \mathrm{lbs}$. In all cases about twice as much force was required to extract them from oak. The spikes were all driven across the grain of the wood, When driven with the grain, spikes or nails do not hold with more than half as much force.

Boards of oak or pive nailed together by from 4 to 16 tenpenny common cut nails and then pulled apart in a direction lengthwise of the boards, and across the nails, tending to break the latter in two by a shearing action, averaged about 300 to 400 lbs . per nail to separate them, as the result of many trials.

Resistance of Drift-bolts in Timber. -Tests made by Rust and Coolidge, in 1878.
1st Test. 1 in . square iron drove 30 in . in white pine, $15 / 16-\mathrm{in}$. hole.....26,400

|  | " |  |  |  |  |  | ' |  | 26,400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 d | ، | 1 in in. square | " | 6 | 34 18 | " | "، ${ }^{\text {"، }}$ | 13/16-in. | 16,800 |
| 4th | " | 1 in . round | " | " | 22 " | " | " " | 13/16-in. | - |
| 5th | " | 1 in . round | " | ، | 34 " |  | Norw'y pin | ,13/16-in. | 18.20 |
| 6 6th | " | 1 in . square | " | " | 30 " |  |  | 15/16-in. | 19,200 |
| $7{ }^{\text {7 }}$ (h) | " | 1 in . square | " | " | 18 " | " | ، " | 15/16-in. | 15,600 |
| 8th | " | 1 in . round | " | ' | 22 |  |  | 13/16-in. | 14,400 |

Note.-In test No. 6 drift-bolts were not driven properly, holes not being in line, and a piece of timber split out in driving.

## Force required to draw Screws ont of Norway Pine.

| diam. drive screw | Power required, average 2424 lbs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| " " D'ble thr'd, 3 per in 4 in in wod. | "، | " | " | 2743 |  |
| Lag-screw, 7 per in., 11/2" | " | " | " | 1465 |  |
| 6 " " 27. | " | ، | " | 2026 | " |
| 1/2 inch R.R. spike. | " | '6 |  | 2191 |  |

## Force required to draw Wood Screws ont of Dry Wood.

-Tests made by Mr. Bevan. The screws were about two inches in length, .22 diameter at the exterior of the threads, .15 diameter at the bottom, the depth of the worm or thread being .035 and the number of threads in one inch equal 12. They were passed through pieces of wood half an inch in thickness and drawn out by the weights stated: Beech, $460 \mathrm{lbs} .:$ ash, $\tau 90$ lbs.: oak, r60 lbs.; mahogany, rio lbs.; elm, 665 lbs .; sycamore, 830 lbs .
Tests of Lagascrewsin Various Woods were made by A. J. Cox, University of Lowa, 1891:

| Kind of Wood. | Size Screw. | Size Hole bored. | Length in Tie. | Max. <br> Resist lbs. | No. Tests |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Seasoned white oak | $\begin{gathered} 5 / 18 \mathrm{in} . \end{gathered}$ |  | $41 / 2 \mathrm{in}_{6} .$ | 8037 | 3 |
| " 6 | 15" | 1/3/6 | ${ }_{41}{ }^{\prime \prime}$ | 6480 | ${ }_{2}^{1}$ |
| Yellow-pine stick | 5/8 | 18، | $4{ }^{1 / 2}$ | 3800 | $\underset{2}{2}$ |
| White cedar, unseasoned | 5\% ${ }^{\text {c }}$ | 1/2 | 4 ، | 3405 | \% |

In figuring area for lag-screws, the surface of a cylinder whose diameter is equal to that of the screw was taken. The length of the screw part in each case was 4 inches.-Engineering News, 1891.
Cut versus WWre Nails.-Experiments were made at the Watertown Arsenal in 1893 on the comparative direct tensile adhesion, in pine and spruce, of cut aud wire nails. The results are stated by Prof. W. H. Burr as follows:

## HOLDING-POWER OF NAILS, SPIKES, AND SCREWS. 29:

There were 58 series of tests, ten pairs of nails (a cut and a wire nail in each) being used, making a total of 1160 nails drawn. The tests were made in sprnce wood in most instances, but some extra ones were made in white pine, with " box nails." The nails were of all sizes, varying from $11 / 8$ inches to 6 inches in length. In every case the cut nails showed the superior holding strength by a large percentage. In spruce, in nine different sizes of nails, both standard and light weight, the ratio of tenacity of cut to wire nail was about 3 to 2 , or, as he terms it, "a superiority of $47.45 \%$ of the former." With the "finishing" nails the ratio was roughly 3.5 to 2 ; superiority $72 \%$. With box nails ( $11 / 4$ to 4 inches long) the ratio was roughly 3 to 2 ; superiority $51 \%$. The mean superiority in spruce wood was $61 \%$. In white pine, cut nails, driven with taper along the grain, showed a superiority of $100 \%$, and with taper across the grain of $135 \%$. Also when the nails were driven in the end of the stick, i.e., along the grain, the superiority of cut, nails was $100 \%$, or the ratio of cut to wire was 2 to 1 . The total of the results showed the ratio of tenacity to be about 3.2 to 2 for the harder wood, and about 2 to 1 for the softer, and for the whole taken together the ratio was 3.5 to 2. We are led to conclnde that under these circumstances the cut nail is superior to the wire nail in direct tensile holding-power by \%r. $74 \%$.

## Nail-holding Power of Various Woods.

(Watertown Experiments.)
Holding-power per square inch of

Kind of Wood.

## Nail-holding Power of Various Woods.

(F. W. Clay's Experiments. Eng'g News, Jan. 11, 1894.)

Wood.
White pine
Yellow pine
Basswood
White oak
Hemlock

Plainenacity of 6d nails__—
Plain. Barbed. Blued. Mean.
$201-319-2: 0$
Tests made at the University of Illinois gave the resistauce of a 1 -in. round rod in a $15 / 16$-inch hole perpendicular to the grain, as 6000 lbs . per lin. ft. in pine and $15,600 \mathrm{lbs}$. in oak. Experiments made at the East River Bridge gave resistances of 12,000 and $15,000 \mathrm{lbs}$. per lin. ft. for a $1-\mathrm{in}$. romnd rod in holes $15 / 16-\mathrm{in}$. and $14 / 16-\mathrm{in}$. dianneter, respectively, in Georgia pine.

Holding-power of Polts in White Pine.
(Eng'g News, September 26, 1891.)

| Round. | Square. |
| :---: | :---: |
| Lbs. | Lbs. |
| 8224 | $8 * 00$ |
| 7805 | 810 |
| 8383 | 8598 |

Round drift-bolts should be driven in holes 13/16 of their diameter, and square drift-bolts in holes whose diameter is $14 / 16$ of the side of the square.

SHERENGTHES WROUGHT YRON HOLTS．
（Computed by A．F．Nagle．）

|  |  |  |  | Stress upon Bolt upon Basis of |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
|  | 13 | ． 38 | ． 12 | 350 | 460 | 580 | 810 | 1160 | 5800 |
| 9－16 | 12 | ． 44 | ． 15 | 450 | 600 | 750 | 1050 | 1500 | 7503 |
|  | 11 | ． 49 | ． 19 | 560 | 750 | 930 | 1310 | 1870 | 9000 |
|  | 10 | ． 60 | ． 28 | 850 | 1130 | 1410 | 1980 | 2830 | 14000 |
| 78 | 9 | ． 71 | ． 39 | 1180 | $15 \% 0$ | 1970 | 2760 | 3940 | 19000 |
|  | 8 | ． 81 | ． 52 | 1550 | $20{ }^{\text {20 }}$ | 2600 | 3630 | 5180 | 25000 |
| 11／8 | 7 | ． 91 | ． 65 | 1950 | 2600 | 3250 | 4560 | 6510 | 30000 |
| 11／4 |  | 1.04 | ． 84 | 2520 | 3360 | 4200 | 5900 | 8410 | 39000 |
| 13／8 | 6 | 1.12 | 1.00 | 3000 | 4000 | 5000 | r000 | 10000 | 46000 |
| $11 / 2$ | 6 | 1.25 | 1.23 | 3680 | 4910 | 6140 | 8600 | 12280 | 56000 |
| 15.8 | 51／2 | 1.35 | 1.44 | 4300 | 5740 | 7180 | 10000 | 14360 | 65000 |
| 13 | 5 | 1.45 | 1.65 | 4950 | 6600 | 8250 | 11560 | 16510 | \％ 45000 |
| 17／8 | 5 | $1.5 \%$ | 1.95 | 5840 | 7800 | 9800 | 13640 | 19500 | 85000 |
| 2 | 41／2 | 1.66 | 2.18 | 6540 | 8720 | 10900 | $15 \% 60$ | 21800 | 95000 |
| $21 / 4$ | $41 / 2$ | 1.92 | 2.88 | 8650 | 11530 | 14400 | 20180 | 28800 | 125000 |
| 21. | 4 | 2．12 | 3.55 | 10640 | 14200 | 17730 | 24830 | 35500 | 150000 |
| $23 / 4$ | ， | 2.37 | 4.43 | 13290 | 17720 | 22150 | 31000 | 44300 | 186000 |
| 3 | $31 /$ | 2.57 | 5.20 | 15580 | 20770 | 26000 | 36360 | 52000 | 213000 |
| $31 / 2$ | $31 / 4$ | 3.04 | 7.25 | 21760 | 29000 | 36260 | 50 T 60 | 72500 | 290000 |
| 4 | 3 | 3.50 | 9.62 | 28860 | 38500 | 48100 | 67350 | 96200 | 385000 |

When it is known what load is to be put upon a bolt，and the judgment of the engineer has determined what stress is safe to put upon the iron，look down in the proper columm of said stress matil the required load is found． The area at the bottom of the thread will give the equivalent area of a flat bar to that of the bolt．

Effect of Initial Strain in Rolts．－Suppose that bolts are used to connect two parts of a machine and that they are screwed up tightly be－ fore the effective load comes on the comnected parts．Let $P_{1}=$ the initial tension on a bolt due to screwing up，and $P_{2}=$ the load afterwards added． The greatest load may vary but little from $\mu_{1}$ or $P_{2}$ ，according as the former or the latter is greater，or it may approach the value $P_{1}+P_{2}$ ，de－ pending upon the relative rigidity of the bolts and of the parts connected． Where rigid flanges are bolted together，metal to metal，it is probable that the extension of the bolts with any additional tension relieves the initial tension，and that the total tension is $P_{1}$ or $P_{2}$ ，but in cases where elastic packing，as india rubber，is interposed，the extension of the bolts may very little affect the initial tension，and the total strain may be nearly $P_{1}+P_{2}$ ． Since the latter assumption is more menfavorable to the resistance of the bolt，this contingency should usually be provided for．（See Unwin，＂Ele－ ments of Machine Design＂for demonstration．）

## STAND－PIPES AND THELER DESEGN．

（Freeman C．Coffin，New England Water Works Assoc．，Eng．News．March 16，1893．）See also papers by A．H．Howlaisd，Eng．Club of Phil．188\％；B．F． Stephens，Amer．Water Works Assoc．，Eng．News，Oct． 6 and 13，1858；W． Kiersted，Rensselaer Soc．of Civil Eng．，Eng＇g Record．A pril 25 and May 2， 1891，and W．D．Pence，Eng．News，April and May， 1894.

The question of diameter is almost entirely independent of that of height． The efficient capacity must be measmred by the length from the high－water line to a point below which it is undesirable to draw the water on account of loss of pressure for fire－smpply，whether that point is the actual bottom of the stand－pipe or above it．This allowable fluctuation ought not to exceed 50 ft ．，in most cases．This makes the diameter dependent upon two condi－
tions, the first of which is the amount of the consumption during the ordinary interval between the stopping and starting of the pumps. This should never draw the water below a point that will give a good fire stream and leave a margin for still further draught for fires. The second condition is the maximum number of fire streams and their size which it is considered necessary to provide for, and the maximum length of time which they are liable to have to run before the pumps can le relied upon to reinforce them.

Another reason for making the diameter large is to provide for stability against wind-pressure whell empty.
The following table gives the height of stand-pipes beyond which they are not safe against wind-pressures of 40 and 50 lbs . per square foot. The area of surface taken is the height multiplied by one half the diameter.

## Heights of Stand-pipe that will Resist Wind-pressure by its Weight alone, when Empty.

| Diameter, feet. | Wind, 40 lbs . per sq. ft. | Wind, 50 lbs . per sq. ft. |
| :---: | :---: | :---: |
| 20. | .. 45 |  |
| 25 | 70 | 55 |
| 30. | 150 | 80 |
| 35 |  | 160 |

To have the above degree of stability the stand-pipes must be designed with the outside angle-iron at the bottom connection.

Any form of anchorage that depends upon connections with the sid 3 plates near the bottom is unsafe. By suitable guys the wind-pressure is resisted by tension in the guys, and the stand-pipe is relieved from wind strains that tend to overthrow it. The guys should be attached to a band of angle or other shaped iron that completely encircles the tank, and rests upon some sort of bracket or projection, and not be riveted to the tank. They should be anchored at a distance from the base equal to the height of the point at which they are attached, if possible.

The best plan is to build the stand-pipe of such diameter that it will resist the wind by its own stability.

## Thickness of the Side Plates.

The pressure on the sides is outward, and due alone to the weight of the water, or pressure per square iuch, and increases in direct ratio to the height, and also to the diameter. The strain upon a section 1 inch in height at any point is the total strain at that point divided by two-for each side is supposed to bear the strain equally. The total pressure at any point is equal to the diameter in inches, multiplied by the pressure per square inch, due to the height at that point. It may be expressed as follows:
$H=$ leeight in feet, and $f=$ factor of safety;
$d=$ diameter in inches;
$p=$ pressure in lbs. per square inch;
$.434=p$ for 1 ft . in height;
$s=$ tensile strength of material per square inch;
$T=$ thickness of plate.
Then the total strain on each side per vertical inch

$$
=\frac{.434 H d}{2}=\frac{p d}{2} ; \quad T=\frac{.434 H d f}{2 s}=\frac{p d f}{2 s} .
$$

Mr. Coffin takes $f=5$, not counting reduction of strellgth of joint, equiv. alent to an actual factor of safety of 8 if the strength of the riveted joint is taken as 60 per cent of that of the plate.
The amount of the wind strain per square inch of metal at any joint can be found by the following formula, in which

[^7]Then the strain per square inch of plate

$$
=\frac{(H w) \frac{H}{2}}{\text { circ. in } \mathrm{ft} . \times m T}
$$

Mr. Coffin gives a number of diagrams useful in the lesign of stand-pipes, together with a number of instances of failures, with discussion of their probable causes.
Mr. Kiersted's paper contains the following : Among the most prominent strains a stand-pipe has to bear are: that due to the static pressure of the water, that due to the overturning effect of the wind on an empty standpipe, and that due to the collapsing effect, on the upper rings, of violent wind storms.
For the thickness of metal to withstand safely the static pressure of water, let

$$
\begin{aligned}
t & =\text { thickness of the plate iron in inches; } \\
H & =\text { height of stand-pipe in feet; } \\
D & =\text { diameter of stand-pipe in feet. }
\end{aligned}
$$

Then, assuming a tensile strength of $48,000 \mathrm{lbs}$. per square inch, a factor of safety of 4 , and efficiency of double-riveted lap-joint equalling 0.6 of the strength of the solid plate,

$$
t=.00036 H \times D ; \quad H=\frac{10,000 t}{3.6 D}
$$

which will give safe heights for thicknesses up to $5 / 8$ to $3 / 4$ of an inch. The same formula may also apply for greater heights and thicknesses within practical limits, if the joint efficiency be increased by triple riveting.
The conditious for the severest overturning wind strains exist when the stand-pipe is empty.

Formula for wind-pressure of 50 pounds per square foot, when

$$
\begin{aligned}
& d=\text { dianeter of stand-pipe in inches; } \\
& x=\text { any unknown height of stand-pipe; } \\
& x=\sqrt{80 \pi d t}=15.85 \sqrt{d t} .
\end{aligned}
$$

The following table is calculated by these formulæ. The stand-pipe is intended to be self-sustainmg; that is, without guys or stiffeners.

## Heights of Standipipes for Various Diameters and Thickmesses of Plates.

| Thickness of Plate in Fractions of an Inch. | Diameters in Feet. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 15 | 16 | 18 | 20 | 25 |
| 3-16. | 50 | 55 | 60 | 65 | 55 | 50 | 35 |  |  |  |  |  |  |
| 7-32. | 55 |  |  |  | 6.5 | 60 | 50 | 40 | 40 |  |  |  |  |
| 4-16. | 60 | 65 | ro | 75 | 75 | 70 | 55 | 50 | 45 | 40 | 35 | 35 | 25 |
| 5-16. | \% | 75 | 80 | 85 | 90 | 85 | \% | 60 | 55 | 50 | 45 | 40 | 35 |
| 6-16. | 75 | 80 | 90 | 95 | 100 | 100 | 85 | 75 | 70 | 65 | 55 | 50 | 40 |
| 7-16. | 80 | 90 | 95 | 100 | 1:0 | 115 | 100 | 85 | 80 | 75 | 65 | 60 | 45 |
| 8-16. | 85 | 95 | 100 | 110 | 115 | 120 | 115 | 100 | 90 | 85 | 75 | ro | 55 |
| 9-16. |  |  |  | 115 | 125 | 130 | 130 | 110 | 100 | 95 | 85 | 80 | 60 |
| 10-16. |  |  |  |  | 130 | 135 | 145 | 120 | 115 | 105 | 95 | 85 | 65 |
| 11-16. |  |  |  |  |  | 145 | 155 | 135 | 125 | 120 | 105 | 95 | 75 |
| 12-16. |  |  |  |  |  | 150 | 165 |  | 135 | 130 | 115 | 105 | 80 |
| 13-16. |  |  |  |  |  |  | - | 160 | 150 | 140 | 125 | 110 | 90 |
| 14-16. |  |  |  |  |  |  |  |  | 160 | 150 | 135 | 120 | 95 |
| 15-16. |  |  |  |  |  |  |  |  |  | 160 | 145 | 130 | 105 |
| 16-16............ | .. |  | . |  |  |  |  |  |  | ... | 155 | 140 | 110 |

Heights to nearest 5 feet. Rings are to build 5 feet vertically.
Failures of stardmpipes have been numerous in recent years. A list showing 23 important failures inside of nine years is given in a paper by Prof. W. D. Pence, Eng'g. News, April 5, 12, 19 and 26, May 3, 10 and 24, and June $\boldsymbol{r}, 1891$. His discussion of the probable causes of the failures is most valuable.

Kenneth Allen, Engineers Club of Philadelphia, 1886, gives the following rules for thickness of plates for stand pipes.

Assume: Wrought iron plate T. S. 48,000 pounds in direction of fibre, and T. S. 45,000 pounds across the fibre. Strength of single riveted joint . 4 that of the plate, and of double riveted joint, .7 that of the plate; wind pressure $=50$ pounds per square foot; safety factor $=3$.

Let $h=$ total height in feet ; $r=$ outer radius in feet ; $r^{\prime}=$ inner radius in feet ; $p=$ pressure per square inch $; t=$ thickness in inches $; d=$ outer diameter in feet.

Then for pipe filled and longitudinal seams double riveted

$$
t=\frac{p r \times 12}{48,000 \times .7 \times 1 / 3}=\frac{h d}{4301} ;
$$

and for pipe empty and lateral seams, single riveted, we have by equating moments :

$$
50 \times 2 r\left(\frac{h}{2}\right)^{2}=144 \times 6000\left(r^{4}-r^{\prime 4}\right) \frac{.7854}{r}, \text { whence } r^{4}-r^{\prime 4}=\frac{h^{2} r^{2}}{2 \pi 144} .
$$

Table showing required Thickness of Bottom Plate.

| Height in Feet. | Diameter. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 feet. | 10 feet. | 15 feet. | 20 feet. | 25 feet. | 30 feet. |
|  | 1. | " | " | " | " | " |
| 50 | + ${ }^{\text {- }} 64^{*}$ | 1/8* | 11-64* | 15-64 | 19-64 | 23-64 |
| 60 | +11-64* | 9-64* | 7-32 | 9-32 | 23-64 | 2 $\mathrm{T}^{-64}$ |
| 70 | + $7-33$ | 11-64* | 1/4 | 21-64 | 13-32 | 31-64 |
| 80 | +19-64 | 3-16 | 9-32 |  | 15-32 | 9-16 |
| 90 | + $3 / 8$ | 7-32 | 5-16 | 2i-64 | 17-32 | 5/8 |
| 100 | +29-64 | +15-64 | 23-64 | 15-32 | 3i-64 | 45-64 |
| 125 |  | +23-64 | 7-16 | 3i-64 | 4i-64 | 7/8 |
| 150 |  | +3:3-64 | 17-39 | 45-64 |  | $1{ }^{1} 3-64$ |
| 175 |  | +11-16 | 39-64 | 13-16 | 1-1-32 | $1{ }^{1}-39$ |
| 200 |  | +29-3\% | 45-64 | 15-16 | 111-64 | $125-64$ |

*The minimum thickness should $=3-16^{\prime \prime}$.
N.B.-Dimensions marked + determined by wind-pressure.

Water Tower at Yonkers, N. Y.-This tower, with a pipe 122 feet high and 20 feet diameter, is described in Engineering News, May 18, 189:.

The thickness of the lower rings is $11-16$ of an inch, based on a tensile strength of $60,000 \mathrm{lbs}$. per square inch of metal, allowing $65 \%$ for the strength of riveted joints, using a factor of safety of $31 / 2$ and adding a constant of $1 / 8$ inch. The plates diminish in thickness by $1-10$ inch to the last four plates at the top, which are $1 / 4$ inch thick.

The contract for steel requires an elastic limit of at least $33,000 \mathrm{lbs}$. per square inch; an ultimate tensile strength of from 56,060 to 66,000 lbs. per square inch; an elongation in 8 inches of at least $20 \%$, and a reduction of area of at least $45 \%$. The inspection of the work was made by the Pittsburgh Testing Laboratory According to their report the actual conditions developed were as follows: Elastic limit from 34,020 to 39,420 ; the tensile strength from 58,330 to 65,390 ; the elongation in 8 inches fron $221 / 2$ to $32 \%$; reduction in area from 53.72 to $\% 1.32 \%$; 17 plates out of 141 were rejected in the inspection.

## WROUGHT-IRON AND STELE WA'RER-RIPES.

Riveted Steel Water-pipes (Engineering News, Oct. 11, 1890, and Aug. 1, 1891.) - The use of riveted wrought-iror pipe has been common in the Pacific States for many years, the largest being a 44 -inch conduit in comnection with the works of the Spring Valley Water Co., which supplies San Francisco. The use of wrought iron and steel pipe has been necessary in the West, owing to the extremely high pressures to be withstood and the difficulties of transportation. As an example: In connection with
the water supply of Virginia City and Gold Hill, Nev., there was laid in $187^{3}$ ? an $111 / 2$-inch riveted wrought-iron pipe, a part of which is under a head of $7 \% 0$ feet.

In the East, the most important example of the use of riveted steel water pipe is that of the East Jersey Water Co, which smpplies the city of Newark. The contract provided for a maximmin higl service supply of $25,000,000 \mathrm{gal}$ lons daily. In this case 21 mules of 48 -inch pipe was laid, some of it under 340 feet head. The plates from which the pipe is made are about 13 feet long by $\tilde{f}$ feet wide, open-hearth steel. Four plates are used to make one section of pipe about 27 feet long. The pipe is riveted longitudinally with a double row, and at the end joints with a single row of rivets of varying diameter, corresponding to the thickness of the steel plates. Before being rolled into the trench, two of the $2 \boldsymbol{2}$-feet lengths are riveted together, thus diminishing still further the number of joints to be made in the trench and the extra excavation to give room for jointing. All changes in the grade of the pipeline are made by $10^{\circ}$ curves and all changes in line by $21 / 2,5,71 / 2$ and $10^{\circ}$ curves. To lay on curved lines a standard bevel was nsed, and the different curves are secured by varying the number of beveled joints used on a certain length of pipe.

The thickness of the plates varies with the pressure, but only three thicknesses are used, $1 / 4,5-16$, and $3 / 8$ inches, the pipe made of these thicknesses having a weight of 160,185 , and 225 lbs , per foot, respectively. At the works all the pipe was tested to pressure $11 / 2$ times that to which it is to be subjected when in place.

Mannesmann Rubes for High Pressures.-At the Mannesmann Works at Komotau, Hungary, more than 60 tons or 25 miles of 3 -inch and 4 -inch tubes averaging $1 / 4$ inch in thickness have been successfnlly tested to a pressure of 2000 lbs . per square inch. These tubes were intended for a high-pressure water-main in a Clilian nitrate district.

This great tensile strength is probably dne to the fact that, in addition to being much more worked than most metal, the fibres of the metal run spiraliy, as has been proved by microscopic examination. While cast-iron tubes will hardly stand more than 200 lbs. per square inch, and welded tubes are not safe above 1000 lbs . per square inch, the Mannesmann tube easily withstands 2000 lbs . per square inch. The length up to which they can be readily made is shown by the fact that a coil of 3-inch tube ro feet long was made recently.

For description of the process of making Mannesmann tubes see Trans. A. I. M. E, vol. xix., 384.

## STRENGTH OF VARIOUS THATERIALS. EXTRACTS HROMIKIREALDY'S TESTS.

The recent publication, in a book by W. G. Kirkaldy, of the results of many thousand tests made during a quarter of a century by his father, David Kirkaldy, has made all important contribution to our knowledge concerning the range of variation in strength of numerous materials. A condensed abstract of these results was published in the American Muchinist, May 11 and 18,1893 , from which the following still further condensed extracts are taken:
The figures for tensile and compressive strength, or, as Kirkaldy calls them, pulling and thrusting stress, are given in pounds per square inch of original section, and for bending strength in pounds of actual stress or pounds per $B D^{2}$ (breadth $\times$ square of depth) for length of 36 inches between supports. The contraction of area is given as a percentage of the original area, and the extension as a percentage in a length of 10 inches, except when otherwise stated. The abbreviations T. S., E. I., Contr., and Ext. are nsed for the sake of brevity, to represent tensile strength, elastic limit, and percentages of contraction of area, and elongation, respectively.
Cast Iron. -44 tests: T. S. 15,468 to 28,740 pounds; 17 of these were unsound, the strength ranging from 15,468 to 24,357 pounds. Average of all, 23,805 pounds.
Thrusting stress, specimens 2 inclies long, 1.34 to 1.5 in . diameter; 43 tests, all sound, 94,352 to 131,912 ; one, unsound, 93,759 ; average of all, 113,825 .
Bending stress, bars abont 1 in . wide by 2 in . deep, cast on edge. Ultimate stress 2876 to 3854 ; stress per $B D^{2}=725$ to 892 ; average, 820 . Average modulus of rupture, $R,=3 / 2$ stress per $B D^{2} \times$ length $,=44,280$. Ultimate deflection, 29 to .40 in ; ; average, . 34 Inch.

Other tests of cast iron, 460 tests, 16 lots from various sources, gave re-
sults with total range as follows: Pulling stress, 12,688 to 33,616 pounds; thrusting stress, 66,363 to 175,950 pounds; bending stress, per $B D^{2}, 505$ to 1128 pomms; modulus of rupture, $R, 27,270$ to $61,91 \approx$. Ultimate deflection, .21 to .45 inch.
The specimen which was the highest in thristing stress was also the highest in bending, and showed the greatest deflection, but its tensile strength was ouly $26,50 \%$.
The specimen with the highest tensile strength had a thrusting stress of 143,939 , and a bending strength, per $B D^{2}$, of 979 pounds with 0.41 deflection. The specimen lowest in T. S. was also lowest in thrusting and bending, but gave 38 deflection. The specinen which gave . 21 deflection had T. S., 19,188; thrusting, 104.281; and bending, 561.

Iron Castings. - 69 tests; tensile strength, 10,416 to 31,652 ; thrusting stress, ultimate per square inch, 53.502 to 132,031 .
Channel mons.-Tests of 18 pieces cut from channel irons. T. S. 40,693 to 53,141 pounds per square inch; contr. of area from 3.9 to $32.5 \%$. Ext. in 10 in. from 2.1 to $\approx 2.5 \%$. The fractrues ranged all the way from $100 \%$ fibrous to $100 \%$ crystalline. The highest T. S., 53,141 , with $8.1 \%$ contr. and $5.3 \%$ ext., was $100 \%$ crystalline; the lowest T. S., 40,693 , with 3.9 contr. and 2.1 \% ext., was $75 \%$ crystalline. All the fibrous irons showed from 12.2 to $23.5 \%$ ext., 17.3 to 33.5 contr, and T. S. from 43,426 to 49,615 . The fibrous irons are therefore of medimm tensile strength and high ductility. The crystalline irons are of variable T. S., highest to lowest. and low ductility.
Lowmoor Iron Bars. -Three rolled bars $21 / 2$ inches diameter; tensile tests: elastic, 23.200 to 24,200 ; ultimate, $50.8 \%$ to 51,905 ; contraction, 44.4 to 42.5 ; extension, 29.2 to 24.3 . Three hammered bars, $41 / 2$ inches diameter, elastic 25,100 to 24,200 ; nltimate, 46,810 to 49,223 ; contraction, 20.7 to 46.5 ; extension, 10.8 to 31.6. Fractures of all, 100 per cent fibrous. In the hammered bars the lowest T. S. was accompanied by lowest ductility.
Tron Bars, Various. - Of a lot of 80 bars of varions sizes, some rolled. and some hanmered (the above Lowmoor bars included) the lowest T. S. (except one) 40,808 pomnls per square inch, was shown by the Swedish "hoop L" bar $31 / 4$ inches diameter, rolled. Its elastic limit was 19,150 pounds; contraction $68.7 \%$ and extension $37.7 \%$ in 10 inches. It was also the most ductile of all the bars tested, and was $100 \%$ fibrous. The highest T'. S., 60,780 pounds, with elastic limit, 29,400 ; coutr., 36.6 ; and ext., $24.3 \%$, was shown by a "Faruley" 2-inch bar, rolled. It was also $100 \%$ fibrous. The lowest ductility $2.6 \%$ contr., and $4.1 \%$ ext., was shown by a $33 / 4$-inch hammered bar, withont brand. It also had the lowest T. S., $40,2 \% 8$ pounds, but rather high elastic limit, 25,700 pounds. Its fracture was $95 \%$ crystalline. Thus of the two bars showing the lowest T. S., one was the most ductile and the other the least ductile in the whole series of 80 bars.
Generally, high ductility is accompanied by low tensile strength, as in the Swedish bars, but the Farnley bars showed a combination of high ductility and high tensile strength.
Locomotive Forgings, Iron. $-1 \%$ tests: average, E. L., 30,420 ; T. S., $50.5 \% 1$ : contr., 36.5; ext. in 10 inches, 3.8.
Broken Mnchor Forgings, Eron. -4 tests: average, E. L., 23,825; T. S, 40,0833 : contr. 3.0 ; ext. in 10 inches, 3.8 .

Kirkaldy places these two irons in contrast to slow the difference between good and bad work. The broken anchor material, he says, is of a most treacherons character. and a disgrace to any manufacturer.
Lron Plate Girder.-Thensile tests of pieces cut from a riveted iron girder after twenty years service in a railway bridge. Top plate, average of 3 tests, $\mathbb{E}$. L., 26,600 ; T. S., 40.806 ; contr. 161 ; ext. in 10 inches, 7.8. in 10 inclates, 6 average of 3 tests, E. L., 31, 200; 'T. S., 44,288; contr., 13.3; ext.
 tests from different parts of the girder prove that the iron lias mudergon no change during twenty years of use.
Steel Plates.-Six plates 100 inches loug, 2 inches wide, thickness varions, .36 to .97 inch T. S., 55,485 to 60,805 ; E. L., 29,600 to 33,200 ; contri., 52.9 to 59.5 ; ext. 17.05 to 18.5 亿.

Steel Bridge Hinks.-40 links from Hammersmith Bridge, 1886.

|  | iEi | - | - |  | Fracture. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 总 |  |
| Average of all... | 67.294 | 38.294 | 34.5\% |  |  |  |
| Lowest T. S............. | 60,753 | 36,030 44 | 30.1 | ${ }_{15.51}$ | 30\% | 70\% |
| Lowest E. L. and E. . . . | 75,9:36 64,044 | 44,166 32,441 | 31.2 34.7 | 12.42 | 15 | 85 |
| Greatest Contraction | 63,745 | 38,118 | 54.8 | 13.43 15.46 | 30 100 | 0 |
| Greatest Extension. | 65,980 | 36,792 | 40.8 | 15.46 17.78 | 100 35 | ${ }_{6}^{0}$ |
| Least Contr. and Ext. | 63,980 | 39,017 | 6.0 | 17.68 6.62 | 35 0 | $\begin{array}{r} 65 \\ 100 \end{array}$ |

The ratio of elastic to ultimate strength ranged from 50.6 to 65.2 per cent; average, 56.9 per cent.

Extension in lengths of 100 inches. At $10,000 \mathrm{lbs}$. per sq. in., .018 to .024 ; mean, .020 inch; at 20.000 lbs . per sq. in. . 049 to $.063 ;$ mean, $055 \mathrm{inch} ;$ at $30,000 \mathrm{lbs}$. per sq. in., 083 to .100 ; mean, .090; set at 30,000 pounds per sq. in., 0 to .002; mean, 0 .

The mean extension between 10,000 to $30,000 \mathrm{lbs}$. per sq. in. increased regularly at the rate of .007 inch for each 2000 lbs . per sq. in. increment of strain. This corresponds to a modulus of elasticity of $28,5 \div 1,4: 9$. The least increase of extension for an increase of load of $20,000 \mathrm{lbs}$. per sq. in., . 065 inch, corresponds to a modulus of elasticity of $30,469,231$, and the greatest, .0 r 6 inch, to a modnlus of $26,315, \% 89$.
Steel Rails.-Bending tests, 5 feet between supports, 11 tests of flange rails fie pounds per yard, 4.63 inches high.

Elastic stress. Ultimate stress. Deflection at 50,000

Hardest.... Pounds.

Pounds. 60,960 56,"40 59,209

Pounds. 3.24 ins. 3.56 3.53 "

Ultimate Deflection. 8 ins. 8 "، 8 "

All uncracked at 8 inches deflection.
Pulling tests of pieces cut from same rails. Mean results.


Steel Tires.-Tensile tests of specimens cut from steel tires.
Krupp Steel- -262 Tests.

|  | E. L. | T. S. | Contr. | Ext. in |
| :--- | :---: | :---: | :---: | :---: |
| Highest. ...... | 60,250 | $119,0.9$ | 31.9 | 18.1 |
| Mean $\ldots . . \ldots \ldots$ | 52,869 | 104,112 | 29.5 | 19.7 |
| Lowest $\ldots \ldots$. | 41,700 | 90,523 | 45.5 | 23.7 |

Vickers, Sons \& Co.- 70 Tests.

|  | E. L. | T.S. | Contr. | Ext. in |
| :--- | :---: | :---: | :---: | :---: |
| Highest. $\ldots \ldots$. | 58,600 | 120,789 | 11.8 | 5 inches. |
| Mean.......... | 51,066 | 101,264 | 17.6 | 8.4 |
| Lowest....... | 43,700 | 87,697 | 24.7 | 12.4 |
|  |  |  |  |  |

Note the correspondence between Krupp's and Vickers' steels as to tels. sile strength and elastic limit, and their great difference in contraction and elongation. The fractures of the Krupp steel averaged 22 per cent silky, 78 per cent granular'; of the Vicker steel, 7 per cent silky, 93 per cent granu.

Steel Axles.-Tensile tests of specimens cut from steel axles. Patent Shaft and Axle Tree Co.- 157 Tests.

|  | E. I. | T. S. | Contr. | Ext. in 5 inches. |
| :---: | :---: | :---: | :---: | :---: |
| Highest. | 49,800 | 99,009 | 21.1 | 16.0 |
| Mean.. | 36,267 | 72,099 | 33.0 | 23.6 |
| Lowest. | 31,800 | 61,382 | 34.8 | 25.3 |

Vickers, Sons \& Co.- 125 Tests.

|  | E. L. | T.S. | Contr. | 5 inches. |
| :--- | :---: | :---: | :---: | :---: |
| Highest....... | 4,600 | $8,3,701$ | 18.9 | 13.2 |
| Mean....... | 37,618 | 70,572 | 41.6 | 27.5 |
| Lowest....... | 30,250 | 56,388 | 49.0 | $3 \% .2$ |

The average fracture of Patent Shaft and Axle Tree Co. steel was 33 per cent silky, 67 per cent granular:
The average fracture of Vickers' steel was 88 per cent silky, 12 per cent gramnlar.
Teusile tests of specimens cut from locomotive crank axles.
Vickers'.-82 Tests, 18 î9.


Fried. Krupp.-43 Tests, 1889.

|  | E. L. | T. S. | Contr. | 5 inches. |
| :--- | :---: | :---: | :---: | :---: |
| Highest....... | 31,650 | 66,868 | 48.6 | 35.6 |
| Mean $\ldots \ldots \ldots$. | 29,491 | 61,744 | 47.7 | 32.3 |
| Lowest $\ldots \ldots$. | 21,950 | $55,1 \% 2$ | 55.3 | 35.6 |

Steel Propeller Shafts.-Tensile tests of pieces cut from two shafts, mean of four tests each. Hollow slaft, Whitworth. T. S., 61,290; E. L., 30,575; contr., 52.8; ext. in 10 inches, 28.6. Solid Sliaft, Vickers', T. S., 46,870; E. L. 20,425 ; contr., 44.4; ext. in 10 incles, 30.7 .

Thrusting tests, Whitworth, ultimate, 56,201 ; elastic, 29,300; set at 30,000 lbs., 0.18 per cent; set at $40,000 \mathrm{ibs}$., 2.04 per cent; set at $50,000 \mathrm{lbs}$., 3.82 per cent.
Thrusting tests, Vickers', ultimate, 44,602; elastic, 22,250 ; set at $30,000 \mathrm{lbs}$., 2.29 per cent; set at $40,000 \mathrm{lbs} .4 .69$ per cent.

Shearing strength of the Whitworth sliaft, mean of four tests, was 40,654 lbs. per square inch, or 66.3 per cent of the pulling stress. Specific gravity of the Whitworth steel, 7.86\%: of the Vickers', 7.856.

Spring Steel.-Untempered, 6 tests, average, E. L., 67,916: T. S., 115,668; Contr., 37.8; ext. in 10 inches, 16.6. Spring steel untempered, 15 tests, average, E. L., 38,785; T. S., 69,496; contr., 19.1; ext. in 10 inclies, 298. These two lots were shipped for the same purpose, viz., railway carriage leaf springs.

Steel Castings. -44 tests, E. L., 31,816 to 35,567 ; T. S., 54,998 to 63,840 ; contr., 1.67 to 15.8 ; ext., 1.45 to 15.1 . Note the great variation in ductility. The steel of the highest strength was also the most dnctile.

## Riveted Joints, Pulling Tests of Riveted Steel Plates, Triple Riveted Lap Joints, Machine Riveted, Holes Drilled.

Plates, width and thickness, inches:
$13.50 \times .25 \quad 13.00 \times .51 \quad 11.75 \times . .7812 .25 \times 1.01 \quad 14.00 \times .77$
Plates, gross sectional area square inches:
$\begin{array}{lll}3.375 & 6.63 & 9.165\end{array}$
12.372
10.780

Stress, total, pounds : 199,320

332,040
423,180
528,000
455,210

Stress per square inch of gross area, joint:


Strength of Welds.-Tensile tests to determine ratio of strength of
weld to solid bar.
Iron Tie Bars.- 28 Tests.
Strength of solid bars varied from........ ............... 43,201 to $57,065 \mathrm{lbs}$.
Strenth of welded bars varied from 17,816 to $44,586 \mathrm{lbs}$.
Ratio of weld to solid varied from
37.0 to $19.1 \%$

Iron Plates.-r Tests.
Strength of solid plate from 44,851 to $47,481 \mathrm{lbs}$.
Strength of welded plate from 26,442 to $38,931 \mathrm{lbs}$.
Ratio of weld to solid. 57.7 to $83.9 \%$

Chain Linis.-216 Tests.
Strength of solid bar from................................... 49,122 to $5 \pi, 8 i 5 \mathrm{lbs}$.
Strength of welded bar from................................... . $39,5 \pi 5$ to 48,824 lbs.
Ratio of weld to solid
72. 1 to $95.4 \%$


32 tests, solid iron, average

$$
52,444
$$

17 ". electric welded, average
46,836 ratio 89.1\%
Steel Bars and Plates. $1 \dddot{4}$ Tests.
Strength of solid 46,899 " 89.3\%

## Strength of weld

54,2:6 to 64,580
Ratio weld to solid
The ratio of weld to solid in all the tests ranging from 37.0 to 52.6 to $82.1 \%$
of the great variation of workmanship in welding.
Cast Copper. -1 tests, average, E. L., 5900 ; T. S., 24, 781 ; contr., 24.5;
ext., 21.8.
Copper Plates.-As rolled, 22 tests, 26 to .75 in. thick; E. L., 966 to 18,650 ; T. S., 30,993 to 34,281 ; contro, 31.1 to $5 \% .6$; ext., 39.9 to 52.2 . The variation in elastic limit is due to difference in the heat at which the plates were finished. Annealing reduces the T. S. only about 1000 pounds, but the E. L. flom 3000 to $\% 000$ pounds.

Another series, 38 to .52 thick; 148 tests, T. S., 29,099 to 31,924 ; contr., $28 . \%$ to 56.7 ; ext. it 10 inches, 28.1 to 41.8 . Note the uniformity in tensils istrength.

Drawn Copper. - $\% 4$ tests ( 0.88 to 1.08 inch diameter); T. S., 31,634 to $40.55 \tilde{7}^{\text {; }}$ contr., 37.5 to 64.1 ; ext. in 10 inches, 5.8 to 48.2 .
Ifronze from a Propeller hidade.-Means of two tests each from centre and edge. Central portion (sp. g1. 8.320). E. L., ri550; T. S., 26,312; contr., 25.4 ; ext. in 10 inches, 32.8. Edge portion (sp. gr. S550). E. L., 8950 ; T. S., 35,960 ; contr., 37.8 ; ext. in 10 inches, $4 \% .9$.

Cast German Silver. -10 tests: E. L., 13,400 to 29,100; T. S., 23,414 to 46,510 ; contr., 3.2 to 21.5 ; ext. in 10 inch $5,0.6$ to 10.2 .

Thin Shect Metal،-Tensile Strength.
Germi'n silver, 2 lots
Bronze, 4 lots
75.816 to 87,129

Brass, 2 lots 73,380 to 92,086
Copper, 9 lots 44,398 to 58,188
Iron, 13 lots, lengthway 30,470 to 48,450
Iron, 13 lots, engthwa 44,331 to 59,484
Steel, 6 lots... 39,838 to 5 ri, 350
Steel, 6 lots, crossivay 49,253 to 78,251 55,948 to 80,799

## Wirc.-'Tensile Strength.


Bronze, 1 lot......... ..................................................... 78,049
Brass, as drawn, 4 lots............................ .......... ....... 81.114 to 98,5\%8
Copper, as drawn, 3 lots............................................... 37,60 . to 46,494
Copper annealed, 3 lots.......................................... ..... 34,936 to 45,210
Copper (another lot), 4 lots ............................................ 35,052 to 62, 190
Copper (extension 36.4 to $0.6 \%$ ).
Iron, 8 lots
59,246 to 97,908
Iron (extension 15.1 to $0 . \dot{\%} \%$ ).
Steel, 8 lots
103,2 $2 \boldsymbol{2}$ to 318,823
The Steel of 318,823 T. S. was $.04 \%$ inch diam., and had an extension of only 0.3 per cent; that of $103,2 \uparrow 2 \mathrm{~T}$. S, was .107 inch diam. and had an extension of 2.2 per cent. One lot of . 044 inclı diam. had 266,114 T. S., and 5.2 per cent extension.

## Wire Ropes.

Selected Tests Showing Range of Variation.

| Description. |  |  | Strands. |  |  | Hemp Core. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Galvanized. | 7.70 | 53.00 | 6 | 19 | . 1563 | Main | 339,780 |
| Ungalvanized | 7.00 | 53.10 | T | 19 | . 1495 | Main and Strands | 314,860 |
| Ungalvanized. | 6.38 | 42.50 | 7 | 19 | . $134 \%$ | - Wire Core | 295,920 |
| Galvanized.. | 7.10 | 37.57 | 6 | 30 | . 1004 | Main and Strands | 272, 750 |
| Ungalvanized | 6.18 | 40.46 | 7 | 19 | . 13302 | Wire Core | 268,470 |
| Ungalvanized | 6.19 | 40.33 | 7 | 19 | . 1316 | Wire Core | 221,820 |
| Galvanized.. | 4.92 | 20.86 |  | 30 | . 0728 | Main and Strands | 190,890 |
| Galvanized. | 5.36 | 18.94 | 6 | 12 | . 1104 | Main and Strands | 136,550 |
| Galvanized | $4.8:$ | $\because 1.50$ | 6 | r | . 1693 | Main | 129,710 |
| Ungalvanize | 3.65 | 12.21 | 6 | 19 | . 0755 | Main | 110,180 |
| Ungalvanize | 3.50 | 12.65 | - | \% | . 122 | Wire Core | 101,440 |
| Ungalvanize | 3.8: | 14.12 | 6 | \% | . 135 | Main | 98,6ז0 |
| Galvanized | 4.11 | 11.35 | 6 | 12 | . 080 | Main and Strands | -75,110 |
| Galvanized. | 3.31 | 7.27 | 6 | 12 | . 068 | Main and Strands | 55,095 |
| Ungalvanized | 3.02 | 8.62 | 6 | 7 | . 105 | Main | 49,555 |
| Ungalvanized | 2.68 | 6.26 | 6 | 6 | . 0963 | Main and Strands | 41,205 |
| Galvanized. | 2.87 | 5.43 | 6 | 12 | . 0560 | Main and Strands | 38,555 |
| Galvanized. | 2.46 | 3.85 |  | 12 | . 012 | Main and Strands | 28,075 |
| Ungalvanize | $1 . \%$ | 2.80 |  | 7 | . 0619 | Main | 24,552 |
| Galvanized. | 2.04 | 2.72 | - | 12 | .03\%8 | Main and Strands | 20.415 |
| Galvanized | 1.76 | 1.85 | 6 | 12 | . 0305 | Main | 14,634 |

Hemp Ropes, Untarred. -15 tests of ropes from 1.53 to 6.90 inches circumference, weighing 0.42 to 7.77 pounds per fathom, showed an ultimate strength of from 1670 to 33,808 pounds, the strength per fathom weight varying from $28 \pi^{2}$ to 5534 pounds.

Hemp Ropes, Tarred. -15 tests of ropes from 1.44 to $\% .12$ inches circumference, weighing from 0.38 to 10.39 pounds per fathom, showed an ultimate strength of from 1046 to 31.549 pounds, the strength per fathom weight varying from 166 to 5149 pounds.

Cotton 18 opes. - 5 ropes, 2.48 to 6.51 inches circumference, 1.08 to 8.17 pounds per fathom. Strength 3089 to 23,258 pounds, or 2474 to 3346 pounds per fathon weight.

Manila Ropes.-35 tests: 1.19 to 8.90 inches circumference, 0.20 to 11.40 pounds per fathom. Strength 1280 to 65,550 pounds, or 3003 to 7394 pounds per fathom weight.
Belting.
No. of
lots.

Canvas.- 35 lots: Strength, lengthwise, 113 to 408 pounds per inch; crossways, 191 to 468 pounds per inch.
The grades are numbered 1 to 6 , but the weights are not given. The strengths vary considerably, even in the same number.
Marbles.-Crushing strength of various marbles. 38 tests, 8 kinds. Specimens were 6 -inch cubes, or columns 4 to 6 inches diameter, and 6 and 12 inches high. Range 7542 to 13,720 pounds per square inch.
Granite.-Crushing strength, 17 tests; square columns $4 \times 4$ and $6 \times 4$, 1 to 24 inches high, 3 kinds. Crushing strength ranges 10,026 to $13,2 \tilde{1}$ pounds per square inch. (Very uniform.)
Stones.-(Probably sandstone, local names only given.) 11 kinds, 42 tests, $6 \times 6$, columns 12,18 and 24 inches high. Crushing strength ranges from 2105 to 12,122 . The strength of the column 24 inches long is generally from 10 to 20 per cent less than that of the 6 -inch cube.
Stones.- (Probably sandstone) tested for London \& Northwestern Railway. 16 lots, 3 to 6 tests in a lot. Mean results of each lot ranged from 3785 to 11,956 pounds. The variation is chiefly due to the stones being from different lots. The different specimens in each lot gave results which generally agreed within 30 per cent.

Hricks.-Crushing strength, 8 lots; 6 tests in each lot; mean results ranged from 1835 to 9209 pounds per square inch. The maximum variation in the specimens of one lot was over 100 per cent of the lowest. In the most uniform lot the variation was less than 20 per cent.

Wood.-Transverse and Thrusting Tests.

|  |  | Sizes abt. in square. | Span, inches. | Ultimate Stress. | $\stackrel{S}{\underline{W}}$ <br> $\underline{W}$ <br> $4 D^{2}$ | Thrust. ing Stress per sq. in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pitch pine......... | 10 | 111/2 to 121/2 | 144 | 45,856 | 1096 | 3586 |
|  |  |  |  | to | to | to |
|  |  |  |  | 80,520 $3 \sim 948$ | 1403 | 54.38 |
| Dantzic fir........ | 12 | 12 to 13 | 144 | $3 \pi, 948$ to | 657 | 2478 |
|  |  |  |  | 54.152 | 790 | ${ }_{3123}$ |
| English oak....... | 3 | $412 \times 12$ | 120 | 32,856 | 1505 | 2473 |
|  |  |  |  | to 39,084 | to | to |
| American white oak | 5 | 412 $\times 12$ | 120 | 23,624 | 1190 | 22656 |
|  |  |  |  | $\begin{aligned} & \text { ro, } 2 \mathrm{ct} \\ & \text { to } \\ & 26,952 \end{aligned}$ | $\begin{aligned} & 130 \\ & \text { to } \\ & 13 \% \end{aligned}$ | to 3890 |

[^8]98.8 pounds per imperial bushel: residue, $0 . \pi$ per cent with sieve 2500 meshes per square inch; 38.8 per cent by volume of water required for mixing; time of setting, ${ }^{r}$ days; 10 tests to each lot. The mean results in lbs. per sq. in. were as follows:

| Age. | alone, Pulling. | alone, Tlurusting. | in Sand, | Thrusting. | Thrustiug. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 days | ${ }_{3 \%}{ }^{\text {\% }}$ | 2910 | 893 | $407{ }^{\text {a }}$ | 228 |
| 20 days | 420 | 3342 | 1023 | 494 | 275 |
| 30 days | 451 | 3724 | 1172 | 594 | 338 |

Portland Cement.-Various samples pulling tests, $2 \times 21 / 2$ inches cross-section, all aged 10 days, 180 tests; ranges 87 to 643 pounds per square inch.

## TENSHLE STRENGTHEF WIRE.

(From J. Bucknall Smith's Treatise on Wire.)
Tous per sq.
in. sectional
area.
Black or annealed iron wire.
Bright hard drawn
Bessemer steel wire...............................................
Mild Siemens-Martin steel wire................................ 60
High carbon ditto (or "improved
Crucible cast-steel "improved" wire...
"Improved" cast-steel "plough".
Special qualities of tempered and improved cast-
steel wire may attain
MISCELLANEOUS TESES OE THATERIALS.
Reports of Work of the Watertown resting-machine in 1883.

TESTS OF RIVETED JOINTS, IRON AND STEEL PLATES.

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | 3/8 | 11-16 | $3 / 4$ | 101/2 | 6 | 13/4 | 39,300 | 47,180 | $47.0 \ddagger$ |
| * | 9/8 | 11-16 | 3/4 | 101\% | 6 | 13/4 | 41,000 | 47,180 | $49.0 \ddagger$ |
| * | 1\% | $3 / 4$ | 13-16 | $10^{*}$ | 5 | $2^{4}$ | 35,650 | 44,615 | $45.6 \pm$ |
| * | 1. | 3 | 13-16 | 10 | 5 | 2 | 35,150 | 44,615 | $44.9 \pm$ |
| * | 3\% | 11-16 | $3 / 4$ | 10 | 5 | 2 | 46,360 | 47,180 | 59.9 § |
| * | 8/8 | 11-16 | $3 / 4$ | 10 | 5 | 2 | 46,875 | 47,180 | 60.5 § |
| * | $1 \%$ | $3 / 4$ | 13-16 | 10 | 5 | 2 | 46,400 | 44,615 | 59.4 § |
| * | 1\% | $3 / 4$ | 13-16 | 10 | 5 | 2 | 46,140 | 44,615 | 59.2 § |
| * | 5\% | 1 | 1 1-16 | 101\% | 4 | 25/8 | 44,260 | 44,635 | $57.2 §$ |
| * | 5\% | 1 | 1 1-16 | 101/2 | 4 | 25/8 | 42,350 | 44,635 | 54.9 § |
| * | $3 / 4$ | $11 / 8$ | $13-16$ | 11.9 | 4 | 2.9 | 42,310 | 46,590 | 52.1 § |
| * | $3 / 4$ | 11/8 | 1 3-16 | 11.9 | 4 | 2.9 | 41,920 | 46,590 | 51.7 § |
| * | 3/8 | 3/4 | 13-16 | 101/2 | 6 | 13/4 | 61,270 | 53.330 | $59.5 \pm$ |
| $+$ | 3/8 | 34 | 13-16 | 101/2 | 6 | 13/4 | 60,830 | 53,330 | $59.1 \pm$ |
| + | 1/2 | 15-16 | 1 | 10 | 5 | $\underset{\sim}{2}$ | 47,530 | 57,215 | 40.2 $\ddagger$ |
| + | $1 / 2$ | 15-16 | 1 | 10 | 5 | 2 | 49.840 | 57,215 | $42.3 \ddagger$ |
| $\dagger$ | 3/8 | 11-16 | $3 / 4$ | 10 | 5 | 2 | 62,770 | 53,330 | 71.7 § |
| + | 3/8 | 11-16 | $3 / 4$ | 10 | 5 | 2 | 61,210 | 53,3:30 | 69.8 § |
| + | 1\% | 15-16 | $1{ }^{1 / 4}$ | 10 | 5 | 2 | 68,920 | 5\%,215 | 57.1 § |
| $+$ | 1\% | 15-16 | 1 | 10 | 5 | 2 | 66,710 | 57,215 | 55.0 § |
| + | 5/8 | 1 | 1 1-16 | 91/2 | 4 | 23/8 | 62,180 | 52,445 | 63.48 |
| + | 5\% | 1 | 1 1-16 | 91\% | 4 | 23/8 | 62,590 | 52,445 | 63.8 § |
| + | $3 / 4$ | 11/8 | 13 -16 | 10 | 4 | 21/2 | 54,650 | 51,545 | 540 § |
| $\dagger$ | $3 / 4$ | 11/8 | 13 -16 | 10 | 4 | 21/2 | 54,200 | 51,545 | 53.4 § |

* Iron. + Steel. $\ddagger$ Lap-joint. § Butt-joint.

Pounds per sq. in. sectional area. 56,000
78,400
89,600
134,000
1\%9,200
224,000
268,800
$\qquad$
+
Jap-joint

The efficiency of the joints is found by dividing the maximum tensile stress on the gross sectional area of plate by the tensile strength of the material.

COMPRESSION TESTS OF $3 \times 3$ INCH WROUGHT-IRON BARS.

| Length, inches. | Tested with Two Pin Ends, Piils 11/2 inch in Diameter. |  | Tested with One Flat and One Pin End, Ultimate Compressive Strength, pounds per square inch. |
| :---: | :---: | :---: | :---: |
|  | Ultimate Compressive Strength pounds per square inch. | Tested with Two Flat Ends, Ultimate Compressive Strength, pounds per square inch. |  |
| 30.. | $\left\{\begin{array}{l}28,260 \\ 31,990\end{array}\right.$ |  |  |
|  | $\left\{\begin{array}{l}21,310 \\ 2,010\end{array}\right.$ |  |  |
|  | $\{26,640$ |  |  |
| 90... | $\left\{\begin{array}{l}24,030 \\ 25,380\end{array}\right.$ | $\left\{\begin{array}{l}26,780 \\ 2,580 \\ 2,010\end{array}\right.$ | $\left\{\begin{array}{l}25,120 \\ 2500\end{array}\right.$ |
| 120. | $\{20,660$ | $\{23,010$ | $\left\{\begin{array}{l}25,190 \\ 22,450\end{array}\right.$ |
|  | $\{20,200$ | \{ 22,450 | $\{21,870$ |
| $150 .$. | $\left\{\begin{array}{l}16,520 \\ 17,840\end{array}\right.$ | ............. |  |
| 180. | $\{13,010$ |  |  |
|  | \{ 15,700 |  |  |
| Tested with two ends. Length of 120 inches. | $\text { pin- bars }\left\{\begin{array}{l} \text { Diamet } \\ \text { of Pins } \\ \text { 7/8 inch } \\ 11 / 8 \text { inch } \\ 17 / \\ 21 / 4 \\ \hline 1 \end{array}\right.$ |  | Ult. Comp. Str., |
|  |  |  | per sq. in., lbs. |
|  |  |  | 16,250 |
|  |  |  | 17, ${ }_{2} 140$ |
|  |  |  | 121,400 22,210 |

## TENSILE TEST OF SIX STEEL EYE-BARS.

## COMPARED WITH SMALL TEST INGOTS.

The steel was made by the Cambria Iron Company, and the eye-bar heads made by Keystone Bridge Company by upsetting and hammering. All the bars were made from one ingot. Two test pieces, $3 / 4$-inclı round, rolled from a test-ingot, gave elastic limit 48,040 and 42.210 pounds; tensile strength, 73,150 and $69,4 \% 0$ pounds, and elongation in 8 inches, 22.4 and 25.6 per cent. respectively. The ingot from which the eye-bars were made was 14 inches square, rolled to billet, $7 \times 6$ inclies. The eye-bars were rolled to $61 / 2 \times 1$ inch. Cuemical tests gave carbon . 27 to .30 ; manganese, .64 to .73 ; phosphorus
$0 \% 4$ to 098 .

| Gauged <br> Length, | Elastic <br> limit, lbs. | Tensile <br> strength per | Elongation <br> per cent, in <br> per sq. in. |
| :---: | :---: | :---: | :---: |
| 160 | 37,480 | 67,800 | Gauged Length. |

The average tensile strength of the $3 / 4$-incl test pieces was 71,310 lbs., that of the eye-bars $67,230 \mathrm{lbs}$, a decrease of $5.7 \%$. The average elastic limit of the test pieces was $45,150 \mathrm{ibs}$., that of the eye-bars $36,402 \mathrm{lbs}$., a decrease of 19.4\%. The elastic limit of the test pieces was $63.3 \%$ of the ultimate strength, that of the eye-bars $54.2 \%$ of the ultimate strength.

## COMPRESSION OF WROUGGTT-IRON COLUMNS, LATTICED BOX AND SOLID WEB.

ALL TESTED WITH PIN ENDS.

| Columns made of |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 6 -inch | 10.0 | 9.831 | 432 | 30,220 |
| $6{ }^{6}$ | 150 | 9.977 | 592 | 21,050 |
| 6 " | 20.0 | 9.762 | 755 | 16,2\%0 |
| 8 " | 20.0 | 16.281 | 1,230 | 22,540 |
| 8 " | 26.8 | 16.141 | 1,645 | 17,5\%0 |
| 8 -inch channels, with 5 -16-in. contiuluous plates | 26.8 | 19.417 | 1,940 | 25,290 |
| 5 -16-inch continuous plates and angles. Width of plates, $12 \mathrm{in} ., 1 \mathrm{in}$. and 7.35 in . | 26.8 | 16.168 | 1,765 | 28,020 |
| 7-16-inch continuous plates and angles. Plates 12 in. wide. | 26.8 | 20954 | 2,242 | 25,270 |
| 8-inch channels, latticed..................... | 13.3 | 7.628 | $6{ }^{6} 9$ | 33,910 |
|  | 20.0 | \%. 621 | 924 | 34,120 |
| 8 " " " | 26.8 | \%. 673 | 1,255 | 29,8\%0 |
| 8 -inch channels, latticed, swelled sides.. | 134 | \%.694 | 684 | 33,5,30 |
| 8 6 $"$ 6 6 $"$ <br> 8 6 6 6 6 0 | ${ }_{26.0}^{20.0}$ | 7.517 7.702 | 921 1,280 | 33,390 30.7 30 |
| 10 " " | 16.8 | 11.944 | 1,470 | 33, 140 |
| 10 " " | 25.0 | 12.175 | 1,926 | 32,440 |
| $10-i n c h$ channels, latticed, swelled sides. | 16.7 | 12.366 | 1,549 | 31,130 |
| * 10-inch channels, latticed one side; continuous plate one side | 25.0 | 17.622 | 1,848 | 26,190 |
| +10 inch channels, latticed one side; continuous plate one side. | 25.0 | 17.901 | 1,827 | 17,270 |

* Pins in centre of gravity of channel bars and continuous plate, 1.63 inches from centre line of channel bars.
+ Pins placed in centre of gravity of channel bars.


## EFTECT OF COLD-DRAWING ON STEEL.

Three pieces cut from the same bar of hot-rolled steel:

1. Original bar, 2.03 in. diam., gauged length 30 in , tensile strength 55,400 lbs. per square in.; elongation $23.9 \%$.
2. Diameter reduced in compression dies (one pass) . 094 in.; T. S. 70,420; el. $2.7 \%$ in 20 in .
$3 . \quad$ "
.222 in.; T. S. 81,890; el. 0.0 \% $5 \%$ in 20 in .

Compression test of cold-drawn bar (same as No. 3), length 4 in., diam. 1.808 in.: Compressive strength per sq. in., $75,000 \mathrm{lbs}$.; amount of compression $.05 \tilde{\mathrm{~T}} \mathrm{in} . ;$ set .04 in . Diameter increased by compression to 1.821 in . in the middle; to 1.813 in . at the ends.
rests of Cold-rolled and Cold-drawn Steel, made by the Cambria Iron Co. in 1897, gave the following results (arerages of 12 tests of each):

The original bars were 2 in . and $7 / 8$ in. diameter. The test pieces cut from the bars were $3 / 4 \mathrm{in}$. diam., 18 in . long. The reduction in dianeter from the hot-rulled to the cold-rolled or cold-drawn bar was $1 / 16$ in, in each case.

## TESTS OF AMERICAN WOODS. (See also page 309.)

In all cases a large number of tests were made of each wood. Minimum and maximum results only are given. All of the test specimens had a sec. tional area of $1.575 \times 1.575$ inches. The transverse test specimens were 39.37 inches between supports, and the compressive test specimens were 12.60 inches long. Modulus of rupture calculated from formula $R=\frac{3}{2} \cdot \frac{P l}{b d^{2}} ; P=$ load in pounds at the middle, $l=$ length in inches, $b=$ breadth, $\tilde{d}=$ depth:

| Name of Wood. | Transverse Tests Modulus of Rupture. |  | Compression Parallel to Grain, pounds per square inch. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Min. | Max. | Min. | Max. |
| Cucumber tree (Magnolia acuminata). <br> Yellow poplar white wood (Lirioden | \%,440 | 12,050 | 4,560 | 7,410 |
|  | 6,560 | 11,756 | 4,150 | 5,790 |
| canc)............................. | 6,\% 2 | 11,530 |  |  |
| Sugar-maple, Rock-maple (Acer sac- | 9,680 | 11,530 20,130 | 3,810 7,460 | 6,480 |
| Red maple (Acerrubrum).............. | 9,680 8,610 | 20,130 13,450 | 7,460 | 9,940 <br> 7 <br> 1,500 |
| Locust (Robinia pseudacacia) | 12,200 | 121,730 | 6,010 $8,3,30$ | 11,940 |
| Widd cherry (Prunus serotina) | $\begin{array}{r}8,310 \\ 7 \\ \hline\end{array}$ | 16,800 | 5,830 | 11,940 9 9 |
| Dogwood (Cornus florid | 7,470 10,190 | 11,130 14,560 | 5,630 | \%',620 |
| Sour gum, Pepperidge (Nyssa sylvatica). | 10,190 9,830 | 14.560 14,300 | 6,250 | 9,400 |
| Persimmon (Diospyros Virginiana). ... | 10,290 | 14,300 | 6,240 6,650 | 8,480 |
| White ash (Fraxnnis Americana). | 5,950 | 15,800 | 4,520 | 8,830 |
| Sassafras (Sassafras officinal | 5,180 | 10,150 | 4,050 | 5,970 |
| White elm (Ulmus American | 10,220 | 13,953 | 6,980 | 8,790 |
| Sycamore; Buttouwood (Platanus occi- <br> dentalis) | 8,250 | 15,0\%0 | 4,960 | 8,040 |
| Butternut; white wainut (Juglans cinerea). | 6,8~0 | 11,360 | 4,960 | 7,340 |
|  | 8,700 | 11,740 | 5,480 | 6,810 |
| Shellbark hickory (Carya alb | 14,870 | 16,320 | 6,910 7 7 | 8,850 |
| Pignut (Carya porcina)... | 11,560 | 19,430 | 7,650 7,460 | 10,280 |
| White oak (Quercus cllba) | \%,010 | 18,360 | 5,460 5,810 | 8,470 $9,0 \sim 0$ |
| Red oak (Quercus rubra) | 9,760 | 18,3テ0 | 4,910 4,960 | $9,0 \% 0$ $8,9 \% 0$ |
| Black oak (Quercus tinctoria) | \%,900 | 18,420 | 4,540 | 8,550 |
| Chestnut (Custanea vulgaris) | 5,9.50 | 12,8i0 | 3,680 | 6,650 |
| Beech (Fagus ferruginet Canoe-birch, paper-birch (Be | 13,850 | 18,840 | 5,7\%0 | 7,840 |
| racea)................. | 11,710 | 17,610 | 5,\%\% | 8,590 |
| Cottonwood (Populus monilifera) | 8,390 | 13,430 | 3,790 | 6,510 |
| White cedar (Thuja occidentalis).. | 6,310 | 13,530 | 2,660 | 5,810 |
| Red cedar (Jumiperus Virginianu) | 5,640 | 15,100 | 4,400 | 7,040 |
| White pine (Pinus strobus) | 9,530 5,610 | 10,030 | 5,060 | 7,140 |
| Spruce pine (Pinus glabra) | 5,610 | 11,530 | 3,750 | 5,600 |
| Long-leaved pine, Southern pine (Pinus palustris) | 3,480 | 10,980 | 2,580 | 4,680 |
| White spruce (Picea a cilba). | 9,220 9 | 21,060 | 4,010 | 10,600 |
| Hemlock (T'suga Canaden | 7,590 7 | 11,650 | 4,150 | 5,300 |
| Red fir, yellow fir (Pseudotsuga Douglasii). | 8,590 8,220 | 14,680 17 1690 | 4,500 | 7,420 |
| Tamarack (Larix Americana) .......... | $\begin{array}{r} 8,220 \\ 10,080 \end{array}$ | $\begin{aligned} & 17,920 \\ & 16,770 \end{aligned}$ | $\begin{aligned} & 4,880 \\ & 6,810 \end{aligned}$ | $9,800$ |

## SHEARING S'RRENGTH OF IRON AND STEEL.

H. V. Loss in American Engineer and Railroad Jonrnal, March and April. 1893, describes an extensive series of experiments on the shearing of iron and steel bars in shearing machines. Some of his results are:

Depth of penetration at point of maximum resistance for soft steel bars is independent of the width, but varies with the thickness. If $d=$ depth of penetration and $t=$ thickness, $d=.3 t$ for a flat knife, $d=.25 t$ for a $4^{\circ}$ bevel knife, and $d=.16 \sqrt{t}^{\frac{1}{3}}$ for an $8^{\circ}$ bevel knife. The ultimate pressure per inch of width in flat steel bars is approximately $50,000 \mathrm{lbs} . \times t$. The energy consumed in foot pounds per inch width of steel bars is, approximately: $1^{\prime \prime}$ thick, $1300 \mathrm{ft}-1 \mathrm{lbs} ; 112^{\prime \prime}, 2500 ; 13 / 1^{\prime \prime}, 3700 ; 1 / 8^{\prime \prime}, 4500 ;$ the energy increasing at a slower rate than the square of the thickness. Iron angles require more energy than steel angles of the same siz ; ; steel breaks while iron has to be cut off. For hot-rolled steel the resistance per square inch for rectangular sections varies from 4400 lbs . to $20,500 \mathrm{lbs}$., depending partly upon its liardness and partly upon the size of its cross-area. which latter element indirectly but greatly indicates the temperature, as the smaller dimensions require a considerably longer time to reduce them down to size, which time again means loss of heat.
It is not probable that the resistance in practice can be brought very much below the lowest figures here given-viz., 4400 lbs. per square inchas a decrease of 1000 lbs will henceforth mean a considerable increase in cross-section and temperature.

## HOLDING-POWER OF ROTLER-TUBES EXPANDED INTO THME-SHEETS.

Experiments by Chief Engineer W. H. Shock, U. S. N., on brass tubes, $21 / 2$ inches diameter, expanded into plates $3 / 4$-inch thick, gave results ranging from 5850 to 46.000 lbs . Out of 48 tests 5 gave figures under $10,000 \mathrm{lbs}$., 12 between 10,000 and $20,000 \mathrm{lbs}$., 18 between 20,000 and $30,000 \mathrm{lbs}$., 10 between 30,000 and $40,000 \mathrm{lbs}$., and 3 over $40,000 \mathrm{lbs}$.

Experiments by Yarrow \& Co., on steel tubes, 2 to $21 / 4$ inches diameter, gave results similarly varying, ranging from 6900 to $41,715 \mathrm{lbs}$., the majority langing from 20,600 to $30,000 \mathrm{lbs}$. In 15 experiments on 4 and 5 inch tubes the strain ranged from 20,720 to $68,040 \mathrm{lbs}$. Beading the tube does not necessarily give increased resistance, as some of the lower figures were obtained with beaded tubes. (See paper on Rules Governing the Construction of Steam Boilers, Trans. Engineering Congress, Section G, Chicago, 1803.)

## CHAYNS.

Weight per Foot, Proof rest and Breaking Weight.
(Pernsylvania Railroad Specifications, 1599.)

| Nominal Diameter of Wire. Inches. | Description. | Maximum Length of 100 Links. Inches. | Weight per Foot. Lbs. | Proof 'I'est. Lbs. | Breaking Weight. Lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5/32 | Twisted chain | 103.1 | 0.20 |  |  |
| $3 / 16$ | "6 '. .......... | 96.3 | $0.35$ |  |  |
| 3/16 | Perfection twisted chain. | 151.25 | 0.366 |  |  |
| 1/4 | Straight link chain....... | $10: 3$ | 0.70 | 1,200 | 3,000 |
| 5/16 |  | 1147 | 1.10 | 3,000 | 5,500 |
| 3/8 |  | 114.7 | 1.50 | 3,500 | -1,0c0 |
| 3/8 | Crane chain.............. | 113.6 | 1.50 | 4,000 | -7,500 |
| \%/16 | Straight-link chain....... | $12 \% .5$ | 1.90 | 5,000 | 9,500 |
| \%/16 | Crane chain.............. | 126.3 | 1.90 | 5,500 | 10,000 |
| $1 / 2$ | Straight-link chaıu..... | 15.3 .0 | $\underset{2.50}{ }$ | -',000 | $1 \because, 500$ |
| $1 / 7$ | Crane chain.............. | 138.9 | 2.50 | 7,500 | 13,000 |
| 58 | Straight-link chain..... . | 178.5 | 4.00 | 11,000 | 20,000 |
| 58 | Crane chain ... .......... | 176.7 | 4.00 | 11,000 | 20, 000 |
| $3 / 4$ | Straight-link chain....... | 204.0 | 5.50 | 16,000 | 29,030 |
| 948 | Crane chain.............. | 202.0 | 5.50 | 16,000 | 29,000 |
| 1/8 | " ${ }^{6}$ | 25.5 | ¢. 40 | 20,000 | 40,000 |
| 116 | 16 66 | $27 \% .7$ | 950 | 30,000 | 55,000 |
| $11 / 8$ | 16 16 6 | 303.0 | 12.00 | 40,000 | 66,000 |
| $11 / 4$ | 16 | 353.5 | 15.00 | 50,000 | 83,000 |
| 11/2 | 16 | 416.6 | 21.00 | \% 0,000 | 116,000 |

Elongation of all sizes, 10 per cent. All chain must stand the proof test without deformation. A piece 2 ft . long out of each 200 ft . is tested to destruction.

British Admiralty Proving Tests of Chain Cables.-Stud links. Minimum size in inches and 16ths. Proving test in tons of $\approx 240 \mathrm{lbs}$.

 $\begin{array}{lllllllllllll}\text { Min. Size: } & 1^{18} & 1^{19} & 110 & 111 & 112 & 113 & 114 & 115 & 2 & 21 & 2^{2} & 2^{3} .\end{array}$


Wromglet-iron Chain Cables.-The strength of a chain link is less than twice that of a straight bar of a sectional area equal to that of one side of the link. A weld exists at one end and a bend at the other, each requiring at least one heat, which produces a decrease in the strength. The report of the cominittee of the U . S . Testing Board, on tests of wrought-iron and chain cables contains the following conclusions. That beyond donbt, when made of American bar iron, with cast-iron studs, the studded link is inferior in strength to the unstudded one.
"That when proper care is exercised in the selection of material, a variation of 5 to 17 per cent of the strongest may be expected in the resistance of cables. Without this care, the variation may rise to 25 per cent.
"That with proper material and construction the ultimate resistance of the chain may be expected to vary from 155 to $1 \% 0$ per cent of that of the bar used in niaking the links, and show an average of about 163 per cent.
"That the proof test of a chain cable should be about 50 per cent of the ultimate resistance of the weakest link."
The decrease of the resistance of the studded below the unstudded cable is probably due to the fact that in the former the sides of the link do not remain parallel to each other up to failure, as they do in the latter, The result is an increase of stress in the studded link over the unstudded in the proportion of unity, to the secant of half the inclination of the sides of the former to each other.

From a great number of tests of bars and unfinished cables, the comınittee considered that the average ultimate resistance, and proof tests of chain cables made of the bars, whose diameters are given, should be such as are shown in the accompanying table.

| Diam. of Bar. | Average resist $=163 \%$ of Bar. | Proof Test. | Diam. of Bar. | Average resist. $=163 \%$ of Bar. | Proof Test. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inches. | Pounds. | Pounds. | Inches. | Pounds. | Pounds. |
| $11 / 16$ | 71,172 | 33,840 | $19 / 16$ | 162,283. | \%7,159 |
| i $1 / 16$ | 79,544 | 37,820 | 15/8 | 174,4\%5 | 82,956 |
| 11/8 | 88,445 | 42,053 | $111 / 16$ | 187,0\%5 | 88,947 |
| $13 / 16$ | 97,731 | 46,468 | 13,4 | 200.074 | 95,128 |
| $11 / 4$ $15 / 16$ | 107,440 $11 \% .57 \%$ | 51,084 55,903 | $173 / 16$ 18 | 213,45 | 101,499 |
| 13/8/16 | 128,129 | 55,903 6092 | 17/8 ${ }^{1715 / 16}$ | $2{ }_{21,271}^{1}$ | 103,058 |
| $1 \% / 16$ | 139,103 | 60, 6138 | $\stackrel{2}{2}^{15 / 16}$ | 241,463 256,040 | 114,806 |
| 11/2 | 150,485 | 71,550 |  | 250,040 | 121,437 |

## S'HELENGTH OF GLASS.

(Fairbairn's "Useful Information for Engineer's," Second Series.)

|  | Flint Glass, Gremmon Fxtass. Crown White |  |  |
| :---: | :---: | :---: | :---: |
| Mean specific gravity |  |  |  |
| Mean tensile strength, lbs. per sq. | 2,413 | 2.896 | 2.546 |
| thin plates. | . 4,200 | 4,800 | 6,000 |
| 'g strength, lbs. p. sq. in., cyldrs. | - 27,582 | 39,876 | 31,003 |
| do. cube | 13,130 | 20,206 | 21,8 |

The bars in tensile tests were about $1 / 2$ inch diameter. The crushing tests were made on cylinders about 34 inch diameter and from 1 to 2 inches high, and on cubes approximately 1 inch on a side. The mean transverse strength of glass, as calculated by Fairbairn from a mean tensile strength of 2560 lbs. and a mean compressive strength of $30,150 \mathrm{lbs}$. per sq. in., is, for a bar supported at the euds and loaded in the middle,

$$
w=3140 \frac{b d^{2}}{l},
$$

In which $w=$ breaking weight in lbs., $b=$ breadth, $d=$ depth, and $l=$ length, in inches. Actual tests will probably show wide variations in both directions from the mean calculated strength.

## STRENGTHL OF COPPER AT HIGH TEEMPERATURES.

The British Admiralty conducted some experiments at Portsmouth Dockyard in 18:7, on the effect of increase of temperature on the tensile strength of copper and various bronzes. The copper experimented upon was in rods .72-in. diameter.

The following table shows some of the resuifs:

| Temperature Fahr. | Tensile Strength in lbs. per sq. in. | Temperature | Tensile Strength in lbs. per sq. in. |
| :---: | :---: | :---: | :---: |
| Atmospheric. $100^{\circ}$ $200^{\circ}$ | $\begin{aligned} & 23,115 \\ & 23,366 \\ & 22,110 \end{aligned}$ | $\begin{aligned} & 300^{\circ} \\ & 400^{\circ} \\ & 500^{\circ} \end{aligned}$ | $\begin{aligned} & 21,607 \\ & \stackrel{2}{1,1,05} \\ & 19,597 \end{aligned}$ |

Up to a temperature of $400^{\circ} \mathrm{F}$. the loss of strength was only about 10 per cent, and at $500^{\circ} \mathrm{F}$. the loss was 16 per cent. The temperature of steam at 200 lbs . pressure is $38 \gtrsim^{\circ} \mathrm{F}$., so that according to these experiments the luss of strength at this point would not be a serious matter. Above a temperature of $500^{\circ}$ the strength is seriously affected.

## STRENG'TH OF TIPIBEIR.

Strength of Long-leaf Pine (Yellow Pine, Pinus Palustris) from Alabama (Bulletin No. 8, Forestry Div., Dept. of Agriculture, 1893. Tests by Prof. J. B. Johnson.)

The following is a condensed table of the range of results of mechanicai tests of over 2000 specimens, from 26 trees from four different sites in Alabama; reduced to 15 per cent moisture:

|  | Butt Logs. | Middle Logs. | Top Logs. | Av'g of all Butt Logs. |
| :---: | :---: | :---: | :---: | :---: |
| Specific gravity | 0.449 to 1.039 | $0.5 \% 5$ to 0.859 | 0.484 to $0.90 \%$ | 0.667 |
| Transversestrength, $\frac{3}{2} \frac{1 L}{b l^{2}}$ | 4,762 to 16,200 | 7,640 to 17,128 | 4,268 to 15,554 | 12,614 |
| do do. at elast. limit. | 4,930 to 13,110 | 5,540 to 11,790 | 2,553 to 11,950 | 9,460 |
| Mod. of elast., thous. lbs. | 1,119 to 3,11\% | 1,136 to 2,98? | 842 to 2,697 | 1,926 |
| Relative elast. resilience, inch-pounds per cub. in. | 0.23 to 4.69 | 1.34 to 4.21 | ก.09 to 4.65 | 2.98 |
| Crushing endwise, str' per sq. in.-1bs. $\qquad$ | 4,781 to 9,850 | 5,030 to 9,300 | 4,587 to 9,100 | 7,45\% |
| Crushing across grain, strength per sq. in., lbs. | 675 to 2,094 | 656 to 1,445 | 584 to 1,766 | 1.598 |
| Tensile strength per sq.in. | 8,600 to 31,890 | 6,330 to 29,500 | 4,170 to 23,280 | 17,359 |
| Shearing strength (with grain), mean per sq.in. | 464 to 1,299 | 539 to 1,230 | 484 to 1156 | 866 |

Some of the deductions from the tests were as follows:

1. With the exception of tensile strength a reduction of moisture is accompanied by an increase in strength, stiffness, and toughness.
2. Variation in strength goes generally hand-in-hand with specific gravity.
3. In the first 20 or 30 feet in height the values remair constant ; then occurs a decrease of strength which amounts at 70 feet to 20 to 40 per cent of that of the butt-log.
4. In shearing parallel with the grain and crushing across and parallel with the grain, practically no difference was found.
5. Large beams appear 10 to 20 per cent weaker than small pieces.
6. Compression tests end wise seem to furnish the best a verage statement of the value of wood, and if one test only can be made, this is the safest, as was also recognized by Bauschinger.
\%. Bled timber is in no respect inferior to unbled timber.

The figures for crushing across the grain represent the load required to cause a compression of 15 per cent. The relative elastic resilience, in inchpounds per cubic inch of the material, is obtained by measmring the area of the plotted-strain diagram of the transverse test from the origin to the point in the curve at which the rate of deflection is 50 per cent greater than the rate in the earlier part of the test where the diagram is a straight line. This point is arbitrarily chosen since there is no definite "elastic limit" in timber as there is in iron. The "strength at the elastic limit" is the strength taken at this same point. Timber is not perfectly elastic for any load if left on any great length of time.
The long-leaf pine is found in all the Southern coast states from North Carolina to Texas. Prof. Johnson says it is probably the strongest timber in large sizes to be had in the United States. In small selected specimens, other species, as oak and hickory, may exceed it in strength and toughness. The other Southern Jellow pimes, viz., the Cuban, short-leaf and the loblolly pines are inferior to the long-leaf about in the ratios of their specific gravities; the long-leaf being the lieaviest of all the pines. It averages (kiln-dried) 48 pounds per cubic foot, the Cuban 47, the short-leaf 40, and the loblolly 34 pounds.
Strength of Spruce Timber.-The modulus of rupture of spruce is given as follows by different.authors: Hatfield, 9900 lbs . per square inch ; Rankine, 11,100 ; Laslett, 9045 ; Trautwine, 8100 ; Rodman, 6168. Trautwine advises for use to deduct one-third in the case of knotty and poor timber.
Prof. Lanza, in 25 tests of large spruce beams, found a modulus of rupture from 2995 to 5666 lbs ; the average being 4613 lbs . These were average beams, ordered from dealers of good repute. Two beams of selected stock, seasoned four years, gave 7562 and 8748 lbs . The modulus of elasticity ranged from 897,000 to $1,588,000$, averaging $1,294,000$.
Time tests show much smaller values for both modulus of rupture and modnlus of elasticity. A beam tested to 5800 lbs. in a screw machine was left over night, and the resistance was found next morning to have dropped to about 3000 , and it broke at 3500 .
Prof. Lanza remarks that while it was necessary to use larger factors of safety, when the moduli of rupture were determined from tests with smaller pieces, it will be sufficient for most timber constructions, except in factories, to use a factor of four. For breaking strains of beams, he states that it is better engineering to determine as the safe load of a timber beam the load that will not deflect it more than a certain fraction of its span, say about $1 / 300$ to $1 / 400$ of its length.

Properties of Timber.
(N. J. Steel \& Iron Co.'s Book.)

| Description. | Weight per cubic foot, in lbs. | Tensile Strength per sq. inch, in lbs. | Crushing Strength per sq. inch, in lbs. | Relative Strength for Cross Breaking. White Pine $=100$ | Shearing <br> Strength with the Grain, lbs. per sq. inch |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ash | 43 to 55.8 | 11,000 to 17,207 | 4,400 to 9,363 | 130 to 180 | 458 to \%00 |
| Be | 43 to 53.4 | 11,500 to 18,000 | 5,800 to 9,363 | 100 to 144 |  |
| Cedar | 50 to 56.8 | 10,300 to 11,400 | 5,600 to 6,000 | 55 to 63 |  |
| Cherry |  |  |  | 130 |  |
| Elm | 34 to 36.7 | 13,400 to 13,48? | 6,531 to 10,331 | 96 to 96 |  |
| Hen |  | 8,700 | 5,\%00 | 88 to 95 |  |
| Hickory |  | 12.800 to 18,000 | 8,925 | 150 to 210 |  |
| Locust | 44 | 20,500 to 24,800 | 9,113 to 11,\%00 | 132 to 227 |  |
| Maple | 49 | 10,500 to 10,584 | 8,150 | 192 to 220 | 367 to 647 |
| Oak, Whi | 45 to 54.5 | 10,253 to 19,500 | 4,684 to 9,509 | 130 to 177 | 752 to 966 |
| Oak, Live |  |  | 6,850 | 155 to 189 |  |
| Pine, Whit | 30 | 10,000 to 12,000 | 5,000 to 6,650 | 100 | $2 \% 5$ to 423 |
| Pine, Yell | 28.8 to 33 | 12,600 to 19,200 | 5,400 to 9,500 | 98 to 170 | 286 to 415 |
| Spruce....... |  | 10,000 to 19,500 | 5,050 to 7,850 | 86 to 110 | 253 to 374 |
| Walnut, Blac | 42 | 9.286 to 16,000 | 7.500 |  |  |

The above table should be taken with caution. The range of variation in the species is apt to be much greater than the figures indicate. See Johnson's tests on long-leaf pine, and Lanza's on spruce, above. The weight of yellow pine in the table is much less than that given by Johnson. (W. K.)

Compressive Strengths of American Woods, when slowly and carefully seasoned. - Approximate averages, deduced from many experiments made with the U. S. Govermment testing-machine at Watertown, Mass., by Mr. S. P. Sharpless, for the Censns of 1880 . Seasoned woods resist crushing much better than green ones; in many cases, twice as well. Different specimens of the same wood vary greatly. The strengths may readily vary as much as one-third part more or less from the average.

|  | Endwise,* lbs. per | Sidewise, $\dagger$ lbs. per sq. in. |  |  | Endwise,* lbs. pel sq. in. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | . 01 | . 1 |  |  | . 01 | . 1 |
| Ash, red and white | 6800 | 1300 | 3000 | Maple: |  |  |  |
| Aspen. | 4400 | 800 | 1400 | sugar and hack | 8000 |  |  |
| Beech. | 2000 8000 | 1100 | 1900 | white and red.. | 6800 |  |  |
| Buckeye | 8000 4400 |  |  | white, post (or |  |  |  |
| Buttermut. | 5400 |  | 1600 | iron), Sw a nip |  |  |  |
| Buttonwood <br> (sycamore) | 6000 |  |  | white, red, and black.. | r000 | 1600 | 4000 |
| Cedar, red......... | 6000 |  | 1000 | scrub and basket. | 6000 | 1:00 | 4200 |
| Cedar,white (arbor- |  |  |  | chestnut and live | 7500 | 1600 | 4500 |
|  | 4400 |  | 900 | pin. | 6500 | 1300 | 3000 |
| Catalpa (Ind. bean) | 5000 |  | 1300 | Pine : |  |  |  |
| Cherry, wild. | 8000 | 1700 | 2600 | white. | 5400 | -600 | 1200 |
| Chestrut.. | 5300 | 900 | 1600 | red or Norway... | 6300 | 600 | 1400 |
| Coffee-tree, Ky | 5200 |  |  | pitch and Jersey |  |  |  |
| Cypress, bald...... | 6000 |  | 1200 | scrub........... | 5000 | 1000 | 2000 |
| Elm, Am. or white | 6800 | 1300 |  | Georgia | 8500 | 1300 | 2600 |
| Hemlock | 7700 | 1300 | 2600 | Poplar. | 5000 | 600 | 1100 |
| Hemlock | 5300 |  |  | Sassafra | 5000 | 1300 | 2100 |
| Hickory..... | 8000 |  |  | Spruce, black | 5 T 00 | T00 | 1300 |
| Lignum-vitoe ..... | 10000 | 1600 |  | " white. | 4500 | 600 | 1200 |
| Locust: American. | 5000 |  |  | Sycamore (button- |  |  |  |
| Locust: <br> black and yellow. | 9800 |  |  | Wood). | 6000 | 1300 | 2600 |
| honey............ | 7000 | 1600 |  | black. | 8000 |  |  |
| Matogany......... | 9000 |  |  | white (butternut). | 5400 |  | 1600 |
| Maple: <br> broad-leafed, Ore. | 5300 | 1400 |  | Willow ............ | 4400 | $\% 00$ | 1400 |

$*$ Specimens 1.57 ins. square $\times 12.6$ ins. long.
$\dagger$ Specimens 1.57 ins. square $\times 6.3$ ins. long. Pressure applied at mid-length by a punch covering one-fourth of the length. The first column gives the loads producing an indentation of . 01 inch, the second those producing an indentation of .1 inch. (See also page 306).

## Expansion of Timber Wue to the Absorption of Water.

(De Volson Wood, A. S. M. E., vol. x.)
Pieces $36 \times 5 \mathrm{in}$., of pine, oak, and chestnut, were dried thoroughly, and then immersed in water for 37 days.
The mean per cent of elongation and lateral expansion were:

|  | Pine. | Oak. | Chestnut. |
| :--- | :--- | :--- | :---: |
| Elongation, per cent...............065 | 0.065 | 0.085 | 0.165 |
| Lateral expansion, per cent. . | 2.6 | 3.5 | 3.65 |

Expansion of Wool by Heat. - Trautwine gives for the expansion of white pine for 1 degree Fahr. I part in 440,530 , or for 180 degrees 1 part in e417, or about one-third of the expansion of iron,

# Shearing Strength of American Woods, adapted for Hins or Treenails. 

## J. C. Trautwine (Jour. Franklin Inst.). (Shearing across the grain.)

| Ash | per sq. in. | Hickory................ per sq. $\mathrm{in}_{604}$ |
| :---: | :---: | :---: |
| Beech | 5223 |  |
| Birch | . 5595 | Maple.............................. 6 . 6355 |
| Cedar (white) | . ${ }_{\text {. }}^{1312} 1519$ | Oak............ .................. 4425 |
| Cedar (Central | ... 3410 | Oin (live)..................... 8480 |
| Cherry | . 2945 | Pine (Nortliern yellow........... . 4340 |
| Chestmint <br> Dogwood | 1536 6510 | Pine (Southern yellow)........ 5735 |
| Ebony ... | . 7750 | Pine (very resmous yellow)..... 5053 |
| Gimm. | - 5890 | Spruce.... ........................ 32255 |
| Locust | - $\begin{array}{r}2750 \\ \text { - } 1160\end{array}$ | Walnut (black) .................... 4708 Walnut (common) |

## THE STRENG'TH OE BRECE, STONE, ETC.

A great advance has recently been made in the mannfacture of brick, in the direction of increasing their strength. Chas. P. Chase, in Engineering News, says: "Taking the tests as given in standard engineering books eight or ten years ago, we find in Trautwine the strength of brick given as 500 to 4200 lbs . per sq. in. Now, taking recent tests in experiments made at Watertown Arsenal, the strength ran from 5000 to $22,000 \mathrm{lbs}$ per sq. in. In the tests on Illinois paving-brick, by Prof. I. O. Baker, we find an average strength in hard paving brick of over 5000 lbs . per square inch. The average crushing strength of ten varieties of paving-brick much used in the Vest, I find to be $\quad 150$ lbs. to the square inch.",

A recent test of brick made by the dry-clay process at Watertown Arsenal, according to Puving, showed an average compressive strength of $39 \%$ lbs, per sq. in. In one instance it reachod $49 \pi 3 \mathrm{lbs}$. per sq. in. A test was made at the same place on a "fancy pressed brick." The first crack developed at a pressure of $305,000 \mathrm{lbs}$, and the rrick crushed at $364,300 \mathrm{lbs}$., or 11,130 lbs. per sq. in. This indicates almost as great compressive strength as granite paving-blocks, which is from 12,000 to $20,000 \mathrm{lbs}$, per sq. in.
The following notes on bricks are from 'Trautwine's Engineer's Pocketbook:
Strength of 13 rick. -40 to 300 tons per sq. ft., 692 to 4668 lbs . per sq. in. A soft brick will crush under 450 to 600 lbs . per sq. in., or 30 to 40 tons per square foot, but a first-rate machine-pressed brick will stand 200 to 400 tons per sq. ft. ( 3112 to $6 \geqslant 24 \mathrm{lbs}$ per sq. in.).

Weight of $18 r i c k s .-P e r$ cubic foot, heat pressed brick, 150 lbs ; good pressed brick, 131 lbs.; common hard brick, $125 \mathrm{lbs}$. ; good common brick, 118 lbs . ; soft inferior brick, 100 lbs .

Absorption of Water. - A brick will in a few minutes absorl $1 / 2$ to $3 / 1 \mathrm{l}$. of water, the last being $1 / 7$ of the weight of a hand-moulded one, or $1 / \mathrm{s}$ of its bulk.
Tests of 1 riciks, full size, on Mat side. (Tests made at Water. town Arsenal in 1883.)-The bricks were tested betwaen flat steel buttresses. Compressed surfaces (the largest surface) ground approximately flat. The bricks were all about 2 to 2.1 inches thick, 7.5 to 8.1 inches long, and 3.5 to 3.76 inches wide. Crushing strength per square inch: One lot ranged from 11,056 to $16,7341 \mathrm{lbs}$. a second, 12,995 to 22,351 ; a third, 10,390 to $12, \% 09$. Other tests gave results from 5960 to 10.250 lbs . per sq. in.
"Retaining. Walls.")

|  | tons per sq. ft . |  |
| :---: | :---: | :---: |
| Brick, best pressed. | . 40 to 300 | Limestones and nuarbles. 250 to 1000 |
| Chalk. | 20 to 30 | Sandstone................ 150 to 550 |
| Granite | 300 to 1200 | Soapstone................ 400 to 800 |

Strength of Granite. -The crushing strength of granite is commonly rated at 12,000 to $15,000 \mathrm{lbs}$. per sq . in. when tesfed in two-inch cubes, and only the hardest and tougliest of the commonly used varieties reach a strength above $20,000 \mathrm{lbs}$. Samples of granite from a quarry on the Con-
necticut River, tested at the Watertonn Arsenal, have shown a strength of $35,965 \mathrm{lbs}$. per sq. in. (Engineering News, Jan. 12, 1893).

Strength of Avondale, Pa., Limestone-(Engineering News, Feb. 9, 1893).-Crushing strength of 2-in. cubes: light stone 12, 11: , gray stone 18,040 , lbs. per sq. ín.

Transverse test of lintels, tool-dressed, 42 in . between knife-edge bearings, load with knife-edge brought upon the middle between bearings: Gray stone, section 6 in . wide $\chi 10 \mathrm{in}$. high, broke muder a load of $20,950 \mathrm{lbs}$.

Modulus of rupture
2,200
Light stone, section $81 / 4 \mathrm{in}$. wide $\times 10 \mathrm{in}$. high, broke under........ 14, 200 "
Modulus of rupture................................................. 1,170 "
Absorption.-Gray stone........ .................................................... . 051 of $1 \%$
Light stone................. . ................................ . . 052 of 1\%

## Transverse Strength of Elagging.

(N. J. Steel \& Iron Co.'s Book.)

## Experiments made by R. G. Hatfield and Others.

$b=$ width of the stone in inches; $d=$ its thickness in inches; $l=$ distance between bearings in inches.

The breaking loads in tons of 2000 lbs ., for a weight placed at the centre of the space, will be as follows:


Comnecticut freestone............ . 31 .
Thus a block of Quincy granite 80 inehes wide and 6 inches thick, resting on beams 36 inches in the clear, would be broken by a load resting midway between the beams $=\frac{80 \times 36}{36} \times .624=49.92$ tons.

## STREENGTH OF LIME AND CEIHENT TVOR'AR.

## (Engineering, October $\mathfrak{2}$, 1891.)

Tests made at the University of Illinois on the effects of adding cement to lime mortar. In all the tests a good quality of ordinary fat lime was used, slaked for two days in an earthenware jar, adding two parts by weight of water to one of lime, the loss by evaporation being made up oy fresh additions of water. The cements used were a German Portland, Blaek Diamond (Louisville), and Rosendale. As regards fineness of grinding, 85 per cent of the Portland passed through a No. 100 sieve, as did $2 \cdot 2$ per cent of the Rosendale. A fairly sharp sand, thoronghly washed and dried, passing through a No. 18 sieve and canght on a No. 30, was used. The mortar in all cases consisted of two volumes of sand to one of lime paste. The following results were obtained on adding various percentages of cement to the mortar:

## Tensile Strength, pounds per square inch.



## MODULI OF ELASTICLTY OF VARIOES MATERIALS.

The mudulus of elasticity determined from a tensile test of a bar of any material is the quotient obtained by dividing the tensile stress iu pounds per square inch at any point of the test by the elongation per inch of length produced by that stress ; or if $P=$ pounds of stress applied, $K=$ the sectional area, $l=$ length of the portion of the bar in which the measurement is made, and $\lambda=$ the elongation in that length, the modulus of elasticity $E=\frac{P}{K} \div \frac{\lambda}{l}=\frac{P l}{K \lambda}$. The modulus is generally measured within the elastic limit only, in materials that have a well-defined elastic limit, such as iron and steel, and when not otherwise stated the modulus is understood to be the modulus within the elastic linit. Within this limit, for such materials the modulus is practically constant for any given bar, the elongation being directly proportional to the stress. In other materials, such as cast iron, which have no well-defined elastic limit, the elongations from the beginning. of a test increase in a greater ratio than the stresses, and the modilus is therefore at its maximum near the beginning of the test, and continually decreases. The moduli of elasticity of various materials have already been given above in treating of these materials, but the following table gives some additional values selected from different sources:

Brass,
Copper
9,170.000
wire........................................ $14,230,000$


Walnut.
Pine, long-leaf (butt-logs)...
The maximum figures given by many writers for iroll and stecl, viz., $40,000,000$ and $42,000,000$, are undoubtedly erroneous. The modulus of elasticity of steel (within the elastic limit) is remarkably constant, notwithstanding great variations in chemical analysis, temper, etc. It rarely is found below 29,000,000 or above $31,000,000$. It is generally taken at 30,000,000 in engineering calculations. Prof. J. B. Johnson, in his report on Long-leaf Pine, 1893, says: "The modulus of elasticity is the most constant and reliable property of all engineering materials. The wide range of value of the modulus of elasticity of the various metals found in public records must be explained by erroneous methods of testing."

In a.tensile test of cast iron by the author (Van Nostrand's Science Series, No. 41, page 45), in which the ultimate strength was $29,285 \mathrm{lbs}$. per sq. iu., the measurements of elongation were made to .0001 inch, and the modulus of elasticity was found to decrease from the beginning of the test, as follows: At 1000 lbs . per sq. in., $25,000,000$; at $2000 \mathrm{lbs} . .16,666,000$; at 4000 lbs., 15,384,000; at $6000 \mathrm{lbs} ., 13,636,000$; at $8000 \mathrm{lbs}, 12,500,000$; at $12,000 \mathrm{lbs} .$, $11,250,000$; at $15,000 \mathrm{lbs} ., 10,000,000$; at $20,000 \mathrm{lbs} ., 8,000,000$; at 23,000 lbs., $6,140,000$.

## FACTORE OF SAFERY.

A factor of safety is the ratio in which the load that is just sufficient to overcone instantly the strength of a piece of material is greater than the greatest safe ordinary workiug load. (Rankine.)
Whankine gives the following "examples of the values of those factors

| Dead Load, |  |  |  |
| :--- | :---: | :---: | :---: | | Live Load, |
| :---: |
| Greatest. |$\quad$| Live Load, |
| :---: |
| Mean. |

Live Load, Mean. from 6 to 40

8

The great factor of safety, 40 , is for shafts in millwork which transmit very variable efforts.
Unwin gives the following "factors of safety which have been adopted in certain cases for different materials." They "include an allowance for ordinery contingencies."

|  | Dead <br> Load. | In Temporary <br> Live Load. $\qquad$ <br> In Permanent In Structures Structures. Structures. $\square$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Wrought iron and steel. |  |  |  |  |
| Cast iron. | . 3 | 4 | 5 | 10 |
| Timber. |  | 4 | 10 |  |
| Brickwork. |  |  | 6 |  |
| Masonry.. | 20 | .... | 20 to 30 |  |

Unwin says says that "these numbers fairly represent practice based on experience in many actual cases, but they are not very trustworthy."
Prof. Wood in his "Resistance of Materials" says: "In regard to the margin that should be left for safety, much depends upon the character of the loading. If the load is simply a dead weight, the margin may be comparatively small; but if the structure is to be subjected to percussive forces or shocks, the margin should be comparatively large on account of the indeterminate effect produced by the force. In machines which are subjected to a constant jar while in use, it is very difficult to determine the proper margin which is consistent with economy and safety. Indeed, in such cases, economy as well as safety generally consists in making them excessively strong, as a single breakage may cost much more than the extra material necessary to fully insure safety."
For discussion of the resistance of materials to repeated stresses and shocks, see pages 238 to 240 .
Instead of using factors of safety it is becoming customary in designing to fix a certain number of pounds per square inch as the maximum stress which will be allowed on a piece. Thus, in designing a boiler, instead of naming a factor of safety of 6 for the plates and 10 for the stay-bolts, the ultimate tensile strength of the steel being from 50,000 to $60,000 \mathrm{lbs}$. per sq. in., an allowable working stress of $10,000 \mathrm{lbs}$. per sq. in. on the plates and 6000 lis. per sq. in. on the stay-bolts may be specified instead. So also in Merriman's formula for columns (see page 260 ) the dimensions of a column are calculated after assuming a maximum allowable compressive stress per square inch on the concave side of the column.

The factors for masonry under dead load as given by Rankine and by Unwin, viz., 4 and 20 show a remarkable difference, which may possibly be explained as follows : If the actual crushing strength of a pier of masonry is known from direct experiment, then a factor of safety of 4 is sufficient for a pier of the same size and quality under a steady load; but if the crushing strength is merely assumed from figures given by the authorities (such as the crushing strength of pressed brick, quoted above from Howe's Retaining Walls, 40 to 300 tons per square foot, average 170 tons), then a factor of safety of 20 may be none too great. In this case the factor of safety is really a "factor of iynorance."
The selection of the proper factor of safety or the proper maximum unit stress for any given case is a matter to be largely determined by the judgment of the engineer and by experience. No definite rules can be given. The customary or advisable factors in many particular cases will be found where these cases are considered throughout this book. In general the following circumstances are to be taken into account in the selection of a factor:

1. When the ultimate strength of the material is known within narrow limits, as in the case of structural steel when tests of samples have been made, when the load is entirely a steady one of a known amount, and there is no reason to fear the deterioration of the metal by corrosion, the lowest factor that should be adopted is 3 .
2. When the circumstances of 1 are modified by a portion of the load being variable, as in floors of warehouses, the factor should be not less than 4.
3. When the whole load, or nearly the whole, is apt to be alternately put on and taken off, as in subpension rods of floors of bridges, the factor should be 5 or 6 .
4. When the stresses are reversed in direction from tension to compression, as in some bridge diagonals and parts of machines, the factor should be not less than 6 .
5. When the piece is subjected to repeated shocks, the factor should be not less than 10 .
6. When the piece is subject to deterioration from corrosion the section should be sufficiently increased to allow for a definite amount of corrosion before the piece be so far weakened by it as to require removal.
7. When the strength of the material, or the amount of the load, or both are uncertain, the factor should be increased by an allowance sufficient to cover the amount of the uncertainty.
8. When the strains are of a complex character and of uncertain amount, such as those in the crank-shaft of a reversing engine, a very high factor is necessary, possibly even as high as 40 , the figure given by Rankine for shafts in millwork.

## THE MECHANICAL PROPERTEES OF CORK.

Cork possesses qualities which distinguish it from all other solid or liquid bodies, namely, its power of altering its volume in a very marked degree in consequence of change of pressure. It consists, practically, of an aggregation of minute air-vessels, having thin, water-tight, and very strong walls, and hence, if compressed, the resistance to compression rises in a manner more like the resistance of gases than the resistance of an elastic solid such as a spring. In a spring the pressure increases in proportion to the distance to which the spring is compressed, but with gases the pressure increases in a much more rapid manner; that is, inversely as the volume which the gas is made to occupy. But from the permeability of cork to air, it is evident that, if subjected to pressure in one direction only, it will gradually part with its occluded air by effusion, that is, by its passage through the porous walls of the cells in which it is contained. The gaseous part of cork constitutes $53 \%$ of its bulk. Its elasticity has not only a very considerable range, but it is very persistent. Thus in the better kind of corks used in bottling the corks expand the instant they escape from the bottles. This expansion may amount to an increase of volume of $75 \%$, even after the corks have been kept in a state of compression in the bottles for ten years. If the cork be steeped in hot water, the volume continues to increase till it attains nearly three times that which it occupied in the neck of the bottle.

When cork is subjected to pressure a certain a mount of permanent deformation or "permanent set" takes place very quickly. This property is common to all solid elastic substauces when strained beyond their elastic limits, but with cork the limits are comparatively low. Besides the permanent set, there is a certain amount of sluggish elasticity-that is, cork on being released from pressure springs back a certain amount at once, but the complete recovery takes an appreciable time.

Cork which had been compressed and released in water many thousand times had not changed its molecular structure in the least, and had continued perfectly serviceable. Cork which has been kept under a pressure of three atmospheres for many weeks appears to have shrunk to from $80 \%$ to $85 \%$ of its original volume.-Van Nostrand's Eng'g Mag. 1886, xxxv. 307.

## TESTS OF VULCANIKED INDIA-RUREER.

Lieutenant L. Vladomiroff, a Russian naval officer, has recently carried out a series of tests at the St. Petersburg Technical Institute with a view to establishing rules for estimating the quality of vulcanized india-rubber. The following, in brief, are the conclusions arrived at, recourse being had to physical properties, since chemical analysis did not give any reliable result: 1. India-rubber should not give the least sign of superficial cracking when bent to an angle of 180 degrees after five hours of exposure in a closed air-bath to a temperature of $125^{\circ} \mathrm{C}$. The test-pieces should be 2.4 inches thick. 2. Rubber that does not contain more than lialf its weight of metallic oxides should stretch to five times its length without breaking. 3. Rubber free from all foreigu matter, except the sulphur used in vulcanizing it, should stretch to at least seven times its length withont rupture. 4. The extension measured immediately after rupture should not exceed $12 \%$ of the original length, with given dimensions. 5. Suppleness may be determine $\dot{u}$ by measuring the percentage of ash formed in iucineration. This may form the basis for deciding between different grades of rubber for certain purposes. 6. Vulcanized rubber should not harden under cold. These rules have been adopted for the Russian navy.-Iron Age, June 15, 1893.

## XYLOLITH, OR WOODSTONE

is a material invented in 1883, but only lately introduced to the trade by Otto Serrig \& Co., of Pottschappel, near Dresdeu. It is made of magnesia
cement, or calcined magnesite, mixed with sawdust and saturated with a solution of chloride of calcium. This pasty mass is spread out into sheets and submitted to a pressure of about 1000 lbs to the square inch, and then simply dried in the air. Specific gravity 1.553. The fractured surface shows a uniform close grain of a yellow color. It has a tensional resistance when dry of 100 lbs .per square inch, and when wet about 66 lbs . When immersed in water for 12 hours it takes up $2.1 \%$ of its weight, and $3.8 \%$ when immersed 216 hours.

When treated for several days with hydrochloric acid it loses $2.3 \%$ in weight, and shows no loss of weight under boiling in water, brine, soda-lye, and solution of sulphates of iron, of copper, and of ammonium. In hardness the material stands betweeñ feldspar and quartz, and as a non-conductor of heat it ranks between asbestos and cork.
It stands fire well, and at a red heat it is rendered brittle and crumbles at the edges, but retains its general form and cohesion. This xylolith is supplied in sheets from $1 / 4$ in. to $11 / 2 \mathrm{in}$. thick, and up to one metre square. It is extensively used in Gerinany for floors in railway stations, hospitals. etc., and for decks of vessels. It can be sawed, bored, and shaped with ordinary woodworking tools. Putty in the joints and a good coat of paint make it entirely water-proof. It is sold in Germany for flooring at about 7 cents per square foot, and the cost of laying adds about 4 cents more.-Eng'g News, July 28, 1892, and July 2í, 1893.

## AHUIIINUII-ITS PROPERTEES AND USES.

(By Alfied E. Hunt, Pres't of the Pittsburgh Reduction Co.)
The specific gravity of pure aluminum in a cast state is 2.58 ; in rolled bars of large section it is: 6 ; in very thin sheets subjected to high compression under chilled rolls, it is as much as 2.7 . Talking the weight of a given bulk of cast aluminum as 1 , wrouglit iron is 2.90 times heavier ; structural steel, 2.95 times; copper, 3.60 ; ordinary high brass, 3.45. Most wood suitable for use in structures has about one third the weight of aluminum, which weighs 0.092 lb . to the cubic inch.
Pure aluminum is practically not acted upon by boiling water or steam. Carbonic oxide or hydrogen sulplide does not act upon it at any temperature under $600^{\circ} \mathrm{F}$. It is not acted upon by most organic secretions.
Hydrochloric acid is the best solvent for aluminum, and strong solntions of caustic alkalies readily dissolve it. Ammonia has a slight solvent action, and concentrated sulphuric acid dissolves aluminum upon heating, with evolution of sulphurous acid gas. Dilute sulphuric acid acts but slowly on the metal, though the presence of any chlorides in the solution allow rapid decomposition. Nitric acid, either concentrated or dilute, has very little action upon the metal, and sulphur has no action unless the metal is at a red heat. Sea-water has very little effect on aluminum. Strips of the metal placed on the sides of a wooden ship corroded less than $1 / 1000$ inch after six months' exposure to sea-water, corroding less than copper sheets similarly placed.

In malleability pure aluminum is only exceeded by gold and silver. In ductility it stands seventl in the series, being exceeded by gold, silver, platinum, iron, very soft steel, and copper. Sheets of aluminum have been rolled down to a thickness of 0.0005 inch, and beaten into leaf nearly as thin as gold leaf. The metal is most malleable at a temperature of between $400^{\circ}$ and $600^{\circ} \mathrm{F}$., and at this temperature it can be drawn down between rolls with nearly as much dranght npon it as with heated steel. It has also been drawn down into the very finest wire. By the Mannesmann process aluminumi tubes have been made in Germany.

Aluminum stands very high in the series as an electro-positive metal, and contact with other metals should be avoided, as it would establish a galvanic couple.

The electrical conductivity of aluminum is only surpassed by pure copper. silver, and gold. With silver taken at 100 the electrical conductivity of aluminum is 54.20 ; that of gold on the same scale is 78 ; zinc is 29.90 ; iron is only 16, and platinum 10.60. Pure aluminum has no polarity, and the metal in the market is absolutely non-magnetic.

Sound castings can be made of aluminum iu either dry or "green" sand moulds, or in metal "chills." It must not be heated much beyond its melting-point, and must be poured with care, owing to the ready absorption of occluded gases and air. The shrinkage in cooling is $17 / 64$ inch per foo: or a little more than ordinary brass. It should be melted in plumbago crucibles, and the metal becomes molten at a temperature of $1120^{\circ} \mathrm{F}$. according to Professor Roberts-Austen, or at $13300^{\circ}$ F. according to Richards.

The coefficient of linear expansion, as tested on $3 / 8$-inch round afuminum rods, is 0.00002295 per degree centigrade betiveen the freezing and boiling point of water. The mean specific heat of alumimm is ligher than that of any other metal, excepting only magnesium and the alkali metals. From zero to the melting-point it is 0.2185 ; water being taken as 1 , and the latent heat of fusion at 28.5 heat units. The coefficient of thermal conductivity of unannealed aluminum is 37.96 ; of annealed aluminum, 38.37. As a conductor of heat aluminum ranks fourth, being exceeded only by silver, copper, and gold.
Aluminum, under tension, and section for section, is about as strong as cast iron. The tensile strength of aluminum is increased by cold rolling or cold forging, and there are alloys which add considerably to the tensile strength without increasing the specific gravity to over 3 or 3.25 .
The strength of commercial aluminum is given in the following table as the result of many tests :

| Form. | Elastic Limit per sq. in. in |
| :---: | :---: |
|  | lbs. 6.500 |
| Sastings. | 12,000 |
| Wire. | 16,000-30,000 |
| Bars.. | 14,000 |


| Ultimate Strength | nt |
| :---: | :---: |
| sq. in. in |  |
| Tensi |  |
| $\begin{aligned} & \text { lbs. } \\ & 15,000 \end{aligned}$ | Tension. |
| 24,000 | 35 |
| 30,000-65,000 |  |
| -00-28,000 | 00 |

The elastic limit per square inch under compression in cylinders, with length twice the diameter, is 3500 . The ultimate strength per square inch under compression in. cylinders of same form is 12,000 . The modulus of elasticity of cast aluminum is about $11,000,000$. It is rather an open metal in its texture, and for cylinders to stand pressure an increase in thickness must be given to allow for this porosity. Its maximum shearing stress in castings is about 12,000, and in forgings about 16,000 , or about that of pure copper.
Pure aluminum is too soft and lacking in tensile strength and rigidity for many purposes. Valuable alloys are now being nade which seem to give great promise for the future. They are alloys containing from $2 \%$ to $\% \%$ or $8 \%$ of copper, manganese, iron, and nickel. As nickel is one of the principal constituents, these alloys have the trade name of "Nickel-aluminum."
Plates and bars of this nickel alloy have a tensile strength of from 40,000 to 50,000 pounds per square inch. an elastic linit of $55 \%$ to $60 \%$ of the ultimare tensile strellgth, an elongation of $20 \%$ in 2 inches, and a reduction of area of $25 \%$.
This metal is especially capable of withstanding the punishment and distortion to which structural material is ordinarily subjected. Nickelaluminum alloys have as much resilience and spring as the very hardest of hard-drawn brass.
Their specific gravity is about 2.80 to 2.85 , where pure aluminum has a specific gravity of 2.72.
In castings, more of the hardening elements are necessary in order to give the maximum stiffness and rigidity, together with the strength and ductility of the metal; the favorite alloy inaterial being zinc, iron, manganese, and copper. Tin added to the alloy rednces the slirinkage, and alloys of aluminum and tin can be made which have less sllinkage than cast iron.
The tensile strength of hardened aluminum-alloy castings is from 20,000 to 25,000 pounds per square inch.
Alloys of aluminum and copper form two series, both valuable. The first is aluminum bronze, containing from $5 \%$ to $111 / \% \%$ of alnminum; and the second is copper hardened aluminum, containing from $2 \%$ to $15 \%$ of copper. Aluminum-bronze is a very dense, fine-grained, and strong alloy, having good ductility as compared with tensile strength. The $10 \%$ bronze in forged bars will give $100,000 \mathrm{lbs}$. teusile strength per square inch, with $60,000 \mathrm{lbs}$, elastic limit per square inch, and $10 \%$ elongation in 8 inches. The $5 \%$ to 51 \% $\%$ bronze has a specific cravity of 8 to 8.30 , as compared with $\tau .50$ for the $10 \%$ to $111 \% \%$ bronze, a tensile strength of $\tau 0,000$ to $80,000 \mathrm{lbs}$, an elastic limit of 40,000 lbs. per square inch, and an elongation of $30 \%$ in 8 inches.
Aluminum is used by steel mannfacturers to prevent the retention of the occluded gases in the steel, and thereby produce a solid ingot. The proportions of the dose range from $11 / 2 \mathrm{lb}$, to several pounds of alnminum per ton of steel. Aluminum is also nsed in giving extra fluidity to steel used in castings, making them sharper and sounder." Added to cast iron, aluminum causes the iron to be softer, free from shrinkage, and lessens the tendency to "chill."
With the exception of lead and mercury, aluminmm unites with all metals,
though it unites with antimony with great difficulty. A small percentage of silver whitens and hardens the metal, and gives it added strength; and this alloy is especially applicable to the mannfacture of fine instruments and apparatns. The following alloys liave been found recently to be useful in the arts: Nickel-aluminum, composed of 20 parts nickel to 80 of aluminum; rosine, made of 40 parts nickel, 10 parts silver, 30 parts aluminum, and 20 parts tin, for jewellers' work; mettaline, made of 35 parts cobalt, 25 parts aluminm, 10 parts iron, and 30 parts copper: The ahminum-bourbounz metal. shown at the Paris Exposition of 1889 , has a specific gravity of 2.9 to 2.96, and can be cast in very solid shapes, as it has very little slninkage. From analysis the following composition is deduced: Alumiuum, $85 . \% 4 \%$; tin, 12.94\%; silicon, $1.32 \%$; irm, none.

The metal can be readily electrically welded, but soldering is still not satisfactory. The high heat conductivity of the aluminum withdraws the lieat of the molten solder so rapidly that it "freezes" before it can flow sufficiently. A German solder said to give good results is made of $80 \%$ tin to $20 \%$ zinc, using a flux composed of 80 parts stearic acid, 10 parts chloride of zinc, and 10 parts of chloricle of tin. Pure tin, fusing at $250^{\circ} \mathrm{C}$., has also been used as a solder. The use of chloride of silver as a fiux has been patented, and used with ordinary soft solder has given some success. A pure nickel soldering-bit should be used, as it does not discolor ahminum as copper bits do.

## ALLOYS.

ALEOYS OT COEPEER AND THN.
(Extract from Report of U. S. 'Test Board.*)

|  | Mean Composition by Analysis. |  |  |  |  |  |  |  |  | orsion ests. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tin. |  |  |  |  |  |  |  |  |
| 1 | 100. |  | 27,800 | 14.000 | 6.47 | 29.848 | ben | 42.000 | 143 | 153 |
| $1 a$ | 100. |  | 12,760 | 11,000 | 0.47 | 21,251 | 2.31 | 39,000 | 65 | 40 |
| 2 | 97.89 | 1.90 | 24,580 | 10,000 | 13.33 |  |  | 34,000 | 150 | 317 |
| 3 | 96.06 | 3.76 | 32,000 | 16,000 | 14.29 | 33,232 | bent. | 42,048 | $15 \%$ | 24 |
| 4 | 94.11 | 5.43 |  |  |  | 38,659 |  |  |  |  |
| 5 | 92.11 | \%.80 | 22, 240 | 19,000 | 5.53 | 48,731 | " | 40,000 | 160 | 126 |
| ${ }_{6}^{6}$ | 90.27 | 9.58 | 20,860 | 15,250 | 3.66 | 49,400 | " | 38,000 | 175 | 114 |
| 7 | 88.41 $8 \%$ 8.15 | 11.59 |  |  |  | 60,403 <br> $3+531$ |  |  |  |  |
| 9 | $8 . \%$ | 1ri. 34 |  |  | 3.33 | $3 \pm, 531$ 67.930 | 4.00 0.63 |  | S2 | 100 |
| 10 | 80.95 | 18.84 | 32,980 |  | 0.0 | 56.715 | 0.49 | $\ddot{\sim} \dddot{8}, 000$ | 190 | 16 |
| 11 | \% 7.56 | 22.25 |  |  | 0. | 29,9:6 | 0.16 |  |  |  |
| 12 | \%6.63 | 23.24 | 22,010 | 22,010 | 0. | 32.210 | 0.19 | 114,000 | 12 | 3.4 |
| 13 | \%2.89 | 26.85 |  |  | 0. | 9,512 | 0.05 |  |  |  |
| 14 | 69.81 | 29.88 | 5,58 | 5,585 | 0. | 12,0\%6 | 0.06 |  | 18 | 1.5 |
| 15 | 68.58 | 31.26 |  |  | 0. | 9,152 | 0.04 |  |  |  |
| 16 | 67.87 | 32.10 |  |  | 0. | 3,47\% | 0.05 |  |  |  |
| 17 | 65.34 | 34.47 | 2,201 | 2,201 | 0. | 4, 7 T6 | 0.02 | 84,600 | 16 | 1 |
| 18 | 56.\% $\%$ | 43.17 | 1.455 | 1,455 | 0. | 2,126 | 0.02 |  |  |  |
| 19 | 44.52 | 55.28 | 3.010 | 3.010 | 0. | 4,\%r6 | 0.03 | 35.800 |  |  |
| $\because 0$ | 34.22 | 65.80 | 3,3\%1 | 3,371 | 0. | 5,384 | 0.04 | 19,600 | 17 |  |
| 21 | 23.35 | 76.39 | 6,175 | 6,\%\% | 0. | 12,408 | 0.27 |  |  |  |
| $2:$ | 15.08 | 84.62 |  |  |  | 9,063 | 0.86 | 6.500 | 23 | 25 |
| 23 | 11.49 | 88.47 | 6,380 | 3,500 | 4.10 | 10,706 | 5.85 | 10,100 | 23 | 62 |
| $\because 4$ | 8.57 | 91.39 | 6,450 | 3,500 | 6.87 | 5,305 | bent. | 9,800 | 23 | 132 |
| 25 | 3.72 | 96.31 | 4,750 | 2,750 | 12.32 | 6,925 | " | 9,800 | 23 | 220 |
| 46 | 0. | 1 | 3,505 |  | 35.51 | $3, \% 40$ | ، | 6,400 | 12 | $55{ }^{\text {r }}$ |

[^9]
## Nos. $1 \alpha$ and 2 were full of blow-holes.

Tests Nos. 1 and $1 \alpha$ show the variation in cast copper due to varying conditions of casting. In the crushing tests Nos. 12 to 20 , inclusive, cruslied and broke under the strain, but all the others bulged and flattened out. In these cases the crushing strength is taken to be that which caused a decrease of $10 \%$ in the length. The test-pieces were 2 in . long and $5 / 8 \mathrm{in}$. diameter. The torsional tests were made in Thurston's torsion-machine, on pieces $5 / 8 \mathrm{in}$. diameter and 1 in. long between heads.

Specific Gravity of dio Copper-tin Alloys.-The specific gravity of copper, as found in these tests, is $8.8 \tilde{r} 4$ (tested in turvings from ihe ingot, and reduced to $39.1^{\circ} \mathrm{F}$.). The alloy of maximum sp. gr. 8.956 contained 62.42 copper, 37.48 tin , and all the alloys containing less than $37 \%$ tin varied irregularly in sp. gr. between 8.65 and $8.9: 3$, the density depending not on the conmosition, but on the porosity of the casting. It is probable that the actnal sp.gr. of all these alloys containing less than $3 \% \%$ tin is about 8.95 , and any smaller figure indicates porosity in the specimen.

From $3 \% \%$ to $100 \%$ tin, the sp. gr. decreases regularly from the maximum of 8.956 to that of pure tin, 7.293.

## Note on the Strength of the Copper-tin Alloys.

The bars containing from $\% \%$ to $24 \%$ tin, inclusive, have considerable strength, and all the rest are practically worthless for purposes in which strength is required. The dividing line between the strong and brittle alloys is nrecisely that at which the color changes from golden yellow to silverwhite, viz., at a composition containing between $24 \%$ and $30 \%$ of tin.

It appears that the tensile and compressive strengths of these alloys are in no way related to each other, that the torsional strength is closely proportional to the tensile strength, and that the transverse strength may depend in some degree upon the compressive strength, but it is much more nearly related to the tensile strength. The modulus of rupture as obrained by the transverse tests, is, in general, a figure between those of tensile and compressive strengths per square inch, but there are a few exceptions in which it is larger than either.
The strengths of the alloys at the copper end of the series increase rapidly with the addition of tin till about $4 \%$ of tin is reached. The transverse strength continmes regularly to increase to the maximum, till the alloy containing about $1 \pi 1 / 2 \%$ of tin is reached, while the tensile and torsional strengths also increase, but irregnlarly, to the same point. This irregularity is probably due to porosity of the metal, and might possibly be removed by any means which would make the castings more compact. The maximum is reached at the alloy containing $88 . \% 0$ copper, $1 \% .34$ tin, the transverse strength, however, being very much greater at this point than the tensile or torsional strength. Fron the point if maximum strength the figuree drop rapidly to the alloys containing about $2 \boldsymbol{w} .5 \%$ of tin, and then more slowly to $37.5 \%$, at which point the minimmm (or nearly the minimum) strength, by all three methods of test, is reached. The alloys of minimun strength are found from $37.5 \%$ tin to $5 \% .5 \%$ tin. The absolute minimum is probably aboul $45 \%$ of tin .

From $52.5 \%$ of tin to about $7 \% .5 \%$ tin there is a rather slow and irregular in. crease in strength. From $\% \% .5 \%$ tin to the end of the series, or all tin, the strengthis slowly and somewhat irregularly decrease.

The resnlts of these tests do not seem to corroborate the theory given by some writers, that pecnliar properties are possessed by the alloys which are compounded of simple multiples of their atomic weights or chemical equivalents, and that these properties are lost as the compositions vary more or less from this definite constitution. It does appear that a certain percentage composition gives a maximmm strength and another certain percentage a minimnm, but neither of these compositions is represented by simple multiples of the atomic weights.
There appears to be a regular law of decrease from the maximum to the minimum strength which does not seem to have any relation to the atomic proportions, but only to the percentage compositions.
Mardness.-The pieces containing less than $24 \%$ of tin were turned in the lathe without difficulty, a gradually increasing hardness being noticed, the last named giving a very short chip, and requiring frequent sharpening of the tool.
With the most brittle alloys it was found impossible to turn the test-pieces in the lathe to a smooth surface. No. 13 to No. 17 ( 26.85 to 34.47 tin) could not be cut with a tool at all. Chips would fly off in advance of the too' and
beneath it, leaving a rough surface; or the tool would sometimes, apparently, crush off portions of the metal, grinding it to powder. Beyond $40 \%$ tin the hardness decreased so that the bars could be easily turned.

ALLOYS OF COPPER ANT ZINC. (U.S. Test Board).

| No. | Mean Composition by Analysis. |  | Tensile Strength, lbs. per sq. in. |  |  | Trans- <br> verse Test Modulus of Rupture. |  | Crushing Str'gth per sq. in., lbs. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | Conper. | Zinc. |  |  |  |  |  |  |  |  |
| 1 | 97.83 | 1.88 | 27,240 |  |  |  |  |  | 130 | 357 |
| $\stackrel{1}{2}$ | 82.93 | 16.98 | 32,600 | 26.1 | 26.7 | 23,197 | Bent |  | 155 | 329 |
| 3 | 81.91 | 17.99 | 32,6\% | 30.6 | 31.4 | 21,193 |  |  | 166 | 345 |
| 4 | r7.39 | 22.45 | 35,630 | 20.0 | 35.5 | 25,374 | '6 |  | 169 | 311 |
| 5 | 76.65 | 23.08 | 30,520 | 24.6 | 35.8 | 22,325 | ، | 42,0 | 165 | 267 |
| 6 | 73.20 | $26.4{ }^{*}$ | 31,580 | 23.7 | 38.5 | 25,894 | " |  | 168 | 293 |
| 7 | \%1.20 | 28.54 | 30,510 | 29.5 | 29.2 | 24,468 | " |  | 164 | 269 |
| 8 | 69.î4 | 30.06 | 28,120 | 28.7 | 20.7 | 26,930 | " |  | 143 | 20 |
| 9 | 66.27 | 33.50 | 37',800 | 25.1 | 37.7 | 28,459 |  |  | 176 | 2.57 |
| 10 | 63.44 | 36.36 | 48,300 | 32.8 | 31.7 | 43,216 |  |  | 202 | 230 |
| i1 | 60.94 | 38.65 | 41,065 | 40.1 | 20. 7 | 38,968 | '، |  | 194 | 202 |
| $\stackrel{\sim}{2}$ | 58.49 | 41.10 | 50,450 | 54.4 | 10.1 | 63,304 |  |  | $22 \%$ | 93 |
| \% 3 | 55.15 | 44.44 | 44,280 | 44.0 | 15.3 | 42,463 | " |  | 209 | 109 |
| 4 | 54.86 | 44.78 | 46,400 | 53.9 | 8.0 | 47,955 |  |  | 203 | \% |
| 15 | 49.66 | 50.14 | 30,990 | 54.5 | 5.0 | 33,467 | 1.26 | $11 \%$ | $1{ }^{17}$ | 8 |
| 16 | 48.99 | 50.82 | 26,050 | 100. | 0.8 | 40,189 | 0.61 |  | 176 | 16 |
| 17 | 47.56 | 52.28 | 24,150 | 100. | 0.8 | 48,4\%1 | 1.17 | 121,000 | 155 | 13 |
| 18 | 43.36 | 56.22 | 9,1r0 | 100. |  | 17,691 | 0.10 |  | 88 | 2 |
| 19 | 41.30 | 58.12 | 3,62\% | 100. |  | \%,761 | 0.04 |  | 18 |  |
| 20 | 32.94 | 66.23 | 1,774 | 100. |  | 8,291 | 0.04 |  | 29 |  |
| 21 | 29.20 | 70.17 | 6,414 | 100. |  | 16.559 | 0.04 |  | 40 |  |
| 22 | 20.81 | 77.63 | 9,000 | 100. | 0.2 | 23.97\% | 0.13 | 52,152 | 65 |  |
| 2 | 12.12 | 86.67 | 12,413 | 100. | 0.4 | 35,026 | 0.31 |  | 82 |  |
| 24 | 4.35 | 94.59 | 18,065 | 100. | 0.5 | 26,163 | 0.46 |  | 81 | 22 |
| 25 | Cast | Zinc. | 5.400 | 75. | 0.7 | 7.539 | 0.12 | 22,00 | 37 | 142 |

Variation in Strength of Gun-bronze, and IMeans of Improving the strength.-The figures obtained for alloys of from $7.8 \%$ to $12 . \% \%$ tin, viz., from 26,860 to 29.430 pounds, are much less than are usually given as the strength of gun-metal. Bronze guns are usually cast under the pressure of a head of metal, which tends to increase the strength and density. The strength of the upper part of a gun casting, or sinking head, is not greater than that of the small bars which have been tested in these experiments. The following is an extract from the report of Major Wade concerning the strength and density of gun-bronze (1850):-Fxtreme variation of six samples from different parts of the same gun (a 32 -pounder howitzer): Specific gravity, 8.48\% to 8.S35; tenacity, $26,4: 8$ to 52,192 . Extreme variation of all the samples tested: Specific gravity, 8.308 to 8.850 ; tenacity, 23,108 to 54,531 . Extreme variation of all the samples from the gun heads: Specific gravity, 8.308 to 8.756 ; tenacity, $2: 3,5 \times 9$ to 35,484 .
Major Wade says: The general resnits on the quality of bronze as it is found in guns are mostly of a negative character. They expose defects in density and strength, develop the heterogeneous texture of the metal in different parts of the same gun, and show the irregularity and uncertainty of quality which attend the castirig of all guns, although made from smilar materials, treated in like manner.

Navy ordnance bronze containing 9 parts copper and 1 part tin, tested at Washington, D. C., in 18\%5-6, showed a variation in tensile strength from 29,800 to $51,400 \mathrm{hbs}$. per square inch, in elongation frcm $3 \%$ to $58 \%$, and in specific gravity from 8.39 to 8.88 .
That a great improvement inay be made in the density and tenacity of gun bronze by compression has been shown by the experiments of Mr. S. B. Dean in Boston, Mass., in 1569, and by those of General Uchatius in Austria in 18\%3. The former increased the density of the metal next the bore of the gun from 8.321 to 8.875 , and the tenacity from $2 \%, 238$ to 41,471 pounds per
square inch. The latter, by a similar process, obtained the following figures
for tenacity:
Bronze with $10 \%$ tin.
Pounds per sq. in.
Bronze with 8\% tin.................................................... 7,053
Bronze with 6\% tin........ ............................ . . 7 . 656

## ALLOYS OF COPPEIE, TIN, ANT ZINC.

(Report of U. S. Test Board, Vol. II, 1881.)

| $\begin{gathered} \text { No. } \\ \text { in } \\ \text { Report. } \end{gathered}$ | Analysis, Original Mixture. |  |  | Transverse Strength. |  | Tensile Strength per square inch. |  | Elongation per cent in 5 inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cu. | Sn. | Zn. | Modulus Rupture | $\begin{aligned} & \text { Deflec- } \\ & \text { tion, } \\ & \text { ins. } \end{aligned}$ | $A$. | B. | $A$. | B. |
| 72 |  |  | 5 | 41,334 | 2.63 | 23,660 | 0 30,\%40 | 2.34 | 9.68 |
| ro |  | 1.86 | 10 | 31,986 | 3.67 | 31,000 | 33,000 | 17.6 | 19.5 |
| 71 | 85 | 10 | 10 | 44,457 | $\stackrel{2.85}{ }$ | 28,840 | 28,560 | 6.80 | 5.28 |
| 89 | 85 | 12.5 | 2.5 | 62,405 | 2.56 | 35,680 | 36,000 | 2.51 | 225 |
| 88 | 82.5 | 12.5 | ${ }_{5}$ | 6厄,960 | 1.61 | 31,500 36.000 | 32,800 3,000 | 1.29 | 2.59 |
| 77 | 83.5 | 15 | 2.5 | 69,045 | 1.09 | 30,600 | ( $\begin{aligned} & 34,000 \\ & 33,800\end{aligned}$ | . 86 | . 92 |
| 67 | 80 | 5 | 15 | 42,618 | 3.88 | 37,560 | -32,300 | 11.6 | 3.59 |
| 68 | 80 | 10 | 10 | 6\%,117 | 2.85 | 32.830 | - | 11.6 | 3.59 |
| 69 | 80 | 15 | 5 | 54,476 | -. 44 | 32,350 | - | $\begin{array}{r}1.57 \\ \hline 1.55\end{array}$ | 1.67 |
| 86 | ${ }_{7}^{77} 7$ | 10 | 12.5 | 63,849 | 1.19 | 35,500 | 36,000 | 1.00 | 1.00 |
| 88 | 47.5 | 12.5 | 10 | -91,705 | . 71 | 36,000 | 32.500 | . $\% 2$ | . 59 |
| 85 | 75 | 7.5 | 17.5 | 68,607 | 91 | 33.140 | 34,960 | 2.50 | 3.19 |
| 64 | 75 | 10 | 15 | 58,345 | ${ }^{2} 9$ | 00 | 39,300 | 1.56 | 1.33 |
| 65 | \% 5 | 15 | 10 | 51,109 | . 31 | 35, ${ }^{\text {3 }}$ | 31,000 | 1.13 | 1.25 |
| 66 | 75 | 20 | 5 | 40,235 | . 21 | - | 28,000 <br> 27 <br> 860 | . 59 | . 54 |
| 83 | 72.5 | 7.5 | 20 | 51,839 | $\stackrel{.81}{ }$ | 32,100 | 27,600 | - 4.4 |  |
| 84 | 72.5 | 10 | 17.5 | 53,230 | . 64 | 30,000 | 30,000 | 3.13 .48 | 3.48 |
| 89 | ${ }_{7} 7$ | 5 | 25 | 57,349 | 1.37 | 38,000 | $3 \geqslant, 910$ | $\stackrel{.48}{2.06}$ | $\cdot 49$ |
| 82 60 | 70 | ${ }^{7} .5$ | 22.5 | 48,830 | . 36 | 38,000 | 32,400 | -. 84 | . 40 |
| 61 | ${ }_{6}$ | 10 | 20 | 36,520 | . 18 | 33.140 | 26,300 | . 31 |  |
| 62 | 70 | $\stackrel{1}{20}$ | 10 | 31, 124 | . 20 | 33,440 | 27.800 | . 25 |  |
| 81 | 67.5 | 2.5 | 30 | 53,3i¢ | 2.91 | 17,000 | 12,900 | . 03 |  |
| 74 | 67.5 | 5 | 27.5 | 55,976 | . 49 | 34,720 34 | 45.850 | \%.27 | 3.09 |
| 75 | 67.5 | 7.5 | 25 | 46,875 | . 32 | 34.000 29,500 | $\xrightarrow{\sim} \mathrm{C}, 460$ | 1.06 | 43 |
| 80 | 65 | 2.5 | 32.5 | 56,949 | 2.36 | 21,350 | 38, 3000 | $\stackrel{.}{36}$ | . 26 |
| 55 | 65 | 5 | 30 | 51,369 | -. 56 | 47,140 | 38,300 <br> 36,000 | 3.26 1.21 | 3.02 |
| 56 | 65 | 10 | 25 | 27,075 | . 14 | 25,720 | 22.500 | 1.21 .15 | . 19 |
| 57 | 65 | 15 | 20 | 13,591 | . 07 | 6,8:0 | ${ }^{2} \mathrm{r}, 2,31$ | . 15 | . 19 |
| 5 | 65 | 20 | 15 | 11,932 | . 05 | 3,765 | 2,665 |  |  |
| $\stackrel{7}{7}$ | ${ }_{60}^{62.5}$ | 2.5 | ${ }^{35} 5$ | 69,255 | 2.34 | 44,400 | 45,000 | 2.15 | 2.19 |
| 52 | 60 | 2.5 | ${ }_{35}{ }^{37}$ | 46,076 | 1.46 | 57,400 | 59,900 | 4.87 | 3.03 |
| 53 | 60 | 10 | 30 | 24,699 | . 13 | 41,160 | 38.3330 | . 39 | . 40 |
| 54 | 60 | 15 | 25 | 18,248 | . 09 | 18,020 | 21.210 | . 15 |  |
| 12 | 58.22 | 2.30 | 39.48 | 95,6.23 | 1.99 | 66,500 | ${ }_{6}^{12,400}$ |  |  |
| 3 | 58.75 | 8.75 | $3: 2$ | 35,752 | . 18 | Broke | beforet |  | $\begin{gathered} 3.15 \\ \text { y britule } \end{gathered}$ |
| - | 57.5 | 21.25 | 21.25 | 2,752 | . 02 | - ${ }^{\text {raj }}$ | -1,300 | est; ver y |  |
| $\begin{aligned} & 73 \\ & 50 \end{aligned}$ | 55 | 0.5 | 44.5 | 72,308 | 3.05 | 68,900 | 68,900 | 9.40 | 2.88 |
| 51 | 55 | 10 | 40 | 38,174 | . 22 | 27.400 | 30,500 | . 46 | . 43 |
| 49 | 50 |  | 45 |  | . 11 | 25,460 | 18,500 | . 29 | . 10 |
| 49 | 50 | 4 | 45 | 20,814 | . 11 | 23,000 | 31,300 | . 66 | . 45 |

The transverse tests were made in bars 1 in . square, 22 in . between sup. ports. The tensile tests were made on bars 0.798 in . diam. turned from the two halves of the transverse-test bar, one half being marked $A$ and the

Ancient 13ronzes.-The usual composition of ancient bronze was the Eame as that of modern gun-me ${ }^{+}$al- 90 copper, 10 tin; but the proportion of tin varies from $5 \%$ to $15 \%$, and in some cases lead has been found. Some ancient Egyptian tools contained 88 copper, 12 tin.
Strangth of the copper-zine Alloys.-The alloys containing less than $15 \%$ of zinc by original mixture were generally defective. The bars were full of blow-holes, and the retal slowed signs of oxidation. To insure good castings it appears that copper-zinc alloys should contain more than $15 \%$ of zinc.
From No. 2 to No. 8 inclusive, 16.98 to $30.06 \%$ zinc the bars show a remarkable similarity in all their properties. They have all nearly the same strength and ductility, the latter decreasing slightly as zinc increases, and are nearly alike in color and appearance. Between Nos. 8 and 10, 30.06 and $36.36 \%$ zinc, the strength by all methods of test rapidly increases. Between No. 10 and No. 15, 36.36 and $50.14 \%$ zinc, thㄱe is another group, distinguished by high strength and diminished ductility. The alloy of maximum tensile, transverse and torsional strengtl cuntains about $41 \%$ of zinc.
The alloys containing less than $55 \%$ of zinc are all yellow metals. Beyond $55 \%$ the color changes to white, and the alloy becomes weak and brittle. Between $70 \%$ and pure zinc the color is bluish gray, the brittleness decreases and the strength increases, but not to such a degree as to make them useful for constructive purposes.
Difference betwect Composition by Mixture and by Analysis.-There is in every case a smaller percentage of zinc in the average analysis than in the original mixture, and a larger percentage of copper. The loss of zinc is variable, but in goneral averages from 1 to $2 \%$.

Liquation or Separation of the IMctals.-In several of the bars a considerable amount of liquation took place, analysis showing a difference in composition of the two ends of the bar. In such cases the change in composition was gradual from one end of the bar to the other, the upper end in general containing the higher percentage of copper. A notable instance was bar No. 13, in the above table, thrnings from the upper end containing $40.36 \%$ of zinc, and from the lower end $48.52 \%$.

Specific Gravity.-Tho specific gravity follows a definite law. varying with the composition, and decreasing with the addition of zinc. From the plotted curve of specific gravities the following mean values are taken:

| Per cent zinc......... | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Specific gravity....... | 8.80 | 8.72 | 8.60 | 8.40 | 8.36 | 8.20 | 8.00 | 7.72 | 7.40 | 7.20 | 7.14. |

Graplic Representation of the Law of Variation of Strength of Copper-'Rin-tine Allogs. - In an equilateral triangle the sum of the perpendicular distances from any point within it to the three sides is equal to the altitude. Such a triangle can therefore be used to show graphically the percentage composition of any compound of three parts, such as a triple alloy. Let one side represent 0 copper, a second 0 tin, and the third 0 zinc, the vertex opposite each of these sides representing 100 of each element respectively. On points in a triangle of wood representing different alloys tested, wires were erected of lengths proportional to the tensile strengths, and the triangle then built up with plaster to the height of the wires. The surface thus formed has a characteristic topography representing the variations of strength with variations of composition. The cut shows the surface thus made. The vertical section to the left represents the law of tensile strength of the copper-tin alloys, the one to the right that of tin-zinc alloys, and the one at the rear that of the copper-zinc alloys. The high point represents the strongest possible alloys of the three metals. Its composition is copper 55 , zinc 43 , tin 2 , and its strength about $70,000 \mathrm{lbs}$. The high ridge from this point to the point of maximum height of the section on the left is the line of the strongest alloys, represented by the formula zine $+(3 \times \operatorname{tin})=55$.
All alloys lying to the rear of the ridge, containing more copper and less tin or zinc are alloys of greater ductility than those on the line of maximum strength, and are the valuable commercial alloys; those in front on the decliv. ity toward the central valley are brittle, and those in the valley are both brittle and weak. Passing from the valley toward the section at the right the alloys lose their brittleness and become soft, the maximum softness being at tin $=100$, but they remain weak, as is shown by the low elevation of the surface. This model was planned and constructed by Prof. Thurston in 1877. (See Trans. A. S. C. E. 1881 Report of the U. S. Board appointed to
test Iron, Steel, etc., vol. 11., Washington, 1881, and Thurston's Materiats of Engineering, vol. iii.)
The best alloy obtained in Thurston's research for the U. S. Testing Board has the composition, Copper 55 , Tin 0.5, Zinc 44.5. The tensile strength in at cast bar was $68,900 \mathrm{lbs}$. per sq. in., two specimens giving the same result; the elongation was 47 to 51 per cent in 5 inches. Thurston's formula for copper-tin-zinc alloys of maximum strength (Trans. A. S. C. E., 1881) is $z+3 t=55$,


Fig. 77.
in which $z$ is the percentage of zinc and $t$ that of tin. Alloys proportioned according to this formula should have a strength of about 40,000 lbs. per sq. in. $+500 z$. The formula fails with alloys containing less than 1 per cent of tin.

The following would be the percentage composition of a number of alloys made according to this formula, and their corresponding tensile strength in castings:

| Tin. | Zinc. | Copper. | Tensile <br> Strength, <br> lbs. per | Tin. | Zinc. | Copper. | Tensile <br> Strength, <br> 1bs. per |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sq. in. |  |  |  |  |  |  |  |

These alloys, while possessing maximum tensile strength, would in general be too hard for easy working by machine tools. Another series made on the formula $z+4 t=50$ would have greater ductility, together with considerable strength, as follows, the strength being calculated as before, tensile strength in lbs, per sq. $\mathrm{in} .=40,000+500 z$.

| Tin. | Zinc. | Copper. | Tensile <br> Strenth, <br> lbs. per | Tin. | Zinc. | Copper. | Tensile <br> strength, <br> s. in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lbs. per |  |  |  |  |  |  |  |

Composition of Alloys in herymday Use in Brass Foundries. (American Machinist.)


Gurley's Fronze. -16 parts copper, 1 tin, 1 zinc, $1 / 2$ lead, used by W. \& L. E. Gurley of Troy for the framework of their engineer's transits. Tensile strength 41, 114 liss. per sq. in., elougation $2 \% \%$ in 1 inch, sp. gr. 8.696. (W. J. Keep, Trans. A. 1. M. E. 18.j0.)

## Useful Alloys of Copper, Ting, and Einc.

(Selected from numerous sources.)

| U. S. Nary Dept. journal boxes and guide-gibs.. | $\left\{\begin{array}{l} \text { Copper. } \\ \left\{\begin{array}{c} 6.8 \\ 8.2 .8 \end{array}\right. \end{array}\right.$ | $\begin{gathered} \text { Tin. } \\ 1 \\ 13.8 \end{gathered}$ | $\begin{gathered} \text { Zinc. } \\ 1 / 4 \\ 3.4 \end{gathered}$ | parts. per cent. |
| :---: | :---: | :---: | :---: | :---: |
| Tobin brouze........................... | 58.20 | 2.30 | 39.48 | "6 " |
| Naval brass. | 62 | 1 | 37 | " " |
| Composition, U. S. Navy | 88 | 10 | a | " " |
| Brass bearings (J. Rose) | $\{64$ | 8 | 1 | parts. |
| Gun metal............ | ${ }^{87.7}$ | 11.0 | 1.3 | per cent. |
| Gum metal. | ${ }_{91}^{92.5}$ | $\begin{aligned} & 5 \\ & 7 \end{aligned}$ | ${ }_{2}^{2.5}$ |  |
| ، 6 ................................ | 87.75 | 9.75 | 2.5 | " 6 |
| " ${ }^{\text {\% }}$.............................. | 85 | 5 | 10 | " " |
| ، 6 ................................ | 83 | 2 | 15 | " " |
| Tough brass for engines | $\left\{\begin{array}{l}13 \\ 76\end{array}\right.$ | ${ }^{2}$ | $\stackrel{2}{21.7}$ | parts. |
| Bronze for rod-boxes (Lafond). | ${ }_{83}$ | 16 | 2 | slightly malleable |
| " "، pieces subject to shock.. | 83 | 15 | 1.50 | 0.50 lead. |
| Red brass ......................parts | $\because 0$ | 1 |  | $1{ }^{\text {c }}$ |
| ." ".................per cent | $8{ }^{7}$ | 4.4 | 4.3 | 4.3 " |
| Broize for pump casings (Lafond)... | 88 | 10 | 2 |  |
| "* "\% eccentric straps. " | 84 | 14 | \% |  |
| " ${ }^{6}$ \% shrill whistles.. | 80 | 18 | .... | 2.0 antimony. |


|  | Tin. | Zinc |  |
| :---: | :---: | :---: | :---: |
| Art bronzc, du | 2 | 1 |  |
| Gold bronze. | 2.1 | 5.6 | 2.8 lead. |
| Bearing metal | 8 | 3 |  |
| " | 21/2 | 81/2 |  |
| * " |  |  |  |
| c " | $\begin{aligned} & 123 / 4 \\ & 18 \end{aligned}$ |  |  |
| " | 18 |  | 1/2 lea |
| "، " | $91 / 2$ | 91 | 7 lead. |
| English brass | , | 291 | 31/2 lead. |

Tobin isronze. - This alloy is practically a sterro or delta metal with the addition of a small amount of lead, which tends to render copper softer and more ductile. (F. L. Garrison, J. F. I., 1891.)

The following analyses of Tobin bronze were made by Dr. Chas. B. Ludley:

Pig Metal, Test Bar (Rolled). per cent.

| Copper. | per cent. <br> .. 59.00 | per ce |
| :---: | :---: | :---: |
| Zinc.... | ... 38.40 | ${ }_{37.14}$ |
| Tin | .. 2.16 | 0.90 |
| Iron. | . 0.11 | 0.18 |
| Lead. | 0.31 | 0.35 |

Dr Dudley writes, "We tested the test bars and found 78,500 tensile strength with $15 \%$ elongation in two inches, and $401 \% \%$ in eight inches. This high tensile strength can only be obtained, when the metal is manipulated. Such high results could hardly be expected with cast metal."

The original Tobin bronze in 1875, as described by Thurston, Trans. A. S. C. E 1881, had, composition of copper 58.22 , tin 2.30 , zinc 39.48 . As cast it had a tenacity of $66,000 \mathrm{lbs}$. per sq. in., and as rolled $79,000 \mathrm{lbs}$. cold rolled it gave $104,000 \mathrm{lbs}$.

A circular of Ansonia Brass \& Copper Co. gives the following :-The tensile strengtli of six Tobin bronze one-inch round rolled rods, turned down to a diameter of $5 / 8$ of an inch, tested by Fairbanks, areraged $79,600 \mathrm{lbs}$. per sq. in., and the elastic limit obtained on three specinens averaged $54,25 \% \mathrm{lbs}$. per sq. in.

At a cherry-red heat Tobin bronze can be forged and stamped as readily as steel. Bolts and muts can be forged from it, cither by hand or by machinery, with a marked ingree of economy. Its great tensile strengtli, and resistance to the corrosive action of sen-water, render it a most suitable metal for condenser plates, steam-launch shafting; ship sheathing and fastenings, nails, hull piates for steam yachts, torpedo and life boats, and ship deck fittings.
The Navy Department has specified its use for certain purposes in the machinery of the new cruisers. Its specific gravity is 8.071. The weight of a cubic inch is 291 jb .

Special Alloys. (Engineer, March 24, 1893.)
Japanese Alloys for art work:

|  | Copper. | Silver. | Gold. | Lead. | Zinc. | Iron. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shaku-do.. | 94.50 66.31 | 1.55 39.07 | 3.73 traces. | 0.11 .52 | trace. | trace. |

Gilbert's Alloy for cera-perduta process, for casting in plaster-of-paris. Copper 91.4 'lin 5.7 Lead 2.9 Very fusible.

## 

## (F. L. Garrison, Jour. Frank. Inst., June and July, 1591.)

Delta Mretal. - This alloy, which was formerly known as sterro-metal, is composed of about 60 copper, from 34 to 44 zinc, 2 to 4 iron, and 1 to 2 tin. The pecmianity of all these alloys is the content of iron, which appears to have the property of increasing their strength to an unusual degree. In making delta metal the iron is previously alloyed with zinc in known and definite proportions. When ordinary wrought-iron is introduced into molten zinc, the latter readily dissolves or absorbs the former, and will take

## PHOSPHOR-BRONZE AND OTHER SPECIAL BRONZES. $32 \%$

it up to the extent of about $5 \%$ or more. By adding the zinc-iron alloy thus obtained to the requisite amount of copper, it is possible to introduce any definite quantity of iron up to $5 \%$ into the copper alloy. Garrisoll gives the following as the range of composition of copper-zinc-iron, and copper-zinc-
tin-iron alloys :

> I. Per cent.

II. Per cent.
Iron....................... 0.1 to 5

Tin .......................... 0.1 to 10
Zinc........................ 1.8 to 45
Copper..................... 98 to 40
The advantages claimed for delta metal are great strength and toughness. It produces sound castings of close grain. It can be rolled and forged hot, and can stand a certain amount of drawing and hammering when cold. It takes a high polish, and when exposed to the atmosphere tarnishes less than brass.

When cast in sand del ta metal has a tensile strength of about 45,000 pounds per square inch, and about $10 \%$ elongation; when rolled, tensile strength of 60,000 to 75,000 pounds per square inch, elongation from $9 \%$ to $1 \% \%$ on bars 1.128 inch in diameter and 1 inch area.

Wallace gives the ultimate tensile strength 33,600 to 51,520 pounds per square inch, with from $10 \%$ to $20 \%$ elongation.
Delta metal can be forged, stamped and rolled hot. It must be forged at a dark cherry-red heat, and care taken to avoid striking when at a black heat.

According to Lloyd`s Proving House tests, made at Cardiff, December 20 , 188\%, a half-inch delta metal-rolled bar gave a tensile strength of 88,400 pounds per square inch, with an elongation of $30 \%$ in three inches.

PHOSPHOR-BRONRE ANB OTHERE SPECMAL FBIONTES.
Phosphorabronze. - In the year 186S, irontefiore \& Kunzel of Liège, Belgium, found by adding small proportions of phosphorus or "phosphoret of tin or copper" to copper that the oxides of that metal, nearly always present as an impurity, more or less, were deoxidized and the copper much improved in strength and ductility, the grain of the fracture became finer, the color brighter, and a greater fluidity was attained.

Three samples of phosphor-bronze tested by Kirkaldy gave:


The strength of phosphor-bronze varies like that of ordinary bronze according to the percentages of copper, tin, zinc, lead, etc., in the alloy.
Dooxidized Eronze. This alloy resembles phosphor brouze somewhat in composition and also delta metal, in containing zinc and iron. The following analysis gives its average composition:

| ( 8067 | Trin | 0.10 |
| :---: | :---: | :---: |
| Copper................... 81.48 | Silver | 0.07 |
| Zinc....................... ${ }^{\text {a }}$ 3.23 | Phosphorus | 0.005 |
| Lead......... .......... 2.14 |  | 00.615 |

Comparison of Copper, Siliconobronze, and Pinosphore bronze Wires. (Engineering, Nov. 23, 1883.)

Description of Wire.
Pure copper. .....................
Silicon bronze (ielegraph)....
"telephone)....
Phosphor bronze (telephone)..

Tensile Strength.

| 39,827 | lbs. per sq. in. |  |  |
| ---: | ---: | ---: | ---: |
| 41,696 | 66 | 6 | 60 |
| 108,080 | 66 | 6 | 6 |
| 102,390 | 6 | 6 | 6 |

(Relative Conductivity.
100 per cent.
96

## Penn. Re. R. Co.s Specifications for Pisonphor- Bronze

(1902).-The metal desired is homogeneous, alloy of copper, 79.70: tin, 10.00; lead, $9.50 ;$ phosphorus, 0.80 . Lots will not be accepted if samples do not show tin, between 9 and $11 \%$; lead, between 8 and $11 \%$; phosphorus, between 0.7 and $1 \%$; nor if the metal contains a sum total of other substances than copper, tin, lead, and phosphorus in greater quantity than 0,50 per cent. (See also p. 334.)

Silicon Bronze. (Aluminum World, May, 1897.)
The most useful of the silicon bronzes are the $3 \%$ ( $97 \%$ copper, $3 \%$ silicon) and the $5 \%$ ( $95 \%$ copper, $5 \%$ silicon), although the hardness and strength of the alloy can be increased or decreased at will by increasing or decreasing silicon. A $3 \%$ silicon bronze has a tensile strength, in a casting, of about $55,000 \mathrm{lbs}$. per sq. in., and from $50 \%$ to $60 \%$ elongation. The $5 \%$ bronze has a tensile strength of about $75,000 \mathrm{lbs}$. and about $8 \%$ elongation. More than $5 \%$ or $5 \frac{1}{2} \%$ of silicon in copper makes a brittle alloy. In using silicon, either as a flux or for making silicon bronze, the rich alloy of silicon and copper which is now on the market should be used. It should be free from iron and other metals if the best results are to be obtained. Ferro-silicon is not suitable for use in copper or bronze mixtures.

## A LUMENUMR ALLOYS.

Aluminum Eronze. (Cowles Electricsimelting and Al. Co.'s circular.)
The standard A No. 2 grade of aluminum bronze, containing $10 \%$ of aluminum and $90 \%$ of copper, has many remarkable characteristics which distinguish it from all other metals.

The tenacity of castings of A No. 2 grade metal varies between 75,000 and $90,000 \mathrm{lbs}$. to the square inch, with from $4 \%$ to $14 \%$ elongation.
Increasing the proportion of aluminum in bronze beyond $11 \%$ produces a brittle alloy; therefore nothing ligher than the A No. 1, which contains $11 \%$, is made.

The B, C, D, and E grades, containing $71 / 2 \%, 5 \%, 21 / 2 \%$, and $11 / 4 \%$ of aluminum, respectively, decrease in tenacity in the order named, that of the former being about 65,000 pounds, while the latter is 25,000 pounds. While there is also a proportionate decrease in transverse and torsional strengths, elastic limit, and resistance to compression as the percentage of aluninum is lowered and that of copper raised, the ductility on the other hand increases in the same proportion. The specific gravity of the A No. 1 grade is 7.56 .
Bell Bros., Newcastle, gave the specific gravity of the aluminum bronzes as follows:

$$
3 \%, 8.691 ; \quad 4 \%, 8.621 ; \quad 5 \%, 8.369 ; \quad 10 \%, 7.659
$$

## Tests of Aluminum Bronzes.

(By John H. J. Dagger, in a paper read before the British Association, 1889.)

| $\begin{gathered} \text { Per cent } \\ \text { of } \\ \text { Aluminum. } \end{gathered}$ | Tensile Strength. |  | Elongation, per cent. | Specific Gravity. |
| :---: | :---: | :---: | :---: | :---: |
|  | Tons per square inch. | Pounds per square inch. |  |  |
| 11. | 40 to 45 | 89,600 to 100,800 | 8 | 7.23 |
| 10. | 33 "40 | 73,920 " 80,600 | 14 | 7.69 |
| 51 | $25 \times 30$ | 56,000 " 67,200 | 40 | 8.00 |
| 5 | $\begin{array}{ll}15 & \text { "18 } \\ 13 & \text { " } 15\end{array}$ | 33,600 <br> 39 <br> 120${ }^{\prime \prime} \quad 40,3200$ | 40 | 8.37 |
| 11/4........... | 11 " 13 | 24,640 <br> 29 <br> 129 | 50 55 | 8.69 |

Both physical and chemical tests made of samples cut from various sec. tions of $21 / 2 \%, 5 \%, \pi 12 \%$, or $10 \%$ aluninized copper castings tend to prove that the aluminum unites itself with each particle of copper with uniform proportion in each case, so that we have a product that is free from liquation and highly homogeneous. (R. C. Cole, Iron Age, Jan. 16, 1890.)
Casting. - The melting point of aluminum bronze varies slightly with the amount of aluminum contained, the higher grades melting at a somewhat lower temperature than the lower grades. The A No. 1 grades melt at about $1700^{\circ} \mathrm{F}$., a little ligher than ordinary bronze or brass.
Aluminum bronze shrinks nore than ordinary brass. As the metal solidifies rapidly it is necessary to pour it quickly and to make the feeders amply large, so that there will be no "freezing" in them before the casting is properly fed. Baked-sand moulds are preferable to green sand, except for small castings, and when fine skin colors are desired in the castings. (See paper by Thos. D. West, Trans. A. S. M. E. 1886, vol. viii.)
All grades of aluminum bronze can be rolled, swedged, spun, or drawn cold except A 1 and A 2 . They can all be worked at a bright red heat.
In rolling, swedging, or spinning cold, it should be annealed very often, and at a brighter red heat than is used for annealing brass.
Brazing.-Aluminum bronze will braze as well. as any other metal, using one quarter brass solder (zinc 500, copper 500 (and three quarters

Soldering.-To solder aluminum bronze with ordinary soft (pewter) solder: Cleanse well the parts to be joined free from grease and dirt. Then place the parts to be soldered in a strong solution of sulphate of copper and place in the bath a rod of soft iron touching the parts to be joined. After a while a coppery-like surface will be seen on the metal. Remove from bath, rinse quite clean, and brighten the surfaces. These surfaces can then be tinned by using a fluid consisting of zinc dissolved in hydrochloric acid, in the ordinary way, with common soft solder.

Mierzinski recommends ordinary hard solder, and says that Hulot useg an alloy of the usual half-and-half lead-tin solder, with $12.5 \%$, $25 \%$ or $50 \%$ of zinc amalgam.
Aluminnmurrass (E. II. Cowles, Trans. A. I. M. E., vol. xviii.)Cowles aluminum-brass is made by fusing together equal weights of A 1 aluminum-bronze, copper, and zinc. The copper and bronze are first thoroughly melted and mixed, and the zinc is finally added. The material is left in the furnace until small test-bars are taken from it and broken. When these bars show a tensile strength of 80,000 pounds or over, with 2 or 3 per cent ductility, the metal is ready to be poured. Tests of this brass, on small bars, liave at times shown as high as 100,000 pounds tensile strength.
The screw of the United States gunboat Petrel is cast from this brass, mized with a trifle less zine in order to increase its ductility.

## rests of Aluminum-Brass.

(Cowles E. S. \& Al. Co.)

| Specimen (Castings.) | Diameter of Piece, Inch. | Area. sq.in. | Tensile Strength, lbs. per sq. in | Elastic <br> Limit, <br> lbs. per <br> sq. in. | Elongation. per ct. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 465 | . 1698 | 41,225 | 17,668 | 411/2 |  |
| $1 \text { part A Bronze.... }$ | . 465 | . 1698 | 78,327 |  | 21/3 |  |
| 1 part Copper...... |  |  |  |  |  |  |
| 1 part Zinc......... ${ }_{1}$ part Copper.... ${ }^{\text {a }}$ | . 460 | . 1661 | 72,246 |  | $21 / 3$ |  |

The first brass on the above list is an extremely tough metal with low elastic limit, made purposely so as to "upset" easily. The other, which is called Aluminum-brass No. 2 , is very hard.
We have not in this country or in England any official standard by which to judge of the physical characteristics of cast metals. There are two conditions that are absolutely necessary to be known before we can make a fair comparison of different materials: namely, whether the casting was made in dry or green saud or in a chill, and whether it was attached to a larger casting or cast by itself. It has also been found that chill castings give ligher results than sand-castings, and that bars cast by themselves purposely for testing almost invariably run higher than test-bars attached to castings. It is also a fact that bars cut out from castings are generally weaker than bars cost alone. (E. H. Cowles.)

Caution as to Reported Strength of Alloys. - The same variation in strength which has been found in tests of gun-metal (copper and tin) noted above, must be expected in tests of aluminum bronze and in fact of all alloys. They are exceedingly subject to variation in density and in grain, cansed by differences in method of molding and casting, temperature of pouring, size and shape of casting, depth of "sinking head," etc.

## Aluminum Hardened by Addition of Copper.

Rolled Sheets .04 inch thick. (The Engineer, Jan. 2, 1891.)
Al.
Cu .
$\mathrm{Sp} . \mathrm{Gr}$.

Fer cent.
100
98
Per cent.

| $\dddot{2}$ |
| :--- |
| 4 |
| 6 |
|  |

Calculated.
$\ddot{2} .78$
2.90
3.02
3.14

94

Sp. Gr. Determined.
2.67
2.71
2. 77
2.82
2.85

Tensile Strength in pounds per square inch.
26.535

43,563
44,130
54,773
50,374

## rests of Aluminum Alloys.

(Engineer Harris, U. S. N., Trans. A. I. MI. E., vol. xviii.)

| Composition. |  |  |  |  | Tensile Strength, persq. in. lbs. | Elastic Limit, lbs. per sq. in. | Elongation, per ct. | Reduc. tion of Area, per ct. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Copper. | Aluminum. | Silicon. | Ziuc. | Iron. |  |  |  |  |
| 91.50\% | 6.50\% | 1. 5.5 |  | 0.25\% | 60,700 | 18,000 | 23.2 | 30.7 |
| 88.50 | 9.33 | 1.66 |  | 0.50 | 66,000 | 27.000 | 3.8 | 7.8 |
| 91.50 | 6.50 | 1.75 |  | 0.25 | 67,600 | 24,000 | 13. | 21.62 |
| 90.00 | 9.00 | 1.00 |  |  | 72,8,30 | 33,000 | 2.40 | 5.78 |
| 63.00 | 3.33 | 0.33 | 33.33\% |  | 82,200 | 60,000 | 2.33 | 9.88 |
| 63.00 | 3.33 | 0.33 | 33.33 |  | \%0,400 | 55,000 | 0.4 | 4.33 |
| 91.50 | 6.50 | 1.75 |  | 0.25 | 59,100 | 19,000 | 15.1 | 23.59 |
| 93.00 | 6.50 | 0.50 |  |  | 53,000 | 19,000 | 6.2 | 15.5 |
| 88.50 | 9.33 | 1.66 |  | 0.50 | 69,930 | 33,000 | 1.33 | 3.30 |
| 92.00 | 6.50 | 0.50 |  |  | 46,530 | 17,000 | 7.8 | 19.19 |

For comparison with the above 6 tests of "Navy Yard Bronze," Cu 88, Sn 10, Zn ?, are given in which the T. S. ranges from 18,000 to $24,590, \mathrm{E}$. L. from 10,000 to 13,000 , El. 2.5 to $5.8 \%$, Red. 4.7 to 10.89 .

## Alloys of Aluminum, Silicon and Iron.

M. and E. Bernard have succeeded in obtaining through electrolysis, by treating directly and withont previous purification, the aluminum earths (red and white bauxites) the following :

Alloys such as ferro-aluminum, ferro-silicon-aluminum and silicon-aluminum, where the proportion of silicon may exceed $10 \%$ which are employed in the inetallurgy of iron for refining steel and cast-iron.

Also silicon-aluminum, where the proportion of silicon does not exceed $10 \%$, which may be employed in mechanical constructions in a rolled or hammered condition, in place of steel, on account of their great resistance, especially where the lightness of the piece in construction constitutes one of the main conditions of success.

The following analyses are given:

1. Alloys applied to the metallurgy of iron, the refining of steel and cast iron: No. 1. Al, $70 \% ; \mathrm{Fe}, 25 \% ; \mathrm{Si}, 5 \%$ No. 2. Al, $70 ; \mathrm{Fe}, 20 ; \mathrm{Si}, 10$. No. 3. Al, $70 ; \mathrm{Fe}, 15 ; \mathrm{Si}_{1} 15 . \mathrm{No} .4 \mathrm{Al}, 70 ; \mathrm{Fe}, 10 ; \mathrm{Si}, 20 . \mathrm{No.5}. \mathrm{Al} ,70 ; \mathrm{Fe}, 10 ; \mathrm{Si}, 11$ : Mn, 10. No. 6. Al. $\% 0 ; \mathrm{Fe}$, trace; Si, $20 ; \mathrm{Mn}, 10$.
2. Mechanical alloys: No. 1. Al, 92 ; Si, 6.55; Fe, 1.25. No. 2. Al, $90 ; \mathrm{Si}$, 9.25; $\mathrm{Fe}, 0 . \%$. No. 3. Al, $90 ; \mathrm{Si}, 10 ; \mathrm{Fe}$, trace. The best results were with alloys where the proportion of iron was very low, and the proportion of silicon in the neighborhood of $10 \%$. Above that proportion the allor becomes crystalline and can no longer be employed. The density of the alloys of silicon is approximately the same as that of aluminum.-La Metallurgic, 189 ?
Tungsten and Aluminum. - Mr. Leinhardt Mannesmann sars that the addition of a litile tungsten to pure aluminum or its alloys communicates a remarkable resistance to the action of cold and hot water, salt water and other reagents. When the proportion of tungsten is sufficient the alloys offer great resistance to tensile strains.

Aluminemaly Copper, and Fill.-Prof. R. C. Carpenter, Trans. A.S.M.E., vol. xix., fints the following alloys of maximum strength in a series in which two of the three metals are in equal proportions:
$\mathrm{Al}, 85 ; \mathrm{Cu}, 7.5 ; \mathrm{Sn}, 7.5$; tensile strength, $30,000 \mathrm{lbs}$ per sq. in.; elongation in $6 \mathrm{in}, 4 \%$ : sp. gr., $3.02 . \mathrm{Al}, 6.25$; Cu, 87.5; Sn, 6.25; 'T. S., 63,000; El., 3.8; sp. gr., 7.35. Al, 5 ; Cu1, 5: Sı, 90; 'T'. S., 11,000; El., 10.1; sp. gr., 6.82.
Aluminum and eisuc.-Prof. Carpenter finds that the strongest alloy of these metais consists of two parts of aluminum and one part of zinc. Its temsi'e strength is $24,000 \mathrm{t}$. $26,000 \mathrm{lbs}$. per sq. in.; has but little ductility, is readily cut with machine-tools, and is a good substitute for hard cast brass.

Aluminum and 官胃n.-M. Bourbouze bas compounded an alloy of aluminum and tin, by fusing together 100 parts of the former with 10 parts of the latter. This alloy is paler than almminum, and has a specific gravity of 2.85. The alloy is not as easily attacked by several reagents as alumi-
num is, and it can also be workel more readily. Another advantage is that it can be soldered as easily as bronze, without further preliminary preparations.

Aluminum-Antimony Alloyes-Dr. C. R. Alder Wright describes some aluminum-antimony alioys in a communication read before the Society of Chemical Industry. The results of his researches do not disclose the existence of a commercially liseful alloy of these two metals, and have greater. scientific than practical interest. A remarkable point is that the alloy with the chemical composition $A l S b$ has a higher melting point than either aluminum or antimony alone, and that when aluminum is added to pure antimony the melting-point goes up from that of antimony ( $450^{\circ} \mathrm{C}$.) to a certain temperature rather above that of silver ( $1000^{\circ} \mathrm{C}$.).

## ALLOYS OF MLNGANESE ANT COHPER

Various Manganese Alloys.-E. H. Cowles, in Trans. A. I. M. E., vol. xviii, p. 445, states that as the result of numerous experiments on mixtures of the several metals, copper, zinc, tin, lead, aluminum, iron, and manganese, and the metalloid silicon, and experiments npon the same in ascertaining tensile strength, ductility, color, etc., the most important determinations appear to be about as follows:

1. That fure metallic inanganese exerts a bleaching effect upon copper more radical in its action even than nickel. In other words, it was found that $1812 \%$ of manganese present in copper produces as white a color in the resulting alloy as $25 \%$ of nickel would do, this being the amount of each required to remove the last trace of red.
2. That upwards of $20 \%$ or $25 \%$ of manganese may be added to copper without reducing its ductility, although doubling its tensile strength and changing its color:
3. That manganese, copper, and zinc when melted together and poured into moulds behave very much like the most "yeasty" German silver, producing an ingot which is a mass of blow-holes, and which swells up above the mould before cooling.
4. That the alloy of manganese and copper by itself is very easily oxidized.
5. That the addition of $1.25 \%$ of aluminum to a manganese-copper alloy converts it from one of the most refractory of metals in the casting process into a metal of superior casting qualities, and the non-corrodibility of which is in many instances greater than that of either German or nickel silver.
A "silver-bronze" alloy especially designed for rods, sheets, and wire has the following composition: Manganese, 18; aluminum, 1.20 ; silicon, 0.5 ; zinc, 13; and copper, $67.5 \%$. It has a tensile strength of about 57,000 pounds on small bars, and $20 \%$ elongation. It has been rolled into thin plate and drawn into wire .008 inch in diameter. A test of the electrical conductivity of this wire (of size No. 3:) shows its resistance to be 41.44 times that of pure copper. This is far lower conductivity than that of German silver.
IFFanganese Eronze. (F. L. Garrison, Jour. F. I. 1891.)-This alloy has been used extensively tor casting propeller-blades. Tests of some made by B. H. Cramp \& Co., of Philadelphia, gave an average elastic limit of 30,000 pounds per square inch, tensile strength of abont 60,000 pounds per square inch, with an elongation of $8 \%$ to $10 \%$ in sand castings. When rolled, the elastic limit is about 80,000 pounds per square inch, tensile streugth 95,000 to 106,000 pounds per square inch, with an elongation of $12 \%$ to $15 \%$.

Compression tests made at United States Navy Department from the metal in the pouring-gate of propeller-hub of U.S. S. Maine gave in two tests a crushing stress of 126,450 and $135,750 \mathrm{lbs}$. per sq. in. The specimens were 1 inch high by $0.7 \times 0.7$ inch in cross-section $=0.49$ square inch. Both specimens gave way by shearing, on a plane making an angle of nearly $45^{\circ}$ with the direction of stress.

A test on a specimen $1 \times 1 \times 1$ inch was made from a piece of the same pouring-gate. Under stress of 150,000 pounds it was flattened to 0.72 inch high by about $11 / 4 \times 11 / 4$ inches, bnt without rupture or any sign of distress.
One of the great objections to the use of manganese bronze, or in fact any alloy except iron or steel, for the propellers of iron ships is on account of the galvanic action set up between tlie propeller and the stern-posts. This difficulty has in great measure been overcome by putling strips of rolled zinc around the propeller apertures in the stern-frames.
The following analysis of Parsons' manganese bronze No. 2 was made from a chip from the propeller of Mr. W. K. Vanderbilt's yacht Alva.

| Cowper. | 88.644 |
| :---: | :---: |
| Zinc | 1.570 |
| Tin | 8.700 |
| Iron | 0.720 |
| Lead | 0.295 |
| Phosphorus | trace |
|  | 99.929 |

It will be observed therc is no manganese present and the amount of zinc is very small.
E. H. Cowles, Trans. A. I. M. E., vol. xviii, says: Manganese bronze, so called, is in reality a manganese brass, for zinc instead of tin is the chief element anded to the copper. Mr. P. M. Parsons, the proprietor of this brand of metal, has clained for it a tensile strength of from 24 to 28 tons on small bars whell cast in sand. Mr. W. C. Wallace states that brass-founders of high repute in England will not admit that manganese bronze has more than from 12 to 17 tuns tensile strength. Mr. Horace See found tensile strength of 45,000 pounds, and from $6 \%$ to $121 / 2 \%$ elongation.

## GERMAN-SHEVER ANB OTHERE NYCKEL ALLOYS.

German Silver.-The composition of German silver is a very uncertain thing and depends largely on the honesty of the manufacturer and the price the purchaser is willing to pay. It is composed of copper, zinc. and nickel in varying proportions. The best varieties contain from $i 8 \%$ to $25 \%$ of nickel and from $00 \%$ to $30 \%$ of zinc, the remainder being copper. The more expensive nickel silver contains from $25 \%$ to $33 \%$ of nickel and from $75 \%$ to $66 \%$ of copper. The nickel is used as a whitening element; it also strengthens the alloy and renders it harder and more non-corrodible than the brass made without it, of copper and zinc. Of all troublesome alloys to handle in the foundry or rolling-mill, German silver is the worst. It is unmanageable and refractory at every step in its transition front the crude elements into rods, sheets, or wire. (E. H. Cowles, Trans. A. I. M. E., vol. xviii. p. 494.)


A refined copper-nickel alloy containing $50 \%$ copper and 49\% nickel, with very small amounts of iron, silicon and carbon, is produced direct from Bessemer matte in the Sudbury (Canada) Nickel Works. German silver manufacturers purchase a ready-made alloy, which melts at a low heat and requires simple addition of zinc, instead of buying the nickel and copper separately. This alloy, " $50-50$ " as it is called, is almost indistinguishable from pure nickel. Its cost is less than nickel, its melting point much lower, it can be cast solid in any form desired, and furnishes a casting which works easily in the lathe or planer, yielding a silvery white surface unchanged by air or moisture. For bullet casings now used in various British and continental rifles, a special alloy of $80 \%$ copper and $20 \%$ nickel is made.


By adding a small amount of bismuth to lead that metal may be hardened and toughened. An alloy consisting of three parts of lead and two of bismuth has ten times the hardness and twenty times the tenacity of lead. The alloys of bismuth with both tin and lead are extremely fusible, and take fine impressions of casts and moulds. An alloy of one part bismuth, two parts tin, and one part lead is used by pewter-workers as a soft solder, and by soap-makers for moulds. An alloy of five parts bismnth, two parts tin, and three parts lead melts at $199^{\circ} \mathrm{F}$., and is somewhat used for sterootyping, and for metallic writing-pencils. Thorpe gives the following proportions for the better-kuown fusible metals:

| Name of Alloy. | Bismuth. | Lead. | Tin. | Cad- <br> mium | Mer. cury. | Meltingpoint. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Newton's. | 50 | 31.25 | 18.75 |  |  | $202^{\circ} \mathrm{F}$. |
| Rose's. | 50 | 28.10 | 24.10 |  |  | $203^{\circ}{ }^{\circ}$ |
| D'Arcet's | 50 | 25.00 | 25.00 |  |  | $201^{\circ}$ " |
| D'Arcet's witl mercury. | 50 | 25.00 | 25.00 |  |  | $113^{\circ}$ " |
| Wood's................... | 50 |  |  |  |  | $149^{\circ}$ " |
| Lipowitz's ${ }_{\text {Guthrie's }}$ "............. | 50 50 | $\stackrel{26.90}{20.55}$ | 12.78 | 10.40 |  |  |
| Guthrie's "Entectic "... | 50 | 20.55 | 21.10 | 14.03 |  | "Very low." |

The action of heat upon some of these alloys is remarkable. Thus, Lipowitz's alloy, which solidifies at $149^{\circ}$ Fah., contracts very rapidly at first, as it cools from this point. As the cooling goes on the contraction becomes slower and slower, until the temperature falls to $101.3^{\circ}$ Falı. From this point the alloy expands as it cools, until the temperature falls to about $7^{\circ}$ Fah., after which it again contracts, so that at $3 \Re^{\circ} \mathrm{F}$. a bar of the alloy has the same length as at $115^{\circ} \mathrm{F}$.

Alloys of bismutl have been used for making fusible plugs for boilers, but it is found that they are altered by the continued action of heat, so that one cannot rely upon them to melt at the proper temperature. Pure Banca tin is used by the U. S. Government for fusible plugs.

## FUSIBLE ALLOYS. (From various sources.)

Sir Isaac Newton's. bismuth 5, lead 3, tin 2, melts at................... $212^{\circ} \mathrm{F}$. Rose's, bismuth '2, lead 1, tin 1, melts at 200 "
Wood's, cadmium 1, bismuth 4, lead 2, tin 1, melts at........................ 165 "
Guthrie's, cadmium 13.29, bismuth 47.38 , lead 19.36, tin 19.97, melts at. 160 "
Lead 3 , tin 5 , bismuth 8 , melts at
208 "
Lead 1, tin 3, bismuth 5, melts at........................................................... 212 ."
Lead 1, tin 4, bismuth 5, melts at..... ............................................ .... 240 "
Tin 1, bismuth 1, melts at............................................................ 286 "
Lead 2 , tin 3, melts at............................................................................. 334 "
Tin 2, bismuth 1, melts at......... .......................................................... 336 "
Lead 1, tin 2, melts at............................................................................... 360 "
Tin 8, bismuth 1, melts at...................................................................... 392 ."

Lead 1, tin 1, melts at........................................................................... 466 "
Lead 1, tin 3, melts at......................................................................... 334 ، 3
Tin 3, bismuth 1, melts at. ............................................................ 392 "
Lead 1, bismuth 1, melts at.................................................................. 25. .....
Lead 1, Tin 1, bismuth 4, melts at..................................................... 201 "
Lead 5, tin 3, bismuth 8, melts at....................................................... 202 "
Tin 3, bismuth 5 , melts at............................................................. 202 .

## HEAIEENGIIETAL ALHOES.

## (C. B. Dudley, Jour. F. I., Feb. and March, 1892.)

Alloys are used as bearings in place of wrought iron, cast iron, or steel, partly because wear and friction are believed to be more rapid when two metals of the same kind work together, partly because the soft metals are more easily worked and got into proper shape, and partly because it is desirable to use a soft metal which will take the wear rather than a hard metal, which will wear the journal more rapidly.

A good bearing-metal must have five characteristics: (1) It must be strong enough to carry the load without distortion. Pressures on car-journals are frequently as ligh as 350 to 400 lbs . per square inch.
(2) A good bearing-metal should not heat readily. The old copper-tin hearing, made of seven parts copper to one part tin, is more apt to heat than some other alloys. In general, research seems to show that the harder the bearing-metal, the more likely it is to heat.
(3) Good bearing-metal should work well in the foundry. Oxidation while melting causes spongy castings. It can be prevented by a liberal use of powdered charcoal while melting. The addition of $1 \%$ to $2 \%$ of zinc or a small amount of phosphorus greatly aids in the production of sound castings. This is a principal element of value in phosphor-bronze.
(4) Good bearing-metals should show small friction. It is true that friction is almost wholly a question of the lubricant used; but the metal of the bearing has certainly some influence.
(5) Other things being equal, the best bearing-metal is that winich wears slowest.

The principal constituents of bearing-metal alloys are copper, tin, lead, zinc, antimony, iron, and aluminum. The following table gives the constituents of most of the prominent bearing-metals as analyzed at the Pennsylvania Railroad laboratory at Altoona.

## Analyses of Bearingwmetal Alloys.

| Metal. | Cop. per. | Tin. | Lead. | Zinc. | Anti mony. | Iron. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Camelia metal. | 70.20 | 4.25 | 14.75 | 10.20 |  | 0.55 |
| Anti-friction metal | 1.60 | 98.13 |  |  |  | trace |
| White metal |  |  | 87.92 |  | 12.08 |  |
| Car-brass lining. |  | trace | 84.87 |  | 15.10 |  |
| Salgee anti-friction. | 4.01 | 9.91 | 1.15 | $85.5 \%$ |  |  |
| Graphite bearing-metal |  | 14.38 | 67.43 |  | 16.73 | 8 (1) |
| Antimonial lead |  |  | 80.69 |  | 18.83 |  |
| Carbon bronze | 75.47 | $9 . \% 2$ | $14.5 \hat{1}$ |  |  | ..... (2) |
| Coruish bronze | 77.83 | 9.60 | 12.40 | trace |  | trace(3) |
| Delta metal. | $9 \because .39$ | 2.36 | 5.10 |  |  | 0.07 |
| *Magnolia metal. | trace |  | 83.55 | trace | 16.45 | trace(4) |
| American anti-friction 1 |  |  | 78.44 | 0.98 | 19.60 | 0.65 |
| Tobin bronze | 59.00 | 2.16 | 0.31 | 38.40 |  | 0.11 |
| Graney bronze. | 75.80 | 9.20 | 15.06 |  |  |  |
| Damascus bronz | 76.41 | 10.60 | 12.5: |  |  |  |
| Manganese bro | 90.52 | 9.58 |  |  |  | .... (5) |
| 4jax metal. | 81.24 | 10.98 | 7.27 |  |  | ... . (6) |
| Anti-friction metal Hsiringion bronze | 55.13 | 0.97 | 88.32 | 42.67 | 11.93 |  |
| Car-box metal.... |  |  | $\ddot{84.33}$ | trace | 14.38 | 0.61 |
| Hard lead. |  |  | 94.40 |  | 6.03 |  |
| Fhosphor-bronz | 79.17 | 10.22 | 9.61 |  |  | (\%) |
| Ex. B. metal. | 76.80 | 8.00 | 15.00 |  |  | ..... (8) |

## Other constituents:

(1) No graphite.
(5) No manganese.
(2) Possible trace of carbon.
(6) Phosphorus or arsenic, $0.3 \%$.
(3) Trace of phosphorus.
(7) Phosphorus, 0.94 .
(4) Possible trace of bismuth.
(8) Plosphorus, 0.20.

* Dr. H. C. Torrey says this analysis is erroneous and that Magnolia metal always contains tin.

As an example of the influence of minute changes in an alloy, the Harrington bronze, which consists of a minute proportion of iron in a copperzinc alloy, showed after rolling a teusile strength of $75,000 \mathrm{lbs}$. and $20 \%$ elongation in 2 inches.
In experimenting on this subject on the Pennsylvania Railroad, a certain number of the bearings were made of a standard bearing-metal, and the same number were made of the metal to be tested. These bearings were placed on opposite ends of the same axle, one side of the car having the standard bearings, the other the experimental. Before going into service the bearings were carefully weighed, and after a sufficient time they were again weighed.
The standard bearing-metal used is the " S bearing-metal" of the Phos-phor-bronze Smelting Co. It contains about $\% 9 . \% \%$ copper, 9.50 lead, 10\% tin, and $0.80 \%$ phosplorus. A large number of experiments have shown that the loss of weight of a bearing of this metal is 1 lb . to each 18,000 to 25,000 miles travelled. Besides the measurement of wear, observations were made on the frequency of " hot boxes" with the different metals.
The results of the tests for wear, so far as given, are coudeused into the Sollowing table:

| Metal. | Composition. |  |  |  |  | Rate of Wear. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Copper. | Tin. | Lead. | Phos. | Arsenic. |  |
| Standard. | 79.70 | 10.00 | 9.50 | 0.80 |  | 100 |
| Copper-tin. | 87.50 | 12.50 |  |  |  | 148 |
| Copper-tin, second experiment, same metal.................................... 153 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Arsenic-bronze | . 89.20 | 10.00 |  |  | 0.80 | 142 |
| Arsenic-bronze | . 79.20 | 10.00 | \%. 00 |  | 0.80 | 115 |
| Arseuic-bronze | . 79.70 | 10.00 | 9.50 |  | 0.80 | 101 |
| "K" bronze ... | . 77.00 | 10.50 | 12.50 |  |  | 92 |
| "K" bronze, second experiment, same metal............................ 92.7 |  |  |  |  |  |  |
| Alloy "B" .. | 77.00 | 8.00 | 15.00 |  |  | 86 |

The old copper-tin alloy of 7 to 1 has repeatedly proved its inferiority to the phosphor-bronze metal. Many more of the copper-tin bearings heated than of the phosphor-bronze. The showing of these tests was so satisfactory that phosphor-bronze was adopted as the standard bearing-metal of the Pennsylvania R.R., and was used for a long time.

The experiments, however, were continued. It was found that arsenic practically takes the place of phosphorus in a copper-tin alloy, and three tests were made with arsenic-bronzes as noted above. As the proportion to lead is increased to correspond with the standard, the durability increases as well. In view of these results the "K " bronze was tried, in which neither phosphorus nor arsenic were used, and in which the lead was increased above the proportion in the standard phosphor-bronze. The result was that the metal wore $7.30 \%$ slower than the phosphor-bronze. No trouble from heating was experienced with the " $K$ " bronze more than with the standard. Dr. Dudley continues:

At about this time we began to find evidences that wear of bearing-metal ailoys varied in accordance with the following law: "That alloy which has the greatest power of distortion without rupture (resilience), will best resist wear:" It was now attempted to design an alloy in accordance with this law, taking first the proportions of copper and tin, $91 / 2$ parts copper to 1 of tin was settled on by experiment as the standard, although some evidence since that time tends to show that 12 or possibly 15 parts copper to 1 of tin might have been better: The influence of lead on this copper-tin alloy seems to be much the same as a still further diminution of tin. However, the tendency of the metal to yield under pressure increases as the amount of tin is diminished, and the amount of the lead increased, so a limit is set to the use of lead. A certain amount of tin is atso necessary to keep the lead alloyed with the copper.

Bearings were cast of the metal noted in the table as alloy " B ," and it wore $13.5 \%$ slower than the standard phosphor-bronze. This metal is now the standard bearing-metal of the Penusylvania Railroad, being slightly changed in composition to allow the use of phosphor-bronze scrap. The formula adopted is: Copper, 105 lbs ; phosphor-bronze, $60 \mathrm{lbs} . ;$ tin, 93.4 lbs .; lead, $25 \frac{1}{4} \mathrm{lbs}$. By using erdinary care in the foundry, keeping the metal well covered with charcoal during the melting, no trouble is found in casting good bearings with this metal. The copper and the phosphor-bronze can be put in the pot before putting it in the melting-hole. The tin and lead should be added after the pot is taken from the fire.

It is not known whether the use of a little zinc, or possibly some other combination, might not give still better results. For the present, however, this alloy is considered to fulfit the various conditions required for good bearing-metal better than any other alloy. The phosphor-bronze had an ultimate tensile strength of $30,000 \mathrm{lbs}$., with $6 \%$ elongation, whereas the alloy "B" had 24,000 lbs. tensile strength and $11 \%$ elongation.

White ITetal for Engine EPearings. (Report of a British Naval Committee, Eng'g, July 18, $130 \%$.) - For lining vearings, crankpin bushes, and other parts exclusive of cross-head bushes: Tin 1:2, copper 1, antimony 1. Melt 6 tin 1 copper, and 6 tin 1 antimony separately and mix the two together.

For cross-head bushes a harder alloy, viz., $85 \%$ tin, $5 \%$ copper, $10 \%$ antimony, has given good results.
(For other bearing-metals, see Alloys containing antimony, on next page.)

## ALLOYS CONTAINING ANTHPIONY.

Various analyses of Babbitt Metal and other Alloys containing Antimony.


\footnotetext{

* It is mixed as follows: Twelve parts of copper are first melted and then 36 parts of tin are added; 24 parts of antimony are put in, and then 36 parts of tin, the temperature being lowered as soon as the copper is melted in order not to oxidize the tin and antimony, the surface of the bath being protected from contact with the air. The alloy thus made is subsequently remplted in the proportion of 50 parts of alloy to 100 tin. (Joshua Rose.)

White-netal Alloys.-The following alloys are used as lining metals by the Eastern Railroad of France (1890):

| Number. | Lead. | Antimony. | Tin. | Copper. |
| :---: | :---: | :---: | :---: | :---: |
| 1.... | . 65 | 25 | 0 | 10 |
| 2. | 0 | 11.12 | 83.33 | 5.55 |
| 3. |  | 20 | 10 | 0 |
| 4.... | . 80 | 8 | 12 | 0 |

No. 1 is used for lining cross-head slides, rod-brasses and axle-bearings: No. 2 for lining axle-bearings and connecting-rod brasses of heavy engines; No. 3 for lining eccentric straps and for bronze slide-valves; and No. 4 for metallic rod-packing.
Some of the best-known white-metal alloys are the following (Circular of Hoveler \& Dieckhaus, London, 1893):

1. Parsons'

| Tin. | Antimony. Lead. | Copper. | Zinc. |  |
| :---: | :---: | :---: | :---: | :---: |
| 86 | 1 | 2 | 2 | 27 |
| 70 | 15 | $101 / 2$ | $41 / 2$ | 0 |
| 55 | 18 | $281 / 2$ | $31 / 2$ | 0 |
| 16 | 0 | 0 | 5 | 79 |
| $71 / 2$ | 0 | 6 | 6 | $871 / 2$ |
| 85 | 712 | 0 | $71 / 2$ | 0 |

2. Richard
$\qquad$ 86. Antim
3. Babbitt's

55
4. Fentons' ................... 16
5. French Navy............... 7112
6. German Navy

85
"There are engineers who object to white metal containing lead or zinc. This is, however, a prejudice quite unfounded, inasmuch as lead and zinc often have properties of great use in white alloys."
It is a further fact that an "easy liquid " alloy must not contain more than $18 \%$ of antimony, which is an invaluable ingredient of white metal for improving its hardness; but in no case must it exceed that margin, as this would reduce the plasticity of the compound and make it brittle.

Hardest alloy of tin and lead: 6 tin, 4 lead. Hardest of all tin alloys (?): 74 tin, 18 antimony, 8 copper.

Alloy for thin open-work, ornamental castings: Lead 2 , antimony 1. White metal for patterns: Lead 10 , bisnıuth 6 , autimony $\underset{\sim}{2}$, common brass 8 , tin 10.

Type-metal is made of various proportions of lead and antimouy, from $1 \% \%$ to $\% 0 \%$ antimony according to the hardness desired.

Babbitt RIetals. (C. R. Tompkins, Mechanical News, Jan. 1891.)
The practice of lining journal-boxes with a metal that is sufficiently fusible to be melted in a common ladle is not always so much for the purpose of securing anti-fiction properties as for the couvenience and cheapness of forming a perfect bearing in line with the shaft without the necessity of
boring them. Boxes that are bored, no matter how accurate, require great care in fitting and attaching then to the frame or other parts of a machine.
It is not good practice, however, to nise the shaft for the purpose of casting the bearings, especially if the shaft be steel, for the reason that the hot metal is apt to spring it; the better plan is to use a mandrel of the same size or a trifle larger for this purpose. For slow-rnnning journals, where the load is moderate, alm st any metal that may be conveniently melted and will run free will answer the purpose. For wearing properties, with a moderate speed, there is probably nothing superior to pure zinc, but when not combined with some other metal it shrinks so much in cooling that it cannot be held firmly in the recess, and soon works loose; and it lacks those anti-friction properties which are necessary in order to stand high speed.

For line-shafting, and all work where the speed is not over 300 or $400 \mathrm{r} . p$. m., an alloy of 8 parts zinc and 2 parts block-tin will not only wear longer than any composition of this class, but will successfully resist the force of a heavy load. The tin counteracts the shrinkage, so that the metal, if not overheated, will firmly adhere to the box until it is worn out. But this mixture does not possess sufficient anti-friction properties to warrant its use in fast-running journals.

Among all the soft metals in use there are none that possess greater antifriction properties than pure lead; but lead alone is impracticable, for it is so soft that it cannot be retained in the recess. But when by any process lead can be sufficieutly hardened to be retained in the boxes without materially injuring its anti-friction properties, there is no metal that will wear longer in light fast-running journals. With most of the best and most popular anti-friction metals in use and sold under the name of the Babbitt metal, the basis is lead.

Lead and antimony have the property of combining with each other in all proportions without impairing the anti-friction properties of either. The antimony hardens the lead, and when mixed in the proportion of 80 parts lead by weight with 20 parts antimony, no other known composition of metals possesses greater anti-friction or wearing properties, or will stand a higher speed without heat or abrasion. It runs free in its melted state, has no shrinkage, and is better adapted to light high-speeded machinery than any other known metal. Care, however, should be manifested in using it, and it should never be heated beyond a temperature that will scorch a dry pine stick.

Many different compositions are sold under the name of Babbitt metal. Some are good, but more are worthless; while but very little genuine Babbitt metal is sold that is made strictly according to the original formula. Most of the metals sold under that name are the refuse of type-foundries and other smelting-works, melted and cast into fancy ingots with special brands, and sold under the name of Babbitt metal.
It is difficult at the present time to determine the exact formulas used by the original Babbitt, the inventor of the recessed box, as a number of differ. ent formulas are given for that composition. Tin, copper, and antimony were the ingledients, and from the best sources of information the original proportions were as follows:

Another writer gives:

83.3\%

2 parts copper................................ $=3.6 \%$ 8.3\%

4 parts antimony ................... $=7.1 \%$ 8.3\%
The copper was first melted, and the antimony added first and then about ten or fifteen pounds of tin, the whole kept at a dull-red heat and constantly stirred until the metals were thoroughly incorporated, after which the balance of the tin was added, and after being thoroughly stirred again it was then cast into ingots. When the copper is thoroughly melted, and before the antimony is added, a handful of powdered charcoal should be thrown into the crucible to form a flux, in order to exclude the air and prevent the antimony from vaporizing; otherwise much of it will escape in the form of a vapor and consequently be wasted. This metal, when carefully prepared, is probably one of the best metals in use for lining boxes that are subjected to a heavy weight and wear; but for light fast-running journals the copper renders it more susceptible to friction, and it is more liable to heat than the metal composed of lead and antimony in the proportions just given.

## SOHDEKES.

Common solders, equal parts tin and lead; fine solder, 2 tin to 1 lead; cheap solder, 2 lead, 1 tin.
Fusing-point of tin-lead alloys:

| Tin |  |  |  | $8^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: |
| " | 1 " | 6 | 10. | 541 |
| ${ }^{6}$ | $1{ }^{6}$ | 6 |  | . 511 |
| ${ }^{6}$ | $1{ }^{6}$ | 6 | 3. | .48? |
| 6 | $1{ }^{6}$ | 6 |  | . 441 |
| " | $1{ }^{6}$ | 6 |  | . 30 |



Common pewter contains 4 lead to 1 tin.
Gold solder: 14 parts gold, 6 silver, 4 copper. Gold solder for 14-carat gold: 25 parts gold, 25 silver, $121 / 2$ brass, 1 zinc.

Silver solder: Yellow brass 70 parts, zinc 7 , tin 111/2. Another: Silver 145 parts, brass (3 copper, 1 zinc) 7 is, zinc 4 .

German-silver solder: Copper 38, zinc 54, nickel 8.
Novel's solders for aluminum:


Novel's solder for aluminum bronze: Tin 900 parts, copper 100, bismath 2 to 3. It is claimed that this solder is also suitable for joining aluminum to copper, brass, zinc, iron, or nickel.

## ROPES AND CABLES.

## STRENGTHE OTH ROPES.

(A S. Newell \& Co., Birkenhead. Klein's Translation of Weisbach, vol. iii, part 1, sec. 2.)


Flat Ropes.

| Hemp. |  | Iron. |  | Steel. |  | Tensile Strength. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Girth. | Weiglit per Fathom | Girth. | Weight. per ${ }^{\circ}$ Fathom. | Girth. | Weight per Fathom. |  |
| Inches. | Pounds. | Inches. | Pounds. | Inches. | Pounds. |  |
| 4 $\times 11 / 8$ <br> 5 $\times 11 / 4$ | 20 | $21 / 4 \times 1 / 2$ $21 \% \times 1 / 2$ | 11. | Inches. | Pounds. | Gross tons. 20 |
| $51 / 2 \times 1848$ | $\stackrel{24}{26}$ | 212 23.8 | 13 15 |  |  | $\stackrel{23}{27}$ |
| $53 / 4 \times 118$ | 28 | - ${ }^{1 / 4 \times 5}$ | ${ }_{16}^{15}$ |  |  | 27 |
| $\mathrm{C}_{\sim} \times 11 \%$ | 30 | 314 $\times 2.8$ | 16 | $\stackrel{3}{2} \times 1 / 2$ | 10 | 28 |
| $5 \times 178$ | 36 | 31/295/8 | 20 | - $214 \times 1 / 2$ | 11 | 32 36 |
| $81 / 4 \times 21 / 8$ | 40 | $33 / 4 \times 11 / 16$ | $\stackrel{20}{20}$ | 21/ $2 \times 1 / 8$ | 13 | 36 40 |
| $81 / 2 \times 21 / 4$ | 45 | $4 \times 11 / 16$ | 25 |  | 15 |  |
|  | 50 | $414 \times 3 / 4$ | $\stackrel{28}{ }$ | [ | 16 | $\begin{aligned} & 45 \\ & 50 \end{aligned}$ |
| $91 / 2 \times 23$ <br> 10 | 55 60 | $41 . \times 34$ | 32 | 31/4 $\times 3$ | 18 | $\begin{aligned} & 50 \\ & 56 \end{aligned}$ |
| $10 \times 21 / 2$ | 60 | $45 / 8 \times 3 / 4$ | 34 | $31 / 2 \times 3 / 8$ | $\stackrel{18}{20}$ | $\begin{aligned} & 56 \\ & 60 \end{aligned}$ |

## Working Load, Diameter, and Weight of Ropes and Chains. (Klein's Weisbach, vol. iii, part 1, sec. 2, p. 56i.)

Hemp ropes: $d=$ diam. of rope. Wire rope: $d=$ diam. of wire, $n=$ number of wires, $G=$ weight per running foot, $k=$ permissible load in pounds per square inch of section, $P=$ permissible load on rope or chain,
Oval chains : $d=$ diam. of iron used; inside dimensions of oval $1.5 d$ and 2.6d. Each link is a piece of chain 2.6 d long. $G_{0}=$ weight of a single link $=$ $2.10 d^{3} \mathrm{lbs} ; G=$ weight per running foot $=9.73 d^{2} \mathrm{lbs}$.

| $\begin{aligned} & c(\mathrm{lbs} .)= \\ & l \text { (ins.) }= \\ & P \text { (ibs.) }= \\ & G \text { (lbs) } \end{aligned}$ | Hempen Rope. |  |  |  | Wire Rope. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dry and Untarred. |  | Wet or Tarred. |  |  |
|  | 1420 |  | 1160 |  | 17000 |
|  | $0.03 \sqrt{1}$ |  | 0.03:3 $\sqrt{ } \bar{P}$ |  | $0.0087 \sqrt{ } \sqrt{\underline{P}}$ |
|  | $\begin{aligned} & 1120 d^{2}=2855 G \\ & 1.28 d^{2}=0.00035 P \end{aligned}$ |  | $\begin{aligned} & 916 d^{2}=1975 G \\ & 1.54 d^{2}=0.0005 P \end{aligned}$ |  | $\begin{array}{r} 13330 n d^{2}=459 \\ 2.91 n d^{2}=0.000 \end{array}$ |
| $\begin{aligned} & k \text { (lbs.) }= \\ & d \text { (ins.) }= \\ & P(\text { (lbs. }= \\ & G \text { (lbs. })= \end{aligned}$ |  | Open-link Chain. |  |  | tud-link Claain. |
|  |  | $\begin{gathered} 8500 \\ 0.0087 \sqrt{P} \\ 13350 d^{2}=1360 G \\ 9.73 d^{2}=0.000737 P \end{gathered}$ |  |  | 11400 |
|  |  |  | $0.0076 \sqrt{P}$ |  |
|  |  |  | $\begin{aligned} & 800 d^{2}=1660 G \\ & .65 d^{2}=0.0006 P \end{aligned}$ |  |

Stud Chains $4 / 3$ times as strong as npen-link variety. [This is contrary to the statements of Capt. Beardslee, U. S. N., in the report of the U. S. Test Board. He holds that the open link is stronger than the studded link. See p. 308 ante].

STRENGTH AND WEIGHT OF WIRE ROPE, HEMPEN ROPE, ANU CHAIN CABLES. (Klein's Weisbach.)

| Breaking Load in tons of 2240 lbs. | Kind of Cable. | Girth of Wire Rope and of Hemp Rope Diameter of Iron of Chain, inches. | Weight of One Foot ln length. Pounds. |
| :---: | :---: | :---: | :---: |
| 1 Ton............ | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope } \\ \text { Chain } \\ \text { Wire Rope }\end{array}\right.$ | 1.02.0 | 0.125 |
|  |  |  | 0.177 |
|  |  | $1 / 4$ | 0.500 |
|  |  | 2.0 | 0.438 |
| 8 Tons.......... | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$ | 5.0 | 0.978 |
|  | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$ | 2.5 | -2.667 |
| 12 Tons |  | 7.0 | 2.036 |
|  | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$ | 11/16 | 4.502 |
| 16 Tons......, 0 .. |  | 8.0 | 1.136 |
|  | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$ | 8.0 $13 / 1$ | 2.365 6.169 |
| 20 Tons....... ... | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$ | 3.59.0 | $\begin{aligned} & 1.546 \\ & 3.225 \end{aligned}$ |
|  |  |  |  |
|  | I Chain | 29/32 | 7.674 |
| 24 Tons........... | $\left\{\begin{array}{l}\text { Wire Pope } \\ \text { Hemp Rope }\end{array}\right.$ | 4.0 10.0 | 2.0434.166 |
|  |  | 31/32 |  |
| 30 Tons....... .. | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$ | 4.511.0 | ${ }_{2} .725$ |
|  |  |  | 5.000 |
|  | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$ | 1.1/16 | 10.335 |
| 36 Tons......... | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Hemp Rope }\end{array}\right.$ | 5.0 | 3.723 |
|  |  | 12.5$1.3 / 16$ | ${ }_{13} 5.940$ |
|  | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Chain }\end{array}\right.$ |  | 18.01 |
| 44 Tons........... | $\left\{\begin{array}{l}\text { Wire Rope } \\ \text { Heinp Rope }\end{array}\right.$ | 14.9 | 4.50 6.94 |
|  | Chain | 14.9 $1.5 / 16$ | 6.94 16.00 |
|  | ( Wire Rope | $6.0$ | 5.67 |
| 54 Tons. | $\left\{\begin{array}{l}\text { Hemp Rope } \\ \text { Cliain }\end{array}\right.$ | $\begin{aligned} & 15.0 \\ & 1.7 / 16 \end{aligned}$ | $\begin{array}{r} 7.92 \\ 1 \mathrm{~m} .16 \\ \hline \end{array}$ |
|  |  |  |  |

Length sufficient to provide the maximum working stress:


Sometimes, when the depths are very great, ropes are given approximately the form of a body of uniform strength, by making them of separate pieces, whose dianeters diminish towards the lower end. It is evident that by this means the tensions in the fibres caused by the rope's own weight can be considerably diminished.
fope for Hoisting or Transmission. Manila Rope(C. W. Hunt Company, New York.)-Rope used for hoisting or for transmission of power is subjected to a very severe test. Ordinary rope chafes and grinds to powder in the centre, while the exterior may look as though it was little worn.
In bending a rope over a sheave, the strands and the yarns of these strands slide a small distance upon each other, causing friction, and wear the rope internally.
The "Stevedore" rope used by the C. W. Hunt Co. is made by lubricating the fibres with plumbago, mixed with sufficient tallow to hold it in position. This lubricates the yarns of the rope, and prevents internal chafing and wear. After running a short time the exterior of the rope gets compressed and coated with the lubricant.

In manufacturing rope, the fibres are first spun into a yarn, this yarn being twisted in a direction called "right hand." From 20 to 80 of these yarns, depending on the size of the rope, are then put together and twisted in the opposite direction, or "left hand," into a strand. Three of these
strands, for a 3 -strand, or four for a 4-strand rope, are then twisted together, the twist being again in the "right hand "direction. When the strand is twisted, it untwists each of the threads, and when the three strands are twisted together into rope, it untwists the strands, but again twists up the threads. It is this opposite twist that keeps the rope in its proper form. When a weight is hung on the end of a rope, the tendency is for the rope to untwist, and become longer. In untwisting the rope, it would twist the threads up, and the weight will revolve-until the strain of the untwisting strands just equals the strain of the threads being twisted tighter. In making a rope it is impossible to make these strains exactly balance each other. It is this fact that makes it necessary to take out the "turns" in a new rope, that is, untwist it when it is put at worlk. The proper twist that should be put in the threads has been ascertained approximately by experience.

The amount of work that the rope will do varies greatly. It depends not, only on the quality of the fibre and the method of laying up the rope, but also on the kind of weather when the rope is used, the blocks or sheaves over which it is run, and the strain in proportion to the strain put upon the rope. The principal wear comes in practice from defective or badly set sheaves, from excess of load and exposure to storms.
The loads put upon the rope should not exceed those given in the tables, for the most economical wear. The indications of excessive load will be the twist coming out of the rope, or one of the strands slipping out of its proper position. A certain amonnt of twist comes out in using it the first day or two, but after that the rope should remain substantially the same. If it does not, the load is too great for the durability of the rope. If the rope wears on the outside, and is good on the inside, it shows that it has been chafed in rumning over the pulleys or sheaves. If the blocks are very small, it will increase the sliding of the strands and threads, and result in a more rapid internal wear. Rope made for hoisting aud for rope transmission is usually made with four strands, as experience has shown this to be the most serviceable.

The strength and weight of "stevedore" rope is estimated as follows:
Breaking strength in pounds $=\%: 20\left(\right.$ circumference in inches) ${ }^{2} ;$
Weight in pounds per foot $=032\left(\right.$ circumference ill inches ${ }^{2}$;

$$
\text { Weight in pounds per foot }=.03: 2(\text { circumference inl inches })^{2} \text {. }
$$

The Technical Words relating to Cordage most frequently heard are:

Yarn.-Fibres twisted together.
Thread. - Two or more small yarns twisted together.
String.-The same as a thread but a little larger yarns.
Strand.-Two or more large yarns twisted together.
Cord.-Several threads twisted together.
Rope.-Several strands twisted together:
Hawser.-A rope of three strands.
Shroud-Laid.-A rope of four strands.
Cable.-Three hawsers twisted together.
Yarns are laid up left-handed into strands.
Strands are laid up right-handed into rope.
Hawsers are laid up left-handed into a cable.
A rope is:
Laid by twisting strands together in making the rope.
Spliced by joining to another rope by interweaving the strands.
Whipped.-By winding a string around the end to prevent untwisting.
Served.-When covered by winding a yarn continuously and tightly around it.

Parceled.-By wrapping with canvas.
SEIzeD. - When two parts are bound together by a yarn, thread or string.
Payed. - When painted, tarred or greased to resist wet.
Haul.--To pull on a rope.
Taut.-Drawn tight or strained.
Splicing of Ropes. - The splice in a transmission rope is not only the weakest part of the rope but is the first part to fail when the rope is worn out. If the rope is larger at the splice, the projecting part will wear on the pulleys and the rope fail from the cutting off of the strands. The following

The engravings show each successive opera,tion in splicing a $19 / 4 \mathrm{inch}$ manila rope. Each engraving was made from a full-size specimen.


Fig. 79.


Fig. 80.


Fig. 81.
Splicing of Ropes.

Tie a piece of twine, 9 and 10, around the rope to be spliced, about 6 feet from each end. Then unlay the strands of each end back to the twine.

Butt the ropes together and twist each corresponding pair of strands loosely, to keep them from being tangled, as shown in Flg. 78 .
The twine 10 is now cut, and the strand 8 unlaid and strand $\dot{\gamma}$ carefully laid in its place for a distance of four and a half feet from the junction.

The strand 6 is next unlaid about one and a half feet and strand 5 laid in its place.
The ends of the cores are now cut off so they just meet.
Unlay strand 1 four and a half feet, laying strand 2 in its place.
Unlay strand 3 one and a half feet, laying in strand 4.
Cut all the strands off to a length of about twenty inches, for convenience in manipulation.

The rope now assumes the form shown in Fig. 79 with the meeting points of the strands three feet apart.
Each pair of strands is successively subjected to the following operation:
From the point of meating of the strands 8 and 7 , unlay each one three turns; split both the strand 8 and the strand 7 in halves as far back as they are now unlaid and "whip" the end of each half strand with a small piece of twine.
The half of the strand 7 is now laid in three tnrns and the half of 8 also laid in three turns. The half strands now meet and are tied in a simple knot, 11, Fig. 80, making the rope at this point its original size.
The rope is now opened with a marlin spike and the half strand of $\gamma$ worked around the half strand of 8 by passing the end of the half strand 7 through the rope, as shown in the engraving, drawn taut and again worked around this half strand until it reaches the half strand 13 that was not laid in. This half strand 13 is now split, and the half strand $\%$ drawn through the opening thus made, and then tucked under the two adjacent strands, as shown in Fig. 81. The other half of the strand 8 is now wound around the other half strand 7 in the same manner. Atter each pair of strands has been treated in this manner, the ends are cut off at 12, leaving them about four inches long. After a few days' wear they will draw into the body of the rope or wear off. so that the locality of the splice can scarcely be detected.

Coal Hoisting. (C. W. Hunt Co.).-The amount of coal that can be hoisted with a rope varies greatly. Under the ordinary conditions of use a rope hoists from 5000 to 8000 tons. Where the circumstances are more favorable, the amounts rum up frequently to 12,000 or 15,000 tons, occasionally to 20,000 and in one case 32,400 tons to a single fall.

When a hoisting rope is first put in use, it is likely from the strain put upon it to twist up when the block is loosened from the tub. This occurs in the first day or two only. The rope should then be taken down and the "turns" taken out of the rope. When put up again the rope should give no further trouble until worn out.
It is necessary that the rope should be much larger than is needed to bear the strain from the load.
Practical experience for many years has substantially settled the most economical size of rope to be used which is given in the table below.
Hoisting ropes are not spliced, as it is difficult to make a splice that will not pull out while running over the sheaves, and the increased wear to be obtained in this way is very small.
Coal is nsually hoisted with what is commonly called a "double whip:" that is, with a running block that is attached to the tub which reduces the strain on the rope to approximately one half the weight of the load hoisted. The following table gives the usual sizes of hoisting rope and the proper working strain:

## Stevedore Hoisting-rope.

C. W. Hunt Co.

| Circumference of the rope in ins. | Proper Working Strain on the Rope in lbs. | Nominal size of Coal tubs. Double whip. | Approximate Weight of a Coil in lbs. |
| :---: | :---: | :---: | :---: |
| 3 | 350 | $1 / 6$ to $1 / 5$ tons. | 360 |
| $31 / 3$ | 500 | 1/5"1/4 " | 480 |
| 4 | 650 | $1 / 4 \times 1 / 3$ | 650 |
| 43\% | 800 | 1/2 $633 / 4$ | 830 |
| 5 | 1000 | $3 / 4{ }^{1} 10$ | 960 |

Hoisting rope is ordered by circumference, transmission rope by diameter.

## Weight and Strength of Manila Rope.

Spencer Miller (Eng'g News, Dec. 6, 1890) gives a table of breaking strength of manila rope, which he cousiders more reliable than the strength computed by Mr. Hunt's formula: Breaking strength $=\boldsymbol{T} \sim 0 \times\left(\right.$ circumference in inches) ${ }^{2}$. Mr. Miller's formula is: Breaking weight lbs. $=$ circumference ${ }^{2} \times$ a coefficient which varies from 900 for $1 / 2^{\prime \prime}$ to $\% 00$ for $\Re^{\prime \prime}$ diameter rope, as below:

Circumference $\ldots .11 / 6$


The following tohle gives the breaking strength of manila rope as calculated by Mr. Huut's formula, and also by Mr. Miller's, using in the latter the coefficient 900 for sizes below $11 / 2 \mathrm{in}$. circumference and $\tilde{n} 00$ for sizes above 6 in . The differences between the figures for any given size are probably not greater than the difference in actual strength of samples from different makers. Both sets of figures are considerably lower than those given in tables published by some makers of rope, but they are believed to be more reliable. 'The figures for weight per 100 ft , are from manufacturers' tables.

|  |  |  | Ultimate Strength of Rope in lbs. |  |  |  |  | Ultimate Strengtli of Rope in lbs. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hunt. | Miller. |  |  |  | Hınt. | Miller. |
| 3/16 | 9/16 | 2 | 230 | 280 | 15/16 | 4 | 52 | 11,500 | 12,000 |
| $1 / 4$. | $3 / 4$ | 3 | 400 | 500 |  | $41 / 4$ |  | 13,000 | 13,500 |
| 5/16 | 1 | 4 | 630 | 790 |  | 41\% |  | 14,600 | 14,900 |
| $3 / 8$ | 11/8 | 5 | 900 | 1,140 | 15/16 | $43 / 4$ | 721/2 | 16,300 | 16,500 |
| $7 / 16$ | $11 / 4$ | 6 | 1,240 | 1,550 | 15/8 |  | 80 | 18,000 | 18.100 |
|  | 11.2 | [2/3 | 1,6:0 | 2, $0: 0$ | $13 / 4$ | $51 / 2$ | 97 | 21.800 | 21.500 |
| $9 / 16$ | 13/4 | 11 | 2,050 | 2,480 |  |  | 113 | 25,900 | 25,200 |
| \% | $\stackrel{1}{2}$ | $131 / 3$ | $\stackrel{2}{2} 880$ | 3,380 | 21/8 | 61/ | 133 | 30, 400 | 29,600 |
|  | $21 /$ | 161/3 | 3,610 | 4,150 |  |  | 153 | 35,300 | 34,300 |
| $13 / 1$ | 21 | 20 | 4,500 | 5,030 | 211 | 71 | 184 | 40,500 | 39,400 |
| $7 / 8$ | $23 / 4$ | 239\% | 5,440 | 5,970 | 25\% | 8 | 211 | 46,100 | 44,800 |
|  | 3 | 281 | 6,480 | \%,020 | 278 | $81 / 2$ | 237 | 52,000 | 50,600 |
| $11 / 16$ | $31 / 4$ | 331/3 | 7,600 | 8.160 |  |  | 262 | 58,300 | 56,\%00 |
| $11 / 8$ | 31/6 | 38 | 8,820 | 9,3i0 | $31 / 8$ | 9132 | 293 | 65,000 | ${ }^{63,200}$ |
| 11/4 | 33\%4 | 45 | 10,120 | 10,690 | $31 / 4$ | 10 | 325 | 72,000 | \%0,000 |

For rope-driving Mr. Hunt recommends that the working strain should not exceed $1 / 20$ of the ultimate breaking strain. For further data on ropes see "Rope-driving."
Knots.-A great number of knots have been devised of which a few only are illustrated, but those selected are the most frequently used. In the cuts. Fig. 82, they are shown open, or before being drawn taut, in order to show the position of the parts. The names usually given to them are:
A. Bight of a rope.
B. Simple or Overhand knot.
C. Figure 8 knot.
D. Double knot.
E. Boat knot.
F. Bowline, first step.
G. Bowline, second step.
H. Bowline completed.
I. Square or reef knot.
J. Sheet bend or weaver's knot.
K. Sheet bend with a toggle.
L. Carrick bend.
M. Stevedore knot completed.
N. Stevedore knot commenced.
O. Slip knot.
P. Flemish loop.
Q. Chain knot with toggle.
R. Half-hitch.
S. Timber-hitch.
T. Clove-hitch.
U. Rolling-hitch.
Y. - Timber-hitch and half-hitch.
W. Blackwall-litch.
X. Fisherman's bend.
Y. Round turn and half-hitch.
Z. Wall knot commenced.

A A. " " completed.
B B. Wall knot crown commenced.
C C. " " " completed.

The principle of a knot is that no two parts, which would move in the same direction if the rope were to slip, should lay along side of and touching each other.
The bowline is one of the most useful knots, it will not slip, and after being strained is easily untied. Commence by making a bight in the rope, then put the end through the bight and under the standing part as shown in $G$, then pass the end again through the bight, and haul tight.

The square or reef knot must not be mistaken for the "granny" knot that slips under a strain. Knots $H, K$ and $M$ are easily untied after being under strain. The knot $M$ is useful when the rope passes through an eye and is held by the knot, as it will not slip and is easily untied after being strained.


Fig. 8\%.-Knots.
The timber hitch $S$ looks as though it would give way, but it will not; the greater the strain the tighter it will hold. The wall knot looks complicated, but is easily made by proceeding as follows: Form a bight with strand 1 and pass the strand 2 around the end of it, and the strand 3 round the end of 2 and then through the bight of 1 as shown in the cut $Z$. Haul the ends taut when the appearance is as shown in $A A$. The end of the strand 1 is now laid over the centre of the knot, strand 2 laid over 1 and 3 over 2, when the end of 3 is passed through the bight of 1 as shown in $B B$. Haul all the strands taut as shown in CC.

To Splice a Wire Rope. -The tools required will be a small marline spike, nipping cutters, and either clamps or a small hemp-rope sling with which to wrap around and untwist the rope. If a bench-vise is accessible it will be found convenient.
In splicing rope, a certain length is used up in making the splice. An allowance of not less than 16 feet for $1 / 2$ inch rope, and proportionately longer for larger sizes, must be added to the length of an endless rope in ordering.

Having measured, carefully, the length the rope should be after splicing, and marked the points $M$ and $M^{\prime}$, Fig. 83, unlay the strands from each end $E$ and $E^{\prime}$ to $M$ and $M^{\prime}$ and cut off the centre at $M$ and $M^{\prime}$, and then:
(1). Interlock the six unlaid strands of each end alternately and draw them together so that the points $M$ and $M^{\prime}$ meet, as in Fig. 84.
(2). Unlay a strand from one end, and following the unlay closely, lay into the seam or groove it opens, the strand opposite it belonging to the other end of the rope, until within a length equal to three or four times the length of one lay of the rope, and cut the other strand to about the same length from the point of meeting as at $A$, Fig. 85.
(3). Unlay the adjacent strand in the opposite direction, and following the unlay closely, lay in its place the corresponding opposite strand, cutting the ends as described before at $B$, Fig. 85.

There are now four strands laid in place terminating at $A$ and $B$, with the eight remaining at $M M^{\prime}$, as in Fig. 85.

It will be well after laying each pair of strands to tie them temporarily at the points $A$ and $B$.
Pursue the same course with the remaining four pairs of opposite strands,


## Splicing Wire Rope.

stopping each pair about eight or ten turns of the rope short of the preced. ing pair, and cutting the ends as before.
We now have all the strands laid in their proper places with their respective ends passing each other, as in Fig. 86.
All methods of rope-splicing are identical to this point; their variety consists in the method of tucking the ends. The one given below is the one most generally practiced.

Clamp the rope either in a vise at a point to the left of $A$, Fig. 86 , and by a hand-clamp applied near $A$, open up the rope by untwisting sufficiently to cut the core at $A$, and seizing it with the nippers, let an assistant draw it out slowly, you following it closely, crowding the strand in its place until it is all laid in. Cut the core where the strand ends, and push the end back into its place. Remove the clamps and let the rope close together around it. Draw out the core in the opposite direction and lay the other strand in the centre of the rope, in the same manner. Repeat the operation at the five remaining points, and hammer the rope lightly at the points where the ends pass each other at $A, A, B, B$, etc., with small wooden mallets, and the splice is complete, as shown in Fig. 87.
If a clamp and vise are not obtainable, two rope slings and short wooden levers may be used to untwist and open up the rope.

A rope spliced as above will be nearly as strong as the original rope and smooth everywhere. After running a few days, the splice, if well made, cannot be found except by close examination.

The above instructious have been adopted by the leading rope manufacturers of America.

## SPRINGS.

Definttons.-A spiral spring is one which is wound around a fixed point or centre, and continually receding from it like a watch spring. A helical spring is one which is wound around an arbor, and at the same time advancing like the thread of a screw. An elliptical or laminated spring is made of flat bars, plates, or "leaves," of regularly varying leugths, superposed one upon the other.

Lamínated Steel Springs.-Clark (Rules, Tables and Data) gives the following from his work on Railway Machinery, 1855:

$$
\Delta=\frac{1.66 L^{3}}{b t^{3} n} ; \quad s=\frac{b t^{2} n}{11.3 L} ; \quad n=\frac{1.66 L^{9}}{\Delta b t^{3}} ;
$$

$\Delta=$ elasticity, or deflection, in sixteenths of an inch per ton of load,
$s=$ working strength, or load, iu tons ( 2210 lbs. ),
$L=$ span, when loaded, in inches,
$b=$ breadth of plates, in inches, taken as uniform,
$t=$ thickness of plates, in sixteenths of an inch,
$n=$ number of plates.
Nore.-The span and the elasticity are those due to the spring when weighted.
2. When extra thick back and short plates are used, they must be replaced by an equivalent number of plates of the ruling thickness, prior to the employment of the first two formulæ. This is found by multiplying the number of extra thick plates by the cube of their thickness, and dividing by the cube of the ruling thickness. Conversely, the number of plates of the ruling thickness given by the third formula, required to be deducted and replaced by a given number of extra thick plates, are found by the same calculation.
3. It is assumed that the plates are similarly and regularly formed, and that they are of uniform breadth, and but sliglitly taper at the ends.

Reuleaux's Constructor gives for semi-elliptic springs:

$$
P=\frac{S n b h^{2}}{6 l} \quad \text { and } \quad f=\frac{6 P l^{3}}{E n b l^{3}} ;
$$

$S=$ max. direct fibre-strain in plate;
$n=$ number of plates in spring;
$b=$ width of plates;
$h=$ thickness of plates;
$I=$ one half length of spring;
$P=$ load on one eud of spring;
$f=$ deflection of end of spring;
$E=$ modulus of direct elasticity
The above formula for defection can be relied upon where all the plates of the spring are regularly shortened; but in semi-elliptic springs, as used, there are generally several plates extending the full length of the spring, and the proportion of these long plates to the whole number is usually about one fourth. In such cases $f=\frac{5.5 P l^{3}}{E n b h^{3}}$. (G. R. Henderson, Trans. A. S. M. E., vol. xvi.)
In order to compare the formulæ of Reuleaux and Clark we may make the following substitutions in the latter: $s$ in tons $=P$ in lbs. $\div 1120 ; \Delta s=$ $16 f ; L=2 l ; t=16 h$; then

$$
\Delta S=16 f=\frac{1.66 \times 8 l^{3} \times P}{4096 \times 1100 \times n b / l^{3}}, \quad \text { whence } \quad f=\frac{P l^{3}}{5,527,133},
$$

which corresponds with Reuleaux's formula for deflection if in the latter we take $E=3: 3,16:, 800$.

$$
\text { Also } \quad s=\frac{P}{1120}=\frac{2569 b h^{2}}{11.3 \times 2 l}, \quad \text { whence } \quad P=\frac{12,68 \pi n b h^{2}}{l} \text {, }
$$

Which corresponds with Reuleaux's formula for working load when $S$ in the latter is taken at 76,120 .
The value of $E$ is usually taken at $30,000,000$ and $S$ at 80,000 , in which case Reuleaux's formulæ become

$$
P=\frac{13,333 \mathrm{nb} h^{2}}{l} \quad \text { and } \quad f=\frac{P l^{3}}{5,000,000 n b l^{9}}
$$

Helical Steel Springs.-Clark quotes the following from the report ou Safety Valves (Trans. Inst. Engrs. and Shipbuilders in Scotland, 1874-5):

$$
E=\frac{d^{3} \times w}{D^{4} \times C}
$$

$E=$ compression or extension of one coil in inches,
$d=$ dianteter from centre to centre of steel bar constituting the spring, in inches,
$w=$ weight applied, in pounds,
$D=$ diameter, or side of the square, of the steel bar, in sixteenths of an inch,
$C=$ a constant, which may be taken as 22 for round steel and 30 for square steel.

Note.-The deflection $E$ for one coil is to be multiplied by the number of iree coils, to obtain the total deflection for a given spring.
The relation between the safe load, size of steel, and diameter of coil, may be taken for practical purposes as follows:

$$
\begin{aligned}
& D=\sqrt[3]{\frac{w d}{3}}, \text { for round steel; } \\
& D=\sqrt[3]{\frac{w d}{4.29}}, \text { for square steel. }
\end{aligned}
$$

Rankine's Machinery and Millwork, p. 390, gives the following:

$$
\begin{gathered}
\frac{W}{v}=\frac{c d^{4}}{64 n r^{3}} ; \quad W_{1}=\frac{.196 f d^{3}}{r} ; \quad v_{1}=\frac{12.566 n f^{2}}{c d} ; \\
\frac{W_{1}}{2}=\text { greatest safe sudden load. }
\end{gathered}
$$

In which $d$ is the diameter of wire in inches; $c$ a co-efficient of transverse elasticity of wire, say $10,500,000$ to $12,000,000$ for charcoal iron wire and steel; $r$ radius to centre of wire in coil; $n$ effective number of coils; $f$ greatest safe shearing stress, say 30,$000 ; W$ any load not exceeding greatest safe load; $v$ corresponding extewsion or compression; $W_{3}$ greatest safe load; and $v_{1}$ greatest safe steady extension or comprescion.
If the wire is square, of the dimensions $d \times d$, the load for a given deflection is greater than for a round wire of the diameter $d$ in the ratio of 2.81 to 1.96 or of 1.43 to 1 , or of 10 to 7 , nearly.

Wilson Hartnell (Proc. Inst. M. E., 1882, p. 426), says: The size of a spiral spring may be calculated from the formula on page 304 of "Rankine's Useful Rules and Tables "; but the experience with Salter's springs has shown that the safe limit of stress is more than twice as great as there given, namely 60,000 to $70,000 \mathrm{lbs}$. per square inch of section with $3 / 8$ inch wire, and abgut 50,000 with $1 / 2$ inch wire. Hence the work that can be done by springs of wire is four or five times as great as Rankine allows.

For $3 / 8$ inch wire and under,

$$
\text { Maximum load in lbs. }=\frac{12,000 \times(\text { diam. of wire })^{9}}{\text { Mean ladius of springs }} ;
$$

$$
\text { Weight in lbs. to deflect spring } 1 \mathrm{in} .=\frac{180,000 \times(\text { diam. })^{4}}{\text { Number of coils } \times(\text { rad. })^{3}} .
$$

The work in foot-pounds that can be stored up in a spiral spring would lift it above 50 ft .
In a few rough experiments made with Salter's springs the coefficient of rigidity was noticed to be $12,600,000$ to $13,700,000$ with $1 / 4$ inch wire; $11,000,000$ for $11 / 3: 2$ inch: and $10,600,000$ to $10,900,000$ for $3 / 8$ inch wire.

Helical Springs.-J. Begtrup, in the American Machinist of Aug. 18, $189 \%$, gives formulas for the deflection and carrying capacity of helical springs of round and square steel, as follow:

$$
\left.\begin{array}{rl}
W & =.392 \% \frac{S d^{3}}{D-d} \\
F & =8 \frac{P(D-d)^{3}}{E d^{4}},
\end{array}\right\} \text { for round steel. }
$$

```
\(\boldsymbol{W}=\) carrying capacity in pounds,
\(S=\) greatest tensile stress per square inch of material,
\(d=\) diameter of steel,
\(D=\) outside diameter of coil,
\(F=\) deflection of one coil,
\(E=\) torsional modulus of elasticity,
\(P=\) load in pounds.
```

From these formulas the following table has been calculated by Mr. Begtrup. A spring being made of an elastic material, and of such shape as to allow a great amount of deflection, will not be affected by sudden shocks or blows to the same extent as a rigid body, and a factor of safety very much less than for rigid constructions may be used.

## HOW TO USE THE TABLE.

When designing a spring for continuous work, as a car spring, use a greater factor of safety than in the table; for intermittent working, as in a steam-engine governor or safety valve, use figures given in table; for square steel multiply line $W$ by 1.2 and line $F$ by . 59 .

Example 1.-How much will a spring of $3 / 8^{\prime \prime}$ round steel and $3^{\prime \prime}$ outside diameter carry with safety? In the line headed $D$ we find 3 , and right underneath 473 , which is the weight it will carry with safety. How many coils must this spring have so as to deflect $3^{\prime \prime}$ with a load of 400 pounds? Assuming a modulus of elasticity of $1: 2$ millions we find in the centre line headed $F$ the figure .0610 ; this is deflection of oue coil for a load of 100 pounds; therefore $.061 \times 4=.244^{\prime \prime}$ is deflection of one coil for 400 pounds load, and 3 $\div .244=1212$ is the number of coils wanted. This spring will therefore be $43 / 4^{\prime \prime}$ long when closed, counting working coils only, and stretch to "3 $4^{\prime \prime}$.
Example 2.-A spring $31 / 4^{\prime \prime}$ outside diameter of $\% / 16^{\prime \prime}$ steel is wound close; how much can it be extended without exceeding the linit of safety? We find maximum safe load for this spring to be 702 pounds, and deflection of one coil for 100 pounds load .0405 inches; therefore $7.02 \times .0405=.284^{\prime \prime}$ is the greatest admissible opening between coils. We may thus, without knowing the load, ascertain whether a spring is overloaded or not.

## Carrying Capacity and Deflection of Melical Springs of Round Steel.

$d=$ diameter of steel. $\quad D=$ outside diameter of coil. $W=$ safe working load in pounds-tensile stress not exceeding 60,000 pounds per square inch. $F^{\prime}=$ deflection by a load of 100 pounds of one coil, and a modulus of elasticity of 10,12 and 14 millions respectively. The ultimate carrying capacity will be about twice the safe load.


Carrying Capacity and Deflection of Helical Springs of Round Steel.-(Continued).

| $\stackrel{\vdots}{2}$ | W $\begin{gathered}\text { W } \\ \text { F }\end{gathered}$ | 1.50 605 .0136 .0117 .0097 | 1.75 500 .0242 $.020 \%$ .0173 | 426 <br> .0392 <br> .0336 <br> .0280 | 2.25 371 .593 .0508 .0424 | 2.50 329 .8054 .0732 .0610 | 2.75 <br> .295 <br> .187 <br> .1012 <br> .0853 | 3.00 .267 .1583 .1354 .1131 | 245 .2066 .1771 $.14 \% 6$ | 3.50 226 .2640 .2263 .1886 | 3.75 209 .3312 .2839 .2366 | 195 .4089 .305 .2921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $D$ | 2. | 2.25 | 2.50 | 2.75 | 3. | 3.2 | 3.50 | 3.75 |  |  |  |
| \% | W | 765 |  | 589 | 523 | 473 | 33 | 398 | 368 | 343 | 321 | 01 |
|  |  | . 0169 | . 0259 | .037\% | . 0528 | . 0711 | . 0935 | . 1200 | . 1513 | . 1874 | . 220 | $2 \sim 61$ |
|  | F | . 0145 | . 0222 | .0323 | .045: | . 0610 | . 0801 | . 1029 | . 1297 | . 1606 | 1963 | 2367 |
| * |  | . 0120 | . 0185 | . 0269 | .0376 | . 0508 | . 0668 | . 0858 | . 1081 | . 1338 | . 1635 | 1972 |
|  | D | 2.00 |  | 2.50 | 2.75 | 3.00 | 3.25 | 3.50 | 3.75 | 4.00 | 4.50 | 5.00 |
| - | W | 1263 | 1089 | 957 | 硅 | rio | r02 | 644 | 596 | 544 | 48 | 43: |
| - |  | . 0081 | . 0126 | . 0186 | . $0: 32$ | . 0357 | . $04{ }^{2} 2$ | .061 | . 0772 | . 0960 | . 1423 | 2016 |
| 11 | Fr | . 0069 | . 0108 | . 0160 | .0220 | . 0306 | . 0405 | . 0529 | . 0661 | . 0823 | 1220 | 1 1 128 |
| * |  | . 0058 | . 0090 | . 0133 | . 0187 | . 0255 | .033 | . 0441 | . 0551 | . 0686 | $101 \%$ | 1440 |
|  | $D$ |  |  |  | 2.\% | 3.00 | 3.25 | 3.50 |  |  |  | 5.00 |
|  | W | 1963 | 1683 | 14\%2 | 1309 | $11 \% 8$ | $10 \% 1$ | 982 | 906 | 811 | 736 | 54 |
|  |  | . 0042 | . $006 \%$ | . 0099 | . 0141 | . 0194 | .0259 | . 0336 | . 0427 | . 0534 | . 0796 | 1134 |
|  | H | . 0036 | . 005 \% | . 0085 | . 0121 | . $016 \pi$ | .02\% | .0288 | . 0366 | . 045 | .06S | 0972 |
| ช |  | .003 | . 00 | . 007 | . 0101 | . 0139 | . 018 | . 0240 | . 0305 | 038 | . 0569 | 0810 |
|  | D | 2 | $2 . \% 5$ |  | 3.25 | 3.50 | 3.5 | 4.00 | 4.25 |  | 5.00 | 50 |
|  | W | 2163 | 1916 | $1 \% 20$ | 1560 | 1427 | 1315 | 1220 | 1137 | 1065 | 945 | 849 |
|  |  | . 0056 | . 0081 | . 0112 | . 0151 | . 0197 | .0:52 | . 0316 | . 0390 | . 0474 | . 06 \%9 | . 0935 |
| 11 |  | . 0048 | . $00 \%$ | . 0096 | . 0129 | . 0169 | . 0216 | .0271 | . 033 | . 040 | . 0582 | . 0801 |
| \% |  | . 0040 | . 0058 | . 0080 | . 0108 | . 0141 | . 0180 | . 02225 | .02r | . 0339 | . 0485 | . 0668 |
|  | D | 2. | 2. | 00 | 3.25 | 3.50 | $3 . \%$ | 4.0 | 4.25 |  | . 00 | . 50 |
|  | W | 3068 | 2707 | 2423 | 2191 | 2001 | 1841 | 1 1\%01 | 1587 | 1484 | 131 | 1180 |
|  |  | . 0034 | . 0049 | . 0068 | . 0092 | . $01: 1$ | . 0155 | . 0196 | . 0243 | . 029 | . 042 | 0591 |
|  |  | . 00 | . 00 | . 0058 | . 0079 | . 010 | . 0133 | . 0168 | .0208 | . 0254 | . 036 | . 0506 |
|  |  | . 002 | . 003 | . 0049 | . 0066 | . 008 | . 0111 | . 0140 | . 01 | . 0212 | . 030 | 0+22 |
|  |  |  |  |  |  |  |  |  |  |  |  | 6.00 |
|  | W | 3311 | 2988 | $2 \pi 23$ | $\because 500$ | 2311 | 2151 | 2009 | 1885 | 1920 | 1591 | 1441 |
|  |  | . 0043 | . 0058 | . $007 \%$ | . 0100 | . $012 i$ | . 015 | . 0193 | . 02333 | . 02 \% 9 | . 038 | 0522 |
| - |  | . 0033 | . 0050 | . 0066 | . 0086 | . 0108 | . 0135 | . 016 | . $0: 00$ | . 0239 | . 033 | 044\% |
|  |  | .0030 | . 0042 | . 0055 | . $00 \uparrow$ | . 0090 | . 0112 | . 0138 | . 0167 | . 0199 | . $0: \%$ | $03 \% 3$ |
|  | L | 3. | 3. | 3.50 | 3.75 | 4.00 | 4.25 | 4.50 | 4. | 5.00 | 5.50 | 6.00 |
|  | W | 4418 | 3976 | 3615 | 3313 | 3058 | 28.10 | 2651 | 2485 | 23339 | 2093 | 1893 |
|  |  | .0028 | . 0038 | . 00.51 | . 0066 | .0084 | . 0105 | . 0129 | .015 | . 0189 | 0264 | 0356 |
| ช | H | . 0024 | 003 | . 0044 | . 005 | . 00 i | . 0090 | . 0111 | . 0135 | . 016 | . 0226 | 0305 |
|  |  | . 002 | . 00 |  | . 00 | . 00 | . 00 | . 00 | . 01 |  | . 018 | 0254 |
|  | W | 3. | 3.7.0) | 4.051 | 4. | 4.5 | 4.75 | 5.00 | 5.25 |  | . | . 50 |
|  | W | 6013 | 5490 | 5051 | $46 i 6$ | 4354 | 4073 | 3826 | 3607 | 3413 | 3080 | 2806 |
|  |  | . 0021 | . 002 r | . 0035 | . 0045 | . 0055 | . 0067 | . 0081 | . 0097 | . 0115 | . 0156 | .0207 |
| $\sim$ | IF | . 0018 | . 0024 | . 0030 | . 003 | . 004 \% | . 0058 | . 006 | .0033 | . 0098 | . 0131 | 0174 |
|  |  | . 0015 | . 0020 | . 002 | . 003 | . 0035 | . 00 | . 00 | . 0058 | . 008 | . 0112 | . 0148 |
|  | D | 3.50 | 3.15 | 4.00 | 4.25 | 4.50 | 4.5 | 5.00 | 5.25 | 5.5 | 6.00 | 6.50 |
| $\square$ | W | 9425 | 8568 | 7854 | 72.50 | 6732 | 6283 | 5890 | 5514 | 5236 | 4712 | 4284 |
| n |  | . 0012 | . 0016 | . 0021 | .00 06 | .0033 | . 0041 | . 0049 | . 0059 | . 0071 | . 0097 | 0129 |
|  |  | . 0010 | . 0014 | . 0018 | .00\%3 | . 0028 | . 0035 | . 0043 | . 0051 | . 0061 | 0083 | . 0111 |
|  |  | . 0008 | . 0011 | . 0015 | . 0019 | . | . $00 \div 9$ | . 0035 | . 0 | . 0051 | 0069 | . 0032 |

The formulæ for deflection or compression given by Clark, Hartnel, and Begtrup, although very differeut in form, show a substantial agreement when reduced to the same form. Let $d=$ dianeter of wire in inches, $D_{1}=$ mean diameter of coil, $x$ the number of coils, $w$ the applied weight in pounds, and $C$ a coefficient, then

$$
\begin{aligned}
\text { Compression or extension of one coil } & =\frac{w D_{1}{ }^{3}}{C d^{4}} \\
\text { Weight in pounds to cause comp. or ext. of } 1 \mathrm{in} . & =\frac{C d^{4}}{n D_{1}^{3}} .
\end{aligned}
$$

The coefficient Creduced from Hartuell's formula is $8 \times 180,000=1,440,000$; according to Clark, $16^{4} \times 22=1,441,692$, and according to Begtrup (using $12,000,000$ for the torsional modulus of elasticity $)=12,000,000 \div 8=1,500,000$.

Rankine's formula for greatest safe extension, $v_{1}=\frac{12,566 n+r^{2}}{c d}$ may take the form $v_{1}=\frac{.685 \operatorname{tn} D_{1}{ }^{2}}{100 d}$ if we use 30,000 and $12,000,000$ as the values for $f$ and $c$ respectively.

The scveral formulæ for safe load given above may be thus compared, letting $d=$ dianeter of wire, and $D_{1}=$ mean diameter of coil, Raukine, $W=\frac{.196 f d^{3}}{r} ;$ Clark, $W=\frac{3(d \times 16)^{3}}{D_{1}} ;$ Begtrup, $W=\frac{.39 \cdot \pi S d^{3}}{D_{1}} ;$ Hartnell, $W=\frac{12000 t^{3}}{\boldsymbol{r}}$. Substituting for $f$ the va1ne 30,000 given by Rankine, and for $S, 60,000$ as given by Begtrup, we have $W=11,660 \frac{d^{3}}{D_{1}}$ Rankine ; 12,288 $\frac{d^{3}}{D_{1}}$ Clark; $23,562 \frac{d^{3}}{D_{1}}$ Begtrup; 24,000 $\frac{d^{3}}{D_{1}}$ Hartnell.

Taking from the Pennsylvania Railroad specifications the capacity when closed of the following springs, in which $d=$ diameter of wire, $D$ diameter outside of coil. $D_{1}=D-d, c$ capacity, $H$ height when free, and $h$ height when closed, all in inches.

| No. ${ }_{S}$. | $d=1 / 4$ | $D=\frac{11}{3}$ | $D_{1}=11 / 4$ | $c=400$ | $H=\underset{8}{9}$ | $h=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K. | 3 | $53 / 4$ |  | 2,100 | $\stackrel{8}{7}$ | 41 |
| D. | 1 | 5 | 4 | S,100 | 101\% | \% |
| 1. | 11/4 | 8 | 63 | 10,000 | 9 |  |
| C. | 11/8 | 47/8 | 33/4 | 16,000 | 43/8 | 33/8 |

and substituting the values of $c$ in the formula $c=W=x \frac{d^{3}}{D_{i}}$ we find $x$, the coefficient of $\frac{d^{3}}{D_{1}}$ to be respectively 32,$000 ; 38,000 ; 32,400 ; 24,888 ; 34,560$; 42,140, average 34,000 .
Taking 12,000 as the coefficient of $\frac{d^{3}}{D_{1}}$ according to Rankine and Clark for safe load, and 24,000 as the coefficient according to Begtrup and Hartnell, we have for the safe load on these springs, as we take one or the other coefficient,

|  | $T$. | $S$. | . | D. | I. | C. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ka | 50 | 600 | 1,012 | 3,000 | 3,750 | 5,400 |
| Hart | 00 | 1.200 | 2,0\%4 | 6,000 | 7,500 | 10,800 |
| Capacity | 400 | 1,900 | 2,100 | 8,100 | 10,000 | 16,000 |

J. W. Cloud (Trans. A. S. M. E., v. 173) gives the following:

$$
P=\frac{S \pi d^{3}}{16 R} \quad \text { and } \quad f=\frac{32 P R^{2} l}{G \pi d^{4}}
$$

$P=$ load on spring;
$S=$ maximum shearing fibre-strain in bar;
$d=$ diameter of steel of which spring is made;
$R=$ radius of centre of coil;
$l=$ length of bar before coiling;
$G=$ modulus of shearing elasticity;
$f=$ deflection of spring under load.
Mr. Cloud takes $S=80,000$ and $G=12,600,000$.
The stress in a helical spring is almost wholly one of torsion. For method
of deriving the formulæ for springs from torsional formula see Mr. Cloud's paper, above quoted.

ELLIPTICAL SPRINGS, SIZES, AND PROOF TESTS. Pennsylvania Railroad Specifications, 1896.

| Class. | $\begin{aligned} & a \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | Plates. No. Size, in. | Tests. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ins. <br> (1) | $\underset{(b)}{\text { high. }}$ | lbs. | $\underset{(1)}{ } \mathrm{Ins}$. | lbs. | $\underset{\sim}{C}$ |
| E 1, Triple.... | 40 | 113/4 | $53 \times 11 / 32$ | $33 / 1$ | 09\%, | 4800 | 3 | 5500 | 2 |
| E2, Quadruple | 40 | $151 / 2$ | $53 \times 3 / 8$ | 33/4 | 934 | 6650 | 3 | と000 | 2 |
| E3, Triple..... | 36 | 113/4 | $63 \times 11 / 32$ | ${ }^{4}$ | $95 / 8$ | 6000 | 3 | 8000 |  |
| $E$ 4, Single $\dagger$ | 40 | - | $8{ }^{8}$ | 5* |  | free | 3 | 2350 |  |
| E5, " | 40 | - | $73 \times 3 / 9$ |  | - | 3000 | 0 | 4970 |  |
| E6, " | 43 | -13 | $831 / 2 \times 3 / 8$ | $11 / 8{ }^{*}$ | 01 | 4375 | 0 | 6350 |  |
| ${ }_{E} 7$, Triple | 36 | 113 | $83 \times 11 / 32$ | $\stackrel{11}{11}$ | $91 / 2$ | 11,800 |  | - |  |
| ${ }_{E} 8$ 8, Double | 32 | 712 | $63 \times 38$ | 3 |  | 8000 | - | - |  |
| $E 9$. | 36 | 915 | $54 \times 11 / 32$ | 31/2 | $6_{16}{ }^{7}$ | 5400 | 3 | 6000 |  |
| E10, Quadruple | 40 | 151/2 | $53 \times 3 / 8$ | 4 | 10 | 8000 | 3 | 10,000 | $\stackrel{2}{2}$ |
| E11, " | 40 | 15,12 | $53 \times 38$ | 334 | 934 | 10,600 | 3 | 12,200 | 2 |
| E12, | 34 | 151\% | $53 \times 38$ | 334 | 93 4 | 13,100 | 3 | 15,780 | 2 |
| E 13, Double | 30 | 935 |  | 334 |  | 5600 | $\stackrel{2}{2}$ | 10,600 |  |
| E14, " | 40 | 91/2 | $64 \times 11 / 32$ | $33 / 8$ |  | 6840 |  | 8600 |  |
| E15, Quadruple | 36 | 1512 | $63 \times 11 / 3: 2$ | $3_{17}{ }^{2}$ | 934 | 11,820 | $21 / 2$ | 14,370 | 2 |
| E16, ${ }^{\text {c }}$.... | 30 | 151/2 |  | 412 | 101/8 | 8000 | $23 / 4$ | 15,500 |  |
| E17, Double. | 36 | $91 / 2$ | $54 \times 3 / 8$ | $23 \%$ | 8 | 80 | 2 | 9540 |  |
| $\underset{E}{E 19}$, Single $\dagger$ | 42 | - | $931 / 2 \times 3 / 8$ | ${ }^{1 *}$ | 7 | $5: 50$ | 0 | 7300 |  |
| $E$ 19, Donlule. | 22 | 101/2 | $641 / 11 / 32$ | 13/16 | ${ }^{67} 76$ | 13,800 | - | - |  |
| E 20, | $\stackrel{3}{2}$ | 1012 |  | 13/16 | $71 / 8$ | 15,600 | - |  |  |
| E22, | 24 | 101 | $842 \times 18$ | 1 | 81/2 | 18.000 | 0 | 28,800 |  |
| E 23 , | 36 | $10^{2}$ | $54 \times 3 / 8$ | 214 | 8 | 8.50 | $11 / 4$ |  |  |
| E24, " | 36 | 10 |  | 2114 | 8 | \%500 | 114 | 9500 | - |

(a) Between bands; (l) over all ; a.p.t., auxiliary plates touching.

* Between bottom of eye aud top of leaf. t semi-elliptical.

Tracings are furnished for each class of spring.

## HPYOSPHOLTEBEONZE SPRINGS.

Wilfred Lewis (Engineers' Clıb, Philadelphia, 185i) made some tests with phosphor-bronze wire, .12 in. dianeter, coiled in the form of a spiral spring, $11 / 4 \mathrm{in}$. diameter from centre to centre, making 53 coils.
Such a spring of steel, according to the practice of the P. R. R., might be used for 40 lbs . A load of 30 lbs . gradually applied gave a permanent set. With a load of 21 lbs . in 30 hours the spring engthened from $205 / 8$ inches to $211 / 8$ inches, and in 200 hours to $211 / 4$ inches. It was concluded that 21 IbS . was too great for durability. For a given load the extension of the bronze spring was just double the extension of a similar steel spring, that is, for the same extension the steel spring is twice as strong.

## SPRINGS TO RESIST TORSIONAL FORCE.

(Reuleans's Constructor.)
Flat spiral or helical spring... $P=\frac{S}{6} \frac{b h^{2}}{R}$;

$$
f=R \vartheta=12 \frac{P l R^{2}}{E b h^{3}}
$$

Round helical spring $\ldots \ldots \ldots . . P=\frac{S \pi}{3:} \frac{d^{3}}{R} ; \quad f=R \vartheta=\frac{64}{i \pi} \frac{P l}{E} \frac{R^{2}}{d^{4}}$.
Round bar, in torsion......... $P=\frac{S \pi}{16} \frac{d^{3}}{R} ; \quad f=R \vartheta=\frac{32}{\pi} \frac{P}{G} \frac{R^{2} l}{d^{4}}$.
Flat bar, in torsion............ $P=\frac{S}{3 R} \frac{b^{2} h^{2}}{\sqrt{b^{2}+h^{2}}} ; f=R \vartheta=\frac{3 P k^{2} l}{G} \frac{b^{2}+h^{2}}{b^{3} h^{3}}$.
$P=$ force applied at end of radius or lever-arm $R ; \vartheta=$ angular motion at end of radius $R ; S=$ permissible maximum stress, $=4 / 5$ of permissible stress in flexure; $E=$ modulus of elasticity in tension; $G=$ torsional modulus, $=2 / 5 E ; l=$ developed length of spiral, or length of bar; $d=$ diamete: of wire; $b=$ breadth of flat bar; $h=$ thickness.

HELICAL SPRENGS-SERESND CAPACITIES.
(Selected from Specifications of Penna. R. R. Co., 1899.)

|  |  |  | 0000000000 |  | $\%$ <br>  | 'rest. Height and Loads. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\dot{\sim}$ |  | L |  |  |
|  |  |  |  |  |  | .a | .a | . | - |  |
|  |  |  |  |  |  |  | gi |  |  |  |
|  |  |  |  |  |  | 近 | $0$ | B | , |  |
|  |  |  |  | lbs. oz |  |  |  |  |  |  |
| H 26 | $9 / 64$ | $5 \%$ | 59 | 04 | 1 |  | 3 | 31/4 | 110 | 130 |
| H 18 | 11/64 | 75 | 761/4 | 08 | 1 |  | 5 | \% | 170 | 2 |
| H 55 | 3/16 | 451/8 | $46_{16}^{5}$ | 0 5,5/8 | 1 | 41/2 | $3 \frac{5}{16}$ | 4 | 103 | 245 |
| H 73 | 3/16 | 426 | 42\% ${ }^{3}$ | $3 \quad 51 / 2$ | $1{ }_{16}{ }^{5}$ | 39 | 231/2 | 35 | 45 | 185 |
| H 29 | \%/32 | 201\% | 28.376 | 0 31\% | $11 \frac{15}{3}$ | $11 \frac{1}{6}$ | 194 | 13/8 | 110 | 200 |
| H 1 | 1/4 | 451\% | 47 | $0 \quad 10$ | 11/4 | $51 / 8$ | 35/8 | $43 / 8$ | 250 | 500 |
| H 5 | 1/4 | $251 / 4$ | $281 / 4$ | 06 | 21/4 | $21 / 4$ | 11/8 | 11\% | 164 | 240 |
| H 58 | $5 / 16$ | 2531\% | 25612 | 57 | 21/4 | 23 | 13 | 18 | 248 | 495 |
| H 74 | 5/16 | 180 | 1821/8 | $3 \quad 141 / 2$ | 11116 | 191/8 | 13 | 141/8 | $58 \sim$ | 00 |
| H 68, | 3/8 | 991/2 | 1031/4 | 3 1119 | 23/4 |  | 5 | 7 | 350 | 700 |
| H 99 | 3/8 | 88 | 903/4 | 212 | $21 / 8$ | 85/8 | 6 | $63 / 4$ | 676 | 946 |
| H 802 | 13/32 | $1923 / 8$ | 1953/4 | 711/2 | 28 | 18 | $11_{16}^{9}$ | 151\% | 350 | $9 \% 5$ |
| H 43 | $7 / 16$ | 96 | $102{ }^{5}$ | 41 | $4{ }_{16}{ }^{7}$ | $8 \frac{15}{6}$ | 53/8 | $51 / 8$ | 450 | 660 |
| H 64 | 7/16 | 755/8 | 781\% | $3 \quad 3$ | $2{ }^{29}$ | F5\% | 55/8 | $53 / 4$ | 1350 | 1,440 |
| $\mathrm{H} 53{ }_{2}$ | 15/32 | 1695 | $1 \%{ }_{1}{ }^{9}$ | 84 | $2{ }^{21}{ }^{\frac{7}{2}}$ | 161\% | 1:21/4 | 151\% | 330 | 1.410 |
| $\mathrm{H} \mathrm{ir}^{2}$ | 1/2 | 903/4 | 951/8 | 50 | $31 / 4$ | 81\% | $51 / 4$ | 63/4 | 810 | 1,500 |
| H $61{ }^{2}$ | 1/2 | 151/2 | $213 / 8$ | $0{ }^{0}$ 133/4 | $41 / 4$ | 13\% | 058 | 1 | 532 | 1,050 |
| H 19 | 17/32 | $811 / 2$ | 851/2 | $5 \underset{\sim}{\sim}$ | $3{ }_{3} \frac{1}{2}$ | 8 | $5{ }_{16}{ }^{\frac{9}{6}}$ | 6 | 1200 | 1,900 |
| H $86{ }_{3}$ | 17/32 | 1535/8 | 159 | $9 \quad 10$ | 4 | 133/4 | rim | 81 | 1156 | 1,360 |
| H 63 | $9 / 16$ | 98 | 103 | 615 | 33/4 | $91 / 8$ | 51/2 |  | 1050 | 1,800 |
| $\mathrm{H}^{\text {H }} 3_{3}$ | 9/16 | $801 / 4$ | 847/8 | $5{ }^{5} 1016$ | $31 / 4$ | 8 | $53 / 8$ | ${ }^{616}{ }_{16}{ }^{1}$ | 1000 | 2,200 |
| H 592 | 5/8 | 7414 | -13/4 | $6 \quad 7$ | $27 / 8$ | 81/4 | 69 | 9114 | 2100 | 3,500 |
| H 80, | 5/8 | 18:31\% | 19\%3/4 | $16 \quad 11$ | 315 | 18 | $11{ }^{19}$ | 151\% | 900 | 2,315 |
| H $\mathrm{m}_{2}$ | 21/32 | 601/8 | 631/2 | $5117 / 8$ | $23 / 4$ | \% ${ }_{1}{ }^{5} 6$ | 6 | $63 / 8$ | 3260 | 4.240 |
| $\mathrm{H} 15{ }_{2}$ | 11/16 | 557/8 | 593/4 | $5 \quad 14$ | 31\% | $53 / 4$ | $4{ }_{16}^{6}$ | $5{ }^{\frac{3}{6}}$ | 1400 | 3.500 |
| H 41 | 11/16 | 11\%1\% | 1231\% | $\begin{array}{ll}12 & 10 \\ 20\end{array}$ | $41 \%$ | 107/8 | $63 / 4$ | $85 / 8$ | 1500 | 2,7\%0 |
| H 40 | $3 / 4$ | $17 \% 1 \%$ | 1865/8 | $22 \quad 21 / 2$ | $61 / 2$ | 16 | $73 / 8$ | 87\% | 1900 | 2,300 |
| H 70 | 3.4 | 62 | 66 | \% 12 | 33/8 | $\tau$ | 55/8 | $61 / 4$ | 2750 | 5.050 |
| H $1_{6}{ }_{2}$ | 13/16 | 100 | 1063/4 | $14 \quad 12$ | 51/8 | 91/8 | 6 | 758 | 1700 | 3,700 |
| H 66. | 13/16 | 1051/4 | 1103/8 | $15 \quad 7$ | $4{ }^{5}$ | 107/8 | 81/8 | $87 / 8$ | $36 \% 0$ | 5,040 |
| H $3{ }^{-}$ | $27 / 32$ | 77 | 817/8 | 112 21/2 | 31. | 81/\% | $6{ }^{1} 12$ | $71 \%$ | 3300 | 6,250 |
| H $87 \%$ | $2 \pi / 32$ | 13013 | 13 r 175 | 120 | 53 | 121/4 | $73 / 4$ | $8{ }^{\frac{7}{6}}$ | 3540 | 4. 165 |
| H $1 \tilde{\sim}_{2}$ | T/8 | 85 | $911 / 2$ | 14 | 5 | $81 / 2$ | $53 / 4$ | T3/8 | $\because 000$ | 5,:00 |
| H $33_{2}$ | \%/8 | 82 | 8811 | 1315 | 51 | 8 | $53 / 8$ | $6 \frac{1}{1} \frac{3}{6}$ | 2.550 | 5.000 |
| H 2 | 15/16 | 46 | 5238 | $8 \quad 151 / 4$ | 5 | $45 / 8$ | $33 / 8$ | 4 | 3250 | 7.000 |
| H 16 | 15/16 | 85 | 92\% | 1610 |  | 8 | 5 | 6 | 3600 | 5.100 |
| H 10 | 1 | 85 | 93 | 1814 | 51 | 816 | 6 | 7 | 4500 | \%. $\% .000$ |
| H 4\% | 1 | 36 | $497 / 8$ | 80 | $53 / 8$ | 35\% | 25/8 | 33/8 | $1 \% 95$ | 7.180 |
| H 4 | ${ }_{1}^{1} 16$ | 98\%/8 | 105 | 24 | 5 | 107/8 | $81 \%$ | 93/8 | 6000 | 9,5\%0 |
| H 863 | 11.1 | 1535\% | 1641/2 | 389 |  | 133/4 | 71\% | $8 \frac{7}{16}$ | 4624 | 5,440 |
| H 3 | $11 / 8$ | 353/8 | 411/4 | $\begin{array}{lll}9 & 15\end{array}$ | 47 | 41/8 | $33 / 8$ | $33 / 4$ | 6000 | 12,000 |
| H 14, | $11 / 8$ | 51 | 587/8 | 144 | $61 / 8$ | $51 / 8$ | 311 | $4{ }^{\frac{3}{3}}$ | 5000 | 8,950 |
| H 61 | ${ }_{1}^{1} \frac{3}{15}$ | $991 / 8$ | $1093 / 4$ | 31 1 | 8 | $91 / 8$ | $51 / 2$ | $7^{16}$ | 4550 | \%,750 |
| H 47 | $1{ }^{13}$ | $731 \%$ | 791/2 | マ3 0 | $5{ }_{16}^{78}$ | $81 / 4$ | 09 | 714 | ri400 | 12,500 |
| H 9 | 11/4 | 9715 | 108 | $\begin{array}{lll}33 & 12\end{array}$ | 8 | 9 | $53 / 4$ | .12 | 4000 | 9,100 |
| H $\sim_{2}$ | 11/4 | 621/8 | 683/4 | $1181 / 2$ | 53\% | 716 | 6 | $63 / 8$ | 10,700 | 14,8\%5 |
| H 8 | $1{ }^{\frac{5}{16}}$ | 96 | 1061/2 | 3612 | 8 | $91 / 8$ | 6 | 714 | 6 | 10,600 |
| H6: | $1{ }_{15}^{56}$ | 50 | 51 | $26 \quad 11$ | $5 \frac{1}{1} \frac{3}{6}$ | 8 | 616 | $\underline{1} / 4$ | 7900 | 15,800 |
| H 121 | 13/8 | 87 | 973/8 | 36 |  | 81\% | $53 / 4$ | 7\%8 | 5000 | 12.200 |
| H 391 | $13 / 8$ | 575\%/8 | $831 \%$ | :31 11 | c3/8 | 83\% | $16 \%$ | $71 / 2$ | 8150 | 16,300 |
| H 281 | 1133 | 8111 | 95 | 37 | 8 | $81 / 4$ | 5.34 | $67 / 8$ | r'325 | 13,250 |

[^10] 2 and 3 are inner coils.

## RIVETED JOINTS.

## Fairbairn's bxperiments. (From Report of Committee on Riveted Joints, Proc. Inst. M1. E., April, 1881.)

The earliest published cxperiments on riveted joints are contained in the memoir by Sir W. Fairbairll in the Transactions of the Royal Society. Making certain empirical allowances, he adopted the following ratios as expressing the relative strength of riveted joints :

$$
\begin{aligned}
& \text { Solid plate................................ . } 100 \\
& \text { Double-riveted joint } \\
& \text { Single-riveted joint. }
\end{aligned}
$$

These well-known ratios are quoted in most treatises on riveting, and are still sometimes referred to as having a considerable authority. It is singular, however, that Sir W. Fairbairn does not appear to have been aware that the proportion of metal pumched out in the lime of fracture ought to be different in properly designed double and single siveted joints. These celebrated ratios would therefore appear to rest on a very unsatisfactory analysis of the experiments on which they were based.

Loss of Stremgth ini Pumehed Piates.-A report by Mr. W. Parker and Mr. John, made in 1818 to Lloyd's Committee, on the effect of punching and drilling, showed that thin steel plates lost comparatively little from punching, but that in thick plates the loss was very considerable. The following table gives the results for plates punched and not annealed or reamed:

| Thickness of Plates. | Material of Plates. | Loss of Tenacity, per cent. |
| :---: | :---: | :---: |
| $1 / 4$ $3 / 8$ | Steel | $\begin{array}{r} 8 \\ 18 \end{array}$ |
| 12 | " | 26 |
| 3 | Iron | ${ }^{33}$ |

The effect of increasing the size of the hole in the die-block is shown in the following table:
Total Taper of Hole
Material of
Loss of Tenacity due to in Plate, inches.

Plates.
Steel
"

Puuching, per cent.
17.8.
12.3
(Hole ragged) 24.5

The plates were from 0.675 to 0.712 inch thick. When $7 / 8$-in. punched holes were reamed out to $11 / 8 \mathrm{in}$. diameter, the loss of tenacity disappeared, and the plates carried as high a stress as drilled plates. Annealing also restores to punched plates their original tenacity.

## Streugth of Perforated Plates.

(P. D. Bennett, Eng'g, Feb. 12, 1886, p. 155.)

Tests were made to determine the relative effect produced upon tensile strength of a flat bar of iron or steel : 1. By a $3 / 4$-inch hole drilled to the required size $; 2$. by a hole punched $1 / 8$ inch smaller and then drilled to the size of the first hole; and, 3 , by a hole punched in the bar to the size of the drilled bar. The relative results in strength per square inch of original area were as follows :


In tests 2 and 4 the holes were filled with rivets driven by hydraulic pressure. The increase of strength per square inch caused by drilling is a phenomenon of similar nature to that of the increased strength of a grooved bar over that of a straight bar of sectional area equal to the smallest section of the grooved bar. Mr. Bemuett's tests on an iron bar 0.84 in . diameter, 10 in .
long, and a similar bar turned to 0.84 in . diameter at one point only, showed that the relativestrength of the latter to the former was 1.323 to 1.000 .

## Rivetcd Joints. -Drilling versus Punching of Moles.

The Report of the Research Committee of the Institution of Mechanical Engineers, on Riveted Joints (1881), and records of investigations by Prof. A.B. W. Kennedy (1881, 1882, and 1885), summarize the existing information regarding the comparative effects of punching and drilling upon iron and steel plates. From an examination of the voluminous tables given in Professor Unwin's Report, the results of the greatest number of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet in those of $1 /$-inch thickness and upwards the loss of tenacity due to punching ranges from $10 \%$ to $23 \%$ in iron plates, and from $11 \%$ to $33 \%$ in the case of mild steel. In drilled plates there is 110 appreciable loss of strength. It is possible to remove the bad effects of punching by subsequent reaming or annealing: but the speed at which work is turned out in these days is not favorable to multiplied operations, and such additional treatment is seldom practised. The introduction of a practicable method of drilling the plating of ships and other structures, after it has been bent and shaped, is a matter of great importance. If even a portion of the deterioration of tenacity can be prevented, a much stronger structure results from the same material and the same scantling. This has been fully recognized in the modern English practice (1887) of the construction of steam-boilers with steel plates; pumching in such cases being almost entirely abolished, and all rivet-holes being drilled after the plates have been bent to the desired form.

## Comparative Efficiency of Riveting done by bimerent Methodis.

The Reports of Professors Unwin and Kennedy to the Institution of Mechanical Engineers (Proc. 1881, 188:, and 1885) tend to establish the four following points:

1. That the shearing resistance of rivets is not highest in joints riveted by means of the greatest pressure;
2. That the ultimate strength of joints is not affected to an appreciable extent by the mode of riveting; and, therefore,
3. That very great pressure upon the rivets in riveting is not the indispensable requirement that it has been sometimes supposed to be;
4. That the most serious defect of hand-riveted as compared with machineriveted work consists in the fact that in hand-riveted joints visible slip commences at a comparatively small load, thus giving such joints a low value as regards tiglitness, and possibly also rendering them liable to failure under sudden strains after slip has once commenced.
The following figures of mean results, taken from Prof. Kennedy's tables (Proceedings 1885, pp. 218-225), give a comparative view of hand and hydranlic riveting, as regards their ultimate strengths in joints, and the periods at which in both cases visible slip commenced.

| Total Breaking Load. |  | Load at whicli Visible Slip began. |  |
| :---: | :---: | :---: | :---: |
| Hand-riveting. | Hydraulic Riveting. | Hand-riveting. | Hydraulic Riveting. |
| $\begin{aligned} & \text { Tons. } \\ & 86.01 \end{aligned}$ | Tons. 85.75 | Tons. 21.7 | Tons. 47.5 |
| 82.16 | 77.00 82.70 | 25.0 | 35.0 53.7 |
| 149.0 | ${ }_{145.58}$ | 31.7 | 54.0 49.7 |
|  | 140.2 | $\ldots$ | 49.7 46.7 |
| 193.6 $. \ldots .$. | 183.1 183.7 | 25.0 | 56.0 |

In these figures hand-riveting appears to be rather better than hydraulic riveting, as far as regards ultimate strength of joint; but is very much inferior to hydraulic work, in view of the small proportion of load borne by it before visible slip commenced,

## Some of the Conclusions of the Committee of Research on Riveted Joints.

> (Proc. Inst. M. E., Apl. 1885.)

The conclusions all refer to joints made in soft steel plate with steel rivets, the holes all drilled, and the plates in their natural state (unannealed). In every case the rivet or shearing area has been assumed to be that of the holes, not the nominal (or real) area of the rivets themselves. Also, the strength of the metal in the joint has been compared with that of strips cut from the same plates, and not merely with nominally similar material.

The metal between the rivet-holes has a considerably greater tensile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than $20 \%$, both in $3 / 8$-inch and $3 / 4$-inch plates, when the pitch of the rivet was about 1.9 diameters. In other cases $3 / 8$-inch plate gave an excess of $15 \%$ at fracture with a pitch of 2 diameters, of $10 \%$ with a pitch of 3.6 diameters, and of $6.6 \%$ with a pitch of 3.9 diameters; and $3 / 4$-inch plate gave $7.8 \%$ excess with a pitch of 2.8 diameters.
In single-riveted joints it may be taken that about 22 tons per square inch is the shearing resistance of rivetsteel, when the pressure on the rivets does not exceed about 40 tons per square inch. In double-riveted joints, with rivets of about $3 / 4$ inch diameter, most of the experiments gave about 24 tons per square inch as the shearing resistance, but the joints in one series went at 22 tons.

The ratio of shearing resistance to tenacity is not constant, but diminishes very markedly and not very irregularly as the tenacity increases.
The size of the rivet heads and ends plays a most important part in the strength of the joints-at any rate in the case of single-riveted joints. An increase of about one third in the weight of the rivets (all this increase, of course, going to the heads and ends) was found to add about $81 / 2 \%$ to the resistance of the joint, the plates remaining unbroken at the full shearing resistance of 22 tons per square inch, instead of tearing at a shearing stress of only a little over 20 tons. The additional strength is probably due to the prevention of the distortion of the plates by the great tensile stress in the rivets.
The intensity of bearing pressure on the rivet exercises, with joints proportioned in the ordinary way, a very important influence on their strength. So long as it does not exceed 40 tons per square inch (measured on the projected area of the rivets), it does not seem to affect their strength; but pressures of 50 to 55 tons per square inch seem to cause the rivets to shear in most cases at stresses varying from 16 to 18 tons per square inch. For ordinary joints, which are to be made equally strong in plate and in rivets, the bearing pressure should therefore probably not exceed 42 or 43 tons per square inch. For double-riveted butt-joints perhaps, as will be noted later, a higher pressure may be allowed, as the shearing stress may probably not be more than 16 or 18 tons per square inch when the plate tears.
A margin (or net distance from outside of holes to edge of plate) equal to the diameter of the drilled hole has been found sufficient in all cases hitherto tried.
To attain the maximum strength of a joint, the breadth of lap must be such as to prevent it from breaking zigzag. It has been found that the net metal measured zigzag should be from $30 \%$ to $35 \%$ in excess of that measured straight across, in order to insure a straight fracture. This corresponds to a diagonal pitch of $2 / 3 p+d / 3$, if $p$ be the straight pitch and $d$ the diameter of the rivet-hole.
Visible slip or "give" occurs always in a riveted joint at a point very much below its breaking load, and by no means proportional to that load. A collation of the results obtained in measuring the slip indicates that it depends upon the number and size of the rivets in the joint, rather than upon anything else ; and that it is tolerably constant for a given size of rivet in a given type of joint. The loads per rivet at which a joint will commence to slip visibly are approximately as follows:

Riveting.

Single-riveted Double-riveted Double-riveted Single-riveted Double-riveted Double-riveted

Hand
Hand
Machine
Hand
Hand
Machine

Slipping Load per Rivet.

## 2.5 tons

3.0 to 3.5 tons

7 tons
3.2 tons
4.3 tons

8 to 10 tons

To find the probable load at which a joint of any breadth will commence to slip, multiply the number of rivets in the given breadth by the proper figure taken from the last column of the table above. It will be understood that the above figures are not given as exact; but they represent very well the results of the experiments.

The experiments point to simple rules for the proportioning of joints of maximum strength. Assuming that a bearing pressure of 43 tons per square inch may be allqwed on the rivet, and that the excess tenacity of the plate is $10 \%$ of its original strength, the following table gives the values of the ratios of diameter $d$ of hole to thickness $t$ of plate $(d+t)$, and of pitch $p$ to diameter of hole ( $p \div d$ ) in joints of maximum strength in $3 / 8$-incli plate.

For Single-riveted Plates.

| Original Tenacity of Plate. |  | Shearing Resistance of Rivets. |  | Ratio. $d \div t$ | Ratio.$p \div d$ | Ratio.  <br> Plate Area  <br> Rivet Area  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tons per sq. in. | Lbs. per sq. in. | Tons per sq. in. | Lbs. per sq. in. |  |  |  |
| 30 | 6\%,200 | 22 | 49,200 | 2.48 | 2.30 | 0.667 |
| 28 | 62,720 | 22 | 49,200 | 2.48 | 2.40 | 0.785 |
| 30 | 67,200 | 24 | 53,760 | 2.28 | 2.27 | 0.713 |
| 28 | 62, \% 20 | 24 | 53,460 | 2.28 | 2.36 | 0.690 |

This table shows that the diameter of the hole (not the diameter of the rivet) should be $21 / 3$ times the thickness of the plate, and the pitch of the rivets $23 / 8$ times the diameter of the hole. Also, it makes the mean plate area $71 \%$ of the rivet area.

If a smaller rivet be used than that here specified, the joint will not be of uniform, and therefore not of maximum, strength; but with any other size of rivet the best result will be got by use of the pitch obtained from the simple formula

$$
p=a \frac{d^{2}}{t}+d
$$

where, as before, $d$ is the diameter of the hole.
The value of the constant $a$ in this equation is as follows:


Or, in the mean, the pitch $p=0.56 \frac{d^{2}}{t}+d$.
It should be noticed that with too small rivets this gives pitches often considerably smaller in proportion than $23 / 8$ times the diameter.

For double-riveted lap-joints a similar calculation to that given above, but with a somewhat smaller allowance for excess tenacity, on account of the large distance between the rivet-holes, shows that for joints of maximum strength the ratio of diameter to thickness should remain precisely as in single-riveted joints; while the ratio of pitch to diameter of hole shonld be 3.64 for 30 -ton plates and 22 or 24 ton rivets, and 3.82 for 28 -ton plates with the same rivets.

Here, still more than in the former case, it is likely that the prescribed size of rivet may often be inconveniently large. In this case the diameter of rivet should be taken as large as possible; and the strongest joint for a given thickness of plate and diameter of hole can then be obtained by using the pitch given by the equation

$$
p=a \frac{d^{2}}{t}+d
$$

where the values of the constant $a$ for different strengths of plates and rivets may be taken as follows:

## Table of Proportions of Double-riveted Lap-joints,

$$
\text { in which } p=\alpha \frac{d^{2}}{t}+d \text {. }
$$

Thickness of Plate.


Original tenacity Shearing Resistof Plate,
Tons per sq. in. 30
28
30
28
30
28
30
28
ance of Rivets. Tons per sq.in.

| 24 | 1.15 |
| :--- | :--- |
| 24 | 1.22 |
| 22 | 1.05 |
| 22 | 1.13 |
| 24 | 1.17 |
| 24 | 1.25 |
| 22 | 1.14 |

Practically, having assumed the rivet diameter as large as possible, we can fix the pitch as follows. for any thickness of plate from $3 / 8$ to $3 / 4 \mathrm{inch}$ :

$$
\begin{aligned}
& \text { " } 30 \text { " " " } 22 \text { " " } p=1.06 \frac{d^{2}}{t}+d \text {; } \\
& \text { " } 28 \text { " ". " } 24 \text { " " } p=1.24 \frac{d^{2}}{t}+d \text {. }
\end{aligned}
$$

In double-riveted butt-joints it is impossible to develop the full shearing resistance of the joint without getting excessive bearing pressure, because the shearing area is doubled without increasing the area on whick the pressure acts. Considering only the plate resistance and the bearing pressure, and taking this latter as 45 tons per square inch, the best pitch would be about 4 times the diameter of the hole. We may probably say with some certainty that a pressure of from 45 to 50 tons per square inch on the rivets will cause shearing to take place at from 16 to 18 tons per square inch. Working out the equations as before, but allowing excess strength of only $5 \%$ on account of the large pitch, we find that the proportions of doubleriveted butt-joints of maximum strength, under given conditions, are those of the foHowing table:

## Touble-riveted Butt-joints.

| Original Ten- <br> acity <br> of Plate, | Shearing Re- <br> sistance <br> of Rivets, <br> Tons per <br> Tous per <br> sq. in. | Bearing <br> Pres- <br> Sure, <br> Tonsper | Ratio | $\frac{d}{t}$ |
| :---: | :---: | :---: | :---: | :---: |
| 30 | 16 | 45 | Ratio <br> sq. in. | 45 |
| 28 | 16 | 45 | 1.80 | $\frac{p}{d}$ |
| 30 | 18 | 48 | 1.80 | 4.85 |
| 28 | 18 | 48 | 1.70 | 4.06 |
| 30 | 16 | 50 | $1 . \% 0$ | 4.27 |
| 28 | 16 | 50 | 2.00 | 4.20 |
| 28 |  |  | 2.00 | 4.42 |

Practically, therefore, it may be said that we get a double-riveted butt-joint of maximum strength by making the diameter of hole abont 1.8 times the thickness of the plate, and making the pitch 4.1 times the dianeter of the hole.

The proportions just given belong to joints of maximum strength. But in a boiler the one part of the joint. the plate, is much more affected by time than the other part, the rivets. It is therefore not mureasonable to estimate the percentage by which the plates might be weakened bs corrosion, etc., before the boiler would be unfit for use at its proper steam-pressure, and to add correspondingly to the plate area. Probably the best thing to do in this case is to proportion the joint, not for the actual thickness of plate, but for a nominal thickness less than the actual by the assumed percentage. In this case the joint will be approximately one of uniform strength by the time it has reached its final workable condition; np to which time the joint as a whole will not really have been weakened, the corrosion only gradually bringing the strength of the plates down to that of rivets.

## Efficiencies of Joints.

The average results of experiments by the committee gave: For doubleriveted lap-joints in $3 / 8$-inch plates, efficiencies ranging from $67.1 \%$ to $81.2 \%$. For donble-riveted butt-joints (in double shear) $61.4 \%$ to $71.3 \%$. These low results were probably due to the use of very soft steel in the rivets. For singleriveted lap-joints of various dimensions the efficiencies varied from $54.8 \%$ to $60.8 \%$.
The experiments showed that the shearing resistance of steel did not increase nearly so fast as its tensile resistance. With very soft steel, for instance, of only 26 tons tenacity, the shearing resistance was about $80 \%$ of the tensile resistance, whereas with very hard steel of 52 tons tenacity the shearing resistance was only somewhere about $6.5 \%$ of the tensile resistance.

## Proportions of Eitch and Overlap of Plates to Diameter of Rivet-liole and rinickness of Plate.

(Prof. A. B. W. Kennedy, Proc. Inst. M. E., April, 1885.)
$t=$ thickness of plate;
$d=$ diameter of rivet (actual) in parallel hole;
$p=$ pitch of rivets, centre to centre;
$s=$ space between lines of rivets;
$l=$ overlap of plate.
The pitch is as wide as is allowable without imparing the tightness of the joint under steam.
For single-riveted lap-joints in the circular seams of boilers which have double-riveted longitudinal lap joints,

$$
\begin{aligned}
& \hat{a}=\dot{t} \times 2.25 ; \\
& p=d \times 2.25=t \times 5 \text { (nearly) } \\
& l=t \times 6 .
\end{aligned}
$$

For double-riveted lap-joints:

$$
\begin{aligned}
& d=8.25 t \\
& p=8 t ; \\
& s=45 t \\
& l=10.5 t .
\end{aligned}
$$

| Single-riveted Joints. |  |  |  | Double-riveted Joints. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | d | $p$ | $l$ | $t$ | $a$ | $p$ | \& | $l$ |
| 3-16 | 7-16 | 15-16 | $11 / 8$ | 3-16 | 7-16 | 11\% |  |  |
| 1/4.6 | 9-16 | ${ }^{11 / 4}$ | 11.9 | 1/4 | - 9 -16 | $\stackrel{2}{21}$ | $1{ }_{1}^{3-16}$ | $\begin{aligned} & 23 \\ & 23 \end{aligned}$ |
| 5-16 | $11-16$ $13-16$ | 19-16 | 17/888 | 5-16 | $11-16$ $13-16$ | $21 / 2$ | $11 / 8$ | $33 / 8$ |
|  | $1^{13-16}$ | $17 / 8$ $23-16$ | $21 / 4$ 208 208 | ¢ 3 \% | $1^{13-16}$ | ${ }_{31}$ | $\stackrel{1}{2}^{13}$ | $4$ |
| \%-16 | $11 / 8$ | $23-16$ 21 | $3^{29}$ | 7-16 | 11/8 | $31 / 2$ | $21 / 4$ | $45 / 8$ $51 / 4$ |
| 9-16 | 11/4 | 213-10 | $33 / 8$ | 9-16 | 11/4 | 41/2 | $21 / 2$ | 57/8 |

With these proportions and good workmanship there need be no fear of leakage of steam through the riveted joint.
The net diagonal area, or area of plate, along a zigzag line of fracture should not be less than $30 \%$ in excess of the net area straight across the joint, and $35 \%$ is better.

Mr. Thendore Cooper ( $R . R$. Gazette, Aug. 22,1890 ) referring to Prof. Kennedy's statement quoted above, gives as a sufficiently approximate rule for the proper pitch between the rows in staggered riveting, one lialf of the pitch of the rivets in a row plus one quarter the diameter of a rivet-liole.

## Apparent Lxeess in Strength of Perforated over Unperforated Elates. (l'roc. Inst. M. E., October, 1888.)

The metal between the rivet-holes has a considerably greater teusile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than $20 \%$, both in $3 / 8$-inch and $3 / 4$-inch plates, when che pitch of the rivets was about 1.9 diameters. In other cases $3 / 8$-inch plate gave an excess of $15 \%$ at fracture with a pitch of 2 diameters, of $10 \%$ with a pitch of 3.6 diameters, and of $6.6 \%$ with a pitch of 3.9 diameters; and $3 / 4$-inch plate gave $7.8 \%$ excess with a pitch of 2.8 dianeter!s.
(1) The "excess strength due to perforation" is increased by anything which tends to make the stress in the plate uniform, and to diminish the effect of the narrow strip of metal at the edge of the specimen.
(2) It is diminished by increase in the ratio of $p / d$, of pitch to diameter of hole, so that in this respect it becomes less as the efficiency of the joint increases.
(3) It is diminished by any increase in hardness of the plate.
(4) For a given ratio $p / d$, of pitch to diameter of hole, it is also apparently diminished as the thickness of the plate is increased. The ratio of pitch to thickness of plate does not seem to affect this matter directly, at least within the limits of the experiments.

## Test of Doubleriveted Lap and Butt Joints.

(Proc. Inst. M. E., October, 1888.)
Steel plates of 25 to 26 tons per square inch T. S., steel rivets of 24.6 tons shearing-strength per square inch.
Kind of Joint. Thickness of Diameter of Ratio of Pitch
Comparative Plate.

Rivet-holes. to Diameter.


| $0.8^{\prime \prime}$ | 3.62 |
| :--- | :--- |
| 0.7 | 3.93 |
| 1.1 | 2.82 |
| 1.6 | 3.41 |
| 1.1 | 4.00 |
| 1.6 | 3.94 |
| 1.3 | 2.42 |
| 1.75 | 3.00 |
| 1.3 | 3.92 |

Efficiency of Joint.
75.2
76.5
68.0
73.6
72. 4
76.1
63.0
\%0.2
76.1

## Some Rules which have been Proposed for the Diameter of the Rivet in Single Shear. (Lion, June 18, 1880.)

Browne................. $d=2 t$ (with donble covers $11 / 4$ )
Fairbairn................... $d=2 t$ for plates less than $3 / 8 \mathrm{in}$.
$d=11 / 2 t$ for plates greater than $3 / 8 \mathrm{in}$.

Pohlig.................... $d=2 t$ for boiler riveting
$d=3 t$ for extra strong riveting

" $\ldots . . . . . . . . . . . . . . d=1.2 \sqrt{\bar{t}}$
The following table contains some data of the sizes of rivets used in practice, and the corresponding sizes given by some of these rules.
Diameter of Rivets for Difierent Thieknesses of Plates.
Diameter of Rivets, in inches.

| Thickness of plate. Inches. | $\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  | © <br>  |  | $\stackrel{0}{8}$ | 莒 | a 0 0 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 5 / 16 \\ & 38 \\ & \tau / 16 \\ & 1 / 2 \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 5 / 8 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 58 \\ & 3 / 4 \\ & 13 / 16 \end{aligned}$ | $\begin{aligned} & 1 / 2 \\ & 58 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 5 / 8 \end{aligned}$ | $\begin{aligned} & 58 \\ & 34 \\ & 38 \\ & 1 / 8 \end{aligned}$ | $5 / 8$ $3 / 4$ $31 / 32$ $3 / 4$ | $\begin{aligned} & 5 / 8 \\ & 23 / 32 \\ & 13 / 16 \\ & 15 / 16 \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 11 / 16 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$ | $\begin{aligned} & 11 / 16 \\ & 3 / 4 \\ & 13 / 16 \\ & 78 \end{aligned}$ | $\begin{aligned} & 5 / 8 \\ & 11 / 16 \\ & 3 / 4 \\ & 3 / 4 \end{aligned}$ |
| $\begin{aligned} & 9 / 16 \\ & 5 / 8 \\ & 11 / 16 \\ & 3 / 4 \end{aligned}$ | $\begin{aligned} & 34 \\ & 34 \\ & 3 \\ & 8 \\ & 88 \end{aligned}$ | $\begin{aligned} & 13 / 16 \\ & 78 \\ & 8 / 8 \\ & 15 / 16 \end{aligned}$ | $\begin{aligned} & 7 / 8 \\ & 7 / 8 \\ & 1 / 8 \\ & 18 \end{aligned}$ | $3 / 4$ $73 / 16$ $7 / 8$ | $\begin{aligned} & 11 / 8 \\ & 11 / 4 \end{aligned}$ | $\begin{gathered} 2 \pi / 32 \\ 15 / 6 \\ 11 / 3: \\ 11 / 8 \end{gathered}$ | $\begin{aligned} & 1 \\ & 11 / 8 \\ & 1 / 3 / 16 \\ & 11 / 4 \end{aligned}$ | $\begin{aligned} & 13 / 16 \\ & 7 / 8 \\ & 15 / 16 \\ & 15 / 16 \end{aligned}$ | $\begin{aligned} & 7 / 8 \\ & 15 / 16 \\ & 1 \\ & 11 / 16 \end{aligned}$ | $\begin{array}{r} 7 / 8 \\ 7_{8}^{7 / 8} \\ 1^{7 / 8} \end{array}$ |
| $\begin{gathered} 13 / 16 \\ 7 / 8 \\ 15 / 16 \\ 1 \end{gathered}$ | $\left\lvert\, \begin{aligned} & 7 / 8 \\ & 1_{1}^{7} \\ & 1 \\ & \hline \end{aligned}\right.$ | $\left\|\begin{array}{l} 1 \\ 11 / 8 \\ 13 / 16 \\ 11 / 4 \end{array}\right\|$ | $\begin{aligned} & 1 \\ & 11 / 8 \\ & 611 / 8 \\ & 11 / 8 \\ & \hline \end{aligned}$ | $11 / 16$ | … <br> $\cdots$ <br> $\cdots$ <br> $\ldots$ | 1 7/32 | 13/8 | $\begin{aligned} & 1 \\ & 1 \\ & 11 / 16 \\ & 11 / 8 \end{aligned}$ | $\begin{aligned} & 13 / 32 \\ & 11 / 8 \\ & 18 / 16 \\ & 11 / 4 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 11 / 8 \\ & 11 / 8 \\ & \hline \end{aligned}$ |

Strength of Double-riveted Seams, Calculated.-W. B. Ruggles, Jr., in Power for Jme, 1890, gives tables of relative strength of rivets and parts of sheet between rivets in donble-riveted seams, compared with strength of shell, based on the assumption that the shearing strength of rivets and the tensile strength of steel are equal. The following figures show the sizes in his tables which show the nearest approximation to equality of strength of rivets and parts of plates between the rivets, together with the percentage of each relative to the strength of the solid plate.

|  | Pitch of Rivets | $\begin{gathered} \text { Size of } \\ \text { Rivet- } \\ \text { holes, } \\ \text { inches. } \end{gathered}$ | Percentage of Strength of Plate. |  |  | Pitch Rivets inches |  | Percentage of Strength of Plate. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rivets. | Plate. |  |  |  | Rivets. | Plate. |
| 1/4 | 21/8 | 12 | . 739 | . 65 | \%/16 | 23/4 |  | . 734 | 728 |
| 14 | $21 / 2$ | 9/16 | . 795 | . 775 | \%/16 | $31 / 8$ | 13/16 | . 758 | . 740 |
| 1 | $31 / 8$ |  | . 885 | . 800 | 7/16 | $35 /$ | $7 / 8$ | . 758 | 759 |
| 1 | $35 / 8$ | 11/16 | . 819 | . 810 | $\% / 16$ | $41 / 8$ | 15/16 | . 665 | . 73 |
| 5/16 | $21 / 8$ | 9/16 | . 749 | . 735 | 112 | $21 \%$ | $3 / 4$ | . $00 \sim$ | . 700 |
| 5/16 | $25 \%$ | 5/8 | . 748 | . 662 | $1 \%$ | 278 | 13/16 | . 721 | . 718 |
| 5/16 | $31 / 8$ | 11/16 | . 761 | . 780 | $1 /$ | $31 / 4$ | 7/8 | . 740 | . 731 |
| 5/16 | $35 \%$ | $3 / 4$ | . 780 | . 93 | $1 / 2$ | $33 / 4$ | 15/16 | . 736 | . 750 |
| $3 / 8$ | 21 | $5 / 8$ | . 727 | . 722 | 1/2 | $41 / 8$ |  | . 761 | . 758 |
| 3/8 | $25 / 8$ | 11/16 | . 755 | . 738 | 9/16 | 25/8 | 13/16 | . 701 | . 690 |
| 3/8 | $31 / 8$ |  | . 754 | . 760 | 9/16 |  |  | . 714 | . 008 |
| 388 | $35 / 8$ | 13/16 | . 662 | . ${ }^{\text {rri }}$ | 9/16 | 338 | 15/16 | . 274 | . 738 |
| $3 / 8$ | 41/8 | 7/8 | . 778 | . 788 | $9 / 16$ $9 / 16$ | 334 | ${ }_{11 / 16}^{1 / 1}$ | .745 .742 | . 733 |

H. De B. Parsons (Am. Engr. \& R. R. Jour., 1893) holds that it is an error to assume that the shearing strength of the rivet is equal to the tensile strength. Also, referring to the apparent excess in strength of perforated over unperforated plates, he claims that on acconnt of the difficulty in properly matching the holes, and of the stress caused by forcing, as is too often the case in practice, this additional strength cannot be trusted much more than that of friction.
Adopting the sizes of iron rivets as generally used in American practice for steel plates from $1 / 4$ to 1 inch thick: the tensile strength of the plates as $60,000 \mathrm{lbs}$; the shearing strength of the rivets as 40,000 for single-shear and 35,500 for double-sliear, Mr. Parsons calculates the following table of pitches, so that the strength of the rivets against shearing will be approximately equal to that of the plate to tear between rivet-holes. The diameter of the rivets has in all cases been taken at $1 / 16 \mathrm{in}$. larger than the nominal size, as the rivet is assumed to fill the hole under the power riveter.

## Riveted Joints.

Lap or Butt with Single Welt-Steel Plates and Iron Rivets.

| Thickness of Plates | Diameter of Rivets. | Pitch. |  | Efficiency- |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Single. | Double. | Single. | Double. |
| in. | in. | in. | in. |  |  |
| 1/4 | $\frac{1}{3} / 4$ | $\begin{array}{ll}1 & 3 / 16 \\ 1 & 11 / 16\end{array}$ | $17 / 8$ $211 / 16$ | 55.7\% | 70.0\% |
| 18 | 78 | 17/8 | 23/4 | 49.0 | 65.9 |
| 5 | \%88 | $111 / 16$ | $27 / 16$ | 43.6 | 60.4 |
| 38 |  | 17/8 | 25/8 | 42.0 | 59.5 |
| $7 / 8$ |  | 13/4 | 2 2/16 | 38.6 | 55.4 |
| 1 | $11 / 8$ | $23 / 16$ | 25/8 | 38.1 | 54.9 |

Calculated Efficiencies-Steel Plates and Steel Rivets. The differences between the calculated efficiencies given in the two tables above are notable. Those given by Mr. Ruggles are probably too high, since he assumes the shearing strength of the rivets equal to the tensile strength of the plates. Those given by M1. Parsons are probably lower than will be obtained in practicc, since the figure he adopts for shearing strength is rather low, and he makes no allowance for excess of strength of the perforated over the unperforated plate. The following table has been calculated by the anthor on the assumptions that the excess strength of the perforated plate is $10 \%$, and that the shearing strength of the rivets per square inch is four fifths of the tensile strength of the plate. If $t=$ thickness of plate, $d=$ diameter of rivet-hole, $p=$ pitch, and $T^{\prime}=$ tensile strength per square inch, then for single-riveted plates

$$
\begin{gathered}
(p-d) t \times 1.10 T=\frac{\pi}{4} d^{2} \times \frac{4}{5} T, \text { whence } p=.5 \tau_{1} \frac{d^{2}}{t}+d . \\
\text { For double-riveted plates, } p=1.142 \frac{d^{2}}{t}+d_{0}
\end{gathered}
$$

The coefficients .571 and 1.142 agree closely with the averages of those given in the report of the commitfee of the Institntion of Mechanical Engineers, quoted on pages $35 \tilde{r}$ and 358 , conte.

|  | Diam. of Rivet hole. | Pitch. |  | Efficiency. |  |  | Diam of Rivet hole. | Pitch. |  | Efficiency. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0 \dot{x} \\ & 0 \end{aligned}$ |  |  |  |  |  |  |
| in. | in. | in. | in. | $\%$ | \% |  | in. | in. | in. | \% | \% |
| 3/16 | \%/16 | 1.020 | 1.603 | 57.1 | 72.71 | $1 / 2$ | 34 | 1.292 | 2.035 | 46.1 | 63.1 |
|  |  | 1.261 1.071 | 1.023 1.642 | 60.5 53.3 | 75.3 |  | 8 | 1. 1449 | $2.69+$ | 50.0 | 66.6 |
| 3484 | $9 / 16$ | 1.071 | 1.648 2.008 | 53.3 56.2 | $\xrightarrow{69.6}$ |  |  | ${ }_{2}^{2.142}$ | 3.281 | 53.3 | ${ }_{\sim}^{20} 0$ |
| 5/16 | 9/16 | 1.137 | 1.712 | 50.5 |  |  |  | $\underset{\sim}{2} .570$ | 4.016 | 56.2 | \%2 |
|  | 5/8 | 1.339 | 2.05 ? | 53.3 | 69.5 |  |  | 1.652 | 1.892 | 43 | 64 |
|  | 11/16 | 1.551 | 2.415 | 55.7 | 71.5 | ، |  | 2.015 | 3.429 | 41.0 | 64 |
| 3/8 | 5/8 | 1.218 | 1.810 | 48.7 | 65.5 | " | 11 | 2.410 | ${ }_{3} 3.694$ | 53.3 | 69 |
|  | 3 | 1.60 นิ | 2.463 | 53.3 | 69.5 |  | 11 | 2.836 | 4.422 | 55.9 | 1 |
|  | 88 | 2.041 | 3.206 | 57.1 | 72. 7 |  | 3 | 1.264 | 1.778 | 40.7 | ${ }_{5 \%}$ |
| \%/16 | 5/8 | 1.136 | 1.647 | 45.0 | 62.0 |  | \%/8 | 1.575 | 2.274 | 44.4 | 61.5 |
|  |  | 1.484 | $\stackrel{2}{2.218}$ | 49.5 | 66.2 | " | $1{ }^{1}$ | 1.914 | 2.827 | 47.7 | 64.6 |
| ، | 78 | 1.869 | 2.864 | 53.2 | 69.4 | ، | $11 / 8$ | 2.281 | 3.438 | 50.7 | 67.3 |
|  |  | 2.305 | 3.610 | 56.6 | T2.3 |  | 11/4 | $2.6 \pi 8$ | 4.105 | 53.3 | 69.5 |

## Riveting Pressure LRequired for Bridge and Boiler Work.

## (Wilfred Lewis, Engineer's' Club of Philadelphia, Nov., 1893.)

A number of $3 / 8$ inch rivets were subjected to pressures between 10.000 and 60.000 lbs . At $10,000 \mathrm{lbs}$. the rivet swelled and filled the hole without forning a head. At $: 00,000 \mathrm{lbs}$. the head was formed and the plates were slightly pinched. At 30.000 lbs . the rivet was well set. At 40,000 los. the metal in the plate surrounding the rivet began to stretch, and the stretching became more and inore apparent as the pressure was increased to 50,000 and 60,000 lbs. From these experiments the conclusion might be drawn that the pressure required for cold rivetins was about $300,000 \mathrm{lbs}$ per square inch of livet section. In hot riveting, until recently there was never any call for a pressure exceeding $60,000 \mathrm{lbs}$., but now pressures as high as $150,000 \mathrm{lbs}$ are not uncominon, and even 300,000 llus. have been contemplated as desirable.

## Appurent Shearing Resistance of Rivet Iron and Steel.

(Proc. Inst. M. E., 18î9, Engineering, Feb. ©0, 1880.)

The true shearing resistance of the rivets cannot be ascertained from experiments on riveted joints (1) because the uniform distribution of the load to all the rivets cannot be insured: ( ${ }^{(2)}$ ) because of the friction of the plates, which has the effect of increasing the apparent resistance to shearing in an element uncertain in amount. Probably in the case of singleriveted joints the shearing resistance is not much affected by the friction.

Ultimate Shearing Stress
Tons per sq. in. Lbs. per sq. in.

| Iron, single shear (12 bars). | 24.15 | 54.0931 |  |
| :---: | :---: | :---: | :---: |
| " double shear (8 bars). | 22.10 | 49.504 |  |
| " ${ }^{\text {" }}$ | 22.62 | 50.669 | Barnaby. |
| " " ${ }^{\text {" }}$ | 22.30 | 49.952 | Rankine. |
| 3/4in. rivets. | 23.05 to 25.57 | 51.632 to 57.2\%7) |  |
| " $5 / 8$-in. rivets. | 24.32 to 2 2. 91 | 51.477 to 62.362 | Riley. |
| " mean value | 25.0 | $56.000)$ |  |
| 5/8-in. rivets. | 19.01 | 42.589 | Greig and Eyth. |
| Steel | 17 to 26 | 38.080 to 58.210 |  |
| Landore steel, $3 / 4$-in. rivets. | 31.67 to 33.69 | ${ }^{1} 0.941$ to 75.466 |  |
| " " ${ }^{\text {c }}$ \% mean rivets. | 30.45 to ${ }_{3}^{35.73}$ |  | Riley. |
| Brown's steel. . | $2 . .18$ | 49.683 | Greig and Eyth. |

Fairbairn's experiments show that a rivet is $61 / 2 \%$ weaker in a drilled than In a punched hole. By rounding the edge of the rivet-hole the apparent shearing resistance is increased 12\%. Mr. Maynard found the rivets 4\% weaker in drilled holes than in punched holes. But these results were obtained with riveted joints, and not by direct experiments on shearing. There is a good deal of difficulty in determining the true diameter of a punched hole, and it is coubtful whether in these experiments the diameter was very accurately ascertained. Messrs. Greig and Eyth's experiments also indicate a greater resistance of the rivets in punched holes than in drilled holes.
If, as appears above, the apparent shearing resistance is less for domble than for single shear, it is probably due to unequal distribution of the stress on the two livet sections.
The shearing resistance of a bar, when sheared in circumstances which prevent friction, is usually less than the tenacity of the bar. The following results show the decrease :

|  | Tenacity of Bar. | Shearing Resistance. | Ratio. |
| :---: | :---: | :---: | :---: |
| Harkort, iron. | 26.4 | 16.5 | 0.62 |
| Lavalley, iron.. | 25.4 | 20.2 | 0.79 |
| Greig and Eyth, iron... | 22.2 | 19.0 | 0.85 |
| " ${ }^{\text {a }}$ ( steel.. | 28.8 | 22.1 | 0.77 |

In Wöhler's researches (in $180^{\circ} 0$ ) the shearing strength of iron was found to be four-fifths of the tenacity. Later researches of Bauschinger confirm this result generally, but they show that for iron the ratio of the shearing resistance and tenacity depends on the direction of the stress relatively to the direction of rolling. The above ratio is valid only if the shear is in a plane perpendicular to the direction of rolling, and if the tension is applied parallel to the direction of rolling. The shearing resistance in a plane parallel to the direction of rolling is different from that in a plane perpendicular to that direction, and again differs according as the plane of shear is perpendicular or parallel to the breadth of the bar. In the former case the resistance is 18 to $20 \%$ greater than in a plane perpendicular to the fibres, or is equal to the tenacity. In the latter case it is only half as great as in a plane perpendicular to the fibres.

## IRON AND STEEL.

CLASSHELCATION OE IRON AND STEEEL.
methe and steel.
(W. Kent, Railroad de Engineering Journal, April, 188\%.)

| Generic Term. | IRON. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| How Obtained. | CAST,Or obtained from a fluid mass. |  |  | WROUGHT, Or welded from a pasty mass. |  |
| Distinguishing Quality. | Non-malleable. |  | ble. | Will Not Harden. | Will Harden. |
| Species. | Cas | Iron. | Cast Steel. | (7) Wrought Iron. | (S†) Wrought Steel. |
| Varieties. | (1) Ordinary castings. | (2) Malleable cast iron, ob- tained from No. d by annealing in oxides. | (3) Crucible, <br> (4) Bessemer, and <br> (5) Open-hearth steels. <br> (6) Mitis.* | a. Obtained by direct process from ores, as Catalan, Chenot, and other process irons. <br> $b$. Obtained by indirect process from cast iron, as finery-hearth and puddled irons. | Obtained by direct or indirect process. as German, shear. blister, and puddled steels. |
| * No. 6. Mitis is the name given to a new product (having the same general prop processes as soft cast steels) made by adding an alloy of aluminum to melted wrough + No. 8. Wrought steel is almost an obsolete product, having been replaced in co between them not being well defined. Sub-varieties of Nos. 3, 4, and 5, soft, mild, medium, and hard steels, according to <br> Cast iron usually contains over $3 \%$ of |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| it is used; wrought iron from $0.02 \%$ to $0.10 \%$. The quality of hardening and temperin from wrought iron is now no longer the dividing line between them, since soft steels mercially known as steel. nary blacksmith's tests, will not harden. All products of the crucible, Bessemer, and |  |  |  |  |  |

## CAST LIRON.

Grading of Pig Iron.--Pig iron is commonly graded according to its iracture, the number of grades, varying in different districts. In Eastern Pennsylvania the principal grades recognized are known as No. 1 and 2 foundry, gray forge or No. 3, mottled or No. 4, and white or No. 5. Intermediate grades are sometimes made, as No. 2 X. between No. 1 and No. 2, and special names are given to irous more lighly silicized than No. 1, as No. 1 X , silver-gray, and soft. Charcoal foundry pig iron is graded by numbers 1 to 5 , but the quality is very different from the corresponding numbers in anthracite and coke pig. Southern coke pig iron is graded into ten or more grades. Grading by fracture is a fairly satisfactory method of grading irons made from uniform ore mixtures and fnel, but is unreliable as a means of determining quality of irons produced in different sections or from different ores. Grading by chemical analysis, in the latter case, is the only satisfactory method. The following analyses of the five standard grades of northern foundry and mill pig irons are given by J. M. Hartman (Bull. I. \& S. A., Feb., 1892):

|  | No. 1. | No. 2. | No. 3. | No. 4. | No. 4 B. | No. 5. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iron | 92.37 | 92.31 | 94.66 | 94.48 | 94.08 | 94.68 |
| Graphitic carbon.. | 3.52 | 2.99 | 3.50 | 2.02 | 2.02 |  |
| Combined carbon.. | . 13 | . 3 \% | 1.52 | 1.98 | 1.43 | 3.83 |
| Silicon | 2.44 | 2.5\% | . ${ }^{2}$ | . 56 | . 92 | . 41 |
| Phosphorus | 1.25 | 1.08 | . 26 | . 19 | . 04 | . 04 |
| Sulphur. | . 02 | . 02 | trace | . 08 | $\bigcirc .04$ | . 08 |
| Manganese . . . . . . . . | .28 | . 2 | . 34 | . 67 | 2.02 | . 98 | Characteristics of These Irons.

No. 1. Gray.-A large, dark, open-grain iron, softest of all the numbers and used exclusively in the foundry. Tensile strength low. Elastic limit low. Fracture rough. Thrns soft and tough.
No. 2. Gray.-A mixed large and small dark grain, harder than No. 1 iron, and used exclusively in the foundry. Tensile strength and elastic limit higher than No. 1. Fracture less rough than No. 1. Turns harder, less tough, and more brittle than No. 1.
No. 3. Gray.-Small, gray, close grain, harder than No. 2 iron, used either in the rolling-mill or fonndry. Tensile strength and elastic limit higher than No. 2. -Turns hard, less tough, and more brittle than No. 2.
No. 4. Mottled. - White background, dotted closely with small black spots of graphitic carbon; little or no grain. Used exclusively in the rolling-mill. 'Tensile strength and elastic limit lower than No. 3. Turns with difficulty; less tough and more brittle than No. 3. The manganese in the B pig iron replaces part of the combined carbon, making the iron harder and closing the grain, notwithstanding the lower combined carbon.

No. 5. White.-Smooth, white fracture, no grain, used exclusively in the rolling mill. Tensile strength and elastic limit much lower than No. 4. Too hard to turn and more brittle than No. 4.
Southern pig irons are graded as follows, beginning with the highest in silicon: Nos. 1 and 2 silvery, Nos. 1 and 2 soft, all containing over $3 \%$ of silicon; Nos. 1, 2, and 3 foundry, respectively about $275 \%, 2.5 \%$ and $2 \%$ silicon; No. 1 mill, or "foundry forge;" No. $\boldsymbol{o}$ mill, or gray forge; mottled; white

Good charcoal chilling iron for car wheels contains, as a rule, 0.56 to 0.95 silicon, 0.08 to 0.90 manganese, 0.05 to 0.75 phosphorus. The following is an analysis of a remarkably strong car wheel: $\mathrm{Si}, 0.734 ; \mathrm{Mn}, 0.438 ; \mathrm{P} .0 .428$. $\mathrm{S}, 0.08$; Graphitic C, 3.083 ; Combined C, 1.247 ; Copper, 0.029 . The chill was very hard- $1 / 4 \mathrm{in}$. deep at root of flange, $1 / 2 \mathrm{in}$. deep on tread. A good ordnance iron analyzed: Si. 0.30 ; Graphitic $\mathrm{C}_{\dot{\sim}} 2.20$; Combined $\mathrm{C}, 1 . \% 0 ; \mathrm{P}$, 0.44 ; $\operatorname{IIn}, 3.55$ (?). Its specific gravity was $\% .22$ and tenacity $31,{ }^{r} 34$ lbs. per sa. in.
Hifinence of Silicon, Phosphorus, Sulphive, and IVangancse upon Cast Hrom.-W.J. Keep, of Detroit, in several papers (Trans. A. I. M. E., 1889 to 1893), discusses the influence of various chemical elements on the quality of cast iron. From these the following notes have been condensed:
Silicon.-Pig iron contains all the carbon that it conld absorb during its reduction in the blast-furnace. Carbon exists in cast iron in two distinct forms. In chemical union, as "combined" carbon, it cannot be discerned, except as it may increase the whiteness of the fracture, in so-called white
iron. Carbon mechanically mixed with the iron as graphite is visible, varying in coior from gray to black, while the fracture of the iron ranges fron a light to a very dark gray.
Silicon will expel carbon, if the iron, when melted, contains ail the carbon that it can hold and a portion of silicon be added.
Prof. Turner concludes from his tests that the amount of silicon producing the maximum strength is about $1.80 \%$. But this is only true when a white base is used. If an iron is used as a base which will produce a sound casting to begin with, each additiou of silicon will decrease strength. Silicon itself is a weakening agent. Variations in the percentage of silicon added to a pig iron will not insure a given strength or physical structure, but these results will depend upon the physical properties of the original iron.
After enough silicon has been added to canse solid castings, any further addition and consequent increase of graphite weakens the casting.
As strength decreases from increase of graphite and decrease of combined carbon, deflection increases; or, in other words, bending is increased by graphite. When no more graphite can form and silicon still increases, deflection diminishes, slowing that high silicon not only weakens iron, but makes it stiff. This stiffness is not the same strength-stiffness which is caused by compact iron and combined carbon. It is a brittle-stiff ness.
Silicon of itself, however small the quantity present, hardens cast-iron; but the decrease of hardness from the change of the combined carbon to graphite. caused by the silicon, is so much more rapid than the hardening produced by the increase of silicon, that the total effect is to decrease hardness, until the silicon reaches from 3 to $5 \%$.
As practical foundry-work does not call for more than $3 \%$ of silicon, the ordinary use of silicon does reduce the hardness of castings; but this is produced through its influence on the carbon, and not its direct influence on the on.
When the change from combined to graphite carbon has ceased to diminish hardness, say at from $2 \%$ to $5 \%$ of silicon, the hardening by the silicon itself becomes more and inore apparent as the silicon increases.
The term "chilling" irons is generally applied to such as, cooled slowly, would be gray, but cooled suddenly become white either to a depth sufficient for practical utilization (e.g., in car-wheels) or so far as to be detrimental. Many irons chill more or less in contact with the cold surface of the mould in which they are cast, especially if they are thin. Sometimes this is a valuable quality, but for general foundry purposes it is desirable to have all parts of a casting an even gray.
Silicon exerts a powerful influence upon this property of irons, partially or entirely removing their capacity of chilling.
When silicon is mixed with irons previously low in silicon the fluidity is increased.
It is not the percentage of silicon, but the state of the carbon and the action of silicon through other elements, which causes the iron to be fluid.
Silicon irons have always had the reputation of inparting finidity to other irons. This comes, no doubt, from the fact that up to $3 \%$ or $4 \%$ they increase the quantity of graphite in the resulting casting.
A white iron which will invariably give porous aud brittle castings can be made solid and strong by the addition of silicon; a further addition of silhcon will turn the iron gray; and as the grayness increases the iron will grow weaker. Excessive silicon will again lighten the grain and cause a hard and brittle as well as a very weak iron. The only softening aud shrinkage-lessening influence of silicon is exerted during the time when graphite is being produced, and silicon of itself is not a softener or a lessener of shrinkage; but through its influence on carbon, and only during a certain stage, does it
produce these cffects.

Phosphorus.- While phosphorus of itself, in whatever quantity present, weakens cast-iron, yet iu quantities less than $1.5 \%$ its influence is $n$, $t$ sufficiently great to overbalance other beneficial effects, which are exerted before the percentage reaches 1\%. Probably no element of itself weakens cast iron as much as phosphorus, especially wheu present in large quantities. Shrinkage is decreased when phosphorus is increased. All high-phosphorus pig irons have low shrinkuge. Phosphorus does not ordinarify harden cast iron, probably for the reason that it does not increase combined carbon.
The fluidity of the metal is slightly increased by phosphorus, but not to any such great extent as has been ascribed to it.
The property of remaining long in the fluid state must not be confounded with fluidity, for it is not the measure of its ability to make sharp castings,

INFLUENCE OF SILICON, ETC., UPON CAST IRON. $36{ }^{\circ}$
or to run into the very thin parts of a mould. Generally speaking. the state ment is justified that, to some extent, phosphorus prolongs the fluidity of the iron while it is filling the mould.
The old Scotch irons contained about $1 \%$ of phosphorus. The foundry-irons which are most sought for for small and thin castings in the Eastern States contain, as a general thing, over $1 \%$ of phosphorus.
Certain irons which contain from $4 \%$ to \% \% silicon have been so much used on account of their ability to soften other irons that they hare come to be known as "softeners" and as lesseners of shrinkage. These irons are valuable as carriers of silicon ; but the irons which are sold most as softeners and shrinkage-lesseners are those containing from $1 \%$ to $2 \%$ of phosphorus. We must therefore ascribe the reputation of some of them largely to the phosphor us and not wholly to the silicon which they contain.

From 1/2\% to $1 \%$ of phosphorus will do all that can be done in a beneficial way, and all above that amount weakens the iron, without corresponding benefit. It is not necessary to search for phosphorus-irons. Most irons contain more than is needed, and the care should be to keep it within limits.
Sulphur.-Only a small percentage of sulphur can be made to remain in carbonized iron, and it is difficult to introduce sulphur into gray cast iron or into any carbonized iron, althongh gray cast iron often takes from the fuel as much more sulpliur as the iron originally contained. Percentages of sulphur that could be retained by gray cast iron cannot materially injure the iron except through an increase of shrinkage. The higher the carbon, or the higher the silicon, the smaller will be the influence exerted by sulphur.

The influence of sulphur on all cact iron is to drive out carbon and silicon and to increase chill, to increase shrinkage, and, as a general thing, to decrease strength; but if in practice sulphur will not enter such iron, we shall not have any cause to fear this tendency. In every-day work, however, it is found at times that iron which was gray when put into the cupola comes out white, with increased slirinkage and chill, and of ten with decreased strength. This is caused by decreased silicon, and can be remedied by an increase of silicon.

Mr. Keep's opinion conceruing the influence of sulphur, quoted above, is disagreed with by J. B. Nau (Iron Aye, Dlarch 29, 1894). He says:
"Sulphur, in whatever shape it may be present, has a deleterions influence on the iron. It has the tendency to reader the iron white by the influence it exercises on the combination between carbon and iron. Pig iron containing a certain percentage of it becomes porous and fnll of holes, and castings made from sulphurous iron are of inferior quality. This happens especially when the element is present in notable quantities. With foundry-iron containing as high as $0.1 \%$ of sulphur, castings of greater strength may be obtained than when no sulphur is present.

That the sulphur contents of pig iron may be increased by the sulphur contained in the coke used, is shown by some experiments in the cupola, reported by Mr. Nau. Seven consecutive heats were made.

The sulphur content of the coke was $1 \%$, and $11 . \% \%$ of fuel was added to the charge.

Before melting, the silicon ranged from 0.320 to 0.830 in the seven heats; after melting, it was from 0.110 to 0.534 , the loss in melting being from .100 to $.3 \% 5$. The sinphur before melting was from $.0 \% 6$ to .090 , and after melting from .133 to .174 , a gain from .044 to .038 .
From the results the following conchnsions were drawn :

1. In all the charges, without exception, sulphur increased in the pig iron after its passage through the cupola. In some cases this increase more than doubled the original amount of sulphur iound in the pig iron.
2. The increase of the sulphur contents in the iron follows the elimination of a greater amount of silicon from that same iron. A larger amount of limestone added to these charges would have produced a more basic cinder, and undoubtedly less sulphur would have been incorporated in the iron.
3. This coke contained $1 \%$ of sulphur, and if all its sulphur had passed into the iron there would have been an average increase of 0.12 of sulphur for the seven charges, while the real increase in the pig iron amounted to only 0.081. This shows that two thirds of the sulphur of the coke was taken up by the iron in its passage through the cupola.
Manganese.-Manganese is a nearly white metal, having about the same appearance when fractured as white cast iron. As produced commercially, it is combined with iron, and with small percentages of silicon, phosphorus, and sulphur.
If the manganese is under $40 \%_{z}$ with the remainder mostly iron, and silicon
not over $0.50 \%$. the alloy is called spiegeleisen, and the fracture will show flat reflecting surfaces, from which it takes its name.

With manganese above $50 \%$, the iron alloy is called ferro-manganese.
As manganese increases beyond $50 \%$, the mass cracks in conling, and when
it approaches $98 \%$ the mass crumbles or falls in small pieces.
Manganese combines with iron in almost any proportion, but if an iron containing manganese is remelted, more or less of the manganese will escape by volatilization, and by oxidation with other elements present in the iron. If sulphur be present, some of the manganese will be likely to moite with it and escape, thus reducing the amount of both elements in the casting.

Cast iron, when free from manganese, cannot hold more thall $4.50 \%$ of carbon, and $3.50 \%$ is as much as is generally present; but as manganese increases, carbon also increases, until we often find it in spiegel as high as $5 \%$, and in ferro-manganese as high as $6 \%$. This effect on capacity to hold carbon is
peculiar to manganese.
Manganese renders cast iron less plastic and more brittle.
Manganese increases the shrinkage of cast iron. An increase of $1 \%$ raised the shrinkage $26 \%$. Judging from some test records, manganese does not influence chill at ail; but other tests show that with a given percentage of silicon the carbon may be a little more inclined to remain in the combined form, and therefore the chill may be a little deeper. Hence, to cause the chill to be the same, it would seem that the percentage of silicon should be a little higher with manganese than without it.
An increase of $1 \%$ of manganese increased the hardness $40 \%$. If a hard chill is required, manganese gives it by adding harduess to the whole casting
J. B. Nau (Iron Age, March 29, 1894), discussing the influence of manga. nese on cast iron, says:
Manganese favors the combination between carbon and iron. Its influ ence, when present in sufficiently large quantities, is even great enough no ${ }^{\circ}$ only to keep the carbon which would be naturally found in pig iron con bined, but it increases the capacity of iron to retain larger amounts of carbon and to retain it all in the combined state. Manganese iron is often nsed for foundry purposes when some chill and hardness of surface is required in the casting. For the rolls of steel-rail mills we always put into the mixture a large amount of manganiferous iron, and the rolls so obtained always presented the desired hardness of surface and in general a mottled stricture on the outside. The inside, which always cooled much slower, was gray iron. One of the standard mixtures that invariably gave good results was the following:
$50 \%$ of foundry iron with $1.3 \%$ silicon and $1.5 \%$ manganese;
$3: \%$ of foundry iron with $1 \%$ silicon and $1.5 \%$ manganese;
$15 \%$ steel (rail ends) with about $0.35 \%$ to $0.40 \%$ carbon.
The roll resulting from this mixture contained about $1 \%$ of silicon and $1 \%$
Another mixture, which differed but little from the preceding, was as
ollows:
45\% foundry iron with about $1.3 \%$ silicon and $1.5 \%$ manganese;
$30 \%$ fonndry iron with about $1 \%$ silicon and $1.5 \%$ manganese;
$10 \%$ white or mottled iron with about $0.5 \%$ to $0.6 \% \mathrm{Si}$. and $1.2 \% \mathrm{Mn}$.
$15 \%$ Bessemer steel-rail ends with about $0.35 \%$ to $0.40 \%$ C. and $0.6 \%$ to $1 \% \mathrm{Mn}$. The pig iron ised in the preceding mixtures contained also invariably about. $1.3 \%$ to $1.4 \%$ of that element. The last mixture therefrom carried about. $1.3 \%$ to $1.4 \%$ of that element. The last mixture used produced rolls
containing on the average $0.8 \%$ to $1 \%$ of silicon and $1 \%$ of manganese. Whenever we tried to make those rots $1 \%$ of silicon and $1 \%$ of manganese. Whenmanganese our rolls were invariably of inferior quality gut $0.2 \%$ to $0.3 \%$ sequently softer. Manganese iron cannot be used indiscriminately for foundry purposes. When greater softness is required in the castings manganese has to be avoided, but when hardness to a certain extent has to be obtained manganese iron can be used with advantage.
Manganese decreases the magnetism of the iron. This characteristic increases with the percentage of manganese that enters into the composition of the iron. The iron loses all its magnetism when manganese reaches $25 \%$ of its composition. For this reason manganese iron has to be avoided in castings of dynamo fields and other pieces belonging to electric machinery, where mannetic conductibility is one of the first considerations.
ng that shrinkage depends on -Miliconeep gives a series of curves showmgsting, secreasing as depends on silicon and on the cross-section of the figures arc obtained by inspection of the curves:

|  | Size of Square Bars. |  |  |  |  |  | Size of Square Bars. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2} \mathrm{in}$. | in. | in. | 3 in . | 4 in. |  | $\frac{1}{2} \mathrm{in}$. |  | 2 in. | 3 in . | 4 in . |
|  | Shrinkage, In. per Foot. |  |  |  |  |  | Shrinkage, In. per Foot. |  |  |  |  |
| 1.00 | . 178 | . 158 | . 129 | . 112 | . 102 | 2.50 | . 142 | . 121 | . 091 | . 072 | . 060 |
| 1.50 | . 166 | . 145 | . 116 | . 099 | . 088 | 3.00 | . 130 | . 109 | . 078 | . 058 | . 046 |
| 2.00 | . 154 | . 133 | . 104 | . 086 | . 074 | 3.50 |  | . 097 | . 065 | . 045 | . 032 |

Mr. Keep says. "The measure of shrinkage is practically equivalent to a chemical analysis of silicon. It tells whether more or less silicon is needed to bring the quality of the casting to an accepted standard of excellence."

Strength in Relation to silicon and Crossesection.In castings one half-inch square in section the strength increases as silicon increases from 1.00 to 3.50 ; in castings 1 in . square in section the strength is practically independent of silicon, while in larger castings the strength decreases as silicon increases.

The following table shows values taken from Mr. Keep's curves of the approximate transverse strength of $\frac{1}{3}-\mathrm{in} . \times 12$-in. cast bars of different sizes.

|  | Size of Square Cast Bars. |  |  |  |  |  | Size of Square Cast Bars. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\frac{1}{\frac{1}{2} \mathrm{in} \text {. }}$ | 1 in . | 2 in. | 3 in . | 4 in . |
|  | Strength of a $\frac{1}{2}$-in. $\times 12$-in. Section, lbs. |  |  |  |  |  | Strength of a $\frac{1}{2}-\mathrm{in} . \times 12$-in. Section, lbs. |  |  |  |  |
| 1.00 | 290 | 260 | 232 | 222 | 220 | 2.50 | 392 | 278 | 212 | 190 | 184 |
| 1.50 | 324 | 272 | 228 | 212 | 208 | 3.00 | 426 | 276 | 202 | 180 | 172 |
| 2.00 | 358 | 278 | 220 | 202 | 196 | 3.50 | 446 | 264 | 192 | 168 | 160 |

## Hregular Distribution of Sillcon in Pig Hron.-J. W.

 Thomas (Iron Age, Nov. 12, 1891) finds in analyzing samples takeu from every other bed of a cast of pig iron that the silicon varies considerably, the iron coming first from the furnace having generally the higllest percentage. In one series of tests the silicon decreased from 2.040 to 1713 from the first bed to the eleventh. In another case the third bed had $1.260 \mathrm{Si}_{\mathrm{i}}$, the seventh 1.718 , and the eleventh 1.101. He also finds that the silicon varies in each pig, being higher at the point than at the butt. Some of his figures are: point of pig 2.328 si .. butt of same 2.157 ; point of pig 1.834 , butt of same $1.18 \%$.Some Tests of Cast Mron. (G. Lanza, Trans. A. S. M. E., x., 187.)The chemical analyses were as follows:

|  | Gun Iron, <br> per cent. |
| :--- | :--- | | Comınon Iron, |
| :---: |
| per cent. |

The test specimens were 26 inches long and square in section; those tested with the skin on being very nearly one inch square, and those tested with the skin removed being cast nearly one and one quarter inches square, and afterwards planed down to one inch square.
$\begin{array}{cc}\text { Tensile } \\ \text { Strength. } & \text { Elastic } \\ \text { Limit. }\end{array}$
Modulus of Elasticity.
Unplaned common. 20,200 to 23,000 T. S. Av. $=22,066$
Planed common.... 20,300 to 20,800 " " $=20,520$
Unplaned gun..... 27,000 to 28 ,i75 $"$ " $=28,1 \% 5$
Planed gun
, ,500 to 21,400
29,500 to 31.000
" " $=30,500$
6,500 13.194,233
$\qquad$

The elastic limit is not clearly defined in cast iron, the elongations increasing faster than the increase of the loads from the beginuing of the test. The modulus of elasticity is therefore variable, decreasing as the loads increase. For example, see the results of test of a cast-iron bar on p. 314.
The Strengtho of Cast 耳ron depends on many other things besides its chemical composition. Among them are the size and shape of the casting, the temperature at which the metal is poured, and the rapidity of cooling. Internal stresses are apt to be induced by rapid cooling, and slow cooling tends to cause segregation of the chemical constituents and opening of the grain of the metal, making it weak. The relation of these variable conditious to the strength of cast iron is a complex one and as yet but imperfectly understood. (See "Cast-iron Columms," D. 250.)
The author recommends that in making experiments on the strength of cast iron, bars of several different sizes, such as $1 / 2,1,11 / 2$, and 2 in. square (or round), should be taken, and the results compared. Tests of bars of one size only do not furnish a satisfactory criterion of the quality of the iron of which they are inade. See Trans. A. I. M. E., xxvi., 1017.

## CHEMISTRE OE FOUNDHE HRONS.

(C. A. Meissner, Columbia College Q'ly, 1890 ; Iron Age, 1890.)

Silicon is a very important element in foumdry irons. Its tendeney when not above 21 \% is to cause the carbon to separate out as graphite, giving the casting the desired benefits of graphitic iron. Between $21 / 2 \%$ and $31 / 2 \%$ silicon is best adapted for iron carrying a fair proportion of low silicon scrap and close iron, for ordinarily no mixture should run below $11 / 2 \%$ silicon to get good castings.

From 3\% to 5\% silicon, as occurs in silvery iron, will carry heavy amonnts of scrap. Castings are liable to be brittle, however, if not liandled carefully as regards proportion of serap used.

From 115\% to 2\% silicon is best adapted for machine work; will give strong clean castings if not much serap is used with it.

Below 1\% silicon seems suited for drills and castings that have to stand great variations in temperature.

Silicon has the effect of making castings fluid, strong, and open-grained; also sound, by its tendency to separate the graphite from the total carbon, and consequent slight expansion of the iron on cooling, causing it to fill out thoroughly. Phosphorus, when high, has a tendency to make iron fluid, retain its heat longer, thereby helping to fll out all small spaces in casting. It makes iron brittle, however, when above $3 / 4 \%$ in castings. It is excellent when high to use in a mixture of low-phosphorus irons, up to $11 / 2 \%$ giving good resuits, but, as said before, the casting should be below $3 \% \%$. It has a strong tendency when above $1 \%$ in pig to make the iron less graphitic, preventing the separation of graphite.
Sulphur in open iron seldom bothers the founder, as it is seldom present to any extent. The conditions causing open iron in the furnace cause low sulphur. A little manganese is an excellent antidote against sulphur in the furnace. Irons above $1 \%$ manganese seldom have any sulplur of any consequence.
Graphite is the all-important factor in foundry irons; unless this is present in sufficient amome in the casting, the latter will be liable to be poor. Graphite causes iron to slightly expand on cooling, makes it soft, tongh and fluid. (The statement as to expansion on coling is denied by W. J. Keep.)
Relation of the Appearance of Fracture to the Chemical Composition.-S. H. Chauvenet says when run [from the blast-furnace] the lower bed is almost always close grain, but shows practically the same analysis as the large grain in the rest of the cast. If the iron rums rapidly, the lower bed may have as large grain as any in the cast. If the iron runs rapidly, for, say six beds and some obstruction in the tap-hole causes the seventh bed to fill up slowly and sluggishly, this bed may be close-grain, although the eighth bed, if the obstruction is removed will be open-grain. Neither the graphitic carbon nor the silicon seems to have any influence on the fracture in these cases, since by analysis the graphite and silicon is the same in each. The question naturally arises whether it would not be better to be guided by the analysis than by the fracture. The fracture is a guide, but it is not an infallible guide. Should not the open- and the close-grain iron of the same cast be numbered under the same grade when they hare the same analysis?
Mr. Meissner had many analyses made for the comparison of fracture
with analysis, and unless the condition of furnace, whether the iron ran fast or slow, and from what part of pig bed the sample is taken, are known, the fracture is often very misleading. Take the following analyses :

|  | A. | B. | c. | D. | E. | F. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Silicon.. | 4.315 | 4.818 | 4.270 | 3.328 | 3.869 | 3.861 |
| Sulphur | 0.008 | 0.008 | $0.00 \%$ | 0.033 | 0.006 | 0.006 |
| Graphitic car. . | 3.010 | 2.757 | 2.680 | 2.243 | $3.0 \% 0$ | 3.100 |
| Comb. carbon. |  |  |  |  | 0.108 | 0.096 |

A. Very close-grain iron, clark color, by fracture, gray forge.
B. Open-grain, dark color, by fracture, No. 1.
C. Very close-grain, by fracture, gray forge.
D. Medium-grain, by fracture, No. 2, but much brighter and more open than A, C, or F .
E. Very large, open-grain, dark color, by fracture, No. 1.
F. Very close-grain, by fractme, gray forge.

By comparing analyses $A$ and $B$, or $E$ and $F$, it appears that the closegrain iron is in each case the highest in graphitic carbon. Comparing A and $E$, the graphite is about the same, but the close-grain is highest in silicon.

Analyses of Foundry Hrons. (C. A. Meissner.)
Scotch Irons.

| Name. | Grade. | Silicon. | Plosphorus. | Manganese. | Sul. phur. | Graphite. | Com. Carbon. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Summerlee. | 1 | 2.80 | 0.515 | 1.80 | 0.01 | 3.09 | 0.25 |
| " | 1 | 2.47 | 0.760 | 2.51 | 0.015 |  |  |
| " | 1 | 3.44 | 1.000 | 1. $\% 1$ | 0.015 |  |  |
| " | 2 | $2 . \% 0$ | 0.810 | 2.90 | 0.02 | $\stackrel{3}{3} .00$ | 0.80 |
| Eglinton | 1 | 2.15 | 0.618 | 2.80 | 0.025 | 3.66 | 0.21 |
| Coltness | 1 | 2.59 | 0.840 | 1.70 | 0.010 | 3.75 | 3.75 |
| Carnbroe | 1 | 1.70 | 1.100 | 1.83 | 0.008 | 3.50 | 0.40 |
| Glengarnock | 1 | 3.03 | 1.200 | 2.85 |  |  |  |
| Glengarnock said to carry $2 / 3$ scrap | 2 | 4.00 | 0.900 | 3.41 | 0.010 | 1.78 | 0.90 |

American Scotch Irons.

| No. Sample | Silicon. | Phosphorus. | Mangauese | Sulphur. | No. Grade. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.00 | 0.430 | 1.00 | ... ...... | 1 |  |
| 2 | 1.67 | 1.920 | 1.90 |  |  | casting. |
| 3 | 2.40 | 1.000 | 1. ${ }^{1} 0$ |  | $\ddot{\square}$ |  |
| 4 | 1.28 | 0.690 | 1.40 |  | $\stackrel{2}{2}$ | ....... ... |
| $5 a$ | 3.50 | 0.61.3 | 3.51 |  | 1 | $\cdots$ |
| ${ }_{6}^{50}$ | 2.90 | 0.133 1.000 | 1.40 1.40 | 0.015 | 1 | casting. |
| $6{ }^{6}$ | 3.35 | 1.300 | 1.50 | 0.012 | 1 |  |
| 7 | 3.68 | 0.503 | 2.96 |  | 1 |  |

[^11]No. 3. Formerly a famous Ohio Scotch brand, not now in the market Made mainly from black-band ore.
No. 4. A good Ohio Scotch, very soft and fluid; made from black-band ore-mixture.

Nos. $5 a$ and $5 b$. Brier Hill Scotch iron and casting; made for stove purposes; 350 lbs . of iron used to 150 lbs . scrap gave very soft fluid iron; worked well.

No. $6 \alpha$. Shows comparison between Summerlee (Scotch) ( $6 a$ ) and Brier Hill Scotch (6b). Drillings came from a Cleveland foundry, which found both irons closely alike in physical and working quality.

No. r'. One of the best southern brands, very hard to compete with, owing to its general qualities and great regularity of grade and general working.

Machine Irons.

| $\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$ | Silicon. | Phosphorus. | Manga. nese. | Sulphur. | Graphite. | Comb. Carbon. | $\begin{aligned} & \text { Grade } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 2.80 | 0.492 | 0.61 | 0.015 |  |  | 1 |
| 9 | 1.30 | 0.262 | 0.70 | 0.030 |  |  | 3 |
| $10 a$ | 2.66 | 0.770 | 1.20 | 0.020 | 2.51 |  | 2 |
| 103 | 3.63 | 0.411 | 1.25 | 0.014 | 3.05 |  | 1 |
| 11 | 2.10 | 0.415 | 0.60 | 0.050 |  |  | 2 |
| 12 | 1.37 | 0.294 | 1.51 | 0.080 | 2.31 | 0.78 | 2 |
| 13 | 3.10 | 0.124 | trace | 0.021 | ...... ... |  | 2 |
| 14 | 2.12 | 0.610 | 0.80 |  |  |  |  |
| 15 | 1.70 | 0.639 | 1.60 |  |  |  |  |
| $16 a$ | 1.45 | 0.470 | 1.25 | 0.009 |  |  | 2 |
| 16 b | 1.40 | 0.316 | 1.37 | 0.008 |  |  |  |
| 17 | 3.26 | 0.426 | 0.25 |  |  |  | 1 |
| 18 | 0.80 | 0.164 | 0.90 | 0.015 |  |  | 1 |

Description of Samples.-No. 8. A famous Southern brand noted for fine machine castings.
No. 9. Also a Southern brand, a very good machine iron.
Nos. $10 a$ and $10 b$. Formerly one of the best known Ohio brands. Does not shrink; is very fluid and strong. Foundries having used this have reported very favorably on it.

No. 11. Iron from Brier Hill Co., made to imitate No. 3 ; was stronger than No. 3; did not pull castings: was fluid and soft.
No. 12. Copy of a very strong English machine iron.
No. 13. A Pennsylvania iron, very tough and soft. This is partially Bessemer iron, which accounts for strength, while high silicon makes it soft.
No. 14. Castings made from Brier Hill Co.'s machine brand for scale works, very satisfactory, strong, soft and fluid.
No. 15. Castings made from Brier Hill Co.'s one half machine brand, one half Scotch brand, for scale works, castings desired to be of fair strength, but very fluid and soft.
No. 16a. Brier Hill machine brand made to compete with No. 3.
No. 16b. Castings (clothes-hooks) from same, said to have worked badly, castings being white and irregular. Analysis proved that some other iron too high in manganese had been used, and probably not weiì mixed.
No. 17. A Pennsylvania iron, no shrinkage, excellent machine iron, soft and strong.
No. 18. A very good quality Northern charcoal iron.

## 'Standard Grades, of the Brier Hill Hron and Coal Company.

Brier Hill Scotch Iron.-Standard Analysis, Grade Nos. 1 and 2.

| Silicon | 2.00 to 3.00 |
| :---: | :---: |
| Phosphorus. | 0.50 to 0.75 |
| Manganese. | 2.00 to 2.50 |

Used successfully for scales, mowing-machines, agricultural implements, novelty hardware, sounding-boards, stoves, and heavy work requiring no special strength.
Brier Hill Silvery Iron.-Standard Analysis, Grade No. 1.
Silicon
Phosphorus. ........................................... . .... . . 1.00 to 1.50
Manganese
2.00 to 2.25

Used successfully for hollow-ware, car-wheels, etc., stoves, bumpers, and similar work, with heavy amounts of scrap iu all cases. Should be mainly used where fluidity and no great strength is required, especially for heavy work. When used with scrap or close pig low in phosphorus, castings of considerable strength and great fluidity can be made

Fairly Heavy Muchine Iron.-Stundard Analysis, Grade No. 1.
Silicon
1.75 to 2.50

Phosphorus
0.50 to 0.60

Manganese
1.20 to 1.40

The best iron for machinery, wagon-boxes, agricultural implements, pump-works, hardware specialties, lathes, stoves, etc., where no large amounts of scrap are to be carried, and where strength, combined with great fluidity and softness, are desired. Should not have much scrap with it.

> Regular Machine Iron.-Standard Analysis, Grade Nos. 1 and 2.
> Silicon
> 1.50 to 2.00
> Phosphorus
> 0.30 to 0.50
> Manganese
> 0.80 to 1.00

Used for liardware, lawn-mowers, mower and reaper works, oil-well machinery, drills, fine machinery, stoves, etc. Excellent for all small fine castings requiring fair fluidity, softness, and mainly strength. Cannot be well used alone for large castings, but gives good results on same wheu used with above-mentioned heavy machine grade; also when nsed with the Scotch in right proportion. Will carry but little scrap, and should be used alone for good strong castings.

For Axles and Materials Requiring Great Strength, Grade No. 2.


This gave excellent results.
A good neutral iron for guns, etc., will run about as follows
Silicon
1.00

Phosphorus 0.25

Sulphur. 0.20

Manganese....................... .................................. none.
It should be open No. 1 iron.
This gives a very tough, elastic metal. More sulphur would make tough but decrease elasticity.
For fine castings demanding elegance of design but no strength, phosphorus to $3.00 \%$ is good. Can also stand $1.50 \%$ to $2.00 \%$ manganese. For work of a hard, abrasive character manganese can run $2.00 \%$ in casting.

Analyses of Castings.

| Sample No. | Silicon. | Phosphorus. | Manganese | Sulphur. | Graplite. | Comb. Carbon. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 2.50 | 1.400 | 2.20 |  |  |  |
| 32 | 0.85 | 0.351 | 0.92 | 0.030 |  |  |
| 33 | 1.53 | 0.327 | 1.08 | 0.040 | 3.10 | 0.58 |
| $34 a$ $34 b$ | ${ }_{2}^{1.84}$ | ${ }_{0}^{0.577}$ | 1.04 1.10 |  |  |  |
| 34 c | 2.50 | 1.208 | 1.16 |  |  |  |
| 35 a | 2.80 | 0.418 | 0.54 |  |  |  |
| $35 b$ | 3.10 | 1.280 | 1.14 |  |  |  |
| 35c | 3.30 | 0.879 | 0.80 |  |  |  |
| 35 l | 2.88 | 0.408 | 1.10 |  |  |  |
| 35 e | 4.50 | 0.660 | 0.78 |  |  |  |
| 36 <br> 37 | 3.43 <br> 2.68 | 1.439 0.900 | 0.90 1.30 | 0.025 |  |  |
| 376 | 1.90 | 0.980 | 1.20 | ...... | ...... |  |

No. 31. Sewing-machine casting, said to be very fluid and good casting. This is an odd analysis. I should say it would have been too hard and brittle, yet no complaint was made.
No. 32. Very good machine casting, strong, soft, no shrinkage.
No. 33. Drillings from an annealer-box that stood the heat very well.
No. 34a. Drillings from door-hinge, very strong and soft.
No. 34b. Drillings from clothes-hooks, tough and soft, stood severe hammering.
No. $34 c$. Drillings from window-blind hinge, broke off suddenly at light strain. Too high phosphorus.
No. 35 a. Casting for heavy ladle support, very strong.
Nos $35 b$ and 35 . Broke after short usage. Phosplorus too high. Carbumpers.
No. 35d. Elbow for steam heater, very tough and strong.
No. 36. Cog-wheels, very good, shows absolutely no shrinkage.
No. 37. Heater top network, requiring fluidity but no strength.
No. 3ra. Gray part of above.
No. $37 b$. White, honeycombed part of above. Probably bad mixing and got chilled suddenly.

## STRENGTH OE CAST IRON.

Rankine gives the following figures:

$$
\begin{array}{lrrrr}
\text { Various qualities, T. S...... } & 13,400 \text { to } & 29,000, & \text { average } & 16,500 \\
\text { Compressive st rength...... } & 8 *, 000 \text { to } & 145,000, & \text { " } & 11,500 \\
\text { Modulus of elasticity...... } & 14,000,000 \text { to } 22,900,000, & \text { " } & 17,000,000
\end{array}
$$

Specific Gravity and Strengtla. (Major Wade, 1856.)
Third-class guns: Sp. Gr. 7.08 T. 'T. S. 20,148 . Another lot: least Sp. Gr. \%.163, T. S. 22,402.

Second-class guns: Sp. Gr. \%.154, T. S. 24,\%67. Another lot: mean Sp. Gr. $7.30 \div$ T. S. $27,232$.
First class guns: Sp. Gr. 7.204, T. S. 28,805. Another lot. greatest Sp. Gr. 7.402, T. S. 31,027.

Strength of Charcoal Pig Hron. - Pig iron made from Salisbury ores, in fumaces at Wassaic and Millerton, N. Y., has shown over $40,000 \mathrm{lbs}$. T. S. per square inch, one sample giving 42,281 lbs. Muirkirk, Md., iron tested at the Washington Navy Yard showed: average for No. 2iron, 21,601 lbs.; No. $3,23,959 \mathrm{lbs}$; No. $4,41,3: 9 \mathrm{lbs}$; average density of No. $4,7.336$ (J. C. I. W., v. p. 44.$)$

Nos. 3 and 4 charcoal pig iron from Chapinville. Conn., showed a tensile strength per square inch of from $34,761 \mathrm{lbs}$. to $41,882 \mathrm{lbs}$. Charcoal pig iron from Shelby, Ala. (tests made in Aurust, 1891), showed a strength of $34,800 \mathrm{lbs}$. for No. 3 ; No. 4, 39,675 lbs.; No. 5, $46,450 \mathrm{lbs}$; and a mixture of equal parts of Nos. 2, 3, 4, and 5, 41.470 lbs. (Bull.I. \& S. S. A.)
Variation of Density and Tenacity of Gum-irons.-An increase of density invariably follows the rapid cooling of cast iron, and as a general rule the tenacity is increased by the same means. The tenacity generally increases quite uniformly with the density, mutil the latter ascends to some given point; after which an increased density is accompanied by a diminished tenacity.
The turning-point of density at which the best qualities of gun-iron attain their maximmm tenacity appears to be about 7.30 . At this point of density, or near it, whether in proof-bars or gun-heads, the tenacity is greatest.
Ass the density of iron is increased its liquidity when melted is diminished. This causes it to congeal quickly, and to form cavities in the interior of the casting. (Pamphlet of Builders' Iron Foundry, 1893.)

## Specifications for Cast Tron for the World's Fair Build-

 fings, 1892 . - Wxcept where chilled iron is specified, all castings shall be of tough gray iron, free from injurious cold-shuts or blow-holes, true to pattern, and of a workmanlike finish. Sample pieces 1 in . square, cast from the same heat of metal in sand monlds, shall be capable of sustaining on a ciear span of 4 feet 6 inches a central load of 500 lbs . when tested in the rougn dar.Specifications for Tests of Cast Hron in $1 \mathbf{2}^{\prime \prime}$ B. L. Mortars. (Pamphlet of Builders Iron Foundry, 1893.)-Charcoal Gun Iron.-The tensile srrength of the metal must average at each end at least 30,000 lbs. per square inch; no specimen to be over $37,000 \mathrm{lbs}$. per square inch; but one specimen from each end may be as low as 28,000 lbs. per square inch. The
long extension specimens will not be considered in making up these aver-ages, but must show a good elongation and an ultimate strength, for each specimen, of not less than $24,000 \mathrm{lbs}$. The density of the metal must be such as to indicate that the metal has been sufficiently refined, but not carried s@ high as t-, impair the other qualities.
Specifications for Grading Pig Iron for Car ovheels by Chill Tests made at the Furnace. (Penna. R. R. Specifications, 1883.) - The chill cup is to be filled, even full, at about the middle of every cast from the furnace. The test-piece so made will be 71/2 inches long, $31 / 2$ inches wide, and $13 / 4$ inches thick, and is to be broken across the centre when entirely cold. The deptlo of chill will be shown on the bottom of the testpiece, and is to be measured by the clean white portion to the point where gray specks begin to show in the white. The grades are to be by eighths of an inch, viz., $1 / 8,1 / 4,3 / 8,1 / 2,5 / 3,3 / 4,7 / 8$, etc., until the iron is mottled; the lowest grade being $1 / 8$ of an inch in depth of chill. The pigs of each cast are to be marked with the depth of chill shown by its test-piece, and each grade is to be kept by itself at the furnace and in forwarding.

Mixture of Cast Hron with Steel.-Car wheels are sometimes made from a mixture of charcoal iron, anthracite iron, and Bessemer steel. The following shows the tensile strength of a number of tests of wheel mixtures, the average tensile strength of the charcoal iron used being $2:, 000 \mathrm{lbs} .:$


Cast Tron Partially Bessemerized.-Car wheels made of partially Bessemerized iron (blown in a Bessemer converter for $31 / 2$ minntes), chilled in a chill test mould over an inch deep, just as a test of cold blast charcoal iron for car wheels would chill. Car wheels made of this blown iron have run $: 500,000$ miles. (Jour.C. I. W., vl. p. 7T.)

Bad Cast Iron.-On October 15, 1891, the cast-iron fly-wheel of a large pair of Corliss engines belonging to the Amoskeag Mfg. Co., of Manchester, N. H., exploded from centrifugal force. The fly-wheel was 30 feet diameter and 110 inches face, with one set of 12 arms , and weighed $116,000 \mathrm{lbs}$. After the accident, the rim castings, as well as the ends of the arms, were found to be full of flaws. caused chiefly by the drawing and shrinking of the metal. Specimens of the metal were tested for tensile strengtli, and varied flom $15,000 \mathrm{lbs}$. per square inch in sound pieces to 1000 lbs in spongy ones. None of these flaws showed on the surface, and a rigid examination of the parts before they were erected failed to give any cause to suspect their true nature. Experiments were carried on for some time after the accident in the Amoskeag Company's foundry in attempting to duplicate the flaws, but with $n o$ success in approaching the badness of these castings.

## MALHEABLE CAS'IRON.

Malleableized cast iron, or malleable iron castings, are castings made of ordinary cast iron which have been subjected to a process of decarbonization, which results in the production of a crude wrought iron. Handles, latches, and other similar articles, clieap harness mountings, plowshares, iron handles for tools, wheels, and pinions, and many small parts of machinery, are made of malleable cast iron. For such pieces charcoal cast iron of the best quality (or other iron of similar chemical composition), should be selected. Coke irons low in silicon and sulphur have bren used in place of charcoal irons. The castings are made in the usual way, and are then imbedded in oxide of ircn, in the form, usually, of hematite ore, or in peroxide of manganese, and exposed to a full red-heat for a sufficient length of time, to insure the nearly complete removal of the carbon. This decarbonization is conducted in cast-inon boxes, in which the articles, if small, are packed in alternate layers with the decarbonizing material. The largest pieces require the longest time. The fire is quickly raised to the maximum temperature, but at the close of the process the furnace is coolod very slowly. The operation requires from three to five days with ordinary small castings, and may take two weeks for large pieces.

## Rules for Use of Malleable Castings, by Committee of Master Carbuilders' Ass'ıl, 1890.

1. Never run abruptly from a heavy to a light section.
2. As the strength of malleable cast iron lies in the skin, expose as much surface as possible. A star-shaped section is the strongest possible from which a casting can be made. For brackets use a number of thin ribs instead of one thick one.
3. Avoid all round sections; practice has demonstrated this to be the weakest form. Avoid sharp angles.
4. Shrinkage generaily in castings will be $3 / 16$ in. per foot.

Strengtir of Praileable Cast Tron.-Experiments on the strength of malleable cast iron, made in 1891 by a committee of the Master Carbuilders' Association. The strength of this metal varies with the thickness, as the following results on specimens from $1 / 4 \mathrm{in}$. to $11 / 2 \mathrm{in}$. in thickness show:

| Dimensions. |  | Tensile Strength. | Elongation. | Elastic Limit. |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{in}_{1.5: ~ b y}$ | in. | lb. per sq. in. | per cent in 4 in . | lb, per sq. in. |
| 1.52 - | . 39 | 33,600 |  | $\stackrel{21,100}{15}$ |
| 1.53 '6 | . 5 | 33, 300 | 2 | 15,200 |
| 1.53 " | . 64 | 32,100 | 2 | 17,000 19,400 |
| 2. " | . 8 | 25,100 |  | 15,400 |
| 1.54 " | . 88 | 33,600 | 11/2 | 15,400 19,300 |
| 1.06 " | 1.02 | 30,600 | 1 | 17,600 |
| 1.28 " | 1.3 | 27, 400 | 1 | 17,000 |
| $1.5{ }^{\text {? }}$ " ${ }^{\text {c }}$ | 1.54 | 28,200 | 11/3 |  |

The low ductility of the metal is worthy of notice. The committee gives the following table of the comparative tensile resistance and ductility of malleable cast iron, as compared with other materials:

 \left\lvert\, | Ultimate |
| :---: |
| Strength, |
| li. per sq. in | | Comparative |
| :---: |
| Strength; |
| Cast Iron |
| $=1$. |$\quad$| Elongation |
| :---: |
| Per Cent |
| in 4 in. |$\quad$| Comparative |
| :---: |
| Ductility; |
| Malleable |
| Cast Iron |
| $=1$. |\right.

Another series of tests, reported to the Association in 1892, gave the
following:

| Thickness. | Width. | Area. | Elastic Limit. | Ultimate Strength. | Elongation ill 8 in. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{in}_{2}$ | in. | sq in. | lb. per sq. | 1b. per sq. in. | per cent. |
| . 271 | $\stackrel{2}{2.81}$ | .615 | 23.520 | 32,620 | 1.5 |
| . 39 | 2.88 | 1.8145 | $\xrightarrow{20,650}$ | 28,160 | . 6 |
| . 41 | 2.79 | 1.144 | $\stackrel{2}{20,230}$ | 32,060 28.850 | 1.5 |
| . 599 | 2.76 | 1.46 | 19,520 | 2\%,875 | 1.1 |
| . 661 | 2.81 | 1.857 | 18,840 | 25,700 | 1.7 |
| . 8 | 2.76 | 2.08 | 18.390 | 25,120 | 1.1 |
| 1.025 | 2.82 | $\stackrel{2}{2} 890$ | 18,220 | 28,720 | 1.5 |
| 1.117 | ${ }^{2} .81$ | 3.138 | 17,050 | 25,510 | 1.3 |
| 1.021 | 2.80 | 2.879 | 18,410 | 26,950 | 1.3 |

## WROUGHTERON.

Infinence of Chemical Composition on the Properties of Wrought Iron. (Beardslee on Wrought Iron and Chain Cables. Abridgement by W. Kent. Wiley \& Sons, 18\%.)-A series of 2000 tests of specimens from 14 brands of wrought iron, most of them of high repute, was made in $18 \%$ by Capt. L. A. Beardslee, U.S.N., of the United States Testing Board. Forty-two chemical analyses were made of these irons, with a view to determine what influence the chemical composition had upon the strength, ductility, and welding power. From the report of these tests by A. L. Holley the following figures are taken :

| Brand. | Average Tensile Strength. | Chemical Composition. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S. | P. | Si. | C. | Mn. | Slag. |
| L | 66,598 | trace | $\{0.065$ | 0.080 | 0.212 | 0.005 | 0.192 |
|  |  |  | $\{0.084$ | 0.105 | 0.512 | 0.029 | 0.458 |
| P | 54,363 | $\left\{\begin{array}{l}0.009 \\ 0.001\end{array}\right.$ | 0.250 | 0.182 0.028 0 | ${ }_{0}^{0.033}$ | 0.0 .33 0.009 | 0.818 |
| B | 52,764 | 0.008 | 0.231 | 0.156 | 0.015 | 0.017 |  |
| J | 51, 254 | $\left\{\begin{array}{l}0.003\end{array}\right.$ | 0.140 | 0.182 | 0.027 | trace | $0.6 \% 8$ |
| J | 51,.54 | \{ 0.005 | 0.291 | $0.3 \because 1$ | 0.051 | 0.053 | 1.724 |
| 0 | 51,134 | $\left\{\begin{array}{l}0.004 \\ 0.005\end{array}\right.$ | 0.067 | 0.065 | 0.045 | 0.007 | 1.168 |
| C | 50,665 | 0.007 | 0.169 | 0.154 | 0.042 | 0.021 | 0.9،4 |

Where two analyses are given they are the extremes of two or more analyses of the brand. Where one is given it is the only analysis. Brand L should be classed as a puddled steel.

Order of Qualities Graded from No. 1 to No. 19.

| Brand. | Tensile <br> Strength. | Reduction <br> of Area. | Elongation. | Welding Power, |
| :---: | :---: | :---: | :---: | :--- |
| L | 18 | 18 | 19 | most imperfect. |
| P | 6 | 6 | 3 | badly. |
| B | 12 | 16 | 15 | best. |
| J | 16 | 19 | 18 | rather badly. |
| O | 18 | 1 | 4 | very good. |
| C | 19 | 12 | 16 |  |

The reduction of area varied from 54.2 to 25.9 per cent, and the elongation from 29.9 to 8.3 per cent.

Brand O, the purest iron of the series, ranked No. 18 in tensile strength, but was one of the most ductile; brand B, quite innpure, was below the average both in strength and ductility, but was the best in welding power; $P$, also quite impure, was one of the best in every respect except welding, while L, the highest in strength, was not the most pure, it had the least ductility, and its welding power was most imperfect. The evidence of the influence of chemical composition upon quality, therefore, is quite contradictory and confusing. The irons differing remarkably in their mechanical properties, it was found that a much more marked influence upon their qualities was caused by different treatment in rolling than by differences in composition.
In regard to slag Mr. Holley says: "It appears that the smallest and most worked iron often has the most slag. It is hence reasonable to conclude that an iron may be dirty and yet thoroughly condensed."
In his summary of "What is learned from chemical analysis," he says: "So far, it may appear that little of use to the makers or users of wronght iron has been learned. $\qquad$ icated on the analyses of the materials; that of wrought iron is altered by subtle and unobserved causes."
Influence of Reduction in Rolling from Pile to Bar on
the Strength of Wrought Eron. - The tensile strength of the irons used in Beardslee's tests ranged from 46,000 to $62,700 \mathrm{lbs}$. per sq. in., brand L. which was really a steel. not being considered. Some specimens of $L$ gave figures as high as $70,000 \mathrm{lbs}$. The amount of reduction of sectional
area in rolling the bars has a notable influence on the strength and elastic limit; the greater the reduction from pile to bar the higher the strength.
The following are a few figures from tests of one of the brands:

| Size of bar, in. diam. | 4 | 3 | 2 | 1 | $1 / 2$ | $1 / 4$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Area of pile, sq. in.: | 80 | 80 | 72 | 25 | 9 | 3 |
| Bar per cent of pile: | $15, \%$ | 8.83 | 4.36 | 3.14 | 2.17 | 1.6 |
| Tensile strength, lb.: | $46,3,22$ | 47,661 | 48,280 | 51,128 | 52,275 | 59,585 |
| Elastic limit, lb.: | 23,430 | 26,400 | 31,892 | 36,467 | 39,126 | - |
|  |  |  |  |  |  |  |

Specifications for Wrought Iron (F. H. Lewis, Engineers' Club of Philadelphia, 1891).-1. All wrought iron must be tough, ductile, fibrous, and of uniform quality for each class, straight, smooth, free from cinderpockets, flaws, buckles, blisters, and injurious cracks along the edges, and must have a workmanlike finish. No specific process or provision of manufacture will be demanded, provided the material fulfils the requirements of these specifications.
2. The tensile strength, limit of elasticity, and ductility shall be determined from a standard test-piece not less than $1 / 4$ inch thick, cut from the full-sized bar, and planed or turned parallel. The area of cross-section shall not be less than $1 / 2$ square inch. The elongation shall be measured after breaking on an original length of 8 inches.
3. The tests shall show not less than the following results:

For bar iron in tension...... T. $\mathrm{S}_{6}=50,003$; E. L. $=26,000$; E. L. in 8 in., 18\%


4. When full-sized tension members are tested to prove the strength of their connections, a reduction in their ultimate strength of $(500 \times$ width of bar) pounds per square inch will be allowed.
5. All iron shall bend, cold, 180 degrees around a curve whose diameter is twice the thickness of piece for bar iron, and three times the thickness for plates and shapes.
6. Iron which is to be worked hot in the manufacture must be capable of bending sharply to a right angle at a working heat without sign of
fracture.
7. Specimens of tensile iron upon being nicked on one side and bent shall show a fracture nearly all fibrous.
8. All rivet iron must be tough and soft, and be capable of bending cold until the sides are in close contact without sign of fracture on the convex
side of the curve.

## Ponna. R. R. Co.'s Specifications for Merchant-bar Iron

 (1902). -One bar will be selected for test from each 100 bars in a pile. All the iron of one size in the shipment will be rejected if the average tensile strength of the specimens representing it falls below $47,000 \mathrm{lbs}$. or exceeds $53,000 \mathrm{lbs}$. per sq. in., o1 if. any single specimens show less than 45,000 lbs. per sq. in.In the case of flat bars which have to be reduced in width for test an allowance of $1,000 \mathrm{lbs}$. per sq . in. will be made, making the rejection limit $46,000 \mathrm{lbs}$. per sq. in. All the iron of one size in the slipment will be rejected if the average elongation in 8 ins. falls below the following limits: Rounds, $1 / 2 \mathrm{in}$, and over, $20 \%$; less than 16 in., $16 \%$. Flats pulled as rolled. $20 \%$; flats reduced, 16\%.
Nicking and Bending Tests - When necessary to make nicking and bending tests the iron will be held firmly in a vise, nicked lightly on one side and then broken by a succession of light blows on the nicked side. It must when thus broken show a generally fibrous structure, not more than $25 \%$ crystalline, and must he free from admixture of steel.
Stay-bolt Iron. (Penna. R. R. Co.'s specifications, 1900.)-Sample bar's must show a tensile strength of not less than $48,000 \mathrm{lbs}$. per sq. in. and an elongation of not less than $\because 5 \%$ in 8 ins. One piece from each lot will be threaded in dies with a sharp $V$ thread, 12 to 1 in . and firmly screwed through two holders having a clear space between them of 5 ins. Onc holder will be rigidly secured to tre bed of a suitable machine and the other vibrated at right angles to the axis over a space of $1 / 4 \mathrm{in}$. or $1 / 8 \mathrm{in}$. each side of the centre line. Aceeptable iron should stand 2,200 double vibrations before breakage.

Specifications for wrowght ron for the World's Fair Buildings. (Eng'g News, Harch 26, 159\%.)-All iron to be used in the tensile members of open trusses, laterals, pins and bolts, except plate iron over 8 inches wide, and shaped iron, must show by the standard test-pieces a tensile strength in lbs. per square iuch of :

$$
52,000-\frac{\tau, 000 \times \text { area of original bar in sq. in. }}{\text { circumference of original bar in inches }},
$$

with an elastic limit not less than half the strength given by this formula, and an elongation of $20 \%$ in 8 in .

Plate iron 24 inches wide and under, and more than 8 inches wide, must show by the standard test-pieces a tensile strength of $48,000 \mathrm{lbs}$. per sq in. with an elastic limit not less than $26,000 \mathrm{lbs}$. per square inch, and an elongation of not less than $1 \% \%$. All plates over $\boldsymbol{a} 4$ inches in width must have a tensile strength not less than $46,000 \mathrm{lbs}$. with an elastic limit not less than $26,000 \mathrm{lbs}$. per square inch. Flates from 24 inches to 36 inches in width mlist have an elongatton of not less than $10 \%$; those from 36 inches to 48 inches in width, $8 \%$; over 48 inches in width. $5 \%$.

All shaped iron, flanges of beams and channels, and other iron not hereinbefore specified, must show by the standard test-pieces a tensile strength in lbs. per square inch of :

$$
50,000-\frac{7,000 \times \text { area of original bar }}{\text { circumference of original bar }}
$$

with an elastic limit of not less than half the strength given by this formula, and an elongation of $15 \%$ for bars $5 / 8$ inch and less in thickness, and of $12 \%$ for bars of greater thickness. For webs of beams and clannels, specifications for plates will apply.

All rivet iron must be tough and soft, and pieces of the full diameter of the rivet must be capable of bending cold, until the sides are in close contact, without sign of fracture on the convex side of the curve.

Stay-bolt Iron.-Mr. Vauclain, of the Baldwin Locomotive Works, at a nleeting of the American Railway Master Mlechanics' Association, in 1892, says: Many advocate the softest iron in the market as the best for stay-bolts. He believed in an iron as hard as was consistent with heading the bolt nicely. The higher the tensile strength of the iron, the more vibrations it will stand, for it is not so easily strained beyond the yield-point. The Baldwin specifications for stay-bolt iron call for a tensile strength of 50,000 to $52,000 \mathrm{lbs}$. per square inch, the upper figure being preferred, and the lower being insisted upon as the minimum.

## FORMULIE FORE UNE'E STRATNS FOER IRON AND STEELIN STRUCRURES.

(F. H. Lewis, Engineer's' Club of Philadelphia, 1891.)

The following formulæ for unit strains per square inch of net sectional area shall be used in determining the allowable working stress in each member of the structure. (For defiuitions of soft and medium steel see Specifications for Steel.)

Tension Membors.

|  | Wrought Iron. | Soft Steel. | Medium Steel. |
| :---: | :---: | :---: | :---: |
| Floor-beam hangers or suspenders, forged bars Counter-ties............ | Will not be used 6000 | Will not be used | $\begin{aligned} & 7000 \\ & 7000 \end{aligned}$ |
| Suspenders, hangers and counters, riveted members, net section <br> Solid rolled beans... | $5000$ | $\begin{aligned} & 5500 \\ & 8000 \end{aligned}$ | $\begin{gathered} 7000 \\ \text { Will not be used } \end{gathered}$ |
| Riveted truss members and tension Hanges of girders, net section | $7000\left(1+\frac{\min .}{\max .}\right)$ | 8\% greater than iron | $9000\left(1+\frac{\text { min. }}{111 a x .}\right)$ |
| Forged eyebars...... | Will not be used | Will not be used | $9000\left(1+\frac{\text { min }}{\max }\right.$ ) |
|  | 15,000 | 16,000 | $\binom{$ For eyebars }{ only, 17,000} |


| Shearing. |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Wrought Iron. | Soft Steel. | Medium Steel. |
| On pins and shop rivets On field rivets. <br> In webs of girders. | Will $\begin{gathered}6000 \\ 4800 \\ \text { not be used }\end{gathered}$ | $\begin{aligned} & 6600 \\ & 5200 \\ & 5000 \end{aligned}$ | Will not be used 6000 |

Bearing.

|  | Wrought Iron. | Soft Steel. | Medium Steel. |
| :---: | :---: | :---: | :---: |
| On projected semiintrados of main-pin holes | 12,000 | 13,200 | 14,500 |
|  |  |  |  |
| On projected semi-intrados of rivet-holes* | 12,000 |  |  |
|  |  | 13,200 | $\begin{aligned} & 14,500 \\ & 18,000 \end{aligned}$ |
| On lateral pins <br> Of bed-plates on masonry | 15,000 | 16,500 |  |
|  | 250 lbs. per ${ }^{\text {sq. in. }}$ |  |  |

[^12]
## Bending.

On extreme fibres of pins when centres of bearings are considered as points of application of strains:

Wrought Iron, 15,000. Soft Steel, 16,000. Medium Steel, 17,000.

## Compression Members.



In which formulæ $l=$ length of compression member in inches, and $r=$ least radius of gyration of member in inches. No compression member shall have a length exceeding 45 times its least width, and no post should be used in which $l \div r$ exceeds 125.
Members Subject to Alternate Tension and Compression.

|  | Wrought Iron. | Soft Steel. | Medium Steel. |
| :---: | :---: | :---: | :---: |
| For compression only... <br> For the greatest stress. | Use the formulæ above $000\left(1-\frac{\text { max. lesser }}{2 \text { max. greater }}\right)$ | $8 \%$ greater than iron | $20 \%$ greater than iron |

[^13]W. H. Burr, discussing the formulæ proposed by Mr. Lewis, says: "Taking the results of experiments as a whole, I am constrained to believe that they indicate at least $15 \%$ increase of resistance for soft-steel columns over those of wrought iron, with from $20 \%$ to $25 \%$ for medium steel, rather than $10 \%$ and $20 \%$ respectively.
"The higll capacity of soft steel for enduring torture fits it eminently for alternate and combined stresses, and for that reason I would give it $15 \%$ increase over iron, with about $22 \%$ for medium steel.
"Shearing tests on steel seem to show that $15 \%$ and $22 \%$ increases, for the two grades respectively, are amply justified.
"I should not hesitate to assign $15 \%$ and $22 \%$ increases over values for iron for bearing and bending of soft and medium steel as being within the safe limits of experience. Provision should also be made for increasing pinshearing, bending and bearing stresses for increasing ratios of fixed to moving loads"
IFIaximum Permissible Stresses in Structural Materials usedin Buildings. (Building Ordinances of the City of Chicago, 1893.) Cast iron, crushing stress: For plates, 15,000 lbs. per square inch; for lintels, brackets, or corbels, compression $13,500 \mathrm{lbs}$. per square inch, and tension 3000 lbs. per square inch. For girders, beams, corbels, brackets, and trusses, $16,000 \mathrm{lbs}$. per square inch for steel and $12,000 \mathrm{lbs}$. for iron.
For plate girders :
$$
\text { Flange area }=\frac{\text { maximum bending moment in } \mathrm{ft} .-\mathrm{lbs} .}{C D}
$$
$D=$ distance between centre of gravity of flanges in feet.

$C=\left\{\begin{array}{l}13,500 \text { for steel. } \\ 10,000 \text { for iron. }\end{array}\right.$

$$
\text { Web area }=\frac{\text { maximum shear }}{C} . C=\left\{\begin{array}{l}
10,000 \text { for steel, } \\
6,000 \text { for iron. }
\end{array}\right.
$$

For rivets in single shear per square inch of rivet area:

|  | Steel. | n. |
| :---: | :---: | :---: |
| If shop-driven. | 9000 lbs . | lbs. |
| If field-driven | 7500 | 6000 |

For timber girders :

$$
\left.\begin{array}{rl}
s=\frac{c b d^{2}}{l} . & \begin{array}{l}
d \\
l
\end{array}=\text { depth of beam in inchesth of beam in feet. }
\end{array}\right]\left\{\begin{array}{l}
160 \text { for long-leaf yellow pine } \\
120 \text { for oak, } \\
100 \text { for white or Norway pine. }
\end{array}\right.
$$

Proportioning or Materials in the Memphis Bridge (Geo. S. Morison, Trans. A. S. C. E., 1893)-The entire superstructure of the Memphis bridge is of steel and it was all worked as steel, the rivet-holes being drilled in all principal members and punched and reamed in the lighter members.

The tension members were proportioned on the basis of allowing the dead load to produce a strain of $20,000 \mathrm{lbs}$. per square inch, and the live load a strain of $10,000 \mathrm{lbs}$. per square inch. In the case of the central span, where the dead load was twice the live load, this corresponded to $15,000 \mathrm{lbs}$. total surain per square inch, this being the greatest tensile strain.
The compression members were proportioned on a somewhat arbitrary basis. No distinction was made between live and dead loads. A maximum strain of $14,000 \mathrm{lbs}$. per square inch was allowed on the chords and other large compression members where the length did not exceed 16 times the least transverse dimension, this strain being reduced 750 lbs . for each additional unit of length. In long compression members the maximum length was limited to 30 times the least transverse dimension, and the strains limited to $6,000 \mathrm{lbs}$. per square inch, this amount being increased by 200 lbs . for each unit by which the length is decreased.
Wherever reversals of strains occur the member was proportioned to resist the sum of compression and tension on whichever basis (tension or conpression) there would be the greatest strain per square inch; and, in addition, the net section was proportioned to resist the maximum tension, and the gross section to resist the maximum compression.
The fioor beams and girders were calculated on the strain being limited to $10,000 \mathrm{lbs}$. per square inch in extreme fibres. Rivet-holes in cover-plates and flanges were deducted.

The rivets of steel in drilled or reamed holes were proportioned on the basis of a bearing strain of $15,000 \mathrm{lbs}$. per square inch and a shearing strain of reou lbs. per square inch, and special pains were taken to get the double shear in as many rivets as possible. This was the requirement for shop rivets. In the case of field rivets, the number was increased one-half.

The pins were proportioned on the basis of a bearing strain of $18,000 \mathrm{lbs}$. per square inch and a bending strain of $20,000 \mathrm{lbs}$. per square inch in extreme fibre, the diameters of the pins being never made more than one inch less than the width of the largest eye-bar attaching to them.
The weight on the rollers of the expansion joint on Pier II is 40,000 lhs. per linear foot of roller, or $3,333 \mathrm{lbs}$. per linear inch, the rollers being 15 ins. in diameter.
As the sections of the superstructure were unusually heavy, and the strains from dead load greatly in excess of those from moving load, it was thought best to use a slightly higher steel than is now generally used for lighter structures, and to work this steel without punching, all holes being drilled. A somewhat softer steel was used in the floor-system and other lighter parts.
The principal requirements which were to be obtained as the results of tests on samples cut from finished material were as follows:

|  | Max. <br> Ultimate Strength, lbs. per sq. inch. | Min. <br> Ultimate Strength, lbs. per sq. inch. | Min.Elastic Linit, lbs, per sq. in. | Min. percentage of Elongation in 8 inches. | Min. Percentage of Rednctior. at Fractus |
| :---: | :---: | :---: | :---: | :---: | :---: |
| High-grade steel. | 78,500 | 69,000 | 40,000 | 18 | 38 |
| Eye-bar steel.... | 75,000 | 66,000 | 38,000 | 20 | 40 |
| Medium steel... | 72,500 | 64.000 | 37,000 | 20 | 44 |
| Soft steel. | 63,000 | 55,000 | 30,000 | 28 | 50 |

## 'RENACETY OF MEEALSATVAREOUS TEMIPERATURES.

The British Admiralty made a series of experiments to ascertain what loss of strength and ductility takes place in gun-metal compositions when raised to high temperatures. It was found that all the varieties of gun-metal suffer a gradual but not serious loss of strengtl and ductility up to a certain temperature, at which, within a few degrees, a great change takes place, the strength falls to about one half the original, and the ductility is wholly gone. At temperatures above this point, up to 500 , there is hittle, if any, further loss of strength; the temperature at which this great change and loss of strength takes place, although uniform in the specimens cast from the same pot, varies about $100^{\circ}$ in the sane composition cast at different temperatures, or with some varying conditions in the foundry process. The temperature at which the change took place in No. 1 series was ascertained to be about $3 \% 0^{\circ}$, and in that of No. 2 , at a little over $250^{\circ}$. Whatever may be the cause of this important difference in the same composition, the fact stated may be taken as certain. Rolled Muntz metal and copper are satisfactory up to $500^{\circ}$, and may be used as securing-bolts with safety. Wrought iron, Yorkshile and remanufactured, increase in strength up to $500^{\circ}$, but lose slightly in ductility up to $300^{\circ}$, where an increase begins and continues up to $500^{\circ}$, where it is still less than at the ordinary temperature of the atmosphere. The strength of Landore steel is not affected by temperature up to $500^{\circ}$, but its ductility is reduced more than one half. (Iron, Oct. 6, 18 \%i.)

Tensile Strength of Hron and Steel at Hight Tempera-tures.-James E. Howard's tests (Irom Aye, April 10, 1890) show that the tensile strength of steel diminishes as the temperature increases from $0^{\circ}$ until a minimuin is reached between $200^{\circ}$ and $300^{\circ} \mathrm{F}$., the total decrease being about 4000 lbs . per square inch in the softer stecls, and from 6000 to 8000 lbs . in steels of over $80,000 \mathrm{lbs}$. tensile strength. From this minimum point the strength increases up to a temperature of $400^{\circ}$ to $650^{\circ} \mathrm{F}$., the maximum being reached earlier in the harder steels, the increase amonnting to from 10,000 to $20,000 \mathrm{lbs}$. per square inch above the minimum strength at from $200^{\circ}$
to $300^{\circ}$. From this maximum, the strength of all the steel decreases steadily at a rate approximating $10,000 \mathrm{lbs}$. decrease per $100^{\circ}$ increase of temperature. A strength of $20,000 \mathrm{lbs}$. per square inch is still shown by .10 C . steel at about $1000^{\circ} \mathrm{F}$., and by . 60 to 2.00 C . steel at about $1600^{\circ} \mathrm{F}$.
The strength of wrought iron increases with temperature from $0^{\circ}$ up to a maximum at from 400 to $600^{\circ} \mathrm{F}$., the increase being from 8000 to $10,000 \mathrm{lbs}$. per square inch, and then decreases steadily till a streugth of only 6000 lbs . per square inch is shown at $1500^{\circ} \mathrm{F}$.
Cast iron appears to maintain its strength, with a tendency to increase, until $900^{\circ}$ is reached, beyoud which temperature the strength gradually diminishes. Under the highest temperatures, $1500^{\circ}$ to $1600^{\circ} \mathrm{F}$., numerous cracks on the cylindrical snrface of the specimen were developed prior to rupture. It is remarkable that cast iron, so much inferior in strength to the steels at atmospheric temperature, under the highest temperatures has nearly the same strength the high-temper steels ther have.
Strength of roin and Stech Boiler-plate at High Tem= peratures. (Chas. Huston, Jour. F. I., 18\%i.)

> Average of Three Tests of Each.

| Temperature F. | $68^{\circ}$ | $575^{\circ}$ | $925^{\circ}$ |
| :---: | :---: | :---: | :---: |
| Charcoal iron plate, tensile strength, lbs. | 55.366 | 63,080 | 65,343 |
| " " " contr. of area\%... | 26 | 23 | 21 |
| Soft open-hearth steel, tensile strength, lb | $54,600$ | $\begin{aligned} & 66,083 \\ & 38 \end{aligned}$ | 64.350 $3: 3$ |
| Crucible steel, tensile strength, lbs | 64,000 | 69,266 | 68,600 |
|  | 36 | 30 | 21 |

Strength of Wrought Iron and steel at High Temper. atures. (Jour. $F^{\prime} . I_{\text {, }}$ cxii. 1881, p. 241.) Kollmann's experiments at Oberhausen included tests of the tensile strength of iron and steel at temperatures ranging between $70^{\circ}$ and $2000^{\circ} \mathrm{F}$. Three kinds of metal were tested, viz., fibrous iron having an ultimate tensile strength of $52,464 \mathrm{lbs}$, an elastic strength of $38,280 \mathrm{lbs}$., and an elongation of $17.5 \%$; fine-grained iron having for the same elements values of $55.892 \mathrm{lbs} ., 39,113 \mathrm{lbs}$., and $20 \%$; and Bessemer steel having values of $84,826 \mathrm{lbs} ., 55,029 \mathrm{lbs}$., and $14.5 \%$. The mean ultimate tensile strength of each material expressed in per cent of that at ordinary atmospheric temperature is given in the following table, the fifth column of which exlibits, for purposes of comparison, the results of experiments carried on by a committee of the Franklin Institute in the years 1832-36.

| Temperature | Fibrous <br> Wrought | Fine-grained | Bessemer | Franklin |
| :---: | :---: | :---: | :---: | :---: |
|  | Wrought <br> Iron p.e | Iron, | Steel, | Institute, |
|  | Iron, p. c. 100.0 | $\begin{aligned} & \text { per cent. } \\ & 100.0 \end{aligned}$ | per cent. $100.0$ | per cent. $96.0$ |
| 100 | 100.0 | 100.0 | 100.0 | 102.0 |
| 200 | 100.0 | 100.0 | 100.0 | 105.0 |
| 300 | 97.0 | 100.0 | 100.0 | 106.0 |
| 400 | 95.5 | 100.0 | 100.0 | 106.0 |
| 500 | 92.5 | 98.5 | 98.5 | 104.0 |
| 600 | 88.5 | 95.5 | 92.0 | 99.5 |
| $\% 00$ | 81.5 | 90.0 | 68.0 | 92.5 |
| 800 | 67.5 | 77.5 | 44.0 | 75.5 |
| 900 | 44.5 | 51.5 | 36.5 | 53.5 |
| 1000 | 26.0 | 36.0 | 31.0 | 36.0 |
| 1100 | 20.0 | 30.5 | 26.5 |  |
| 1200 | 18.0 | 28.0 | 22.0 | - |
| 1300 | 16.5 | 23.0 | 18.0 | ..... |
| 1400 | 13.5 | 19.0 | 15.0 |  |
| 1500 | 10.0 | 15.5 | 12.0 |  |
| 1600 | 7.0 | 12.5 | 10.0 |  |
| 1500 | 5.5 | 10.5 | 8.5 |  |
| 1800 | 4.5 | 8.5 | 7.5 |  |
| 1900 | 3.5 | \%. 0 | 6.5 |  |
| 2000 | 3.5 | 5.0 | 5.0 |  |

The Eftect of Cold on the Strength of Iron and Steel.The following conclusions were arrived at by Mr. Styffe in 1865 :
(1) That the absolute strength of iron and steel is not diminished by cold, but that even at the lowest temperature which ever occurs in Sweden it is at least as great as at the ordinary temperature (about $60^{\circ} \mathrm{F}$.).
(2) That neither in steel nor in iron is the extensibility less in severe coid than at the ordinary temperature.
(3) That the limit of elasticity in both steel and iron lies higher in severe cold.
(4) That the modulus of elasticity in both steel and iron is increased on reduction of temperature, and diminished on elevation of temperature ; but that these variations never exceed $0.05 \%$ for a change of temperature of $1.8^{\circ}$ F., and therefore such variations, at least for ordinary purposes, are of no special importance.

Mr. C. P. Sandberg made in 1867 a number of tests of iron rails at various temperatures by means of a falling weight, since he was of opinion that, although Mr. Styffe's conclusions were perfectly correct as regards tensile strength, they might not apply to the resistance of iron to impact at low temperatures. Mr. Sandberg convinced himself that "the breaking strain" of iron, such as was usually employed for rails, "as tested by sudden blows or shocks, is considerably influenced by cold ; such iron exhibiting at $10^{\circ} \mathrm{F}$. only from one third to one fourth of the strength which it possesses at $84^{\circ}$ F." Mr. J. J. Webster (Inst. C. E., 1880) gives reasons for doubting the accuracy of Mr. Sandberg's deductions, since the tests at the lower temperature were nearly all made with $21-\mathrm{ft}$. lengths of rail, while those at the higher temperatures were made with short lengths, the supports in every case being the same distance apart.
W. H. Barlow (Proc. Inst. C. E.) nade experiments on bars of wrought iron, cast iron, malleable cast iron, Bessemer steel, and tool steel. The bars were tested with tensile and transverse strains, and also by impact; one half of them at a temperature of $50^{\circ} \mathrm{F}$., and the other half at $5^{\circ} \mathrm{F}$. The lower temperature was obtained by placing the bars in a freezing mixture. care being taken to keep the bars covered with it during the whole time of the experiments.
The results of the experiments were summarized as follows :

1. When bars of wrought iron or steel were submitted to a tensile strain and broken, their strength was not affected by severe cold ( $5^{\circ} \mathrm{F}$.), but their ductility was increased about $1 \%$ in iron and $3 \%$ in steel.
2. When bars of cast iron were submitted to a transverse strain at a low temperature, their strength was diminished about $3 \%$ and their flexibility about $16 \%$.
3. When bars of wrought iron, malleable cast iron, steel, and ordinary cast iron were subjected to impact at a temperature of $5^{\circ} \mathrm{F}$., the force required to break them, and the extent of their flexibility, were reduced as follows, viz.:

Reduction of Force of Impact, per cent.
Wrought iron, about
Steel (best cast tool), about.............. $31 / 2$
Malleable cast iron, about................... $41 \%$
Cast iron, about.
The experience of railways in Russia, Canada, and other countries where the winter is severe is that the breakages of rails and tires are far more numerous in the cold weather than in the summer. On this acconnt a softer class of steel is employed in Russia for rails than is usual in more temperate climates.

The evidence extant in relation to this matter leaves no doubt that the capability of wrought iron or steel to resist impact is reduced by cold. On the other hand, its static strength is not impaired by low temperatures.

Effect of Low Temperatures on Strength of Railroad
Axles. (Thos. Andrews, Proc. Inst. C. E., 1891.)-Axles 6 ft. 6 in. long between centres of journals, total length $7 \mathrm{ft} .31 / 2 \mathrm{in}$., diameter at middle $41 / 2$ in., at wheel-sets $51 / \mathrm{in}$, jonrnals $33_{4} \times 7$ in. were tested by impact at temperatures of $0^{\circ}$ and $100^{\circ} \mathrm{F}$. Between the blows each axle was half turned over, and was also replaced for 15 minutes in the water-bath.

The mean force of concussion resulting from each impact was ascertained as follows :
Let $h=$ height of free fall in feet, $w=$ weight of test ball, $h w=W=$ "energy," or work in foot-tons, $x=$ extent of deflections between bearings,

$$
\text { then } F(\text { meas force })=\frac{W}{x}=\frac{h w}{x} .
$$

The results of these experiments show that whereas at a temperature of $0^{\circ} \mathrm{F}$. a total average mean force of $1 \% 9$ tons was sufficient to cause the breaking of the axles, at a temperature of $100^{\circ} \mathrm{F}$. a total average mean force of 428 tons was requisite to produce fracture. In other words, the resistance to concussion of the axles at a temperature of $0^{\circ} \mathrm{F}$. was only about $4: \%$ of what it was at a temperature of $100^{\circ} \mathrm{F}$.

The average total deflection at a temperature of $0^{\circ} \mathrm{F}$. was 6.48 in., as against 15.06 in . with the axles at $100^{\circ} \mathrm{F}$. under the conditions stated; this represents an ultimate reduction of flexibility, under the test of impact, of about $5 \% \%$ for the cold axles at $0^{\circ} \mathrm{F}$., compared with the warm axles at $100^{\circ} \mathrm{F}$.

## EXPANSION OT LRON AND STEEL BY HEAT.

James E. Howard, engineer in charge of the U.S. testing-machine at Watertown, Mass., gives the following results of tests made on bars 35 inches long (Iron Age, April 10, 1890):

| Metal. | Marks. | Chenical composition. |  |  |  | Coefficient of Expansion. Per degree F. per unit of length. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C. | Mn. | Si. | Fe by difference. |  |
| Wrought iron..... .... . |  |  |  |  |  | . 0000067303 |
| Steel............... | …12 | . 09 | . 11 |  | 99.80 | . 00000667561 |
|  | 2 a | . 20 | . 45 |  | 99.35 | .0000066259 |
|  | 3 a | . 1 | . ${ }^{\text {c }}$ |  | 99.1 \% | . 00000655149 |
| " | $4 \mathrm{a}$ | . 51 | . 58 | . 02 | 98.89 | . 00000665978 |
| " | 5 a 6 a | . 57 | . 93 | . 07 | 98.43 | . 00000663891 |
| " | \%a | . 71 | . 58 | . 08 | 98.63 | . 0000064716 |
| " | 8 8 | . 81 | . 56 | . 17 | 98.46 | . 0000062167 |
| ، | $\begin{array}{r} 9 a \\ 10 a \end{array}$ | . 89 | . 57 | . 19 | 98.35 | . 0000062335 |
| " .......... |  | .97 | . 80 | . 28 | 97.95 | . 00001061200 |
| Cast (gun) iron |  |  |  |  |  | . 0000059261 |
| Drawn copper |  |  |  |  |  | . 0000091286 |

## DURABILITY OF IRON, COIREOSHON, ETC.

Durability of Cast Iron.-Frederick Graff, in an article on the Philadelphia water-supply, says that the first cast-iron pipe used there was laid in 1820. These pipes were made of charcoal iron, and were in constant use for 53 years. They were uncoated, and the inside was well filled with tubercles. In salt water good cast iron, even uncoated, will last for a century at least; but it often becomes soft enough to be cut by a knife, as is shown in iron cannon taken up from the bottom of harbors after long submersion. Close-grained, hard white metal lasts the longest in sea water.Euq'g News, April 23, 1887, and March 26. 1892.

Tests of Iron after Forty Years' Service.-A square link 1 ? inches broad, 1 inch thick and about 1: feet long was taken from the Kieff bridge, then 40 years old, and tested in comparison with a similar link which had been preserved in the stock-house since the bridge was built. The following is the record of a mean of four longitudinal test-pieces, $1 \times 11 / 8 \times 8$ inches, taken from each link (Stahl und Eisen, 1890):

$$
\begin{aligned}
& \text { Old Link taken } \quad \begin{array}{c}
\text { New Link from } \\
\text { from Bridge. }
\end{array} \text { Store-house. }
\end{aligned}
$$

| ile strength per square inch, tons | 21.8 | 22.2 |
| :---: | :---: | :---: |
| Elastic limit | 11.1 | 11.9 |
| Elongation, per cent | 14.05 | 13.42 |
| Contraction, per cent | 17.35 | 18.75 |

Durability of Iron in Bridges. (G. Lindenthal, Eng'g, May 2, 1884, p. 139.)-The Old Monongahela suspension bridge in Pittsburgh, built in 1845, was taken down in 1882. The wires of the cables were frequently strained to half of their ultimate strength, yet on testing them after $3 \pi$ years'
use they showed a tensile strength of from $\%, 700$ to $100,000 \mathrm{lbs}$. per square inch. The elastic limit was from $6 \boldsymbol{r}, 100$ to $\mathbf{r 8}, 600 \mathrm{lbs}$. per square inch. Reduction at point of fracture, $35 \%$ to $\% 5 \%$. Their diameter was 0.13 inch.

A new ordinary telegraph wire of same gauge tested for comparison showed: T. S., of $100,000 \mathrm{lbs} . ;$ E. L., $81,550 \mathrm{lbs}$; reduction, $5 \% \%$. Iron rods used as stays or suspenders showed: T. S., $43,7 \% 0$ to $49,720 \mathrm{lbs}$. per square inch; E. L., 26,380 to 29,200 . Mr. Lindenthal draws these conclusions from his tests:
"The above tests indicate that iron highly strained for a long number of years, but still within the elastic limit, and exposed to slight vibration, will not deteriorate in quality.
"That if subjected to only one kind of strain it will not change its texture, even if strained beyond its elastic limit, for many years. It will stretch and behave much as in a testing-machine during a long test.
" That iron will change its texture only when exposed to alternate severe straining, as in bending in different directions. If the bending is slight but very rapid, as in violent vibrations, the effect is the same."
Corrosion of Iron $H$ olts.- On bridges over the Thames in London, bolts exposed to the action of the atmosphere and rain-water were eaten a way in 25 years from a diameter of $7 / 8 \mathrm{in}$. to $1 / 2 \mathrm{in}$., and from $5 / 8 \mathrm{in}$. diameter to $5 / 16$ inch.
Wire ropes exposed to drip in colliery shafts are very liable to corrosion.
Corrosion of Iron and Steel.-Experiments made at the Riverside Iron Works, Wheeling, W. Va., on the comparative liability to rust of iron and soft Bessemer steel: A piece of iron plate and a similar piece of sterl, both clean and bright, were placed in a mixture of yellow loam and sand, with which had been thoroughly incorporated some carbonate of soda, nitrate of soda, ammonium chloride, and chloride of magnesimm. The earth as prepared was kept moist. At the end of 33 days the pieces of metal were taken out, cleaned, and weighed, when the iron was fonnd to have lost $0.84 \%$ of its weight and the steel $0.72 \%$. The pieces were replaced and after 28 days weighed again, when the iron was found to have lost $2.06 \%$ of its original weight and the steel $1.79 \%$. (Eng'g, June 26, 1891.)

Corrosive Agents in the Atmosphere. -The experiments of $F$. Crace Calvert (Chemical News, March 3, 15\%1) show that carbonic acid, in the presence of moisture, is the agent which determines the oxidation of iron in the atmosphere. He subjected 'perfectly cleaned blades of iron and steel to the action of different gases for a period of four months, with results as follows:

Dry oxygen, dry carbonic acid, a mixture of both gases, dry and damp oxygen and ammonia: no oxidation. Damp oxygen: in three experiments one blade only was slightly oxidized.

Damp carbonic acid: slight appearance of a white precipitate upon the iron, found to be carbonate of iron. Damp carbonic acid and oxygen: oxidation very rapid. Iron immersed in water containing carbonic acid oxidized rapidly.
Iron immersed in distilled water deprived of its gases by boiling rusted the iron in spots that were found to contain impurities.

Galvanic Action is a most active agent of corrosion. It takes place when two metals, une electro-negative to the other, are placed in contact and exposed to dampness.

Sulphurous acid (the product of the combustion of the sulphur in coal) is an exceedingly active corrosive agent, especially when the exposed iron is coated with soot. This accounts for the rapid corrosion of iron in railway bridges exposed to the smoke from locomotives. (See account of experiments by the author on action of sulphurous acid in Jour Frank Inst., June, 18is. p. 43\%.) An analysis of sooty iron rust from a railway bridge showed the presence of sulphurous, sulphuric, and carbonic acids, chlorine, and ammonia. Bloxam states that ammonia is formed from the nitrogen of the air during tlie process of rusting.

Corrosion in Stcam-boilers.-Internal corrosion may be due either to the use of water containing free acid, or water containing sulphate or chloride of magnesium, which decompose when heated, liberating the acid, or to watcr containing air or carbonic acid in solution. External corrosion rarely takes place when a boiler is kept hot, but when cold it is apt to corrode rapidly in those portions where it adjoins the brickwork or where it may be covered by dust or ashes, or wherever dampness may lodge. (See Impurities of Water, p. 551, and Incrustation and Corrosion, p. 716.)

## PRESERVATIVE COATENGS.

(The following notes have been furnished to the author by Prof. A. H. Sabin.)

Cement.-Iron-work is sometimes protected by bedding in concrete, in which case it is first cleaned and then washed with neat cement before being imbedded.

Asphaltuma.-This is applied hot either by dipping (as water-pipe) or by pouring it on: (as bridge floors). The asphait should be slightly elastic when cold, with a high melting-point, not softening much at $100^{\circ} \mathrm{F}$., applied at $300^{\circ}$ to $400^{\circ}$; snrface must be dry and should be hut; coating should be of considerable thickness.

Paint.-Composed of a velicle or binder, usually linseed oil or some inferior substitute, or varnish (enamel paints); and a pigment which is a more or less inert solid in the form of powder, either mixed or ground together. The principal pigments are white lead (carbonate) and white zinc (oxide), red lead (peroxide), oxides of iron, hydrated and delrydrated, graphite, lanp-black, chrome yellow, ultramarine and Prussian blue, and various tinting colors. White lead has the greatest body or opacity of white pigments; three coats of it equal five of white zinc; zine is more brilliant and permanent, but it is liable to peel, and it is customary to mix the two. These are the standard wlite paints for all uses and the basis of all lightcolored paints. Anhydrous iron oxides are brown and purplish brown. hydrated iroh oxides are yellowish red to reddish yellow, with more or less brown; most iron oxides are mixtures of both sorts. They also contain frequently manganese and clay. They are cheap, and are serviceable paints for wo.sd, and are often used on iron, but for the latter use are falling into disrepute. Graphite used for painting iron contains from 10 to $90 \%$ foreign matter, usually silicates and iron oxides. It is very opaque, hence has great covering power, aud may be applied in a very thin coat which should le avoided. It retards the drying of oil, hence the necessity of́ using dryers; these are lead and manganese compounds dissolved in oil and turpentine or benzine, and act as carries of oxygen; they are necessary in most paints, but should be used as little as possible. There are many grades of lamp-black; as a rule the cheaper sorts contain oily matter and are especially hard to dry; all lamp-black is slow to dry in oil. It is the principal black on wood, and is used some on iron, usually in combination with varnish or varnish-like compounds. It is very permanent on wood. A gallon of oil takes only a pound of lamp-black to make a paint, while the same amouni of oil requires about 40 lbs . of red lead. On this account red-lead paint, which weighs about 30 lbs . per gallon, is the most expensive of all comon paints. It does not dry slowly like other oil paints, but conlbines with the oil to make a sort of cement; on this account it is used on the joints of steam-pipes. etc. To prevent the mixture of red lead and oil setting into a cake, and also to cheapen it, it is often adulterated with whiting or sometimes with white zinc, the proportion of adulterant being sometimes double the lead. Red lead has long had a high reputation as a paint for iron and steel and is still used rery extensively; but of late years some of the new paints and varnish-like preparations have displaced it to some extent even on the most important work.

Vamishes.-These are made by melting fossil resin, to which is then added from half its weight to three times its weight of refined llnseed oil, and the compound is thimed with turpentine; they usually contain a little dryer. They are chiefly used on wood, being more durable and more brilliant than oil, and are often used over paint to preserve it. Asphaltum is sometimes snbstituted in part or in whole for the fossil resin, and in this way are made varnishes which have been applied to iron and steel with good results. Asphaltum and animal and vege able tar and pitch have also been simply dissolved in solvents, as benzine or carbon disulphide, and used for the same purpose.

All these preservative coatings are supposed to form impervious films, keeping out air and moisture; but in fact all are somewhat porous. On this account it is necessary to have a film of appreciable thickness, best formed by successive coats, so that the pores of one will be closed by the next. The pigment is used to give an agreeable color to help fill the pores of the oil film, to make the paint harder so that it will resist abrasion, and to make a thicker film. In varnishes these results are sought to be attained by the resin which is dissolved in the oil. There is no sort of agreement among
practical men as to which is the best coating for any particular case; this is probably because so much depends on the preparation of the surface and the care with which the coating is applied, and also because the conditions of exposure vary so greatly.

Methods of Application.-Too much care cannot be given to the preparation of the surface. If it is wood, it should be dry, and the surface of knots should be coated with some preparation which will keep the tarry matter in the wood from the coating. All old paint or varuish should be removed by burning and scraping. Metallic surfaces should be cleaned by wire brushes and scrapers. and if the permanence of the work is of much importance the scale and oxide shonld be completely removed by acid pickling or by the sand-blast or some equally efficient means. l'ickling is usually done with a $10 \%$ solution of sulphuric acid; as the solution becomes exhausted it may be made more active by heating. All traces of acid must be removed by washing and the metal must be rapidly dried and painted before it becomes in the slightest degree oxidized. The sand-blast, which has been applied to large work recently and for many years to small work with good results, leaves the surface perfectly clean and dry; the paint must be applied immediately. Plenty of time shonld always be allowed, usually about a week, for each coat of paint to dry before the next coat is applied; less than two coats shonld never be used. Two will last three times as long as one coat. Benzine should not be an ingredient in coatings for iron-work, because its rapid evaporation lowers the temperature of the iron and may cause formation of dew on the surface adjacent to the paint which is immediately to be painted.
Cast-iron water-pipes are usually coated by dipping in a hot mixtnre of coal-tar and coal-tar pitch; riveted steel pipes by dipping in hot asphalt or by a japan enamel which is baked on at about $400^{\circ} \mathrm{F}$. Slips botioms are usually coated with some sort of paint to prevent rusting, over which is spread, hot, a poisonons, slowly solnble compound, usually a copper soap, to prevent adhesion of marine growths.
Galvanizediron and tin surfaces should be thoroughly cleaned with benzine and scrubbed before painting. When new they are covered with grease and chemicals used in coating the plates, and these must be removed or the paint will be destroyed.
Quantity of Paint for a Given Surface.-One gallon of paint will cover 250 to 350 sq . ft. as a first coat, depeuding on the character of the surface, and from 350 to 450 sq. ft. as a second coat.

Qualities of Paints. -The Railroad and Engineering Journal, vols. liv and $1 \mathrm{v}, 1890$ and 1891 , has a series of articles on paint as applied to wooten structures, its chemicaî nature, application, adulteration, etc., by Dr. C. B. Dudley, chemist, and F. N. Pease, assistant chemist, of the Penna. R. R. They give the results of a long series of experiments on paint as applied to railway purposes.
Rustless Coatings Cor Iron and Steel.-Tinning, enamelling, lacquering, galvanizing, electro-chemical painting, and other preservative methods are discussed in two important papers by M. P. Wood, in Trans. A. S. M. E.. vols. xv and xvi.

A Method of Producing an Inoxidizable Surface on iron and steel by means of electricity has been developed by M. A. de Meritens (Engineering). The article to be protected is placed in a bath of ordinary or distilled water, at a temperature of from $158^{\circ}$ to $1 ; 6^{\circ} \mathrm{F}$., and an electric current is sent through. The water is decomposed into its elements, oxygen and hydrogen, and the oxygen is deposited on the metal, while the hydrogen appears at the other pole, which may either be the tank in which the operation is conducted or a plate of carbon or metal. The current has only sufficient electromotive force to overcome the resistance of the circuit and to decompose the water; for if it be stronger than this, the oxygencombines with the iron to produce a pnlverulent oxide, which has no adherence. If the conditions are as they should be, it is only a few minutes after the oxygen appears at the metal before the darkeuing of the surface shows that the gas has united with the iron to form the magnetic oxide $\mathrm{Fe}_{9} \mathrm{O}_{4}$, which will resist the action of the air and protect the metal beneath it. After the action has continued an hour or two the coating is sufficiently solid to resist the scratch-brush, and it will then take a brilliant polish.
If a piece of thickly rusted iron be placel in the hath, its sesquioxide ( $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) is rapidly transformed into the magnetic oxide. This outer layer
has no adhesion, but beneath it there will be found a coating which is actually a part of the metal itself.

In the early experiments M. de Meritens employed pieces of steel only, but in wrought aud cast iron he was not successful, for the coating came off with the slightest friction. He then placed the iron at the uegative pole of the apparatus, after it had been already applied to the positive pole. Here the oxide was reduced, and hydrogen was accumulated in the pores of the metal. The specimens were then returned to the anode, when it was found that the oxide appeared quite readily and was very solid. But the result was not quite perfect, and it was not until ille bath was filled with distilled water, in place of that from the public supply, that a perfectly satisfactory result was attainer.
Manganese Plating or Iron as arotection from Rust. -According to the Italian Progreso, articles of iron can be protected against rust by sinking them near the negative pole of an electric bath composed of 10 litres of water, 50 grammes of chloride of manganese, and 200 grammes of nitrate of ammonium. Under the influence of the current the bath deposits on the articles a protecting film of metallic manganese.
A Non-oxidizing Process of Annealing is described by H. P. Jones, in Eng'g News, Jan. 2, 189\%. The new process uses a non-oxidizing gas, and is the invention of Mr. Horace K. Jones, of Hartford, Conn. Its principal feature consists in keeping the annealing retort in comnunication with the gas-holder or gas-main during the entire process of heating and cooling, the gas thus being allowed to expand back into the main, and being, therefore, kept at a practically constant pressure.
The retorts are made from wrought-iron tubes. The gas is taken directly from the mains supplying the city with illuminating gas. If metal which las been blued or slightly oxidized is subjected to the aunealing process it comes out bright, the oxide being reduced by the action of the gas.
Comparative tests were made of specimens of steel wire annealed in illu:ninating gas, in nitrogen, and in an open fire and cooled in ashes, and of specimens of the unannealed metal. The wires were .188 in . in diameter and were turned down to .150 in .
The average results were as follows:
Unannealed, two lots, 5 pieces each, tensile strength av. $9 \%, 120$ and 80,190 lbs. per sq. in., elongation $7.12 \%$ and $8.80 \%$. Annealed in open fire, 8 tests, av. t. s. 633,090 , el. $26.76 \%$. Annealed in nitrogen, av. of 3 lots, 13 pieces, t. s. 59,820 , el. $29.33 \%$. Annealed in illuminating gas, av. of 3 lots, 13 pieces, t. $s$. 60,180 , el. $28.29 \%$. The elongations are referred to an original length of 1.15 ins.

## STEEL.

## RELATION BETUEEN THE CHEMICAL COMPOSITION AND PIIYSICAL CHABACTER OF STEELA.

W. R. Webster (sce Trans. A. I. M. E., vols. xxi and xxii, 1893-4) gives results of several hundred analyses and tensile tests of basic Bessemer steel plates, and from a study of them draws conclusions as to the relation of chemical composition to strength, the chief of which are condensed as follows:
The indications are that a pure iron, without carbou, phosphorus, manganese, silicon, or sulphur, if it could be obtained, would have a tensile strength of $34, \gamma 50 \mathrm{lbs}$. per square inch, if tested in a $3 / 8$-inch plate. With this as a base, a table is constructed by adding the following hardening effects, as shown by increase of tensile strength, for the several elements named.
Carbon, a constant effect of 800 lbs . for eacl $0.01 \%$.

$$
\text { Sulphur, "t " } 500 \text { "، } 0.01 \% \text {. }
$$

Phosphorus, the effect is higher in high-carbon than in low-carbon steels. With carbon hundretlis $\% \ldots . .$.
Each . $01 \%$ Phas an effect of lbs. 90010001100120013001400150015001500
-Manganese, the effect decreases as the per cent of manganese increases.
Mn being per cent...... $\left\{\begin{array}{rrrrrrrrrr}.00 & .15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & .55 \\ \text { to } & \text { to } \\ .15 & .20 & .25 & .30 & .35 & .40 & .45 & .50 & .55 & .65\end{array}\right.$

Str'gth increases for .01\% $240 \quad 240 \quad 2 \geqslant 0 \quad 200 \quad 180 \quad 160 \quad 140 \quad 120 \quad 100 \quad 100 \mathrm{lbs}$.
Total incr. from 0 Mn... 3600480059006900 శ800 860093009900 10,400 11,400

Silicon is so low in this steel that its hardening effect has not been con. sidered.

With the above additions for carbon and phosphorus the following table has been constructed (abridged from the original by Mr. Webster). To the figures given the additions for sulphur and manganese should be made as above.

## Estimated Ultimate Strengths of Basic Bessemer Stecl Plates.

For Carbon, .06 to . 24 ; Phosphorus. .00 to .10 ; Manganese and Sulphur, .00 in all cases.

| Carbon. | . 06 | . 08 | . 10 | . 12 | . 14 | . 16 | . 18 | . 20 | . 22 | . 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phos. 005 | 39,950 | 41,550 | 43,250 | 44,950 | 46,650 | 48,300 | 49,900 | 51,500 | 53,100 | 54,700 |
| . 01 | 40,350 | 41,950 | 43,550 | 45,550 | 47,350 | 49,050 | 50,650 | 52,250 | 53,850 | 55,450 |
| . 02 | 41,150 | 42, 250 | 44,50 | 46,150 | 48,750 | 50,550 | 52,150 | 53,750 | 55,350 | 56.950 |
| . 03 | 41,950 | 43,550 | 45,750 | 47,950 | 50,150 | 52,050 | 53,650 | 55,250 | 56,850 | 58.4.50 |
| $\because .04$ | 42,750 | 41,350 | 46,750 | 49,150 | 51,550 | 53,550 | 55,150 | 56,750 | 58,350 | 59,950 |
| ". 0.06 | 43,550 | 45,150 | 47, 480 | 50,350 | 52,950 | 55,050 | 56,650 | 58,250 | 59,850 | 61,450 |
| " ${ }^{\prime}$. 067 | 44, 450 | 45,950 | 48, 480 | 51,550 | 54,350 | 56,550 | 58,150 | 59,750 | 61,350 | 62.950 |
| ". 08 | 45,950 | 4テ,550 | 50,750 | 53.950 | 57,150 | 59,550 | 61,150 | 62, 50 | 64,350 | 64.450 65,950 |
| " . 09 | 46,750 | 48,350 | 51,750 | 55,150 | 58,550 | 61,050 | 62,650 | 64,250 | 65,850 | 67,450 |
| . 10 | 47,550 | 49,150 | 52,750 | 56,350 | 59,950 | 62,550 | 64,150 | 65.750 | 67.350 | 68.950 |
| .001 Phos | 80 lb | 80 lbs. | 100 lb | 120 lb | 140 lb | 150 lb | 150 lbl | \| $1501 \mathrm{l} \mid$ | \|150 lb| | 150 lb |

In all rolled steel the quality depends on the size of the bloom or ingot from which it is rolled, the work put on it, and the temperature at which it; is finished, as well as the chemical composition.

The above table is based on tests of plates $3 / 8$ inch thick and under 70 inches wide; for other plates Mr. Webster gives the following corrections for thickness and width. They are made necessary only by the effect of thickness and width on the finishing temperature in ordinary pracuce. Steel is frequently spoiled by being finished at too high a temperature.

## Corrections for Size or Elates.

|  | Plates. | Up to 70 ins. wide. | Over 70 ins. wide. |
| :---: | :---: | :---: | :---: |
|  | Inches thick. | Lbs. | Lbs. |
| 11/16 | " | - 1750 | - 750 |
| 5/8 | " ........... | - 1500 | - 500 |
| $9 / 16$ | " | - 1250 | - 250 |
| $1 / 2$ | '6 | - 1000 | - 0 |
| 7/16 | " | - 500 | $\pm 500$ |
|  | " | 0 | +1000 |
| 5/16 | " .. | $+3000$ | +5000 |

Comparing the actual result of tests of 408 plates with the calculated results, Mr. Webster found the variation to range as in the table below.

## Summary of the Differences EBetween Calculated and Actual Results in 408 Tests of iplate Steel.

In the first three columns the effects of sulphur were not considered; in the last three columns the effect of sulphur was estimated at 500 lbs. for each $.01 \%$ of S .


The last figure in the table would indicate that if specifications were drawn calling for steel plates not.to vary more than 5000 lbs . T. S. from a specified figure (equal to a total range of $10,000 \mathrm{lbs}$.), there would be a probability of the rejection of $5 \%$ of the blooms rolled, even if the whole lot was made from steel of identical chemical analysis. In 1000 heats only $2 \%$ of the heats failed to meet the requirements of the orders on which they were graded; the loss of plates was much less than $1 \%$, as one plate was rolled from each heat and tested before rolling the remainder of the heat.
R. A. Hadfield (Jour. Iron and Steel Inst., No. 1, 1894) gives the strength of very pure Swedish iron, remelted and tested as cast, 20.1 tons ( $45,0: 4 \mathrm{lbs}$.) per sq. in.; remelted and torged, 21 tons ( $47,040 \mathrm{lbs}$.). The analysis of the cast har was: C. $008: \mathrm{Si}, 0.01 ; \mathrm{S}, 0.02: \mathrm{P}, 0.02 ; \mathrm{Mn}, 0.01 ; \mathrm{Fe}, 99.82$.

Effect of Oxygen upon strength of Stecl.-A. Lantz, of the Peine works, Germany, in a letter to M1. Webster, says that oxygen plays an important rôle-such that, given a like content of carbon, phosphorus, and manganese, a blow with greater oxygen content gives a greater hardness and less ductility than a blow with less oxygen content. The method used for determining oxygen is that of Prof. Ledebur, given in Stahl und Fisen, May, 1892, p. 193. The variation in oxygen may make a difference in strength of nearly $1 / 2$ ton per sq. in. (Jour. Iron and Steel Inst., No. 1, 1894.)

## RANGEOTVAREATIONINSTRENGTMHE BESSEMIER ANDOPGN-IHEABRET STEELS.

The Carnegie Steel Co. in $1888^{\circ}$ published a list of 1057 tests of Bessemer and open-hearth steel, from which the following figures are selected:

| Kind of Steel. |  | $$ | Elastic Limit. |  | Ultimate Strength. |  | Elongation per cent in 8 inclies. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | High't. | Lowest | High't. | Lowest | High't. | Lowest |
| (a) | Bess.structural.. |  | 100 | 46,500 | 39,230 | 71,300 | 61,450 | 33.00 | 23.45 |
| (b) |  | 170 | 47,690 | 39.960 | 73,540 | 65,200 | 30.25 | 23.15 |
|  | Bess, angles..... | 72 | 41,590 | 32,080 | 63,450 | 56,130 | 34.30 | 26.25 |
|  | O. H. fire-box.... | 25 |  |  | $6 \cdot 290$ | 50,350 | 36.00 | 25.62 |
| (e) | O. H. bridge..... | 20 |  |  | 69,940 | 6.3,9\%0 | 30.00 | 22.75 |

Requirements of Specifications.
(a) Elastic liniit, 35.000 ; tensile strengtlı, 62,000 to 70,000 ; elong. $22 \%$ in $8 \mathrm{in}$.
(b) Elastic linit, 40,000; tensile strength, 67,000 to $75,000$.
(c) Elastic limit, 30,000 ; tensile strength, 56,000 to 64,000 ; elong. $20 \%$ in 8 in .
(d) Tensile streugth 50,000 to 62,000 ; elong. $20 \%$ in 4 in .
(e) Tensile strength. 64,000 to $\% 0,000$; elong. $20 \%$ in 8 in.

Strength of Open-hearth Structural Steel. (Pencoyd Iron Works.)-As a general rule, the percentage of carbon in steel determines its hardness and strength. The higher the carbon the harder the steel, the higher the tenacity, and the lower the ductility will be. The foliowing list exhibits the average plıysical properties of good open-hearth basic steel:

|  |  |  | $\begin{aligned} & \text { En } \\ & \text { E } \\ & \frac{1}{y} \\ & \frac{1}{0} \\ & 0 \end{aligned}$ | - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 08 | 54000 | 32500 | 32 | 60 | 17 | 61600 | 3\%000 | 87 | 50 |
| . 09 | 54800 | 33000 | 31 | 58 | . 18 | 62500 | 37500 | 37 | 49 |
| . 10 | 55700 | 33500 | 31 | 57 | .19 | 63.300 | 38000 | 26 | 48 |
| . 11 | 56.500 | 34000 | 30 | 56 | . 20 | 64200 | 38500 | 26 | 47 |
| . 12 | 57400 | 34500 | 30 | 55 | .21 | 65000 | 33000 | 25 | 46 |
| . 13 | 58200 | 35000 | 29 | 54 | . 22 | 65800 | 39500 | 2.5 | 45 |
| . 14 | 59100 | 35500 | 29 | 53 | . 23 | 66600 | 40000 | 24 | 44 |
| . 15 | 60000 | 36000 | 28 | 52 | . 24 | 67400 | 40500 | 24 | 43 |
| . 16 | 60800 | 36500 | 28 | 51 | . 25 | 68:00 | 41000 | 93 | 42 |

The coefficient of elasticity is practically uniform for all grades, and is the same as for iron, viz., $29,000,000 \mathrm{lbs}$. These figures form the average of a numerous series of tests from rolled bars, and can only serve as an ap-
proximation in single instances, when the variation from the average may be considerable. Steel below . 10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of .15 carbou will occasionally submit to the same treatment, but will usually bend around a curve whose radius is equal to the thickness of the specimen; a bout $90 \%$ of specimens stand the latter bending test without fracture. As the steel becomes larder its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes. .20 , little over $25 \%$ of specimens will stand the last-described bending test. Steel having about 40 \% carbon will usually harden sufficiently to cut soft iron and maintain an edge.
Mehrtens gives the following tables in Stath und Eisen (Iron Age, April 20, 1893) showing, the range of variation in strength, etc., of basic Bessenter and of basic open-hearth structural steel. The figures in the columns headed Per Cent show the per cent of the total number of charges which came within the range given.
basic bessemer steel, 680 charges.

| Elastic Limit, pounds per sq. in. | Per Ceut. | .Tensile Strength, pounds per sq. in. | Per Cent. | Elongation, per ceut. | $\begin{aligned} & \text { Per } \\ & \text { Cent. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35,500 to $38,400$. | 15.0 | 55,600 to $56,900 \ldots$ | 18.67 | 21 to 25. | . 65 |
| 38,400 to 39,800. | 31.6 | 56,900 to 58,300 | 38.6 r | $22^{2}$ to 27. | 25.88 |
| $39,800 \text { to } 41,200 \text {. }$ $41,200 \text { to } 42,00$ | 27.5 | 58,300 to 59,700... | 23.53 | 27 to 29. |  |
| 42,700 to 46,400 | 16.0 9.9 | 59,700 to $61,200$. 61,200 to 6,200 | 15.60 3.53 | 29 to 30 | 14.41 |

## basic ofen-hearth structural steel, 489 charges.

| 34,400 to 37,000 | 12.3 | 55,800 to 56,900 | 8.0 | 20 to 25. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 37,000 to 39,800. | 35.9 | 56,900 to 59, 000 | 51.8 | 25 to 26. |  |
| 39,800 to 42, 000 | 30.2 | 59,700 to 61,200. | 19.6 | 26 to 28. |  |
| 42,700 to 44,100. | 11.4 | 61,400 to 62,600 . | 11.2 | 28 to 30. |  |
| 44,100 to 48,400. | 8.5 | 62,600 to $65,100$. | 9.4 | 30 to 37.1 | 24.3 |

Rivet steel, 19 charges, showed a total range from 51,800 to $56,900 \mathrm{lbs}$. tensile strength, and 25.2 to 29.8 per cent elongation.

In the basic Bessemer steel over $90 \%$ was below 0.08 phosphorus, and at were below 0.10 ; manganese was below 0.6 in over $90 \%$, and below 0.9 in all, sulphur was below 0.05 in $84 \%$, the maximum being 0.071 ; carbon was below 0.10 , and silicon below 0.01 in all. In the basic open-hearth steel phospliorus was below 0.06 in $96 \%$, the maximum being 0.08 ; manganese below 0.50 in $9 \% \%$; sulphur below 0.07 in $88 \%$, the maximum being $0.1 \%$. The carbon ranged from 0.09 to 0.14 .
Low Tensile Strength of Very Pure steel.-Swedish nail-rod open-hearth steel, tested by the author in 1881, showed a tensile strength of only $42,591 \mathrm{lbs}$. per sq. in. A piece of American nail-rod steel showed 45,021 lbs. per sq. in. Both steels contained about .10 carbon and . 015 phospliorus, and were very low in sulphur, manganese, and silicon. The pieces tested were bars about $2 \times 3 / 8 \mathrm{in}$. section.
Low Strength Due to Insuficient Work. (A. E. Hunt, Trans. A. I. M. E., 1880.)-Soft steel ingots, made in the ordinary way for boiler plates, have only from 10,000 to $20,000 \mathrm{lbs}$. tensile strength per sq. in., an elongation of only about $10 \%$ in 8 in., and a reduction of area of less than $20 \%$. Such ingots, properly heated and rolled down from 10 in . to $1 / 2 \mathrm{in}$. thickness, wha give from 55,000 to $65,000 \mathrm{lbs}$. tensile strength, an elongation in 8 in . of from $23 \%$ to $33 \%$, and a reduction of area of from $55 \%$ to $\% 0 \%$. Any work stopping short of the above reduction in thickness ordinarily jields intermediate results in its tensile tests.
Efrect of Finishing Temperature in Rolling.-The strength
and ductility of steel depend to ahigh degree upoll tineness of grain, and
this may be obtained by having the temperature of the steel this may be obtained by having the temperature of the steel rather low, say at a dull red heat, $1300^{\circ}$ to $1400^{\circ} \mathrm{F}$., during the finishing stage of rolling. In the manufacture of steel rails a great improvement in quality has been obtained by finishing at a low temperature. An indication of the finishing temperature is the amount of shrinkage by cooling after leaving the rolls. The Philadelphia and Reading Railway Company's specification for rails (1902) says, "The temperature of the ingot or bloom shall be such that with rapid rolling and without holding befort or in the finishing passes or subsequently, and withoutartificial cooling after leaving the last pass, the distance between hot saws shall not exceed 30 ft .6 in . for a $30-\mathrm{ft}$. rail."
Fining the Grain by Annealing. -Steel which is coarse-grained
on account of leaving the rolls at too high a temperature may be made finegrained and have its ductility greatly increased without lowering its tensile strengtin by reheating to a cherry red and cooling at once in air. (See paper on "Steel Rails," hy Robert Job, Trans. A. I. M. E., 1902.)

Effect of Cold Rolling.-Cold rolling of iron and steel increases the elastic limit and the ultimate strength, and decreases the ductility. Major Wate's experiments on bars rolled and polished cold by Lauth's process showed an average increase of load required to give a slight permanent set as follows: Transverse, $16 \%$; torsion, $130 \%$; compression, $161 \%$ on short columns $11 / 2 \mathrm{in}$. long, and $64 \%$ on columns 8 in . long; tension, $95 \%$. The hardness, as measured by the weight required to produce equal indentations, was increased $50 \%$; and it was found that the hardness was as great in the centre of the bars as elsewhere. Sir W. Fairbairn's experiments showed an increase in ultimate tensile strength of $50 \%$, and a reduction in the elongation in 10 in . from 2 in . or $20 \%$, to 0.79 in . or $7.9 \%$.

Hardening of Soft Steel.-A. E. Hunt (Trans. A. I. M. E., 1883, vol. xii), says that soft steel, no natter how low in carbon, will harden to a certain extent upon being heated red-hot and plunged into water, and that it hardens more when plunged into brine and less when quenched in oil.

An illustration was a heat of open-hearth steel of $0.15 \%$ carbon and $0.29 \%$ of manganese, which gave the following results upon test-pieces from the same $1 / 4$ in. thick plate.

| plat | Maximum | Elongation | Reduction |
| :---: | :---: | :---: | :---: |
|  | Load. | in 8 in. | of Area. |
| Unhardened | lbs. per sq. ill. 55,000 | Per cent. 27 | $\mathrm{Per}_{62} \text { cent. }$ |
| Hardened in wate | 74,000 | 25 | 50 |
| Hardened in brine | 84,000 | 22 | 48 |
| Hardened in oil. | 67,700 | 26 | 49 |

While the ductility of such hardened steel does not decrease to the extent that the increased tenacity would indicate, and is nuch superior to that of normal steel of the high tenacity, still the greatly increased tenacity aftei hardening indicates that there must be a considerable molecular change in the steel thus hardened, and that if such a hardening should be created locally in a steel plate, there must be very dangerous internal strains caused thereby.
Comparison of Tests of Full-size Eyebbars and Sample Test-pieces of Same Steel Used in the Memphis Bridge.
(Geo. S. Morison, Trans. A. S. C. E., 1893.)

Full-Sized Eyebars, Sections $10^{\prime \prime}$ wide $\times 1$ to $23 / 16^{\prime \prime}$ thick.

| Reduction of Area, p.c. | Elongation. |  | ElasticLimit,lbs. pet | Max. <br> Load, <br> sq. in. | Reduction, p.c. |  | Elastic Limit, <br> lbs. per | Max. <br> Load, <br> sq. in. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inches. | p.c. |  |  |  |  |  |  |
| 39.6 | 20.2 | 16.8 | 35,100 | 67,490 | 47.5 | 27.5 | 41,580 | 73,050 |
| 39.7 | 26.6 | 8.2 | 37,680 | 70,160 | 52.6 | 24.4 | 42,650 | 75,6:0 |
| 44.4 | 36.8 | 11.8 | 39,700 | 65,500 | 47.9 | 28.8 | 40,280 | 70,280 |
| 38.5 | 38.5 | 17.3 | 33,140 | 65,060 | 47.5 | 27.5 | 41,580 | 73,050 |
| 40.0 | 32.5 | 13.5 | 32.860 | 65, 600 | 44.5 | 20.0 | 43, 750 | 75,000 |
| 39.4 | 36.8 | 15.3 | 31,110 | 61,060 | 42.7 | 28.8 | 42,210 | 69,730 |
| 34.6 | 32.9 | 13.7 | 33,990 | 63,220 | 52.2 | 28.1 | 40,230 | 69,720 |
| $3 \cdot .6$ | 13.0 | 13.5 | 29,330 | 63,100 | 48.3 | 28.8 | 38,090 | \%1,300 |
| 7.3 | 20.8 | 6.9 | 28,080 | 55,160 | 43.2 | 24.2 | 39,3?0 | 70,230 |
| 38.1 | 28.9 | 14.1 | 29,6r0 | 62,140 | 59.6 | 26.3 | 40,200 | 71,080 |
| 31.8 | 24.0 | 11.8 | 3:,700 | 65,400 | 40.3 | 25.0 | 39,360 | 69,360 |
| 48.6 | 39.4 | 19.3 | 30,500 | 58,870 | 40.3 | 25.0 | 40,910 | 70,360 |
| 10.3 | 11.8 | 12.3 | 33,360 | 73,550 | 51.5 | 25.5 | 40,410 | 69,900 |
| 44.6 | 32.0 | 15.7 | 32,520 | 60,710 | 43.6 | 27.0 | 40,400 | 70,490 |
| 46.0 | 35.8 | 14.9 | 28,000 | 58,720 | 44.4 | 29.5 | 40,000 | 66,800 |
| 41.8 | 23.5 | 13.1 | 3:2,290 | 62, 2 \%0 | 42.8 | 21.3 | 40,530 | 72, 240 |
| 41.2 | 47.1 | 15.1 | 29,9\%0 | 58.680 | 45.7 | 27.0 | 40,610 | r0,480 |

The average strength of the full-sized eye-bars was about 8000 lbs . per sq. in., or about $12 \%$, less than that of the sample test-pieces.

## TREATMENT OF STREUCTURAL STEEEL。

## (James Christie, Trans. A. S. C. E., 1893.)

Efcet of Punching and Shearing.-There is no doubt that steef of higher tensile strength than is now accepted for structural purposes should not be punched or sheared, or that the softer material may contain elements prejudicial to its use however treated, but especially if punched. But extensive evidence is on record indicating that steel of good quality, in bars of moderate thickness and below or not much exceeding 80.000 lbs. tensile strength, is not any more, and frequently not as much, injured as wrought iron by the process of punching or shearing.

The physlcal effects of punching and shearing as denoted by tensile test are for iron or steel:

Reduction of ductility; elevation of tensile strength at elastic limit; reduction of ultinate tensile strength.

In very thin material the superficial disturbance described is less than in thick; in fact, a degree of thinness is reached where this disturbance practically ceases. On the contrary, as thickness is increased the injury becomes more evident.
The effects described do not invariably ensue; for unknown reasons there are sometimes marked deviations from what seems to be a general result.
By thoroughly annealing sheared or punched steels the ductility is to a large extent restored and the cxaggerated elastic limit reduced, the change being modified by the temperature of reheating and the method of cooling.
It is probable that the best results combined with least expenditure can be obtained by punching all holes where vital strains are not transferred by the rivets; and by reaming for important joints where strains on riveted joints are vital, or wherever perforation may reduce sections to a minimum. The reaming should be sufficient to thoroughly remove the material disturbed by punching; to accomplish this it is best to enlarge punched holes at least $1 / 8$ in. diameter with the reamer.
Kiveting.-It is the current practice to perforate holes $1 / 16 \mathrm{in}$. larger than the rivet diameter. For work to be reamed it is also a usual requirement to punch the holes from $1 / 8$ to $3 / 16 \mathrm{in}$. less than the finished diameter, the holes being reamed to the proper size after the various parts are assembled.
It is also exceilent practice to remove the sharp corner at both ends of the reamed holes, so that a fillet will be formed at the junction of the bodv and head of the finished rivets.
The rivets of either iron or mild steel should be heated to a bright red or yellow heat and subjected to a pressure of not less than 50 tons per square inch of sectional area.

For rivets of ordinary length this pressure has heen found sufficient to completely fill the hole. If, however, the holes and the rivets are exceptionally long, a greater pressure and a slower movement of the closing tool than is used for slorter rivets has been found advantageous in compelling the more sluggish flow of the metal throughout the longer hole.
Welding.-No welding should be allowed on any steel that enters into
Upsetting. - Enlarged ends on tension bars for screw-threads, eyebars, etc., are formed by upsetting the material. With proper treatment and a sufficient increment of enlarged sectional area over the body of the bar the result is entirely satisfactory. The upsetting process should be performed so that the properly heated metal is compelled to flow without folding or

Annealing.-The object of annealing structural steel is for the purpose of securing homogeneity of strncture that is supposed to be impaired by unequal heating, or by the manipulation necessarily attendant on certain processes. The objects to be annealed should be heated throughout to a uniform temperature and uniformly cooled.

The physical effects of annealing. as indicated by tensile tests, depend on the grade of steel, or the amount of liardening elements associated with it: also on the temperature to which the steel is raised, and the method or rate of cooling the heated material.
The physical effects of annealing medium-grade steel, as indicated by tensile test, are reported very differently by different observers, some claiming directly opposite results from others. It is evident, when all the attendant conditions are considered, that tlie obtained results must vary both in kind
and degree.

The temperatures employed will vary from $1000^{\circ}$ to $1500^{\circ} \mathrm{F}$.; possibly even a wider range is used. In some cases the heated steel is withdrawn at full temperature from the furnace and allowed to cool in the atmosphere ; in others the mass is removed from the furnace, but covered under a muffle, to lessen the free radiation; or, again, the charge is retained in the furnace, and the whole mass cooled with the furnace, and more slowly than by either of the other methods.
The best general results from annealing will probably be obtained by introducing the material into a uniformly-heated oven in which the temperature is not so high as to cause a possibility of cracking by sudden and unequal changing of temperature, then gradually raising the temperature of the material until it is uniformly about $12010^{\circ} \mathrm{F}$., then withdrawing the material after the temperature is somewhat reduced and cooling under shelter of a muffte, sufficiently to prevent too free and muequal cooling on the one hand or excessively slow cooling on the other.
G. G. Melırtens, Trans. A. S. C. E. 1893, says: "Annealing is of advantage to all steel above $64,000 \mathrm{lbs}$. strength per square inch, but it is questionable whether it is necessary in softer steels. The distortions due to heating canse trouble in subsequent straightening, especially of thin plates.
"In a general way all unamealed mild' steel for a strengtli of 56,000 to $61,000 \mathrm{lbs}$. may be worked in the same way as wrouglit iron. Rough treatment or working at a blue heat must, however, be prohibited. Shearing is to be avoided, except to prepare rough plates, which slould afterwards be smoothed by machine tools or files before using. Drifting is also to be avoided, because the edges of the holes are thereby strained beyond the yield point. Reaming drilled holes is not necessary, particularly when sharp drills are used and neat work is done. A slight countersinking of the edges of drilled holes is all that is necessary. Working the material while heated should be avoided as far as possible, and the engineer should bear this in mind when designing structures. Upsetting, cranking, and bending ought to be avoided, but when necessary the material should be annealed after completion.
"The riveting of a mild-steel rivet should be finished as quickly as possible, before it cools to the dangerons heat. For this reason machine work is the best. There is a special advantage in machine work from the fact that the pressure can be retained upon the rivet until it has cooled sufficiently to prevent elongation and the consequent losening of the rivet."
Puiching and Drilling of Steel Plates. (Proc. Inst. M. E., Aug. 1887, p. $3: 6$.)-In Prof. Unwin's report the results of the greater numbet of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet in these of 1/2 in. thickness and upwards the loss of tenacity due to punching ranges from $10 \%$ to $23 \%$ in iron plates and from $11 \%$ to $3: 3 \%$ in the case of mild steel. Mr. Parker found the loss of tenacity in steel plates to be as high as fully one third of the original strength of the plate In drilled plates, on the contrary, there is 110 appreciable loss of strength. It is even possible to remove the bad effects of punching by subsequent reaming or annealing.

Working Steel at a Bine Heat.-Not only are wronght iron and steel much more brittle at a blue heat (i.e., the heat that would produce an oxide coating ranging from light straw to blue on bright steel, $430^{\circ}$ to $600^{\circ}$ F.), but while they are probably not serionsly affected by simple exposure to blueness, even if prolonged, yet if they be worked in this lange of temperature they remain extremely brittle after cooling, and may indeed be more brittle than when at blueness: this last point, however, is not certain. (Howe, "Metallurgy of Steel," p. 534 .)
Tests by Prof. Krohn, for the German State Railways, show that working at blue heat has a decided influence on all materials tested, the injury done being greater on wrought iron and harder steel than on the softer steel. The fact that wrought iron is injured by working at a blue heat was reported by Stromeyer. (Engineering News, Jan. 9, 1892.)
A practice among boiler-makers for guarding against failures due to working at a blue heat consists in the cessation of work as soon as a plate which had been red-liot becomes so cool that the mark produced by rubbing a hammer-handle or other piece of wood will not glow. A plate which is not hot enough to produce thls effect, yet too hot to be touched by the hand, is most probably blue hot, and should under no circumstances be hammored or hent. (C. E. Stromeyer, Proc. Inst. C. E. 1886.)

Welding of Steel.-A. E. Hunt (A.1. M. E., 1892) says: I have never seen so-called "welded" pieces of steel pulled apart in a testing-machine or
otherwise broken at the joint which have not shown a smooth cleavageplane, as it were, such as in iron would be condemned as an imperfect weld. My experience in this matter leads me to agree with the position taken by Mr. William Metcalf in his paper upon Steel in the Trans. A. S. C. E., vol. xvi., p. 301. Mr. Metcalf says, "I do not believe steel can be welded."

Oil-tempering and Annealing of Steel Forgings.-H. F. J. Porter says (189\%) that all steel forgings above $0.1 \%$ carbon should be annealed, to relieve them of forging and annealing strains, and that the process of anmeating reduces the elastic limit to $4 \% \%$ of the ultimate strength. Oil-tempering should only be practised on thin sections, and large forgings should be hollow for the purpose. This process raises the elastic limit above $50 \%$ of the ultimate tensile strength, and in some alloys of steel, notably nickel steel, will bring it up to $60 \%$ of the ultimate.

野ydraulic Forging of Steel. (See pages 618 and 619.)

## INPLUENCE OF ANNEAKING UPON ILAGNETEC CAPACLTE.

Prof. D. E. Hughes (Eng'g, Feb. 8, 1884, p. 130) has invented a "Magnetic Balance," for testing the condition of iron and steel, which consists chiefly of a delicate magnetic needle suspended over a gradnated circular index, and a magnet coil for magnetizing the bar to be tested. He finds that the following laws hold with every variety of iron and steel :

1. The magnetic capacity is directly proportional to the softness, or molecular freedom.
2. The resistance to a feeble external magnetizing force is directly as the hardness, or molecular rigidity.

The magnetic balance shows that annealing not only produces softness in iron, and consequent molecalar freedom, but it entirely frees it from all strains previously introduced by drawing or hammering. Thus a bar of iron drawn or hammered has a peculiar structure, say a fibrous one, which gives a greater mechanical strength in one direction than another. This bar, if thoroughly annealed at high temperatures, becomes homogeneous in all directions, and has no longer even traces of its previous strains, provided that there has been no actual separation into a distinct series of fibres.

## Effect of Annealing upon the Maqnetic Capacity of Different Wires; Tests by the Maguetic Ralance.

Description.

|  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## STANDARD SPECIEICATIONG FOR STEEEL.

The following specifications are abridged from those adopted Aug. 10, 1901, by the American Section of the International Association for Testing Materials.*

Kinds of Steel Used for Diferent Turposes.-O, openhearth; B, Bessemer ; C, crucible.
(1) Castings, O, B, C. (2) Axles, O. (3) Forgings, O, B, C. (4) Tires, O, C. (5) Rails, O, B. (6) Splice-bars, O. B. (7) Structural Steel for buildings, O, B. (8) Structural steel for ships, O. (9) Boiler-plate and rivets, O .
chemical requirements for the above nine classes.
(The minus sign after the figures means "or less.")
(1) ordinary, P, $0.08-$; C, $0.40-$; tested castings, $P, 0.05-$; S, $0.05-$. (2) P, $0.06-$; S, $0.06-$. Nickel steel, Ni, 3.00 to $4.00 ; \mathrm{P}, 0.04-$; S, $0.04-$ - (3) soft or low carbon, $\mathrm{P}, 0.10-; \mathrm{S}, 0.10-$; Class B (see below), $\mathrm{P}, 0.06-$; S, 0.06 -. Classes C and $\mathrm{D}, \mathrm{P}, 0.04$-; S, 0.04 -. (4) P, 0.05 -; $\mathrm{S}, 0.05-$; $\mathrm{Mn}, 0.80-$; Si, $0.20+$. (5) $\mathrm{P}, 0.10-$; Si, $0.20-$; C, a, 0.35 to $0.45 ; b, 0.38$ to $0.48 ; c, 0.40$ to $0.50 ; d, 0.43$ to $0.53 ; e, 0.45$ to $0.55 ; \mathrm{Mn}$, $a, b, 0.70$ to $1.00 ; c, 0.75$ to $1.05 ; d, e, 0.80$ to 1.10 . $[a, 50$ to $59+$ lbs. per yard; $b, 60$ to $69+\mathrm{lbs}. ; c, 70$ to $79+\mathrm{lbs} . ; d, 80$ to $89+\mathrm{lbs}. ; e, 90$ to 100 lbs.] (6) P, $0.10-; \mathrm{C}, 0.15-$; Mn, 0.30 to 0.60 . (7) $\mathrm{P}, 0.10-$. (S) acid, P, $0.08-$; S, $0.06-$; basic, $\mathrm{P}, 0.06-$; S, $0.06-$. (9) $a, \mathrm{P}, 0.06-; b, c$, $e, \mathrm{P}, 0 . \mathrm{C} 4-$; $d, \mathrm{P}, 0.03-; a, b, \mathrm{~S}, 0.05-; \mathrm{Mn}, 0.30$ to $0.60 ; c, d, e, \mathrm{~S}, 0.04-$; Mn, 0.30 to 0.50 . [ $a$, flange or boiler stcel, acid; $b$, do. basic; $c$, fire-box, acid; $d$, do. basic; $e$, extra soft.]
"Where the physical properties desired are clearly and properly specified, the chemistry of the steel, other than prescribing the limits of the injurious impurities, $P$ and $S$, may in the present state of the art of making steel be safely left to the manufacturer."

PIIYSICAL REQUIREMENTS.
(1) Castings subjected to physical tests.

| Quality. | Hard. | Medium. | Soft. |
| :---: | :---: | :---: | :---: |
| Tensile strength, lbs. per sq. in. | 85,000 | 70,000 | 60,000 |
| Yield-point, lbs. per sq. in. | 38,250 | 31,500 | 27,000 |
| Elongation, per cent in 2 | 15 | 18 | 22 |
| Contr. of area, per cent | 20 | 25 | 30 |

The above are the minimuin requirements. Test-piece $\frac{1}{2}$ in. diam. Eending test: Specimen $1 \times 1 \frac{1}{2}$ ins. to bend cold around a dian. of 1 in . through $120^{\circ}$ for soft and $90^{\circ}$ for medium castings.
(2) Axles.-For car, engine-truck, and tender-truck axles no tensile test is required. For driving-axles, minimum requirements: T.S. 80,000; Y. P. 40,000 for carbon steel (a), 50,000 for nickel steel, 3 to 4 per cent Ni , oil-tempered or annealed (b). Elongation in 2 ins., 18 per cent for $a, 25$ per cent for $b$. Contraction of area, 45 per cent for $b$. Test-piece $\frac{1}{2}$ in. diam.

Drop-test.--Not required for driving-axles. For other axles one axle from each melt to be tested on a standard K.K. drop-testing apparatus, with supports 3 ft . apart, tup 1640 lbs ., anvil $17,500 \mathrm{lbs} .$, supported on springs The axle shall stand the number of blows named below without rupture and without exceeding at the first blow the deflection stated. It is to be turned over after the first, third, and fifth blows.

| Diam. of axle at centre, ins.. . | 41 | $4 \frac{3}{8}$ | $4 \frac{7}{16}$ | ${ }^{\circ}$ | ${ }^{\circ}$ | 5 | $\frac{7}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of blows . . . | 5 | 5 | 5 |  |  |  |  |
| Height of drop, ft | 24 | 26 | $28 \frac{1}{2}$ | 31 | 34 | 43 | 43 |
| Deflection, ins. | 81 | $8 \frac{1}{4}$ | 87 | 8 | 8 | 7 | $5 \frac{1}{2}$ |

(3) Steel Forgings.-Classification: A, soft or low carkon; B, carbon steel, not annealed; C, do., annealed; D, do., oil-tempered; E, nickel-steel, annealed; F, do., oil-tempered. Sub-classes: $a$, solid or hollow forgings, diam, or thickness not over 10 ins.; $b$, solid forgings, diam. not over 20. ins., or thickness of section not over 15 ins.; $c$, solid, over 20 ins. diam.; $d$, solid

[^14]or hollow, diam. or thickness not over 3 ins.; $\boldsymbol{e}$, do., not over 6 ins. Minimum requirements of test-piece $\frac{1}{2}$ in. diameter, 2 ins. bctween gauge-marks:

| Kind. | $\left\|\begin{array}{c} \text { Ten- } \\ \text { sile } \\ \text { St'gth. } \end{array}\right\|$ | Elastic Limit. | $\begin{aligned} & \text { El. in } \\ & 2 \text { ins.. } \\ & \text { Per Ct. } \end{aligned}$ | Contr. <br> Per Ct. | Kind. | T.S. | E. L. | $\begin{aligned} & \text { El. in } \\ & 2 \text { ins. } \\ & \text { Per Ct } \end{aligned}$ | Contr. <br> PerCt. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A $a$ | 58,000 | 29,000 Y.P. | 28 | 35 | Da | 80,000 | 45,000 | 23 | 40 |
| Ba | 75,000 | 37,500 Y.P. | 18 | 30 | $\mathrm{E} a$ | 80,000 | 50.000 | 25 | 45 |
| C | 80,000 | 40,000 | 22 | 35 | Eb | 80,000 | 45,000 | 25 | 45 |
| Cb | 75,000 | 37,500 | 23 | 35 | Ec | 80,000 | 45,000 | 24 | 40 |
| $\stackrel{\mathrm{C}}{\mathrm{D} d}$ | 70,000 90,000 | 35,000 55,000 | 24 20 | 30 45 | $\stackrel{\mathrm{F}}{\mathrm{F} 2}$ | 95,000 90,000 | 65,000 60.000 | 21 | 50 |
| De | 85,000 | 50,000 | 22 | 45 45 | $\stackrel{\mathrm{F}}{\mathrm{F}}{ }^{\text {e }}$ | 90,000 85,000 | 60,000 55,000 | 22 | 50 45 |

The number and location of test specimens to be taken from a melt, blow, or forging depend upon its character and importance, and must therefore be regulated by individual cases. The yield-point (in steels A and B) shall he determined by observation of the drop of the beam or halt in the gauge of the testing-machine. The elastic limit shall be determined by means of an extensometer, and will be taken at that point where the proportionality changes.

Bending Test.-A specimen $1 \times 1 \frac{1}{2}$ ins. shall bend cold $180^{\circ}$ without fracture on outside of bent portion, as follows. The test may be made by bending or by blows.
Around a
a diam. of ins..... . $\frac{1}{2}$ $\frac{1}{2} \quad 1 \frac{1}{8}$
$1 \frac{1}{2} \quad 1$ 1 1
$\frac{1}{2} \quad 1$
(4) Tires.- Physical requirements of test-piece $\frac{1}{2} \mathrm{in}$. diam.: Tires for passenger engines: T.S., 100,$000 ;$ El. in 2 ins., 12 per cent. Tires for freight engines and car wheels. T. S., 110,$000 ;$ El., 10 per cent. Tires for switching engines: T. S., 120,000; El., 8 per cent.

Drop-test.-If a drop-test is called for, a selected tire shall be placed vertically under the drop on a foundation at least 10 tons in weight and subjected to successive blows from a tup weighing 2240 lbs. falling from increasing heights until the required deflection is obtained, without breaking or cracking. The minimum deflection must equal $D^{2} \div\left(40 T^{2}+2 D\right), D$ being internal diameter and $T$ thickness of tire at centre of tread.
(5) Rails.-One drop-test shall be made on a piece of rail not more than 6 ft . long, sclected from every fifth blow of steel. The rail shall be placed head upwards on solid supports 3 ft . apart, which are part of, or firmly secured to, an anvil-block weighing at least $20,000 \mathrm{lbs}$., and subjected to the following impact tests.
Weight of rails, lbs. per yd. 45 to $55 \quad 55$ to $65 \quad 65$ to $75 \quad 75$ to $85 \quad 85$ to 100 Height of drop, ft......... 15 . $16 \quad 17 \quad 18 \quad 19$

If any rail break when subjected to the dron-test, two additional tests will be made of other rails from the same blow of steel, and if either of these latter tests fail, all the rails of the blow which they represent will be rejected, but if both tests meet the requirements, all the rails of the blow will be accepted.
(6) Splice-bars. - Tensile strength of a specimen cut from the hear of the bar, 54,000 to $64,000 \mathrm{lbs}$.; yield-point, $32,000 \mathrm{lbs}$. Elongation in 8 ins., not less than 25 ner cent. A test specimen cut from the head of the bar shall bend $180^{\circ}$ flat on itself withnut fracture on the outside of the bent portion. If preferred, the bending test may be made on an unpunched splisebar, which shall be first flattened and then bent. One tensile test and one bending test to be made from each blow or melt of steel.
(7) Structural Steel for Suildings.

| Class. | Rivet-steel. | Medium Steel. |
| :---: | :---: | :---: |
| Tensile strength, lbs. per sq. in <br> Yield-p int, not less than. <br> Elongation in 8 ins., not less than | $\begin{gathered} 50,000-60,000 \\ 26 \text { per cent. } \end{gathered}$ | $\begin{gathered} 60,000-70,000 \\ 22 \frac{1}{2} \text { per cent. } \end{gathered}$ |

Modifications in elongation requirements: For each increase of $\frac{1}{8}$ in. in thickness above $\frac{3}{3}$ in., a deduction of 1 per cent in the specified elongation. For each decrease of $\frac{1}{26}$ in. in thickness below $\frac{5}{16}$ in., a deduction of $2 \frac{1}{2}$ per cent.

For pins the required elongation shall be 5 per cent less than that specified, as determined on a test specimen the centre of which shall be 1 in. from the surface.

Bending Tests.-Rivet-steel shall bend cold $180^{\circ}$ flat on itself, and medium steel $180^{\circ}$ around a diameter equal to the thickness of the specimen, without fracture on the outside of the bent portion.

One tensile and one bending-test specimen shall be taken from the finished material of each melt or blow.
(8) Structural Material for Hridges and Ships.

| Class. | Rivet-steel. | Soft Stecl. | Medium Stecl. |
| :---: | :---: | :---: | :---: |
| Tens. str., lbs. per sq. in. Y. P., not less than <br> El. in 8 ins. not less than | $\begin{gathered} 50,000-60,000 \\ 26^{\frac{1}{2}} \text { T. Ser cent. } \end{gathered}$ | $\begin{gathered} 52,000-62,000 \\ 25 \text { per cent. } \end{gathered}$ | $\begin{gathered} 60,000-70,000 \\ 22^{\frac{1}{2} \text { per sent. }} . \end{gathered}$ |

Modifications in elongation: Same as in structural stcel for buildings.
Eyebars.-Full-sized tests: T. S. not less than 55,000 lbs.; El., $12 \frac{1}{2}$ per cent. in 15 ft . of the body.

Bending Tests.-Ri-et and soft steel, $180^{\circ}$ flat on itself, and medium steel $180^{\circ}$ around a diamfter equal to the thickness of the specimen, without fracture on the outside of the bent portion.
(9) EBoiler-plate and reivet-stect.

| Class. | Flange- or Boiler-steel. | Firc-box Steel. | Extra-soft Stecl. |
| :---: | :---: | :---: | :---: |
| T. S., lhs per sq. in. Y. P., not less than El. in 8 ins. not less than | $\begin{gathered} 55,000-65,000 \\ 25 \text { per cent. } \end{gathered}$ | $\begin{gathered} 52,000-62,000 \\ 26^{\frac{1}{2}} \text { per S. S. } \end{gathered}$ | $\begin{gathered} 45,000-55,000 \\ 28^{\frac{1}{2} \text { per cent. }} \end{gathered}$ |

Morlifications in clongation requirements for thin and thick material same as in structural steel for buildings.

Bending Tests.- A specimen cut from the rolled material, both before and after quenching, shall bend cold $180^{\circ}$ flat, on itself without fracture on the outside of the bent portion. For the quenched test the specimen shall be heated to a light cherry-red as scen in the dark and quenched in water of a temperature between $80^{\circ}$ and $90^{\circ} \mathrm{F}$. Number of test-pieces: One tensile. one cold-bending, and one quenched-bending specimen will be furnished from each plate as it is rolled, and two specimens for each kind of test from each melt of rivet-rounds.

Homogeneity Test for Fire-box Steel.-This test is made on one of the broken tensile-test specimens, as follows:

A portion of the test-piece is nicked with a chisel, or grooved on a machine, transverscly about a sixteenth of an inch dcep, in three places about 2 in . apart. The first groove should be made on one side, 2 in . from the square end of the piece; the second, 2 in. from it on the opposite side; and the third. 2 in . from the last, and on the opposite side from it. The testpicce is then put in a vise, with the first groove about $\frac{1}{4} \mathrm{in}$. above the jaws, care heing taken to hold it firmly. The projecting end of the test-piece is then broken off by means of a hammer, a number of light blows being used, and the bending being away from the groove. The piece is broken at the other two grooves in the same way. The object of this treatnent is to open and render visible to the eye any seams due to failure to weld up, or to foreign interposed matter, or cavifies due to gas bubbles in the ingot. After rupture, one side of each fracture is examined, a pocket lens being used if necessary, and the length of the seans and cavities is determined. The sample shall not show any single seam or cavity more than $\}$ in. long in either of the three fractures.

## VAREOUS SPHCTEICATEONS FOR STEELA.

Structural steel.-There has been a change during the ten years from 1880 to 1890, in the opinions of engineers, as to the requirements in specifications for structurai steel, in the direction of a preference for metal of low tensiie strength and great ductility. The following specitications of different dates are given by A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. 1890. xix, 926 :

| Tension Miembers. | $18 \% 9$. | 1881. | 1882. | 1885. | $88 \%$ | 1888. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Elastic limit | 50,000 | 40@,45,000 | 40.000 | 40,000 | 40 | 38, |
| Tens | 80,000 | 70@80,000 | 70.000 | 70,000 | 6r@us, | (1) |
|  | 12\% | 18\% | 18\% | 18\% | 20\% | $2 \%$ |
|  | 20\% | 30\% | 45\% | 42\% | 42\% | 45\% |

F. H. Lewis (1ron Age, Nov. 3, 1892) says: Regarding steel to be used under the same conditions as wrought iron, that is, to be punched without reaming, there seems to be a decided opinion (and a growing one) annong engineers. that it is not safe to use steel in this way, when the ultimate tensile strength is above $65,000 \mathrm{lbs}$. The reason for this is, not so much because there is any marked cliange in the material of this grade, but because all steel, especially Bessemer steel, has a tendency to segregations of carbon and phosphorns, producing places in the metal which are harder than they normally should be. As long as the percentages of carbon and phosphorus are kept low, the effect of these segregations is inconsiderable; but when these percentages are increased, the existence of these hard spots in the metal becomes more marked, and it is therefore less adapted to the treatment to which wrought iron is subjected.
There is a wide consensus of opinion tliat at an ultimate of 64,000 to 65,000 fos. the percentages of carbon and phosphorus (which are the two hardening elements) reach a point where the steel has a tendency to become tender. and to crack when subjected to rough treatment.

A grade of steel, therefore, running in ultimate strength from 54,000 to $62,000 \mathrm{lbs}$. or in some cases to $64,000 \mathrm{lbs}$., is now generally considered a proper material for this class of work.
A. E. Hınt, Trans. A. I. MI. E. 1S92, says: Why should the tests for steel be so much more rigid than for iron destined for the same purpose? Some of the reasons are as follows: Experience shows that the acceptable qualities of one melt of steel offer no absolute guarantee that the next melt to it, even though made of the same stock, will be equally satisfactory.

Again, good wrought iron, in plates and angles, has a narrow range from 25,000 to $27,000 \mathrm{lbs}$.) in elastic limit per square inch, and a tensile strength of from 46,000 to $52,000 \mathrm{lbs}$. per square inch; whereas for steel the range in elastic limit is from 27,000 to $80,000 \mathrm{lbs}$, and in tensile strength from 48,000 to $120,000 \mathrm{lbs}$. per square inch, with corresponding variations in ductility. Moreover, sfeel is much more susceptible than wrougit iron to widely vary. ing effects of treatment, by hardening, cold rolling, or overheating.

It is now almost universally recognized that soft steel, if properly made and of good quality, is for many purposes a safe and satisfactory substitute for wrought iron, being capable of standing the same shop-treatment as wrought iron. But the conviction is equally general, that poor steel, or an unsuitable grade of steel, is a very dangerous substitute for wrought iron even under the same unit strains.

For this reason it is advisable to make more rigid requirements in selecting material which may range between the brittleness of glass and a ductility greater than that of wrought iron.
Boiler, Ghip, and Tank Llates.-Different specifications are the following (1889) :

United States Navy.-Shell : Tensile strength, 58,000 to $6 \tilde{r} .000 \mathrm{lbs}$. per sq. in.; elongation, $22 \%$ in 8 -in. transverse section, $25 \%$ in $8-\mathrm{in}$. longitudinalsection. Flange: Tensile strength, 50,000 to $58,000 \mathrm{lbs} . ;$ elongation. $20 \%$ in 8 inches. Chemical requirements: P. not over $.035 \%$; $S$, not over $.040 \%$.
Cold-bending test: Specinen to stand being bent flat on itself.
Quenching test: Steel heated to cherry-red, plinged in water $82^{\circ} \mathrm{F}$. and to be bent around curve $11 / 2$ times thickness of the plate.

British Admiralty.--Tensile strength, 58,240 to $67,200 \mathrm{lbs}$.; elongation is 8 in., $20 \%$; same cold-bending and quenching tests as U. S. Navy.

American Boiler-makers' Association. -Tensile strength, 55,000 to 65,000 lbs.; elongation in 8 in ., $20 \%$ for plates $3 / 3$ in. thick aud under; $22 \%$ for plates $3 / 8 \mathrm{in}$. to $3 / 4 \mathrm{in}$. $\mathrm{2} 2 \%$ for plates $3 / 4 \mathrm{in}$. and over.

Cold-bending test: For plates $1 \times i n$. thick and under, specimen must bend back on itself without fracture; fur plates over $1 / 2 \mathrm{in}$. thick, specimen must withstand bending $180^{\circ}$ around a mandril $11 / 2$ times the thickness of the plate.

Chemical requirements: $P$ not over $040 \%$; $S$ not over $.030 \%$.
American Shipmusters' Association.-'I'ensile strength, 62,000 to "'2,000 lbs.; elongation, $16 \%$ on pieces 9 in. long.

Strips cut from plates, heated to a low red and cooled in water the temperature of which is $80^{\circ} \mathrm{F}^{\mathrm{F}}$, to undergo without crack or fracture being doubled over a curve the diameter of which does not exceed three times the thickness of the piece tested.
Steel Plate Used in the Construetion of Cars. (Penna. R. R., 1899.*)-The material desired has the following composition: $\mathrm{C}, 0.12$; Mn, 0.35 ; $\mathrm{Si}, 0.05 ; \mathrm{P}$, not above $0.04 ; \mathrm{S}$, not above 0.08 . It will be rejected if P exceeds 0.05 , or if it shows a tensile strength below 52,000 or above $62,000 \mathrm{lus}$. per sq. in., or if the percentage of elongation in 8 ins. is less than the quotient of $1,500.000 \div$ the tensile strengeth.
Steel Billets for Mainand Parailel Leods. (Penua. R. R., 1893.) -One billet from each lot of 25 billets or smaller shipment of steel for main or parallel rods for locomotives will have a piece drawn from it under the hammer and a test-section will be turned down on this piece to $5 / 8 \mathrm{in}$. in diameter and 2 in . long. Such test-piece should show a tensile strength of $85,000 \mathrm{lbs}$. and an elongation of $15 \%$.
No lot will be acceptable if the test shows less than 80,000 l's. tensile strength or $12 \%$ elongation in 2 in.
Har Spring Steel. (Penna. R. R, 1901.)-Bars which vary more than 0.01 in . in thickness, or more than 0.02 in. in width, from the size ordered, or which break where they are not nicked, or which, when properly nicked and hell, fail to break square across where they are nicked, will be returned The metal desired has the following composition: Carbon, $1.00 \%$; manganese, $0.25 \%$; phosphorus, not over $0.03 \%$; silicon, not over $0.15 \%$; sulphur, not over $0.03 \%$; copper, not over $0.03 \%$.

Shipments will not be accepted which show on analysis less than $0.90 \%$ or over $1.10 \%$ of carbon, or over $0.50 \%$ of manganese, $0.05 \%$ of phosphorus, $0.25 \%$ of silicon. $0.05 \%$ of sulphur, and 0.0 \%\% of copper.

Steel for Crankepins. (Pemna. R. 1., 189\%.)--The metal desired has the following compusition: $(, 0.45 ; M \mathrm{M}$, not above $0.60 ; \mathrm{Si}$, not above 0.05 ; P, not above $0.03 ; S$, not above 0.04 . The tensile strength should be 85,000 lbs. per sq. in., and the elongation $18 \%$ in 8 in . Borings for analysis will be taken from one axle out of ilot of 51 . They will be drilied parallel with the axis with a $5 / 8$-in. drill, starting from a punch-march located on the end, 40 per cent of the distance from the centre to the circmmference. Two pieces $\underset{P}{\text { from this pin will also be tested physically. The lot will be rejected if the }}$ P is aioove $0.05 \%$, or if either test-piece shows less than $80,000 \mathrm{lbs}$. ol above $95,000 \mathrm{lbs}$. T. S., less than $12 \%$ elongation, or if the T. S. of the two testpieces differs more than $5,000 \mathrm{lbs}$. or the elongation more than $5 \%$.

Dr. Chas. B. Dudley, chemist of the P. R. R. (Trans. A. I. M. E. 1892), referring to tests of crank-pins, says: In testing a recent shipment, the piece from one side of the pin showed $88,000 \mathrm{lbs}$. strength and $2 \cdot \%$ elongation, and the piece from the opposite side showed 106,000 lbs. strength and $14 \%$ elongation. Each piece was above the specified strength and ductility, but the lack of uniformity between the two sides of the pin was so marked that it was finally determined not to put the lot of 50 pins in nse. To guard against trouble of this sort in fnture, the specifications are to be amended to require that the difference in ultimate strength of the two specinens siall not be more than 3000 lbs .

Steel Rivets. (H. C. Torrance, Amer. Boiler Mfrs. Assn., 1890.)-The Govermment requirements for the rivets used in boilers of the cruisers built in 1890 are: For longitudinal seams, 58,000 to 67,000 lbs. tensile strength; elongation, not less than $26 \%$ in 8 in., and all others a tensile strength of 50,000 to $58,000 \mathrm{lbs}$., with an elongration of not less than $30 \%$. They shall be capable of being flattened ont cold under the hammer to a thickness of one half the diameter, and of being flattened out hot to a thickness of one third

[^15]the diameter without showing cracks or flaws. The steel must not contain more than .035 of $1 \%$ of phosplorins, nor more than .04 of $1 \%$ of sulphrr.
A lot of 20 successive tests of rivet steel of the low tensile strength quality and 12 tests of the higher tensile streugth gave the following results:

| Tensile strength, lbs per sq. in | Low Steel. | Higher. |
| :---: | :---: | :---: |
| Elastic limit, lis. per sq. inc..... | 31,050 to 33,190 | 32,080 to 33,070 |
| Elongation in 8 in., per cent. | 30.5 to 35.25 | 28.5 to 31, 5 |
| Carbon, per cent. | . 11 to 14 | . 16 to 18 |
| Phosphorus | . $0: 27$ to 0.029 | . 03 |
| Sulphiur. | .0:33 to .035 | . 033 to . 035 |

The safest steel rivets are those of the lowest tensile strength, since they are the least liable to become hardened and fracture by hammering, or to break from repeated concussive and vibratory strains to which they are subjected in practice. For calculations of the strength of riveted joints the tensile strength may be taken as the averase of the figures abovo given, or $52,665 \mathrm{lbs}$., and the shearing strength at $45,000 \mathrm{lbs}$. per sq. in.

## MISCELLANEOUS NOTES ON STEEEL.

May Carbon be Burmed Out of Steel?-Experiments made at the Laboratory of the Pemua. Railroad Co. (Specifications for Springs, 1888) with the steel of spiral springs, show that the place from which the borings are taken for analysis has a very important influence on the amount of carbon found. If the sample is a piece of the round bar, and the borings are taken from the end of this piece, the carbon is always higher than if the borings are taken from the side of the piece. It is common to find a difference of $0.10 \%$ between the centre and side of the bar, and in some cases the Cifference is as high as $0.23 \%$. Furthermore, experiments made with samples taken from the drawn out end of the bar slow, usually, less carbon than samples taken from the round part of the bar, even though the borings may be taken out of the side in both cases.
Apparently during the process of reducing the metal from the ingots to the round bar, witl successive heatings, the carbon in the outside of the bar is burned ont.
'6Recalescences, of Steel.-If we heat a bar of copper by a flame of consiant strength, and note carefully the interval of time occupied in passing from eacli degree to the neat higher degree, we find that these in. tervals increase regularly, i e., that the bar heats more and more slowly, as its temperature approaches that of the flame. If we substitute a bar of steel for one of copper, we find that these intervals increase regularly up to a certain point, when the rise of temperature is suddenly and in most cases greatly retarded or even completely arrested. After this the regular rise of temperature is resumed, though other like retardations may recur as the temperature rises farther. So if we cool a bar of steel slowly the fall of temperature is greatly retarded when it reaches a certain point in dull redness. If the steel contains much carbon, and if certain favoring conditions be maintained, the temperature, after descending regularly, suddenly rises spontaneously very abruptly, remains stationary a while, and theu redescends, This spontaneous reheating is known as "recalescence."

These retardations indicate that some change which absorbs or evolves heat occurs within the metal. A retardation while the temperature is rising points to a change which absor hs heat; a retardation during cooling points to some chauge which evolves heat. (Henry M. Howe, on "Heat Treatment of Sterl," Trans. A. I. M. E., vol. xxii.)

Efrect of Nicking a Steel Bar.-The statement is sometimes made that, owing to the homogeneity of steel, a bar with a surface crack or nick in one of its edges is liable to fail by the gradual spreading of the nick, aud thus break under a very much smaller load than a sound bar. With iron it is contended this does not occur, as this metal has a fibrous structure. Sir Benjamin Baker has, however, shown that inis theory, at least so far as statical stress is concerned, is opposed to the facts, as he purposely made nicks in specimens of the mild steel used at the Forth Bridge, but found that the tensile strength of the whole was thus reduced by only about one ton per square inch of section. In an experiment by the Union Bridge Company a full-sized steel counter-bar, with a screw-turned buckle connection, was tested under a heavy statical stress, and at the same time a weight weighing 1040 lbs . was allowed to drop on it from various heights. The bar Was first broken by ordinary statical strain, and showed a breaking stress of
$66,800 \mathrm{lbs}$. per square inch. The longer of the broken parts was then placed in the machine and put under the following loads, whilst a weight, as already mentioned, was dropped on it from various heights at a distance of five feet from the sleeve-nut of the turn-buckle, as shown below:

The weight was then shifted so as to fall directly on the sleeve-nut, and the test proceeded as follows:

| Stress on specimen in lbs. per square inch...... | 65,350 |
| :--- | :--- |
| Height of fall, feet........................... | 3 |

It will be seen that under this trial the bar carried more than when originally tested statically, showing that the nicking of the bar by screwing had not appreciably weakened its power of resisting shocks.- Eng'g News.

Electric Conductivity of stcel.- Louis Campredon reports in Le Genie Civil [prior to 1895] the results of experiments on the electric resistance of steel wires of different composition, ranging from 0.09 to 0.14 C ; 0.21 to $0.54 \mathrm{Mn} ; \mathrm{Si}, \mathrm{S}$, and P low. The figures show that the purer and softer the steel the better is its electric conductivity, and, furthermore, that manganese is the element which most influences the conductivity. The results may be expressed by the formula $R=5.2+6.2 S \pm 0.3$; in which $R=$ relative resistance, copper being taken as 1 , and $S=$ the sum of the percentages of $\mathrm{C}, \mathrm{P}, \mathrm{S}, \mathrm{Si}$, and Mn . The conclusions are confirmed by J. A. Capp, in 1903, Trans. A. I. M. E., vol. xxxiv, who made forty-five experiments on steel of a wide range of composition. His results may be expressed by the formula $R=5.5+4 S \pm 1$. High manganesc increases the resistance at an increasing rate. Mr. Capp proposes the following specification for steel to make a satisfactory third rail, having a resistance eight times that of copper: $\mathrm{C}, 0.15 ; \mathrm{Mu}, 0.30 ; \mathrm{P}, 0.06 ; \mathrm{S}, 0.05 ; \mathrm{Si}, 0.05 ;$ none of these figures to be exceeded.

Specific Gravity of Soft Steel. (W. Kent, Trans. A. I. M. E., xiv. 585.)-Five specimens of boiler-plate of C. $0.14, \mathrm{P} .0 .03$ gave an average sp. gr. of 7.932 , maximum variation 0.008 . The pieces were first planed to remove all possible scale indentations, then filed smooth, then cleaned in dilute sulphuric acid, and then boiled in distilled water, to renove all traces of air from the surface.
The figures of specific gravity thus obtained by careful experiment on bright, smooth pieces of steel are, however, too high for use in determining the weights of rolled plates for commercial purposes. The actual average thickness of these plates is always a little less than is shown by the calipers, on account of the oxide of iron on the surface, and becanse the surface is not perfectly smooth and regular. A number of experiments on commercial plates, and comparison of other authorities, led to the figure i. 854 as the average specific gravity of open-hearth boiler-plate steel. This figure is easily remembered as being the same figure with change of position of the decimal point (.7854) which expresses the relation of the area of a circle to that of its circumscribed square. Taking the weight of a cubic foot of water at $69^{\circ} \mathrm{F}$. as 62.36 lbs . (average of several authorities), this figure gives 489.775 lbs. as the weight of a cubic foot of steel, or the even figure, 490 Ibs., may be taken as a convenient figure, and accurate within the limits of the error of observation.

A common method of approximating the weight of iron plates is to consider them to weigh 40 lbs. per square foot one inch thick. Taking this weight and adding $2 \%$ gives almost exactly the weight of steel boiler'plate given above ( $40 \times 12 \times 1.02=489.6 \mathrm{lbs}$. per cubic foot) .

Occasional Failures of Bessemer Steel.-G. H. Clapp and A. E. Hunt, in their paper on "The Inspection of Materials of Construction in
the United States " (Trans. A. I. M. E., vol. xix), say: Numerous instancea could be cited to show the unreliability of Bessemer steel for structural purposes. One of the most marked, however, was the following: A 12-in. I-beam weighing 30 lbs . to the foot, 20 feet long, on being unloaded from a car broke in two about 6 feet from one end.

The analyses and tensile tests made do not show any cause for the failure.
The cold and quench bending tests of both the original $3 / 4$-in. round testpieces, and of pieces cut from the finished material, gave satisfactory results; the cold-bending tests closing down on themselves without sign of fracture.

Numerous other cases of angles and plates that were so inard in piaces as to break off short in punching, or, what was worse, to break the punches, have come under our observation, and although makers of Bessemer steel claim that this is just as likely to occur in open-hearth as in Bessemer steel, we have as yet never seen an instance of failure of this kind in open-hearth steel having a composition such as C $0.25 \%, \mathrm{Mn} 0.70 \%$, $\mathrm{P} 0.80 \%$.
J. W. Wailes, in a paper read before the Chemical Section of the British Association for the Advancement of Science, in speaking of mysterious failures of steel, states that investigation shows that "these failures occur in steel of one class, viz., soft steel made by the Bessemer process."

Segregation in Steel Ingots. (A. Pourcel, Trans. A. I. M. E. 893. $-H$. M. Howe, in his "Metallurgy of Steel," gives a résumé of obserrations with the results oif numerous analyses, bearing upon the phenomena oi seg regation.

In $1881^{\mathrm{Mr}}$. Stubbs, of Manchester, showed the heterogeneous results of analyses made upon different parts of an ingot of large section.

A test-piece taken 24 inches from the head of the ingot 7.5 feet in length gave by analysis very different results from those of a test-piece taken 30 inches from the bottom.

|  | C. | Mn | Si | S | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Top. $\ldots \ldots \ldots \ldots$ | 0.92 | 0.535 | 0.043 | 0.161 | 0.261 |
| Bottom.............. | 0.37 | 0.498 | 0.006 | 0.025 | 0.096 |

Windsor Richards says he had often observed in test-pieces taken from different points of one plate variations of $0.05 \%$ of carbon. Segregation is specially pronounced in an ingot in its central portion, and around the space of the piping.

It is most observable in large ingots. but in blocks of smaller weight and limited dimensions, subjected to the influence of solidification as rapid as casting within thick walls will permit, it may still be observed distinctly. An ingot of Martin steel, weighing about 1000 lbs., and having a height of 1.10 feet and a section of 10.24 inches square, gave the following:

| Upper section: | C. | S. |  | Mn. |
| :---: | :---: | :---: | :---: | :---: |
| Border | 0.330 | 0.040 | 0.033 | 0.420 |
| Centre | 0.530 | 0.077 | 0.057 | 0.430 |
| 2. Lower section: | C. | S. | P. | Mn. |
| Border | 0.280 | $0.0 \% 9$ | 0.016 | 0.390 |
| Centre | 0.290 | 0.030 | 0.038 | 0.390 |
| 3. Middle section: | C. | S. | P. | Mn. |
| Border | 0.320 | 0.025 | 0.025 | 0.400 |
| Centre. | 0.320 | 0.048 | 0.048 | 0.40 |

Segregation is less marked in ingots of extra-soft metal cast in cast-iron moulds of considerable thickness. It is, however, still important, and explains the difference often shown by the results of tests on pieces taken from different portions of a plate. Two samples, taken from the sound part of a flat ingot, one on the outside and the other in the centre, 7.9 inches from the upper edge, gave:

|  | C. | S. | P. | Mn . |
| :---: | :---: | :---: | :---: | :---: |
| Centre. | 0.14 | 0.053 | 0.072 | 0.576 |
| Exterio | 0.11 | 0.036 | 0.027 | 0.610 |

Manganese is the element most uniformly disseminated in hard or soft steel.

For cannon of large calibre, if we reject, in addition to the part cast in sand and called the masselotte (sinkiug-liead), one third of the upper part of the ingot, we can obtain a tube practically homogeneous in composition, because the central part is naturally removed by the boring of the tube. Vith extra-soft steels, destined for ship-or boiler-plates, the solution for practically perfect homogeneity lies in the obtaiuing of a metal more closely deserving its name of əxtra-soft metad,

The injurious consequences of segregation must be suppressed by reducing, as far as possible, the elements subject to liquation.
Earliest Uses of Steel for Structural Purposes. (G. G. Mehrtens, Trans. A. S. C. E. 1893).-The Pennsylvania Railroad Company first introduced Bessemer steel in America in locomotive boilers in the year 1863, but the steel was too hard and brittle for such nise. The first plates made for steel boilers had a tenacity of 85.000 to $92,0 \mathrm{colbs}$. and an elongation of but $7 \%$ to $10 \%$. The results were not farorable, and the steel works were soon forced to offer a material of less tenacity and more ductility. The requirements were therefore reduced to a tenacity of $78,000 \mathrm{lbs}$ or less, and the elongation was increased to $15 \%$ or more. The use of Bessemer steel in bridge-building was tried first on the Dutch State railways in 1863-61, then in Eugland and Austria. The first use of cast steel for bridges was in America, for the St. Louis Arch Bridge and for the wire of the East Rivei Bridge. Before 1880 the Glasgow and Plattsmouth bridges over the Missouri River were also built of ingot metal. Steel eyebars were applied for the first time in the Glasgow Bridge. Since 1880 the introduction of mild steel in all kinds of engineering structures has steadily increased.

Messrs. Joseph Adamson \& Co., of Hyde, England, in a letter to the author say: "The first steel for boiler purposes was used for a locomotive firebox sent to Africa in 1858. The first steel steamships were built in Liverpool for 'blockade-running' during the American Civil War about 1862, and at least 5000 tons of Bessemer steel plates were rolled at Penistone by Benson, Adamson \& Garnett for this purpose. The first Bessemer steel boilers were nade in this neighborhood in 1858. Drilling the rivet-holes was adopted in 1859. Some of these boilers built in 1862 worked 29 y ears night and day. We have lost trace of these hoilers now, but we know that after working this length of time they were found good enough to be worth resetting and were set to work again for a time. Between $18 \% 0$ and 1880 about 2000 steel land boilers were working in this country. The pressures ranged up to 150 lbs ."

## S'TELCLCASTINGS.

(E. S. Cramp, Engineering Congress, Dept. of Marine Eng'g, Chicago, 1893.)

In 1891 American steel-founders had successfully produced a considerable variety of heavy and difficult castings, of which the following are the most noteworthy specimens:
Bed-plates up to $24,000 \mathrm{lbs}$; stern-posts up to $54,000 \mathrm{lbs}$; stems up to $21,000 \mathrm{lbs}$. hydraulic cylinders up to $11,000 \mathrm{lbs}$. shaft-struts up to $32,000 \mathrm{lbs}$. ; hawse-pipes up to 7500 lbs .; stern-pipes up to 8000 lbs .

The percentage of success in these classes of castings since 1890 has ranged from $65 \%$ in the more difficult forms to $30 \%$ in the simpler ones; the tensile strength has been from 62,000 to $78,000 \mathrm{lbs}$., elongation from $15 \%$ to $25 \%$. The best performance recorded is that of a guide, cast in January, 1893, which developed $84,000 \mathrm{lbs}$. tensile strength and $15.6 \%$ elongation.

The first steel castings of which anything is generally known were crossing-frogs made for the Philadtlphia \& Reading R. R. in July, 186i, by the William Butcher Steel Works, now the Midvale Steel Co. The moulds were made of a mixture of ground fire-brick, black-lead crucible-pots ground fine, and fire-clay, and washed with a black-lead wasb. The steel was melted in crucibles, and was about as hard as tool steel. The surface of these castings was very smooth, but the interior was very much honeycombed. This was before the days when the use of silicon was known for solidifying steel. The sponginess, which was almost universal, was a great obstacle to their general adoption.
The next step was to leave the ground pots out of the moulding mixture and to wash the mould with finely ground fire-brick. This was a great improvement, especially in very heavy castings; but this mixture still clung so strongly to the casting that only comparatively simple shapes could be made with certainty. A mould made of such a mixture became almost as hard as fire-brick, and was such an obstacle to the proper slirimkage of castings, that. when at all complicated in shape, they had so great a tendency to crack as to make their successful manufacture almost impossible. By this time the use of silicon had been discovered. and the only obstacle in the way of making good castings was a suitable moulding mixture. This was ultimately found in mixtures having the various kinds of silica sand as the principal constituent.

One of the most fertile sources of defects in castings is a bad design. Very intricate shapes can be cast successfully if they are so desigued as to
cool uniformly. Mr. Cramp says while he is not yet prepared to state that anything that can be cast successfully in irou can be cast in steel, indications seem to point that way in all cases where it is possible to put on suitable sinking-heads for feeding the casting.
H. L. Gantt (Trans. A. S. M. E., xii. 710) says : Steel castings not only shrink much more than iron ones, but with less regularity. The amount of shrinkage varies with the composition and the heat of the metal; the hotter the metal the greater the slninkage; and, as we get smoother castings from hot metal, it is better to make allowance for large slirinkage and pour the metal as hot as possible. Allow $3 / 16$ or $1 / 4 \mathrm{in}$. per ft. in length for shrinkage, and $1 / 4 \mathrm{in}$. for finish on machined surfaces, except such as are cast "up." Cope surfaces which are to be machined should, in large or hard castings, have an allowance of from $3 / 8$ to $1 / 2 \mathrm{in}$. for finish, as a large mass of metal slowly rising in a mould is apt to become crusty on the surface, and such a crust is sure to be full of imperfections. On small, soft castings $1 / 8 \mathrm{in}$. on drag side and $1 / 4 \mathrm{in}$. on cope side will be sufficient. No core should have less than $1 / 4 \mathrm{in}$. finish on a side and very large ones should have as much as $1 / 2 \mathrm{in}$. on a side. Blow-holes can be entirely prevented in castings by the addition of manganese and silicon in sufficient quantities; but both of these cause brittleness, and it is the object of the conscientious steelmaker to put no more manganese and silicon in his steel than is just sufficient to make it solid. The best results are arrived at when all portions of the castings are of a uniform thickness, or very nearly so.
The following table will illustrate the effect of annealing on tensile strength aud elongation of steel castings:

| Carbou. | Unannealed. |  | Annealed. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Tensile Strength. | Elongation. | Tensile Strength. | Elongation. |
| . $23 \%$ | 68,738 85,540 | 22.40\% | 67. 210 | $31.40 \%$ |
| . 53 | 90,121 | $\stackrel{8}{2.35}$ | 106.415 | 21.80 9.80 |

The proper annealing of large castings takes nearly a week.
The proper steel for roll pinions, hammer dies, etc., seems to be that containing about $.60 \%$ of carbon. Such castings, properly annealed, have worn well and seldom broken. Miscellaneous gearing should contain carbon $.40 \%$ to $60 \%$ gears larger in diameter being softest. General machinery castings should, as a rule, contain less than $.40 \%$ of carhon, those exposed to great shocks containing as low at . $20 \%$ of carbon. Such castings will give a tensile strength of from 60,000 to $80,000 \mathrm{lbs}$. per sq. in and at least $15 \%$ extension in a 2 in. loug specimen. Machinery and hull castings for war-vessels for the United States Navy, as well as carriages for haval guns, contain from . $20 \%$ to $.30 \%$ of carbon.
The following is a partial list of castings in which steel seems to be rapidly taking the place of iron: Hydraulic cylinders, crossheads and pistons for large engines, roughing rolls, rolling-mill spindles, coupling-boxes, roll pinions, gearing, hammer-heads and dies, riveter stakes, castings for ships, car couplers, etc.

For description of methods of manufacture of steel castings by the Bessemer, open-hearth, and crucible processes, see paper by P. G. Salom, Trans. A. I. M. E. xiv, 118.

Specifications for steel castings issued by the U. S. Nary Department, 1889 (abridged): Steel for castings must be made by eillier the open-liearth or the crucible process, and must not show more than $.06 \%$ of phosphorus. All castings must be annealed, unless otherwise directed. The tensile strength of steel castings shall be at least $60,000 \mathrm{lbs}$., with an elongation of at least $15 \%$ in 8 in . for all castings for moving parts of the machinery, and at least $10 \%$ in 8 in . for other castings. Bars $1 \mathrm{in}$.sq . sliall be capable of bending cold, withont fracture, through an angle of $90^{\circ}$, over a radins not greater than $11 / 2$ in. All castings must be sound, free from injurious roughness, sponginess, pitting, slrinkage, or other cracks, cavities, etc.

Pennsylvania Railroad specifications, 1858: Sleel castings should have a tensile strength of $70,000 \mathrm{lbs}$. per sq. in. and an elongation of $15 \%$ in section originally 2 in. long. Steel castings will not be accepted if tensile strength
falls below $60,000 \mathrm{lbs}$, nor if the elongation is less than $12 \%$, nor if castings have blow-holes and shrinkage cracks. Castings weighing 80 lbs or more must have cast with them a strip to be used as a test-piece. The dimensions of this strip must be $3 / 4 \mathrm{in}$. sq. by 12 in . long.

## MIANGANESE, NICKEL, ANB OTHEER ${ }^{6}$ ALLOY, STEELS.

Manganese Steel. (H. M. Howe, Trans. A. S. M. E., vol. xii.)-Manganese steel is an alloy of iron and manganese, incidentally, and probably unavoidably, containing a considerable proportion of carbon,

The effect of small proportions of manganese on the hardness, strength, and ductility of iron is probably slight. The point at which manganese begins to have a predominant effect is not known: it may be some where about $2.5 \%$. As the proportion of manganese rises above 2.5\% the strength and ductility diminish, while the hardness increases. This effect reaches a maximum with somewhere about $6 \%$ of manganese. When the proportion of this element rises beyond $6 \%$ the strength and ductility both increase. while the hardness diminishes slightly, the maximum of both strength and ductility being reached with about 14\% of manganese. With this proportion the metal is still so hard that it is very difficult to cut it with steel tools. As the proportion of manganese rises above $15 \%$ the ductility falls off abruptly, the strength remaining nearly constant till the manganese passes $18 \%$, when it in turn diminishes suddenly.

Steel containing from $4 \%$ to $6.5 \%$ of manganese, even if it have but $0.37 \%$ of carbon, is reported to be so extremely brittle that it can be powdered under a hand-hammer when cold; yet it is ductile when hot.
Manganese steel is very free from blow-holes; it welds with great difficulty; its toughness is increased by quenching from a yellow heat; its electric resistance is enormous, and very constant with changing temperature; ir is low in thermal conductivity. Its remarkable combination of great hardmess, which cannot be materially lessened by annealing, and great tensile istrength, with astonishing toughness and ductility, at once creates and limits its usefulness. The fact that manganese steel cannot be softened, that it ever remains so hard that it can be machined only with great difficulty, sets up a barrier to its usefulness.
The following comparative results of abrasion tests of inanganese and ather steel were reported by T. T. Morrell:

> Abrasion by Pressure Against a Revolving Hardened-Steel Shaft. Loss of weight of manganese steel

The hardness of manganese steel seems to be of an anomalous kind. The alloy is hard, but under some conditions not rigid. It is very hard in its resistance to abrasion; it is not always hard in its resistance to impact.
Manganese steel forges readily at a yellow heat, though at a bright white heat it crumbles under the hammer. But it offers greater resistance to deformation, i.e., it is harder when hot, than carbon steel.
The most important single use for manganese-steel is for the pins which hold the buckets of elevator dredges. Here abrasion chiefly is to be resisted.
Another important use is for the links of common chain-elevators.
As a material for stamp-shoes, for horse-shoes, for the knuckles of an automatic car-coupler, manganese steel has not met $\pm$ xpectations.
Manganese steel has been regularly adopted for the blades of the Cyclone pulverizer. Some manganese-steel wheels are reported to have run over 300,000 miles each without turning, on a New England railroad.
Nickel Steel. - The remarkable tensile strengtl and ductility of nickel steel, as shown by the test-bars and the belavior of nickel-steel armorplate under shot tests, are witness of the valuable qualities conferred upon

The following tests were made on nickel steels by Mr. Maunsel White of the Bethlehem Iron Company (Eng. \& M. Jour., Sept. 16, 1893.):


* Forged from 6 - in. ingot to $5 / 8 \mathrm{in}$. diam., with conical heads for holding.
$\dagger$ Showing the effect of varying carbon.
$\ddagger$ Rolled down from $14-\mathrm{in}$. ingot to $11 / 4-\mathrm{in}$. square billet, and turned to size.
$\S$ Rolled down from $14-\mathrm{in}$. ingot to $1-\mathrm{in}$. round, and turned to size.
Nickel steel has shown itself to be possessed of some exceedingly valuable properties; these are, resistance to cracking, high elastic limit, and homogeneity. Resistance to cracking, a property to which the name of non fissibility has been given, is shown more remarkably as the percentage of nickel increases. Bars of $27 \%$ nickel illustrate this property. A $11 / 4-\mathrm{in}$. square bar was nicked $1 / 4 \mathrm{in}$. deep and bent double on itself without further fracture than the splintering off, as it were, of the nicked portion. Sudden failure or rupture of this steel would be innpossible ; it seems to possess the toughness of rawhide with the strength of steel. With this percentage of nickel the steel is practically non-corrodible and non-magnetic. The resistance to cracking shown by the lower percentages of nickel is best illustrated in the many trials of nickel-steel arinor.

The elastic limit rises in a very marked degree with the addition of about $3 \%$ of nickel, the other physical properties of the steel remaining unchanged or perhaps slightly increased.

In such places (shafts, axles, etc.) where failure is the result of the fatigue of the metal this higher elastic limit of nickel steel will tend to prolong indefinitely the life of the piece, and at the same time, through its superior tonghness, offer greater resistance to the sudden strains of shock.

Howe states that the hardness of nickel steel depends on the proportion of nickel and carbon jointly, nickel up to a certain percentage increasing the hardness, beyond this lessening it. Thus while steel with $2 \%$ of nickel and $0.90 \%$ of carbon caunot be machined, with less than $5 \%$ nickel it can be worked cold readily, provided the proportion of carbon be low. As the proportion of nickel rises higher, cold-working becomes less easy. It forges easily whether it contain mucl or little nickel.
The presence of manganese in nickel steel is most important, as it appears that without the aid of manganese in proper proportions, the conditions of treatment would not be successful.

Tests of Nickel Steel. - Two heats of open-lhearth steel were made by the Cleveland Rolling Mill Co., one ordinary steel made with 9000 lbs. each scrap and pig, and 165 lbs ferro-mangavese, the other the same with the addition of $3 \%$, or 540 lbs . of nickel. Tests of six plates rolled from each heat., 0.24 to 0.3 in. thick, gave results as follows:
Ordinary steel, T. S. 52,500 to 56.500 ; E.'L. 32,800 to 37,900 ; elong. 26 to $32 \%$. Nickel steel, " 63,370 to 67,$100 ; \quad$ " 47,100 to 48,$200 ; "$ " $231 / 4$ to $26 \%$.

The nickel steel averages $31 \%$ higher in elastic limit, $20 \%$ higher in ultimate tensile strength, with but slight reduction in ductility. (Eng. \& M. Jour.,

Aluminum Steel.-R. A. Hadfield (Trans. A. I. M. E. 1890) says: Aluminum appears to be of service as an addition to baths of molten iron or steel unduly satmrated with oxides, and this in properly regulated steel manufacture should not often occur. Speaking generally, its rôle appears to be similar to that of silicon, though acting more powerfully. The statement that alnminum lowers the melting-point of iron seems to have no foundation in fact. If any increase of heat or fluidity takes place by the addition of small amounts of aluminum, it may be due to evolution of heat. owing to oxidation of the aluminum, as the calorific value of this metal is very high-in fact, higher than silicon. According to Berthollet, the conversion of aluminum to $\mathrm{Al}_{2} \mathrm{O}_{3}$ equals 9900 cal.; silicon to $\mathrm{SiO}_{2}$ is stated as 7800 .
The action of alnminum may be classed along with that of silicon, sulphur, phosphorus, arsenic, and copper, as giving no increase of hardness to iron, in contradistinction to carbon, manganese, chromium, tungsten, and nickel. Therefore, whilst for some special purposes aluminum may be employed in the manufacture of iron, at any rate with our present knowledge of its properties, this use cannot be large, especially when taking into consiueration the fact of its comparatively high price. Its special advantage seems to be that it combines in itself the advautages of both silicon and manganese ; but so long as alloys containing these metals are so cheap aud aluminuni dear, its extensive use seems hardly probable.
J. E. Stead, in discnssion of Mr. Hadfield's paper, said: Every one of our trials has indicated that aluminum can kill the most fiery steel, providing, of course, that it is added in sufficient quantity to combine with all the oxygen which the steel contains. The metal will then be absolutely dead, and will pour like dead-melted silicon steel. If the aluminum is added as metallic aluminum, and not as a compound, and if the addition is made just before the steel is cast, $1 / 10 \%$ is ample to obtain perfect solidity in the steel.

Chrome Steel. (F. L. Garrison, Jour. F. I., Sept. 1891.)-Chromium increases the lardness of iron, perhaps also the tensile strength and elastic limit, but it lessens its weldibility.

Ferro chrome, according to Berthier, is made by strongly heating the mixed oxides of iron and chromium in brasqued crucibles. adding powdered charcoal if the oxide of chromium is in excess, and fluxes to scorify the earthy matter and prevent oxidation. Chromium does not appear to give steel the power of becoming harder when quenched or chilled. Howe states that chrome steels forge more readily than tungsten steels, and when not containing over 0.5 of chromium nearly as well as ordinary carbon steels of like percentage of carbon. On the whole the status of chrome steel is not satisfactory. There are other steel alloys coming into use, which are so much better, that it would seem to be only a question of time when it will drop entirely out of the race. Howe states that many experienced chemists have found no chromium, or but the merest traces, in clırome stcel sold in the markets.
J. W. Langley (Trans. A. S. C. E. 1892) says: Chromium, like manganese, is a true hardener of iron even in the absence of carbon. The addition of $1 \%$ or $2 \%$ of chromium to a carbon steel will make a metal which gets excessively hard. Hitherto its principal employment has been in the prodnction of chilled shot and shell. Powerful molecular stresses result during cooling, and the shells frequently break spontaneously months after they are made.
Tungsten stecl--Mushet Steel. (J. B. Nau, Iron Age, Feb. 11, 1892.) -By incorporating simnltaneously carbon and tungsten in iron, it is possible to obtain a much harder steel than with carbon alone, without danger of an extraordinary brittleness in the cold metal or an increased difficulty in the working of the heated metal.
When a special grade of harduess is required, it is frequently the custom to use a high tungsten steel, known in Eugland as special steel. A specimen from Sheffield, used for chisels, contained $9.3 \%$ of tungsten, $0 . \% \%$ of silver, and $0.6 \%$ of carbon. This steel, though used with advantage in its untempered state to turn chilled rolls, was not brittle; nevertheless it was hard enongh to scratch glass.

A sample of Mushet's special steel contained $8.3 \%$ of tungsten and $1.73 \%$ of manganese. The hardness of tungsten steel cannot be increased by the ordinary process of hardening.

The only operation that it can be submitted to when cold is grinding. It has to be given its final shape through hammering at a red heat, and even
then, when the percentage of tungsten is high, it has to be treated very carefully; and in order to avoid breaking it, not only is it necessary to reheat it several times while it is being hammered, but when the tool has acquired the desired shape hammering must still be continued gently and with numerous blows until it becomes nearly cold. Then only can it be cooled entirely.

Tungsten is not only employed to produce steel of an extraordinary hardness, but more especially to obtain a steel which, with a moderate hardness, allies great toughness, resistance, and ductility. Steel from Assailly, used for this purpose, contained carbon, $0.5 \% \%$ silicon, $0.01 \%$; tungsten, $03 \%$; phosphorus, $0.04 \%$; sulphur, $0.005 \%$.

Mechanical tests made by Styffe gave the following results :

According to analyses made by the Duc de Luynes of ten specimens of the celebrated Oriental damasked steel, eight contained tungsten, two of them in notable quantities $(0.518 \%$ to $1 \%$ ), while in all of the samples analyzed nickel was discovered ranging from traces to ncarly $4 \%$.
Stein \& Schwartz of Philadelphia, in $\approx$ circular say: It is stated that, tungsten steel is suitable for the manufacture of steel magnets, since it retains its magnetism longer than ordinary steel. Mr. Kniesche has made tungsten up to $98 \%$ fine a specialty. Dr. Heppe, of Leipsig, has written a number of articles in German publications on the subject. The following instructions are given concerning the use of tungsten: In order to produce cast iron possessing great liardness an addition of one half to one and one half of tungsten is all that is needed. For bar iron it must be carried up to $1 \%$ to $2 \%$, but should not exceed $21 / 2 \%$. For puddled steel the range is larger, but an addition beyond $312 \%$ only increases the hardness, so that it is brought up to $112 \%$ only for special tools, coinage dies, drills, etc. For tires $21 / 2 \%$ to $5 \%$ have proved best, and for axles $1 / 2$ to $11 / 2 \%$. Cast sleel to which tungsten has beeu added needs a higher temperature for tempering than ordinary steel, and should be hardened only between yellow, red, and white. Chisels made of tungsten steel should be drawn between cherry-red and blue, and stand well on iron and steel. Tempering is best done in a mixture of 5 parts of yellow rosin, 3 parts of tar, and $\stackrel{2}{3}$ parts of tallow, and then the article is once more heated and then tempered as usual in water of aboat $15^{\circ} \mathrm{C}$.

Flinid-compressed ISteel Wy the 66 Whitworth Process." (Proc. Inst. M. E., May, 1887, p. 16ĩ.)-In this s5stent a gradually increasing messure up to 6 or 8 tons per square inch is applied to the fluid ingot, and within half an hour or less after the application of the pressure the column of firid steel is shortened 11\% inch per font or one-eighth of its length; the pressure is then kept onfor several hours, the result being that the metal is compressed into a perfectly solid and homogeneous material, free from blow-holes.

In large gun-ring ingots during cooling the carbon is driven to the centre, the centre containing 0.8 carbon and the outer ring 0.3 . The centre is bored out until a test shows that the inside of the ring contains the same percentage of carbon as the outside.

Fluid-compressed steel is mado by the Bethlehem Iron Co.for gun and other heavy forgings.

## CRUCIELC STEEL.

## Selection of Grades by the Eye, and Effect of Heat Treat

## ment. (J. W. Langley, Amer. Chemist, November, 18\%6.)-In 18it, Miller,

 Metcalf \& Yarkin, of Pittsburgh, selected eight samples of steel which were believed to form a set of graded specimens, the order being based on the quantity of carbon which they were supposed to contain. They were numbered from one to eight. On analysis, the quantity of carbon was found to follow the order of the numbers, while the other elements present-silicon, phosphorus, and sulphur-did not do so. The metiod of selection is described as follows :The steel is melted in black-lead crucibles capable of holding about eighty pounds; when thoroughly tluid it is poured into cast-iron moulds. and when cold the top of the ingot is broken off, exposing a freshly-fractured surface. The appearance presented is that of confused groups of crystals, all appearing to have started from the outside and to have met in the centre; this general form is common to all ingots of whatever composition, but to the trained eye, and only to one long and critically exercised, a minute but in-
describable difference is perceived between varying samples of steel, and this difference is now known to be owing almost wholly to variations in the amount of combined carbon, as the following table will show. Twelve samples selected by the eye alone, and analyses of drillings taken direct from the ingot before it had been heated or hammered, gave results as below:

| $\begin{aligned} & \text { Ingot } \\ & \text { Nos. } \end{aligned}$ | $\begin{aligned} & \text { Iron by } \\ & \text { Diff. } \end{aligned}$ | Carbon. | Diff. of Carbon. | Silicon. | Phos. | Sulph. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 99.614 | . 302 |  |  |  | . 018 |
|  | 99.455 99.363 | . 490 | .188 | . 034 | . 005 | . 016 |
| 3 | 99.363 99.270 | . 549 | . 0139 | . 043 | . 047 | . 015 |
| 4 | 99.270 99.119 | . 649 | .120 .152 | . 039 | . 030 | . 012 |
| 6 | 99.086 | . 841 | . 040 | .029 | . 035 | . 016 |
| \% | 99.044 | . 868 | . 026 | . 057 | . 014 | . 010 |
| 8 | 99.040 | . 871 | . 004 | .05\% | . 024 | . 018 |
| 9 | 98.900 | . 955 | . 084 | . 0.59 | .0ヶ0 | . 016 |
| 10 | 98.861 | 1.005 | . 050 | . 088 | . 034 | . 012 |
| 11 | 98.952 | 1.058 | . 053 | . 120 | . 064 | . 006 |
| 12 | 98.834 | 1.079 | . 021 | .039 | . 044 | . 004 |

Here the carbon is seen to increase in quantity in the order of the numbers, while the other elements, with the exception of total iron, bear no relation to the numbers on the samples. The mean difference of carbon is .071 .
In mild steels the discrimination is less perfect.
The appearance of the fracture by which the above twelve selections were made can only be seen in the cold ingot before any operation, except the original one of casting, has been performed upon it. As soon as it is hammered, the structure changes in a remarkable manner, so that all trace of the primitive condition appears to be lost.

Another method of rendering visible to the eye the molecular and chemical changes which go on in steel is by the process of hardening or tempering. When the metal is heated and phunged into water it acquires an increase of hardness, but a loss of ductility. If the heat to which the steel has been raised just before plunging is too high, the metal acquires intense hardness, but it is so brittle as to be worthless: the fracture is of a bright, granular, or sandy character. In this state it is said to be burned, and it cannot again be restored to its former strength and ductility by annealing; it is ruined for all practical purposes, but in just this state it again shows differences of structure corresponding with its content in carbon. The nature of these changes can be illustrated by plunging a bar highly heated at one end and eold at the other into water. and then breaking it off in pieces of equal length, when the fractures will be fonnd to show appearances characteristic of the temperature to which the sample was raised.
The specific gravity of steel is influenced not only by its chemical analysis, but by the heat to which it is subjected, as is shown by the following table (densities referved to $60^{\circ} \mathrm{F}$.):
Specific gravities of twelve samples of steel from the ingot; also of six hammered bars, each tar being overheated at one end and cold at the other, in this state plunged into water, and then broken into pieces of equal length.

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ingot....... |  |  |  |  |  |  |  |  |  |  |  |  |
| *Burned 1. |  |  | \%. 818 | \%.791 |  | 7. 889 |  | 7. 752 |  | 7.744 |  | \%. 690 |
|  |  |  | 7.814 | \%.811 |  | \%. 184 |  | 7.755 |  | \%. 749 |  | $\underset{.741}{7.690}$ |
| 4. |  |  | \%.823 ¢. 826 | 7.830 |  | 7. 7.80 7.808 |  | \%. 558 |  | 7. 755 |  | 7. 769 |
| 5. |  |  | 7.831 | 7.806 |  | \% 7.812 |  | 7.73 7.790 |  | 7.789 7.812 |  | ${ }_{7}^{7.798}$ |
| Cold 6. |  |  | 7.814 | 7.884 |  | 7.899 |  | \%.825 |  | 7.826 |  | 7.885 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

[^16]Effect of Heat on the Grain of Steel. (W. Metcalf,-Jeans on Steel, p. 642.)-A simple experiment will show the alteration produced in a high-carbon steel by different methods of hardening. If a bar of such steel be nicked at about 9 or 10 places, and about half an inch apart, a suitable specimen is obtained for the experiment. Place one end of the bar in a good fire, so that the first nicked piece is heated to whiteness, while the rest of the bar, being out of the fire, is heated up less and less as we approach the other end. As soon as the first piece is at a good white heat, which of course burns a high carbon steel, and the temperature of the rest of the bar gradually passes down to a very dull red, the metal should be taken out of the fire and suddenly phonged in cold water, in which it should be left till quite cold. It should then be taken out and carefully dried. An examination with a file will show that the first piece has the greatest hardness, while the last piece is the softest, the intermediate pieces gradually passing from one condition to the other. On now breaking off the pieces at each nick it will be seen that very considerable and characteristic changes have been produced in the appearance of the metal. The first burnt piece is very open or crystalline in fracture; the succeeding pieces become closer and closer in the grain until one piece is found to possess that perfectly even grain and velvet-like appearance which is so much prized by experienced steel users. The first pieces also, which have been ton much hardened, will probably be cracked; those at the other end will not be hardened tlurough. Hence if it be desired to make the steel hard and strong, the temperature used must be high enough to harden the metal through, but not sufficient to open the grain.

Changes in Himate Strength and Elasticity due to Hammering, Annealing, and Tempering. (J. W. Langley, Trans. A. S. C. E. 1892.)-The following table gives the result of tests made on some round steel hars, all from the same ingot, which were tested by tensile stresses, and also by bending till fracture took place:

| $\begin{aligned} & \dot{0} \\ & \text { D } \\ & \text { है } \\ & \text { B } \end{aligned}$ | Treatment. |  |  | $\left.\frac{\text { bon. }}{\mid} \right\rvert\,$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Cold-hammered bar | 153 |  | . 47 |  | 92,4:0 | 141,500 | 2.00 | 2.42 |
| 2 | Bar drawn black.... | \% 5 | 1.25 | . 47 | . 57 | 114,700 | 138,400 | 6.00 | 12.45 |
| 3 | Bar annealed ........ |  | 1.31 | . 70 |  | 68,110 | 98,410 | 10.00 | 11.69 |
|  | Bar hardened and drawn black ...... | $30$ | 1.09 | . 36 | .5\%8 | 152,800 | 248,700 | 8.33 | 17.9 |

The total carbon given in the table was found by the color test, which is affected, not only by the total carbon, but by the condition of the carbon.
The aualysis of the steel was:

| Silicon | . 242 | Manganese |
| :---: | :---: | :---: |
| Phosphor | .02 | Carbon (true total carbon, by |
| Sulphur |  | combustion). |

Meating Tool Steel. (Crescent Steel Co., Pittsburg, Pa.)-There are three distinct stages or times of heating: First, for forging; second, for hardening; third, for tempering.
The first requisite for a good heat for forging is a clean fire and plenty of fuel, so that jets of hot air will not strike the corners of the piece; next, the fire should be regular, and give a gond uniform heat to the whole part to be forged. It should be keen enough to heat the piece as rapidly as may be, and allow it to be thoroughly heated through, without being so fierce as to overheat the corners.
Steel should not be left in the fire any longer than is necessary to heat it clear through, as "soaking" in fire is very injurious; and, on the other hand, it is necessary that it should be hot through, to prevent surface cracks.
By observing these precautions a piece of steel may always be heated safely, up to even a bright yellow heat, when there is much forging to be done on it

The best and most economical of welding fluxes is clean, crude borax, which should be first thoronghly melted and then ground to fine powder:

After the steel is properly heated, it should be forged to shape as quickly as possible; and just as the red heat is leaving the parts intended for cutting edges, these parts should be refined by rapid, light blows, continued until the red disappears.

For the second stage of heating. for hardening, great care should be used: first, to protect the cutting edges and working parts from heating more rapidly than the body of the piece; next, that the whole part to be hardened be heated uniformly through, without any part becoming visibly hotter than the other. A uniform heat, as low as will give the required hardness, is the best for hardening.

For every variation of heat, which is great enough to be seen, there will result a variation in grain, which may be seen by breaking the piece: and for evely such variation in temperature, there is a very good chance for a crack to be seen. Many a costly tool is ruined by inattention to this point.
The effect of too high heat is to open the grain; to make the steel coarse. The effect of an irregular heat is to cause irregular grain, irregular strains, and cracks.

As soon as the piece is properly heated for hardening, it should be promptly and thoroughly quenched in plenty of the cooling medium, water, brine, or oil, as the case may be.
An abundance of the cooling bath, to do the work quickly and uniformly all over, is very necessary to gond and safe work.
To harden a large piece safely a rumving stream should be used.
Much uneven hardening is caused by the use of too small baths.
For the third stage of heating, to temper, the first important requisite is again uniformity. The next is time; the more slowly a piece is brought down to its temper, the better and safer is the operation.
When cxpensive tools are to be made it is a wise precaution to try small pieces of the steel at different temperatures, so as to find out how low a heat will give the necessary liardness. The lowest heat is the best for any steel.
Heating to Forge. -The trouble in the forge fire is usually uneven heat, and not too high heat. Suppose the piece to be forged has been put into a very hot fire, and forced as quickly as possible to a high yellow hear, so that it is almost up to the scintillating point. If this be done, in a few minutes the outside will be quite soft and in a nice condition for forging, while the middle parts will not be more than red-hot. Now let the piece be placed under the hammer and forged, and the soft outside will yield so much more readily than the hardinside, that the outer particles will be torn asumder, while the inside will remain sound.
Suppose the case to be reversed and the inside to be much hotter than the outside; that is, that the inside sliall be in a state of semi-fusion, while the outside is hard and firm. Now let the piece be forged, and the outside will be all sound and the whole piece will appear perfectly good until it is cropped, and then it is found to be hollow inside
In either case, if the piece had been heated soft all through, or if it lad been only red-hot all throuzh. it would have forged perfectly somind.
In some cases a high heat is more desirable to save heavy labor but in every case where a fine steel is 10 be used for cutting purposes it must he borne in mind that very heavy forging refines the bars as they slowly cool. and if the smith heats such refined bars until they are soft, lie raises thic grain, makes them coarse, and he cannot get them fine again umless he has a very heavy steam-hammer at command and knows how to use it well.
Annealing. (Crescent Steel Co.)-Annealing or softening is accomplished by heating steel to a red heat and then cooling it very slowly, to prevent it from getting hard again.
The higher the degree of heat, the more will steel be softened, until the limit of softness is reached, when the steel is melted.
It does not follow that the higher a piece of steel is heated the softer it will be when cooled, no matter how slowly it may be cooled: this is proved by the fact that an ingot is always harder than a rolled or hammered bar made from it
Therefore there is nothing gained by heating a piece of steel hotter than a good, bright, cherry-red: on the contrary, a higher heat has several disadvantages: First. If carried too far, it may leave the steel actually harder than a good red heat would leave it. Second. If a scale is raised on the steel, this scale will be harsh, granular oxide of iron, and will spoil the tools used to cut it. Third. A high scaling heat continued for a little time
changes the structure of the steel, makes it brittle, liable to crack in hard. ening, and impossible to refine.
To anneal any piece of steel, heat it red-hot; heat it uniformly and heat it through, taking care not to let the ends and corners get too hot.

As soon as it is hot, take it ont of the fire, the sooner the better, and cool it as slowly as possible. A good rule for heating is to heat it at so low a red that when the piece is cold it will still show the blue gloss of the oxide that was put there by the hammer or the rolls.
Steel annealed in this way will cut very soft; it will harden very hard, without cracking; and when tempered it will be very strong, nicely refined, and will hold a keen, strong edge.
Tempering.-'Tempering steel is the act of giving it, after it has been shaped, the hardness necessary for the work it has to do. This is done by first hardening the piece, geuerally a good deal harder than is necessary, and then tonghening it by slow heating and gradual softening until it is just right for work.

A piece of steel properly tempered should always be finer in grain than the bar from which it is made. If it is necessary, in order to make the piece as hard as is required, to heat it so hot that after being hardened the grain will be as coarse as or coarser than the grain in the original bar, then the steel itself is of too low carbon for the desired work.
If a great degree of hardness is not desired, as in the case of taps, and most tools of complicated form, and it is found that at a moderate heat the tools are too hard and are liable to crack, the smith should first use a lower heat in order to save the tools already made, and then notify the steelmaker. that his steel is too high, so as to prevent a recurrence of the trouble.
For descriptions of various methods of tempering steel, see "Tempering of Metals," by Joshua Rose, in App. Cyc. Mech., vol. ii. p. 863 ; also, "Wrinkles and Recipes," from the Scientific American. In both of these works Mr. Rose gives a "color scale," lithographed in colors, by which the following is a list of the tools in their order on the color scale, together with the approximate color and the temperature at which the color appears on brightened steel when heated in the air:

Scrapers for brass; very pale yellow, $430^{\circ} \mathrm{F}$.
Steel-engraving tools.
Slight turning tools.
Hammer faces.
Planer tools for steel.
Ivory-cutting tools.
Planer tools for iron.
Paper-cutters.
Wood-engraving tools.
Bone cutting tools.
Milling-cutters; straw yellow, $460^{\circ} \mathrm{F}$.
Wire-drawing dies.
Boring-cutters.
Leather-cutting dies.
Screw-cutting dies.
inserted saw-teeth.
Taps.
Rock-drills.
Chasers.
Punches and dies.
Penknives.
Reamers.
Half-round bits.
Planing and moulding cutters.
Stone-cutting tools; brown yellow, $500^{\circ} \mathrm{F}$.
Gouges.

Hand-plane irons.
Twist-drills.
Flat drills for brass.
Wood-boring cutters.
Drifts.
Coopers' tools.
Edging cutters; light purple, $530^{\circ} \mathrm{F}$. Augers.
Dental and surgical instruments.
Cold chisels for steel.
Axes; dark purple, $550^{\circ} \mathrm{F}$.
Gimlets.
Cold chisels for cast iron.
Saws for bone and ivory.
Needles.
Firmer-chisels.
Hack-saws.
Framing-chisels.
Cold chisels for wrought iron.
Moulding and planing cutters to be filed.
Circular saws for metal.
Screw-drivers.
Springs.
Saws for wood.
Dark blue, $5 \% 0^{\circ} \mathrm{F}$.
Pale blue, $610^{\circ}$.
Blue tinged with green, $630^{\circ}$.

## MECHANICS.

## 

Mechanics is the science that treats of the action of force upon bodies.
A Force is anything that tends to change the state of a body with respect
to rest or motion. If a body is at.rest, anything that tends to put it in motion is a force; if a body is in motion, ansthing that tends to change either its direction or its rate of motion is a force.
A force should always mean the pull, pressure, rub, attraction (or repulsion) of one body upon another, and always implies the existence of a simultaneous equal and opposite force exerted by that other body on the first body, i.e., the reaction. In no case should we call anything a force unless we can conceive of it as capable of measurement by a spring-balance, and are able to say from what other body it comes. (I. P. Church.)
Forces may be divided into two classes, extraneous and molecular: extraneous forces act on bodies from without; molecular forces are exerted between the neighboring particles of bodies.
Extraneons forces are of two kinds, pressures and moving forces: pressures simply tend to produce motion; moving forces actually produce motion. Thus, if gravity act on a fixed body, it creates pressure; if on a free body, it produces motion.

Molecular Sorces are of two kinds, attractive and repellent: attractive forces tend to bind the particles of a body together; repellent forces tend to thrust them asunder. Both kinds of molecular forces are continually exerted between the molecules of bodies, and on the predominance of one or the other depends the physical state of a body, as solid, liquid. or gaseons,

The Unit of Force used in engineering, by English writers, is the pound avoirdupois. (For some scientific purposes, as in electro-dynamics, forces are sometimes expressed in "absolute units." The absolute unit of force is that force which acting on a unit of mass during a unit of time produces a unit of velocity; in English measures, that force which acting on the mass whose weight is one pound in London will in one second prodnce a velocity of one font per second $=1 \div 32.18 \pi$ of the weight of the standard pound avoirdupois at London. In the French C. G. S. or centimetre-gramme second system it is the force which acting on the mass whose weight is one gramme at Paris will produce in one second a velocity of one centimetre per second. This unit is called a " dyne" $=1 / 981$ gramme at Paris.)
Inertia is that property of a body by virtue of which it tends to continue in the state of rest or motion in which it may be placed, until acted on by some force.
Newtoris Lasve of RIotion.-1st Law. If a body be at rest, it will remain at rest; or if in motion, it will move uniformly in a straight line till acted on by some force.
2d Law. If a body be acted on by several forces, it will obey each as though the others did not exist, and this whether the body be at rest or in motion.
3d Law. If a force act to change the state of a body with respect to rest or motion, the body will offer a resistance equal and directly opposed to the force. Or, to every action there is opposed an equal and opposite reaction. Graphic Representation of a Force.-Forces may be represented geometrically by straight lines, proportional to the forces. A force is given when we know its intensity, its point of application, and the direction in which it acts. When a force is represented by a line, the length of the line represents its intensity; one extremity represents the point of applica. tion; and an arrow-head at the other extremity shows the direction of the force.
Composition of Forces is the operation of finding a single force whose effect is the same as that of two or more given forces. The required force is called the resultant of the given forces.
Resolution of Forces is the operation of finding two or more forces whose combined effect is equivalent to that of a given force. The required forces are called components of the given force.
The resultant of two forces applied at a point, and acting in the same direction, is equal to the sum of the forces. If two forces act in opposite directions, their resultant is equal to their difference, and it acts in the direction of the greater.

If any number of forces be applied at a point, some in one direction and others in a contrary direction, their resultant is equal to the sum of those that act in one direction, diminished by the sum of those that act in the opposite direction; or, the resultant is equal to the algebraic suma of the components.

Parallelogram of Forces.-If two forces acting on a point be represented in direction and intensity by adjacent sides of a parallelogram, their resultant will be represented by that diagonal of the parallelogram


Fig. 88. which passes through the point. Thus $O R$, Fig. 88 , is the resultant of $O Q$ and $O P$.

Polygon of Forces.-If several forces are applied at a point and act in a single plane, their resultant is found as follows:

Throngh the point draw a line representing the first force ; through the extremity of this draw a line representing the second force; and so on, throughout the system; finally, draw a line from the starting-point to the extremity of the last line drawn, and this will be the resultant required.
Suppose the body $A$, Fig. 89, to be urged in the directions $A 1, A 2, A 3, A 4$, and $A 5$ by forces which are to each other as the lengths of those lines. Suppose these forces to act successively and the body to first move from $A$ to 1; the second force $A 2$ then acts and finding the body at 1 would take it to $2^{\prime}$; the third force would then carry it to $3^{\prime}$, the fourth to $4^{\prime}$, and the fifth to $5^{\prime}$. The line $A 5^{\prime}$ represents in magnitude and direction the resultant of all the forces considered. If there had been an additional force, $A x$, in the group. the body would be returned by that force to its original position, supposing the forces to act successively, but if they had acted simultaneously the body would never have moved at all; the tendencies to motion balancing each other.
It follows, therefore, that if the several forces which tend to move a body can be represented in magnitude and direction by the sides of a closed polygon taken in order, the body will remain at rest; but if


Fig. 89. the forces are represented by the sides of an open poiygon, the body will move and the direction will be represented by the straigbt line which closes the polygon.
when thed Polywon.- The rule of the polygon of forces holds true even etc.. form a twisted polygon, that is, one whose sides are not in one plane

Parallelopipedon of Forces. - If three forces acting on a plane.
represented by three edres of a parallelopipedon which meet in a connt be point, their resultant will be represented by the diagonal of the parallel pipedon that passes through their common point. Thus $O R$, Fig. 90, is the resultant of $O Q, O S$. , $O M$ is the result
Moment of a Force.-The moment of a force (sometimes called statical moment), with respect to a point, is the product of the force by the perpendicular distance from the point to the direction of the force. The fixed point is called the centre of mo-


Eig. 90.


Fig. 91.

FORCE, STATICAL MOMENT, EQUILIBRIUM, ETC. 417
ments ; the perpendicular distance is the lever-arm of the force; and the moment itself measures the tendency of the force to produce rotation about the centre of moments.
If the force is expressed in pounds and the distance in feet, the moment is expressed in foot-pounds. It is necessary to observe the distinction between foot-pounds of statical moment and foot-pounds of work or energy. (See Work.)
In the bent lever, Fig. 91 (from Trautwine), if the weights $n$ and $m$ represent forces, their moments about the point $f$ are respectively $n \times a f$ and $m \times f c$. If instead of the weight $m$ a pulling force to balance the weight $n$ is applied in the direction $b s$, or $b y$ or $b d, s, y$, and $d$ being the amounts of these forces, their respective moments are $s \times f t, y \times f b, d \times f h$.
If the forces acting on the lever are in equilibrium it remains at rest, and the moments on each side of $f$ are equal, that is, $n \times a f=m \times f c$, or $s \times f t$, or $y \times f b$, or $d \times h f$.
The noment of the resultant of any number of forces acting together in the same plane is equal to the algebraic sum of the moments of the forces taken separately.
Statical Momont. Stability.--The statical moment of a body is the product of its weight by the distance of its line of gravity from some assumed line of rotation. The line of gravity is a vertical line drawn from its centre of gravity through the body. The stability of a body is that resistance which its weight alone enables it to oppose against forces tending to overturn it or to slide it along its foundation.

To be safe against turning on an edge the moment of the forces tending to overturn it, taken with reference to that edge, must be less than the statical moment. When a body rests on an inclined plane, the line of gravity being vertical, falls toward the lower edge of the body, and the condition of its not being overturned by its own weight is that the line of gravity must fall within this edge. In the case of an inclined tower resting on a plane the same condition holds-the line of gravity must fall within the base. The condition of stability against sliding along a horizontal plane is that the horizontal component of the force exerted tending to cause it to slide shall be less than the product of the weight of the body into the coefficient of friction between the base of the body and its supporting plane. This coefficient of friction is the tangent of the angle of repose, or the maximum angle at which the supporting plane might be raised from the horizontal before the body wonld begin to slide. (See Friction.)

The Stability of a Dam against overturning about its lower edge is calculated by comparing its statical moment referred to that edge with the resultant pressure of the water against its upper side. The horizontal pressure on a square foot at the botton of the dam is equal to the weight of a column of water of one square foot in section, and of a height equal to the distance of the bottom below water-level; or, if $H$ is the height, the pressure at the bottom per square foot $=62.4 \times H$ lbs. At the water-level the pressure is zero, and it increases uniformly to the bottom, so that the sum of the pressures on a vertical strip one foot in breadth may be represented by the area of a triangle whose base is $62.4 \times H$ and whose altitude is $H$, or $62.4 H^{2} \div 2$. The centre of gravity of a triangle being $1 / 3$ of its altitude, the resultant of all the horizontal pressures may be taken as equivalent to the sum of the pressures acting at $1 / 3 H$, and the moment of the sum of the pressures is therefore $62.4 \times H^{3} \div 6$.

Parallel Forces.-If two forces are parallel and act in the same direction, their resultant is parallel to both, and lies between them, and the intensity of the resultant is equal to the sum of the intensities of the two forces. Thus in Fig. 91 the resultant of the forces $n$ and $m$ acts vertically downward at $f$, and is equal to $n+m$.

If two parallel forces aot at the extremities of a straight line and in the same direction, the resultant divides the line joining the points of application of the components, inversely as the components. Thus in Fig. 91, $m: n::$ $x f: f c$; and in Fig. $92, P: Q:: S N: S M$.
The resultant of two parallel forces acting in opposite directions is parallel to both, lies without both, on the side and in the direction of the greater, and its intensity is equal to the difference of the intensities of the two forces.


Thus the resultant of the two forces $Q$ and $P$, Fig. 93 , is equal to $Q-P=$ $R$. Of any two parallel forces and their


Fig. 93. resultant each is proportional to the distance between the other two; thus in both Figs. 92 and $93, P: Q: R:: S N: S M: M N$.

Couples.-If $P$ and $Q$ be equal and act in opposite directions, $R=0$; that is, they have no resultant. Two such forces constitute what is called a couple.

The tendency of a couple is to produce rotation; the measure of this tendency, called the moment of the couple, is the product of one of the forces by the distance between the two.

Since a couple has no single resultant, no single force can balance a conple. To prevent the rotation of a body acted on by a couple the application of two other forces is required. forming a second couple. Thus in Fig. $94, P$ and $Q$ forming a couple, may be balanced by a second couple formed by $R$ and $S$. The point of application of either $R$ or $S$ may be a fixed pivot or axis.

Moment of the couple $P Q=P(c+b+a)=$ moment of $R S=R b$. Also, $P+R=Q+S$.
The forces $R$ and $S$ need not be parallel to $P$ and $Q$, but if not, then their components parallel to $P Q$ are to be taken instead of the forces themselves.

Equilibrium of Forces.-A system of forces applied at poiuts of a solid body will be in equilibriuin when they have no tendency to produce motion, either of translation or of rota-


Fig. 94. tion.

The conditions of equilibrium are: 1 . The algebraic sum of the components of the forces in the direction of any three rectangular axes must be separately equal to 0 .
2. The algebraic sum of the moments of the forces, with respect to any three rectangular axes, must be separately equal to 0 .
If the forces lie in a plane: 1. The algebraic sum of the components of the forces, in the direction of any two rectangular axes, must be separately equal to 0 .
2. The algebraic sum of the moments of the forces, with respect to any point in the plane, must be equal to 0 .

If a body is restrained by a fixed axis, as in case of a pulley, or wheel and axle, the forces will be in a equilibrium when the algebraic sum of the moments of the forces with respect to the axis is equal to 0 .

## CENTRE OF GRAVITY.

The centre of gravity of a body, or of a system of bodies rigidly connected together, is that point about which, if suspended, all the parts will be in equilibrium, that is, there will be no tendency to rotation. It is the point through which passes the resultant of the efforts of gravitation on each of the elementary particles of a body. In bodies of equal heaviness throughout, the centre of gravity is the centre of magnitude.
(The centre of magnitude of a figure is a point such that if the figure be divided into equal parts the distance of the centre of magnitude of the whole figure from any given plane is the mean of the distances of the centres of magnitude of the several equal parts from that plane.)
If a body be suspended at its centre of gravity, it will be in equilibrium in all positions. If it be suspended at a point out of its centre of gravity, it will swing into a position such that its centre of gravity is vertically beneath its point of suspension.

To find the centre of gravity of any plane figure mechanically, suspend the figure by any point near its edge, and mark on it the direction of a plumb-line hung from that point; then suspend it from some other point, and again mark the direction of the plumb-lise in like manner. Then the centre of gravity of the surface will be at the point of intersection of the two marks of the plumb-line.
The Centre of Gravity of Reqular Figures, whether plane or solid, is the same as their geumetrical centre ; tor instance, a straight line,
parallelogram, regular polygon, circle, circular ring, prism, cylinder, sphere, spheroid, middle frustums of spheroid, etc.
Of a triangle: On a line drawn from any angle to the middle of the opposite side, at a distance of one third of the line from the side; or at the intersection of such lines drawn from any two angles.
Of a trapezium or trapezoid: Draw a diagonal, dividing it into two traangles. Draw a line joining their centres of gravity. Draw the other diagonal. making two other triangles, and a line joining their centres. The intersection of the two lines is the centre of giavity required.

Of a sector of a circle: On the radius which bisects the arc, $2 \mathrm{cr} \div 32 \mathrm{from}$ the centre, $c$ being the chord, $r$ the radius, and $l$ the arc.

Of a semicircle: On the middle radius, 4244 from the centre.
Of a quadrant: On the middle radius, $600 \geqslant r$ from the centre.
Of a segment of a circle : $c^{3} \div 12 a$ from the centre. $c=$ choid, $a=$ area
Of a parabolic surface: In the axis, $3 / 5$ of its length from the vertex.
Of a semi-parabola (surface): $3 / 5$ length of the axis from the vertex, and $3 / 8$ of the semi-base from the axis.

Of a cone or pyramid : In the axis, $1 / 4$ of its length from the base.
Of a paraboloid: In the axis, $2 / 3$ of its length from the vertex.
Of a cylinder, or regular prisn: In the middle point of the axis.
Of a frustum of a cone or pyramid: Let $a=$ length of a line drawn from the vertex of the cone when complete to the centre of gravity of the base, and $a^{\prime}$ that portion of it between the vertex and the top of the frustum; then distance of centre of gravity of the frustum from centre of gravity of its base $=\frac{a}{4}-\frac{3 a^{\prime 3}}{4\left(a^{2}+a\left(a^{\prime}+a^{\prime 2}\right)^{\circ}\right.}$.

For tivo bodies, fixed one at each end of a straight bar, the common centre of gravity is in the bar, at that point which divides the distance between their respective centres of gravity in the inverse ratio of the weights. In this solution the weight of the bar is neglected. But it may be taken as a thit body, and allowed for as in the following directions:

For more than two bodies connected in one system: Find the common centre of gravity of two of them; and find the common centre of these two jointly with a third body, and so on to the last body of the group.

Another method, by the principle of moments: To find the centre of gravity of a system of bodies, or a body consisting of several parts, whose several centres are known. If the bodies are in a plane, refer their several centres to two rectangular co-ordinate axes. Inltiply each weight by its distance from one of the axes, add the products, and divide the suin by the sum of the weights: the result is the distance of the centre of gravity from that axis. Do the same with regard to the other axis. If the bodies are not in a plane, refer them to three planes at right angles to each other, and determine the mean distance of the sum of the weights from each of the three planes.

## MOMINTEOENERTCA。

The moment of inertia of the weight of a body with respect to an axis is the algebraic sum of the products obtained by multiplying the weight of each elementary particle by the square of its distance from the axis. If the moment of inertia with respect to any axis $=I$, the weight of any element of the body $=w$, and its distance from the axis $=r$, we have $I=\sum\left(w r^{2}\right)$.

The inoment of inertia varies, in the same body, according to the position of the axis. It is the least possible when the axis passes through the centre of gravity. To find the moment of inertia of a body, referred to a given axis, divide the body into small parts of regular figure. Multiply the weight of each part by the square of the distance of its centre of gravity from the axis. The sum of the products is the moment of inertia. The value of the moment of inertia thus obtained will be more nearly exact, the smaller and more numerous the parts into which the body is divided.
Moments of Inertia of Regular Solids.-Rod, or bar, of uniform thickness, with respect to an axis perpendicular to the length of the rod,

$$
\begin{equation*}
I=W\left(\frac{l^{2}}{3}+d^{2}\right) \tag{1}
\end{equation*}
$$

$W=$ weight of rod, $2 l=$ length, $l=$ distance of centre of gravity from axis. Thin circular plate, axis in its $\}$ own plane,

$$
\begin{equation*}
\} I=W\left(\frac{r^{2}}{4}+d^{2}\right) \tag{2}
\end{equation*}
$$

$r=$ radius of plate.
$\left.\begin{array}{l}\text { Circular plate,axis perpendicular } \\ \text { to the plate, }\end{array}\right\} I=W\left(\frac{r^{2}}{2}+d^{2}\right)$. ....... ( $r^{2}$
$\left.\begin{array}{l}\text { Circular ring, axis perpendicular } \\ \text { to its own plane, }\end{array}\right\} I=W\left(\frac{r^{2}+r^{\prime 2}}{2}+d^{2}\right), \ldots$
$r$ and $r^{\prime}$ are the exterior and interior radii of the ring.
$\left.\begin{array}{l}\text { Cylinder, axis perpendicular to } \\ \text { the axis of the cylinder, }\end{array}\right\} I=W\left(\frac{r^{2}}{4}+\frac{l^{2}}{3}+d^{2}\right)$,
$r=$ radius of base, $2 l=$ length of the cylinder.
By making $d=0$ in any of the above formulæ we find the moment of inertia for a parallel axis through the centre of gravity.
The moment of inertia, $\Sigma w r^{2}$, numerically equals the weight of a body which, if concentrated at the distance unity from the axis of rotation, would require the same work to produce a given increase of angular velocity that the actual body requires. It bears the same relation to angular acceleration which weight does to linear acceleration (Rankine). The term moment of inertia is also used in regard to areas, as the cross-sections of beams under strain. In this case $I=\Sigma a r^{2,2}$, in which $a$ is any elementary arca, and $r$ its distance from the centre. (See under Strength of Materials, p. 24\%.) Some writers call $\Sigma m r^{2}=\Sigma w r^{2} \div g$ the moment of inertia.

## CENTRE AND RADHUS OE GYRATION.

The centre of gyration, with reference to an axis, is a point at which, if the entire weight of a body be concentrated, its moment of inertia will remain unchanged; or, in a revolving body, the point in which the whole weight of the body may be conceived to be concentrated, as if a pound of platinum were substituted for a pound of revolving feathers, the angular velocity and the accumulated work remaining the same. The distance of this point from the axis is the radius of gyration. If $W=$ the weight of a body, $I=\Sigma\left(v r^{2}=\right.$ its moment of inertia, and $k=$ its radius of gyration,

$$
I=W k^{2}=\Sigma w r^{2} ; \quad k=\sqrt{\frac{\Sigma w r^{2}}{W}}
$$

The moment of inertia $=$ the weight $\times$ the square of the radius of gyration.
To find the radius of gyration divide the body into a considerable number of equal small parts-the more numerous the more nearly exact is the re-sult,- then take the mean of all the squares of the distances of the parts from the axis of revolution, and find the square root of the mean square. Or, if the moment of inertia is known, divide it by the weight and extract the square root. For radius of gyration of an area, as a cross-section of a beam, divide the moment of inertia of the area by the area and extract the square root.
The radius of gyration is the least possible when the axis passes through the centre of gravity. This minimum radius is called the principal radius of gyration. If we denote it by $k$ and any other radius of gyration by $k^{\prime}$, we have for the five cases given under the head of moment of inertia above the following values:
$\begin{aligned} & \text { (1) Rod, axis perpen.to } \\ & \text { leugth, }\end{aligned} \kappa=l \sqrt{\frac{1}{3}} ; k^{\prime}=\sqrt{\frac{l^{2}}{3}+d^{2}}$.
$\left.\begin{array}{l}\text { (2) Circular plate, axis } \\ \text { in its plane, }\end{array}\right\}=\frac{r}{2} ; k k^{\prime}=\sqrt{\frac{r^{2}}{4}+d^{2}}$.
$\left.\begin{array}{l}\text { (3) Circular plate, axis } \\ \text { perpen. to plane },\end{array}\right\} f=r \sqrt{\frac{1}{2}} ; k^{\prime}=\sqrt{\frac{r^{2}}{2}+d^{2}}$.
$\left.\begin{array}{l}\text { (4) Circular ring, axis } \\ \text { perpen. to plane, }\end{array}\right\} k=\sqrt{\frac{r^{2}+r^{\prime 2}}{2}} ; k^{\prime}=\sqrt{\frac{r^{2}+r^{\prime 3}}{2}+d^{2}}$
$\left.\begin{array}{l}\text { (5) Cylinder, axis per- } \\ \text { pen. to length, }\end{array}\right\}=\sqrt{\frac{r^{2}}{4}+\frac{l^{2}}{3}} ; k^{\prime}=\sqrt{\frac{r^{2}}{4}+\frac{l^{2}}{3}+d^{2}}$

## Principal Radii of Gyration and Squares of Radii of Gyration.

(For radii of gyration of sections of columns, see page 249.)

| Surface or Solid. | Rad. of Gyration. | Square of R. of Gyration. |
| :---: | :---: | :---: |
| Parallelogram: \} axis at its base....... | $.5773 h$ | $\begin{gathered} 1 / 3 h^{2} \\ 1 / 12 h^{2} \end{gathered}$ |
| Straight rod: |  |  |
| length $l$, or thin rectang. plate ${ }^{\text {axis }}$ mid-length.. | $\text { .57\%3l } .2881$ | $\begin{gathered} 1 / 3 l^{2} \\ 1 / 12 l^{2} \end{gathered}$ |
| Rectangular prism: <br> axes $2 a, 2 b, 2 c$, referred to axis $2 a \ldots$ | 57 | $\left(b^{2}+c^{2}\right) \div 3$ |
| Parallelopiped: length $l$, base $b$, axis \} at one end, at mid-breadth......... $\}$ | . $289 \sqrt{4 l^{2}+b^{2}}$ | $\frac{4 l^{2}+b^{2}}{12}$ |
| Hollow square tube: out. side $h$, inn'r $h^{\prime}$, axis mid-length. . ver'y thin, side $=h$, " | $\begin{gathered} .289 \sqrt{h^{2}+h^{\prime 2}} \\ .408 h \end{gathered}$ | $\begin{gathered} \left(h^{2}+h^{\prime 2}\right) \div 12 \\ h^{2} \div 6 \end{gathered}$ |
| Thin rectangular tube: sides $b, h$, axis mid-length | . $2897 \sqrt{\frac{h+3 b}{h+b}}$ | $\frac{h^{2}}{12} \cdot \frac{h+3 b}{h+b}$ |
| Thin circ.plate: rad.r,diam.h,ax. diam. | 1/2r | $1 / 4^{2}=h^{2} \div 16$ |
| Flat circ. ring: diams. $h, h^{\prime}$, axis diam. | $1 / 4 \sqrt{h^{2}+h^{\prime 2}}$ | $\left(h^{2}+h^{\prime 2}\right) \div 16$ |
| Solid circular cylinder: length $l$, axis diameter at mid-length. | . $289 \sqrt{\sqrt{l^{2}+3 r^{2}}}$ | $\frac{\gamma^{2}}{12}+\frac{r^{2}}{4}$ |
| Circular plate: solid wheel of uniform thickness, or cylinder of any length, referred to axis of cyl. | \%0\%10 | $r^{2}$ |
| Hollow circ. cylinder, or flat ring: <br> $l$, length; $R, r$, outer and inner | $.7061 / \sqrt{R^{2}+r^{2}}$ | ${ }_{l^{2}}\left(R^{2}+r^{2}\right)+2$ |
| radii. Axis, 1, longitudinal axis; 2 , diam. at mid-length. | . $289 \sqrt{l^{2}+3\left(R^{2}+r^{2}\right)}$ | $\frac{c}{12}+\frac{1}{l^{2}} \frac{4}{R^{2}}$ |
| Same: very thin, axis its diameter.... <br> "، radius $r$ : axis, longitnd'l axis.. | $.289 \sqrt{l^{2}+6 R^{2}}$ | $\overline{12}+\frac{r^{2}}{2}$ |
| Circumf. of circle, axis its cent | $r$ |  |
| Sphere: radius $r$, axis its diam. | 32 | $2 / 5 r^{2}$ |
| Spheroid: equatorial radius $r$, levolving polar axis a................. | .6325r | $2 / 5 r^{2}$ |
|  | .5773r |  |
| $\left.\begin{array}{l}\text { Ellipsoid: semi-axes } a, b, c \text {; revolv- } \\ \text { ing on axis } 2 a \ldots end{array}\right\}$ | . $44 \% 2 \sqrt{b^{2}+c^{2}}$ | $\frac{+c^{2}}{5}$ |
| Spherical shell: radii $R, r$, revolving $\}$ on its diam.. | . $6325 \sqrt{\frac{R^{5}-r^{5}}{R^{3}-r^{3}}}$ | $\frac{2}{5} \frac{R^{5}-r^{5}}{R^{3}-r^{3}}$ |
| Same: very thin | $8165{ }^{\circ}$ | $2 / 3^{2}$ |
| $\left.\begin{array}{c}\text { Solid cone: } r=\text { rad. of base, rev. on } \\ \text { axis................................................... }\end{array}\right\}$ | . $54 \times 7{ }^{\circ}$ | $0.3 r^{2}$ |

## CENTRES OF OSCLHEATEON AND OF PETECUSSEON.

Centre of Oscillation.-If a body oscillate about a fixed horizontal axis, not passing through its centre of gravity, there is a point in the line drawn from the centre of gravity perpendicular to the axis whose motion is the same as it would be if the whole mass were collected at that point and allowed to vibrate as a pendulum about the fixed axis. This point is called the centre of oscillation.

The Iadius of Oscillation, or distance of the centre of oscillation from the point of suspension $=$ the square of the radius of gyration $\div$ distance of the centre of gravity from the point of suspension or axis. The centres of oscillation and suspension are convertible.
If a straight line, or uniform thin bar or cylinder, be suspended at one end, oscillating about it as an axis, the centre of oscillation is at $2 / 6$ the length of
the rod from the axis. If the point of suspension is at $1 / 3$ the length from the end, the centre of oscillation is also at $2 / 3$ the length from the axis, that is, it is at the Gther end. In both cases the oscillation will be performed in the same time. If the point of suspension is at the centre of gravity, the length of the equivalent simple pendulum is infinite, and therefore the time of vibration is infinite.

For a sphere suspended by a cord, $r=$ radius, $h=$ distance of axis of motion from the centre of the sphere, $h^{\prime}=$ distance of centre of oscillation from centre of the sphere, $l=$ radius of oscillation $=h+h^{\prime}=h+\frac{2}{5} \frac{r^{2}}{h}$.

If the sphere vibrate about an axis tangent to its surface, $h=r$, and $l=r$ $+2 / 5 r$. If $h=10 r, l=10 r+\frac{r}{25}$.
Lengths of the radius of oscillation of a few regular plane figures or thin plates, suspended by the vertex or uppermost point.

1st. When the vibrations are flatwise, or perpendicular to the plane of the figure:

In an isosceles triangle the radius of oscillation is equal to $3 / 4$ of the height of the triangle.

In a circle, $5 / 8$ of the diameter.
In a parabola, $5 / 7$ of the height.
2d. When the vibrations are edgewise, or in the plane of the figure:
In a circle the radius of oscillation is $3 / 4$ of the diameter.
In a rectangle suspended by one angle, $2 / 3$ of the diagonal.
In a parabola, suspended by the vertex, $5 / 7$ of the height, plus $1 / 3$ of the parameter.

In a parabola, suspended by the middle of the base, $4 / 7$ of the height plus $1 / 2$ the parameter.

Centre of Percussion.- The centre of percussion of a body oscillat. ing about a fixed axis is the point at which, if a blow is struck by the body, the percussive action is the same as if the whole mass of the body were concentrated at the point. This point is identical with the centre of oscillation.

## TEIE PENPELUMI.

A body of any form suspended from a fixed axis about which it oscillates by the force of gravity is called a compound pendulum. The ideal body concentrated at the centre of oscillation, suspended from the centre of suspension by a string without weight, is called a simple pendulum. This equivalent simple pendulum has the same weight as the given body, and also the same moment of inertia, referred to an axis passing through the point of suspension, aud it oscillates in the same time.

The ordinary pendulum of a given length vibrates in equal times when the angle of the vibrations does not exceed 4 or 5 degrees, that is, $2^{\circ}$ or $21 / 2^{\circ}$ each side of the vertical. This property of a pendulum is called its isochionism.
The time of vibration of a pendulum varies directly as the square root of the length, and inversely as the square root of the acceleration due to gravity at the given latitude and elevation above the earth's surface.
If $T=$ the time of vibration, $l=$ length of the simple pendulum, $g=$ accel. eration $=32.16, T=\pi \sqrt{\frac{l}{g}} ;$ since $\pi$ is constant, $T \propto \frac{\sqrt{l}}{\sqrt{g}}$. At a given loca. tion $g$ is constant and $T \propto \sqrt{l}$. If $l$ be constant, then for any location $T \propto \frac{1}{\sqrt{g}}$. If $T$ be constant, $g T^{2}=\pi^{2} l ; l \propto g ; g=\frac{\pi^{2} l}{T^{2}}$. From this equation the force of gravity at any place may be determined if the length of the simple pendulum, vibrating seconds, at that place is known. At New York this length is 39.1017 inches $=3.2585 \mathrm{ft}$, whence $g=32.16 \mathrm{ft}$. At London the length is 39.1393 inches. At the equator 39.0152 or 39.0168 inches, according to different authorities.

Tine of vibration of a pendulum of a given length at New York

$$
=t=\sqrt{\frac{l}{39.101 \hat{\imath}}}=\frac{1 / \imath}{6.253^{\circ}}
$$

$t$ being in seconds and $l$ in inches. Length of a pendulum having a given time of vibration, $l=t^{2} \times 39.1017$ inches.

The time of vibration of a pendulum may be varied by the addition of a weight at a point above the centre of suspension, which counteracts the lower weight, and lengthens the period of vibration. By varying the height of the upper weight the time is varied.
To find the weight of the upper bob of a compound pendulunn, vibrating seconds, when the weight of the lower bob, and the distances of the weights from the point of suspension are given:

$$
w=W \frac{(39.1 \times D)-D^{2}}{(39.1 \times d)+d^{2}} .
$$

$W=$ the weight of the lower bob, $w=$ the weight of the upper bob; $D=$ the distance of the lower bob and $d=$ the distance of the upper bob from the point of suspension, in inches.
Thus, by means of a second bob, short pendulums may be constructed to vibrate as slowly as longer pendulums.

By increasing wor d until the lower weight is entirely counterbalanced, the time of vibration may be made infinite.

Conical Pendulum.-A weight stispended by a cord and revolving at a uniform speed in the circumference of a circular horizontal plane whose radius is $r$, the distance of the plane below the point of suspension being $h$, is held in equilibriun by three forces-the tension in the cord, the centrifugal force, which tends to increase the radius $r$, and the force of gravity acting downward. If $v=$ the velocity in feet per second, the centre of gravity of the weight, as it describes the circumference, $g=32.16$, and $r$ and $h$ are taken in feet, the time in seconds of performing one revolution is

$$
t=\frac{2 \pi r}{v}=2 \pi \sqrt{\frac{h}{g}} ; \quad h=\frac{g t^{2}}{4 \pi^{2}}=.8146 t^{2} .
$$

If $t=1$ second, $h=.8146$ font $=9.745$ inches.
The principle of the conical pendulum is used in the ordinary fly-ball governor for steam-engines. (See Governors.)

## CENEREEUGALEORCE.

A body revolving in a curved path of radius $=R$ in feet exerts a force, called centrifugal force, $F$, upon the arm or cord which restrains it from moving in a straight line, or "flying off at a tangent." If $W=$ weight of the body in pounds, $N=$ number of revolutions per minute, $v=$ linear velocity of the centre of gravity of the body, in feet per second, $g=32.16$, then
$v=\frac{2 \pi R N}{60} ; F=\frac{W v^{2}}{g R}=\frac{W v^{2}}{32.16 R}=\frac{W 4 \pi^{2} R N^{2}}{3600 g}=\frac{W R N^{2}}{2933}=.0003410 W R N^{2} \mathrm{Jbs}$.
If $n=$ number of revolutions per second, $F=1.22 \sim 6 \mathrm{WR}^{2}$.
(For centrifugal force in fly-wheels, see Fly-wheels.)

## VELOCITY, ACCEEERATHON, FALLING BODIES.

Velocity is the rate of motion, or the distance passed over by a body in a giventime.
If $s=$ space in feet passed over in $t$ seconds, and $v=$ velocity in feet per second, if the velocity is uniform,

$$
v=\frac{s}{t} ; \quad s=v t ; \quad t=\frac{s}{v} .
$$

If the velocity varies uniformly, the mean velocity $v_{0}=\frac{v_{1}+v_{2}}{2}$, in which $v_{1}$ is the velocity at the beginuing and $v_{2}$ the velocity at the end of the time $t$.

$$
\begin{equation*}
s=\frac{v_{1}+v_{2}}{z} t . \tag{1}
\end{equation*}
$$

Acceleration is the change in velocity which takes place in a unit of time. Unit of acceleration $=\mu=1$ foot per second in one second. For uniformly varying velocity, the acceleration is a constant quantity, and

$$
a=\frac{v_{2}-v_{1}}{t} ; \quad v_{2}=v_{2}+a t ; \quad v_{1}=v_{2}-\alpha t ; \quad t=\frac{v_{2}-v_{1}}{a} \ldots \text {. (2) }
$$

If the bods start from rest, $v_{1}=0$; then

$$
v_{0}=\frac{v^{2}}{2} ; \quad v_{2}=2 v_{0} ; \quad a=\frac{v_{2}}{t} ; \quad v_{2}=a t ; \quad v_{2}-a t=0 ; \quad t=\frac{v_{2}}{a} .
$$

Combining (1) and (2), we have

$$
s=\frac{v_{2}^{2}-v_{1}^{2}}{2 a} ; s=v_{1} t+\frac{a t^{2}}{2} ; s=v_{2} t-\frac{a t^{2}}{2}
$$

If $v_{1}=0, s=\frac{v_{2}}{z} t$.
Retarded Motion.-If the body start with a velocity $v_{1}$ and come to rest, $v_{2}=0$; then $s=\frac{v_{1}}{2} t$.

In any case, if the change in velocity is $v$,

$$
s=\frac{v}{2} t ; \quad s=\frac{v^{2}}{2 a} ; \quad s=\frac{a}{i} t^{2} .
$$

For a body starting from or ending at rest, we have the equations

$$
v=\alpha i ; \quad s=\frac{v}{2} t ; \quad s=\frac{a t^{2}}{2} ; \quad v^{2}=2 \alpha s
$$

Falling Bodies. - In the case of falling bodies the acceleration due to gravity is 32.16 feet per second in one second. $=g$. Then if $v=$ velocity acquired at the end of $t$ seconds, or final velocity, and $h=$ height or space in feet passed over in the same time,

$$
\begin{aligned}
& v=g t=32.16 t=V^{\prime} \overline{2 g h}=8.02 \sqrt{h}=\frac{2 h}{t} \\
& h=\frac{g t^{2}}{2}=16.08 t^{2}=\frac{v^{2}}{2 g}=\frac{v^{2}}{61.32}=\frac{v t}{2} \\
& t=\frac{v}{g}=\frac{v}{32.16}=\sqrt{\frac{2 h}{g}}=\frac{1 / h}{4.01}=\frac{2 h}{v}
\end{aligned}
$$

$u=$ space fallen through in the $T$ th second $=g(T-16)$.
From the above formula for falling bodies we obtain the following:
During the first second the body starting from a state of rest (resistance of the air neglected) falls $g \div 2=16.08$ feet; the acquired velocity is $g=$ 32.16 ft . per sec.; the distance fallen in two seconds is $h=\frac{g t^{2}}{2}=16.08 \times 4=$ 64.32 ft .; and the acquired velocity is $v=g t=64.32 \mathrm{ft}$. The acceleration, or increase of velocity in each second, is constant, and is 32.16 ft . per sec. Solving the equations for different times, we find for

Talue of $g$.-The value of $g$ increases with the latitude, aud decreases with the elevation. At the latitude of Philadelphia, $40^{\circ}$, its valne is 32.16 . At the sea-level, Everett gives $g=32.1 \% 3-.082 \cos 2$ lat. -.000003 height in feet. At Paris, lat. $48^{\circ} 50^{\prime} \mathrm{N} ., g=940.87 \mathrm{~cm} .=32.181 \mathrm{ft}$.

Values of $\sqrt{2 g}$, calculated by an equation given by C. S. Pierce, are given in a table in Smith's Hydraulics, from which we take the following:
 $\begin{array}{lllllllll}\text { Value of } & \sqrt{2 g} . . & 8.0112 & 8.0118 & 8.0137 & 8.0165 & 8.0199 & 8.0235 & 8.0269\end{array}$
The value of $\sqrt{2 g}$ decreases about. 0004 for every 1000 feet increase in elevation above the sea-level.
For all ordinary calculations for the United States, $g$ is generally taken at 32.16 , and $\sqrt{2 g}$ at 8.02 . In England $g=33.2, \sqrt{2 g}=8.025$. Practical limit.
ing values of $g$ for the United States, according to ing values of $g$ for the United States, according to Pierce, are:

Latitude $49^{\circ}$ at sea-level ................................... $g=32.186$
" $25^{\circ} 10,000$ feet above the sea.
$g=32.08^{\prime}$

Fig. 95 represents graphically the velocity, space, etc., of a body falling for six seconds. The verticalline at the left is the time in seconds, the horizontal lines represent the acquired velocities at the end of each second $=32.16 \%$. The area of the small triangle at the top represents the height fallen throug in the first second $=1 / 2 g=16.08$ feet, and each of the other triangles is an equa space. The mumber of triangles between each pair of horizontal lines represents "he height of fall in each second, and the number of triangles between any horizontal line and the top is the total height fallen during the time. The figures under $h, u$, and $v$ adjoining the cut are to be multiplied by 16.08 to obtain the actual velocities and heights for the given times.

## Angular and Linear Velocity

 of a Turning Body.-Let $r=$ radins of a turning body in feet, $n=$ nuisber of revolutions per minute, $v=$ linear velocity of

Fig. 95. a point on the circumference in feet per second, and $60 v=$ velocity in feet per minute.

$$
v=\frac{2 \pi r n}{60}, 60 v=2 \pi r n
$$

Angular velocity is a term used to denote the angle through which any radius of a bods turns in a second, or the rate at which any point in it having a radius equal to unity is moving, expressed in feet per sccond. The nnit of angular velocity is the angle which at a distance = radius from the centre is subtended by an arc equal to the radius. This unit angle $=\frac{180}{\pi}$ degrees $=57.3^{\circ} .2 \pi \times 57.3^{\circ}=360^{\circ}$, or the circumference. If $A=$ angular velocity, $v=A r, A=\frac{v}{r}=\frac{2 \pi n}{60}$. The unit angle $\frac{180}{\pi}$ is called a radian.

Height Corresponding to a Given Acquired Velocity.

| $\begin{aligned} & \dot{0} \\ & \dot{\tilde{0}} \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$ |  | $\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{\mid c} \\ & \text { en } \\ & \stackrel{0}{4} \end{aligned}$ | $\begin{aligned} & \stackrel{3}{0} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \end{aligned}$ |  | $\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$ |  | N <br> \% <br> O <br> 0 | 荌 | 感 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| feet | feet. | feet | feet. | feet | fe | feet | feet. | feet | feet. | feet |  |
| p.sec. | .0010 | 13 | 2.62 | p. sec. | 17.9 | 5. sec. | feet. | p.sec. |  | .sec. | feet. |
| . 50 | . 0039 | 14 | 3.04 | 35 | 19.0 | 56 | 48.8 | 7 | 89.8 92.2 | 97 98 | 149 |
| . 75 | . 008 i | 15 | 3.49 | 36 | 20.1 | 57 | 50.5 | \% | 94.6 | 98 99 | 49 |
| 1.00 | . 016 | 16 | 3.98 | 37 | 21.3 | 50 | 52.3 | 79 | ${ }_{97} 9$ | 100 | 155 |
| 1.25 | . 024 | 17 | 4.49 | 38 | 22.4 | 59 | 54.1 | 80 | 99.5 | 105 | 171 |
| 1.50 | .0.35 | 18 | 5.03 | 39 | 23.6 | 60 | 56. | 81 | 102.0 | 110 | 188 |
| 1.75 | . 048 | 19 | 5.61 | 40 | 24.9 | 61 | 57.9 | 82 | 104.5 | 115 | 05 |
| 2 | . 062 | 20 | 6.22 | 41 | 26.1 | 62 | 59.8 | 83 | $10 \% .1$ | 120 | 224 |
| 2.5 | . 097 | 21 | 6.85 | 42 | 27.4 | 63 | 61.7 | 84 | 109.7 | 130 | 263 |
| 3 | . 140 | 22 | 7.5: | 43 | 28.7 | 64 | 63.7 | 85 | 112.3 | 140 | 304 |
| 3.5 | . 190 | 23 | 8.21 | 44 | 30.1 | 65 | 65.7 | 86 | 115.0 | 150 | 350 |
| 4 | . 248 | 24 | 8.94 | 45 | 31.4 | 66 | 67.7 | 87 | 117. ${ }^{\text {c }}$ | 1.5 | 476 |
| 4.5 | . 314 | 25 | 9.71 | 46 | 33.9 | 67 | 69.8 | 88 | 120.4 | 200 | 622 |
| 5 | . 388 | 26 | 10.5 | 47 | 34.3 | 68 | 71.9 |  | 123.2 | 300 | 1399 |
| ${ }^{6}$ | . 559 | $\stackrel{27}{28}$ | 11.3 | 48 | 35.8 | $\stackrel{69}{ }$ | 74.0 | 90 | 125.9 | 400 | 2488 |
| 3 | . 761 | 28 | 12.2 | 49 | $3{ }^{31} .3$ | \% 0 | 76.2 | 91 | 128.7 | 500 | 388 \% |
| 8 | . 994 | 29 | 13.1 | 50 | 38.9 | 71 | 78.4 | $9:$ | 131.6 | 600 | 559 ¢ |
| 9 | 1.26 | 30 | 14.0 | 51 | 40.4 | \% | 80.6 | 93 | 134.5 | 700 | 7618 |
| 10 | 1.55 | 31 | 14.9 | 52 | 42.0 | 73 | 82.9 | 94 | 137.4 | 800 | 9952 |
| 11 | 1.88 | 32 | 15.9 | 53 | 43.7 | 74 | 85.1 | 95 | 140.3 | 900 | 12593 |
| 12 | 2.24 | 33 | 16.9 | 54 | 45.3 | 85 | 87.5 | 96 | 143.3 | 1000 | 15547 |

Falling Bodies: Velocity Acquired by a Body Falling a


Paralfologram of Velocities. -The principle of the composition and resolusion of forces may also be applied to relocities or to distances moved in given intervals of time. Referring to Fig. 88, page 416, if a body at $O$ has a force applied to it which acting alone would give it a velocity represented by $O Q$ per second. and at the same time it is acted on by
another force which acting alone would give it a velocity $O P$ per second, the result of the two forces acting together for one second will carry it to $R, O R$ being the diagonat of the parallelogram of $O Q$ and $O P$, and the resultant velocity. If the two component velocities are uniform, the resultant will be uniform and the line $O R$ will be a straight line; but if either velocity is a varying one, the line will be a curve. Fig. 96 slows the resultant velocities, also the path traversed by a body acted on by two forces, one of which would carry it at a uniform velocity over the intervals $1,2,3, B$, and the other of which would carry it by an accelerated moo tion over the intervals $\boldsymbol{a}, b, c, D$ in the same times. At the end of the respective intervals the body will be found at $C_{1}, C_{2}, C_{3}, C_{3}$ and the mean velocity during each interval is represented by the distances between these points. Such a curved path is traversed by a shot, the impelling force from the gun ziving it a uniform velocity in the direction the gun is aimed, and gravity giving it an accelerated velocity downward.


Fig. 96. The path of a projectile is a parabola. The distance it will travel is greatest when its initial direction is at an angle $45^{\circ}$ above the horizontal.

Mass-Force of Acceleration.-Themass of a body, or the quantity of matter it contains, is a constant quantity, while the weight varies according to the variation in the force of gravity at different places. If $g=$ the acceleration due to gravity, and $w=$ weight, then the mass $m=\frac{w}{g}, w=m g$. Weight here means the resultant of the force of gravity on the particles of a body, such as may be measured by a spring-balance, or by the extension or deflection of a rod of metal loaded with the given weight.
Force has been defined as that which causes, or tends to cause, or to destroy, motion. It may also be defined (Kennedy's Mecharics of Machinery) as the cause of acceleration; and the unit of force as the force required to produce unit acceleration in a unit of free nass.
Force equals the product of the mass by the acceleration, or $f=m a$.
Also, if $v=$ the velocity acquired in the time $t, f t=m v ; f=m v \div t$; the acceleration being uniform.
The force required to produce an acceleration of $g$ (that is, 32.16 ft . per sec.) in one second is $f=m g=\frac{v}{g} g=w$, or the weight of the body. Also, $f=m \alpha=m \frac{v_{2}-v_{1}}{t}$, in which $v_{2}$ is the velocity at the end, and $v_{1}$ the velocity at the beginning of the time $t$, and $f=m g=\frac{w}{g} \frac{\left(v_{2}-v_{1}\right)}{t}=\frac{w}{g} a$; $\frac{f}{w}=\frac{\alpha}{g}$; or, the force required to give any acceleration to a body is to the weight of the body as that acceleration is to the acceleration produced by gravity. (The weight $w$ is the weight where $g$ is measured.)

Example.-Tension in a cord lifting a weight. A weight of 100 lbs . is lifted vertically by a cord a distance of 80 feet in 4 seconds, the velocity aniformly increasing from 0 to the end of the time. What tension must be maintained in the cord? Mean velocity $=v_{0}=20 \mathrm{ft}$. per sec.; final velocity $=v_{2}=2 v_{0}=40$; accele"ation $a=\frac{v_{2}}{t}=\frac{40}{4}=10$. Force $f=m a=\frac{u \cdot a}{g}=\frac{100}{3 \% .16} \times$ $10=31.1 \mathrm{lbs}$. This is the force required to produce the acceleration only; to it must be added the force required to lift the weight without acceleration, or 100 lbs , making a total of 131.1 lbs .

The Resistance to Acceleration is the same as the force required to produce the acceleration $=\frac{w}{g} \frac{\left(v_{2}-v_{1}\right)}{t}$.
Formula for Accelerated IPHotion.-For cases of uniformly accelerated motion other than those of falling bodies, we have the formulæ already given, $f=\frac{w}{g} a_{9}=\frac{w}{g} \frac{v_{2}-v_{1}}{t}$. If the body starts from rest, $v_{1}=0, v_{8}$
$=v$, and $f=\frac{w}{g} \frac{v}{t}$, fgt $=w c$. We also have $s=\frac{v t}{z}$. Transforming and sub. stituting for $g$ its value 32.16 , we obtain

$$
\begin{array}{ll}
f=\frac{w v^{2}}{64.3 \vartheta s}=\frac{w v}{32.16 t}=\frac{w s}{16.08 t^{2}} ; \quad w=\frac{32.16 f t}{v}=\frac{64.3: \rho s}{v^{2}} ; \\
s=\frac{w v^{2}}{64.32 f}=\frac{16.08 f t^{2}}{w}=\frac{v t}{2} ; \quad v=8.02 \sqrt{\frac{f s}{w}}=\frac{32.16 f t}{w} ; \\
t=\frac{w v}{22.16 f}=\frac{1}{4.01} \sqrt{\frac{u s}{f}}
\end{array}
$$

For any change in velocity $f=w\left(\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{64.32 s}\right)$.
(See also Work of Acceleration, under Work.)
Motion on Enclined Pranes.-The velocity acquired by a body descending an inclined plane by the force of gravity (friction neglected) is equal to that acquired by a body falling freely from the height of the plane. The times of descent down different inclined planes of the same height vary as the length of the planes.
The rules for uniformly acculerated motion apply to inclined planes. If a is the angle of the plane with the horizontal, sin $a=$ the ratio of the height to the length $=\frac{h}{l}$, and the constant accelerating force is $g \sin a$. The fina! velocity at the end of $t$ seconds is $v=g t \sin a$. The distance passed over in $t$ seconds is $l=\frac{1}{3} g t^{2} \sin a$. The time of desceut is

$$
t=\sqrt{\frac{2 l}{g \sin a}}=\frac{t}{4.01 \sqrt{\pi}} .
$$

## MOMEENTUM, VIS-VIVA.

ITomensum, or quantity of motion in a body, is the product of the mass by the velocity at any instant $=m v=\frac{2 v}{g} v$.

Since the moving force $=$ product of mass by acceleration, $f=m a$; and if the velocity acquired in $t$ seconds $=v$, or $a=\frac{v}{t}, f=\frac{m v}{t} ; f t=m v$; that is, the product of a constant force into the time in which it acts equals numer
ically the momentum.
Since $f t=m v$, if $t=1$ second $m v=f$. whence momentum might be defined as numerically equivalent to the number of pounds of force that will stop a noving body in 1 second, or the nnmber of pounds of force which acting during 1 second will give it the given velocity.
Vis-viva, or living force, is a term used by early writers on Mechanics to denote the energy stored in a moving body. Some defined it as the product of the mass into the square of the velocity, $m v^{2},=\frac{w}{g} v^{2}$ others as one half of this quantity or $1 / 2 m v^{2}$, or the same as what is now known as energy. The term is now practically obsolete, its place being taken by the word
energy. energy.

## WORK, CNERGE, POWERE.

Work is the overcoming of resistance through a certain distance. It is measured by the product of the resistance into the space through which it is overcome. It is also measured by the product of the moving force into the distance through which the force acts in overcoming the resistance. Thus in lifting a body from the earth against the attraction of gravity, the resistance is the weight of the body, and the product of this weight into the height the body is lifted is the work done.
The Unit of Work, in British measures, is the fcot-pound, or the amount of work done in overcoming a pressure or weight equal to one pound through one foot of space.

The work performed by a piston in driving a fluid before it, or by a fluid In driving a piston before it, may be expressed in either of the following ways:

Resistance $\times$ distance traversed
$=$ Intensity of pressure $\times$ area $\times$ distance traversed ; $=$ intensity of pressure $\times$ volume traversed.
The work performed in lifting a body is the product of the weight of the body into the height through which its centre of gravity is lifted.

If a machine lifts the centres of gravity of several bodies at once to heights either the same or different, the whole quantity of work performed in so toing is the sum of the several products of the weights and heights; but that quantity can also be computed by multiplying the sum of all the weights into the height through which their common cerstre of gravity is lifted. (Rankine.)

Power is the rate at which work is done, and is expressed by the quotient of tho work divided by the time in which it is done, or by units of work - er second, per minute, etc., as foot-pounds ner second. The most common unit of power is the horse-power, established by James Watt as the power of a strong London draught-horse to do work during a short interval. and used by him to measure the power of his steam-engines. This nnit is 33,000 footpounds per minute $=550$ foot-pounds per second $=1,980,000$ foot-pounds per hour.

## 

The fundamental conceptions in Dymanics are:
Mass, Force, Time, Space, represented by the letters $M, F, T, S$.
MIass $=$ weight $\div g$. If the weight of a body is determined by a spring balance standardized at London it will vary with the latitude, and the valne of $g$ to be taken in order to find the mass is that of the latitude where the weighing is done. If the weight is determined by a balance or by a platform scale, as is customary in engineering and in commerce, the London value of $g=32.2$, is to be taken.

Velocity = space divided by time, $V=S \div T$, if $V$ be uniform.
Work = force multiplied by space $=F S=1 / 2 M V^{2}=F V T$. ( $V$ iniform.)
Power = rate of trork = work divided by time $=F \dot{\prime} \div \dot{T}=P=$ product of force into velocity $=F V$.
Power exerted for a certain time prodnces work; $P T=F S=F V T$.
Efort is a force which acts on a body in the direction of its motion.
Resistance is that which is opposed to a moving force. It is equal and opmosite force.

Horseapower Hiours, an expression for work measured as the product of a power into the time durillg which it acts $=P T$. Sometimes it is the summation of a variable power for a given time, or the average power multiplied by the time.

Enercy, or stored work, is the capacity for performing work. It is measured by the same unit as work, that is, in foot-pounds. It may be either potential, as in the case of a body of water stored in a reservoir, capable of doing work by means of $\because$ water-wheel, or nctucrl. sometimes called kinetic, which is the energy of a moving body. Potential energy is measured by the product of the weight of the stored body into the distance through which it is capable of acting, or by the product of the pressure it exerts into the distance through which that pressure is capable of acting. Potential energy may also exist as stored heat, or as stored chemical energy, as in fuel, gunpowder, etc., or as electrical energy, the measure of these energies being the amount of work that they are capable of performing. Actual energy of a moving body is the work which it is capable of performing against a retarding resistance beforo being brought to rest, and is equal to the work which must be done upon is to bring it from a state of rest to its actual velocity.

The measure of actual energy is tho product of the weight of the body into the height from which it must fall to acquire its actual velocity. If $v=$ the velocity in fect per second, according to the principle of falling bodies, $h$, the height due to the velocity $=\frac{v^{2}}{2 g}$, and if $v=$ the wcight, the energy $=$ $16 m v^{2}=w v^{2} \div 2 g=w h$. Since energy is the capacity for performing work, the units of work and energy are equivalent, or $F S=3 \cdot m v^{2}=w h$. Energy exerted $=$ work done.

The actual energy of a rotating body whose angular velocity is $A$ and moment of inertia $\Sigma w r^{2}=I$ is $\frac{A^{2} I}{2 g}$, that is, the product of the moment of inertia into the height due to the velocity, $A$, of a point whose distance from the axis of rotation is unity; or it is equal to $\frac{w v^{2}}{2 g}$, in which $w$ is the weight of the body and $v$ is the velocity of the centre of gyration.

Work of Acceleration. - The work done in giving acceleration to a body is equal to the product of the force producing the acceleration, or of the resistance to acceleration, into the distance moved in a given time. This force, as already stated equals the product of the inass into the acceleration, or $f=m \alpha=\frac{w}{g} \frac{v_{2}-v_{1}}{t}$. If the distance traversed in the time $t=s$, then work $=f s=\frac{w}{g} \frac{v_{2}-v_{1}}{t} s$.
Examplet- What work is required to move a body weighing 100 lbs . horizontally a distance of 80 ft . in 4 seconds, the velocity uniformly increasing, friction neglected:
Mean velocity $v_{0}=20 \mathrm{ft}$. per second; final velocity $=v_{2}=2 v_{0}=40$; initial velocity $v_{1}=0$; acceleration, $\alpha=\frac{v_{2}-v_{1}}{t}=\frac{40}{4}=10$; force $=\frac{v}{g} a=\frac{100}{3.2 .16} \times$ $10=31.1 \mathrm{lbs}$. ; distance 80 ft .; work $=f_{s}=31.1 \times 80=2488$ foot-pounds.
The energy stored in the body moving at the final velocity of 40 ft . per second is

$$
32 m v^{2}=\frac{1}{2} \frac{v}{g} v^{2}=\frac{100 \times 40^{2}}{2 \times 32.16}=2458 \text { foot-pounds, }
$$

which equals the work of acceleration,

$$
\delta s=\frac{w}{g} \frac{v_{2}}{t} s=\frac{w}{g} \frac{v_{2}}{t} \frac{v_{2}}{2} t=\frac{1}{2} \frac{w}{g} v_{2}^{2}
$$

If a body of the weight $W$ falls from a height $H$, the work of acceleration is simply $W H$, or the same as the work required to raise the body to the same height.

Work of Accelerated Rotation.-Let $A=$ angular velocity of a solid body rotating about an axis, that is, the velocity of a particle whose radius is unity. Then the velocity of a particle whose radius is $r$ is $v=A r$. If the angular velocity is accelerated from $A_{1}$ to $A_{2}$, the increase of the velocity of the particle is $v_{2}-v_{1}=r\left(A_{1}-A_{2}\right)$, and the work of accelerating it is

$$
\frac{v}{g} \times \frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2}=\frac{v r^{2}}{g} \cdot \frac{A_{2}{ }^{2}-A_{1}{ }^{2}}{2},
$$

in which $w$ is the weight of the particle.
The work of acceleration of the whole body is

$$
\sum\left\{\frac{w}{g} \times \frac{v_{2}^{2}-v_{1}^{2}}{2}\right\}=\frac{A_{2}^{2}-A_{1}^{2}}{2 g} \times \Sigma w r^{2}
$$

## The torm $\Sigma u r^{2}$ is the inoment of inertia of the hody. <br> ${ }^{66}$ Force of the Blow ${ }^{\prime} 9$ of Steam Hammer or Other Fallv

 ing Weight. -The question is often asked: "With what force does a falling hammer strike?" The question cannot be answered directly, and it is based upon a misconception or ignorance of fundamental mechanical laws. The energy, or capacity of doing work, of a body raised to a given height and let fall cannot be expressed in pounds, simply, but only in footpounds, which is the product of the weight into the height through which it fails, or the product of its weight -64.32 into the square of the velocity, in feet per second, which it acquires after falling through the given height. If $F=$ weight of the body, $M$ its mass, $g$ the acceleration due to gravity, $S$ the height of fall, and $v$ the velocity at the end of the fall, the energy in the body just befor' $\theta$ striking, is $1 \mathrm{~F}^{2}=1 / 2 M v^{2}=W v^{2}+2 g=W v^{2} \div 64.32$, which is the general equation of energy of a moving body. Just as the energy of the body is a product of a force into a distance, so the work it does when it strikes is not the manifestation of a force, which can be expressed simply in pounds, but it is the overcoming of a resistance through a certain distance, which is expressed as the product of the average resist-ance into the distance through which it is exerted. If a hammer weighing 100 lbs . falls 10 ft ., its energy is 1000 foot-pounds. Before being brought to rest it must do 1000 foot-pounds of work against one or more resistances. These are of various kinds, such as that due to motion imparted to the body struck, penetration against friction, or against resistance to shearing or other deformation, and crushing and heating of both the falling body and the body struck. The distance through which these resisting forces act is generally indeterminate, and therefore the average of the resisting forces, which themselves generally vary with the distance, is also indeterminate.

Impact of Hodies.-If two inelastic bodies collide, they will move on together as one mass, with a common velocity. The momentum of the combined mass is equal to the sum of the momenta of the two bodies before impact. If $m_{1}$ and $m_{2}$ are the masses of the two bodies and $v_{1}$ and $v_{2}$ their respective velocities before impact, and $v$ their common velocity after impact, $\left(m_{1}+m_{2}\right) v=m_{1} v_{1}+m_{2} v_{2}$,

$$
v=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+\frac{m_{2}}{2}} \cdot *
$$

If the bodies move in opposite directions $v=\frac{m_{1} v_{1}-m_{2} v_{2}}{m_{1}+m_{2}}$, or, the velocity of two inelastic bodies after impact is equal to the algebraic sum of their momenta before impact, divided by the sum of their masses.
If two inelastic bodies of equal momenta impinge directly upon one an. other from opposite directions they will be brought to rest.
Impact of Inelastic Hodies Causes a Loss of Energy, and this loss is equal to the sum of the energies due to the velocities lost and gained by the bodies, respectively.

$$
1 / 2 m_{1} v_{1}^{2}+1 / 2 m_{2} v_{2}^{2}-1 / 2\left(m_{1}+m_{2}\right) v^{2}=1 / 2 m_{1}\left(v_{1}-v\right)^{2}+1 / 2 m_{2}\left(v_{2}-v\right)^{2} .
$$

In which $v_{1}-v$ is the velocity lost by $m_{1}$ and $v-v_{2}$ the velocity gained by $m_{2}$. Example-Let $m_{3}=10, m_{2}=8, v_{1}=12, v_{2}=15$.
If the bodies collide they will come to rest, for $v=\frac{10 \times 12-8 \times 15}{10+8}=0$.
The energy loss is
$1 / 210 \times 144+1 / 28 \times 225-1 / 218 \times 0=1 / 210(12-0)^{2}+1 / 28(15-0)^{2}=1620 \mathrm{ft} .1 \mathrm{bs}$.
What becomes of the energy lost? Ans. It is used doing internal work on the bodies themselves, changing their shape and heating them.
For imperfectly elastic bodies, let $e=$ the elasticity, that is, the ratio which the force of restitution, or the internal force tending to restore the shape of a body after it has been compressed, bears to the force of compression; and let $m_{1}$ and $m_{2}$ be the masses, $v_{1}$ and $v_{2}$ their velocities before impact, and $v_{1}{ }^{\prime} v_{2}{ }^{\prime}$ their velocities after impact: then

$$
\begin{aligned}
& v_{1}^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}-\frac{m_{2} e\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}} ; \\
& v_{2}^{\prime}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+\frac{m_{2}}{m_{2}}+\frac{m_{1} e\left(v_{1}-v_{2}\right)}{m_{1}+m_{2}}} .
\end{aligned}
$$

If the bodies are perfectly elastic, their relative velocities before and after impact are the same. That is: $v_{1}^{\prime}-v_{2}^{\prime}=v_{2}-v_{1}$.
In the impact of bodies, the sum of their monenta after impact is the same as the sum of their momenta before impact.

$$
m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}=m_{1} v_{1}+m_{2} v_{2}
$$

For demonstration of these and other laws of impact, see Smith's Meshanics; also, Weisbach's Mechanics.
Energy of Recoil of Guns.-(Eng'g, Jan. 25,1884 , p. 72.)
Let $W=$ the weight of the gun and carriage;
$V=$ the maximum velocity of recoil;
$w=$ the weight of the projectile;
$v=$ the muzzle velocity of the projectile.
Then, since the momentum of the gun and carriage is equal to the momentum of the projectile, we have $W V=w v$, or $V=v v \div W$.

[^17]Taking the case of a 10 -inch gun firing a $400-1 \mathrm{lb}$. projectile with a muzzle velocity of 1400 feet per second, the weight of the gun and carriage being 22 tons $=49,280 \mathrm{lbs}$., we find the velocity of recoil $=$

$$
V=\frac{1400 \times 400}{49,280}=11 \text { feet per second. }
$$

Now the energy of a body in motion is $W V^{2} \div 2 g$.
Therefore the energy of recoil $=\frac{49,280 \times 11^{2}}{2 \times 32.2}=02,593$ foot-pounds.
The energy of the projectile is $\frac{400 \times 1400^{2}}{2 \times 32.2}=12,1$ ri3,913 foot-pounds,
Conservation of Energy.-No form of energy can ever be pro duced except by the expenditure of some other form, nor annihilated except by being reproduced in another form. Consequently the sum total of energy in the universe, like the sum total of matter, must always remain the same. (S. Newcomb.) Energy can never be destroyed or lost; it can be transformed, can be transferred from one body to another, but no matter what transformations are undergone, when the total effects of the exertion of a given amount of energy are summed up the result will be exactly equal to the amount originally expended from the source. This law is called the Conservation of Energy. (Cotterill and Slade.)

A heavy body sustained at an elevated position has potential energy. When it falls, just before it reaches the earth's surface it has actual or kinetic energy, due to its relocity. When it strikes it may penetrate the earth a certain distance or may be crushed. In either case friction results by which the energy is converted into heat, which is gradually radiated into the earth or into the atmosphere, or both. Mechanical energy and heat are mutually convertible. Electric energy is also convertible into heat or mechanical energy, and either kind of energy may be converted into the

Somrces of Enerey. - The principal sources of energy on the earth's surface are the muscular energy of men and animals, the energy of the wind, of flowing water, and of fnel. These sources derive their energy from the rays of the sun. Under the influence of the sun's rays vegetatiou grows and wood is formed. The wood may be used as fuel under a stean boiler, its carbon being burned to carbonic acid. Three tenths of its heat energy escapes in the chimney and by radiation, and seven tenths appears as potential energy in the steam. In the steam-engine, of this seven tenths six parts are dissipated in heating the condensing water and are wasted; the remaining one tenth of the original heat energy of the wood is converted into mechanical work in the steam-engive, which may be used to drive machinery. This work is finally, by friction of various kinds, or possibly after transformation into electric currents, transformed into heat, which is radiated into the atmosphere, increasing its temperature. Thus all the potential heat energy of the wood is, after various transformations, converted into heat, which, mingling with the store of heat in the atmosphere, apparently is lost. But the carbonic acid generated by the combustion of the wood is, again, mader the influence of the sun's rays, absorbed by vegetation, and more wood may thus be formed having potential energy
Perpetwal IFotion. -The law of the conservation of energy, than which no law of mechanics is more firmly established, is an absolute barrier to all schemes for obtaining by mechanical means what is called "perpetual motion," or a machine which will do an amount of work greater than the equivalent of the energy, whether of heat, of chemical combination, of electricity, or mechanical energy, that is put into it. Such a result would be the creation of an additional store of energy in the universe, which is not possible by any human agency.
The Emeiency of a Michine is a fraction expressing the ratio of the useful work to the whole work performed, which is equal to the energy expended. The limit to the efficiency of a machine is unity, denoting the efficiency of a perfect machine in which no work is lost. Tlie difference between the energy expended and the useful work done, or the loss, is usually expended either in overcoming friction or in doing work on bodies surrounding the machine from which no useful work is received. Thus in an engine propelling a vessel part of the energy exerted in the cylinder

Aoes the useful work of giving motion to the vessel, and the remainder is spent in overcoming the friction of the machinery and in making currents and eddies in the surrounding water.

ANIMATROWER.
Work of a IIan against Known Resistances. (Rankine.)

| Kind of Exertion. | l l , | ft. per sec. | $\left\lvert\, \begin{gathered} T^{\prime \prime} \\ \hline 3600 \\ \text { (hours } \\ \text { per } \\ \text { day). } \end{gathered}\right.$ | $\begin{aligned} & R V, \\ & \text { ft.-lbs. } \\ & \text { per sec. } \end{aligned}$ | RVT, <br> ft.-lbs. per day. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Raising his own weight up stair or ladder | 143 | 0.5 | 8 | 72.5 | 2,088,000 |
| 2. Hauling up weights with rope, and lowering the rope unloaded | 40 | 0.75 | 0 | 30 | 648,000 |
| 3. Lifting weights by hand...... | 44 | 0.55 | c | 24.2 | 522, $2 \times 0$ |
| 4. Carrying weights up-stairs and returning unloaded... | 143 | 0.13 | 6 | 18.5 | 399,600 |
| 5. Shovelling up earth to a height of 5 ft .3 in . | 6 | 1.3 | 10 | 7.8 | 280,800 |
| 6. Wheeling earth in barrow up slope of 1 in $12,1 / 2$ horiz. veloc. 0.9 ft . per sec. and returning unloaded | 132 | 0.065 | 10 | 9.9 | 356,400 |
| 7. Pushing or pulling horizontally (capstan or oar)....... | 26.5 12.5 | 2.0 5.0 | 8 | 53 62.5 |  |
| 8. Turning a crank or winch | $\{18.0$ | 2.5 | 8 | 45 | $1,296,000$ |
|  | 20.0 | 14.4 | 2 min . | 288 |  |
| 9. Working pump | 13.2 | 2.5 | 10 | 33 | 1,188,000 |
| 10. Hammering... | 15 | ? | 8 ? | ? | 480,000 |

Explanation. $-R$, resistance; $V$, effective velocity $=$ distance through which $R$ is overcome $\div$ total time occupied, including the time of moving unloaded, if any; $T^{\prime \prime}$, time of working, in seconds per day; $T^{\prime \prime \prime} \div 3600$, same time, in hours per day; $R V$, effective power, in foot-pounds per second; $R V T$, daily work.

## Revformance of a Tran in Transporting Loads Horizontally. (Rankiue.)

| Kind of Exertion. | L L , | $\stackrel{V}{\mathrm{ft} .-\mathrm{sec}}$ | $\begin{array}{\|c} \frac{T}{3600} \\ \text { (hours } \\ \text { per } \\ \text { day). } \end{array}$ | $L V$, lbs. conveyed 1 foot. | $\begin{gathered} L V T \\ \text { lbs. con- } \\ \text { veyed } \\ 1 \text { foot. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11. Walking unloaded,transporting his own weight. | 140 | 5 | 10 | 700 | 25,200,000 |
| 12. Wheeling load $L$ in 2 -whld. barrow, return unloaded. | 224 | 12/3 | 10 | 373 | 13,428,000 |
| 13. Ditto in 1-wh. barrow, ditto.. | 132 | 12 | 10 | 220 | 7,920,000 |
| 14. Travelling with burden..... | 90 | $21 / 2$ | 7 | 225 | 5,6\%0,000 |
| 15. Carrying burden, returning unloaded |  | ${ }_{0}^{1 / 3}$ | 6 | ${ }^{233}$ | 5,032,800 |
| 10. Carrying burden, for 30 seconds only ...................... | $\left\{\begin{array}{r}252 \\ 120 \\ 0\end{array}\right.$ | 0 11.7 23.1 |  | 1474.2 0 |  |

Explanation. $-L$, load; $V$, effective velocity, computed as before; $T^{\prime \prime}$, time of working, in seconds per day; $T^{\prime \prime} \div 3600$, same time in hours per day; $L V$, transport per second, in lbs. conveyed one foot; $L V T$, daily transport.

In the first line only of each of the two tables above is the weight of the man taken into account in computing the work done.
Clark says that the average net daily work of an ordinary laborer at a


Fig. 97. pump, a winch, or a crane may be taken at 3300 foot-pounds per minute, or one-tenth of a horse-power, for 8 hours a day; but for shorter periods from four to five times this rate may be exerted.
Mr. Glynn says that a man may exert a force of 25 lbs . at the handle of a crane for short periods; but that for continuous work a force of 15 lbs . is all that should be assumed, moving through 220 feet per minute.
Man-wheel.-Fig. 97 is a sketch of a very efficient man-power hoist-ing-machine which the author saw in Berne, Switzerland, in 1889. The face of the wheel was wide enough for three men to walk abreast, so that nine men could work in it at one tine.
Work of a Horse against a Known Resistance. (Rankine.)

| Kind of Exertion. | $R$. | $V$. | $\frac{T}{3600}$ | $R V$. | $R V T$. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Cantering and trotting, drawing a ligltt railway carriage (thoroughbred) <br> 2. Horse drawing cart or boat, walking (draught-horse) <br> 3. Horse drawing a gin or mill, walking <br> 4. Ditto, trotting | $\left\{\begin{array}{c} \min .821 / 2 \\ \text { mean } 301 / 2 \\ \max .50 \end{array}\right.$ | $\int^{142 / 3}$ | 4 | $44 \% 1 / 2$ | 6,444,000 |
|  |  | 3.6 | 8 | 432 | 12,441,600 |
|  |  | 3.0 |  | 300 |  |
|  |  | 6.5 | 411/2 | 429 | 6,950,000 |

Explanation. $-R$, resistance, in lbs.; $V$, velocity, in feet per second; $7^{\prime \prime}$ $\div 3600$, hours work per day; $R V$, work per second; $R V T$, work per day.
The a verage power of a draught-horse, as given in line 2 of the above table, being 432 foot-pounds per second, is $43: / 550=0.185$ of the conventional value assigned by Watt to the ordinary unit of the rate of work of prime movers. It is the meau of several results of experiments, and may be considered the average of ordinary performance under favorable circumstances.

## Performance of a Horse in Transporting Loads Horizontally. (rankine.)

| Kind of Exertion. | $L$. | $V$. | $T$. | $L V$. | LVT. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5. Walking with cart, always loaded <br> 6. Trotting, ditto | 1500750 | $\begin{aligned} & 3.6 \\ & 7.2 \end{aligned}$ | 10$41 / 2$ | 54005400 | $\begin{array}{r} 194,400,000 \\ 87,480,000 \end{array}$ |
|  |  |  |  |  |  |
| 7. Walking with cart, going loaded, returning empty; $V$, mean velocity | 1500 |  | 10 |  |  |
| 8. Carrying burden, walking.... | 1200 | 3.6 | 10 | ${ }_{9 \sim}^{3000}$ | 108,000,000 |
| 9. Ditto, trotting ............. | 180 | 3.6 7.2 | 10 7 | 9\%2 1290 | $34,992,000$ $32,659,200$ |

Explanation.-L, load in lbs.; $V$, velocity in feet per second; $T \div 3600$, working hours per day; $L V$, transport per second; $L V T$, transport per day. This table has reference to conveyance on common roads only, and those evidently in bad order as respects the resistance to traction upon them.
Horse Gin.-In this machine a horse works less advantageously than in drawing a carriage along a straight track. In order that the best
possible results may be realized with a horse-gin, the diameter of the cir. cular track in which the horse walks should not be less than about forty feet.
Oxen, Mules, Assez.- Authorities differ considerably as to the power of these animals. The following may be taken as an approximative comparison between them and draught-horses (Rankine):

Ox.-Load, the same as that of average draught-horse; best velocity and work, two thirds of horse.

Mule.-Load, one half of that of average draught-horse; best velocity, the same with horse; work one half.
Ass.-Load, one quarter that of average draught-horse; best velocity the same; work one quarter.
Reduction of Draught of Horses by Inerease of Grade of Roads. (Enyineeriny Record, Prize Essays on Roads, 189\%.)-Experiments on English roads by Gayffier \& Parnell:
Cailing load that can be drawn on a level 100:
On a rise of . ......... 1 in 100.1 in 50.1 in 40.1 in 30.1 in 26.1 in 20.1 in 10.

The Resistance of Carriages on Reads is (according to Gen. Morin) given approximately by the following empinical fornula:

$$
R=\frac{W}{r}[a+b(u-3.28)]
$$

In this formula $R=$ total resistance; $r=$ radius of wheel in inches; $W^{\prime}=$ gross load; $u=$ velocity in feet per second; while $a$ and $b$ are constants, whose values are: For good broken-stone road, $a=.4$ to $.55, b=.024$ to .026 ; for paved roads, $a=.27, b=.0684$.

Rankine states that on gravel the resistance is about double, and on sand five times, the resistance on good broken-stone roads.

## HLEMEN'S OF MLACHENES.

The object of a machine is usually to transform the work or mechanical energy exerted at the point where the machine receives its motion into work at the point where the finai resistance is overcome. The specific end may be to cliange the character or direction of motion, as from circular to rectilinear, or vice versa, to change the velocity, or to overcome a great resistance by the application of a moderate force. In all cases the total energy exerted equals the total work done, the latter including the overcoming of all the frictional resistances of the machine as well as the useful work performed. No increase of power can be obtained from any machine, since this is impossible according to the law of conservation of energy. In a frictionless machine the product of the force exerted at the drivingpoint into the velocity of the driving-point, or the distance it moves in a given interval of time, equals the product of the resistance into the distance through which the resistance is overcome in the same time.
The most simple machines, or elementary machines, are reducible to three classes, viz., the Lever, the Cord, and the Inchned Plane.
The first class includes every machine consisting of a solid body capable of revolving on an axis, as the Wheel and Axle.
The second class includes every machine in which force is transmitted by means of Hexible threads, ropes, etc., as tife Pulley.
The third class includes every machine in which a hard surface inclined to the direc-


Fig. 98.


Fig. 99.


Fig. 100. tion of motion is introduced, as the Wedge and the Screw.
A Lever is an inflexible rod capable of motion about a fixed point, called a fulcrum. The rod may be straight or bent at any angle, or curved.
It is generally regarded, at first, as without weight, but its weight may be
considered as another force applied in a vertical direction at its centre of gravity.

The arms oî a lever are the portions of it intercepted between the force, $P$, and fulcrum, $C$, and between the weight, $W$, and fulcrum.
Levers are divided into three kinds or orders, according to the relative positions of the applied force, weight, and fulcrum.
In a lever of the first order, the fulcrum lies between the points at which the force and weight act. (Fig. 98.)

In a lever of the second order, the weight acts at a point between the fulcrum and the point of action of the force. (Fig. 99.)
In a lever of the third order, the point of action of the force is between that of the weight and the fulcrum. (Fig. 100.)
In all cases of levers the relation between the force exerted or the pull, $P$, and the weight lifted, or resistance overcome, $W$, is expressed by the equation $P \times A C=W \times B C$, in which $A C$ is the lever-arm of $P$, and $B C$ is the lever-arm of $W$, or moment of the force $=$ the moment of the resistance. (See Moment.)
In cases in which the direction of the force (or of the resistance) is not at right angles to the arm of the lever on which it acts, the "lever-arm" is the length of a perpendicular from the fulcrum to the line of direction of the force (or of the resistance). $W: P:: A C: B C$, or, the ratio of the resistance to the applied force is the inverse ratio of their lever-arms. Also, if $V w$ is the velocity of $W$, and $V p$ is the velocity of $P, W: P:: V p: V w$, and $P \times V_{p}$, $=W \times V w$.
If $S p$ is the distance through which the applied force acts, and $S w$ is the distance the weight is lifted or through which the resistance is overcome, $W: P:: S p: S w ; W \times S w=P \times S p$, or the weight into the distance it is lifted equals the force into the distance through which it is exerted.
These equations are general for all classes of machises as well as for levers, it being understood that friction, which in actual machines increases the resistance, is not at present considered.
The Bent Lever. - In the bent lever (see Fig. 91, page 416) the leverarm of the weight $m$ is $c f$ instead of $b f$. The lever is in equilibrium when $n \times a f=m \times c f$, but it is to be observed that the action of a bent lever may be very different from that of a straight lever. In the latter. so long as the force and the resistance act in lines parallel to each other, the ratio of the lever-arms remains constant, although the lever itself changes its inclination with the horizontal. In the bent lever, hexever, this ratio changes: thus, in the cut, if the arm of is depressed to a horizontal direction, the distance $c f$ lengthens while the horizontal projection of af shortens, the latter becoming zero when the direction of of becomes vertical. As the arm $a f$ approaches the vertical, the weight $m$ which may be lifted with a given force $s$ is very great, but the distance through which it may be lifted is very small. In all cases the ratio of the weight $m$ to the weight $n$ is the inverse ratio of the horizontal projection of their respective lever-arms.

The Moving. Strut (Fig. 101) is similar to the bent lever, except that one of the arms is missing, and that the force and the resistance to be overcome act at the same end of the


Fig. 101. single arm. The resistance in the case shown in the cut is not the weight $W$, but its resistance to being moved, $R$, which may be sim. ply that due to its friction on the horizontal plane, or some other opposing force. When the angle between the strut and the horizontal plane changes, the ratio of the resistance to the applied force changes. When the angle becomes very small, a moderate force will overcome a very great resistance, which tends to become infinite as the angle approaches zero. If $a=$ the angle, $P \times \cos a=R \times \sin a$. If $a=5$ degrees, $\cos a=.99619, \sin a=.0816, R=11.44 P$.

The stone-crusher (Fig. 10:) shows a practical example of the use of two moving struts.

The Tomgle-joint is an elbow or knee-joint consisting of two bars so connected that they may be brought into a straight line and made to produce great endwise pressure wheu a force is applied to bring them into this
position. It is a case of two moving struts placed end to end, the moving force being applied at their point of junction, in a direction at right angles to the direction of the resistance, the other end of one of the struts resting against a fixed abutment, and that of the otber against the body to be moved. If $a=$ the angle each strut makes with the straight line joining the points about which their outer ends rotate, the ratio of the resistance to the applied force is $R: P:: \cos a: 2 \sin a ; 2 R \sin a=P \cos a$. The


Fig. 102.


Fig. 103.
ratio varies when the angle varies, becoming infinite when the angle becomes zero.
The toggle-joint is used where great resistances are to be overcome through very small distances, as in stone-crushers (Fig. 103).
The Inclined Rlane, as a mechanical element, is supposed perfectly yard and smooth, unless friction be considered. It assists in sustaining a heavy body by its reaction. This reaction, however, being normal to the plane, cannot entirely comnteract the weight of the body, which acts vertically downward. Some other force must therefore be made to act upon the body, in order that it may be sustained.
If the sustaining force act parallel to the plane (Fig. 104), the force is to the weight as the height of the plane is to its length, measured on the incline.
If the force act parallel to the base of the plane, the power is to the weight as the height is to the base.
If the force act at any other angle, let $i=$ the angle of the plane with the horizon, and $e=$ the
 angle of the direction of the applied force with the angle of the plane. $P: W:: \sin i: \cos e ; P \times \cos e=W \sin i$.

Problems of the inclined plane may be solved by the parallelogram of forces thus:
Let the weight $W$ be kept at rest on the incline by the force $P$, acting in the line $b P^{\prime}$, parallel to the plane. Draw the vertical line ba to represent the weight; also $b b^{\prime}$ perpendicular to the plane, and complete the parallelogram $b^{\prime} c$. Then the vertical weight $b a$ is the resultant of $b b^{\prime}$, the measure of support given by the plane to the weight, and bc, the force of gravity tending to draw the weight down the plane. The force required to maintain? the weight in equilit,rimm is represented by this force bc. Thus the force and the weight are in the ratio of $b c$ to $b a$. Since the triangle of forces $a b c$ is similar to the triangle of the incline $A B C$, the latter may be substituted for the former in determining the relative magnitude of the forces, and

$$
P: W:: b c: a b:: B C: A B
$$

The Wedre is a pair of inclined planes united by their bases. In the application of pressure to the head or butt end of the wedge, to cause it to penetrate a resisting body, the applied force is to the resistance as the thickness of the wedge is to its length. Let $t$ be the thickness, $l$ the length, $W$ the resistance, and $P$ the applied force or pressure on the head of the wedge. Then, friction neglected, $P: W:: t: l ; P=\frac{W t}{l} ; \quad W=\frac{P l}{t}$.

The Screw is an inclined plane wrapped aromiz a cylinder in such a way that the height of the plane is parallel to the axis of the cylinder: If the screw is formed upon the internal surface of a hollow cylinder, it is usually called a nut. When force is applied to raise a weight or overcome a resistance by means of a screw and nut, either the screw or the nut may
be fixed, the other being movable. The force is generally applied at the end of a wrencli or lever-arm, or at the circunference of a wheel. If $r=$ radius of the wheel or lever-arm, and $p=$ pitch of the screw, or distance between threads, that is, the height of the inclined plane for one revolution of the screw, $P=$ the applied force, and $W=$ the resistance overcome, then, neglecting resistance due to friction, $2 \pi r \times P=W p$; $W=6.283 P r \div p$. The ratio of $P$ to $W$ is thus independent of the diameter of the screw. In actual screws, much of the power transmitted is lost through friction.


Fig. 105.

The Cam is a revolving inclined plane. It may be either an inelined plane wrapped around a cylinder in such a way that the height of the plane is radial to the cylinder, such as the ordinary lifting-


Fig. 10e. (Fig. 105), or it may be an inclined plane curved edgew: se, and rotating in a plane parallel to its base (Fig. 106). The relation of the weight to the applied force is calculated in the same manner as in the case of the screw.


Fig. $10 \%$.
Pulleys or Blocks. $-P=$ force applied, or pull ; $W=$ weight lifted or resistance. In the simple pulley $A$ (Fig. 10 ${ }^{\circ}$ ) the point $P$ on the pulling rope descends the same amount that the weight is lifted, therefore $P=W$. In $B$ and $C$ the point $P$ moves twice as far as the weight is lifted, therefore $W=2 P$. In $B$ and $C$ there is one movable block, and two plies of the rope engage with it. In $D$ there are three sheares in the movable block, each with two plies engaged, or six in all. Six plies of the rope are therefore shortened by the same amount that the weight is lifted, and the point $P$ moves six tinues as far as the weight, consequently $W=6 P$. In general, the ratio of $W$ to $P$ is equal to the number of plies of the rope that are shortened, and also is equal to the number of plies that eugage the lower block. If the lower block has 2 sheaves and the upper 3 , the end of the rope is fastened to a hook in the top of the lower block, and then there are 5 plies shortened instead of 6 , and $W=5 P$. If $V=$ velocity of $W$. and $v=$ velocity of $P$, then in all cases $V W=v P$, whatever the number of sheaves or their arrangement. If the lanling rope, at the pulling end, passes first around a sheave in the upper or stationary block, it makes no difference in what direction the rope is led from this block to the point at which the pull on the rope is applied; but if it first passes around the movable block, it is necessary that the pull be exerted in a direction parallel to the line of action of the resistance, or a line joining the centres of the two blocks, in order to obtain the maximum effect. If the rope pulls on the lower block at an angle, the block will be pulled out of the line drawn between the weight and the upper block, and the effective pull will be less than the actual pull
on the rope in the ratio of the cosine of the angle the pulling rope makes with the vertical, or line of action of the resistance, to unity.
Differential Pulley, (Fig. 108.)-Two pulleys, $B$ and $C$, of different radii, rotate as one piece abont a fixed axis, $A$. An endless chain, BDECLKH, passes over both pulleys. The rims of the pulleys are shaped so as to hold the chain and prevent it from slipping. One of the biglits or loops in which the chain hangs, DE, passes under and supports the ruming block $F$. The other loop or bight, HKL, hangs freely, and is called the hauling part. It is evident that the velocity of the hauling part is equal to that of the pitch-circle of the pulley $B$.
In order that the velocity-ratio may be exactly uniform, the radius of the sheave $F$ should be an exact mean between the radii of $B$ and $C$.

Consider that the point $B$ of the cord $B D$ inoves through an arc whose length $=A B$, during the same time the point $C$ or the cord $C E$ will move downward a distance $=$ $A C$. The length of the bight or loop $B D E C$ will be shortened by $A B-A C$, which will cause the pulley $H$ to be raised half of this amount. If $P=$ the pulling force on the cord $H K$, and $W$ the weiglit lifted at $F$, then $P \times$ $A B=W \times 12(A B-A C)$.
To calculatethe length of chain required for a differential pulley, take the foliowing sum: Half the circumference of $A+$ half the circumference of $B+$ half the circomference of $F+$ twice the greatest distance of $F$ from $A+$ the least length of loop HKL. The last quantity is fixed according to convenience.


Fig. 108.

The Differential Windlass (Fig. 109) is identical in principle


Fig. 109. with the differential pulley, the difference in construction being that in the differential windlass the running block hangs in the bight of a rope whose two parts are wound round, and have their ends respectively made fast to two barrels of different radii, which rotate as one piece about the axis $A$. The differential windlass is little used in practice, becanse of the great length of rope which it requires.
The bifferential Screw (Fig. 110) is a componnd screw of different pitches, in which the threads wind the same way. $N_{1}$ and $N_{2}$ are the two nuts; $S_{1} S_{1}$, the longer-pitched thread; $S_{2} S_{2}$, the shorter-pitched thread: in the figure both these threads are left-handed. At each turn of the screw the nut $N_{2}$ advances relatively to $N^{2}$ through a distance equal to the difference of the pitch. "The use of the differential screw is to combine the slowness of advance due to a fine pitch with the strength of thread which can be obtained by means of a coarse pitch only.
AWheel and Axle, or Windlass, resembles two pulleys on one axis, having different diameters. If a weight he lifted by means of a rope wound over the axle, the force being applied at the rim of the wheel, the action is like that of a lever of which the shorter arm is equal to the radius of the axle plus half the thickness of the rope, and the longer arm is ecrial to the radius of the wheel. A wheel and axle is therefore sometimes classed


Fig. 110. as a perpetual lever. If $P=$ the applied force, $D=$ diameter of the wheel, $W=$ the weight lifted, and $d$ the diameter of the axle + the diameter of

Foothed-wheel Gearing is a combination of two or more wheels and axles ( H 'ig. 111). If a series of wheels and pinions gear into each other, as in the cut, friction neglected, the weight lifted, or resistance overcome, is to the force applied inversely as the distances through which they act in a given time. If $R, R_{1}, R_{2}$ be the radii of the successive wheels, measured to the pitch-line of the teeth, and $r, r_{1} r_{2}$ the radii of the corresponding pinions, $P$ the applied force, and $W^{2}$ the weight lifted, $P \times$
$R \times R_{1} \times R_{2}=W \times r \times r_{1} \times r_{2}$, or the applied force is to the weight as the product of the radii of the pinions is to the product of the radii of the wheels; or, as the product of the numbers expressing the teeth in each pinion is to the product of the numbers expressing the teeth in each wherl.
Endless Screw, or Worm-aear. (Fig. 112.)-This gear is commonly used to convert motion at high speed into motion at very slow


Fig. 111.

'fig. 112.
speed. When the handle $P$ describes a complete circumference, the -pitchline of the cog-wheel moves through a distance equal to the pitch of the screw, and the weight $W$ is lifted a distance equal to the pitch of the screw mintiplied by the ratio of the diameter of the axle to the diameter of the pitch-circle of the wheel. The ratio of the applied force to the weight lifted is inversely as their velocities, friction not being considered; but the friction in the worm-gear is usually very great, amounting sonetimes to three or four times the useful work done.

If $v=$ the distance through which the force $P$ acts in a given time, say 1 second, and $V=$ distance the weight $W$ is lifted in the same time, $r=$ radius of the crank or wheel through which $P$ acts, $t=$ pitch of the screw, and also of the teeth on the cog-wheel, $d=$ dianneter of the axle, and $D=$ diameter of the pitch-une of the cog-wheel, $v=\frac{6.283 r}{t} \frac{D}{d}$ $\times V ; V=v \times t d \div 6.283 r d . \quad P v=W V+$ friction

## STHRESEES IN TRAMED STRUCTURES.

Framed structures in general consist of one or more triangles, for the reason that the triangle is the one polygonal form whose shape camot be changed without distorting one of its sides. Problems in stresses of simple framed structures may generally be solved either by the application of the triangle, paralellogram, or polygon of forces, by the principle of the lever, or by the method of moments. We shall give a few examples, referring the student to the works of Burr, Dubois, Johnson, and others for more elaborate treatment of the subject.

1. A Sianple Crane. (Figs. 118 and 114.)- $A$ is a fixed mast, $B$ a brace or boon, $T$ a tie, and $P$ the load. Required the strains in $B$ and $T$. The weight $P$, considered as acting at the eud of the boom, is held in equilibrium by three forces: first, gravity acting downwards; second, the tension in $T:$ and third, the thrust of $B$. Let the length of the line $p$ represent the magnituge of the downward force exerted by the load, and draw a parallelogran with sides bt parallel, respectively, to $B$ and $T$, such that $p$ is the diagonal of the parallelogram. Then $b$ and $t$ are the components drawn to the same scale as $p, p$ being the resultant. Then if the length $p$ represents the load, $t$ is the tension in the tie, and $b$ is the compression in the brace.

Or, more simply, $T, B$, and that portion of the mast inchded between them or $A^{\prime}$ may represent a triangle of forces, and the forces are proportional to the length of the sides of the triangle; that is, if the height of the triangle $A^{\prime}$ $=$ the load, then $B=$ the compression in the brace, and $T=$ the tension in the tie; or if $P=$ the load in pounds, the tension in $T=P \times \frac{T}{A^{\prime \prime}}$ and the com.
pression in $B=P \times \frac{B}{A^{\prime}}$. Also, if $a=$ the angle the inclined member makes with the mast, the other member being horizontal, and the triangle being right-angled, then the length of the inclined member = height of the triangle $\times$ secant $\alpha$, and the strain in the inchined member $=P$ secant $a$. Also, the strain in the horizontal member $=P$ tan a.

The solution by the triangle or parallelogram of forces, and the equations Tension in $T=P \times T^{\prime} / A^{\prime}$, and Compression in $B=P \times B / A^{\prime}$, hold trne even if the triangle is uot right-angled, as in Fig. 115; but the trigonometrical rela-

tions above given do not hold, except in the case of a right-angled triangle. It is evident that as $A^{\prime}$ decreases, the strain in both $T$ and $B$ increases, tending to become infinite as $A^{\prime}$ approaches zero. If the tie $T$ is not attached to the mast, but is extended to the ground, as shown in the dotted line, the tension in it remains the same.
2. A Guyed Crane or Berrick. (Fig. 116.)-The strain in $B$ is, as before, $P \times B / A^{\prime}, A^{\prime}$ being that portion of the vertical included between $B$ and $T$, wherever $T$ may be attached to $A$. If, however, the tie $T$ is attacherl to $B$ beneath its extremity, there may be in addition a bending strain in $B$ due to a tendency to turn about the point of attachment of $T$ as a fulcrum.
The strain in $T$ may be calculated by the principle of moments. The moment of $P$ is $P c$, that is, its weight $\times$ its perpendicular distance from the point of rotation of $B$ on the mast. The moment of the strain on $T$ is the product of the strain into the perpendicular distance from the line of its


Fig. 116.
direction to the same point of rotation of $B$, or $T d$. The strair in $T$ there. fore $=P c \div d$. As $d$ decreases the strain on $T$ increases, tending to infinity as $d$ approaches zero.

The strain on the guy-rope is also calculated by the method of moments. The moment of the load about the bottom of the mast $O$ is, as hefore, $P c$. If the guy is horizontal the strain in it is $F$ and its moment is $F f$, and $F=$ $P c \div f$. If it is inclined, the moment is the strain $G \times$ the perpendicular distance of the line of its direction from $O$, or $G g$, and $G=P c \div g$.

The guy-rope having the least strain is the horizontal one $F$, and the strain


Fig. $11 \%$.
in $G=$ the strain in $F \times$ the se cant of the angle between $F$ and $G$. As $G$ is made more nearly vertical $g$ decreases, and ths strain increases, vecoming innnite when $g=0$.

## 3. Shear-poleswith

 Guys. (Fig. 11\%.)-First assume that the two masts act as one placed at $B D$, and the two guys as one at $A B$. Calculate the strain in $B D$ and $A B$ as in Fig. 115. Multiply half the strain in $B D($ or $A B)$ hy the secant of half the angle the two masis (or guys) make with each other to find the strail in each mast (or guy).Two Diagonal Braces and a Tie-rod. (Fir. 118.)-Suppose the braces are used to sustain a single load $P$. Compressive stress on $A D=1 / 2 P \times A D \div$ $A B$; on $C A=1 / P \times C A \div A B$. This is true only if $C B$ and $B D$ are of equal length, in which case $1 / 2$ of $P$ is supported by each abutment $C$ and $D$. If they are nnequal in length (Fig. 119), then, by the principle of the lever, find the reactions of the abutments $R_{1}$ and $R_{2}$. If $P$ is the load applied at the point $B$ on the lever $C D$, the fulcrum being $D$, then $R_{1} \times$ $C D=P \times B D$ and $R_{2} \times C D=P \times B C$; $R_{1}=P \times B D \div C D ; R_{2}=P \times B C \div C D$.
The strain on $A C=R_{1} \times A C \div A B$, and on $A D=R_{2} \times A D \div A B$.
The strain on the tie $=R_{2} \times C B \div A B$ $=R_{2} \times B D \div A B$.


Fic. 118.

Fig. 119.


When $C B=B D, R_{1}=R_{2}$. The strain on $C B$ and $B D$ is the same, whether the braces are of equal length or not, and is equal to $112 P \times 1 / 2 C D \div A B$.
If the braces support a uniform load. as a pair of rafters, the strains caused by such a load are equivalent to that caused by one half of the load applied at the centre. The horizontal thrist of the braces against each other at the anex equals the tensile strain in the tie.
King-post Truss or IBridge. (Fig. 120.)-If the load is distributed over the whole length of the truss, the effect is the same as if half the load were placed at the centre, the other half being carried by the abutments. Let $P=$ one half the load on the truss, then tension in the vertical tie $A B=P$. Compression in each of the inclined braces $=$ $1 / 2 P \times A D \div A B$. Tension in the tie $C D$ $=1 / 0 P \times B D \div A B$. Horizontal thrinst of inclined brace $A D$ at $D=$ the tension in the tie. If $W=$ the total load on one truss uniformly distributed, $l=$ its length and $d=$ its depth, then the tension on the hor. izontal tie $=\frac{W^{T} l}{8 d}$.


Fig. 120.

Inverted King-post Truss. (Fig. 121.)--If $P=$ a load applied at $B$, or one hatf of a uniformly distributed load, then compression on $A B=P$


Fig. 121. (the floor-beam $C D$ not being conside ed to have any resistance to a slight bending). Tension on $A C$ or $A D=1 / 2 P \times A D \div A B$. Commession on $C D=1 / 2 P \times B D \div A B$.

Quecn-post Truss. (Fig. 129.)-It uniformy loaded, and the queen-posts divide the length into three equal bays, the load may be considered to be divided into three equal parts, two parts of which, $P_{1}$ and $P_{2}$, are concentrated at the panel joints
and the remainder is equally divided between the abutments and supported by them directly. The two parts $P_{1}$ and $P_{2}$ only are considered to affect


Fig. 122


Fig. 123. the inembers of the truss. Strain in the vertical ties $B E$ and $C F$ each equals $P_{1}$ or $P_{2}$. Strain on $A B$ and $C D$ each $=P_{1} \times C D \div C F$. Strain on the tie $A E$ or $E F$ or $E D=P_{1} \times$ $F D \div C F$. Thrust on $B C=$ tension on $E F$.

For stability to resist heavy unequal loads the queen-post truss should have diagonal braces from $B$ to $F$ and from $C$ to $E$.

## Inverted aueenapost

 riruss. (Fig. 12.) - Compression on $E B$ and $F C$ each $=P_{1}$ or $P_{2}$. Compression on $A B$ or $B C$ or $C D \stackrel{\text { - }}{=}$ $P_{1} \times A B \div E B$. Tension on $A E$ or $F D=P_{1} \times A E \div E B$. Tension on $E F=$ compression on $B C$. For stability to resist unequal loads, ties should be run from $C$ to $E$ and from $B$ to $F$.Burr Truss of Five Panels. (Fig. 124.)-Four fifths of the load may be taken as coucentrated at the points $E, K, L$ and $F$, the other fifth being


Fig. 124.
supported directly by the two abutments. For the strains in $B A$ and $C D$ the truss may be considered as a queen-post truss, with the loads $P_{1}, P_{2}$ concentrated at $E$ and the loads $P_{3}, P_{4}$ concentrated at $F$. Then, compressive strain on $A B=\left(P_{1}+P_{2}\right) \times A B \div B E$. The strain on $C D$ is the same if the loads and panel lengths are equal. The tensile strain on $B E$ or $C F=$ $P_{1}+P_{2}$. That portion of the truss between $E$ and $F$ may be considered as a smaller queen-post truss, supporting the loads $P_{2}, P_{3}$ at $K$ and $L$. The strain on $E G$ or $H F^{\prime}=P_{2} \times E G \div G K$. The diagonals $G L$ and $K H$ receive no strain unless the truss is unequally loaded. The verticals GK and HL each receive a tensile strain equal to $P_{2}$ or $P_{3}$.

For the strain in the liorizontal members: $B G$ and $C H$ receive a thrust equal to the horizontal component of the thrust in $A B$ or $C D,=\left(P_{1}+P_{2}\right)$ $\times$ tan angle $A B E$, or $\left(P_{1}+P_{2}\right) \times A E \div B E$. GH receives this thrust and also, in addition, a thrust equal to the horizontal component of the thrust in $E G$ or $H F$, or, in all, $\left(P_{1}+P_{2}+P_{3}\right) \times A E \div B E$.
The tension in $A E$ or $F D$ equals the thrust in $B G$ or $H C$, and the tension in $E K, K L$, and $L F$. equals the thrust in $G H$.

Pratt or Whipple Truss. (Fig. 125.)-In this truss the diagonals are ties, and the verticals are struts or columns.

Culculation by the method of distribution of strains: Consider first the load $P_{1}$. The truss having six bays or panels, $5 / 6$ of the load is transmitted to the abutment $H$, and $1 / 6$ to the abutment $O$, on the principle of the lever. As the five sixths must be transmitted through $J A$ and $A H$, write on these members the figure 5 . The one sixth is transmitted successively through $J C, C K, K D, D L$, etc., passing alternately through a tie and a strut. Write on these members, up to the strut $G O$ inclusive, the figure 1. Then consider the load $P_{2}$, of which $4 / 6$ goes to $A H$ and $2 / 6$ to $G O$. Write on $K B, B J, J A$, and $A H$ the figure 4, and on $K D, D L, L E$, etc., the figure 2. The load $P_{8}$
transmit $3 / 6$ in each direction; write 3 on each of the members througs which this stress passes, and so on for all the loads, when the figures on $t)^{4}$ several members will appear as on the cut. Adding them up, we have the
following totals:
Tension on diagonals $\left\{\begin{array}{ccccccccccccc}A J & B H & B K & C J & C L & D K & D M & E L & E N & F M & F O & G N \\ 15 & 0 & 10 & 1 & 6 & 3 & 3 & 6 & 1 & 10 & 0 & 15\end{array}\right.$ Compression on verticals $\left\{\begin{array}{ccccccc}A H & B J & C K & D L & E M & F N & G O \\ 15 & 10 & 7 & 6 & 7 & 10 & 15\end{array}\right.$
Each of the figures in the first line is to be multiplied by $1 / 6 P \times$ secant of angle $H A J$, or $1 / 6 P \times A J \div A H$, to obtain the tension, and each figure in the lower line is to be multiplied by $1 / 6 P$ to obtain the compression. The diag. onals $H E$ and $F O$ receive no strain.


Fig. 125.
It is common to build this truss with a diagonal strut at $H B$ instead of the post $H A$ and the diagonal $A J$; in which case $5 / 6$ of the load $P$ is carried through $J B$ and the strut $B H$, which latter then receives a strain $=15 / 6 P \times$ secant of $H B J$.
The strains in the upper and lower horizontal members or chords increase from the ends to the centre, as shown in the case of the Burr truss. $A B$ receives a thrust equal to the horizontal component of the tension in $\dot{A} J$, or $15 / 6 P \times \tan A J B . B C$ receives the same thrust + the horizontal component of the tension in $B K$, and so on. The tension in the lower chord of each panel is the same as the thrust in the upper cliord of the same panel. (For calculation of the chord strains by the method of moments. see below.)
The maximum thrust or tension is at the centre of the chordsand is equal to $\frac{W L}{8 D}$, in which $W$ is the total load supported by the truss, $L$ is the length, and $D$ the depth. This is the formula for maximum stress in the chords of a truss of any form whatever.
The above calculation is based on the assumption that all the loads $P_{1}, P_{2}$, etc., are erual. If they are unequal the value of each has to be taken into account in distributing the strains. Thus the tension in $A J$, with unequal loads, irstead of being $15 \times 1 / 6 P$ secant $\theta$ would be $\sec \theta \times\left(5 / 6 P_{1}+4 / 6 P_{2}+\right.$ $3 / 6 P_{3}+2 / 6 P_{4}+1 / 6 P_{5}$.) Each panel load, $P_{1}$ etc., includes its fraction of the weight of the truss.
General Formula for Strains in Diagonals and Verticals. -Let $n=$ total number of panels, $x=$ number of any vertical considered from the nearest end, counting the end as $1, r=$ rolling load for each panel, $P=$ total load for each panel,
Strain on verticals $=\frac{\left[(n-x)+(n-x)^{2}-(x-1)+(x-1)^{2}\right] P}{2 n}+\frac{r(x-1)+(x-1)^{2}}{2 n}$.
For a uniformly distributed load, leave out the last term,

$$
\left[\vartheta(x-1)+(x-1)^{2}\right] \div 2 u .
$$

Strain on principal diagonals $=$ strain on verticals $\times$ secant $\theta$, that is secant of the angle the diagonal makes with the vertical.
Strain on the counterbraces: The strain on the counterbrace in the first panel is 0 , if the load is uniform. On the $2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}$, etc., it is $P$ secant $\theta$ $\times \frac{1}{n}, \frac{1+2}{n}, \frac{1+2+3}{n}$, etc., $P$ being the total load in one panel.

Strain in the Chords-Mrethod of Moments. - Let the truss be uniformly loaded, the total load acting on it $=W$. Weight supported at each end, or reaction of the abutment $=W / 2$. Length of the truss $=L$. Weight on a unit of length $=W / L$. Horizontal distance from the nearest abutment to the point (say M in Fig. 125) in the chord where the strain is to be determined $=x$. Horizontal strain at that point (teusion on the lower chord, compression in the upper) $=H$. Depth of the truss $=D$. By the method of moments we take the difference of the moments, about the point $M$, of the reaction of the abutment and of the load between $M$ and the abutments, and equate that difference with the moment of the resistance, or of the strain in the horizontal chord, considered with reference to a point in the opposite chord, about which the truss would turn if the first chord were severed at $M$.

The moment of the reaction of the abutment is $W x / 2$. The moment of the load from the abutment to $M$ is $W / L x \times$ the distance of its centre of gravity from $M$, which is $x / 2$, or moment $=W x^{2} \div 2 L$. Moment of the stress in the chord $=H D=\frac{W x}{2}-\frac{W x^{2}}{2 L}$, whence $H=\frac{W}{2 D}\left(x-\frac{x^{2}}{L}\right)$. If $x=0$ or $L_{;}$ $H=0$. If $x=L / 2, H=\frac{W L}{8 D}$, which is the horizontal strain at the middle of the chords, as before given.
The Howe Truss. (Fig. 126.)-In the Howe truss the diagonals are struts, and the verticals are ties. The calculation of strains may be made


Fig. 126.
In the same method as described above for the Pratt truss.
The Warren Girder. (Fig. 127.)-In the Warren girder, or triangular truss, there are no vertical struts, and the diagonals may transmit either


Frc. 127.
tension or compression. The strains in the diagonals may be calculated by the method of distribution of strains as in the case of the rectangular truss.

On the principle of the lever, the load $P_{1}$ being $1 / 10$ of the length of the span from the line of the nearest support $a$, transmits $9 / 10$ of its weight to $a$ and $1 / 10$ to $g$. Write 9 on the right hand of the strut $1 \alpha$. to represent the compression, and 1 on the right hand of $1 b, 2 c, 3 d$, etc., to represent compression, and on the left hand of $b 2, c 3$, etc., to represent tension. The load $P_{7}$ transmits $7 / 10$ of its weight to $a$ and $3 / 10$ to $g$. Write 7 on each member from 2 to $a$ and 3 on each member from 2 to $g$, placing the figures representing compression on the right hand of the member, and those representing tension on the left. Proceed in the same manner with all the loads, then
sum np the figures on each side of each diagonal, and write the difference of each sum beneath, and on the side of the greater sum, to show whether the difference represents tension or compression. The results are as follows: Compression, $1 a, 25 ; 2 b, 15 ; 3 c, 5 ; 3 d, 5 ; 4 e, 15 ; 5 g, 25$. Tension, 1b, 15; 2c, $5 ; 4 d, 5 ; 5 e, 15$. Each of these fignres is to be multiplied by $1 / 10$ of one of the loads as $P_{1}$, and by the secant of the angle the diagonals make with a vertical line.

The strains in the horizontal chords may be determined by the method of moments as in the case of rectangular trusses.
Roofetruss:-Solution by Method of Moments. -The calculation of strains in structures by the method of statical moments consists in taking a criss-section of the structure at a point where there are not more than three members (struts, braces, or chords).
T'o find the strain in either one of these members take the moment about the intersection of the other two as an axis of rotation. The sum of the moments of these members must be 0 if the structure is in equilibrium. But the moments of the two members that pass through the point of refer: ence or axis are both 0 , hence one equation containing one unknown quantity can be found for each cross-section.


Fig. 128.
In the truss shown in Fig. 128 take a cross-section at $t s$, and determine the strain in the three members cnt by it, $\nabla i z, C E, E D$, and $D F$. Let $X=$ force exerted in direction $C D, Y=$ force exerted in direction $D E, Z=$ force exerted in direction $F^{\prime} D$.
For $X$ take its moment about the intersection of $Y$ and $Z$ at $D=X x$. For $Y$ take its moment about tive intersection of $X$ and $Z$ at $A=Y y$. For $\dot{Z}$ take its moment about the intersection of $X$ and $Y$ at $E=Z z$. Let $z=15, x=$ $18.6, y=38.4, A D=50, C D=20 \mathrm{ft}$. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be equal loads, as shown, and $31 / 2 P$ the reaction of the abutment $A$.

The sum of all the moments taken about $D$ or $A$ or $E$ will be 0 when the structure is at rest. Thell $-X x+3.5 P \times 50-P_{3} \times 12.5-P_{2} \times 25-P_{1} \times$
$37.5=0$.

The + .signs are for moments in the direction of the hands of a watch or "clockwise" and - signs for the reverse direction or anti-clockwise. Since

$\begin{aligned} &-Y y+P_{3} \times 37.5+P_{2} \times 25+P_{1} \times 12.5=0 ; 38.4 Y=75 P ; Y=75 P \div 38.4 \\ &=1.953 P .\end{aligned}$
$-Z z+3.5 P \times 37.5-P_{1} \times 25-P_{2} \times 12.5-P_{3} \times 0=0 ; 15 Z=93.55 P ; Z=$
In the same manner the forces exerted in the other members have been found as follows: $E G=6.73 P ; G J=8.07 P ; J A=9.42 P ; J H=1.35 P ; G F=$ $1.59 P ; A H=8.75 P ; H F=7.50 \mathrm{P}$.
The Fink Roof-truss. (Fig. 129.)-An analysis by Prof. P. H. Philbrick (Van N. Mag.. Aug. 1880) gives the following results:


Fig. 129.

$$
W=\text { total load on roof; }
$$

$N=$ No. of panels on both rafters;
$W / N=P=$ load at each joint $b, d, f$, etc.;
$V=$ reaction at $A=1 / 2 W=12 N P=4 P ;$
$A D=S ; \quad A C=L ; C D=D ;$
$t_{1}, t_{2}, t_{3}=$ tension on De, eg, gA, respectively;
$c_{1}, c_{2}, c_{3}, c_{4}=$ compression on $C b, b d, d f$, and $f A$.
Strains in

| 1, or ${ }^{\circ} \mathrm{De}=t_{1}=2 P S \div D$; |
| :---: |
| $2, \quad$ "eg $=t_{2}=3 P S \div D$; |
| $3, \quad$ " $g A=t_{3}=\tau / 2 P S \div D$; |
| 4, " $A f=c_{4}=7 / 2 P L \div D ;$ |
| 5, " $f d=c_{3}=7 / \sim P L / D-P D$ |
| $6, \quad$ " $d b=c_{2}=7 / \because P L / D-2 P D$ |

7, or $b C=c_{1}=7 / 2 P L / D-3 P D / L$ :
$2, \because e g=t_{2}=3 P S \div D ;$
9, " bc or $f g=P S \div L$;
5, " $A f=c_{4}=\pi / \sim P L \div D$;
$6, \quad " d b=c_{2}=\pi / \sim P L / D-2 P D / L$;

$$
10 \text {, " } c d \text { or } d g=1 / P S \div D \text {; }
$$

$$
\text { 11, "، ec }=P S \div D
$$

$$
12, \text { " } c C \quad=3 / 2 \dot{P} S \div D
$$

Example.-Given a Fink roof-truss of span 64 ft ., depth 16 ft ., with four panels on each side, as in the cut; total load 32 tons, or 4 tons each at the points $f, d, b, C$, etc. (and 2 tons each at $A$ and $B$, which transmit no strain to the truss members). Here $W=32$ tons, $P=4$ tons, $S=32 \mathrm{ft}$., $D=16$ ft., $L=\sqrt{S^{2}+D^{2}}=2.236 \times D . L \div D=2.236, D \div L=.44 \% 2, S \div D=2$, $\Omega+L=.8944$. The strains on the numbered members then are as follows:

| 1, | $2 \times 4 \times 2$ | $=16$ tous; | 7, $31.3-12 \times .447=25.94$ tons |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2, | ${ }^{3} \times 4 \times 2$ | $=24$ $=28$ | 8 |  | . 8944 |  |  |  |
|  | $7 / 2 \times 4 \times 3$ | $=28$ $=313$ | 9 |  |  |  |  | " |
|  | $31.3-4 \times .44$ | $=31.3$ $=29.526$ | 11 | $2 \times$ | , | = 4 |  | " |
|  | $31.3-8 \times .44$ | $=27.72$ ¢ | 11 |  | $\stackrel{2}{2}$ | = 8 |  |  |

The Economical Angle.-A structure of tri angular form, Fig. 1 $129 a$, is sipported at $a$ and $b$. It sustains any load $L$, the elements cc being in compression and $t$ in tension. Required the angle $\theta$ so that the total weight of the structure shall be a minimum. F. R. Honey (Sci. Am. Supp., Jan. 1デ, 1895) gives a solution of this problem, with the result $\tan \theta=\sqrt{\frac{\overline{C+T}}{T}}$, in which $C$ and $T$ represent the crushing and the tensile strength respectively of the material employed. It is applicable to any material. For $C=T, \theta=543 / 4^{\circ}$.


Fig. 129a. For $C=0.4 T$ (yellow pine), $\theta=493 / 4^{\circ}$. For $C=0.8^{\prime} 1^{\prime}$ (soft steel), $\theta=5314^{\circ}$. For $C=6 T$ (cast iron), $\theta=691 / 4^{\circ}$.

## HEAT.

## THERMETHETERS.

The Fahrenheit thermometer is generally used in English-speaking countries, and the Centigrade, or Celsius thermoneter, in countries that use the metric system. In many scientific treatises in English, however, the Centigrade temperatures ar $\theta$ also used, either with or without their Fahrenheit equivalents. The Reaumur thermometer is used to some extent on the Continent of Europe.

In the Fahreuheit thermometer the freezing-point of water is taken at $32^{\circ}$, and the boiling-point of water at mean atmospheric pressure at the sea. level, 14.7 lbs . per sq. in., is taken at $212^{\circ}$, the distance between these two points being divided into $180^{\circ}$. In the Centigrade and Réaumur thermometars the freezing-point is taken at $0^{\circ}$. The boiling-point is $100^{\circ}$ in the Ceutigrade scale, and $80^{\circ}$ in the Réaumur.

$$
\begin{aligned}
& 1 \text { Fahrenheit degree } \quad=5 / 9 \text { deg. Centigrade }=4 / 9 \text { deg. Réanmur. } \\
& 1 \text { Centigrade degree }=9 / 5 \text { deg. Fahrenheit }=4 / 5 \mathrm{deg} \text {. Réaumur: } \\
& 1 \text { Réaumur degree }=9 / 4 \mathrm{deg} \text {. Fahrenheit }=5 / 4 \mathrm{deg} . \text { Centigrade. } \\
& \text { Temperature Fahrenheit }=9 / 5 \times \text { temp. C. }+3 \%^{\circ}=9 / 4 \mathrm{R} .+32^{\circ} \text {. } \\
& \text { Temperature Centigrade }=5 / 9\left(\text { tenı } . F .-3 \gtrsim^{\circ}\right)=5 / 4 \mathrm{R} \text {. } \\
& \text { Tнmperature Réaumur }=4 / 5 \text { temp. } \mathrm{C} . \quad=4 / 9\left(\mathrm{~F} .-32^{\circ}\right) \text {. }
\end{aligned}
$$

Mercurial Thermometer. (Rankine, S. E., p. 234.)-The rate of expansion of mercury with rise of temperature increases as the temperature becomes higher; from which it follows, $t$. at if a thermoneter showing the dilatation of mercury simply were made to agree with an air thermoneter at $32^{\circ}$ and $212^{\circ}$, the mercurial thermometer would show lower temperatures than the air thermometer between those standard points, and higher temperatures beyond them.

For example, according to Regnanlt, when the air thermometer marked $350^{\circ} \mathrm{C}$. (=6620 F.), the nercurial thermometer would mark $362.16^{\circ} \mathrm{C}$. (= $683.89^{\circ} \mathrm{F}$.), the error of the latter being in excess $12.16^{\circ} \mathrm{C}$. ( $=21.59^{\circ} \mathrm{F}$.).

Actual mercurial thermometers indicate intervals of temperature proportional to the difference between the expansion of mercury and that of glass.

2 he inequalities in the rate of expansion of the glass (which are very different for different kinds of glass) correct, to a greater or less extent, the errors arising from the inequalities in the rate of expansion of the mercury.

For practical purposes connected with heat engines, the mercurial thermometer made of common glass may be considered as sensibly coinciding with the air-thermometer at all temperatures not exceeding $500^{\circ} \mathrm{F}$.

## PYROIVETRY.

Principles Used in Various Pyrometers.- Contraction of clay by heat, as in the Wedgwood pyrometer used by potters. Not accurate, as the contraction varies with the quality of the clay.
Expansion of air, as in the air-thermometers, Wiborgh's fyrometer, Uehling and Steinbart's pyrometer, etc.
Specific heat of solids, as in the copper-ball, platinum-ball, and fire-clay pyrometers.

Relative expansion of two metals or other substances, as copper and iron, as in Brown's aud Bulkley's pyrometers, etc.
Melting-points of metals, or other substances, as in approximate determinations of temperature by melting pieces of zinc, lead, etc.
Measurement of strength of a thermo-electric current produced by heating the junction of two metals, as in Le Chatelier's pyrometer.
Changes in electric resistance of platinum, as in the Siemens pyrometer.
Mixture of hot and cora air, as iin Hobson's hot-blast pyrometer.
Time required to heat a weighed quantity of water enclosed in a vessel. as in the water pyrometer.
Thermometer for Temperadures up to $950^{\circ}$ F.-Mercury with dompressed nitrogen in the tube above the mercury. Made by Queen \& Co., Phikadelphia.

| C. |  |  |  | C. | F. | C. |  | C. |  |  |  |  | F. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -4 | -4 | 26 | 78.8 | 92 | 197 | 158 | 316 | 224 | 2 |  |  |  |  |
| - | - | 27 | 80.6 |  | 199 | 159 | 318.2 |  |  | , |  | 60 | $1 \% 60$ |
| -38 | -36 | 28 | 82.4 | 94 | 201.2 | 160 | 320 | 226 | 438.8 | 10 | 590 | 970 | $17 \%$ |
|  |  | 29 | 84.2 | 95 | 203 | 161 | 321.8 | 227 | 440.6 | 320 | 608 | 80 | 1796 |
| - | - | 31 |  | 96 |  | 162 | 323.6 | 228 | 442. 4 | 330 | 626 | 30 | 14 |
| -34 | -29.2 | 32 | 89.6 | 98 | 208. |  |  | 229 | 444.2 | 340 | 644 | 1000 | . 1832 |
| - | $-27.4$ | 33 | 91.4 | 99 | 210.2 | 165 | 399. | 23 |  |  | 662 | 1010 | 1850 |
| - | -25 | 34 | 93.2 | 100 | 212 | 166 | 330. | 22 |  |  |  | 1020 |  |
| - | -2 | 35 |  | 101 | 213. | $16\rangle$ | 332.6 | 23: | 449.6 | 3, | 698 |  | 1884 |
| - | - | 36 | 96.8 | 102 | 215.6 | 168 | 334.4 | 234 | 453.2 |  | ${ }^{2} 16$ |  | - |
| -29 | -20. | 37 | 98.6 | 103 | 217.4 | 169 | 336.2 | 235 | 455 | 400 | \% 52 | 106 |  |
|  | -18. | 38 | 100.4 | 104 | 219. | 170 | 338 | 230 | 456.8 | 410 | \% | 107 | 40 |
| -27 | -16.6 | 39 | 102.2 | 105 | 221. | 171 | 339.8 | 237 | 458.6 | 420 | \%88 | 108 | - 6 |
| -26 | -14.8 | 40 | 104. | 106 | 222.8 | 172 | 341.6 | 238 | 460.4 | 430 | 80 | 10 | 94 |
|  | -13. | 41 | 105.8 | 107 | 224.6 | 173 | 343.4 | 239 | 46.2 | 440 | $8: 4$ | 110 | 12 |
|  | -11.2 | 42 | 107.6 | 08 | 226. | 174 | 345.2 | 240 | 464 | 450 | 842 | 111 |  |
|  | - 9.4 | 43 | 109.4 | 109 | 228.2 | 175 |  |  | 465. | 460 | 860 | 1120 | -2048 |
|  | -7.6 | 45 | 111.2 | 110 | 230. | 176 | 348.8 | 242 | 46i | 470 | 8 | 11 |  |
| - | - 5.8 | 45 | 113. | 11 | 231.8 | 177 | 350.6 | 243 | 469.4 | 480 | 896 | 1140 | 4 |
|  | - 4.2 | 47 | 116 | 113 |  | 178 | 35 | 244 | 471.2 | 490 | 914 | 115 | 12 |
| -18 | - 0.4 | 48 | 118.4 | 114 |  | 180 |  |  | 474.8 |  |  | 1160 | 120 |
| -15 | +1.4 | 49 | 120.2 | 115 | 239 | 181 | 357.8 | 247 | 476.6 | 520 |  | 1180 | ${ }^{2156}$ |
| - | 3.2 | 50 | 122. | 116 | 240.8 | 182 | 359:6 | 218 | $4 \widetilde{4 .}$ |  | 88 | 119 | 74 |
| - |  | 51 | 123.8 | 117 | 242.6 | 183 | 361.4 | 24 | 480.2 | 0 | 100 | 120 | 2193 |
| -14 | 6.8 | 52 | 125.6 | 18 | 244.4 | 184 | 363.2 | 250 | 482. |  | 10 | 1210 | $2 \cdot 10$ |
| -1 | 8.6 |  | 127.4 | 19 | 246 | 185 |  | 251 | 483.8 |  | 104 | 12: |  |
| -11 | 12.2 |  | 129.2 | 120 |  | 18 |  | 252 | 48.5 |  | 1058 | 1230 | 2246 |
| -10 | 14. | 56 | 132.8 | 122 | 251 | 188 |  |  |  |  |  | 12 |  |
| - 9 | 15.8 | 57 | 134.6 | 123 | 253. | 189 | 372.2 | 255 | 491 |  |  |  |  |
| -8 | 17.6 | 58 | 136.4 | 24 | 255.2 | 190 |  | 256 | 492. 8 |  | - | 12 | 2318 |
|  | 19.4 | 50 | 138.2 | 125 | 257. | 191 | 375.8 | 257 | 494.6 |  |  |  | 36 |
|  | 21.2 | 60 | 140. | 12* | 258.8 | 192 | 377. | 258 | 496.4 |  | 1166 | 1290 | 54 |
|  |  | 61 | 141.8 | 127 | 260 | 193 | 379. | 259 | 498.2 |  | 1184 | 1300 | 2372 |
|  |  |  | 143.6 | 128 | 262.4 | 194 | 38 | 20 | 500 |  | 1202 | 13 | 90 |
|  |  |  |  |  | 264.2 | 195 |  | 261 | 501 |  |  |  | 408 |
|  | 30. | 65 | 149. | 131 | 26 |  | 386 | 263 |  |  |  |  |  |
|  | 33. | 66 | 150.8 | 13: | 269.6 | 198 | 388.4 | 264 | 507 |  |  | 135 |  |
|  | 3. | 68 | 152.6 | $1: 33$ | 271.4 | 199 | 390.2 | 265 |  |  | 292 | 136 | 80 |
|  | 37 |  | 15.4 | 134 | 273 | 200 | 392. | 266 | 510.8 |  | 310 |  |  |
|  | 37.4 | 69 | 156.2 | 5 | 275. | 20 | 393.8 | 26 | 51٪. | \%20 | 13: | 138 | 16 |
|  | 39.2 | \% | 158. | 136 | 276.8 | 202 | 395. | 268 | 514.4 | 730 | 1346 | 1390 | 34 |
|  | 41. | - | 159.8 | 137 | 278. | 203 | 397. | 269 | 516 |  |  | 1400 | 2 |
|  | 42.8 | 72 |  | 138 | 280.4 | 204 | 399.2 | 270 | 518. |  | 382 | 1410 | 2580 |
|  | 46 | 74 | 165.2 | 140 |  |  |  | 271 | 519 | ${ }^{2} 6$ | 1400 | 1420 |  |
| 9 | 48. | 75 | 167. | 141 | 285.8 | 207 |  |  | 523 |  |  |  |  |
| 10 | 5. | ${ }^{7} 6$ | 168.8 | 141 | $28 \%$. | 208 | 406.4 | 274 | 525.2 |  | 145 |  | 642 |
| 11 | 51.8 | 77 | 170.6 | 143 | 289.4 | 209 | 408. | 275 | 527. |  | $14 \%$ | 14 | 2660 |
| 12 | 53.6 | \% ${ }^{\text {c }}$ | 172.4 | 144 | 291.2 | 210 | 411 | 216 | 538.8 |  | 43 | 14 | 26 |
| 13 | 55.4 | \% 9 | 174.2 | 145 | 293. | 211 | 411.8 | 27 | 530.6 |  |  |  | 2696 |
| 14 | 57.2 | 80 | 17 | 146 | 294.8 | 212 | 413.6 | $2 \pi 8$ | 532.4 | $8: 3$ | 526 |  | $2{ }^{\text {r }} 14$ |
| 15 16 | 60.8 | 8 | 177.8 1796 | 147 | 8, | 213 | 113.8 | 279 | 534.2 | 8401 | 1544 | 150 | 732 |
| 17 | 62.6 | 83 | 181.4 | 149 | 300 | 25 |  |  |  |  |  |  |  |
| 18 | 64.4 | 84 | 183.2 | 150 | 302. | 216 | 420.8 | 28: | 539.6 | $8{ }^{\text {r }}$ | 1598 | 1530 | 88 |
| 19 | 66.2 | 85 | 185. | 151 | 303.8 | 21 | 422.6 | 28.3 | 541. | 88 | 1616 | 1540 | 2804 |
| 20 | 68 | 86 | 186.8 | 152 | 305 | 218 | 424.4 | 84 | 543.2 | 890 | 1634 | 1550 | 2822 |
| 21 | 69.8 | 87 | 188.6 | 153 | 307.4 | 219 | 426.2 | 28. | 545 | 900 | 652 | 160 | 12 |
| 22 | 71.6 | 88 | 190.4 | 154 | 309.2 | 220 | 428. | 286 | 546.8 | 9101 | 1670 | 1650 | 02 |
| 23 24 | 73.4 | 89 | 192.2 | 155 |  | 221 | 429.8 | 287 | 8.6 | 920 |  | 1 1700 | 092 |
| 25 | 75.2 | 90 | 194 | 156 | 312.8 | 222 | 43 | 2385 | 550.4 | 930 | 1706 | 17 | 18: |
| 2 | 77. | 91 | 195.8 | 157 |  |  | 433 | 289 |  |  |  |  |  |


| F. | C. | F. | C. | F. | C. | F | C. |  | C. |  |  | F. | C. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -40 | -40 | 26 | -3.3 | 92 | 33.3 | 158 | 70 | 224 | 106.7 | 0 | 43.3 | 360 | 182.2 |
| - | -39.4 | 27 | -2.8 | 93 | 33.9 | 159 | \%0.6 | คู | $10 \% .2$ | 291 | 143.9 | - 370 | 187.8 |
| -38 | -38.9 | 28 | -22 | 94 | 34.4 | 160 | 71.1 | 226 | 107.8 | 292 | 144.4 | - 380 | 193.3 |
| -37 | -38.3 | 29 | - 1.7 | 95 | 35. | 161 | 71.7 | 227 | 108.3 | 293 | 145. | 390 | 0198.9 |
| -36 | -37.8 -37.2 | 30 31 | - 1.1 | 96 97 | 35.6 | 162 | 72.2 | 228 | 108.9 | 294 | 145.6 | 6400 | 204.4 |
| - | -36. | 32 | - 0.6 | 98 | ${ }^{36.1}$ | 164 | ${ }^{2} \mathrm{~T} .8$ | 229 | 109.4 | 295 | 146.1 | 1. 410 | 210. |
| -33 | -36.1 | 33 | $+0.6$ | 99 | 37.2 | 165 | 73.9 | 231 |  |  | 146.7 | - 420 | 15.6 |
| -32 | -35.6 | 34 | 1 | 100 | 97. 8 | 166 | 74.4 | 232 | 111.1 |  |  | 30 | . 1 |
| -31 | -35. | 35 | 1.7 | 101 | 38.3 | 167 | 75. | 233 | 111.7 | 299 | 148.3 | 450 | 7 |
| -30 | -34.4 | 36 |  | 102 | 38.9 | 168 | 75.6 | 233 | 112.2 | 300 | 148.9 | 460 | $0^{232}$ |
| -29 | -33.9 | 37 |  | 103 | 39.4 | 169 | 76.1 | 235 | 112.8 | 301. | 149.4 | $4{ }^{7} 0$ | 0243.3 |
| -28 | -33.3 | 38 | . 3 | 104 | 40. | 170 | 76.7 | 236 | 113.3 | 302 | 150. | 480 | 248.9 |
|  | -32.8 | 39 | 3.9 | 105 | 40.6 | 171 | 77.2 | 237 | 113.9 | 303 | 150.6 | 490 | 0254.4 |
|  | $-3.2$ | 40 | 4.4 | 103 | 41.1 | 172 | 778 | 238 | 114.4 | 301 | 151.1 | 500 | 260. |
|  | -31.7 | 41 |  | 107 | 41.7 | 178 | r8. 3 | 239 | 115. | 305 | 151.7 | 51 | 65.6 |
| -23 | -30. | 43 | 6.1 | 109 | 42.8 | 174 | ¢8.9 |  | 115.6 | 30 | 152.2 | 52 | 71.1 |
|  | -30. | 44 | 6.7 | 110 | 43.3 | 176 | 89.4 |  |  | 307 | 15 | 530 | 6.7 |
| -21 | -29.4 | 45 | \%.2 | 111 | 43.9 | 177 | 80.6 | 2 | 117.2 | 309 | 153.9 | 54 | 2 |
| -20 | -28.9 | 46 | 7.8 | 112 | 44.4 | 178 | 81.1 | 24 | 117.8 | 310 | 154.4 | 560 |  |
| 9 | -28.3 | 47 | 8.3 | 113 | 45. | 179 | 81.7 | 245 | 118.3 | 311 | 155. |  | 298.9 |
| 18 | -27.8 | 48 | 8.9 | 114 | 45.6 | 180 | 82.2 | 246 | 118.9 | 312 | 155.6 | 580 | 304.4 |
| 17 | -27.2 | 49 | 9.4 | 115 | 46.1 | 181 | 8 | 24 T | 119.4 | 313 | 156.1 | 590 | 10. |
|  | $-26.7$ | 50 | 10. | 116 | 46.7 | $18{ }^{2}$ | 83 | 248 | 120. | 314 | 156.7 | 600 | 315.6 |
| -15 | -26.1 | 51 | 10.6 | 117 | 47.2 | 188 | 83.9 | 249 | 120.6 | 315 | 157.2 | 610 | 321.1 |
| -14 | -25.6 | 52 | 11.1 | 118 | 47.8 | 184 | 81.4 | 250 | 121.1 | 316 | 157.8 | 620 | 326.7 |
| -12 | -24. | 54 | 12.2 | 120 | 48.9 | 185 |  | 251 | 121.7 | 317 | 158.3 | 630 | 332.2 |
| 11 | -23.9 | 55 | 12.8 | 121 | 49.4 | 187 | 86.1 | 25 | 12.2 | 318 | 158.9 | 640 | 37.8 |
| 10 | $-23.3$ | 56 | 13.3 | 122 | 50. | 188 | 86.7 | 2 | 123.3 | 319 | 159.4 | 650 | . 3 |
|  | -22.8 | 57 | 13.9 | 123 | 50.6 | 189 | 87.2 | 25 | 123.9 | 321 | 160.6 |  |  |
|  | -22.2 | 58 | 14.4 | 124 | 51.1 | 190 | 87.8 | 256 | 124.4 | 32: | 161.1 | 680 | . 4 |
| - 7 | --21.7 | 59 | 15 | 125 | 51 | 191 | 88.3 | 257 | 125. | 323 | 161.7 | 690 | 5. 6 |
|  | -21.1 | 60 | 15.6 | 126 | 52.2 | 192 | 88.9 |  | 125.6 | 324 | 162.2 | ro0 | \%1.1 |
|  | -20.6 | 61 | 16.1 | 127 | 52.8 | 193 | 89.4 | 259. | 126.1 |  | 162.8 | \%10 | $3{ }^{3} 6.7$ |
|  | -20. | 62 | 16.7 | 128 | 53. | 194 | 90. | 260 | 126.7 | 326 | 163.3 | \%20 | 382.2 |
|  | -19.4 | 63 | 17.2 | 129 | 53 | 195 | 90.6 | 261 | 127.2 | 327 | 163.9 | 730 | 87. 8 |
|  | -18.9 | 64 | 17 | $\begin{aligned} & 130 \\ & 131 \end{aligned}$ | 54. | 196 | 91. | ${ }_{263}^{263}$ | 127.8 | 328 | 164.4 | r 740 | 393.3 |
| 0 | -17.8 | 66 | 18.9 | 132 | 55.6 | 198 | 91.7 92.2 | 264 | 128.3 | 330 |  | 750 | . 9 |
| + | -17.2 | 67 | 19.4 | 133 | 56.1 | 199 | 92.8 | 2651 | 129.4 | 331 | 165.6 | 760 | . 4 |
|  | -16.7 | 68 | 20. | 134 | 56.7 | 200 | 93.3 | 266 | 130. | 332 | 166.7 | ${ }_{7} 18$ |  |
| 3 | -16.1 | 69 | 20.6 | 135 | 57.2 | 201 | 93.9 | 267 | 130.6 | 333 | 167.2 | r 80 |  |
| 4 | -15.6 | \% 0 | 21 | 136 | 57.8 | 202 | 34.4 | 268 | 131.1 | 334 | $16 \% .8$ | 800 | 426.7 |
|  | -15. | 71 | 21.6 | $13 \%$ | 58.3 | 203 | 95. | 269 | 131.7 | 335 | 168.3 | 810 | 432.2 |
| ${ }_{6}$ | -14.4 | \% 2 | 22.2 | 138 |  | 204 | 95.6 | 270 | 132.2 | 336 | 168.9 | 820 | 437.8 |
| 8 | -13.9 | 73 | 22.8 | 139 | 59.4 | 205 | 96.1 | 271 | 132.8 | 337 | 169.4 | 830 | 443.3 |
| 8 | $-13.3$ | 74 | 23.3 | 140 | 60. | 206 | 96.7 | $2 \% 2$ | 133.3 | 338 | 170. | 840 | 448.9 |
| 10 | -12. | 75 | 23. | 141 | 60.6 | 207 | 97.2 | 273 | 133.9 | 339 | 170.6 | 850 | 454.4 |
| 11 | -11.7 | 78 | 25. | 143 | ${ }_{61.7}^{61.1}$ | 208 | 97.8 | ${ }^{274}$ | 134.4 | 340 | 171.1 | 850 | 460. |
| 12 | -11.1 | \% 8 | 25.6 | 144 | 62.2 | 210 | 98.9 | 276 | ${ }^{135.6}$ | 342 | 171.7 | 880 |  |
| 13 | -10.6 | 79 | 26.1 | 145 | 62.8 | 211 | 99.4 | 2, | 136.1 | 343 | $17 \% .8$ | 890 | ${ }^{471.1}$ |
| 14 | 10. | 80 | 26.6 | 146 | 63.3 | 212 | 100. | $2{ }^{2} 8$ | 136.4 | 344 | 173.3 | 900 | 488.2 |
| 15 | 9.4 | 81 | 27.2 | 147 | 63.9 | 213 | 100.6 | 279 | 137.2 | 345 | 173.9 | 910 | 487.8 |
| 16 | -8.9 | 83 | 27.8 | 148 | 64 | 214 | 101.1 | 280 | 137.8 | 846 | 174.4 | 9204 | 493.3 |
| 17 | 8.3 | 83 | 28.3 |  | 65. |  | 101.7 | 281 | 138.3 | 347 | 175. | 9304 | 498.9 |
| 18 | - 7.8 | 84 | 28.9 | 150 | 65.6 | ${ }_{216} 16$ | 102. |  | 138.9 | 348 | 175.6 | 9405 | 504.4 |
| 20 | -6.7 | 86 | 30 | 152 | 66. ${ }^{66 .}$ | 218 | 103.3 | 84 | 139.4 | 349 | ${ }_{176.7}^{176.1}$ | ${ }_{9} 9505$ | 510. |
| 21 | - 6.1 | 87 | 30.6 | 153 | 67.2 | 2191 | 103.9 | 285 | 140.6 | 351 | 177.2 | 970 |  |
| 22 | 5.6 | 88 | 31.1 | 154 | 67.82 | 220 | 104.4 | 2861 | 141.1 | 352 | 177.8 | 980 | 526.7 |
| 23 | -5. | 89 | 81.7 | 155 | 68.3 | 1 | 105. | 87 | 141.7 | 353 | 178.3 | 990 | 532.2 |
|  | $-4.4$ | 90 | 32.2 | 156 | 68.9 | $22 \cdot 2$ | 105.6 | 2881 | 142.2 | 354 | 178.9 | 10005 | 537.8 |
| 25 | 3.9 | 91 | 32.8 | $15 \%$ | 42 | 2231 | 106.1 | 289 | 142.8 | 355 | 179.4 | 0105 | 54.3 |

Platinum or Copper Bahl Pyrometer. $-\Lambda$ weighed piece of platimun, copper, or iron is allowed to remain in the furnace or heated chamber till it has attained the temperature of its surroundings. It is then suddenly taken ont and dropped into a vessel containing water of a known weight and temperature. The water is stirred rapidly and its maximmm temperatme taken. Let $W=$ weight of the water, $u$ the weight of the ball, $t=$ the original and $T$ the final heat of the water, and $S$ the specific heat of the metal; then the temperature of fle inay be found from the formula

$$
x=\frac{W(T-t)}{w S}+T
$$

The mean specific heat of platinum between $39^{\circ}$ and $446^{\circ} \mathrm{F}$. is .03333 or $1 / 30$ that of water, and it increases with the temperature about. 000305 for each $100^{\circ}$ F. For a fuller description, by J. C. Hoadley, see Trans. A. S. M. E., vi. 702. Compare also Henry M. Howe, Trans. A. I. M. E., xviii. 728.

For accuracy corrections are required for variations in the specific heat of the water and of the metal at different temperatures, for loss of heat by radiation from the metal during the transfer from the furnace to the water, and from the apparatus during the heating of the water; also for the heatabsorbing capecity of the vessel containing the water.
Fire-clay or firo-brick may be used instead of the metal ball.
Le Chatelier's 'Shermo-electric Pyrometero-For a very full description see paper by Joseph Struthers, Schonl of Mines Quarterly, vol. xii, 1891; also, paper read by Prof. Roberts-Austen before the Iron and Steel Institute, May 7, 1891.

The principle upon which this pyrometer is constructed is the measurement of a current of electricity produced by heating a couple composed of two wires, one platinum and the other platinum with $10 \%$ rhodiun-the current produced being measured by a galvanometer.

The composition of the gas which surrounds the couple has no influence on the indications.

When temperatures above $2500^{\circ} \mathrm{F}$. are to be studied, the wires must have an isolating support and must be of good length, so that all parts of a fur-
nace can be reached.

For a Siemens furnace, about $11 / \frac{1}{2}$ feet is the general length. The wires are supported in an iron tube, 12 inch interior diameter and held in place by a cylinder of refractory clay having two holes bored through, in which the wires are placed. The shortness of time (five seconds) allows the temperature to be taken without deteriorating the tube.

Tests mado by this pyrometer in measuring furnace temperatures under a great variety of conditions show that the readings of the scale uncorrected are always within $45^{\circ} \mathrm{F}$. of the correct temperature, and in the majority of industrial measurements this is sufficiently accurate. Le Chatelier's pyrometer ls sold by Queen \& Co., of Philadelphia.

Graduation of Lo Chatelier's Pyrometer.-W. C. RobertsAusten in his Researches on the Properties of Alloys, Proc. Inst. M. E. 1892, says: The electromotive force produced by heating the thermo-junction to any given temperature is measured by the movement of the spot of light on the scale graduated in millimetres. A formula for converting the divisions of the scale into thermometric degrees is given by M. Le Chatelier; but it is better to calibrate the scale by heating the thermo-junction to temperatures which have been very carefully determined by the aid of the airthermometer, and then to plot the curve from the data so obtained. Many fusion and boiling-points have been established by concurrent evidence of various kinds, and are now very generally accepted. The following table contains certain of these :

| Deg. | Deg. |  | D | Deg. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 | 100 | Water boils. | 173.3 |  |  | Silver melt |
| 618 | $3: 6$ | Lead melts. | 1859 | 1015 |  | Potassium |
| 676 | 358 | Mercury boils. |  |  |  | phate melts. |
| \%79 | 415 | Zinc melts. | 1913 | 1045 |  | Gold melts. |
| 838 | 448 | Sulphur boils. | 1929 | 1054 |  | Copper melts. |
| 11527 | 665 | Ahmminum melts. | $2 \pi 33$ | 1500 |  | Palladium mel |
| 1229 | 665 | Selenium boils. | 3227 | 1 17\% |  | Platinum melts. |

## The Temperatures Developed in Industrial furnaces. -

M. Le Chatelier states that by meahs of his pyrometer he has discovered that the temperatures which occur in melting steel and in other industrial operations have beea hitherto overestimated.
M. Le Chatelier flnds the melting heat of white cast iron $1135^{\circ}$ ( $2075^{\circ} \mathrm{F}$.), and that of gray cast iron $1220^{\circ}$ ( $22.28^{\circ}$ F.). Mild steel melts at $14 \pi 5^{\circ}$ ( $2687^{\circ}$ F.), semi-mild at $1455^{\circ}$ ( $2651^{\circ}$ Tr.), and hard steel at $1410^{\circ}$ ( $25 \% 0^{\circ} \mathrm{F}$.). The furnace for hard porcelain at the end of the baking has a heat of $13.0^{\circ}$ ( $2498^{\circ} \mathrm{F}$.). The heat of a mormal incandescent lamp is $1800^{\circ}$ ( $3272^{\circ} \mathrm{F}$.), but it may be pushed to beyond $\approx 100^{\circ}$ ( $3811^{\circ} \mathrm{F}$.).

Prof. Roberts-Austen (Recent Advances in Pyrometry, Trans. A. I. M. E., Chicago Meeting, 1ヶ93) gives an excellent description of nodern forms of pyrometers. The following are some of his temperature determinations.

> Gold-melting, Royal Mint.

$$
\begin{array}{cc}
\text { Degrees. } & \text { Degrees. } \\
\text { Centigrade. } & \text { Fahr. }
\end{array}
$$ Temperature of standard alloy, pouring into moulds. ... 1180 Temperature of standard alloy, pouring into moulds (on

$$
\begin{aligned}
& \text { a previous occasion, by thermo-couple)....................... } 890 \\
& \text { Annealing blanks for coinage, temperature of chamber. } 890
\end{aligned}
$$

Temperature of standard alloy, pouring into mould. ..... 980 ..... 1796
Ten-ton Open-hearth Furnace, Woolwich Arsenal.
2993
2993 Temperature of steel, $0.3 \%$ carbon, pouring into ladle Temperature of steel, $0.3 \%$ carbon, pouring into ladle ..... 1580 ..... 2876
Keheating furnace, interior ..... 920 ..... 1706
Cupola furnace, No. 2 cast iron, pouring into ladle ..... 1600 ..... 2912
The following determinations have been effected by M. Le Chatelier:
Bessemer Process.
Six-ton Converter.
A. Bath of slag Centigrade Fahr. ..... 2876
2984
B. Metal in ladle ..... 1640Degrees
2876
C. Metal in ingot mould
2192
D. Ingot in reheating furnace ..... $19 \% 6$
E. Ingot under the hamnier ..... 1200
Open-hearth Furnace (Siemens).
Semi-Mild Steel.
A. Fuel gas near gas generator. ..... 1328
B. Fuel gas entering into bottom of regenerator chamber 400 ..... 752
C. Fuel gas issuing from regenerator chamber ..... 2192
Air issuing from regenerator chamber ..... 1832 ..... 590
Chimney gases. Furnace in perfect condition
Chimney gases. Furnace in perfect condition
End of the melting of pig charge ..... 2588
Completion of conversion. ..... 2i3?
Molten steel. In the ladle-Commencement of casting ..... 2876 ..... 2876
End of casting. ..... 2714
In the moulds. ..... 1520 ..... 2768 For very mild (soft) steel the temperatures are higher by $50^{\circ} \mathbf{C}$
Siemens Crucible or Pot Furnace.
$1600^{\circ} \mathrm{C} ., 2912^{\circ} \mathrm{F}$.
Rotary Puddling Furnace.
Degrees C. Degrees F
Furnace 1340-1230
Puddled ball-End of operation ..... 1330 ..... 2426
Blast-furnace (Gray-Bessemer Pig).
Opening in face of tuyere ..... 3506
Molten metal-Commencement of fusion. ..... 1400 ..... 2554 ..... 2554
End, or prior to tapping. ..... 2858
Hoffman Red-brick Kiln.Burning temperatures11002012

Hobson's Hot-blast Pyrometer consists of a brass chamber having three hollow arms and a handle. 'I'he hot blast enters one of the arms and induces a current of atmospheric air to flow into the second arm. The two currents mix in the chamber and flow ont through the thisd arm, in which the temperature of the mixture is taken by a mercury thermometer. The openings in the arms are adjusted so that the proportion of hot blast to the atmospheric air remains the same.

The Wiborgh Air-pyrometer. (E. Trotz, Trans. A.I. M.E. 1892.)-The inventor using the expansion-coefficient of air, as determined by Gay-Lussac, Dulon, Rudberg, and Regnault, bases his construction on the following theory: If an air-volume, $V$, enclosed in a porcelain globe and comected through a capillary pipe with the outside air, be heated to the temperature $T$ (which is to be deternined) and thereupon the connection be discontinued, and there be then forced into the globe containing $V$ another volume of air $V^{\prime}$ of known temperature $t$, which was previously under atmospheric pressure $H$, the additional pressure $h$, due to the addition of the air-volume $V^{\prime}$ to the air-volume $V$, can be measured by a manometer. But this pressure is of course a function of the temperature $T^{\prime}$. Before the introduction of $V^{\prime}$, we have the two separate air-volnmes, V at the temperature $T$ and $V^{\prime}$ at the temperature $t$, both under the atmospheric pressure $H$. After the forcing in of $V^{\prime}$ into the globe, we have, on the contrary, only the volume $V$ of the tenrperature $T$, but under the pressure $H+h$.

The Wiborgh Air-pyrometer is adapted for use at blast-furnaces, smertingworks, hardening and tempering furnaces, etc., where determinations of temperature from $0^{\circ}$ to $2400^{\circ} \mathrm{F}$. are required.

Seger's Fireoclay Pyrometer. (H. M. Howe, Eng. and Mining Jour: June 7, 1890.)-Professor Seger uses a series of slender triangular fire-clay pyramids, about 3 inches high and $5 / 8$ inch wide at the base, and each a little less fusible than the next : these lie calls "normal pyranids" ("normal-kegel"). When the series is placed in a furnace whose temperature is gradually raised, one after another will bend over as its range of plasticity is reached; and the temperature at which it lias bent, or "wept," so far that its apex touches the hearth of the furnace or other level surface on which it is standing, is selected as a point on Seger's scale. These points may be accurately determined by some absolute method, or they may merely serve to give comparative results. Unfortunately, these pyramids afford no indications when the temperature is stationary or falling.

Mesuré and Nouel's Pyronetręc Telescope. (lbid.)-Masuré and Nouel's pyrometric telescope gives us an inmediate determination of the temperature of incandescent bodies, and is therefore much better adapted to cases where a great number of observations are to be made, and at short intervals, than Seger's. Such cases arise in the careful.heating of steel. The little telescope, carried in the pocket or hung from the neck, can be used by foreman or lieater at any moment.

It is based on the fact that a plate of quartz, cut at right angles to tine axis, rotates the plane of polarization of polarized light to a degree nearly inversely proportional to the square of the length of the waves: and, further, on the fact that while a body at dull redness merely emits red light, as the temperature rises, the orauge, yellow, green, and blue waves successively appear.

If, now, such a plate of quartz is placed between two Nicol prisms at right angles, "a ray of monochromatic light which passes the first, or polarizer, and is watched through the second, or analyzer, is not extinguished as it was before iuterposing the quartz. Part of the light passes the analyzer, and, to again extinguish it, we must turn one of the Nicols a certain angle," depending on the length of the waves of light, and hence on the temperature of the incandescent object which emits this light. Hence the angle through which we must turn the analyzer to extinguish the light is a measure of the temperature of the object observed.

For illustrated cescriphuns of different kinds of pyrometers see circular issued by Queen \& Co., Philadelphia.

The Uehling and Steinbart Pyrometer. (For illustrated description see Engineering, Aug. 24, 1894.)-The action of the pyrometer is based on a principle which involves the law of the flow of gas through minute apertures in the following manner: If a closed tube or chamber be supplied with a minute inlet and a minute outlet aperture and air be caused by a constant suction to flow in through one and ont through the other of these apertures, the tension in the chamber between the apertures will vary with
the difference of temperature between the inflowing and outflowing air. If the inflowing air be made to vary with the temperature to be measured, and the outflowing air be kept at a certain constant temperatu:e, then the tension in the space or chamber between the two apertures will be an exact measure of the temperature of the inflowing air, and hence of the temperature to be measured.

In operation it is necessary that the air be sucked into it through the first minute aperture at the temperature to be measured, through the second aperture at a lower but constant temperature, and that the suction be of a constant tension. The first aperture is therefore located in the end of a platinum tube in the bulb of a porcelain tube over which the hot blast sweeps, or inserted into the pipe or chamber containing the gas whose tem perature is to be ascertained.

The second aperture is located in a coupling, surrounded by hoiling water, and the suction is obtained by an aspirator aud regulated by a column of water of constant height.

The tension in the chamber between the apertures is indicated by a manometer.
The Air-Hermometer. (Prof, R. C. Carpenter, Eng'g News, Jan. 5. 189:3.) - Air is a perfect thermometric substance, and if a givell mass of air be considered, the product of its pressure and volunie divided by its absolute temperature is in every case constant. If the volume of air remain constant, the temperature will vary with the pressure; if the pressure remain constant the temperature will vary with the volume. As the former condition is more easiry attained air-thermoneters are usually constructed of constant volume, in which case the absolute temperature will vary with the pressure.
If we denote pressure by $p$ and $p^{\prime}$, the corresponding absolute temper. atures by $T$ and $T$ ', we shuud have

$$
p: p^{\prime}:: T: T^{\prime} \text { and } T^{\prime}=p^{\prime} \frac{T}{p}
$$

The absolute temperature $T$ is to be considered in every case 460 higher than the thermometer-reading expressed in Fahrenlieit degrees. From the form of the above equation, if the pressure $p$ corresponding to a known absolute temperature $T$ be known, $T^{\prime}$ can be found. The quotient $T / p$ is a constant which may be used in all determinations with the instrument. The pressure on the instrument cau be expressed in inches of mercury, and is evidently the atmospheric pressure $b$ as shown by a barometer, plus or minus an additional amount $h$ shown by a manometer attached to the air thermometer. That is, in general, $p=b \pm h$.
The temperature of $32^{\circ} \mathrm{F}$. is fixed as the point of melting ice, in which cace $T=460+32=492^{\circ} \mathrm{F}$. This temperature can be produced by surrounding the bulb in melting ice and leaving several minutes, so that the temperature of the confined air shall acquire that of the surrounding ice. When the air is at that temperature, note the reading of the attached manometer $h$, and that of a barometer; the sum will be the value of $p$ corresponding to the absolute temperature of $492^{\circ} \mathrm{F}$. The constant of the instrument, $K=492 \div p$, once obtained, can be used in all future determinations.

High Temperatures judged by Color.-The temperature of a body can be approximately judged by the experienced eye unaided, and M. Pouillet has constructed a table, which has been generally accepted, giving the colors and their corresponding temperature as below:

| Incipient red heat. Dull red heat | $\begin{gathered} \text { Deg. C. } \\ =555 \\ . \quad 700 \end{gathered}$ | $\begin{gathered} \text { Deg. F. } \\ \begin{array}{c} \text { भif } \\ 1292 \end{array} \end{gathered}$ | Deep orange heat... ${ }^{\text {Deg. }}$ (1100 | Deg. F. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  | Clear orange heat.. 1200 | 2192 |
| heat... .... | 800 | $14 \%$ | White heat ....... 1300 | 23\%2 |
| Cherry red heat | 900 | 16.52 | 140 | ${ }_{2} 25$ |
| Clear cherry -red |  |  | Dazzling white heat to | to |
| he | 1000 | 1832 | ¢ 1600 | 2912 |

The results obtained, however, are unsatisfactory, as much depends on the susceptibility of the retina of the observer to light as well as the degree of illumination under which the observation is made.

A bright bar of iron, slowly heated in contact with air, assumes the following tints at annexed temperatures (Claudel):

|  | Cent | Fahr. |  | Ce | Fahr. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Yellow at. | 225 | 437 | Indigo at. |  | 550 |
| Orange a | 243 | $4{ }^{4} 3$ | Blue at.. |  | 559 |
| Red at. | 265 | 509 | Green at. | 332 | 633 |
| Violet | 2.7 | 531 | "Oxide-gray" | 400 | \% 52 |

## BOILING POINTS AT ATMOSPHERIC PRESSURE.

14.7 lbs. per square inch.

| Ether, sulphuric. | $100^{\circ} \mathrm{F}$. | Average sea-water........ $213.2^{\circ} \mathrm{F}$. |
| :---: | :---: | :---: |
| Carbon bisulphid | 118 | Saturated brine............. 226 |
| Ammonia..... |  | Nitric acid................... 248 |
| Chloroform | 140 | Oil of turpentine............ 315 |
| Bromine |  | Phosphorus............ .... 554 |
| Wood spirit | 150 | Sulphur.... ........... . . . . 5 5\% |
| Alcohol |  | Sulphuric a.cid............. 590 |
| Benzine | 176 | Linseed oil... .............. 597 |
| Water | 212 | Mercui |

The boiling points of liquids increase as the pressure increases. The boiling point of water at any given pressure is the same as the temperature of saturated steam of the same pressure. (See Steam.)

## MLELTING-POINTS OF VARIOUS SUBSTANCES.

The following figures are given by Clark (on the authority of Pouillet, Claudel, and Wilson), except those marked *, which are given by Prof. Rob-erts-Austen in his description of the Le Chatelier pyrometer. These latter are probably the most reliable figures.


For melting-point of fusible alloys, see Alloys.
Cobalt, nickel, and manganese, fusible in highest heat of a forge. Tungsten and chromium, not fusible in forge, but soften and agglomerate. Platinum and iridium, fusible only before the oxy hydrogen blowpipe.

## QUANTITATIVE MEASURERTENT OF HEATH

Unit of Heat.-The British unit of heat, or British thermal unit (B. 'I. U.), is that quautity of heat which is required to raise the temperature of 1 lb . of pure water $1^{\circ}$ Fahr., at or near $39^{\circ} .1 \mathrm{~F}$., the temperature of maximum density of water.
The French thermal unit, or calorie, is that quantity of heat which is required to raise the temperature of 1 kilogramme of pure water $1^{\circ}$ Ceut., at or about $4^{\circ} \mathrm{C}$., which is equivalent to $39^{\circ} .1 \mathrm{~F}$.

1 French calorie $=3.968$ British thermal units; 1 B. T. U. $=.252$ calorie The "pound calorie" is sometimes used by English writers; it is the quan-
tity of heat required to raise the temperature of 1 lb . of water $1^{\circ} \mathrm{C} .1 \mathrm{lb}$. calorie $=9 / 5$ B.T.U. $=0.4536$ calorie. The heat of combustion of carbon, to $\mathrm{CO}_{2}$, is said to be 8080 calories. This figure is used either for French calories or for pound calories, as it is the number of pounds of water that can be raised $1^{\circ} \mathrm{C}$. by the complete combustion of 1 lb . of carbon, or the number of kilogrammes of water that can be raised $1^{\circ} \mathrm{C}$. by the combustion of 1 kilo. of carbon; assumiug in each case that all the heat generated is transferred to the water.
The Mechanical Equivalent of Heat is the number of fontpounds of mechanical energy equivalent to one British thermal unit, heat and mechanical energy being mutually convertible. Joule's experiments, 1843-50, gave the figure 772, which is known as Joule's equivalent. More recent experiments by Prof. Rowland (Proc. Am. Acad. Arts and Sciences, 1880; see also Wood's Thermodynamics) give higher figures, and the most probable average is now considered to be fis.
1 heat-unit is equivalent to $778 \mathrm{ft} .-\mathrm{lbs}$. of energy. $1 \mathrm{ft} .1 \mathrm{~b} .=1 / 778=.0012852$ heat-units. 1 horse-power $=33,000 \mathrm{ft}$.-lbs. per minute $=2545$ heat-uuits per hour $=42.416+$ per minute $=.70694$ per second. 1 lb . carbon burned to $\mathrm{CO}_{2}$ $=14,544$ heat-units. 1 lb . C. per H.P. per hour $=2545 \div 14544=1 \% \frac{1}{2} \%$ efficiency (.174986).

## Heat of Combustion of Various Substances in Oxygen.

|  | Heat-units. |  | Authority. |
| :---: | :---: | :---: | :---: |
|  | Cent. | Fahr. |  |
| Hydrogen to liquid water at $0^{\circ} \mathrm{C} \ldots$ " to steam at $100^{\circ} \mathrm{C} . \ldots . .$. | ( 34,462 | 62,032 | Favre and Silbermann. |
|  | $\{33,808$ | 60,854 | Andrews. |
|  | (34,342 | 61,816 | Thomsen. |
|  | 28,732 | 51,717 | Favre and Silbermann. |
| Carbon (wood charcoal) to carbonic acid, $\mathrm{CO}_{2}$; ordinary temperatures. | $\left\{\begin{array}{l}8,080 \\ 7,900\end{array}\right.$ | 14,544 | Andrews |
|  | $\left\{\begin{array}{l}8,900 \\ 8,13\end{array}\right.$ | 14,220 14,647 | Andrews. Berthelot. |
| Carbon, diamond to $\mathrm{CO}_{2} \ldots \ldots \ldots \ldots$. | 7,859 | 14,146 |  |
| " black diamond to $\mathrm{CO}_{2} \ldots \ldots$. . | 7,861 | 14,150 | " |
| ${ }^{\prime \prime}$ graphite to $\mathrm{CO}_{2} \ldots \ldots \ldots \ldots$ | -,901 | 14,222 | '، |
| Carbon to carbonic oxide, CO........ | 2,473 | 4,451 | Farre and Silbermann. |
| Carbonic oxide to $\mathrm{CO}_{2}$, per unit of CO | $\left\{\begin{array}{l}2,403 \\ 2,431\end{array}\right.$ | 4,325 |  |
|  | ( 2,385 | 4,:99 | Thomsen. |
| CO to $\mathrm{CO}_{2}$ per unit of $\mathrm{C}=21 / 3 \times 2403$ | 5,607 | 10,093 | Favre and Silbel'mann. |
| Marsh-gas, Methane, $\mathrm{CH}_{4}$ to water and $\mathrm{CO}_{2}$ | $\left\{\begin{array}{l}13,120 \\ 13\end{array}\right.$ | 23,616 | Thomsen. |
|  | $\left\{\begin{array}{l}13,108 \\ 13,063\end{array}\right.$ | 23,594 $2: 3,513$ | Andrews. Favre and |
| Olefiant gas, Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$ to water and $\mathrm{CO}_{2}$ | (11,858 | 21,344 |  |
|  | $\{11,942$ | 21,496 | Andrews. |
|  | (11,957 | 21,523 | Thomsen. |
| Benzole gas, $\mathrm{C}_{6} \mathrm{H}_{6}$ to water and $\mathrm{CO}_{2}$ | $\left\{\begin{array}{r}10,10 \div \\ 9,915\end{array}\right.$ | 18,184 <br> $1 \%$ <br> 184 | Favre |

In burning 1 pound of hydrogen with 8 pounds of oxygen to form 9 pounds of water, the units of heat evolved are $62,03:$ (Favre and S.); but if the resulting product is not cooled to the initial temperature of the gases, part of the heat is rendered latent in the steam. The total heat of 1 lb . of steam at $2120^{\circ} \mathrm{F}$. is 1146.1 heat-units above that of water at $32^{\circ}$, and $9 \times 1146.1=10,315$ heat-units, which deducted from 60,032 gives 51,717 as the heat evolved by the combustion of 1 lb . of hydrogen and 8 lbs . of oxygen at $32^{\circ} \mathrm{F}$. to form stean at $212^{\circ} \mathrm{F}$.

By the decomposition of a chemical compound as much heat is absorbed or rendered latent as was evolved when the compourd was formed. If 1 lb . of carbon is burned to $\mathrm{CO}_{2}$, generating $14,544 \mathrm{~B} . T . \mathrm{U}$., and the $\mathrm{CO}_{2}$ thus formed is immediately reduced to CO in the presence of glowing carbon, by the reaction $\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}$, the result is the same as if the 2 lbs . C had been burned directly to 2 CO , generating $2 \times 4451=8902$ heat-units; consequently $14,544-8902=5642$ heat-units have disappeared or become latent, and the
"unburning " of $\mathrm{CO}_{8}$ to CO is theus a cooling operation. (For heats of combustion of various fuels, see Fuel.)

## SPECLFIC HEAT.

Thermal Capacity.-The thermal capacity of a body is the quantity of heat required to raise its temperature one degree. The ratio of the heat required to raise the temperature of a certain weight of a given substance one degree to that required to raise the temperature of the same weight of water one degree from the temperature of maximum density 39.1 is commonly called the specific heat of the substance. Some writers object to the term as being an inaccurate use of the words "specific" and "heat." A nore correct name would be "coefficient of thermal capacity"

Determination of Specific Heat.-Method by Mixture.-The body whose specific heat is to be determined is raised to a known temperature, and is then immersed in a mass of liquid of which the weight, specific heat, and temperature are known. When both the body and the liquid have attained the same temperature, this is carefully ascertained.

Now the quantity of heat lost by the body is the same as the quantity of heat absorbed by the liquid.

Let $c, w$, and $t$ be the specific heat, weight, and temperature of the hot body, and $c^{\prime}, w^{\prime}$, and $t^{\prime}$ of the liquid. Let $T$ be the temperature the mixture assumes.

Then, by the definition of specific heat, $c \times w \times(t-T)=$ heat-units lost by the hot body, and $c^{\prime} \times w^{\prime} \times\left(T-t^{\prime}\right)=$ leat-units gained by the cold liquid. If there is no heat lost by radiation or conduction, these must be equal, and

$$
c w(t-T)=c^{\prime} w^{\prime}\left(T-t^{\prime}\right) \quad \text { or } \quad c=\frac{c^{\prime} w^{\prime}\left(T-t^{\prime}\right)}{w(t-T)}
$$

## Specific Heats of Various Substances.

The specific heats of substances, as given by different authorities, show considerable lack of agreement, especially in the case of gases.

The following tables give the mean specific heats of the substances named according to Regnault. (From Rontgen's Thermodynamics, p. 134.) These specific heats are average values, taken at temperatures which usually come under observation in technical application. The actual specific heats of all substances, in the solid or liquid state, increase slowly as the body expands or as the temperature rises. It is probable that the specific heat of a body when liquid is greater than when solid. For many bodies this has been verified by experiment.

## Solids.

| Antimony | 0.0508 |
| :---: | :---: |
| Copper | 0.0951 |
| Gold | 0.0324 |
| Wrought iron | 0.1138 |
| Glass | 0.1937 |
| Cast iron | 0.1298 |
| Lead | 0.0314 |
| Platinum | 0.03:4 |
| Silver | 0.0570 |
|  | 0.0562 |

Steel (soft)........................ 0.1165
Steel (hard)......................... 0.1175
Zinc ...... ........... . . . . . . . . . . . . . 0.0956
Brass.................................... . . . 0.0939
Ice ......................................... . . . . 0.5040
Sulphur ............................ . . . 0.2026
Charcoal................................. 0.2410
Alumina............................ . 0.1970
Phosphorus......... . . . . . . . . . . . . 0.1887

## Liquids.

| Water | 1.0000 |
| :---: | :---: |
| Lead (melted). | 0.0402 |
| Sulphur | 0.2340 |
| Bismuth " | 0.0308 |
| Tin | 0.0637 |
| Sulphuric acid | 0.3350 |

Mercury.......................... 0.0333
Alcohol (absolute) ............ 0.7000
Fusel oil............................ 0.5640
Benzine .................................. 0.4500
Ether. . . . . . . . . . . . . . . . . . . . . . . . . . 0.5034

| Gases. |  |
| :---: | :---: |
| Constant Pressure. | Constant Volume. |
| . . . . . . . 0.23751 | 0.16847 \% |
| . . . . . . 0.21751 | \%.1550\% |
| . . . . . 3.40900 | 2.41926 |
| . . . . 0.24380 | 0.17273 |
| . . . . 0.4805 | 0.346 |
| ..... 0.217 | 0.1535 |
| .... 0.404 | 0.173 |
| ... . 0.24ヶ9 | 0.1758 |
| . 0.508 | 0.299 |
| . . 0.4797 | 0.3411 |
| . ... 0.4534 | 0.3200 |
| .... . 0.4125 |  |
| ..... 0.1567 |  |

In addition to the above, the [following are given by other authoritles, (Selected from various sources.)

Brickwork and masonry, about. . 20
Marble.......................... . 210 Coal..... ....................... . . . 20 to 241

Marble.................................................... 210
Chalk................................................ . 215

Magnesian limeston $\theta . . . . . . .$. . . . 217
Silica. ... . . . . . . . . . . . . . . . . . . . . . . . 191
Corundum . . . . . . . . . . . . . . . . . . . . . . . 198
Stones generally........................... is to $\approx \approx$

Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Snlphate of lime..................................................
Magnesia................................. . . 222
Soda.................................... . . 231
Quartz ................................................... 188
River sand........................................ . . 195
Woods.
Pine (turpentine)................... . $466^{n}$ | Oak...................................... . . . 570

Liquids.

Sulphuric acid, density 1.8 ...... . 335 Benzine................................................. . 393

Gases.


## Specific Heat of Salt Solution. (Schuller.)



Specific Heat of Anr.-Regnault gives for the mean value

Hanssen uses 0.1686 for the specific heat of air at constant volume. The value of this constant has never been fonnd to any degree of avcuracy by direct experiment. Prof. Wood gives $0.2375 \div 1.406=0.1689$. The ratio of
the specific heat of a fixed gas at constant pressure to the sp. ht. at constant volume is given as follows by different writers (Eng'g, July 12, 1889): Regnault, 1.3953; Moll and Beck, 1.4085; Szathmari, 1.40:7; J. Macfarlane Gray, 1.4. The first three are obtained from the velocity of sound in air. The fourth is derived from theory. Prof. Wood says: The value of the ratio for air, as found in the days of La Place, was 1.41 , and we have $0.23 \div \%-1.41$ $=0.1686$, the value used by Clausius, Hanssen, and many others. But this ratio is not definitely known. Rankine in lis later writings used 1.408 , and Tait in a recent work gives 1.404 , while some experiments gives less than 1.4 and others more than 1.41. Prof. Wood uses 1.406.

Specific Meat of Gases.-Experiments by Mallard and Le Chatelier indicate a continuous increase in the specific heat at constant volume of steam, $\mathrm{CO}_{2}$, and even of the perfect gases, with rise of temperature. The variation is inappreciable at $100^{\circ} \mathrm{C}$., but increases rapidly at the high temperatures of the gas-engine cylinder. (Robinson's Gas and Petroleum Engines.)
Specific Heat and Latent Heat of Fusion of Iron and Steel. (H. H. Campbell, Trans. A. I. M. E., xix. 181.)


Calculating by both sets of data we have :
Akerman. Troilius.
Heating from 0 to $1800^{\circ} \mathrm{C} . . . . . . .318$.... 330 calories per kilo.
Hence probable value is about........... 395 calories per kilo.
Specific heat, steel (probably high carbon)....(Troilius)..... . $11 \% 5$
Hence probable value............................ " ....... . 1081
Hence probable value solid rail steel................................ . . 1125
" "6 " melted rail steel..................................... . . $12 \tilde{1} \tilde{\tau}_{5}$
Akerman. Troilius.
Latent heat of fusion, pig iron, calories per kilo.. 46
" "1 "، "

From which we may assume that the truth is about: Steel, 20 ; pig iron, 30 .

## EXPANSION BY HEAT.

In the centigrade scale the coefficient of expansion of air per degree is $0.003665=1 / 273$; that is, the pressure being coustant, the volume of a perfect gas increases $1 / 273$ of its volume at $0^{\circ} \mathrm{C}$. for every increase in temperature of 10 C . In Far remheit units it increases $1 / 491.2=.002036$ of its volume at $3 \geqslant 2^{\circ} \mathrm{F}$. for every increase of $1^{\circ} \mathrm{F}$.

## Expansion of Gases by Heat from $32^{\circ}$ to $212^{\circ} \mathrm{F}$. (Regnantr.)

|  | Increase in Volume, Pressure Constant. Volume at $32^{\circ}$ Fahr. $=1.0, \mathrm{for}^{\circ}$ |  | Increase in Pressure, Volume Constant. Pressure at $33^{\circ}$ Faln: $=1.0$, for |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $100^{\circ} \mathrm{C}$. | $1^{\circ} \mathrm{F}$. | $100^{\circ} \mathrm{C}$. | $1^{\circ} \mathrm{F}$. |
| Hydrogen. | 0.3661 | 0.002034 | 0.3667 | 0.002037 |
| Atmosplneric air | $0.36 \% 0$ | $0.00 \div(139$ | 0.3665 | 0.002036 |
| Nitrogen | $0.36 \% 0$ | $0.00 \div 039$ | 0.3668 | 0.002039 |
| Carbonic oxide | 0.3669 | 0.002038 | 0.3667 | 0.002037 |
| Carbonic acid | 0.3710 | 0.002061 | 0.3688 | 0.002039 |
| Sulphurous acid | 0.3903 | 0.002168 | 0.3845 | 0.002136 |

If the volume is kept constant, the pressure varies directly as the absolute temperature.

## Lineal Expansion of Solids at Ordinary Temperatures.

(British Board of Trade; from Clark.)

|  | For <br> $1^{\circ}$ Fahr. | $\begin{gathered} \text { For. } \\ 1^{\circ} \stackrel{\text { Cent. }}{ } \end{gathered}$ | Coef- <br> ficient of <br> Expansion from $32{ }^{\circ}$ to $212^{\circ} \mathrm{F}$. | Accord- <br> ing to <br> Other <br> Author. <br> ities. |
| :---: | :---: | :---: | :---: | :---: |
|  | Length $=1$ | Length=1 |  |  |
| Aluminnm (cast) | . 00001234 | .00002221 | . 002221 |  |
| Antimony (cryst.) | .00000627 | . 00001129 | . 001129 | .001083 |
| Brass, cast.. | . 000000957 | . 00001722 | . 001782 | . 001868 |
| ${ }^{6}$ plate | . 00001052 | . 00001891 | . 001894 |  |
| Brick......... ...................... | . 00000306 | . 00000550 | . 000550 |  |
| Bronze (Copper, 17; Tin, 21/2; Zinc 1). | . 00000986 | . $000017 \% 4$ | . 001774 |  |
| Bisinuth................................ | . 00000975 | . 00001755 | . 001755 | . 001392 |
| Cement, Portland (mixed), pure | . 00000594 | . 000010 ¢ 0 | . 001070 |  |
| Concrete: cement, mortar, and pebbles | .00000~95 | . 00001430 | . 001430 |  |
| Copper. | . 00000887 | . 00001596 | . 001596 | .001718 |
| Ebonite | .000042r8 | .00007\%00 | $00 \% 700$ |  |
| Glass, English flint | . 00000451 | . 00000812 | . 000812 |  |
| " thermometer | . 00000499 | . 000000897 | . 000897 |  |
| "* hard ..... | . 00000397 | . 00000714 | . 000714 |  |
| Granite, gray, dry | . 00000438 | . 000000789 | . 000789 |  |
| "6 red, dry | . 00000498 | . 00000897 | . 000897 |  |
| Gold, pure... | . 00000786 | . 00001415 | . 001415 |  |
| Iridium, pure | . 00000356 | . 000000641 | . 000641 |  |
| Iron, wrought | . 00000648 | . 000001166 | . 001160 | . 001235 |
| '6 cast | . 00000556 | . 00001001 | . 001001 | . 001110 |
| Lead....... | . 00001571 | .00002828 | .002828 |  |
| Magnesium.............. |  |  |  | . 002694 |
| Marbles, various $\{$ from | . 00000308 | . 00000554 | 000554 |  |
| Marbles, various $\{$ to. | . 00000786 | . 00001415 | . 001415 |  |
| Masomry, brick $\{$ from | . 000000256 | . 00000460 | . 000460 |  |
| Mercury (cubic ito........ | . 000000494 | . 00000890 | . 000890 |  |
| Mercury (cubic expansion) | . 00009984 | . 000017971 | . 017971 | . 018018 |
| Nickel | . 00000695 | . 00001251 | .001251 | .0012\%9 |
| Pewter. | . 00001129 | . 00002033 | .002033 |  |
| Plaster, white | .00000922 | . 00001660 | . 001660 |  |
| Platinnm $\quad . . . . . . .$. | .00000479 | . 00000863 | . 000863 |  |
| $\left.\begin{array}{l}\text { Platinum, } 85 \text { per cent }{ }_{\text {Iridium, }} 15\end{array}\right\} \ldots \ldots \ldots \ldots .$. | . 00000453 | . 00000815 | . 000815 | . 000884 |
| Porcelain................. . . . . . . . . . . . . | . 00000200 | . 00000360 | . 000360 |  |
| Quartz, parallel to major axis, $t 0^{\circ}$ to $40^{\circ} \mathrm{C}$ | . 00000434 | . $00000 \% 81$ | .000\%81 |  |
| Quartz, perpendicular to major axis, $t 0^{\circ}$ to $40^{\circ} \mathrm{C}$. | .00000788 | . 00001419 | . 001419 |  |
| Silver, pure | . 00001079 | . 00001943 | . 001913 | . 001908 |
| Slate. | . 00000577 | .00001038 | . 001038 |  |
| Steel, cast.... | . 00000636 | . 00001144 | . 001144 | . 001079 |
| '6 tempered....... | . 00000689 | . 00001240 | . 001240 |  |
| Stone (sandstone), dry ..... | .00000652 | . 00001174 | . $0011{ }^{17} 4$ |  |
| Tin ${ }^{\text {6 }}$ "........ Rauville | . 00000417 | . 00000750 | . 000750 |  |
| Tin ............ | . 00001163 | .00002094 | .002094 | . 001938 |
| Wedgwood war | . 00000489 | . 00000881 | . 0000881 |  |
| Wood, pine. | .00000276 | . 00000496 | . 000496 |  |
| Zinc.... | . 00001407 | .00002532 | .002532 | .002942 |
| $\left.\begin{array}{l}\text { Zinc, } 8 \\ T i n, 1\end{array}\right\}$ | . 00001496 | .00002692 | .002692 |  |

Cubical expansion, or expansion of volume $=$ linear expansion $\times 3$.

Absolute Temperature-Absolute Lero. -The absolute zero of a gas is a theoretical consequence of the law of expansion by heat, assuming that it is possible to continue the cooling of a perfect gas until its volume is diminished to nothing.

If the volume of a perfect gas increases $1 / 2 \pi 3$ of its volume at $0^{\circ} \mathrm{C}$. for every increase of temperature of $1^{\circ} \mathrm{C}$, and decreases $1 / 273$ of its volume for every decrease of temperature of $1^{\circ} \mathrm{C}$., then at - $273^{\circ} \mathrm{C}$. the volnme of the imaginary gas would be reduced to nothing. This point - $2 \pi^{\circ} \mathrm{C}$., or $491 . \%^{\circ}$ F . below the melting-point of ice on the air thermometer, o1 $49.66^{\circ} \mathrm{F}$. below on a perfect gas thermometer $=-459.2^{\circ} \mathrm{F}$. (or $-460.66^{\circ}$ ), is called the absolute zero; and absolute temperatures are temperatures measured, ou either the Fahrenheit or centigrade scale, from this zero. The freezing point, $32^{\circ} \mathrm{F}$., corresponds to $491.2^{\circ} \mathrm{F}$. absolute. If $p_{0}$ be the pressure and $v_{0}$ the volume of a gas at the temperature of $32^{\circ} \mathrm{F} .=491.2^{\circ}$ on the absolute scale $=T_{0}$, and $p$ the pressure, and $v$ the volume of the same quantity of gas at any other absolute temperature $T$, then

$$
\frac{p v}{p_{0} v_{0}}=\frac{T}{T_{0}}=\frac{t+459.2}{491.2} ; \quad \frac{p v}{T}=\frac{p_{0} v_{0}}{T_{0}}
$$

The value of $p_{0} v_{0} \div T_{0}$ for air is $53.3 \%$, and $p v=53.37 T$, calculated as follows by Prof. Wood:

A cubic foot of dry air at $32^{\circ} \mathrm{F}$. at the sea-level weighs $0.080 \% 28 \mathrm{lb}$. The volume of one pound is $v_{0}=\frac{1}{.080728}=12.387$ cubic feet. The pressure per square foot is 2116.2 lbs .

$$
\frac{p_{0} v_{0}}{T_{0}}=\frac{2116.2 \times 12.387}{491.13}=\frac{26214}{491.13}=53.37
$$

The figure 491.13 is the number of degrees that the absolute zero is below the melting-point of ice, by the air thermometer. On the absolute scale, whose divisions wonld be indicated by a perfect gas thermometer, the calculated value approximately is 492.66 , which would make $p v=53.21 T^{\prime}$. Prof. Thomson considers that - $273.1^{\circ} \mathrm{C}$., $=-459.4^{\circ} \mathrm{F}$., is the most probable value of the absolute zero. See Heat in Encu. Brit.
Expansion of Liquids fromi $32^{\circ}$ to $212^{\circ} \mathbf{F}$.-Apparent expansion in glass (Clark). Volume at 2120 , volune at $3 \geqslant 0$ being 1:

## Water.


Nitric acid.

Mercury........................ 1.0182 Turpentine and ether ................. 1.08
Alcohol..........................1.11 Hydrochlor. and sulphuric acids 1.06
For water at various temperatures, see Water.
For air at various temperatures, see Air.

## LATENT HEATS OF HUSHON AND EVAPORATION.

Latent LEeat means a quantity of heat which has disappeared, having been employed to prodnce some change other than elevation of temperature. By exactly reversing that change, the quantity of heat which has disappeared is reproduced. Maxwell defines it as the quantity of heat which must be communicated to a body in a given state in order to convert it into another state without changing its temperature.

Latent Heat of Fusion. - When a body passes from the solid to the liquid state, its temperature remains stationary, or nearly stationary, at a certain melting point during the whole operation of melting; and in order to make that operation go on, a quantity of heat must be transferred to the substance melted, being a certain amount for each unit of weight of the substance. This quantity is called the latent heat of fusion.

When a body passes from the liquid to the solid state, its temperature remains stationary or nearly stationary during the whole operation of freezing; a quantity of heat equal to the latent heat of fusion is produced in the body and rejected into the atmosphere or other surrounding bodies.

The following are examples in British thermal units per pound, as given in Landolt \& Börnstein's Physiłalische-Chemische Tabellen (Berliu, 1894).

| Substances. | Latent Heat of Fusion. | Sulstances. | Latent Heat of Fusion. |
| :---: | :---: | :---: | :---: |
| Bismuth.. | .. 22.15 | Silver. | .... $37.93{ }^{\text {a }}$ |
| Cast Iron, gray | 41.4 | Beeswax | 76.14 |
| Cast Iron, white. | . 59.4 | Paraffine. | 63.27 |
| Lead....... | . 9.66 | Spermaceti. | 66.56 |
| Tin. | . 25.65 | Phosphorus. | 9.06 |
| Zinc | . 50.63 | Sulphur....... | . 16.86 |

Prof. Wood considers 144 heat units as the most reliable value for the latent heat of fusion of ice. Person gives. 1426.5.

Latent Heat of cvaporation. - When a body passes from the solid or liquid to the gase state, is temperature during the operation remains stationary at a certain boiling point, depending on the pressure of the vapor produced; and in order to make the evaporation go on, a quantity of heat must be transferred to the substance evaporated, whose a mount for each unit of weight of the substance evaporated depends on the temperature. That heat does not raise the temperature of the substance, but disappears in causing it to assume the gaseous state, and it is called the latent heat of evaporation.

When a body passes from the gaseous state to the liquid or colid state, its temperature remains stationary, during that operation, at the boiling-point corresponding to the pressure of the vapor: a quantity of heat equal to the latent heat of evaporation at that temperature is produced in the body; and in order that the operation of condensation may go on, that heat must be transferred from the body condensed to some other body.
The following are examples of the latent heat of evaporation in British thermal units, of one pound of certain substances, when the pressure of the vapor is one atmosphere of 14.7 lbs . on the square inch:

> Substance. Boiling-point under one atm. Fahr.
Water 212.0

Alcohol .. .... .................... 1 . 2.2 Ether................................. $\quad 95.0$
Bisulphide of carbon.

Latent Heat in British units. 965.7 (Regnault.) 364.3 (Andrews.) 162.8
156.0 "

The latent heat of evaporation of water at a series of boiling-points extending from a few degrees below its treezing-point up to about 375 degrees Fahrenheit las been determined experimentally by M. Regnault. The results of those experiments are represented approximately by the formula. in British thermal units per pound,

$$
l \text { nearly }=1091.7-0.7\left(t-32^{\circ}\right)=965.7-0.7\left(t-212^{\circ}\right) .
$$

The Total Heat of Evaporation is the sum of the heat which disappears in evaporating one pound of a given substance at a given tem. perature (or latent heat of evaporation) and of the heat required to raise its temperature, before evaporation, from some fixed temperature up to the temperature of evaporation. The latter part of the total heat is called the sensible heat.

In the case of water, the experiments of M. Regnault show that the total heat of steam from the temperature of melting ice increases at a uniform rate as the temperature of evaporation rises. The following is the formula in British thermal units per pound:

$$
h=1091.7+0.305\left(t-32^{\circ}\right)
$$

For the total heat, latent heat, etc., of steam at different pressures, see table of the Properties of Saturated Steam. For tables of total heat, latent heat, and other properties of steams of ether, alcohol, acetone, chloroform, chloride of carbon, and bisulphide of carbon, see Rontgen's Thermodynamics (Dubois's translation.) For ammonia and sulphur dioxide, see Wood's Thermodynamics; also, tables under Refrigerating Machinery, in this book.

## EVAPORATEON AND DRYING.

In evaporation, the formation of vapor takes place on the surface; in boiling, within the liquid: the former is a slow, the latter a quick, method of evaporation.

If we bring an open vessel with water under the receiver of an air-pump and exhaust the air the water in the vessel will commence to boil, and if wo keep up the vacuum the water will actually boil near its freezing-point. The formation of steam in this case is due to the heat which the water takes out of the surroundings.

Steam formed under pressure has the same temperature as the liquid in which it was formed, provided the steam is kept under the same pressure.

By properly cooling the rising steam from boiling water, as in the multipleeffect evaporating systems, we can regulate the pressure so that the water boils at low temperatures.

Evaporation of Water in Reservoirs.-Experiments at the Mount Hope Reservoir, Rochester, N. Y., in 1891, gave the following results:

|  | July. | Aug. | Sept. | Oct. |
| :---: | :---: | :---: | :---: | :---: |
| Mean temperature of air in shade.. | 70.5 | 70.3 | 68.7 | 53.8 |
| "" humidity of air, wer cent reser | 68.2 | 70.2 | 66.1 | 54.4 |
| Evaporation in inches durin | 67.0 5.59 | ${ }^{24.6} 4$ | 75.2 4.05 | 74.7 |
| Rainfall in inches during month | 3.44 | 2.95 | 1.44 | $\stackrel{3}{9} .16$ |

Evaporation of Water from Open Channels. (Flynn's Irrigation Canals and Flow of Water.)-Experiments from 1881 to 1885 in Tulare County, California, showed an evaporation from a pan in the river equal to an average depth of one eighth of an inch per day throughout the year.

When the pan was in the air the average evaporation was less than 3/16 of an inch per day. The average for the month of August was $1 / 3$ inch per day, and for March and April $1 / 12$ of an inch per day. Experiments ia Colorado show that evaporation ranges from .088 to .16 of an inch per day during the irrigating season.

In Northern Italy the evaporation was from $1 / 12$ to $1 / 9$ inch per day, while in the south, under the influence of hot winds, it was from $1 / 6$ to $1 / 5$ irch per day.

In the hot season in Northern India, with a decidedly hot wind blowing, the average evaporation was $1 / 2$ inch per day. The evaporation increases with the temperature of the water.

## Evaporation by the RIaltiple System.-A multiple effect is a

 series of evaporating vessels each having a steam chamber, so connected that the heat of the steam or vapor produced in the first vessel heats the second, the vapor or steam produced in the second heats the third, and so on. The vapor from the last vessel is condensed in a condenser. Three vessels are generally used, in which case the apparatus is called a l'riple Effect. In evaporating in a triple effect the vacuum is graduated so that the liquid is boiled at a constant and low temperature.Resistance to Boiling.-Trine. (Rankine.)-The presence in a liquid of a substance dissolved in it (as salt in water) resists ebullition, and raises the temperature at which the liquid boils, under a given pressure; but unless the dissolved substance enters into the composition of the vapor, the relation between the temperature and pressure of saturation of the vapor remains unchanged. A resistance to ebullition is also offered by a vessel of a material which attracts the liquid (as when water boils in a glass vessel). and the boiling take place by starts. To avoid the errors which causes of this kind produce in the measurement of boiling-points, it is advisable to place the thermometer, not in the liquid, but in the vapor, which shows the true boiling-point, freed from the disturbing effect of the attractive nature of the vessel. The boiling-point of saturated brine under one atmosphere is $226^{\circ}$ Fahr., and that of weaker brine is higher than the boiling-point of pure water by $1.2^{\circ}$ Fahr., for each $1 / 32$ of salt that the water contains. Average sea-water contains $1 / 39$; and the brine in marine boilers is not suffered to contain more than from $2 / 32$ to $3 / 32$.
Methods of Evaporation Employed in the Manufacture or Salt. (F. E. Engelhardt, Chemist Onondaga Salt Springs; Report for 1889.)-1. Solar heat-solar evaporation. 2. Direct fire, applied to the heating surface of the vessels containing brine-kettle and pan methods. 3. The steam-grainer system-steam-pans, steam-kettles, etc. 4. Use of steam and a reduction of the atmosplieric pressure over the boiling brine-vacuum system.
When a saturated salt solution boils, it is immaterial whether it is done under ordinary atmospheric pressure at $228^{\circ} \mathrm{F}$., or under four atmospheres with a temperature of $320^{\circ} \mathrm{F}$., or in a vacuum under $1 / 10$ atmosphere, the result will always be a fine-grained salt.
The fuel consumption is stated to be as follows: By the kettle method, 40 to 45 bu . of salt evaporated per ton of fuel, anthracite dust burned on perforated grates; evaporation, 5.53 lbs . of water per pound of coal. By the pan method, 70 to 75 bu. per ton of fuel. By vacuum pans, single effect, 88 bu, per ton of anthracite dust ( 2000 lbs .). With a double effect neariy double that amount can be produced.

# Solubility of Common Salt in Pure Water. (Andreæ.) 

| Temp. of brine, F.............. | 32 | 50 | 86 | 104 | 140 | 176 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 100 parts water dissolve parts.... | 35.63 | 35.69 | 36.03 | 36.32 | 37.06 | 38.00 |
| 100 parts brine contain salt...... | 26.27 | 26.30 | 26.49 | 26.64 | 27.04 | 27.54 |

According to Poggial, 100 parts of water dissolve at $229.66^{\circ} \mathrm{F} ., 40.35$ parts of salt, or in per cent of brine, 28. 749 . Gay Lussac found that at $2: 9.72^{\circ} \mathrm{F}$., 100 parts of pure water would dissolve 40.38 parts of salt, in per cent of brine, 28.764 parts.
The solubility of salt at $229^{\circ} \mathrm{F}$. is only $2.5 \%$ greater than at $32^{\circ}$. Hence we cannot, as in the case of alum, separate the salt from the water by allowing a saturated solution at the boiling point to cool to a lower temperature.

Solubility of Sulphate of Lime in Pure Water. (Marignac.)
$\begin{array}{lllllllll}\text { Temperature F. degrees. } & 32 & 64.5 & 89.6 & 100.4 & 105.8 & 127.4 & 186.8 & 212\end{array}$

| Parts water to dissolve 1 part, gypsum | 415 | 386 | 371 | 368 | 370 | 375 | 417 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parts water to dissolve 1$\}$ part anhydrous $\left.\mathrm{CaSO}_{4}\right\}$ | 535 | 488 | 470 | 466 | 468 | 474 | 528 |  |

In salt brine sulphate of lime is much more soluble than in pure water. In the evaporation of salt brine the accumulation of sulphate of lime tends te stop the operation, and it must be removed from the pans to avoid wasta of fuel.

The average strength of brine in the New York salt districts in 1889 was 69.38 degrees of the salinometer.

Strength of Salt Brines. -The following table is condensed from one given in U. S. Mineral Resources for 1888, on the authority of Dr. Englehardt.

## Relationg between Salinometer Strength, Specific Gravity, Solid Contents, etc., of Brincs of Dinerent Strengths.

|  | $\begin{aligned} & \dot{W} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { O } \\ & \text { © } \end{aligned}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 26 | 1.002 | . 265 | 8.34 | . 022 | 2,531 | 21,0 6 | 3.513 |  |
| 2 | 52 | 1.003 | . 530 | 8.356 | . 044 | 1,264 | 10,510 | 1,752 | 1.141 |
|  | 1.04 | $1.00{ }^{\text {a }}$ | 1.060 | 8.389 | . 088 | 629.7 | 5,29\% | -871.2 | 2.295 |
|  | 1.56 | 1.010 | 1.590 | 8.414 | . 133 | 418.6 | 3,466 | 57\%.7 | 3.462 |
|  | 2.08 | 1.014 | 2.120 | 8.447 | . 179 | 312.7 | 2,585 | 430.9 | 4.641 |
|  | $\stackrel{2}{2} 60$ | 1.017 | 2650 | 8.4\%2 | .224 | 249.4 | 2.057 | 342.9 | 5833 |
| 12 | 3.12 | $1.0 \geqslant 1$ | 3.180 | 8.506 | . 270 | 207.0 | 1, 1,05 | 284.2 | 7.038 |
| 14. | 3.64 | 1.025 | 3.710 | 8.539 | . 316 | 176.8 | 1,453 | 242.2 | 8.256 |
| 15. | 4.16 | 1028 | 4.240 | 8.564 | . 364 | 154.2 | 1,265 | 210.8 | 9.488 |
| 15 | 4.68 | 1.032 | 4.750 | 8.597 | . 410 | 136.5 | 1,118 | 186.3 | 10.73 |
|  | 5.20 | 1.035 | 5.300 | 8.622 | . 457 | 122.5 | 1,001 | 176.8 | 11.99 |
| 30 | 7.80 | 1.054 | 7.950 | 8.î81 | . 698 | 80.21 | 648.4 | 108.1 | 18.51 |
| 4 | 10.40 | 1.073 | 10.600 | 8.939 | . $9+5$ | 59.09 | $4 \% 2.3$ | 78.71 | 25.41 |
| 50 | 13.00 | 1.093 | 13.250 | 9.105 | 1.206 | 46.41 | 366.6 | 61.10 | 3273 |
| 60. | 1560 | 1.114 | 15.900 | 9.880 | 1.475 | 37.94 | 296.2 | 49.36 | 40.51 |
|  | 18.20 | 1.136 | 18.550 | 9.464 | 1.755 | 31.89 | 245.9 | 40.98 | 48.80 |
|  | 20.80 23.40 | 1.158 | -1.800 | 9.647 | 2.045 | 27.38 | 203.1 | 34.69 | 57.65 |
| 100 | 26.00 | 1.205 |  |  | 2.660 | 21.04 | 155.3 | 25.88 | 67.11 77.26 |
|  |  |  | 2.500 | 10.0 | 2.660 |  | 155.3 | 25.88 | 77.26 |

Concentration of Sugar Solutionso* (From "Heating and Con. centrating Liquids by Stean," by John G. Hudson; The Engineer, June 13, 1890.) - In the early stages of the process, when the liquor is of low density, the evaporative duty will be high, say two to three (British) gallons per square foot of heating surface with 10 lbs . steam pressure, but will gradually fall to an almost nominal amount as the final stage is approaclied. As a generally safe basis for designing, Mr. Hudson takes an evaporation of one gallon per hour for each square foot of gross heating surface, with steam of the pressure of about 10 lbs .

As examples of the evaporative duty of a vacuum pan when performing the earlier stages of concentration, during which all the heating surface can be employed, he gives the following:

Coil Vacuum Pan.-43/4 in. copper coils, 528 square feet of surface; steam in coils, 15 lbs ; temperature in pan, $141^{\circ}$ to $148^{\circ}$; density of feed, $25^{\circ}$ Beaumé, and concentrated to $31^{\circ}$ Beaumé.

First Trial.--Evaporation at the rate of 2000 gallons per hour $=3.8$ gallons per square foot; trausmission, 376 units per degree of difference of temperature.

Second Trial.-Evaporation at the rate of 1503 gallons per hour $=2.8 \mathrm{gal}$. lons per square foot; transmission, 265 units per degree.

As regards the total time needed to work up a charge of massecuite from liquor of a given density, the following figures, obtained by plotting the results from a large number of pans, form a guide to practical working. The pans were all of the coil type, some with and some without jackets, the gross heating surface probably averaging, and not greatly differing fron, . 25 square foot per gallon capacity, and the steam pressure 10 lbs . per square inch. Both plantation and refining pans are included, making various grades of sugar:

Density of Feed (degs. Beaumé).
Evaporation required per gallon massecuite discharged..............................
Average working hours required per charge

| $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- |
| 6.123 | 3.6 | 2.26 | 1.5 | .97 |
| 12. | 9. | $61 / 9$ | 5. | 4. |
|  |  |  |  |  |
| 2.04 | 1.6 | 1.39 | 1.2 | .97 |
| 8.5 | 5.5 | 3.8 | 2.75 | 2.0 |
| 2.88 | 2.6 | 2.38 | 2.18 | 1.9 |

Equivalent average evaporation per hour per square foot of gross surface, assuming . 25 sq. ft. per gallon capacity..
Fastest working hours required per charge .......................................
Equivalent average evaporation per hour per square foot.......................
The quantity of heating steam needed is practically the same in vacuum as in open pans. The advantages proper to the vacuum system are primarily the reduced temperature of boiling, and incidentally the possibility of using heating steam of low pressure.

In a solution of sugar in water, each pound of sugar adds to the volume of the water to the extent of .061 gallon at a low density to .0638 gallon at high densities.

A Method of Evaporating by Exhanst Steam is described by Albert Stearns in Trans. A. S. M. E., vol. viii. A pan $1 \bar{\gamma}^{\prime} 6^{\prime \prime} \times 11^{\prime} \times 1^{\prime} 6^{\prime \prime}$, fitted with cast-iron condensing pipes of about 250 sq. ft. of surface, evaporated 120 gallons per hour from clear water, condensing only about one half of the steam supplied by a plain slide-valve engine of $14^{\prime \prime} \times 32^{\prime \prime}$ cylinder, making 65 revs. per min., cutting off about two thirds stroke, with steam at 75 lbs. boiler pressure.
It was found that keeping the pan-room warm and letting only sufficient air in to carry the vapor up out of a ventilator adds to its efficiency, as the average temperature of the water in the pan was only about $165^{\circ} \mathrm{F}$.

Experiments were made with coils of pipe in a small pan, first with no agitator, then with one having straight blades, and lastly with troughed blades; the evaporative results being about the proportions of one, two, and three respectively.

In evaporating liquors whose boiling point is $220^{\circ} \mathrm{F}$., or much above that of water, it is found that exhaust steam can do but little more than bring them up to saturation strength, but on weak liquors, syrups, glues, etc., it should be very useful.

Drying in Vacuum. - An apparatus for drying grain and other substances in vacum is described by Mr. Emil Passbirg in Proc. Inst. Mech. Engrs., 1889. The three essential requirements for a successfal and economical process of drying are: 1. Cheap evaporation of the moisture; 2. Quick drying at a low temperature; 3. Large capacity of the apparatus employed.

The removal of the moisture can be effected in either of two ways: eitl el by slow evaporation, or by quick evaporation-that is, by boiling.
Slow Evaporation.-The principal idea carried into practice in machines acting by slow evaporation is to bring the wet substance repeatedly into contact with the inner surfaces of the apparatus, which are lieated by steam, while at the same time a current of hot air is alsu passing through the substances for carrying off the moisture. This method requires much heat, because the hot-air current has to move at a considerable speed in order to shorten the drying process as much as possible; consequently a great quantity of heated air passes throngh and escapes unused. As a carrier of moisture hot air cannot in practice be charged beyond half its full saturation; and it is in fact considered a satisfactory result if even this proportion be attained. A great amount of beat is liere produced which is not used; while, with scarcely half the cost for fuel, a much quicker removal of the water is obtained by heating it to the boiling point.
Quick Evaporation by Boiling.-This does not take place until the water is brought up to the boiling point and kept there, namely, $212^{\circ} \mathrm{F}$., under atmospheric pressure. The vapor generated then escapes freely. Liquids are easily evaporated in this way, because by their motion consequent on boiling the heat is continuously convoyed from the heating surfaces through the liquid, but it is different with solid substances, and many more difficulties have to be overcome, iocause convection of the heat ceases entirely in solids. The substance remains motionless, and consequently a nuch greater quantity of heat is required thall with liquids for obtaining the same results.

Evaporation in Vacuum.- All the foregoing disadvantages are avoided it the boiling-point of water is lowered, that is, if the evaporation is carried out under vacuum.

This plan has been successfully applied in Mr. Passburg's vacuum drying apparatus, which is designed to evaporate large quantities of water contained in solid substances.

The drying apparatus consists of a top horizontal cylinder, surmounted by a charging vessel at one end, and a bottom horizontal cylinder with a discharging vessel beneatli it at the same end. Both cylinders are encased in steam-jackets heated by exhaust steam. In the top cylinder works a revolving cast-iron screw with hollow blades, which is also heated by exhanst steam. The bottom cylinder contains a revolving drum of tıbes, consisting of one large central tube surrounded by 24 smaller ones, all fixed in tube. plates at both ends; this drum is heated by live steam direct from the boiler. The substance to be dried is fed into the charging vessel through two manholes, and is carried along the top cylinder by the screw creeper to the back end, where it drops throngh a valve into the bottom cylinder, in which it is lifted by blades attached to the drum and travels forwards in the reverse direction; from the front end of the bottom cylinder it falls into a discharging vessel throngh another valve, having by this time become dried. The vapor arising during the process is carried off by an air-pump, through a dome and air-valve on the top of the upper cylinder, and also through a throttle-valve on the top of the lower cylinder; both of these valves are supplied with strainers.

As soon as the discharging vessel is filled with dried material the valve connecting it with the bottom cylinder is shut, and the dried charge taken out without impairing the vacuum in the apparatus. When the charging vessel requires replenishing, the intermediate valve between the two cylinders is shut, and the charging vessel filled with a fresh supply of wet material; the vacuum still remains unimpaired in the bottom cylinder, and has to be restored only in the top cylinder after the charging vessel has been closed again.

In this vacuum the boiling-point of the water contained in the wet mate. rial is brought down as low as $110^{\circ} \mathrm{F}$. The difference between this temperature and that of the heating surfaces is amply sufficient for obtaining good results from the employment of exhaust steam for heating all the surfaces except the revolving drum of tubes. The water contained in the solid substance to be dried evaporates as soon as the latter is heated to about $110^{\circ} \mathrm{F}$.;
and as long as there is any moisture to be removed the solid substance is not heated above this temperature.
Wet grains from a brewery or distillery, containing from $\% \%$ to $78 \%$ of water, have by this drying process been converted in some localities from a worthless incumbrance into a valuable food-stuff. The water is removed by evaporation only, no previous mechanical pressing being resort ed to.
At Messrs. Guinness's brewery in Dublin two of these machines are employed. In each of these the top cylinder is $20^{\prime} 4^{\prime \prime}$ long and $2^{\prime} 8^{\prime \prime}$ diam., and the screw working inside it makes 7 revs, per min.; the bottom cylinder is $19^{\prime} 2^{\prime \prime}$ ' long and $5^{\prime} 4^{\prime \prime}$ ' diam., and the drum of the tubes inside it makes 5 revs. per min. The drying surfaces of the two cylinders amount togetler to a total area of about 1000 sq . ft ., of which about $4(\% \%$ is heated by exhaust steam direct from the boiler. There is only oue air-pump, which is made large enough for three machines; it is horizontal, and has only one air-cylinder, which is double-acting, $173 / 4 \mathrm{in}$. diam. and $1 \% 3 / 4 \mathrm{in}$. stroke; and it is driven at about 45 revs. per min. As the result of about eight months' experience, the two machines have been drying the wet grains from about 500 cwt. of malt per day of 24 hours.
Roughly speaking, 3 cwt . of malt gave 4 cwt . of wet grains, and the latter yield 1 cwt . of dried grains; 500 cwt . of malt will therefore yield about $6 \tilde{0} 0$ cwt. of wet grains, or 335 cwt. per machine. The quantity of water to be evaporated from the wet grains is from $75 \%$ to $78 \%$ of their total weight, or say about 512 cwt. altogether, being 256 cwt. per machine.

## RADIATHON OR HEAT.

Radiation of heat takes place between bodies at all distances apart, and follows the laws for the radiation of light.
The heat rays proceed in straight lines, and the intensity of the rays radiated from any one source varies inversely as the square of their distance from the source.

This statement has been erroneously interpreted by some writers, who have assumed from it that a boiler placed two feet above a fire would receive by radiation only one fourth as much heat as if it were only one foot above. In the case of boiler furnaces the side walls reflect, those rays that are received at an angle-following the law of optics, that the angle of incidence is equal to the angle of reflection,-with the result that the intensity of heat two feet above the fire is practically the same as at one foot above, instead of only one-foarth as much.
The rate at which a hotter body radiates heat, and a colder body absorbs heat, depends upon the state of the surfaces of the bodies as well as on their temperatures. Tho rate of radiation and of absorption are increased by darkness and roughness of the surfaces of the bodies, and diminished by smoothess and polish. For this reason the covering of steam pipes and boilers should be smooth and of a light color: uncovered pipes and steamcylinder covers sliould be polished.
The quantity of heat radiated by a body is also a measure of its heatabsorbing power, under the same circumstances. Wheu a polished body is struck by a ray of heat, it absorbs part of the heat and reflects the rest. The reflecting power of a body is therefore the complement off its absorbing power, which latter is the same as its radiating power.
The relative radiating and reflecting power of different borlies has been determined by experiment, as shown in the table below, but as far as quantities of heat are concerned, says Prof. Trowhridge (Jolinson's Cyclopæedia, art. Heat), it is doubtful whether anything further than the said relative determinations can, in the present state of onr knowledge, be depended upon, the actual or absolute quantities for different temperatures being still uncertain. The authorites do not even agree on the relative radiating powers. Thus, Leslie gives for tin plate. golfi, silver, and copper the figure 12, which differs considerably from the figures in the table below, given by Clark, stated to be on the authority of Leslie, De La Provostaye and Desains, and Melioni,

## Relative Radiating and Reflecting Power of Different

 Substances.|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lampblack | 100 | 0 | Zinc, polished. ...... | 19 | 81 |
| Water ....... . . . | 100 | 0 | Steel, polished...... | 17 | 83 |
| Carbonate of lead. | 100 | 0 | Platinum, polished.. | 24 | r6 |
| Writing-paper...... | 98 | $\stackrel{2}{2}$ |  | 17 | 83 |
| Ivory, jet, marble. . Ordinary glass..... | 93 to 98 | 7 to 2 10 | Tin ... ${ }_{\text {Brass, }}$ cast, dead | 15 | 85 |
| Ice............ | 85 | 15 | polished........... | 11 | 89 |
| Gum lac | \%2 | 28 | Brass, bright pol- |  |  |
| Silver-leaf on glass.. | 27 | 73 | ished............ | 7 | 93 |
| Cast iron, bright polished. | 25 | 75 | Copper, varnished. | $\begin{array}{r}14 \\ 7 \\ \hline\end{array}$ | 86 93 |
| Mercury, about...... | 23 | 78 | Gold, plated.... . . | 5 | 95 |
| Wrought iron, polished. | 23 | 87 | " on polished | 3 | 97 |
|  |  |  | Silver, polished bright............. | 3 | 97 |

Experiments of Dr. A. M. Mayer give the following: The relative radiations from a cube of cast iron, having faces rough, as from the foundry, planed, "drawfiled," and polished, and from the saine surfaces oiled, are as below (Prof. Thurston, in Trans. A. S. M. E., vol. xvi.) :

| Surface. | Oiled. | Dry. |
| :---: | :---: | :---: |
| Rough.. | 109 | 100 |
| Planed.. | 60 | 32 |
| Drawfiled | 49 | 20 |
| Polished.. | 45 | 18 |

It here appears that the oiling of smoothly polished castings, as of cylin-der-heads of steam-engines, more than doubles the loss of heat by radiation, while it does not seriously affect rough castings.

## CONDUCTLON AND CONVECTION OF HEAT.

Conduction is the transfer of heat between two bodies or parts of a body which touch each other. Internal conduction takes place between the parts of one continuous body, and external conduction through the surface of contact of a pair of distinct bodies.
The rate at which conduction, whether internal or external, goes on, being proportional to the area of the section or surface through which it takes place, may be expressed in thermal units per square foot of area perhour

Internal Conduction varies with the heat conductivity, which depends upon the nature of the substance, and is directly proportional to the difference between the temperatures of the two faces of a layer, and inversely as its thickness. The reciprocal of the conductivity is called the internal thermal resistance of the substance. If $r$ represents this resistance, $x$ the thickness of the layer in inches, $T^{\prime}$ and $T$ the temperatures on the two faces, and $q$ the quantity in thermal units transmitted per hour per square foot of area, $q=\frac{T^{\prime \prime}-T}{v x}$. (Rankine.)

Péclet gives the following values of $r$ :

| Gold, platinum, | 0.0016 | Lead............................ 0.00 .0 |
| :---: | :---: | :---: |
| Copper. | 0.0018 | Marble......................... . 0.07 |
| Iron | 0.0043 | Brick.......................... 0.1500 |
|  | 0.0045 |  |

## Relative Heat-conducting Power of Metals.

(* Calvert \& Johnson ; † Weidemann \& Franz.)

| Metals. *C | C. \& J | \& F | Metals. | * C | +W. \& F. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Silve | 1000 | 1000 | Cadmium... | $5{ }^{\text {\% }}$ |  |
| Gold. | 981 | 53: | Wrought iron | 436 | 119 |
| Gold, with $1 \%$ of silver | r 840 |  | Tin | 422 | 145 |
| Copper, rolled | 845 | 736 | Steel. | . 39 i | 116 |
| Copper, cast. | 811 | .... | Platinum | 3-0 | 84 |
| Mercury. | 677 | $\ldots$ | Sodium | . 365 |  |
| Mercury, with 1.25\% |  |  | Cast iron.. | . 359 |  |
| of tirl.. | 412 |  | Lead...... | . 282 | 85 |
| Aluminum. | 665 |  | Antimony: |  |  |
| Zine: |  |  | cast horizonta | y.. 215 |  |
| cast vertically |  | .... | cast vertically |  |  |
| cast horizontally... rolled | $\therefore \quad 608$ |  | Bismuth........ | . 61 | 18 |

Influence of a Non-metallic Substance in Combination on the
Conducting Power of a Metal.

Influence of carbon on iron :
Wrought iron . . . . . . . . . . . . . . . . . 436
Steel.436

Cast iron.................................. . . . . 359
The sate of External Conduction through the bounding surface between a solid body and a fluid is approximately proportional to the difference of temperature, when that is small ; but when that difference is considerable the rate of conduction increases faster than the simple ratio of that difference. (Rankine.)
If $r$, as before, is the coefficient of internal thermal resistance, $e$ and $e^{\prime}$ the coefficient of external resistance of the two surfaces, $x$ the thickness of the plate, and $T^{\prime \prime}$ and $T$ the temperatures of the two fluids in contact with the two surfaces, the rate of conduction is $q=\frac{T^{\prime}-T}{e+e^{\prime}+r x}$. According to Peclet, $e+e^{\prime}=\frac{1}{A\left[1+B\left(\overline{\left.\left.T^{\prime}-T\right)\right]}\right.\right.}$, in which the constants $A$ and $B$ have the following values:
$B$ for polished metallic surfaces ..... 0028
$B$ for rough metallic surfaces and for non-metallic surfaces. ..... 0037
$\boldsymbol{A}$ for polished metals, about ..... 90
$A$ for glassy and varnished surfaces. ..... 1.34
$A$ for dull metallic surfaces ..... 1.58
A for lamp-black ..... 1.78

When a metal plate has a liquid at each side of it, it appears from experiments by Peclet that $B=.058, A=8.8$.
The results of experiments on the evaporative power of boilers agree very well with the following approximate formula for the thermal resistauce of boiler plates and tubes:

$$
e+e^{\prime}=\frac{a}{\left(T^{\prime}-T\right)}
$$

which gives for the rate of conduction, per square foot of surface per hour,

$$
q=\frac{\left(T^{\prime}-I^{\prime}\right)^{2}}{a}
$$

This formula is proposed by Rankine as a rough approximation, near enough to the truth for its purpose. The value of $\alpha$ lies between 160 and 200 .

Convection, or carrying of heat, means the transfer and diffusion of the heat in a fluid mass by means of the motion of the particles of that inass.
The conduction, properly so called, of heat through a stagnant mass of fluid is very slow in liquids, and almost, if not wholly, inappreciable in gases. It is only by the continual circulation and mixture of the particles of the fluid that uniformity of temperature can be maintained in the fluid mass, or heat transferred between the fluid mass and a solid body.
The free circulation of each of the fluids which touch the side of a solid plate is a necessary condition of the correctness of Rankine's formulæ for the conduction of heat through that plate; and in these formulæ it is im-
plied that the circulation of each of the fluids by currents and eddies is such as to prevent any considerable difference of temperature between the fluid particles in contact with one side of the solid plate and those at considerable distances from it.
When heat is to be transferred by convection from one fluid to another, through an intervening layer of metal, the motions of the two fluid masses should, if possible, be in opposite directions, in order that the hottest particles of each fluid may be in communication with the hottest particles of the other, and that the minimum difference of temperature between the adjacent particles of the two fluids may be the greatest possible.
'Thus, in the surface condensation of steam, by passing it through metal tubes immersed in a current of cold water or air, the cooling flnid shouid be made to move in the opposite direction to the condensing steam.

## Steam-pipe Coverings.

(Experiments by Prof. Ordway, Trans. A.S. M. E., vi, 168; also Circular No. 27 of Boston Mfrs. Mutual Fire Ins. Co., 1890.)

|  |  |
| :--- | :---: | :---: | :---: | :---: |

It will be observed that several of the incombustible materials are nearly as efficient as wool, cotton, and feathers, with which they may be compared in the preceding table. The materials which may be considered wholly free from the danger of being carbonized or ignited by slow contact with pipes or boilers are printed in Roman type. Those which are more or less liable to be carbonized are printed in italics.

The results Nos. 1 to 20 inclusivg were from experiments with the various non-conductors each used in a mass one inch thick, placed on a flat surface of iron kept heated by steam to $310^{\circ} \mathrm{F}$. The substances Nos. 21 to

32 were tried as coverings for two-inch steam pipe; the results being re. duced to the same terms as the others for convenience of comparison.

Experiments on still air gave results which differ little from those of Nos. 3,4 , and 6 . The bulk of matter in the best non-conductors is relatively too small to have any specific effect except to trap the air and keep it stagnant. These substances keep the air still by virtue of the roughness of their fibres or particles. The asbestos, No. 18, had smooth fibres. Asbestos with exceedingly fine fibre made a somewhat better showing, but asbestos is really one of the poorest non-conductors. It may be used advantageously to hold together other incombustible substances, but the less of it the better. A "magnesia" covering, made of carbonate of magnesia with a small percentage of good asbestos fibre and containing 0.25 of solid matter, transmitted 2.5 B. T. U. per square foot per minute, and one containing 0.396 of solid matter transmitted 3.33 B . T. U.

Any suitable substance which is used to prevent the escape of steam heat should not be less than one inch thick.

Any covering should be kept perfectly dry, for not only is water a good carrier of heat, but it has been found that still water conducts heat about eight times as rapidly as still air.

Tests of Commercial Coverings were made by Mr. Geo. Mr. Brill and reported in Trans. A. S. M. E., xvi. $8 \% \%$. A leugth of 60 feet of 8 -inch steam-pipe was used in the tests, and the heat loss was determined by the condensation. The steam pressure was from 109 to 117 lbs. gauge, and the temperature of the air from $58^{\circ}$ to $81^{\circ} \mathrm{F}$. The difference between the temperature of steam and air ranged from $263^{\circ}$ to $256^{\circ}$, averaging $2 \%^{\circ}{ }^{\circ}$.
The following are the principal results :

| Kind of Covering. | $\left\lvert\, \begin{aligned} & \text { Thickness of Covering. } \\ & \text { inches. } \end{aligned}\right.$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bare pipe |  | . 816 |  | 2. 206 |  | 100. | 2.819 |
| Magnesia. | 1.25 | .100 | 1.74 | . 384 | 7.7 | 14.2 |  |
| Mineral wo | 1.30 | . 089 | 1.29 | . 285 | . $75 \%$ | ${ }^{9.5}$ | ${ }_{297}^{267}$ |
| Fire-felt. | 1.30 | . 15 \% | 2.28 | . 502 | .689 | 18.6 | 523 |
| Manville sectional | 1.70 | . 109 | 1.59 | . 350 | . 737 | 129 | . 564 |
| Manv. Sect. \& hair-felt. | 2.40 | . 066 | 0.96 | . 212 | . 780 | 7.8 | . 221 |
| Manville wool-cement. | 2.20 | . 108 | 1.56 | . 345 | . 238 | 12.7 | . 359 |
| Champion mineralwool | 1.44 | . 099 | 1.44 | . 317 | . 747 | 11.7 | . 330 |
| Hair-felt ... . . . . . | . 85 | .1323 | 1.91 | . $4 \times$ | . 714 | ${ }^{15.6}$ |  |
| Riley cement Fossil-meal. | . 75 | . 298 | 4.32 3.99 | . 8.85 | . 548 | ${ }_{3}^{35.5}$ | .993 .916 |

Transmission of Heat, through Solid Plates, from Water to Water. (Clark, S.E.).-MI. Peclet found, from experiments made with plates of wrought iron, cast iron, copper, lead, zinc, and tin, that when the fluid in contact with the surface of the plate was not circulated by artificial means, the rate of conduction was the same for different metals and for plates of the same metal of different thicknesses. But when the water was thoroughly circulated over the surfaces, and when these were perfectly clean, the quantity of transmitted heat was inversely proportional to the thickness, and directly as the difference in temperature of the two faces of the plate. When the metal surface became dull, the rate of transmission of heat through all the metals was very nearly the same.

It follows, says Clark, that the absorption of heat through metal phates is more active whilst evaporation is in progress-when the circulation of the water is more active-than while the water is being heated up to the boiling point.

Transmission from Steam to Water.-M. Péclet's principle is supported by the results of experiments made in 1867 by Mr. Isherwood on the conductivity of different metals. Cylindrical pots, 10 inches in diameter, $211 / 4$ inches deep inside, and $1 / 8$ inch, $1 / 4$ inch, and $3 / 8$ inch thick, turned and bored, were formed of pure copper, brass ( 60 copper and 40 zinc), rolled wrought iron, and remelted cast iron. They were immersed in a steam bath, which was varied from $220^{\circ}$ to $320^{\circ} \mathrm{F}$. Water at $21 \ddot{2}^{\circ}$ was supplied to the pots, which were kept filled. It was ascertained that the rate of evaporation was in the direct ratio of the difference of the temperatures inside and outside of the pots; that is, that the rate of evaporation per degree of difference of temperatures was the same for all temperatures; and that the rate of evaporation was exactly the same for different thicknesses of the metal. The respective rates of conductivity of the several metals were as follows, expressed in weight of water evaporated from and at $212^{\circ} \mathrm{F}$. per square foot of the interior surface of the pots per degree of difference of temperature per hour, together with the equivalent quantities of heat-units:

Water at $212^{\circ}$. Heat-units. Ratio.

| Copper | . 665 lb . | 642.5 | 1.00 |
| :---: | :---: | :---: | :---: |
| Brass. | . 577 " | 556.8 | . 87 |
| Wrought iron | . 387 " | 373.6 | . 58 |
| Cast iron. | . 327 " | 315.7 | . 49 |

Whitham, "Steam Engine Design," p. 283, also Trans. A. S. M. E. ix, 425, in using these data in deriving a formula for surface condensers calls these figures those of perfect conductivity, and multiplies them by a coefficient $C$, which he takes at 0.323 , to obtain the efficiency of condenser surface in ordinary use, i.e., coated with saline and greasy deposits.

Transmission of Heat from Steam to water throngh Coils of Iron Pipe.-H. G. C. Kopp and F. J. Meystre (Stevens Indicator, Jan., 1894), give an account of some experiments on transmission of heat through coils of pipe. They collate the results of earlier experiments as follows, for comparison:

|  |  | Steam Condensed per Square foot per degree difference of temperature per hour. |  | $\begin{array}{r} \text { Heat } \\ \text { mitt } \\ \text { square } \\ \text { degree } \\ \text { ence of } \\ \text { ature } \end{array}$ | transd per oot per differemper er hour | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Laurens | Copper coils... | . 292 | . 981 | 315 | 974 |  |
| Havrez. | 2 Copper coils. | . 268 | 1.20 | 280 | 1120 1200 |  |
| Perkins. | Iron coil...... | .... | . 24 | .... | 215 | $\left\{\begin{array}{l}\text { Steam pressure } \\ =100\end{array}\right.$ |
| " | " " ${ }^{\text {c..... }}$ |  | . 22 | $\ldots$ | 208.2 | $\left\{\begin{array}{l} \text { Steam pressure } \\ =10 . \end{array}\right.$ |
| Box. | Iron tube | . 235 | $\ldots$ | 230 |  |  |
|  | "، "، | . 196 |  | $20 \%$ |  |  |
| Havrez. | Cast-iron boiler. | . $07 \%$ | . 105 | 82 | 100 |  |

From the above it would appear that the efficiency of iron surfaces is less than that of copper coils, plate surfaces being far inferior.
In all experiments made up to the present time, it appears that the temperature of the condensing water was allowed to rise, a mean between the initial and final temperatures being accepted as the effective temperature. But as water becomes warmer it circulates more rapidly, thereby causing the water surrounding the coil to become agitated and replaced by cooler water, which allows more heat to be transmitted.

Again, in accepting the mean temperature as that of the condensing medium, the assumption is made that the rate of condensation is in direct proportion to the temperature of the condensing water.

In order to correct and avoid any error arising from these assumptions and approximations, experiments were undertaken, in which all the couditions were constant during each test.

The pressure was maintained uniform throughout the coil, and provision was made for the free outflow of the condensed steam, in order to obtain at all times the full efficiency of the condensing surface. The condensing water was continually stirred to secure uniformity of temperature, which was regulated by means of a steam-pipe and a cold-water pipe entering the tank in which the coil was placed.

The following is a condeused statement of the results
Heat Transmitted per Square Foot of Cooling Surface, per Hour, per Deciaer of Diffrerence of Temperature. (British Thermal Units.)

| Temperature of Conderising Water. | 1-ia. Iron Pipe; Stcam inside, 60 llbs . Gauge Pressure. | 11/2 in. Pipe; Steam inside, 10 lbs. Pressure. | $11 / 2$ in. Pipe; Steam outside, 10 lbs. Pressure. | 11/2in. Pipe; Steam inside 60 lbs. Pressure. |
| :---: | :---: | :---: | :---: | :---: |
| 80 | 265 | 128 | 200 |  |
| 100 | 269 | 130 | 230 | 239 |
| 120 | $2 \% 2$ | 137 | 260 | 24 \% |
| 140 | 277 | 145 | 267 | $2 \% 6$ |
| 160 | 281 | 158 | 271 | 306 |
| 180 | 299 | 174 | $2 \% 0$ | 349 |
| 200 | 313 | ... | ... | 419 |

The results indicate that the heat transmitted per degree of difference of temperature in general increases as the temperature of the condensing water is increased.
The amount transmitted is much larger with the steam on the outside of the coil than with the steam inside the coil. This may be explained in part by the fact that the condensing water when inside the coil flows over the surface of conduction very rapidly, and is more efficient for cooling than when contained in a tank outside of the coil.
This result is in accordance with that found by Mr. Thomas Craddock, which indicated that the rate of cooling by transmission of heat througli metallic surfaces was almost wholly dependent on the rate of circulation of the cooling medium over the surface to be cooled.
Transmission of Heat in Cendenser Tubes. (Eng'g, Dec. 10,1875, p. 449. ). -In 1874 B. C. Nichol inade experiments for determining the rate at which heat was transmitted through a condenser tube. The results went to show that the amount of heat transmitted through the walls of the Lube per estimated degree of mean difference of temperature increased considerably with this difference. For example:
Estimated mean difference of Vertical Tube.

- temperature between inside and outside of tube, degrees Fahr. .
Heat-units transmitted per hour per square foot of surface per $\begin{array}{llllllll}\text { degree of mean diff. of temp.... } & 422 & 531 & 561 & 610 & 737 & 823\end{array}$
These results seem to throw doubt upon Mr. Irherwood's statement that the rate of evaporation per degree of difference of temperature is the same for all temperatures.

Mr. Thomas Craddock found that water was enormously more efficient than air for the abstraction of heat through metallic surfaces in the process of cooling. He proved that the rate of cooling by transnission of heat through metallic surfaces depends upon the rate of circulation of the cooling medium over the surface to be cooled. A tube filled with hot water, moved by rapid rotation at the rate of 59 ft . per second, through air, lost as much heat in one minute as it did in still air in $1:$ minutes. In water, at a velocity of 3 ft . per second, as much heat was abstracted in half a minute as was abstracted in one minute when it was at rest in the water. Mr. Craddock concluded, further, that the circulation of the cooling fluid became of
greater importance as the difference of temperature on the two sides of the plate became less. (Clark, R. T. D., p. 461.)
Heat Transmission through Cast-iron Plates Pickledin Nitric Acid.-Experiments by R. C. Carpeuter (Trans. A. S. M. E., xii 1\%9) show a marked change in the conducting power of the plates (from steam to water), due to prolonged treatment with dilute nitric acid.
The action of the nitric acid, by dissolving the free iron and not attacking the carbon, forms a protecting surface to the iron, which is largely composed of carbon. The following is a summary of results:

| Character of Plates, each plate 8.4 in. by 5.4 in., exposed surface $2 \pi$ sq. ft. | Increase in <br> Temperature of <br> 3.125 lbs . of Water each Minute. | Proportiouate Thermal Units each Degree of Difference of Temperature per Square Foot per Hour. | Relative Transmission of Heat. |
| :---: | :---: | :---: | :---: |
| Cast iron-untreated skin on, but clean, free from rust. | 13.90 | 113.2 | 100.0 |
| Cast iron-nitric acid, 1\% sol., 9 days.. | 11.5 | 97.7 | 86.3 |
| " 6 \% 1\% sol., 18 days. | 9.7 | 80.08 | 70.7 |
| " ${ }^{6}$ ، $6 \quad 1 \%$ sol., 40 days. | ${ }_{9}^{9.6}$ | 87.8 | ${ }^{68 .} 8$ |
| " " 5 5\% sol., 9 days. 40 days. | ${ }_{10.6}$ | 77.4 | 68.5 |
| Plate of pine wood, same dimensions as the plate of cast iron | 0.33 | 1.9 | 1.6 |

The effect of covering cast-iron surfaces with varnish has been investigated by P. M. Chamberlain. He subjected the plate to the action of strong acid for a few hours, and then applied a non conducting varnish. One surface only was treated. Some of his results are as follows:
162. After exposure to nitric acid sixteen hours, then oiled (linseed oil.)
166 After exposure to hydrochloric acid twelve hours, then oiled (linseed oil.)
113. After exposure to sulphuric acid 1, water 2, for 48 hours, then oiled, varnished, and allowed to dry for 24 hours.
Transmission of 耳Eeat through Solid Plates from Air or other Dry Gases to Water. (From Clark on the Steam Engive.) -The law of the transmission of heat from hot air or other gases to water, through metallic plates, has not been exactly determined by experiment. The general results of experiments on the evaporative action of different portions of the heating surface of a steam-boiler point to the general law that the quantity of heat transmitted per degree difference of temperature is practically uniform for various differences of temperature.

The communication of heat from the gas to the plate surface is much accelerated by mechanical impingement of the gaseous products upon the surface.

Clark says that when the surfaces are perfectly clean, the rate of transmission of heat through plates of metal from air or gas to water is greater for copper, next for brass, and next for wrought iron. But when the surfaces are dimmed or coated, the rate is the same for the different metals.

With respect to the influence of the conductivity of metals and of the thickness of the plate on the transmission of heat from burnt gases to water, Mr. Napier made experiments with small boilers of iron and copper placed over a gas-flame. The vessels were 5 inches in diameter and 21/2 inches deep. From three vessels, one of iron, one of copper, and one of iron sides and copper bottom, each of them $1 / 30$ inch in thickness, equal quantities of water were evaporated to dryness, in the times as follows :

| Water. | Iron Vessel. | Copper Vessel. | Iron and Copper Vessel |
| :---: | :---: | :---: | :---: |
| 4 ounces | 19 minutes | 18.5 minutes |  |
| 11 " | 33 " | 30.75 " |  |
| 51/2 " | 50 " | 44 6 |  |
| $4{ }^{6}$ | 35.7 " |  | 36.83 minutes. |

Two other vessels of iron sides $1 / 30$ incl thick, one having a $1 / 4$-inch copper oottom and the other a $1 / 4$-inch lead bottom, were tested against the iron and copper vessel, $1 / 30$ inch thick. Equal quantities of water were evaporated in 54,55 , and $531 / 2$ minutes respectively. Taken generally, the results of these experiments show that there are practically tut slight differences between iron, copper, and lead in evaporative activity, and that the activity is not affected by the thickness of the bottom.

Mr. W. B. Johnson formed a like conclusion from the results of lis observations of two boilers of 160 horse-power each, made exactly alike, except that one had iron flue-tubes and the other copper flıe-tubes. No difference could be detected between the performances of these boilers.

Divergencies between the results of different experimenters are attributable probably to the difference of conditions under which the heat was transmitted, as between water or steam and water, and between gaseous matter and water. On one point the divergence is extreme: the rate of transmission of heat per degree of difference of temperature. Whilst from 400 to 600 nnits of heat are transmitted from water to water through iron plates, per degree of difference per square foot per hour, the quantity of heat transmitted between water and air, or other dry gas, is only about from 2 to 5 units, according as the surrounding air is at rest or in movement. In a locomotive boiler, where radiant heat was brought into play, 17 units of heat were transmitted through the plates of the fire-box per degree of difference of temperature per square foot per hour.
Transmission of Heat through Plates and rubes from Steam or Hot Water to Air.-The transfer of heat from steam or water through a plate or tube into the surrounding air is a complex operation, in which the internal and external conductivity of the metal, the radiating power of the surface, and the convection of heat in the surrounding air are all concerned. Since the quantity of heat radiated from a surface varies with the condition of the surface and with the surroundings, according to laws not yet determined, and since the heat carried away by convection varies with the rate of the flow of the air over the surface, it is evident that no general law can be laid down for the total quantity of heat emitted.
The following is condensed from an article on Loss of Heat from Steampipes, in The Locomotive, Sept. and Oct., 1892.
A hot steanı pipe is radiating heat constantly off into space, but at the same time it is cooling also by convection. Experimental data on which to base calculations of the heat radiated and otherwise lost by steam-pipes are neither numerous nor satisfactory.
In Box's Practical Treatise on Heat a number of results are given for the amount of heat radiated by different substances when the temperature of the air is $1^{\circ}$ Fahr. lower than the temperature of the radiating body. A portion of this table is given below. It is said to be based on Péclet's experiments.

## Heat Units Radiated per Hour, per Square Foot of Surface, for $1^{\circ}$ E'ahrenheit Excess in Temperature.

Copper, polished ................. . 032 y | Sheet-iron, ordinary.............. . . 5662

Zinc and brass, polished .......... . 0491
Tinned iron, polished............... 0858
Sheet-iron, polished ............... . . 0920
Sheet lead
1329
Cast iron, new........................ 6480
Common steam-pipe, inferred.. . 6400
Cast and sheet iron, rusted .... . 6868
Wood, building stone, and brick . 7358
When the temperature of the air is about $50^{\circ}$ or $60^{\circ}$ Fahr., and the radiating body is not more than about $30^{\circ}$ lotter than the air, we may calculate the radiation of a given surface by assuming the amonnt of heat given off by it in a given time to be proportional to the difference in temperature between the radiating body and the air. This is "Newton's law of cooling." But when the difference in temperature is great, Newton's law does not hold good; the radiation is 110 longer proportional to the difference in temperature, but must be calculated by a complex formula established experinient. ally by Duloug and Petit. Box has computed a table from this formula, which greatly facilitates its application, and which is given below:

Factors for Reduction to Dulong's Law of Radiation.

| Differences in Temperature between Radiating Body and the Air. | Temperature of the Air on the Fahrenheit Scale. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $3 \overbrace{}^{\circ}$ | $50^{\circ}$ | $59^{\circ}$ | $68^{\circ}$ | $86^{\circ}$ | $104^{\circ}$ | $122^{\circ}$ | $140^{\circ}$ | $158^{\circ}$ | $176^{\circ}$ | $194^{\circ}$ | $212^{\circ}$ |
| Deg. Fahr. | 1.00 | 1.07 | 1.12 | 1.16 | 1.25 |  |  | 1.58 | 1.70 | 1.85 | 1.09 |  |
| ${ }_{36}^{18}$ | 1.03 | 1.08 | 1.16 | 1.21 | 1.30 | 1.40 | 1.52 | 1.68 | 1.76 | 1.91 | 2.06 | 2.23 |
| 54 | 1.07 | 1.16 | 1.20 | 1.25 | 1.35 | 1.45 | 1.58 | 1.70 | 1.83 | 1.99 | 2.14 | 2. 31 |
| 72 | 1.12 | 1.20 | 1.25 | 1.30 | 1.40 | 1.52 | 1.64 | 1.76 | 1.90 | 2.07 | 2.23 | 2.40 |
| 90 | 1.16 | 1.25 | 1.31 | 1.36 | 1.46 | 1.58 | 1.71 | 1.84 | 1.98 | 2.15 | 2.33 | 2.51 |
| 108 | 1.21 | 1.31 | 1.36 | 1.42 | 1.52 | 1.65 | 1.78 | 1.92 | 2.07 | 2.28 | 2.42 | 2.62 |
| 126 | 1.26 | 1.36 | 1.42 | 1.48 | 1.50 | 1.72 | 1.86 | 2.00 | 2.16 | 2.34 | 2.52 | 2. $2^{2}$ |
| 144 | 1.32 | 1.42 | 1.48 | 1.54 | 1.65 | 1.79 | 1.94 | 2.08 | 2.24 | 2.44 | 2.64 | 2.83 |
| 162 | 1.37 | 1.48 | 1.54 | 1.60 | 1.73 | 1.86 | 2.02 | 2.17 | 2. 34 | 2.54 | 2.74 | 2.96 |
| 180 |  |  | 1.61 | 1.68 | 1.81 | 1.95 | 2.11 | 2.27 | 2.46 | 2.66 | 2.87 | 3.10 |
| 198 | 1.50 |  | 1.69 | 1.75 | 1.89 | 2.04 | 2.21 | 2.38 | 2.56 | 2.78 | 3.00 | 3.24 |
| 216 | 1.58 | 1.69 | 1.76 | 1.83 | 1.97 | - 13 | 2.32 | 2. 48 | - 268 | 2.91 | 3.13 | 3.38 |
| 234 | 1.64 | 1.77 | 1.84 |  | 2.06 |  |  | 2.52 | 2.80 | 3.03 | 3.28 |  |
| 252 | 1.71 | 1.85 | 1.92 | 2.00 | 2.15 | 2.33 | 2.52 | 2.71 | 2.92 | 3.18 | 3.43 | 3.70 |
| 270 | 1.79 | 1.93 | 2.01 | 2.09 | 2.22 | 2.44 | 2.64 | 2.84 | 3.06 | 3.32 | 3.58 | 3.87 |
| 288 | 1.89 | 2.03 | 2.12 | 2.20 | 2.37 | 2.56 | 2. 78 | 2.99 |  | 3.50 | 3.97 | 4.07 |
| 306 | 1.98 | 2.13 | 2.22 | 2.31 | 2.49 | 2.69 | 2.90 |  |  |  | 3.95 | 4.26 |
| 324 | 2.07 | $2.23$ | 2.33 | 2.42 | 2.62 | 2.81 |  | 3.28 | 3.53 | 3.84 | 4.14 | 4.46 |
| 342 360 | 2.17 | $\begin{aligned} & 2.34 \\ & 2.45 \end{aligned}$ | 2.44 | 2. 24 | 2.73 | 2.95 <br> 3.09 |  | 3.44 | 3.70 <br> 3.88 |  |  | 4.68 |
| 360 <br> 378 | 2.39 | 2.57 | 2.68 | 2. 79 | 3.00 | 3 | 3.51 | 3.78 | 4.08 | 4.42 | 4.71 | 4.15 |
| 396 | 2.50 | 2. 70 | 2.81 | 2.93 | 3.15 | 3.40 | 3.68 | 3.97 | 4.28 | 4.64 | 5.01 | 5.40 |
| 414 | 2.63 | 2.84 | 2.95 | 3.07 | 3.31 | 3.51 | 3.87 | 4.12 | 4.48 | 4.87 | 5.26 | 5.67 |
| 432 | 2.76 | 2.98 | 3.10 | 3.23 | ${ }^{3.47}$ |  |  | 4.32 | 4.61 | 5.12 | 5.33 | 6.04 |

The loss of heat by convection appears to be independent of the nature of the surface, that is, it is the same for iron, stone, wood, and other materials. It is different for bodies of different shape, however, and it varies with the position of the body. Thus a vertical steam-pipe will not lose so much heat by convection as a horizontal one will; for the air heated at the lower part of the vertical pipe will rise along the surface of the pipe, protecting it to some extent from the chilling action of the surrounding cooler air. For a similar reason the shape of a body has an important influence on the result, those bodies losing most heat whose forms are such as to allow the cool air free access to every part of their surface. The following table from Box gives the number of heat units that horizontal cylinders or pipes lose by convection per square foot of surface per hour, for one degree difference in temperature between the pipe and the air.
Heat Units Lost by Convection from Horizontal Pipes, per Square Foot of Surface per Hour, for a Temperature Difference of $1^{\circ}$ Fahr.

| External <br> Diameter of <br> Pipe <br> in inches. | Heat Units <br> Lost. | External <br> Diameter <br> of Pipe <br> in inches. | Heat Units <br> Lost. | External <br> Diameter <br> of Pipe <br> in inches. | Heat Units <br> Lost. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 2 | 0.728 | 7 | 0.509 | 18 | 0.455 |
| 3 | 0.626 | 8 | 0.498 | 24 | 0.447 |
| 4 | $0.5 \% 4$ | 9 | 0.489 | 36 | 0.433 |
| 5 | 0.544 | 10 | 0.482 | 48 | 0.434 |
| 6 | 0.523 | 12 | $0.4 \tilde{T}_{2}$ | $\cdots$ | $\cdots \cdots$ |

The loss of heat by convection is nearly proportional to the difference in temperature between the hot body and the air; but the experiments of

Dulong and Péclet show that this is not exactly true, and we may here also resort to a table of factors for correcting the results obtained by simple proportion.

Factors for Reduction to Dulong's Law of Convection.

| Difference <br> in Temp. <br> intween Hot <br> Body and <br> Air. | Factor. | Difference <br> in Temp. <br> intween Hot <br> Body and <br> Air. | Factor. | Difference <br> in Temp. <br> between <br> Hot Body <br> and Air. | Factor. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $18^{\circ} \mathrm{F}$ | 0.94 | $180^{\circ} \mathrm{F}$ |  | 1.62 | $342^{\circ} \mathrm{F}$. |
| $36^{\circ}$ | 1.11 | $198^{\circ}$ | 1.65 | $360^{\circ}$ | 1.87 |
| $54^{\circ}$ | 1.22 | $216^{\circ}$ | 1.68 | $378^{\circ}$ | 1.90 |
| $72^{\circ}$ | 1.30 | $234^{\circ}$ | 1.72 | $396^{\circ}$ | 1.94 |
| $90^{\circ}$ | 1.37 | $252^{\circ}$ | 1.74 | $414^{\circ}$ | 1.96 |
| $108^{\circ}$ | 1.43 | $270^{\circ}$ | 1.77 | $432^{\circ}$ | 1.98 |
| $126^{\circ}$ | 1.49 | $288^{\circ}$ | 1.80 | $450^{\circ}$ | 2.00 |
| $144^{\circ}$ | 1.53 | $306^{\circ}$ | 1.83 | $468^{\circ}$ | 2.02 |
| $162^{\circ}$ | 1.58 | $324^{\circ}$ | 1.85 | $\cdots \cdots$ | $\cdots$ |

Example in the Use of the Tables.-Required the total loss of heat by both radiation and convection, per foot of length of a steam-pipe 211/32 in. external diameter, steam pressure 60 lbs ., temperature of the air in the room $68^{\circ}$ Fahr.
Temperature corresponding to 60 lbs . equals $307^{\circ}$; temperature difference $=307-68=239^{\circ}$.
Area of one foot length of steam-pipe $=211 / 32 \times 3.1416 \div 12=0.614 \mathrm{sq}$. ft.

Heat radiated per hour per square foot per degree of difference, from table, 0.64.
Radiation loss per hour by Newton's law $=239^{\circ} \times .614 \mathrm{ft} . \times .64=93.9$ heat units. Same reduced to conform with Dulong's law of radiation: factor from table for temperature difference of $233^{\circ}$ and temperature of air $68^{\circ}=$ 1.93. $93.9 \times 1.93=181.2$ heat units, total loss by radiation.

Convection loss per square foot per hour from a $211 / 32$-inch pipe: by interpolation from table, $2^{\prime \prime}=.728,3^{\prime \prime}=.626,211 / 32^{\prime \prime}=.693$.
Area, $.614 \times .693 \times 239^{\circ}=101.7$ heat units. Same reduced to conform with Dulong's law of convection: $101.7 \times 1.73$ (from table) $=175.9$ heat units per hour. Total loss by radiation and convection $=181.2+175.9=357.1$ heat units per hour. Loss per degree of difference of temperature per linear foot of pipe per hour $=35 \tilde{\sim} .1 \div 239=1.494$ heat units $=2.433$ per sq . ft .
It is not claimed, says The Locomotive, that the results obtained by this method of calculation are strictly accurate. The experimental data are not sufficient to allow us to compute the heat-loss from steam-pipes with any great degree of refinement; yet it is believed that the results obtained as indicated above will be sufficiently near the truth for most purposes. An experiment by Prof. Ordway, in a pipe $211 / 3: \mathrm{in}$. diam. under the above conditions (Trans. A. S. M. E., v. 73), showed a condensation of steam of 181 grammes per hour, which is equivalent to a loss of heat of 358.7 heat units per hour, or within half of one per cent of that givell by the above calculation.
According to different authorities, the quantity of heat given off by steamı and hot-water radiators in ordinary practice of heating of buildings by direct radiation varies from 1.8 to about 3 heat units per hour per square foot per degree of difference of temperature.
The lowest figure is calculated from the following statement by Robert Briggs in his paper" on "American Practice in Warming Buildings by Steam " (Proc. Inst. C. E., 1882, vol. lxxi): "Each 100 sq . ft. of radiating surface will give off 3 Fahr. heat units per minute for each degree $F$. of difference in temperature bet ween the radiating surface and the air in which it is exposed."
The figure $21 / 2$ heat units is given by the Nason Manufacturing Company in their catalogue, and 2 to 21/4 are given by many recent writers.
For the ordinary temperature difference in low-pressure steam-heating, say $212^{\circ}-70^{\circ}=142^{\circ} \mathrm{F} ., 1 \mathrm{lb}$. steam condensed from $212^{\circ}$ to water at the
same temperature gives up $965 .{ }^{\text {. }}$ heat units. A loss of 2 heat units per sq. ft. per hour per degree of difference, under these conditions, is equivalent to $2 \times 142 \div 965=0.3 \mathrm{lbs}$. of steam condensed per hour per sq. ft. of heating surface. (See also Heating and Ventilation.)

Transmission of Heat through Walls, ete., of Buildings (Nason Manufacturing Co.). (See also Heating and Ventilation.)-Heat has the remarkable property of passing through noderate thicknesses of air and gases without appreciable loss, so that air is not warmed by radiant heat, but by contact with surfaces that have absorbed the radiation.

## Powers of Different Substances for Transmitting Heat.

| Window-glass | 1000 | Bricks, rough........... 200 to 250 |
| :---: | :---: | :---: |
| Oak or walnu | 66 | Bricks, whitewashed |
| White pine | 80 | Granite or slate. . ....... 250 |
| Pitch-pin | 100 | Sheet iron............... 1030 to 1110 |
| Lath or plaste | 75 to 100 |  |

A square foot of glass will cool $1.2 \tilde{2} 9$ cubic feet of air from the temperature inside to that outside per minute, and outside wall surface is generally estimated at one fifth of the rate of glass in cooling effect.
Box, in his "Practical Treatise on Heat," gives a table of the conducting powers of materials prepared from the experiments of Péclet. It gives the quantity of heat in units transmitted per square foot per hour by a plate 1 inch in thickness, the two surfaces differing in temperature 1 degree:

$$
\begin{aligned}
& \text { Fine-grained gray marble.......................... .. ... } 28.00 \\
& \text { Coarse-grained white marble.................................. . } 22.4 \\
& \text { Stone, calcareous, fine........................................... . . . } 16.7 \\
& \text { Stone, calcareous, ordinary........................................ } 13.68 \\
& \text { Baked clay, brickwork ..................... .................. } 4.83 \\
& \text { Brick-dust, sifted....................................... ............ } 1.33
\end{aligned}
$$

Hood, in his "Warming and Ventilating of Buildings," p. 249, gives the results of M. Depretz, which, placing the conducting power of marble at 1.00, give . 483 as the value for firebrick.

## THERITOHYNAMES.

Thermodynamics, the science of heat considered as a form of energy, is useful in advanced studies of the theory of steam, gas, and air engines, refrigerating machines, compressed air, etc. The method of treatment adopted by the standard writers is severely mathematical, involving constant application of the calculus. The student will find the subject thorougly treated in the recent works by Rontgen (Dubois's translation), Wood, and Peabody.
First Law of Thermodynamics.-Heat and mechanical energy are mutually convertible in the ratio of about 78 foot-pounds for the British thermal unit. (Wood.) Heat is the living force or vis viva due to certain molecular motions of the molecules of bodies, and this living force may be stated or measured in units of heat or in foot-pounds, a unit of heat in British measures being equivalent to $7 \%$ [\% $\%$ ] foot-pounds. (Trowbridge, Trans. A. S. M. E., vii. (2T.)

Second Lave of rhermodynamics.-The second law has by different writers been stated in a variety of ways, and apparently with ideas so diverse as not to cover a common principle. (Wood, Therm., p. 389.)

It is impossible for a self-acting machine, unaided by any external agency to convert heat from one body to another at a higher temperature. (Clausius.)

If all the heat absorbed be at one temperature, and that rejected be at one lower temperature, then will the heat which is transmuted into work be to the entire heat absorbed in the same ratio as the difference between the absolute temperature of the source and refrigerator is to the absolute temperature of the source. In other words, the second law is an expression for the efficiency of the perfect elementary engine. (Wood.)
The living force, or vis viva, of a body (called heat) is always proportional to the absolute temperature of the body. (Trowbriclge.)
The expression $\frac{Q_{1}-Q_{2}}{Q_{1}}=\frac{T_{1}-T_{2}}{T_{1}}$ may be called the symbolical or algebraic enunciation of the second law,-the law which limits the efficiency of heat engines, and which does not depend on the nature of the working medium employed. (Trowbridge.) $Q_{1}$ and $T_{1}=$ quantity and absolute
temperature of the heat received, $Q_{2}$ and $T_{2}=$ quantity and absolute temperature of the heat rejected.
The expression $\frac{T_{1}-T_{3}}{T_{1}}$ represents the efficiency of a perfect heat engine which receives all its leat at the absolute temperature $T_{1}$, and rejects heat at the temperature $T_{2}$, converting into work the difference between the quantity received and rejected.
Example.-What is the efficiency of a perfect heat engine which receives heat at $388^{\circ} \mathrm{F}$. (the temperature of steam of 200 lbs . gauge pressure) and rejects heat at $100^{\circ} \mathrm{F}$. (temperature of a condenser, pressure 1 lb . above vacuum).

$$
\frac{388+459.2-(100+459.2)}{388+459.2}=34 \%, \text { nearly. }
$$

In the actual engine this efficiency can never be attained, for the difference between the quantity of heat received juto the cylinder and that rejected into the condenser is not all converted into work, much of it being lost by radiation, leakage, etc. In the steam engine the plenomenon of cylinder condensation also tends to reduce the efficiency.

## PHYSICAL PROPERTIES OF GASES.

(Additional matter on this subject will be found under Heat, Air, Gas, and Steam.)
When a mass of gas is enclosed in a vessel it exerts a pressure against the walls. This pressure is uniform on every square inch of the surface of the vessel; also, at any point in the fluid mass the pressure is the same in every direction.
In straali vessels containining gases the increase of pressure due to weight may be neglected, since all gases are very light; but where liquids are concerned, the increase in pressure due to their weight must always be taken intn account.

Expansion of Gases, Marriotte's Law. - The volume of a gas diminishes in the same ratio as the pressure upon it is increased.
This law is by experiment round to be very nearly true for all gases, and is known as Boyle's or Mariotte's law.
If $p=$ pressure at a volume $v$, and $p_{1}=$ pressure at a volume $v_{1}, p_{1} v_{1}=$ $p v ; p_{1}=\frac{v}{v_{1}} p ; p v=\mathrm{a}$ constant.
The constant, $C$, varies with the temperature, everything else remaining the same.

Air compressed by a pressure of seventy-five atmospheres has a volume about $2 \%$ less than that computed from Boyle's law, but this is the greatest divergence that is fonnd below 160 atmospheres pressure.
Law of Charles.- The volume of a perfect gas at a constant pressure is proportional to its absolnte temperature. If $v_{0}$ be the volume of a gas at $3 * 0^{\circ}$., and $v_{1}$ the volume at any other temperature, $t_{1}$, theu

$$
\begin{aligned}
v_{1}= & v_{0}\left(\frac{t_{1}+459.2}{491.2}\right) ; \quad v_{1}=\left(1+\frac{t_{1}-33^{\circ}}{491.2}\right) v_{0}, \\
& \text { or } v_{1}=\left[1+0.002036\left(t_{1}-322^{\circ}\right)\right] v_{0} .
\end{aligned}
$$

If the pressure also change from $p_{0}$ to $p_{1}$,

$$
v_{1}=v_{0} p_{p_{1}}\left(\frac{t_{1}+459.2}{491.2}\right) .
$$

The Densities of the elementary gases are simply proportional to their atomic weights. The density of a compound gas, referred to hydrogen as 1 , is one-half its molecular weight; thus the relative density of $\mathrm{CO}_{2}$ is $1 / 2(12+32)=22$.
A vogadro's Lavv.--Equal volumes of all gases, under the same conditions of temperature and pressure, contain the same number of molecules.
To find the weight of a gas in pounds per cubic foot at $3 \%^{\circ} \mathrm{F}$. m multiply hali the molecular weight of the gas by .00559 . Thus $1 \mathrm{cu} . \mathrm{ft}$. marsh-gas, $\mathrm{CH}_{4}$,

$$
=1 / 2(12+4) \times .00559=.0147 \mathrm{lb}
$$

When a certain volume of hydrogen combines with one half its volume of oxygen, there is produced an amonnt of water vapor which will occupy the same volume as that which was occupied by the hydrogen gas when at the same temperature and pressure.
Saturation-point of Vapors. - A vapor that is not near the satura-tion-point beliaves like a gas under changes of temperature and pressure; but if it is sufficiently compressed or cooled, it reaches a point where it begins to condense: it tlien no longer obeys the same laws as a gas, but its pressure cannot be increased by diminishing the size of the vessel containing it, but remains constant, except when the temperature is changed. The only gas that can prevent a liquid evaporating seems to be its own vapor.
Dalton's Law of Gascous Pressures.-Every portion of a mass of gas inclosed in a vessel contributes to the pressure against the sides of the vessel the same amount that it would have exerted by itself had no other gas been present.

Mixtures of Vapors and Gases.-The pressure exerted against the interior of a vessel by a given quantity of a perfect gas enclosed in it is the sum of the pressures which any number of parts into which such quantity might be divided would exert separately, if each were enclosed in a vessel of the same bulk alone, at the same temperature. Although this law is not exactly true for any actual gas, it is very nearly true for many. Thus if $0.080 \% 28 \mathrm{lb}$. of air at $32^{\circ} \mathrm{F}$., being enclosed in a vessel of one cubic foot capacity, exerts a pressure of one atmosphere or 14.7 pounds, on each square inch of the interior of the vessel, then will each additional $0.080 \% 28 \mathrm{lb}$. of air which is enclosed, at $32^{\circ}$, in the same vessel, produce very nearly an additional atmosphere of pressure. The same law is applicable to mixtures of gases of different kinds. For example, $0,12344 \mathrm{lb}$. of carbonic-acid gas, at $32^{\circ}$, being enclosed in a vessel of one cubic foot in capacity, exerts a pressure of one atmosphere; consequently, if $0.080 \% 28 \mathrm{lb}$. of air and 0.12344 lb . of carbonic acid, mixed, be enclosed at the temperature of $32^{\circ}$, in a vessel of one cubic foot of capacity, the mixture will exert a pressure of two atmos. pheres. As a second example: Let 0.080728 lb . of air, at $212^{\circ}$, be enclosed in a vessel of one cubic foot; it will exert a pressure of

$$
\frac{212+459.2}{32+459.2}=1.366 \text { atmospheres }
$$

Let 0.03797 lb . of steam, at $212^{\circ}$, be enclosed in a vessel of one cubic foot; it will exert a pressure of one atmosphere. Consequently, if $0.080 \% 28 \mathrm{lb}$. of air and 0.03797 lb . of steam be mixed and enclosed together, at $212^{\circ}$, in a vessel of one cubic foot, the mixture will exert a pressure of 2.366 atmospheres. It is a cominon but erroneons practice, in elementary books on physics, to de.. scribe this law as constituting a difference between mixed and homogeneous gases; whereas it is obvious that for mixed and homogeneous gases the law of pressure is exactly the same, viz., that the pressure of the whole of as gaseous mass is the sum of the pressures of all its parts This is one of ther laws of mixture of gases and vapors.

A second law is that the presence of a foreign gaseous substance in con tact with the surface of a solid or liquid does not affect the density of the vapor of that solid or liquid unless there is a tendency to chemical com. bination between the two substances. in which case the density of the vapor is slightly increased. (Rankine, S. E., p. 239.)

Flow of Gases.-By the principle of the conservation of energy, it may be shown that the velocity with which a gas under pressure will escape into a vacuum is inversely proportional to the square root of its density; that is, oxygen, which is sixteen times as heavy as hydrogen, would, under exactly the same circumstances, escape through an opening only one fourth as fast as the latter gas.

Absorption of Gases by Eiquids.-Many gases are readily absorbed by water. Other liquids also possess this power in a greater or less degree. Water will for example, absorb its own volume of carbonic-acid gas, 430 times its volume of ammonia, $21 / 3$ times its volume of chlorine, and only about $1 / 20$ of its volume of oxygen.
The weight of gas that is absorbed by a given volume of liquid is proportional to the pressure. But as the volume of a mass of gas is less as the pressure is greater, the volunie which a given amount of liquid can absorb at a certain temperature will be constant, whatever the pressure. Water, for example, can absorb its own volume of carbonic-acid gas at atmospheric pressure; it will also dissolve its own volmme if the pressure is twice as great, but in that case the gas will be twice as dense, and consequently twice
the weight of gas is dissolved.

## AIR．

Properties of Air．－Air is a mechanical mixture of the gases oxygen and nitrogen； 20.7 parts O and 79.3 parts N by volume， 23 parts $O$ and 77 parts N by weight．
The weight of pure air at $32^{\circ} \mathrm{F}$ ．and a barometric pressure of 29.92 inches of mercury，or 14.6963 lbs ．per sq．in．，or 2116.3 lbs ．per sq ． ft ．，is .080728 lb ．per cubic foot．Volume of $1 \mathrm{lb} .=12.38 \mathrm{i}^{\mathrm{i}} \mathrm{cu}$ ． ft ．At any other temperature and barometric pressure its weight in lbs．per cubic foot is $W=\frac{1.3253 \times B}{459.2+T}$ ， where $B=$ height of the barometer，$T=$ temperature Fahr．，and $1.3253=$ weight in lbs．of 459.2 c ． ft ．of air at $0^{\circ} \mathrm{F}$ ．and one incll barometric pressure． its volume varies inversely as the pressure．

## Volume，Density，and Pressure of Air at Various Temperatures．（D．K．Clark．）

| Fahr． | Volume at Atmos． Pressure． |  | Density，lbs． per Cubic Foot at Atmos．Pressure． | Pressure at Coustant Voluine． |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cubic Feet in 1 lb ． | Compara－ tive Vol． |  | Lbs．per Sq．In． | Compara－ tive Pres． |
| 0 | 11.583 | ． 881 | ． 086331 | 12.96 | ． 881 |
| 32 | 12.387 | ． 943 | ．080728 | 13.86 | ． 943 |
| 40 50 | 12.586 12.840 | ． 958 | ． 079439 | 14.08 | ． 958 |
| 62 | 13.141 | 1.000 | ． 077884 | 14.36 | ． 977 |
| 70 | 13.342 | 1.015 | ． 076097 | 14.70 | 1.000 |
| 80 | 13.593 | 1.034 | ． 073565 | 14.92 | 1.015 |
| 90 | 13.845 | 1.054 | ． 072230 | 15.21 | 1.034 |
| 100 | 14.096 | 1.073 | ． 070942 | 15．67 | 1.073 |
| 110 | 14.344 14.592 | 1.092 | ． 069721 | 16.05 | 1.092 |
| 130 | 14.846 | 1.113 | ． 06557361 | 16.33 | 1.111 |
| 140 | 15.100 | 1.149 | ． 067361 | 16.61 | 1.130 |
| 150 | 15.351 | 1.168 | ． 06682155 | 16.89 17.19 | 1.149 |
| 160 | 15.603 | 1.187 | ． 061088 | 17.50 | 1.168 |
| 170 | 15.854 | 1.206 | ． 063089 | 17.76 | 1.187 1.206 |
| 180 | 16.106 | 1.226 | ． 062090 | 18.02 18.02 | 1.206 1.226 |
| 200 210 | 16.606 16.860 | 1.264 | ． 060210 | 18.58 | 1.264 |
| 212 | 16.860 16.910 |  | ． 059313 | 18.86 | 1.283 |
| 212 | 16.910 | 1.287 | ． 059135 | 18.92 | 1.287 |

The Airmmanometer consists of a long vertical glass tube，closed at the upper end，open at the lower end，containing air，provided with a scale， and immersed，along with a thermometer，in a transparent liquid，such as water or oil，contained in a strong cylinder of glass，which communicates with the vessel in which the pressure is to be ascertained．The scale shows the volume occupied by the air in the tube．

Let $v_{0}$ be that volunie，at the temperature of $32^{\circ}$ Fahrenheit，and mean pressure of the atmosphere，$p_{0}$ ；let $v_{1}$ be the volume of the air at the tem－ perature $t$ ，and under the absolute pressure to be measured $p_{1}$ ；then

$$
p_{1}=\frac{\left(t+459.2^{\circ}\right) p_{0} v_{0}}{491 . z^{\circ} v_{1}}
$$

## Pressure of the Atmosphere at Different Altitudes．

At the sea－level the pressure of the air is 14.7 pounds per square inch；at $1 / 4$ of a mile above the sea－level it is $14.0 ;$ pounds；at $1 / 2$ mile， 13.33 ；at $3 / 4$ raile， 12.66 ；at 1 mile， 12.02 ；at $11 / 4$ mile， 11.42 ；at $11 / 2$ mile， 10.88 ；and at 8
miles, 9.80 pounds per square inch. For a rough approximation we may assume that the pressure decreases $1 / 2$ pound per square inch for every 1000 feet of ascent.
It is calculated that at a height of about $31 / 2$ miles above the sea-level the weight of a cubic foot of air is only one half what it is at the surface of the earth, at seven miles only one fourth, at fourteen miles only one sixteenth, at twenty-one miles only ons sixty-fourth, and at a height of over fortyfive miles it becomes so attenuated as to have no appreciable weight.

The pressure of the atmosphere increases with the depth of shafts, equal to about one inch rise in the barometer for each 900 feet increase in depth: this may be taken as a rough-and-ready ruke for ascertaining the depth of shafts.

## Pressure of the Atmosphere per Square Inch and per Square Foot at Various Readings of the Barometer.

Rule.-Barometer in inches $\times .4908=$ pressure per square inch; pressure per square inch $\times 144=$ pressure per square foot.

| Barometer. | Pressure per Sq. In. | Pressure per sq. Ft. | Barometer. | Pressure per Sq. In. | Pressure per Sq. Ft. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{28} \mathrm{in} .00$ | lbs. | 19\%s,* | $\mathrm{in}_{29}{ }^{\text {r }}$ | lbs. | lbs.* |
| 28.25 | 13.74 13.86 | $19 \% 8$ 1995 | 29.75 30.00 | 14.60 | 2102 |
| 28.50 | 13.98 | 2013 | 30.25 | 14.84 | 2136 |
| 28.75 | 14.11 | 20.31 | 30.50 | 14.96 | 2154 |
| 29.00 | 14.23 | 2049 | $30 . \% 5$ | 15.09 | 2172 |
| 29.25 | 14.35 |  | 31.00 | 15.21 | 2190 |
| 29.50 | 14.47 |  |  |  |  |

* Decimals omitted.

For lower pressures see table of the Properties of Steam.

## Harometric Theadings corresponding with Different Aititudes, in French and English Measures.

| Altitude. | Read- ing of Earometer | Altitude. | Reading of Barometer. | Altitude. | Reading of Barometer. | Altitude. | Reading of <br> Barometer. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| meters. | mm. | feet. | inches. | meters. | mm. | feet. | inches. |
| 0 | 762 | 0. | 30. | 1147 | 660 | 3763.2 | 25.98 |
| 21 | 760 | 68.9 | 29.93 | 1269 | 650 | 4163.3 | 25.59 |
| 127 | 750 | 416.7 | 29.52 | 1393 | 640 | 4568.3 | 25.19 |
| 234 | 740 | 767.7 | 29.13 | 1519 | 630 | 4983.1 | 24.80 |
| 342 | 730 | 1123.1 | 28.74 | 1647 | 620 | 5403.2 | 24.41 |
| 453 | 720 | 1486.2 | 28.35 | $1 \% \%$ | 610 | 5830.2 | 24.01 |
| 564 | 710 | 1850. 4 | $2 \% .95$ | 1909 | 600 | 6243. | 23.62 |
| 678 | 700 | 2224.5 | 27.55 | 2043 | 590 | 6702.9 | 23.22 |
| \%93 | 690 | 2599.\% | 27.16 | 2180 | 580 | 7152.4 | 2.83 |
| 909 | 680 | 296.1 | 26.77 | 2318 | $5 \% 0$ | 7605.1 | 22.44 |
| 1027 | $6 \% 0$ | 3369.5 | 26.38 | 2460 | 560 | 8071. | 22.04 |

Levelling by the Barometer and by Boiling Water. (Trautwine.)-Many ciremmstances combine to render the results of this kind of levelling unreliable where great accuracy is required. It is difficult to read off from an aneroid (the kind of barometer nsually employed for engineering purposes) to within from two to five or six feet, depending on its size. The moisture or dryness of the air affects the results; also winds, the vicinity of mountains, and the daily atmospheric tides, which cause incessant and irregular flnctuations in the barometer. A barometer hanging quietly in a room will often vary $1 / 4$ of an inch within a few hours, corresponding to a difference of elevation of nearly 100 feet. No formula can possibly be devised that shall embrace these sources of error.

To Find the Difference in Alitude of Two Places.-Take from the table the altitudes opposite to the two boiling temperatures, or to the two barometer readings. Subtract the one opposite the lower reading from that opposite the upper reading. The remainder will be the required height, as a rough approximation. To correct this, add together the two thermometer readings, and divide the sum by 2, for their mean. From table of corrections for temperature, take out the number under this mean. Multiply the approximate height just found by this number.

At $70^{\circ} \mathrm{F}$. pure water will boil at $1^{\circ}$ less of temperature for an average of about 550 feet of elevation above sea-level, up to a height of $1 / 2$ a mile. At the height of 1 mile, $1^{\circ}$ of bniling temperature will correspond to about 560 feet of elevation. In the table the mean of the temperatures at the two stations is assumed to be $32{ }^{\circ} \mathrm{F}$., at which no correction for temperature is necessary in using the table.

|  | E. |  |  | $\begin{gathered} \text { an } \\ \text { oñ } \\ \end{gathered}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $184{ }^{\circ}$ | 16.79 | 15,221 | 196 | 21.71 | 8,481 | 208 | 27.73 | 2,063 |
| 185 | 17.16 | 14,649 | 197 | 2.17 | \% 7 \% 932 | 208.5 | 28.00 | 1,809 |
| 186 | 17.54 | 14,075 | 198 | 22.64 | \%,381 | 209 | 28.29 | 1;539 |
| 187 | 17.93 | 13,498 | 199 | 23.11 | 6,843 | $209.5{ }^{\circ}$ | 28.56 | 1,290 |
| 188 | 18.3. | 12,934 | 200 | 23.59 | 6,304 | 210 | 28.85 | 1,025 |
| 189 | 18.72 | 12,36\% | 201 | 24.08 | 5,764 | 210.5 | 29.15 | - 64 |
| 190 | 19.13 | 11,799 | 202 | 24.58 | 5,225 | 211 | 29.42 | 519 |
| 191 | 19.54 | 11,243 | 203 | 2.08 | 4,694 | 211.5 | 29.61 | 235 |
| 192 | 19.96 | 10,685 | 204 | 25.59 | 4,169 | 212 | 30.00 | S.L. $=0$ |
| 193 | 20.39 | 10,127 | 205 | 26.11 | 3,642 | 212.5 | 30.30 | -261 |
| 194 | 20.82 | 9,579 | 206 | 26.64 | 3,115 | 213 | 30.59 | -511 |
| 195 | 21.26 | 9,031 | 207 | 27.18 | 2,589 |  |  |  |

Corrections for Temperature.


Moisture in the fimosphere.-Atmospheric air always contains a small quantity of canbonic ucid (sec Ventilation, p. 528) and a varying quantity of aqueous vapor or moisture. The relative liumidity of the air at ally time is the percentage of moisture contained in it as compared with the amount it is capable of bolding at the same temperature.
The degree of saturation or celative humidity of the air is determined by the use of the dry and wet bulb thermometer. The degree of saturation for a number of different readings of the thermometer is given in the following table, condensed from the Hygrometric Tables of the U. S. Weather Bureau:

Relative Humidity, Per Cent.


## Welghts of Air，Vkpor of Water，and Saturated Mixtures of Air and Vapor at Difforent Temperatures，under the Ordinary Atmospheric Pressure of 29.921 inches of Mercury．

|  | 法岂 <br> ． <br> วิ＂ <br> ๘ だ <br> 苑荡 <br> 超会兑 <br> シö | Elastic Force of Vapor，Inches of Mercury． | Mixtures of Air Saturated with Vapor． |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Elastic Force of the Air in Mixture of Air and Vapor， Inches of Mercury． | Weight of Cubic Foot of the Mixture of Air and Vapor． |  |  | WeightofVapormixedwith 1 lb．of Air，pounds． |
|  |  |  |  |  | Weight | tal |  |
|  |  |  |  |  |  |  |  |
| $0^{\circ}$ | ． 0864 | ． 044 | 29.817 | ． 0863 | ． 000079 | ．086379 | ． 00092 |
| 12 | ． 0842 | ． 074 | 29.849 | ． 0840 | ． 000130 | ． 084130 | ． 00155 |
| 22 | ． 0824 | ． 118 | 29.803 | ． $08: 1$ | ． 000202 | ．082302 | ． 000245 |
| 32 | ． 080 in | ． 181 | 29.740 | ． 0802 | ． 000304 | ． 080504 | ． 00379 |
| 42 | ． 0791 | ． 267 | 29.654 | ． 0784 | ． 000440 | ．078840 | ． 00561 |
| 52 | ． 0776 | ． 388 | 29.533 | ． 0 ¢́66 | ． 000627 | ． 0 T\％ $2 \cdot 27$ | ． 00819 |
| 62 | ． 0761 | ． 556 | 29.365 | ． 0747 | ． 000881 | ． 0 T5581 | ． 01179 |
| 72 | ． 0747 | ． 785 | 29.136 | ． 0727 | ． 001221 | ． 073921 | ． 01680 |
| 82 | ． 0733 | 1.092 | 28.829 | ． 0706 | ． 001667 | ． 072267 | ． 02361 |
| 92 | ． 0720 | 1.501 | 28.420 | ． 0684 | ． 002250 | ． 070717 | ． 03289 |
| 102 | ． 0707 | 2.036 | 27.885 | ． 0659 | ．002997 | ． 0688897 | ． 04547 |
| 112 | ． 0694 | 2．731 | 27.190 | ． 0631 | ． 003946 | ． 067046 | ． 06253 |
| 122 | ． 0682 | 3.621 | 26.300 | ． 0599 | ． 005142 | ． 065042 | ． 08584 |
| 132 | ． 0671 | 4.752 | 25.169 | ． 0564 | ． 006639 | ． 063039 | ． 11771 |
| 142 | ． 0660 | 6.165 | 23.756 | ． 0524 | ． 008473 | ．060873 | ． 16170 |
| 152 | ． 0649 | 7.930 | 21.991 | ． 0477 | ． 010716 | ． 058416 | ． 22465 |
| 162 | ． 0638 | 10.099 | 19.822 | ． 0423 | ． 013415 | ． $055 \sim 15$ | ． 31713 |
| 172 | ． 0628 | 12.758 | 17． 163 | ． 0360 | ． 016682 | ． 052682 | ． 46338 |
| 182 | ． 0618 | 15.960 | 13.961 | ． 0288 | ． 020536 | ． 049336 | ． 71300 |
| 192 | ． 0609 | 19.828 | 10.093 | ． 0205 | ． 025142 | ． 045642 | 1.22643 |
| 202 | ． 0600 | 24.450 | 5.471 | ． 0109 | ． 030545 | ． 041445 | 2.80230 |
| 212 | ． 0591 | 29.921 | 0.000 | ． 0000 | ． 036820 | ．036820 | Intinite． |

The weight in lbs．of the vapor mixed with 100 lbs ．of pure air at any given temperaiure and pressure is given by the formula

$$
\frac{62.3 \times E}{29.92-E} \times \frac{29.92}{p}
$$

where $E=$ elastic force of the vapor at the given temperature，in inches of mercury；$p=$ absolute pressure in inches of mercury，$=29.92$ for ordinary atmospheric pressure．
Specific IEat of Air at Constant Volume and at Constant Pressure．－Volume of 1 lb ．of air at $322^{\circ} \mathrm{F}$ ．and pressure of 14.7 lbs ．per sq． $\mathrm{in} .=12.387 \mathrm{cu} . \mathrm{ft} .=$ a column $1 \mathrm{sq} . \mathrm{ft}$ ．area $\times 12.38 \% \mathrm{ft}$ ．high．Raising temper－ ature $1^{\circ} \mathrm{F}$ ．expands it $\frac{1}{491.2}$ ，or to $12.41 \Omega 2 \mathrm{ft}$ ．high－a rise of .02522 foot．
Work done $=2116$ lbs．per sq． $\mathrm{ft} . \times .02522=53.37$ foot－pounds，or $53.37 \div 778$ $=.0636$ heat units．
The specific heat of air at constant pressure，according to Regnault，is 0.2375 ；but this includes the work of expansion，or ． 0686 heat units；hence the specific heat at constant volume $=0.23 \% 5-.0686=0.1689$ ．
Ratio of specific heat at constant pressure to specific heat at constant volume $=.23$ \％．$+.1689=1.406$ ．（See Specific Heat，p．458．）

Flow of Air through Orifices．－The theoretical velocity in feet per second of flow of any fluid，liquid，or gas through an orifice is $v=$ $\sqrt{2 g h}=8.02 \sqrt{h}$ ，in which $h=$ the＂head＂or height of the fluid in feet required to produce the pressure of the fluid at the level of the orifice． （For gases the formula holds good only for small differences of pressure on the two sides of the orifice．）The quantity of flow in cubic feet per seeond
is equal to the product of this velocity by the area of the orifice, ill square feet, multiplied by a "coefficient of flow," which takes into account the contraction of the vein or flowing stream, the friction of the orifice, etc.

For air flowing through all orifice or short tube, from a reservoir of the pressure $p_{1}$ into a reservoir of the pressure $p_{2}$, Weisbach gives the following values for the coefficient of flow, obtained from his experiments.

## Flow of Air through an Orifice.

Coefficient $c$ in formula $v=c \sqrt{2 g h}$.

| Diameter |  | 1.05 | 1.09 | 1.43 | 1.65 | 1.85 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | . 555 | 589 | . 692 | . 724 | \% 54 |  |
| Diame | Ra | 1.05 | 1.09 | 1.36 | 1.67 |  |  |
| , |  |  |  |  |  |  |  |

## Flow of Air through a Short Tube.

Diam. $1 \mathrm{~cm} ., \quad$ Ratio of pressures $p_{1} \div p_{2} 1.05 \quad 1.10 \quad 1.30$
Length 3 cm . (Coefficient. ................. .'r30 .TT1 . $830 \ldots .$.

Length 4.242 cm . $\{$ Coefficient................. . . 813 . 822 ..... ..... ..... .....
Diam. 1 cm. . . (Ratio of pressures........ $1.241 .38 \quad 1.59 \quad 1.85 \quad 2.14 \ldots \ldots$

Fliegner's Equation for Flow of Air from a Reservoir througe an Orifice. (P'oc. Inst. C. E., Iv, 3i9.)

$$
G=(3465-10000 D) F^{\prime} \sqrt{\frac{p_{1}^{2}-p_{0}{ }^{2}}{T}} ;
$$

$G=$ the flow in kilogrammes per second ; $p_{1} p_{0}=$ the internal and external pressures in atmosplieres of $10,000 \mathrm{~kg}$. per sq. metre; $D=$ diameter of the orifice in metres; $F=$ its cross-section in sq. metres; $T=$ absolute temperature, Centigrade, of the air in the reservoir. The experiments were made with six orifices from $3.1{ }^{17}$ to 11.36 mm . diameter, in brass plates $12 m m$. thick, drilled cylindrically for about $1 / 2 \mathrm{~mm}$., and conically enlarged towards the outside at an angle of $45^{\circ}$.
Clark (Rules. Tables, and Data, p. 891) gives, for the velocity of flow of air through an orifice dne to small differences of pressure,

$$
V=C \sqrt{\frac{2 g h}{12} \times 773.2 \times\left(1+\frac{t-32}{493}\right) \times \frac{29.92}{p}}
$$

or, simplified,

$$
\nabla=352 C \sqrt{\left(1+.00203(t-32)^{h}\right.} \frac{h}{p}
$$

In which $V=$ velocity in feet per second $; 2 g=64.4 ; h=$ height of the column of water in inches, measuring the difference of pressure; $t=$ the temperature Fahr.; and $p=$ barometric pressure in inches of mercury. Tr.3.2 is the volume of air at $3 \geqslant 0$ moder a pressure of 29.92 inches of mercury when that of an equal weight of water is taken as 1.

For $62^{\circ} \mathrm{F}$., the formula becomes $V=363 C \sqrt{\frac{h}{p}}$, and if $p=29.92$ inches $V=$ $66.35 \mathrm{C} 1 / \bar{h}$

The coefficient of efflux $C$, according to Weisbach, is:
For conoidal mouthpiece, of form of the contracted vein,
with pressures of from .23 to 1.1 atmospheres....... ..... $C=. .97$ to . 99
Circular orifices in thin plates............................................. $C=. .56$ to $=.99$
Short cylindrical mouth1pieces............................................. $C=.81$ to . 84
The same rounded at the inner end........................................ $C=.92$ to . 93
Conical converging mouthpieces............................................... $C=.90$ to . 99
Flow of Air in Pipes.-Hawksley (Proc. Inst. C. E., xxxiii, 55) states that his formula for flow of water in pipes $v=48 \sqrt{\frac{H D}{L}}$ may also be employed for flow of air. In this case $H=$ height in feet of a column of air required to produce the pressure causing the How, or the loss of head
for a given flow; $v=$ velocity in feet per second, $D=$ dianeter in feet, $L=$ length in feet.
If the head is expressed in inches of water, $h$, the air being taken at $62^{\circ} \mathrm{F}$., its weight per cubic foot at atmospheric pressure $=.0 \% 61^{\circ} \mathrm{lb}$. Then $H=\frac{62.36}{.0761 \times 12}=68.3 h$. If $d=$ diameter in inches, $D=\frac{d}{12}$, and the formula becomes $v=114.5 \sqrt{\bar{L} d}$, in which $h=$ inches of water column, $d=$ diam. eter in inches and $L=$ length in feet; $h=\frac{L v^{2}}{13110 d} ; d=\frac{L v^{2}}{13110 h}$.

The quantity in cubic feet per second is

$$
Q=.7854 \frac{d^{2}}{144} v=.6245 \sqrt{\frac{\overline{h d^{5}}}{L}} ; \quad d=\sqrt[5]{\frac{Q^{2} L}{.39 h}} ; \quad h=\frac{Q^{2} L}{.39 d^{5}} .
$$

The horse-power required to drive air through a pipe is the volume $Q$ in cubic feet per second multiplied by the pressure in pounds per square foot and divided by 550. Pressure in pounds per square foot $=P=$ inches of water column $\times 5.196$, whence horse-power $=$

$$
H P .=\frac{Q P}{550}=\frac{Q h}{105.9}=\frac{Q^{3} L}{41.3 d^{5}} .
$$

If the head or pressure causing the flow is expressed in pounds per square inch $=p$, then $h=2 \pi .71 p$, and the above formulæ become

$$
\begin{aligned}
v & =603 . \% \sqrt{\frac{p d}{L}} ; \quad p=\frac{L v^{2}}{363,300 d} ; \quad d=\frac{L v^{2}}{363,300 p} ; \\
Q & =3.28 \pi \sqrt{\frac{p d^{5}}{L}} ; \quad p=\frac{Q^{2} L}{10.806 d^{5}} ; \quad d=\sqrt[5]{\frac{Q^{2} L}{10.806 p}} ; \\
H P . & =\frac{Q 144 p}{550}=.2618 Q p=.02421 \frac{Q^{3} L}{d^{5}} .
\end{aligned}
$$

olume of Aif Transmitted in Cubic Feet per Minute in pipes of Various Diameters.

Formula $Q=\frac{.7454}{144} d^{2} v \times 60$.

|  | Actual Diameter of Pipe in Inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 16 | 20 | 24 |
| 1 | . 327 | 1.31 | 2.95 | 5.24 | 8.18 | 11.78 | 20.94 | 39.73 | 47.12 | 83.77 | 130.9 | 188.5 |
| $\stackrel{1}{3}$ | . 655 | 2.62 | 5.89 | 10.47 | 16.36 | 23.56 | 4189 | 65.45 | 94.25 | 167.5 | 261.8 | ${ }_{37 \%}^{188.5}$ |
| 3 | 1.31 | 3.93 5.24 | + 8.84 | 15.7 20.9 | 24.5 3.7 | 35.3 4.1 | 6.8 8.8 8.8 | ${ }_{131}^{98.2}$ | 141.4 | ${ }^{251.3}$ | 392.7 | 565.5 |
| 5 | 1.64 | 5. ${ }^{5} .24$ | 14.7 | 20.9 | 32.7 | 47.1 | 83.8 | 136 | 188 | 335 | 523 | 754 |
| 6 | 1.96 | \%.85 | 17.7 | 31.4 | 49.1 | ${ }^{2} 0.7$ | 1125 | 1196 | ${ }_{283}$ | 419 | 654 | 942 |
| 7 | 2.29 | 9.16 | 20.6 | 36.6 | 57.2 | 82. 4 | 146 | 2:29 | 330 | 586 | 785 | 1131 |
| 8 | 2.62 | 105 | 23.5 | 41.9 | 65.4 | 94 | 167 | 263 | 3 3\% | $6{ }^{\text {c }} 0$ | 1047 | 1319 1508 |
|  | 2.95 | 11.78 | 26.5 | 47 | 73 | 106 | 188 | 294 | 494 | 「'54 | 1178 | 1 l 1968 |
| 10 | 3.27 | 13.1 | 29.4 | 5 | $8:$ | 118 | $\because 09$ | 327 | $4 \pi 1$ | 838 | 1309 | 1885 |
| 12 | 3.93 | 15.7 | 35.3 | 63 | 98 | 141 | 251 | 393 | 565 | 1005 | 1571 | 1826 |
| 15 | 4.91 | 19.6 | 44.2 | 78 | 122 | $11 \%$ | 314 | 491 | r07 | 1256 | 1963 | 2824 |
| 18 | 5.89 | 23.5 | 53 | 94 | 147 | 212 | 318 | 589 | 848 | 1508 | 2356 | )3393 |
| 20 | 6.54 | 26.2 | 59 | 105 | 164 | 235 | 419 | 654 | 942 | 1675 | 2618 | 3\%\% |
| 24 | 7.85 | 31.4 | ${ }_{2} 1$ | 125 | 196 | 283 | 502 | 785 | 1131 | 2010 | 3141 | 4524 |
| 25 | 8.18 | 3:2.7 | 73 | 131 | 204 | 294 | 523 | 818 | 1178 | 2094 | 32\%2 | 4712 |
| 28 30 | 9.16 | 36.6 | 82 | 146 | 229 | 330 | 586 | 916 | 1319 | 2346 | 3665 | 5278 |
| 30 | 9.8 | 39.3 | 88 | 157 | 245 | 35316 | 6:8 | 982 | 1414 | 2513 | 392\% 7 | 5655 |

In Hawksley's formula and its derivatives the numerical coefficients are constant. It is scarcely possible, however, that they can be accurate except within a limited range of conditions. In the case of water it is found that the coefficient of friction, on which the loss of head depends, varies with the length and diameter of the pipe, and with the velocity, as well as with the condition of the interior surface. In the case of air and other gases we have, in addition, the decrease in density and consequent increase in volume and in velocity due to the progressive loss of head from one end of the pipe to the other.

Clark states that according to the experiments of D'Aubuisson and those of a Sardinian commission on the resistance of air through long conduits or pipes, the diminution of pressure is very nearly directly as the length, and as the square of the velocity and inversely as the diameter. The resistance is not varied by the density.

If these statements are correct, then the formulæ $h=\frac{L v^{2}}{c d}$ and $h=\frac{Q^{2} L}{c^{\prime} d^{5}}$ and their derivatives are correct in form, and they may be used when the numerical coefficients $c$ and $c^{\prime}$ are obtained by experiment.

If we take the forms of the above formulee as correct. and let $C$ be a variable coefficient, depending upon the length, diameter, and condition of surface of the pipe, and possibly also upon the velocity, the temperature and the density, to be determined by future experiments, then for $h=$ head in inches of water, $d=$ diameter in inches, $L=$ length in feet, $v=$ velocity in feet per second, and $Q=$ quantity in cubic feet per second:

$$
\begin{array}{ccc}
v=C \sqrt{\frac{h d}{L}} ; & d=\frac{L v^{2}}{C^{2} h} ; & h=\frac{L v^{2}}{C^{2} d^{\prime}} \\
Q=.005454 C \sqrt{\frac{h d^{5}}{L}} ; & d=\sqrt{\frac{33683 Q^{2} L}{C^{2} h}} ; & h=\frac{33683 Q^{2} L}{C^{2} d^{5}} .
\end{array}
$$

For difference or loss of pressure $p$ in pounds per square inch,

$$
\begin{array}{lll}
\lambda=27.71 p & & \sqrt{h}=5.264 \sqrt{n} \\
v=5.264 C \sqrt{\frac{p d}{L}} ; & d=\frac{L v^{2}}{27.71 C^{2} p} ; & p=\frac{L v^{2}}{27.71 C^{2} d} ; \\
Q=.028 \% 1 C \sqrt{\frac{p d^{5}}{L}} ; & d=\sqrt{\frac{1213 Q^{2} L}{C^{2} p} ;} & p=\frac{1213 Q^{2} L}{C^{2} d^{5}}
\end{array}
$$

(For other formulæ for flow of air, see Mine Ventilation.)
Loss of Pressinfe in Ounces per Square Inch.-B. F. Sturte. vant Company uses the following formulæ:

$$
p_{1}=\frac{L v^{2}}{25000 d} ; \quad v=\sqrt{\frac{25000 d p_{1}}{L}} ; \quad d=\frac{L v^{2}}{25000 p_{1}} ;
$$

in which $p_{1}=$ loss of pressure in ounces per square inch, $v=$ velocity of air in feet per second, and $L=$ length of pipe in feet. If $p$ is taken in pounds per square inch, these formulæ reduce to

$$
p=.0000025 \frac{L v^{2}}{d} ; \quad v=632.5 \sqrt{\frac{d p_{1}}{L}} ; \quad d=\frac{.0000025 L v^{2}}{p} .
$$

These are deduced from the common formula (Weisbach's), $p=f \frac{l}{d} \frac{v^{2}}{2 g}$, in which $f=.0001608$.

The following table is condensed from one given in the catalogue of B. F. Sturtevant Company.

Loss of pressure in pipes 100 feet long, in ounces per square inch. For any other length, the loss is proportional to the length.

|  | Diameter of Pipe in Inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|  |  | Loss of Pressure in Ounces. |  |  |  |  |  |  |  |  |  |  |
| 600 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1200 | 1.600 | . 800 |  | . 400 |  | .267 | 7.229 | . 200 | . 04 | . 1640 | . 036 | . 033 |
| 1800 | 3.600 | 1.800 | 1.200 | . 900 | .720 | .600 | - 514 | . 450 | . 180 | . 360 | . 145 | . 1300 |
| 2400 | 6.400 | 3.200 | 2.133 | 1.600 | 1.280 | 1.067 | 7.914 | . 800 | . 711 | . 640 | . 582 | . 300 |
| 3000 3600 | 14.4 | ${ }_{7} 5$. | 3.333 | 2.5 | 2. | 1.667 | 71.429 | 1.250 | 1.111 | 1.000 | . 909 | . 833 |
| 4200 |  | 9.8 | 4.8 | 3.6 4.9 | 2.88 | 2.4 | 2.05r | 1.8 | 1.6 | 1.44 | 1.309 | 1.200 |
| $\begin{aligned} & 4800 \\ & 6000 \end{aligned}$ |  | 12.8 | 8.533 |  | 5.92 | 3.267 | 2.8 | 2.45 | 2. 178 | 1.96 | 1.782 | 1.633 |
|  |  | 20. | 13.333 | 6.4 10.0 | 5.12 | 4.267 | 3.657 | 3.2 | 2.844 | 2.56 | 2.327 | 2.133 |
|  | Diameter of Pipe in Inches. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 18 |  |  | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
|  | Loss of Pressure in Ounces. |  |  |  |  |  |  |  |  |  |  |  |
| 600 | . 029 | . 026 | . 022 | . 020 | . 018 |  |  |  |  |  |  |  |
| 1200 | . 114 | . 100 | . 089 | . 080 | . 073 | . 067 | . 057 | . 050 | . 014 | . 010 | . 009 | . 008 |
| 1800 | . 257 | . 225 | . 200 | . 180 | . 164 | . 156 | . 129 | . 112 | . 100 | . 090 | . 036 | .033 |
| 2400 | . 457 | . 400 | . 356 | . 320 | . 291 | . 267 | . 239 | . 200 | . 178 | . .160 | . 145 | . 073 |
| 3600 | 1.0:2 | . 900 | . 800 | . 20 | . 655 | . 600 | . 514 | . 250 | . 1400 | . 160 | . 145 | . 133 |
| 4200 | 1.400 | 1.225 | 1.089 | . 980 | . 891 | . 817 | . 700 | . 612 | . 544 | . 490 | . 4427 | . 300 |
| 4800 | 1.8\%9 | 1.600 | 1.422 | 1.280 | 1.164 | 1.067 | . 914 | . 800 | . 711 | . 640 | . 588 | . 5338 |
| 6000 | 2.857 | 2.500 | 2.222 | 2.000 | 1.818 | 1.66 ィ | 1.4291 | 1.850 | 1.111 | 640 1.000 | . 9809 | . 8.333 |

## Cffect of Bends in Pipes. (Norwalk Iron Works Co.)

Radius of elbow, in diameter of pipe $=\begin{array}{llllllll}5 & 3 & 2 & 11 / 2 & 11 / 4 & 1 & 3 / 4 & 1 / 2\end{array}$
Equivalent lgths. of straight pipe, diams 7.858 .249 .0310 .3612 .7217 .5135 .09121 .2
Compressed-air Transmission. (Frank Richards, Am. Mach., March 8, 1894 )-The volume of free air transmitted may be assumed to be directly as the number of atmospheres to which the air is compressed. Thus, if the air transmitted be at 75 pounds gauge-pressure, or six atmospheres, the volume of free air will be six times the amount given in the table (page 486). It is generally considered that for economical transmission the velocity in main pipes should not exceed 20 feet per second. In the smaller distributing pipes the velocity should be decidedly less than this.
The loss of power in the transmission of compressed air in general is not a serious one, or at all to be compared with the losses of power in the operation of compression and in the re-expansion or final application of the air.
f observed facts in this line are in a more ol less chary. The statements of observed facts in this line are in a more or less chaotic state, and self-

A statement of the friction of air flowing through a pipe involves at least all the following factors: Unit of time, volıme of air, pressure of air, diameter of pipe, length of pipe, and the difference of pressure at the ends of the pipe or the head required to maintain the flow. Neither of these factors can be allowed its independent and absolute value, but is subject to modifications in deference to its associates. The flow of air being assumed to be ufter that. The air is cens the pipe, the volume and flow are not uniform is constantly increasing accelerated continually. The velocity of flow is therefore also somewhat pipe as a constant factor.
Then, besides the fluctuating valurs of these factors, there is the condition of the pipe itself. The actual diameter of the pipe, especially in the smaller sizes, is different from the nominal diameter. The pipe may be straight, or it may be crooked and have numerous elbows. Mr. Richards considers one elbow as equivaleut to a length of pipe.

Formulx for Flow of Compressed Air in Pipes.-The formulæ on pages 486 and $48 \pi^{\text {are }}$ for air at or near atmospheric pressure. For compressed air the density has to be taken into account. A common formula for the flow of air, gas, or steam in pipes is

$$
Q=c \sqrt{\frac{p d^{5}}{v L}}
$$

in which $Q=$ volume in cubic feet per minnte, $p=$ difference of pressure in lbs. per sq. in. causing the flow, $d=$ diameter of pipe in in., $L=$ length of pipe in ft., $w=$ density of the entering gas or steam in lbs. per cu. ft., and $c=$ a coefficient found by experiment. Mr. F. A. Halsey in calculating a table for the Rand Drill Co.'s Catalogue takes the value of $c$ at 58 , basing it upon the experinents made by order of the Italian government preliminary to boring the Mt. Cenis tumel. These experiments were made with pipes of 3281 feet in length and of approximately 4,8 , and 14 in . diameter. The volumes of compressed air passed ranged between 16.64 and 1200 cu . ft. per minute. The value of $c$ is quite constant throughout the range and Shows little disposition to change with the varying diameter of the pipe. It is of course probable, says Mr. Halsey, that $c$ would be smaller if determined for smaller sizes of pipe, but to offset that the actual sizes of small commercial pipe are considerably larger than the nominal sizes, and as these calculations are commonly made for the nominal diameters it is probable that in those small sizes the loss would really be less than shown by the table. The formula is of course strictly applicable to fluids which do not change their density, but within the change of density admissible in the transmission of air for power purposes it is probable that the errors introduced by this change are less than those due to errors of observation in the present state of knowledge of the subject. Mr. Halsey's table is condensed below.

| 㥻 | Cubic feet of free air compressed to a gange-pressure of 80 lbs . and passing through the pipe each minute. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O. | 50 | 100 | 200 | 400 | 800 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 |
| $\underset{a}{\tilde{a}}=\tilde{A}$ | Loss of pressure in lbs. per square inch for each 1000 ft . of straight pipe. |  |  |  |  |  |  |  |  |  |  |
| 11/4 | 3.61 |  |  |  |  |  |  |  |  |  |  |
| ${ }_{2}^{11 / 2}$ |  | 5.8 | 4.30 |  |  |  |  |  |  |  |  |
| 216 | 0.12 | 0.35 | 1.41 | 5.80 |  |  |  |  |  |  |  |
| 3 |  | 0.14 | 0.57 | 2.28 |  |  |  |  |  |  |  |
| $31 / 2$ |  |  | 0.26 | 1.05 |  |  |  |  |  |  |  |
|  |  |  | 0.14 | 0.54 | 2.12 | 3.27 | 7.60 |  |  |  |  |
| 5 |  |  |  | 0.18 | 0.68 | 1.08 | 2.43 |  |  |  |  |
| ${ }_{8}$ |  |  |  |  | 0.28 | 0.43 | 1.00 | 1.75 | 3.91 | 7.10 | 10.7 |
| 10 |  |  |  |  | 0.07 |  | 0.27 | 0.42 0.14 | 0.93 0.30 | 1.68 0.55 | 2.59 |
| 12 |  |  |  |  |  |  |  |  | 0.12 | 0.2 L | 0.34 |
| 14 |  |  |  |  |  |  |  |  |  | 0.10 | 0.16 |

To apply the formula given above to air of different pressures it may be given other forms, as follows:
Let $Q=$ the volume in cubic feet per minute of the compressed air; $Q_{1}=$ the volume before compression. or "free air," both being taken at nean atinospheric temperature of $62^{\circ} \mathrm{F} . ; w_{1}=$ weight per cubic foot of $Q_{1}=$ $0.061 \mathrm{lb} . ; \boldsymbol{r}=$ atmospheres, or ratio of absolute pressures, $=$ (gauge-pressure +14.7$) \div 14.7 ; w=$ weight per cu. ft . of $Q ; p=$ difference of pressure, in lbs. per sq. in., causing the flow; $d=$ diam. of pipe in in.; $L=$ length of pipe in ft. $; c=$ experimental constant. Then

$$
\begin{aligned}
& Q=c \sqrt{\frac{p d^{5}}{u L}} ; \quad Q_{1}=r Q ; \quad w=r u_{1}=.0 \gamma 61 r ; \\
& Q=3.625 c \sqrt{\frac{\overline{p l^{5}}}{r L}} ; \quad Q_{1}=5.625 c \sqrt{\frac{p d^{5} r}{L}} ; \\
& d=\sqrt[5]{.0761 \frac{L Q^{2} r^{2}}{c^{2} p}}=0.597 \sqrt[5]{\frac{L Q^{2} r}{c^{2} p}}=\sqrt[5]{.0661 \frac{L Q_{1}^{2}}{c^{2} p r}}=0.59 \% \sqrt[5]{\frac{L Q_{1}^{2}}{c^{2} p r}} ; \\
& p=.0 \sim 61 \frac{L Q^{2} v}{c^{2} d^{5}}=.061 \frac{L Q_{1}^{2}}{c^{2} d^{5} v^{*}}
\end{aligned}
$$

The value of $c$ according to the Mt. Cenis experiments is about 58 for pipes 4, 8, and 14 in . diameter, 381 ft . long. In the St . Gothard experiments it ranged from ( 62.8 to 73.2 (see table below) for pipes 5.91 and $7.8 \%$ in. diameter, 1613 and $15,092 \mathrm{ft}$. long. Values derived from D'Arcy's formula for flow of water in pipes, ranging from 45.3 for 1 in . diameter to $63: 2$ for 24 in., are given under "Flow of Steam," p. $6 \hat{i} 1$. For approximate calculations the value 60 may be used for all pipes of 4 in . diameter and upwards. Using $\mathbf{c}=60$, the above formulæ become

$$
\begin{aligned}
& Q=21 \% .5 \sqrt{\frac{p l^{5}}{r L}} ; \quad Q_{1}=217.5 \sqrt{\frac{p d^{5} r}{L}} ; \\
& {\left[d=0.1161 \sqrt[5]{\frac{L Q^{2} r^{2}}{p}}=0.1161 \sqrt[5]{\frac{L Q_{3}{ }^{2}}{p r}} ;\right.} \\
& p=0.0000: 114 \frac{L Q^{2} r}{d^{5}}=0.00002114 \frac{L Q_{1}{ }^{2}}{d^{5},} .
\end{aligned}
$$

## Loss or Pressure in Compressed Air Pipemain, at

 St. Gothard Tumneh.(E. Stockalper:)

|  |  |  |  |  |  |  | Observed Pressures. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Los } \\ & \text { Pre } \end{aligned}$ |  |  |
| No. |  | cu.ft. | cu.ft. | n. | lbs. |  |  |  | lbs. per sq.in. |  |  |
|  | 7. 8.7 | \33.020 | 6.534 | . 00650 | 2.609 | 19.3 | 5.60 | 5.24 | 5.29: | 6.4 | \%3.2 |
|  | 5.81 |  | 7.063 | .00603 | 2669 | 37.14 | 5.24 | 5.00 | 3.5ン8 | 4.6 | 63.9 |
|  | ก.8̃ | . | 5509 | . 00514 | 1.76 | 16 | 4.35 | 4.13 | 3.234 | 5.1 | ro |
|  | 5.81 7.89 |  | 5.863 5.262 | . 00188 | 1.766 1.483 | 15.58 | 4.13 3.81 | 3.65 | 2.793 | 5.0 | 67.6 |
| 3 ) | 5.91 | $)^{18.364}$ | 5.580 | . 00423 | 1.483 | 29.34 | 3.65 | 3.54 | 1.61 \% | 5.0 | 62.8 |

The length of the pipe 7.8 in diameter was $15,092 \mathrm{ft}$., and of the smaller pipe 1732.6 ft . The mean temperature of the air in the large pipe was $70^{\circ} \mathrm{F}$. and in the small pipe $80^{\circ} \mathrm{F}$.

Equation of Pipes.-It is frequently desired to know what number of pipes of a given size are equal in carrying capacity to one nipe of a larger size. At the same velocity of flow the volume delivered by two pipes of different sizes is proportional to the squares of their diameters; thus, one 4 -inch pipe will deliver the same volune as four 2 -inch pipes. With the same heal, however, the velocity is less in the smaller pipe, and the volume delivered varies about as the square root of the fiftli power (i.e., as the 2.5 power). The following table has been calculated on this basis. The figures opposite the intersection of any two sizes is the number of the smaller-sized pipes required to equal one of the larger. Thus, one 4 -inch pipe is equal to 5.7 2 -inch pipes.

| 玉. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 | 16 | 18 | 20 | 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5.7 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 4 | 15.6 | 2.8 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 55.9 | 9.9 | 3.6 | 1.7 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 88.2 | 15.6 | 57 | 2.8 | 1.6 | 1.5 |  |  |  |  |  |  |  |  |  |  |
| 7 | 130 |  |  | 4. 1 | $\begin{gathered} 2.3 \\ 3.2 \end{gathered}$ | 1.5 |  |  |  |  |  |  |  |  |  |  |
| 9 | ${ }_{2} 18$ | 4. | 15.6 | 5. 6 | 4.3 | 2.8 | 1.9 | 1.3 | 1 |  |  |  |  |  |  |  |
| 10 | 216 | 55.9 | 20.3 | 9.9 | 5.7 | 3.6 | 2.4 | 1.7 | 1.3 | 1 |  |  |  |  |  |  |
| 11 | 401 | \%0.9 | 25.7 | 12.5 | 7.2 | 4.6 | 3.1 | 2.2 | 1.7 | 1.3 |  |  |  |  |  |  |
| 12 | 499 | 88.2 | 32 | 15.6 | 8.9 | 5.7 | 3.8 | 2.8 | 2.1 | 1.6 | 1 |  |  |  |  |  |
| 13 | 609 | 108 | 39.1 | 19 | 10.9 | 7.1 | 4.8 | 3.4 | 2.5 | 1.9 | 1.2 |  |  |  |  |  |
| 14 | 7.33 | 130 | 47 | 22.9 | 13.1 | 8.3 | 5.5 | 4.1 | 3.0 | 2.3 | 1.5 | 1 |  |  |  |  |
| . 15 | 871 | 154 | 55.9 | 27.2 | 15.6 |  |  | 4.8 |  |  |  | 1.8 |  |  |  |  |
| 16 |  | 181 | 65. ${ }^{6}$ | 32 | $18.3$ | 11.7 | 7.9 | 5. 6.6 | 4.2 | 3. ${ }^{2} 8$ | $\stackrel{1}{2} 1$ | 1.4 |  |  |  |  |
| 17 |  | 211 | 76.4 | 37.2 | 21.3 | 13.5 | 9.2 | ${ }^{6.6}$ | 4.9 | 3.8 |  |  |  |  |  |  |
| 18 |  | 243 | 88.2 | 43 | 24.6 | 15.6 | 10.6 | \%.f. | 5.7 | 4.3 | 2.8 | 1.9 | 1.3 |  |  |  |
| 19 |  | 278 | 101 | 491 | $28.1]$ |  |  | 8.7 |  |  | 3.2 | 2.1 | 1.5 | 1.1 |  |  |
| 20 |  | 316 | 115 | \%5.9 | 32 | 20.3 | $13.8$ | 9.9 | 7.4 | 5.7 | 3.6 | 2.4 | 1.7 |  |  |  |
| 22 |  | 401 | 146 | 70.9 | $40.6$ | 25.7 | 17.5 | 12.5 | 11.3 | 7.2 8.9 | 4.6 | 3.1 3.8 | 2.2 | 1.7 2.1 | 1.3 |  |
| $\stackrel{24}{26}$ |  | 499 69 | 181 | 88.2 108 | $\|50.5\|$ | 39.1 | 21.8 26.6 | 15.6 | 11.6 | 8.9 10.9 | 5. ${ }_{7}$ | 3.8 4.7 | 2.8 3.4 | 2.1 | 1.6 |  |
| 26 |  | 609 733 | 291 | 108 130 | 61.7 74 7 | 39.1 | ${ }_{32}^{26.6}$ | 19.9 |  | 13.1 | 8.3 | 5.7 | 3.4 |  | 1.9 | 1.5 |
| 30 |  | 871 | 316 | 154 | 88.2 | 55.9 | 38 | 2r.2 | 20.3 | 15.6 | 9.9 | 6.7 | 4.8 | 3.0 | 2.8 | 1.7 |
| 36 |  |  | 499 | 243 | 130 | 88.2 | 60 | 43 | 32 | 24.6 | 15.6 | 10.6 | 7.6 | 5.7 | 4.3 | 2.8 |
| 42 |  |  | 733 | $35 \%$ | 205 | 130 | 88.2 | 63.2 | 47 | 36.2 | 19 | 15.6 | 11.2 | 8.3 | 6.4 | 4.1 |
| 48 |  |  |  | 499 | $\because 86$ | 181 | 123 | 88.2 | 62.7 | 50.5 | 32 | 21.8 | 15.6 |  | 8.9 | 5.7 |
| 54 |  |  |  | 670 | 383 | 243 | 165 | 118 | 88.2 | 67.8 | 43 | 27.2 | 20.9 | 15.6 | 12 | \%. 6 |
| 60 |  |  |  | $8{ }^{1} 1$ | 499 | 316 | 215 | 154 | 115 | 88.2 | 55.9 | 38 | 27.2 | 20.3 | 15.6 | 9.9 |

Measurement of the Velocity of Air in Pipes by an Anem mometer.-T'ests were made by B. Donkin, Jr. (fust. L'ivil Engrs. 1892), to compare the velocity of air in pipes from 8 in . to 24 in . diam., as shown by an anemometer $2 \frac{4}{4} \mathrm{in}$. diam. with the true velocity as measured by the time of descent of a gas-holder holding 162: cubic feet. A table of the results with discussion is given in Eng'g News, Dec. 22, 1892. In pipes from 8 in . to 20 in. diam. with air velocities of from 140 to 690 feet per minute the anemometer showed errors varying from $14.5 \%$ fast to $10 \%$ slow. With a 24 -inch pipe and a velocity of 73 ft . per minute, the anemometer gave from 44 to 63 feet, or from 13.6 to $39.6 \%$ slow. The practical conclusion drawn from these experiments is that anemometers for the measurement of velocities of air in pipes of these diameters should be used with great caution. The percentage of error is not constant, and varies considerably with the diameter of the pipes and the speeds of air. The use of a baffle, consisting of a perforated plate, which tended to equalize the velocity in the centre and at the sides in gome cases diminished the error.

The impossibility of measuring the true quantity of air by an anemometer held stationary in one position is shown by the following figures, given by Wm. Daniel (Proc. Inst. M. E., 1875), of the velocities of air found at different points in the cross-sections of two different airways in a mine.

Differences of Anemometer Readings in Atrways.
8 it. square.

| 1712 | 1795 | 1859 | 1329 |
| :---: | :---: | :---: | :---: |
| 1622 | 1685 | 1782 | 1091 |
| $14 \% 7$ | 1344 | 1524 | 1049 |
| 1262 | 1356 | 1203 | 1333 |

Average 1469.
$5 \times 8 \mathrm{ft}$.


Average 1132.

## WIND.

Foree of the Wind.-Sneaton in 1759 published a table of the volocity and pressure of wind, as follows:

Velocity and Force of Wind, in Pounds per Square Inch.

|  |  |  | Common Appellation of the Force of Wind. |  |  |  | Common Appellation of the Force of Wind |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.47 | 0.005 | Hardly perceptible. | $\begin{aligned} & 18 \\ & 20 \end{aligned}$ | $26.4$ | $\begin{aligned} & 1.55 \\ & 1.968 \end{aligned}$ | Very brisk |
| 2 | 2.93 | 0.020 |  | $\begin{aligned} & 20 \\ & 20 \end{aligned}$ | $\begin{gathered} 29.34 \\ 36.64 \end{gathered}$ | $\begin{aligned} & 1.968 \\ & 3.075 \end{aligned}$ | $\}$ Very brisk. |
| 3 | 4.4 | 0.044 |  | 30 | 44.01 | 4.429 |  |
| 4 | ${ }_{7}^{5.87}$ | 0.079 |  | 35 | 51.34 | $6.02 \sim$ | \} High wind. |
| 5 | 7.33 8.8 | 0.123 0.17 | Gentle pleasant | 40 | 58.68 | 7.873 |  |
| 7 | 10.25 | 0.241 |  | 45 50 | 66.01 73.35 | ${ }_{12}^{9.963}$ | Very high storm. |
| 8 | 11.75 | 0.315 |  | 55 | 80.7 |  |  |
| 10 | 13.2 | 0.400 |  | 60 | 88.02 | 17. 71 |  |
| 10 | 14.0\% | 0.492 |  | 66 | 95.4 | 20.85 |  |
| 12 | ${ }_{2}^{17.6}$ | 0.708 0.961 |  | \%0 | 102.5 | 24.1 |  |
| 15 | 22.00 | 0.967 1.107 |  | 8 | 110. | 27.7 31.49 | \} Hu |
| 16 | 23.45 | 1.85 |  | 100 | 146.67 | 49.2 | $\left\{\begin{array}{c}\text { Immense hurri- } \\ \text { cane. }\end{array}\right.$ |

The pressures per square foot in the above table correspond to the formula $P=0.00, V^{2}$, in which $V$ is the velocity in miles per hour. Eng'g Nems. Feb. 9, 1893, says that the formula was never well established, and has floated chiefly ou Smeaton's name and for lack of a better. It was put forward only for surfaces for use in windmill practice. The trend of moderu evidence is that it is approximately correct only for such surfaces, and that for large solid wodies it often gives greatly too large results. Observations by others are thus compared with Smeator's formula:

Old Smeaton formula................................................ $005 \mathrm{~V}^{2}$
As determined by Prof. Martin................................. $P=.004 V^{2}$
${ }_{6}$ Whipple and Dines
$P=.0029 V^{2}$

At 60 miles per hour these formulas give for the pressure per square foot, $18,14.4$ and 10.44 lbs., respectively, the pressure varring by all of them as the square of the velocity. Lieut. Crosby's experiments (Eng'g, June 13, 1890), claiming to prove that $P=f V$ instead of $P=f V^{2}$, are discredited,
A. R. Wolff (The Windmill as a Prime Mover, p. 9) gives as the theoretical pressure per sq. ft . of surface, $P=\frac{d Q v}{g}$, in which $d=$ density of air in pounds per cu. ft. $=\frac{.018 \% 43(p+F)}{t} ; p$ being the barometric pressure per square foot at any level, and temperature of $32^{\circ} \mathrm{F} ., t$ any absolute temperature, $Q=$ volume of air carried along per square foot in one second, $v=$ velocity of the wind in feet per sec., $g=32.16$. Since $Q=v \mathrm{cu}$. ft. per sec., $P=\frac{d v^{2}}{g}$. Multiplying this by a coefficient 0.93 found by experiment, and substituting the above value of $d$, he obtains $P=\frac{0.0174 .31 \times p}{\frac{t \times 32}{v^{2}}-.018 \% 43}$, and when $p$ $=2116.5$ lbs. per sq. ft. or average atmospheric pressure at the sea-level, $P=\frac{36.8929}{\frac{t \times 32.16}{v^{2}}-0.18 \pi 43}$, an expression in which the pressure is shown to vary
with the temperature; and he gives a table showing the relation between relocity and pressure for temperatures from $0^{\circ}$ to $100^{\circ} \mathrm{F}$., and velocities from 1 to 80 miles per hour. For a temperature of $45^{\circ} \mathrm{F}$. the pressures agree with those in Smeaton's table, for $0^{\circ}$ F. they are about 10 per cent greater, and for $100^{\circ} 10$ per cent less. Prof. IF. Allen Hazen, Eng'g News, July 5, 1890, says that experiments with whirling arms, by exposing plates to direct wind, and on locomotives with velocities running up to 40 miles per hour, have invariably shown the resistance to vary with $V^{2}$. In the formula $P=.005 S V^{2}$, in which $P=$ pressure in pounds, $S=$ surface in square feet, $V=$ velocity in miles per hour, the doubtful question is that regarding the accuracy of the first two factors in the second member of this equation. The first factor has been variously determined from .003 to .005 [it has been determined as low as .0014.-Ed. Eng' $q$ News].

The second factor has been found in some experiments with very short whirling arms and low velocities to vary with the perimeter of the plate, but this entirely di-appears with longer arms or straight line motion, and the only question now to be determined is the value of the coefficient. Perhaps some of the best experiments for determining this value were tried in France in 1886 by carrying flat boards on trains. The resulting formula in this case was, for 44.5 miles per hour, $p=.00535 \mathrm{SV}^{2}$.

Mr. Crosby's whirling experiments were made with an arm 5.5 ft . long. It is certain that most serious effects from centrifugal action would be set up by using such a short arm, and nothing satisfactory can be learned with arms less than 20 or 30 ft . long at velocities above 5 miles per hour.

Prof. Kernot, of Melbourne (Engineering Recorct, Feb. 20, 1894), states that experiments at the Forth Bridge showed that the average pressure on surfaces as large as railway carriages, houses, or bridges never exceeded two thirds of that upon small surfaces of one or two square feet, such as have been used at observatories, and also that an inertia effect, which is frequently overlooked, may cause some forms of anemoneter to give false results enormousiy exceeding the correct indication. Experiments of Mr. O. T. Crosby showed that the pressure varied directly as the velocity, whereas all the early investigators, from the time of Smeaton onwards, made it vary as the square of the velocity. Experiments made by Prof. Kernot at speeds varying from 2 to 15 miles per hour agreed with the earlier authorities, and tended to negative Crosby's results. The pressure npon one side of a cube, or of a block proportioned like an ordinary carriage, was found to be . 9 of that upon a thin plate of the same area. The same result was obtained for a square tower. A square pyramid, whose height was tliree times its base, experienced .8 of the pressure upon a thin plate equal to one of its sides, but if an angle was turned to the wind the pressure was increased by fully $20 \%$ A bridge consisting of two plate-girders connected by a deck at the top was found to experience 9 of the pressure on a thin plate equal in size to one girder, when the distance between the girders was equal to their depth, and this was increased by one fifth when the distance between the girders was
double the depth. A lattice-work in which the area of the openings was 55\% of the whole area experienced a pressure of $80 \%$ of that upon a plate of the same area. The pressure upon cylinders and cones was proved to be equal to half that upon the diametral planes, and that upon an octagonal prism to be $20 \%$ greater than upon the circnmscribing cylinder. A sphere was subject to a pressure of 36 of that upon a thin circular plate of equal diameterA hemispherical cup gave the same result as the sphere; when its concavity was turned to the wind the pressure was 1.15 of that on a flat plate of equal diameter. When a plane surface parallel to the direction of the wind was brought nearly into contact with a cylinder or sphere, the pressure on the latter bodies was augmented by about $20 \%$, owing to the lateral escape of the air being checked. Thus it is possible for the security of a tower ol chimney to be impaired by the erection of a building nearly ronching it on one side.

Pressures of Wind Registered in Storms.-Mr. Frizell has examined the published records of Green wich Olservatory from 1849 to 1869 , and reports that the highest pressure of wind he finds recorded is 41 lbs . per sq. ft., and there are numerous instances in which it was between 30 and 40 lbs . per sq. ft. Prof. Henry says that oll Mount Washington. N. H., a velocity of 150 miles per hour has been observed, and at New York City 60 miles an hour, and that the highest winds observed in $180^{\circ}$ were of 72 and 63 miles per hour, respectively.

Lieut. Dunwoody, U.S. A., says, in substance, that the New England coast is exposed to storms which produce a pressure of 50 lbs . per sq. ft. Engineering News, Aug. 20, 1880.

## WINBIMILLS.

Power and Efficicney of Windmills.-Rankine, S. E., p. 215, gives the following: Let $Q=$ volume of air which acts on the sail, or part of a sail, in cubic feet per second, $v=$ velocity of the wind in feet per second, $s=$ sectional area of the cylinder, or annular cylinder of wind, through which the sail, or part of the sail, sweeps in one revolution, $c=a$ coefficient to be found by experience; then $Q=c v s$. Rankine, from experimental data given by Smeaton, and taking $c$ to include an allowance for friction, gives for a wheel with four sails, proportioned in the best manner, $c=0 . \tilde{5}$. Let $A=$ weather angle of the sail at any distance from the axis, i.e., the angle the portion of the sail considered makes with its plane of revolution. This angle gradually diminishes from the inner end of the sail to the tip; $u=$ the velocity of the same portion of the sail, and $E=$ the efficiency. The efficiency is the ratio of the useful work performed to whole energy of the stream of wind acting on the surface $s$ of the wheel, which energy is $\frac{D s v^{3}}{2 g}, D$ being the weight of a cubic foot of air. Rankine's formula for efficiency is

$$
\left.E=\frac{R u}{\frac{D s v^{3}}{\mathscr{\sim g}}}=c\left\{\frac{u}{v} \sin 2 A-\frac{u^{2}}{v^{2}}(1-\cos 2 A+f)-f\right)\right\},
$$

in which $c=0.75$ and $f$ is a coefficient of friction found from Smeaton's data $=0.016$. Rankine gives the following from Smeaton's data:

Rankine gives the following as the best values for the angle of weather at different distances from the axis:


But Wolff ( $p$. 125) shows that Smeaton did not term these the best angles, but simply says they "answer as well as any," possibly any that were in existence in his time. Wolff says that they "cannot in the nature of things be the most desirable angles." Mathematical considerations, he says, conclusively show that the angle of impulse depends on the relative velocity of each point of the sail and the wind, the angle growing larger as the ratio becomes greater. Smeatou's angles do not fulfil this condition. Wolff devel-
ops a theoretical formula for the best angle of weather, and from it calculates a table for different relative velocities of the blades (at a distance of one seventh of the totallength from the centre of the shaft) and the wind, from which the following is condensed:


The effective power of a windmill, as Smeaton ascertained by experiment, varies as $s$, the sectional area of the acting stream of wind; that is, for sinilar wheels, as the squares of the radii.
The value 0.75 , assigned to the multiplier $c$ in the formula $Q=c v s$, is founded on the fact, ascertained by Smeaton, that the effective power of a windmill with sails of the best form, and about $151 / 2 \mathrm{ft}$. radius, with a breeze of 13 ft . per second, is about 1 horse-power. In the computations founded on that fact, the mean angle of weather is made $=13^{\circ}$. The efficiency of this wheel, according to the formula and table given, is 0.29 , at its best speed, when the tips of the sails move at a velocity of 2.6 times that of the wind.
Merivale (Notes and Formulæ for Mining Students), using Smeaton's coefficient of efficiency, 0.29 , gives the following:
$U=$ units of work in foot-lbs. per sec.;
$W=$ weight, in pounds, of the cylinder of wind passing the sails each second, the diameter of the cylinder being equal to the diameter of the sails;
$V=$ velocity of wind in feet per second;
H.P. $=$ effective horse-power:

$$
\mathscr{V}=\frac{W V^{2}}{64} ; \text { H.P. }=\frac{0.29 W^{2}}{64 \times 550}
$$

A. R. Wolff, in an article in the American Engineer, gives the following (see also his treatise on Windınills):
Let $c=$ velocity of wind in feet per second;
$n=$ number of revolutions of the windmill per minute;
$b_{0}, b_{1}, b_{2}, b_{x}$ be the breadth of the sail or blade at distances $l_{0}, l_{1}, l_{2}$, $l_{3}$, and $l$, respectively, from the axis of the shaft;
$l_{0}=$ distance from axis of shaft to beginning of sail or blade proper;
$l=$ distance from axis of slaft to extremity of sail proper;
$v_{0}, v_{1}, v_{2}, v_{3}, v_{x}=$ the velocity of the sail in feet per second at distances $l_{0} . l_{1}, l_{2}, l$, respectively, from the axis of the shaft;
$a_{0}, a_{1}, a_{2}, a_{3}, a_{x}=$ the angles of impulse for maximutm effect at distances $l_{0}, l_{1}, l_{2}, l_{3}, l$ respectively from the axis of the shaft;
$a=$ the angle of impulse when the sails or blocks are plane surfaces, so that there is but one angle to be considered;
$N=$ number of sails or blades of windmill;
$K=.93$.
$d=$ density of wind (weight of a cubic foot of air at average temperature and barometric pressure where mill is erected);
$W=$ weight of wind $\cdot$ wheel in pounds;
$f=$ coefficient of friction of shaft and bearings;
$L=$ diameter of bearing of windmill in feet.

The effective horse-power of a windmill with plane sails will equal

$$
\begin{aligned}
& \frac{\left(l-\iota_{0}\right) K c^{2} d N}{550 g} \times \text { mean of }\left(v_{0}\left(\sin a-\frac{v_{0}}{c} \cos a\right) b_{0} \cos a\right. \\
& \left.v_{x}\left(\sin a-\frac{v_{x}}{c} \cos a\right) b_{x} \cos a\right)-\frac{f W \times .05336 n D}{550}
\end{aligned}
$$

The effective horse-power of a windmill of shape of sail for maximum effect equals

$$
\begin{gathered}
\frac{N\left(l-l_{0}\right) K d c^{3}}{2200 g} \times \text { mean of }\left(\frac{2 \sin ^{2} a_{0}-1}{\sin ^{2} a_{0}} b_{0}, \quad \frac{2 \sin ^{2} a_{1}-1}{\sin ^{2} a_{1}} b_{1} \ldots\right. \\
\left.\cdots \frac{2 \sin ^{2} a_{x}-1}{\sin _{2} a_{x}} b_{x}\right)-\frac{f W \times .05236 n D}{550} .
\end{gathered}
$$

The mean value of quantities in brackets is to be found according to Simpson's rule. Dividing $l$ into ${ }^{7}$ parts, finding the angles and breadths corresponding to these divisions by substituting them in quantities within brackets will be found satisfactory. Comparison of tlese formulæ with the only fairly reliable experiments in windmills (Coulomb's) showed a close agreement of results.

Approximate formulæ of simpler form for windmills of present construction can be based upon the above, substituting actual average values for $a$, $c, d$, and $e$, but since improvement in the present angles is possible, it is better to give the formulæ in their general and accurate form.

Wolff gives the following table based on the practice of an American manufacturer. Since its preparation, he says, over 1500 windmills have been sold on its guaranty (1885), and in all cases the results obtained did not vary sufficiently from those presented to cause any complaint. The actual results obtained are in close agreenrent with those obtained by theoretical aralysis of the impulse of wind upon windmill blades.

Capacity of the Windmill.

|  |  |  | Gallons of Water raised per Minute to an Elevation of - |  |  |  |  |  | $\begin{aligned} & \left\lvert\, \begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right. \\ & 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & 25 \\ & \text { feet. } \end{aligned}$ | $\begin{gathered} 50 \\ \text { feet. } \end{gathered}$ | $\begin{gathered} \% 5 \\ \text { feet. } \end{gathered}$ | $\begin{aligned} & 100 \\ & \text { feet. } \end{aligned}$ | $\begin{aligned} & 150 \\ & \text { feet. } \end{aligned}$ | $\stackrel{200}{\text { feet. }}$ |  |  |
| whee |  |  |  |  |  |  |  |  |  |  |
| $81 / 2 \mathrm{ft}$. | 16 | ${ }_{6} 60$ to 75 |  | 3.016 |  |  |  |  | 0.04 | 8 |
| 10 '6 | 16 | 60 to 65 | 19.179 | 9.563 | 6.638 | 4.750 |  |  | 0.12 | 8 |
| 12 " | 16 | 55 to 60 | 33.941 | 17.052 | 11.851 | 8.485 | 5.680 |  | 0.21 | 8 |
| 14 16 | 16 | 50 to 55 | 45.139 | 22.569 | 15.301 | 11.246 | 7.807 | 4998 | 0.28 | 8 |
| 16 " | 16 | 45 to 50 | 64600 | 31.654 | 19.542 | 16.150 | 9. T. $^{\text {a }}$ | 8.075 | 0.41 | 8 |
| ${ }^{18}{ }^{18}$ " 6 | 16 | 40 to 45 | 97.682 | 52.165 | 32.513 | $24.4 \geqslant 1$ | 17.485 | 12.211 | 0.61 | 8 |
| $\stackrel{20}{ }{ }^{2} \mathbf{0}$ | 16 | 35 to 40 | 124.950 | 63.750 | 40.500 | 31.248 | 19.284 | 15.938 | 0.18 | 8 |
| 25 " | 16 | 30 to 35 | 212.381 | 106.964 | \%1.604 | 49.725 | 3r.349 | 26.\%41 | 1.34 | 8 |

These windmills are made in regnlar sizes, as high as sixty feet diameter of wheel; but the experience with the larger class of mills is too limited to enable the presentation of precise data as to their performance.
If the wind can be relied upon in exceptional localities to average a higher velocity for eight hours a day than that stated in the above table, the performance or horse-power of the mill will be increased, and can be obtained by multiplying the figures in the table by the ratio of the cube of the ligher average velocity of wind to the cube of the velocity above recorded
He also gives the following table showing the economy of the windmill. All the items of expense, including both interest and repairs. are reduced to the hour by dividing the costs per annum by $365 \times 8=2920$; the interest,
etc., for the twenty-four hours being charged to the eight hours of actual work. By multiplying the figures in the 5th column by 584, the first cost of the windmill, in dollars, is obtained.

Economy of the Windmill.

| Designationof Mill. |  |  |  | Expense of Actual Useful Power Developed, in cents, per hour. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | \% <br> $\vdots$ <br> $\vdots$ <br> 0 | F |  |
| $81 / 2 \mathrm{ft}$. whee] | 370 | 0.04 | 8 | 0.25 | 0.25 | 0.06 | 0.04 | 0.60 | 15.0 |
| 10 "، " | 1151 | 0.12 | 8 | 0.30 | 0.30 | 0.06 | 0.04 | 0.70 | 5.8 |
| 12 | 2036 | 0.21 | 8 | 0.36 | 0.36 | 0.06 | 0.04 | 0.82 | 3.9 |
| 14 | 2008 | 0.28 | 8 | 0.75 | 0.75 | 0.06 | 0.07 | 1.68 | 5.8 |
| 16 | 38\%6 | 0.41 | 8 | 1.15 | 1.15 | 0.06 | 0.07 | 2.43 | 5.9 |
| 18 | 5861 | 0.61 | 8 | 1.35 | 1.35 | 0.06 | 0.07 | 2.83 | 4.6 |
| 2. | 7497 | 0.79 | 8 | 1.70 | 1.70 | 0.06 | 0.10 | 3.56 | 4.5 |
| 25 | 12743 | 1.34 | 8 | 2.05 | 2.05 | 0.06 | 0.10 | 4.26 | 3.2 |

Lieut. I. N. Lewis (Eng'g Mag., Dec. 1894) gives a table of results of ex* periments with wooden wheels, from which the following is taken :

| Diameter of wheel, Feet. | Velocity of Wind, miles per hour. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | 10 | 12 | 16 | 20 | 25 | 30 |
|  | Actual Useful Horse-power developed. |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  | 2 |
| 16 | $1 / 8$ | 3/8 | 3/4 | ${ }_{2} 1 / 2$ | $21 / 4$ | 314 | 4 |
| 20 | $13 / 4$ | $11 / 4$ | 2 | 3 | 4 | 51/3 | 10 |
| 25 30 | $2^{1 / 4}$ | ${ }_{3}^{194}$ | 4 | 51/2 | ${ }_{7}^{6}$ | 8 | 12 |

The wheels were tested by driving a differentially wound dynamo. The "useful horse-power" was measured by a voltmeter and ammeter, allowing 500 watts per horse-power. Details of the experiments, including the means used for obtaining the velocity of the wind, are not given. The results are so far in excess of the capacity claimed by responsible mamufacturers that they should not be given credence until established by further experiments.

A recent article on windmills in the Iron Age contains the following: According to observations of the United States Signal Service, the average velocity of the wind within the range of its record is 9 miles per hour for the year along the North Atlantic border and Northwestern States, 10 miles on the plains of the West, aud 6 miles in the Gulf States.

The horse-powers of windmills of the best construction are proportional to the squares of their diameters and inversely as their velocities; for example, a 10 -ft. mill in a 16 -mile breeze will develop 0.15 horse-power at 65 revolutions per minute; and with the same breeze

A $20-\mathrm{ft}$. mill, 40 revolutions, 1 horse-power.
A $25-\mathrm{ft}$. mill, 35 revolutions, $13 / 4$ horse-power.
A 30 -ft. mill, 28 revolutions, $31 / 2$ horse-power.
A 40 -ft. mill, 22 revolutions, $71 / 2$ horse-power.
A $50-\mathrm{ft}$. mill, 18 revolutions, 12 horse-power.
The increase in power from increase in velocity of the wind is equal to the square of its proportional velocity; as for example, the $25-\mathrm{ft}$. mill rate
above for a 16 -mile wind will, with a 32 -mile wind, have its horse-power in. creased to $4 \times 13 / 4=\tau$ horse-power, a $40-\mathrm{ft}$. mill in a $3 ?$-mile wind will run up to 30 horse-power, and a $50-\mathrm{ft}$. mill to 48 horse-power, with a small de duction for increased friction of air on the wheel and the machinery.

The modern mill of medium and large size will run and produce work in a 4 -mile breeze, becoming very efficient in an 8 to 16 -mile breeze, and increase its power with safety to the running-gear up to a gale of 45 miles per hour.

Prof. Thurston, in an article on modern uses of the windmill, Engineering Magazine, Feb. 1843, says: The best mills cost from about $\$ 600$ for the $10-\mathrm{ft}$. wheel of $1 / 8$ horse-power to $\$ 1200 \mathrm{for}$ the $25-\mathrm{ft}$. Wheel of $11 / 2$ horse-power or less. In the estimates a working-day of 8 hours is assumed; but the machine, when used for pumping, its most common application, may actually do its work 24 hours a day for days, weeks, and even months together, whenever the wind is "stiff" enough to turn it. It costs, for work done in situations in which its irregularity of action is no olojection, only one half or one third as much as steam, hot-air, and gas engines of similar power. At Faversham, it is said, a 15 -horse-power mill raises $2,000,000$ gallons a month from a depth of 100 ft ., saving 10 tons of coal a month, which would otherwise be expended in doing the work by steam.

Electric storage and lighting from the power of a windmill has been tested on a large scale for several years by Charles F. Brush, at Cleveland, Ohio. In 188 i he erected on the grounds of his dwelling a windmill 56 ft . in diameter, that operates with ordinary wind a dynamo at 500 revolutions per minute, with an output of 12,000 watts- 16 electric horse-power-charging a storage system that gives a constant lighting capacity of 10016 to 20 candle-power lamps. The current from the dynamo is automatically regu. lated to conmence clarging at 330 revolutions and $\% 0$ volts, and cutting the circuit at 75 volts. Thus, by its 21 hours' work, the storage system of 408 cells in 12 parallel series, each cell having a capacity of 100 ampere hours, is kept in constant readiness for all the requirements of the establishment. it being fitted up with 350 incandescent lamps, about 100 being in use each evening. The plant runs at a mere nominal expense for oil, repairs, and at, tention. (For a fuller description of this plant, and of a more recent one at Marblehead Neck, Mass., see Lieut. Lewis's paper in Engineering Magazine,

## COIIPRESSED AIHR.

Heating of Air by Compression. - Kimball, in his treatise on Plysical Properties of Gases, says: When air is compressed, all the work which is done in the compression is converted into heat, and shows itself in the rise in temperature of the compressed gas. In practicemany devices are emplnyed to carry off the heat as fast as it is developed, and keep the temperature down. But it is not possible in any way to totally remove this difficulty. But, it may be objected, if all the work done in compression is converted into heat, and if this heat is got rid of as soon as possible, then the work may be virtnally thrown away, and the compressed air can have no nore energy than it had before compression. It is true that the compressed gas has no more energy than the gas had before compression, if its temperature is no higher, but the advantage of the compression lies in bringing its energy into more available form.

The total energy of the compressed and uncompressed gas is the same at the same temperature, but the available energy is much greater in the former.
When the compressed air is used in drivilg a rock-drill, or any other piece of nachinery, it gives up energs equal in amount to the work it does, and its temperature is accordingly gieatly reduced.

Causes of Loss of Eineroy in Use of Compressed Air. (Zahner, on Transmission of Power by Compressed Air.)-1. The compression of air always develops heat, and as the compressed air always cools downto the temperatare of the surrompling atmosphere before it is used, the mechanical equivalent of this dissipated heat is work lost.
2. The heat of compression increases the volume of the air, and hence it is necessary to carry the air to a higher pressure in the compressor in order that we may finally have a given volume of air at a given pressure, and at the temperature of the surrounding atmosphere. The work spent in effecting this excess of pressure is work lost.
3. Friction of the air in the pipes, leakage, dead spaces, the resistance offered by the valves, insufficiency of valve-area, inferior workmanship, and slovenly attendance, are all more or less serious causes of loss of power.

The first cause of loss of work, namely, the heat developed by compres sion, is entirely unavoidable. The whole of the mechanical energy which the compressor-piston spends upon the air is converted into heat. This heat is dissipated by conduction and radiation, and its mechanical equivalent is work lost. The compressed air, having again reached thermal equilibrium with the surrounding atmosphere, expands and does work in virtue of its intrinsic energy.

The intrinsic energy of a fluid is the energy which it is capable of exerting against a piston in changing from a given state as to temperature and volume to a total privation of heat and indefinite expansion.

Adiabatic and Tsothermal Compression.-Air may be compressed either adiabaticrlly, in which all the heat resulting from compression is retained in the air compressed, or isothermally, in which the heat is removed as rapidly as produced, by means of sonse form of refrigerator.
Volumes, Mean Pressures per stroke, Temperatures, etc.,
intheoperation of Air-compresion rom HAtmosphere
and $60^{\circ}$ Fahr. (F. Richards, Am. Mach., March 30,1893 )

| 捤 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 6 |  |
|  |  |  |  |  |  | $60^{\circ}$ | 80 | 6.442 |  |  |  |  |  |
|  | 1.068 | ${ }^{9363}$ | . 95 | ${ }^{.96}$ | 975 | 71 8 |  | 6.78\% | . 1474 |  | 28 | 37.94 | 4448 |
|  | 1.136 |  | ${ }^{91}$ | ${ }_{2}^{1.87}$ | ${ }_{2}^{1.91}$ | 80 | 90 | T. $12 \times$ | . 1144 | 318 | 28 | 39.18 | 8459 |
|  | 22 | . 7861 | 84 | 3.53 | 3.67 | 98 | 100 |  |  | .2334 | ${ }_{30.21}^{29.54}$ | 40.4 41.6 | ${ }_{4}^{412}$ |
|  | 1.34 | . | . 81 | 4.3 | 4.5 | 106 | 10.5 | 8.142 | . 12 |  | 30. | 42.78 |  |
|  | 1. | . 495 | . 69 | ${ }^{7}$ 7.62 |  | ${ }^{145}$ | 110 | 8.483 | . 117 |  | 31. | 43.91 |  |
|  | 5. 2.2 | .495 | 606 | 10.33 | 11.51 | 118 | 115 | 8833 |  | 2129 | 31. | 44. |  |
|  | 3.36 | . 42 | . 543 | 12. | 4, | 207 | 120 | 9.163 | 109 | 20 | 32. | 教 |  |
|  | 3. | -31 |  | 16 |  | - | 125 | 9.503 9843 | . 1 | . 2020 |  | 47. |  |
|  |  |  | , | 17.92 |  | 281 |  | 10.183 | . 0981 | 1.1928 | 3 | 49.1 | 560 |
|  | , | .268 | ${ }^{393}$ | 19.3 | 23.66 | 303 |  | 10.5123 | . 095 | . 18 \% 8 | 34.5 | 50. |  |
| 45 | 4.061 | . 2 | . 37 | 20.5 | 2. | 331 | 145 | 10.864 | . 092 | 1837 | 35. |  |  |
|  | 4.401 | - | . 35 | 21.69 | 27.39 | 339 | 150 | 11.204 | . 08 | $1{ }^{1 \%}$ | 35.4 | 51.89 |  |
|  | 4. 741 | . 2109 | ${ }^{331}$ | $\stackrel{22}{2 .}$ | 2.11 | 35\% |  | 11.88 | . 0841 | 1- | 36.2 | 58. | 50 |
|  | 5.081 | . 1988 | . 3141 | ${ }_{2}^{23.78}$ | 30.75 |  |  |  | .0i | .165\% | 3 | 55 |  |
| 65 | 5.422 | . 1844 | . 301 | ${ }^{24 .} 5$ | 32.3 | ${ }_{4}^{389}$ | 180 | 13.24 | . 02 | 1595 | ${ }^{37}$ |  |  |
|  | 5. 762 | . 1733 | 29 |  |  | 405 420 |  | 13.93 14.61 | . 06118 | 154 |  |  |  |
|  |  | 1039 | 26 |  |  | 420 | 0 | 14.61 |  | . 149 | 39.42 | 60.14 | 4 |

Column 3 gives the volume of air after compression to the given pressure and after it is cooled to its initial temperature. After compression air loses its heat very rapidly, and this columnmay be taken to represent the volume of air after compression available for the purpose for which the air has been compressed.

Column 4 gives the volume of air more nearly as the compressor has to deal with it. In any compressor the air will lose some of its heat during conupression. The slower the compressor luns the cooler the air and the smaller the volume.

Column 5 gives the mean effective resistance to be overcome by the aircylinder piston in the stroke of compression, supposing the air to remain constantly at its initial temperature. Of course it will not so remain, but this column is the ideal to be kept in view in econonical air-compression.

Column 6 gives the mean effective resistance to be overcome by the piston, supposing that there is no cooling of the air. The actual mean effective pressure will be somewhat less than as given in this column; but for computing the actual power required for operating air-compressor cylinders the figures in this column may be taken and a certain percentage addedsay 10 per cent-and the result will represent very closely the power required by the compressor.
The mean pressures given being for compression from one atmosphere upward, they will not be correct for computations in compound compression or for any other initial pressure.
Loss Due to Excess of Pressure cansed by Theating in the Compression-cylinder.-If the air during compression were kept at a constant temperature, the compression-curve of an indicator-diagram taken from the cylinder would be an isothermal curve, and would follow the law of Boyle and Marriotte, $p v=a$ constant, or $p_{1} v_{1}=p_{0} v_{0}$, or $p_{1}=p_{0} \frac{v_{0}}{v_{1}}, p_{0}$ and $v_{0}$ being the pressure and volume at the beginning of compression, and $p_{1} v_{1}$ the pressure and volume at the end, or at any intermediate point. But as the air is heated during compression the pressure increases faster than the volume decreases, causing the work required for any given pressure to be increased. If none of the heat were abstracted by radiation or by injection of water, the curve of the diagram would be an adiabatic curve, with the equation $p_{1}=p_{0}\left(\frac{v_{0}}{v_{1}}\right)^{1.405}$. Cooling the air during compression, or compressing it in two cylinders, called compounding, and cooling the air as it passes from one cylinder to the other, reduces the exponent of this equation, and reduces the quantity of work necessary to effect a given compression. F. T. Gause (Am. Much., Oct. 20, 1892), describing the operations of the Popp air-compressors in Paris, says: The greatest saving realized in compressing in a single cylinder was 33 per cent of that theoretically possible. In cards taken from the 2000 H.P. compound compressor at Quai De La Gare, Paris, the saving realized is 85 per cent of the theoretical amount. Of this amount only $\delta$ per cent is due to cooling during conpression, so that the increase of econonly in the compound compressor is mainly due to cooling the air between the two stages of compression. A compression-curve with exponent 1.25 is the best result that was obtained for compression in a single cylinder and cooling with a very fine spray. The curve with exponent 1.15 is that which must be realized in a single cylinder to equal the present economy of the compound compressor at Quai De La Gare.

Horse-power required to compress and deliver one cubic foot of Free Air per minute to a given pressure with no cooling of the air during the compression; also the horse-power required, supposing the air to be maintained at constant temperature during the compresion.

| Gauge- <br> pressure. | Air not <br> cooled. | Air constant <br> temperature. |
| :---: | :---: | :---: |
| 5 | .0196 | .0188 |
| 10 | .0361 | .0333 |
| 20 | .0628 | .0551 |
| 30 | .0846 | .0713 |
| 40 | . .1032 | .0843 |
| 50 | .1195 | .0916 |
| 60 | .1312 | .1036 |
| 70 | .1476 | .1120 |
| 80 | .1599 | .1195 |
| 90 | .1710 | .1261 |
| 100 | .1815 | .1318 |

Horse-power required tes compress and deliver one cubic foot of Compressed Air per minute at a given pressure with no cooling of the ail during the compression; also the horsepower required, supposing the air to be maintained at constant temperature during the compression.

| Gauge- | Air not | Air constant |
| :---: | :---: | :---: |
| pressure. | cooled. | temperature. |
| 5 | . 0263 | . 0251 |
| 10 | . 0606 | . 0559 |
| 20 | . 1483 | . 1300 |
| 30 | .25i3 | . 2168 |
| 40 | . 3842 | . 3138 |
| 50 | . 5261 | . 4166 |
| 60 | . 6818 | . 5266 |
| r0 | . 8508 | . 6456 |
| 80 | 1.0302 | . 7700 |
| 90 | $1.21{ }^{17}$ | .8978 |
| 100 | 1.4171 | 1.0291 |

The horse-power given above is the theoretical power, no allowance being made for friction of the compressor or other losses, which may amount to 10 per cent or more.

## Formula for Adiabatic Compression or Expansion of Air (or other sensibly perfect ars).

Let air at an absolute temperature $T_{1}$, absolute pressure $p_{1}$, and volnme $v_{1}$ be compressed to an absolute pressure $p_{2}$ and corresponding volume $v_{2}$ and absolute temperature $T_{2}$; or let compressed air of an initial pressure, volume, and temperature $p_{2}, v_{2}$, and $T_{2}$ be expanded to $p_{1}, v_{1}$, and $T_{1}$, there being no transmission of heat from or into the air during the operation. Then the following equations express the relations between pressure, volume, and temperature (see works on Thermodynamics):

$$
\begin{array}{lll}
\frac{v_{1}}{v_{2}}=\left(\frac{p_{2}}{p_{1}}\right)^{0.71} ; & \frac{p_{2}}{p_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{1.41}, & \frac{v_{1}}{v_{2}}=\left(\frac{T_{2}}{T_{1}}\right)^{2.46}: \\
\frac{T_{2}}{T_{1}}=\left(\frac{v_{1}}{v_{2}}\right)^{0.41} ; & \frac{T_{2}}{T_{1}^{\prime}}=\left(\frac{p_{2}}{p_{1}}\right)^{0.29} ; & \frac{p_{2}}{p_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{3.46} .
\end{array}
$$

The exponents are derived from the ratio $c p \div c v=k$ of the specific heats of air at constant pressure and constant volume. Taking $k=1.404,1 \div k=$ $0.711 ; k-1=0.406 ; 1 \div(k-1)=2.463 ; k \div(k-1)=3.463 ;(k-1) \div k=$ 9.289 .

Work of Adiabatic Compression of Air. - If air is compressed in a cylinder without clearance from a volume $r$ and pressure $p_{1}$ to a smaller volume $v_{2}$ and higher pressure $p_{2}$, work equal to $p_{1} v_{1}$ is done hy the external air on the piston while the air is drawn into the cylinder. Work is then done by the piston on the air, first, in compressing it to the pressure $p_{9}$ and volume $v_{2}$, and then in expelling the volume $v_{3}$ from the cylinder against the pressure $p_{2}$. If the compression is adiabatic, $p_{1} v_{1}{ }^{k}=$ $p_{2} v_{2}^{k}=$ constant. $k=1.41$.
The work of compression of 1 pound of air is

$$
\frac{p_{1} v_{1}}{\hbar_{k}-1}\left\{\left(\frac{v_{1}}{v_{2}}\right)^{k-1}-1\right\}=\frac{p_{1} v_{1}}{\hbar-1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\left.\frac{k-1}{k}-1\right\}}\right.
$$

or

$$
2.463 p_{1} v_{1}\left\{\left(\frac{v_{1}}{v_{2}}\right)^{0.41}-1\right\}=2.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
$$

The work of expulsion is $p_{2} v_{2}=p_{1} v_{1}\left(\frac{p_{2}}{p_{1}}\right)^{0.29}$.
The total work is the sum of the work of compression and expulsion less the work done on the piston during admission, and it equals

$$
\left.p_{1} v_{1}\left\{\frac{k}{k-1}\right\}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right\}=3.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\} .
$$

The mean effective pressure during the stroke is

$$
p_{1} \frac{k}{k-1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}}-1\right\}=3.463 p_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.22}-1\right\}
$$

$p_{1}$ and $p_{2}$ are absolute pressures above a vacuum in atmospheres or in pounds per square inch or per square foot.
Examples.-Required the work done in compressing 1 cubic foot of air per second from 1 to 6 atmospheres, including the work of expulsion from the cylinder.
$p_{2} \div p_{1}=6 ; 60.29 \cdots 1=0.681 ; 3.463 \times 0.681=2.358$ atmosplieres, $\times 14.7=$ 34.06 ibs. per sq. in. mean effective pressure, $\times 144=4991 \mathrm{lbs}$. per sq. ft., $\times 1$ ft. stroke $=4991 \mathrm{ft} .-1 \mathrm{lbs} ., \div 550 \mathrm{ft} .-\mathrm{lbs}$. per second $=9.08 \mathrm{H} . \mathrm{P}$.

If $R=$ ratio of pressures $=p_{2} \div p_{1}$, and if $v_{1}=1$ cubic foot, the work done ill compressing 1 cubic foot from $p_{1}$ to $p_{2}$ is in foot-pounds

$$
3.463 p_{1}\left(F^{0.29}-1\right),
$$

$p_{1}$ being taken in lbs. per sq. ft . For compression at the sea-level $p_{1}$ may be taken at 14 lbs . per sq. in . $=2016 \mathrm{lbs}$. per sq. ft., as there is some loss of pressure due to friction of valves and passages.

Indicator-cards from compressors in good condition and under workingspeeds usually follow the adiabatic line closely. A low curve indicates piston leakage. Such cooling as there may be from the cylinder-jacket and the re-expansion of the air in clearance-spaces tends to reduce the mean effective pressure, while the "camel-backs" in the expulsion-line, due to resistance to opening of the discharge-valve, tend to increase it
Work of one stroke of a compressor, with adiabatic compression, in footpounds,

$$
W=3.463 P_{1} V_{1}\left(R^{0.29}-1\right),
$$

in which $P_{1}=$ initial absolute pressure in lbs. per sq. ft. and $V_{1}=$ volume traversed by piston in cubic feet.
The work done during adiabatic compression (or expansion) of 1 pound of air from a volume $v_{1}$ and pressure $p_{1}$ to another volume $v_{2}$ and pressure $p_{2}$ is equal to the mechanical equivalent of the heating (or cooling). If $t_{1}$ is the higher and $t_{2}$ the lower temperature, Faln., the work done is $c_{v} J\left(t_{1}-t_{2}\right)$ foot-pounds, $c_{v}$ being the specific heat of air at constant volume $=0.1689$ and $J=7 \pi 8, c_{v} J=131.4$.

The work during compression also equals

$$
\frac{c_{v} J}{k a} p_{1} v_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right]=2.463 p_{1} v_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{0.29}-1\right\}
$$

$R a$ being the value of $p v \div$ absolute temperature for 1 pound of air $=53.37$.
The work during expansion is

$$
2.463 p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]=2.463 p_{2} v_{2}\left[\left(\frac{p_{1}}{p_{2}}\right)^{0.29}-1\right],
$$

in which $p_{1} v_{1}$ are the initial and $p_{2} v_{2}$ the final pressures and volmmes.
Compressed-air frigines, diabatic gixpansion. - Let the mi, ial pressure and volmme taken into the cylinder be $p_{1}$ lbs. per sg . ft. and $v_{1}$ cubic feet; let expmemion take place to $p_{2}$ and $v_{2}$ according to the adiabatic law $p_{1} v_{1} 1.41=p_{2} v_{2}{ }^{1}{ }^{41}$; then at the end of the stroke let the pressure drop to the back-pressure $p_{3}$, at which the air is exlansted Assuming no clearance, the work done by one pound of air during ad mission, measured above vacumm, is $p_{1} v_{1}$, the work during expansion is 2.463 $p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]$, and the negative or back pressure work is $-p_{3} v_{2}$. The total work is $p_{1} v_{1}+\cdot 2.463 p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{0.29}\right]-p_{3} v_{2}$, and the mean effective pressure is the total work divided by $v_{2}$.

If the air is expanded down to the back-pressure $p_{3}$ the total work is

$$
3.463 p_{1} v_{1}\left\{1-\left(\frac{p_{9}}{p_{1}}\right)^{0.29}\right\}
$$

or, in terms of the final pressure and volume,

$$
3.463 p_{3} v_{2}\left\{\left(\frac{p_{1}}{p_{3}}\right)^{0.29}-1\right\},
$$

and the mean effective pressure is

$$
3.463 p_{3}\left\{\left(\frac{p_{1}}{p_{3}}\right)^{0.2 \theta}-1\right\}
$$

The actual work is reduced by clearance. When this is considered, the product of the initial pressure $p_{1}$ by the clearance volume is to be subtracted from the total work calculated from the initial volume $v_{1}$ including clearance. (See p. it4, under "Stean-engine.")

Mean Effective Pressures of Air Compressed Adiabatically. (F. A. Halsey, Am. Mach., Mar. 10, 189s.)

| $R$ | $R^{0.29}$ | MEP from 14 lbs. Initial. | $R$ | $R^{0.28}$ | MEP from 14 lbs. Initial. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.25 | 1.067 | 8. 24 | 4.15 | $1.5 \%$ | 27.5 |
| 1.50 | 1.125 | 6.04 | 5. | 1.594 | 28.6 |
| 1.75 | 1.176 | 8.51 | 5.25 | 1.617 | 29.8 |
| 2. | 1.223 | 10.8 | 5.5 | 1.639 | 30.8 |
| $\stackrel{2}{2.25}$ | 1.265 | 12.8 | 5.75 | 1.660 | 31.8 |
| $\stackrel{2}{2.5}$ | 1.304 | 14.7 | 6. | 1.681 | $3 \% .8$ |
| 2.75 | 1.341 | 16.4 | 6.25 | 1. 701 | 33.8 |
| 3. | 1.375 | 18.1 | 6.5 | 1. 720 | 34.7 |
| 3.25 | 1.407 | 19.6 | 6.75 | 1.739 | 35.6 |
| 3.5 | 1.438 | 21.1 |  | 1. 757 | 36.5 |
| 3.55 | 1.46 ? | 22.5 | 4.25 | 1.7750 | 37.4 |
| 4. | 1.49 .3 | 23.9 | 7.5 | 1.793 | 38.3 |
| 4.25 | $1.5 \geqslant 1$ | 25.2 | 8. | 1.8: | 39.9 |
| 4.5 | 1.546 | 26.4 |  |  |  |

$R=$ final $\div$ initial absolute pressure.
$M E P=$ mean effective pressure, lbs. per sq. in., based on 14 lbs initial.
Compound Compression, with Air Coolcd betwcen the Two Cylinders. (Am. Mach., March 10 and 31, 1898.)-Work in luw-pressure cyliuder $=W_{1}$, in high-pressune cylinder $W_{2}$. Total work

$$
W_{1}+W_{2}=3.46 P_{1} V_{1}\left[r_{1} \cdot 29+R \cdot 29 r_{1}-29-2\right]
$$

$r_{1}=$ ratio of pressures in l. p. cyl., $r_{2}=$ ratio in h. p. cyl., $R=r_{1} r_{2}$. When $r_{1}=r_{2}=\sqrt{R}$, the sum $W_{1}+W_{2}$ is a minimum. Hence for a given total ratio of pressures, $R$, the work of conlpression will be least when the ratios of the pressures in each of the two cylinders are equal.

The equation may be simplified, whell $r_{1}=\sqrt{R}$, to the following:

$$
W_{1}+W_{2}=6.92 P_{1} V_{1}\left[R^{0 \cdot 145}-1\right] .
$$

Dividing by $V_{1}$ gives the mean effective pressure reduced to the low-pressure cylinder $M E P=6.92 P_{1}\left[R^{0.145}--1\right]$.
In the above equation the compression in each cylinder is supposed to be adiabatic, but the intercooler is supposed to reduce the temperature of the air to that at which compression began.
MEan Effective Pressures of Air Compressed in Two Stages, assuming the Intercooler to Reduce the Temperature to That at which Compression Began. (F. A. Halsey, Am. Mach., Mar. 31, 189".)

| $R$ | $R^{0.145}$ | MEP from 14 lbs. Initial. | Ultimate Saving by coun-pounding, \% | $R$ | $R^{0.145}$ | $\begin{gathered} M E P \\ \text { from } \\ 14 \mathrm{lbs} . \\ \text { Ivitial. } \end{gathered}$ | Uitimate Saving by Conl-pounding, \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.0 | 1.263 | 25.4 | 11.5 | 9.0 | 1.375 | 36.3 |  |
| 5.5 | 1.280 | 27.0 | 123 | 9.5 | 1.386 | 87.3 |  |
| 6.0 | 1.296 | 28.6 | 12.8 | 10 | 1.396 | 38.3 |  |
| 6.5 | 1.312 | 30.1 | 13.2 |  | 1.416 | 40.2 |  |
| \%.0 | 1.326 | 31.5 | 13.7 | 12 | 1.434 | 41.9 |  |
| 7.5 | 1.336 | $3: .8$ | 14.3 | 13 | 1.451 | 43.5 |  |
| 8.0 | 1.359 | 34.0 | 14.8 | 14 | 1.466 | 45.0 |  |
| 8.5 | 1.364 | 35.2 |  | 15 | 1.481 | 46.4 |  |

$R=$ final $\div$ initial absolute pressure.
$M E P=$ mean effective pressure lbs. per sq. in. based on 14 lbs . absolute initial pressure reduced to the low-pressure cylinder.
To Find the Index of the Curve of an Air-diagrate.If $P_{1} V_{1}$ be pressure and volunte at one point on the curve, and $P V$ the pres_ sure and volume at another point, then $\frac{P}{P_{1}}=\left(\frac{V_{1}}{V}\right)^{x}$, in which $x$ is the index to be found. Let $P \div P_{1}=R$, and $V_{1} \div V=r ;$ then $R=r^{x} \log R=x \log r_{2}$ whence $x=\log R \div \log r$.

Table for Adiabatic Compression or Expansion of Air. (Proc. Inst. M.E., Jan. 1881, p. 123.)

| Absolute Pressure. |  | Absolute Temperature. |  | Volume. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ratio of Greater to Less. (Expansion.) | Ratio of Less to Greater. (Compression.) | Ratio of Greater to Less. (Expansion.) | Ratio of Less to Greater. (Compression.) | Ratio of Greater to Less. (Compression.) | Ratio of Less to Greater. (Expansion.) |
| 1.2 | . 833 | 1.054 | . 948 | 1.138 |  |
| 1.4 | . 714 | 1.102 | . 90 \% | 1.250 | . 8188 |
| 1.6 | . 625 | 1.146 | . 873 | 1.396 | . 110 |
| 1.8 2.0 | . 5500 | 1.186 1.202 | . 813 | 1.518 | . 6.59 |
| 2.01 | . 454 | 1.202 | . 818 | 1. 6.36 | . 611 |
| 2.4 | . 417 | 1.289 | . 776 | 1.850 1.862 | . 571 |
| 2.6 | . 385 | 1.319 | . 758 | 1.971 | . 537 |
| 2.8 | . 357 | 1.348 | . 742 | 2.077 | . 481 |
| 3.0 3.2 | . 3.33 | 1.375 | . 727 | 2.182 | . 458 |
| 3.2 3.4 | . 312 | 1.401 | . 714 | 2.254 | . 438 |
| 3.6 | . 278 | 1.450 | . 690 | ${ }_{2} 2.384$ | . 419 |
| 3.8 | . 263 | $1.4 \% 3$ | . 679 | $\stackrel{2.483}{2.580}$ | .403 .388 |
| 4.0 | . 250 | 1.495 | . 669 | 2.676 | . 374 |
| 4.2 | . 238 | 1.516 | . 660 | 2.770 | . 361 |
| 4.4 | . 2277 | 1.537 1.557 | . 651 | 2.863 | . 349 |
| 4.8 | . 208 | 1.556 | . 612 | 2.955 | . 338 |
| 5.0 | . 200 | 1.595 | . 627 | 3.046 3.135 | . 328 |
| ${ }^{6.0}$ | . 167 | 1.681 | . 595 | 3.569 | . 280 |
| 7.0 8.0 | . 143 | 1. 1.828 | . 569 | 3.981 | . 251 |
| 9.0 | . 111 | 1.891 | . .547 | 4.377 4.759 | . 228 |
| 10.0 | . 100 | 1.950 | . 513 | 5.129 | . 195 |

Mean Effective Pressures for the Compression Part only of the stroke when compressing and deliqering Air from one Atmospliere to given Gange-pressure in a sin= gle Cylinder. ( $\mathrm{K}^{\prime}$. Richards, Am. Mach., Dec. 14, 1893.)

| Gaugepressure. | Adiabatic Compression. | Isothermal Compression | Gaugepressure. | Adiabatic Compression | Isothermal Compression |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{6}^{1}$ | . 44 | . 43 | 45 | 13.05 | 12.62 |
| $\stackrel{2}{3}$ | . 96 | . 95 | 50 | 15.05 | 13.48 |
| 3 | 1.41 | 1.4 | 55 | 15.98 | 14.3 |
| 4 | 1.86 | 1.84 | 60 | 16.89 | 15.05 |
| 10 | 2.26 | 2.22 | 65 | 17.88 | 15.76 |
| 15 | 5.99 | 5.14 | 10 | 18.74 | 16.43 |
| 20 | 7.58 | 7.2 | 80 | 19.54 | ${ }^{1 \%} .09$ |
| 25 | 9.05 | 8.49 | 85 | 20.5 | 17.7 |
| 30 | 10.39 | 9.66 | 90 | 22 | 18.8 \% |
| 35 | 11.59 | 10.72 | 95 | 22.77 | 19.4 |
| 40 | 12.8 | 11.7 | 100 | 23.43 | 19.92 |

The mean effective pressure for compression only is always lower than the mean effective pressure for the whole work

Wean and Terminal Pressures of Compressed Air used Expansively for Gaugeøpressures from 60 to 100 lbs．
（Frank Richards，Am．Much．，April 13，1893．）

| Initial Pres－ sure | 60. |  | 70. |  | 80. |  | 90. |  | 100. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { oै } \\ & \text { oi } \\ & \text { है } \\ & 0 \end{aligned}$ |  |  |  |  |  |  |  |  | 尘: |  |
| ． 25 | $\begin{aligned} & 23.6 \\ & 98.6 \end{aligned}$ | 10．65 | $\because 8.74$ | 12.08 | $33.89$ | 13.45 | 3904 | 14.91 | 44.19 | ． 33 |
| $\text { . } 30$ | $\begin{aligned} & 28.9 \\ & 3.13 \end{aligned}$ | $\begin{array}{r} 13.78 \\ .96 \end{array}$ | 34.65 38.41 | .6 8.09 | $40.61$ | $2.44$ | $46.46$ | 4.23 | 58.32 | 6.11 |
| ．30 | 33.66 | 2．33 | 40.15 | 4.38 | 46.64 | 6.66 | 5．3．13 | 895 | 57.26 | 9.48 |
| 3／8 | 35.85 | 3.85 | 42.63 | 6.36 | 49.41 | 7.88 | 56.2 | 11.39 |  |  |
| ． 40 | 37.93 | 564 | 44.99 | 8.39 | 52.05 | 11.14 | 59.11 |  |  | 13.89 |
| ． 45 | 41.75 | 10.71 | 4931 | 12．61 | 56.3 | 15.86 | 59．11 | 13.11 | 66.16 82.02 | 16．64 |
| ． 50 | 45.14 | 13.26 | 53.16 | 17. | 61.18 | 20.81 | 69.19 | ${ }_{24}{ }^{2} .56$ | － 2 | 23．36 |
| ． 60 | 50.75 | 21.53 | 59.51 | 26.4 | 68.28 | 31.27 | 77.05 | 36.14 | 85.82 | 41.01 |
| $5 / 8$ | 51.92 | 23.69 | 60.84 | 28.85 | 69.76 | 34.01 | 75.69 | 39.16 | 87.61 | 41．32 |
| － | 53.67 54.93 | 27.94 30.39 | 62.83 | 33.03 36.44 | 71.99 73.57 | 38.68 4.49 | 81.14 | 4433 | 90.32 | 49.97 |
| ． 75 | 54.5 | 35.01 | 64.25 66.05 | 36.44 41.68 | 73.57 75.59 | 42. | 82 85 8.1 | 48.54 | 92.22 | 54.59 |
| ． 80 | 57.79 | 39.78 | 67.5 | 47.08 | $7 \% .2$ | 54.38 | 86.91 | 61.69 | 94.66 96.61 |  |
| 8 | 59.15 | 47.14 | 69.03 | 55.43 | \％8．92 | 63.81 | 88.81 | \％2． | 98.7 |  |
| ． 90 | 59.46 | 49.65 | 69.38 | 58.27 | 79．31 ${ }^{\text {1 }}$ | 66.89 | 89.24 | 75.52 | $99.1 \%$ | $8 \% .82$ |

The pressures in the table are all gauge－pressures except those in italics， which are absolute pressures（above a vacuum）．

IFLountain or Highealtitade Compressors．
（Norwalk Iron Works Co．）

|  |  |  |  |  | $\Delta t$ Sea－ level． |  | $\begin{aligned} & \text { At } 2000 \\ & \text { feet. } \end{aligned}$ |  | $\begin{gathered} \text { At, } 8000 \\ \text { feet. } \end{gathered}$ |  | $\begin{aligned} & \text { At } 10,000 \\ & \text { feet. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \text { 䔍 } \\ & \text { ご } \\ & \text { స్ల } \end{aligned}$ |  |
| 12 | 12 | 7 | 10 | 190 | 298 | 35 | 280 | 34 | 244 | 3： | 214 | 30 |
| 16 | 16 | 91／2 | 14 | 150 | 558 | \％ 0 | 524 | 68 | 462 | 61 | 405 | 5 |
| 20 | 20 | $131 \%$ | 18 | 120 | 8\％ | 110 | 819 | 107 | r $2 \times$ | 100 | 634 | 94 |
| 22 | 24 | 131／2 | 20 | 110 | 1160 | 145 | 1090 | 140 | 960 | 132 | 843 | 124 |
| 26 | 30 | 171／2 | 24 | 90 | 1659 | 215 | 1500 | 207 | （3\％＇3） | 195 | 1200 | 184 |

As the capacity decreases in a greater ratio than the power necessary to compress，it follows that operations at a high altitude are more expensive than at sea－level．At 10,000 feet this extra expense amounts to over 20 per cent．
Compressors at High Alitudes．（Ingersoll－Sergeant Drill Co．）

| Alt．above sea－level，ft．．． | 0 |  |  |  |  |  |  |  |  | 9000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barometer，in．nercury． | 30.0 | 28.9 |  |  | 25. |  |  | 23.0 | 22. | 21.3 | ． 5 |
| lbs． | $14 . \mathfrak{T}$ | 14.2 | 3.7 | 13 | 12 | 12.2 | 11.7 | 11.3 | 10.9 | 10.5 | 10 |
| $r$ delivered， | 100 | 97 | 93 | 90 | 87 |  |  |  | 76 | \％i3 | r0 |
| Loss of capacit | 0 | 3 | 7 | 10 | 13 | 16 |  |  | 24 | $2 \tilde{1}$ | 30 |
| Decreased power re－ quired，\％．．．．．．．．．．．．．．．．． | 0 | 1.8 | 3.5 | 5. | 6.9 | 8.5 |  |  |  |  | 16.1 |

## Aircompressors．Rand Drill Co．

RAND－CORLISS，CLASS＂BB－3＂（COMPOUND STEAM，CONDENSING；COMPOUND AIR）．

FOR STEAM－PRESSURE OF 125 LBS．AND TERMINAI． AIR－PRESSURES OF 80 AND 100 LBS．

|  | Cylinder Diameters，Ins． |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Steam． |  | Air． |  |
|  | h．p． | 1．p． | h．p． | 1．p． |
| $6 \pi 0$ | 10 | 18 | $10 \frac{1}{2}$ | 17 |
| 1196 | 12 | 22 | 13 | 21 |
| 156\％ | 14 | 26 | 15 | 24 |
| 1650 | 14 | 26 | 15 | 24 |
| 19：0 | 16 | 30 | $1 \% \frac{1}{2}$ | 28 |
| 224： | 16 | 30 | $17 \frac{1}{2}$ | 28 |
| 2395 | 16 | 30 | $17 \frac{1}{2}$ | 28 |
| 25：0 | 18 | 34 | 20 | 32 |
| 2897 | 18 | 34 | 20 | 32 |
| 3128 | 18 | 34 | 20 | 32 |
| 3960 | $\stackrel{1}{20}$ | 38 | $2: \frac{1}{2}$ | 36 |
| 4100 | 23 | 40 | 24 | 38 |
| 4530 | 22 | 42 | 25 | 40 |
| 5000 | 24 | 44 | $26 \frac{1}{2}$ | 42 |
| 6000 | 26 | 48 | 29 | 46 |
| 6820 | 28 | 52 | 30 | 48 |

CLASS＂E＂（STRAIGHT． LINE，BELT－IRIVEN）．

FOR TERMINAL PRESSURES of 80 AND 100 LBS．PERE SQ IN．

|  | A ir－Cyl－ inder， Inches． |  |  | Indi－ cated H．P． Air－ pres－ sure 80 lus |
| :---: | :---: | :---: | :---: | :---: |
|  | . تِّ | $\begin{gathered} \stackrel{n}{0} \\ \stackrel{y}{0} \\ \end{gathered}$ |  |  |
|  |  | 12 |  |  |
| 165 | 10 | 14 | 130 | 29 |
| 251 | 12 | 16 | 120 | 45 |
| 392 | 14 | $2 \cdot 3$ | 100 | 69 |
| 527 | 16 | 21 | 95 | 9 |
| 633 | $1{ }^{1}$ | 24 | 95 | 112 |

In the first four sizes（Class＂BB－．＂＂）the air－cylinders have poppet inlet and outlet valves；in the next six the low－pressure air－cylinders have me－ chanical inlet－valves and poppet outlet－valves；and in the last six the low－ pressure air－cylinders have Corliss inlet－valves and poppet outlet－valves． All high－pressure air－cyliuders have poppet inlet and outlet valves．
＊Terminal air－pressure at 80 pounds．
CLASS＂B－2＂（DUPLEX STEAM，NON－CLASS＂C＂（STRAIGHT－LINE． CONDENSING，COMPOUND AIR）．
FOR STEAM－AND TERMINAL AIR－PRESSURES OF 80 AND 100 LBS．

|  | Cylinder Diam－ eters，Inches． |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Air－cyls． |  |  |  |  |
|  |  | h．p． | 1．p． |  |  |  |
| 220 | 8 | $7 \frac{1}{2}$ | 12 | 12 | 140 | 3.5 |
| 300 | ， | 9 | 14 | 12 | 140 | $4 \%$ |
| 393 | 10 | $9{ }^{1}$ | 15 | 16 | $1: 0$ | $6 \cdot$ |
| 565 | 12 | 11 | 18 | 16 | 120 | 89 |
| 770 | 14 | 13 | 21 | 16 | $1: 0$ | 121 |
| 882 | 14 | 13 | 21 | 23 | 100 | 139 |
| 1152 | 16 | 15 | 24 | 2 | 100 | 18：3 |
| 1812 | 18 | $1 \% \frac{1}{2}$ | 28 | 30 | 85 | 88.5 |
| 2085 | $\because 0$ | 19 | 30 | 30 | 85 | $3 \cdot 8$ |
| 2356 | 20 | 19 | 30 | 48 | 60 | 330 |
| 2848 | 22 | 2 | $3: 3$ | 48 | 60 | 446 |

FOR STEAM－AND TERMINAL AIR－ PRESSURES OF 100 I BS．PER SQ．IN．

|  | Cyl． Diam．， Ins． |  | $\begin{gathered} \dot{0} \\ \tilde{y} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ | Revs．per Min． |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\dot{y}$ |  |  |  |
| 97 | 8 | 8 | 12 | 140 | 20 |
| 165 | 10 | 10 | 14 | 130 | 35 |
| 251 | 12 | 12 | 16 | 120 | 52 |
| 392 | 14 | 14 | 2： | 100 | $8{ }^{2}$ |
| $5: \%$ | 16 | 16 | 24 | 95 | 110 |
| 671 | 18 | 18 | 24 | 95 | 140 |
| 950 | 20 | 20 | 30 | 87 | 200 |
| 13：35 | 24 | 24 | 30 | 85 | 280 |

inlet and outlet valves．

The first six sizes（Class＂B－2＂）lave both air－cylinders fitted with poppet－ valves（inlet and discharge）．The last four have low－pressure air－cylinders fitted with mechanical inlet－valve；high－pressure air－cylinders fitted with poppet iulet and discharge valves．
(The Ingersoll-Sergeant Drill Co., New York City.)

| Class and Type. | Diam. of Cyl. |  |  |  | $\begin{gathered} 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ |  |  |  | Space Occupied. |  | $$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Steam. |  | Air. |  |  |  |  |  |  |  |  |
|  |  | 容 | $\begin{aligned} & \hat{O} \\ & \mathbf{1} \end{aligned}$ | $\begin{aligned} & \dot{B} \dot{B} \\ & \dot{B C} \end{aligned}$ |  |  |  |  | Length. | Width. |  |
|  | 10 |  | 101/4 |  | 12 | 160 |  | 50-100 | 10' ${ }^{\prime \prime}$ | $3^{\prime} 0^{\prime \prime}$ | 25-35 |
|  | 12 |  | 121 |  | 14 | 155 | 285 | 50-100 | 126 | 39 | 40-56 |
| Straight- | 14 |  | 1414 |  | 18 | 120 | 38.2 | 50-100 | 153 | 43 | 50-76 |
| line, | 16 |  | 161/4 |  | 18 | 120 | 498 | 50-100 | 153 | 43 | 66-100 |
| Steam- | 18 |  | $181 / 4$ |  | 24 | 94 | 657 | 50-100 | 191 | 53 | 86-131 |
| driven. | 20 |  |  |  | 24 | 91 | 803 | 50-100 | 191 | 53 | 113-160 |
|  | $\stackrel{2}{2}$ |  | 2214 |  | 24 | 94 | 960 | 50-100 | 191 | 53 | 126-192 |
|  | 24 |  | 241/4 |  | 30 |  | 12:5 | 50-100 | $\mathrm{y2}_{2} 0$ | ${ }_{6} 6$ | 160-245 |

$B$. Straight-line, belt-driven. Same as $A$ in sizes up to $16 \times 16 \frac{1}{4} \times 18 \mathrm{ins}$.

|  | $101 / 2$ |  | 111/4 |  | 30 |  | 5 56 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| up | 16 |  | 161/4 |  | 36 | 82 | 1346 | 100 | 36 | 6 | 12 | 6 | 274 |
| Corliss | 20 |  | 201/4 |  | 42 | 75 | 2239 | 100 |  | 0 | 13 | 6 | 454 |
| steam | 24 |  | 2414 |  | 42 | 75 | 320S | 100 | 43 | 0 | 14 | 6 | 646 |
| Duplex | 30 |  | 14 |  | 48 | 65 | 4932 | 100 | 41 | 0 | 16 | 6 | 1011 |
|  | 32 |  | 14 |  | 60 | 62 | $6{ }^{17}$ | 100 | 60 | 0 | 19 | 6 | 1375 |
| $C_{2}$. | 1012 | 18 | 161/4 | 101/4 | 30 | 30 | , | 00 |  | 6 | 14 | 0 | 97 |
| Compound | 14 | $\stackrel{2}{2}$ | 2214 | 1314 | 36 | 85 | 1306 | 100 | 43 | 0 | 14 | 6 | 25 |
| Corliss | 16 | 30 | 2414 | $151 / 4$ | 42 | 78 | 1668 | 100 |  | 6 | 15 | 6 | 81 |
| steam, | 18 | 34 | 281/4 | $171 / 4$ | 48 | T 5 | P137 | 100 | 55 | 6 | 15 | 6 | $6{ }^{6}$ |
| Compound | 22 | 40 | 3414 | 2014 | 48 | ? | 3515 | 100 | 56 | 6 | 18 | 6 | 604 |
| air. $\ddagger$ | 24 | 44 | 361/4 | 2214 | 48 | \% 0 | 3850 | 100 | 58 | 0 | 19 | 6 | 664 |
|  | 6 |  | 6 |  |  | 150 | 28 | 50-80 |  |  |  | 22 |  |
| Small | 8 |  | 8 |  | 8 | 150 | 69 | -0-80 | 6 |  |  | 25 | 93: 4 - 13 |
|  | 10 |  | 10 |  | 10 | 150 | 134 | 50-80 | \%1 |  |  | 30 | 183/4-25 |
| line. | 12 |  | 12 |  | 12 | 150 | $23 \%$ | 50-80 | 8 |  |  | 30 | 331/4-44 |
|  | 12 |  | 161/4 |  | 12 | 150 | 415 | 15-40 |  |  |  | 35 | 243/4-50 |

E. Belt-driven. Same as $F$ in sizes up to $114 / 4$ diam. by 10 ins. stroke.

| G |  | 10 |  |  | 12 | 160 | 354 | 100 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Steam |  | 12 |  |  | 14 | 155 | $5{ }^{\text {c }} 0$ | 100 |  | 6 |  |  | 121 |
| actuated, |  | 14 |  | 141/4 | 18 | 120 | r64 | 100 | 20 | 0 | 10 | 0 | 163 |
| duplex |  | 16 |  | $1 / 4$ | 18 | 120 | 996 | 100 | 90 | 0 | 10 | 0 | 212 |
| or half |  | 18 |  | 1/4 | 24 | 94 | 1314 | 100 | 25 | 6 | 11 | 6 | 280 |
| duplex. |  | 20 |  | 201/4 | 24 | 94 | 1618 | 100 | 25 | 6 | 12 | 0 | 344 |
| $G$. | 10 | 161/4 |  |  | 12 |  | 10 | -10 | 16 | 3 |  | 3 |  |
| Duplex st., | 16 | 241/4 |  | 1,1 | 18 | 120 | 1130 | 80-100 | 23 | 0 | 10 |  | - |
| comp. air. | 20 | 301/4 |  | 181/4 | 24 | 100 | 1963 | 100 | 30 | 0 | 12 | 0 | 353 |
| $G$. | 10 | 15 |  |  | $1 \cdot$ | 60 | 344 | 80-10 | 16 | 3 |  | 6 |  |
| mp. st., | 16 | 26 | Q $21 / 4$ | $141 / 4$ | 18 | 120 | 950 | 80-100 | 23 | 0 |  |  |  |
| comp. air. | 20 | 32 | 2814 | 171/4 | 24 | 100 | $1 \sim 10$ | 80-100 | 30 | 0 | 12 | 0 | 2\%4-308 |
|  |  | 8 |  | 8 |  |  |  |  |  | 6 |  |  |  |
| iplex st., |  | 10 |  | 10 | 10 | 150 | 268 | 70-100 | 10 | 0 |  |  | 3-54 |
| uplex air. |  | 12 |  | 12 | 12 | 150 | $4 \% 4$ | 80-100 | 11 | 8 |  | 10 | 83-95 |
|  |  |  |  |  |  |  | 210 |  |  |  |  |  |  |
| Duplex st., |  | 10 | 16 | 10 | 10 | 150 | 342 | 80-100 | 10 | ~ | 5 |  | 52-58 |
| comp. air |  | 12 | 18 | 12 | 12 | 150 | 51 | 80-100 | 11 | a | 6 | 9 | \%8-88 |

J. Belted duplex or compound. 8 to 98 H.P.; 56 to $1059 \mathrm{cu} . \mathrm{ft}$. per m .

[^18]
## Cubic Feet of Free Air Required to Run from One to Forty Machines with 60 Jbs. Pressure. (Ingersoll-Sergeant Drill Co.)

Fol 75 lbs . Pressure add $1 / 5$. For 90 lbs . add $: / 5$.

| Rock drills. |  |  |  |  |  |  |  |  | Coalcútters. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Machines | $\begin{gathered} \mathrm{A} \\ \underset{\sim}{\mathrm{in} .} . \end{gathered}$ | $\left\lvert\, \begin{gathered} B \\ 21 / 2 \mathrm{in} . \end{gathered}\right.$ | $\left\|\begin{array}{c} C \\ 23 / 4 \\ \text { in. } \end{array}\right\|$ | $\underset{3 \mathrm{in} .}{\mathrm{D}}$ | $\begin{gathered} \mathrm{E} \\ 31 / 4 \mathrm{in} . \end{gathered}$ | $\begin{gathered} F \\ 34 / 2 \mathrm{in} . \end{gathered}$ | $\left\lvert\, \begin{gathered} G \\ 41 / 4 \\ \mathrm{in} \end{gathered}\right.$ | $\stackrel{H}{\mathrm{H}}$ | $31 / 2 \mathrm{in}$. | 4 in. |
| 1 | ${ }_{110}^{65}$ | \%0 | 9.7 | 110 | 115 | 125 | 140 | 165 | \%0 | 93 |
| $\stackrel{1}{3}$ | 110 | $1 \% 0$ | 160 | 190 | 200 | 230 | 250 | 280 | 140 | 186 |
| 3 | 156 | ${ }^{174}$ | 234 | 279 | 294 | 333 | 360 | 405 | 210 | 2 9 9 |
| 4 | 196 | $2: 2$ | 304 | 354 | $3{ }^{2}$ \% | $4: 8$ | 460 | 524 | 280 | 37. |
| 5 | 230 | 250 | 370 | 425 | 445 | 510 | 555 | 635 | 350 | 465 |
| ${ }_{7}^{6}$ | 264 | 294 | 426 | 486 | 516 | 558 | 642 | 738 | 420 | 558 |
| 7 | 291 | $3: 9$ | 476 | 516 | 581 | 658 | 721 | 826 | 490 | 651 |
| 8 | 320 | 360 | 590 | 600 | 640 | 720 | 800 | 920 | 560 | 744 |
| 9 | 360 | 405 | 55.5 | 645 | 720 | 810 | 900 | 1035 | 630 | 837 |
| 10 | 400 | 450 | 650 | 750 | 800 | 900 | 1000 | 1150 | \%00 | 930 |
| 12 | 480 | 540 | 780 | 900 | 960 | 1080 | 1200 | 1380 | 810 | 1116 |
| 15 |  | 675 | 975 | 1125 | 1200 | 1350 | 1500 | 1725 | 1050 | 1395 |
| 20 25 |  |  | 1300 | 1500 | $1{ }^{1600}$ | 1800 | 2000 | $\stackrel{2300}{ }$ | 1400 | 1860 |
| 35 |  |  | 16.5 1950 | ${ }^{1825}$ | 2000 | 2250 | 2500 | $2 \pi 5$ | 1750 | 2325 |
| 40 |  |  | 1950 2600 | 2250 3000 | 2400 $3: 00$ | 2700 3600 | 3000 | 3450 | 2100 | 2790 |
|  |  |  | - | 300 | 320 | 3600 | 4000 | 4600 | 2800 | 3720 |

## Compressed-air Table for Pumping Plants.

(Ingersoll-Sergeant Drill Co.)
For the convenience of engineers and others figuring on pumping plants to be operated by compressed air, we subjoin a table by which the pressure and volume of air required for any size pump can be readily ascertained. Reasonable allowances have been made for loss due to clearances in pump and friction in pipe.

| Ratio of Diameter's. |  | Perpendicular Height, in Feet, to which the Water is to be Punped. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 25 | 50 | 75 | 100 | P125 | 150 | 175 | 200 | 250 | 300 | 400 |
| 1 to 1 \{ | A | 3.75 0.21 | 27.5 | 41.25 | 55.0 | 68.25 | 8.5 | 96.25 | 110 |  |  |  |
|  | A |  | 12.22 | 18.38 | - 2.44 | 0.89 30.13 | 1.04 | 1.20 | 1.04 488 1 |  |  |  |
| , | B |  | 0.65 | 0.80 | 0.95 | 1.09 | 1.24 | 1.39 | 1.58 | 61.11 1.83 | 3.32 | 7.66 2.70 |
|  | A |  |  | 13.75 | 19.8 | 22.8 | 27.5 | 32.1 | 36.66 | 45.83 | 55.0 | \%3.33 |
| 1\%4 to 1 \} | B |  |  | 0.94 | 1.14 | 1.24 | 1.30 | 1.54 | 1.69 | 1.99 | 2.39 | 2.88 |
| 2 to 1 | A |  |  |  | 13.75 1.23 | 17.19 | 20.63 | 24.06 | 27.5 | 34.38 | 41.25 | 55.0 |
|  | A |  |  |  | 1.23 | ${ }_{1}^{1.3 \pi}$ | 16.5 | 19.66 | $\xrightarrow{1.81}$ | $\underset{27.11}{2.5}$ | $\stackrel{3}{3.40}$ | $\underset{44.08}{2.9}$ |
|  | B |  |  |  |  | 1.533 | 1.68 | 1.83 | 1.97 | 2.26 | 2.56 | 3.15 |
| to 1 \{ | B |  |  |  |  |  | ${ }_{1.79}^{13.2}$ | 15.4 1.98 | 17.6 2.06 | $\stackrel{22.0}{2.31}$ | 26.4 | $35.2$ |

$A=$ air-pressure at pump. $B=$ cubic feet of free air per gallon of water.
To find the amount of air and pressure lequired to pump a given quantity of water a given height, find the ratio of diameters between water and air cylinders. and multiply the number of gallons of water by the figure found in the column for the required lift. The result is the number of cubic feet of free air. The pressure required on the pump will be found directly above in the same column. For example: The ratio between cylinders being 2 to 1, required to pump 100 gallons, height of lift 250 feet. We find under 250 feet at ratio 2 to 1 the figures $2.11 ; 2.11 \times 100=211$ cubic feet of free air. The pressure required is 34,38 pounds.

## Compressed-air Table for Hoisting-erwines.

 (Ingersoll-Sergeant Drill Co.)The following table gives an approximate idea of the volume of free air required for operating hoisting-engines, the air being delivered at 60 lbs . gauge-pressure. There are so many variable conditions to the operation of hoisting-engines ill common use that accurate computations can only be offered when fixed data are given. In the table the engine is assumed to actually run but one-half of the time for hoisting, while the compressor, of course, runs continuously. If the engine ruus less than one-half the time, as it usually does, the volume of air required will be proportionately less, and vice versa. The table is computed for maximum loads, which also in practice may vary widely. From the intermittent character of the work of a hoisting-engine the parts are able to resume their normal temperature between the hoists, and there is little probability of the annoyance of freezing up the exhaust-passages.
VOLUME OF FREE AIR REQUIRED FOR OPERATING HOISTING. ENGINES, THE AIR COMPRESSED TO 60 POUNDS GAUGE. PRESSURE.

Single-cylinder Horsting-engine.

| Diam. of Cylinder, Inches. | Stroke, Inches. | Revolutions per Minute. | Normal Horsepower. | Actıal Horsepower. | Weight Lifted, Single Rope. | Cubic Ft. of Free Ai Required. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | ${ }_{8}^{6}$ | 200 | 3 | 5.9 | 600 | \% 5 |
|  | 8 | 160 | 4 | 6.3 | 1,000 | 80 |
| ${ }_{7} 1 / 4$ | 8 10 | 160 | ${ }^{6}$ | 9.9 | 1,500 | 125 |
| ${ }_{81 / 4}$ | 10 10 | 125 | 10 | 12.1 | 2,000 | 151 |
| $81 / 2$ | 12 | 110 | 15 20 | 16.8 189 | 3.060 5,000 | 170 |
| 10 | 12 | 110 | 25 | 26.2 | 6,000 | 3 |
| Double-cylinder Hoisting-engine. |  |  |  |  |  |  |
| 5 | 6 | 200 | 6 | 11.8 | 1.000 |  |
| 5 | 8 | 160 | 8 | 12.6 | 1.650 | 160 |
| $61 / 4$ | 8 | 160 | 12 | 19.8 | 2,500 | 250 |
|  | 10 | 125 | 20 | 24.2 | 3.500 | 30: |
| 81/4 | 10 | 125 | 30 | 33.6 | 6,000 | 340 |
| 10 | 12 | 110 | 40 50 | 37.8 | 8.000 | $4 \pi 6$ |
| 121/4 | 15 | 100 | \% | 88.4 | 10,000 | 660 |
| 14 | 18 | 90 | 100 | 125. |  | $1,14 \%$ $1,58 \%$ |

Practical Results with Compressed Air.-Commessed-air System at the Chapin Mines, Iron Mountain, Mich.-These mines are three miles from the falls which supply the power. There are four turbines at the falls, one of 1000 horse-power and three of 900 horse-power each. The pressure is 60 pounds at $60^{\circ}$ Fahr. Each turbine runs a pair of compressors. The pipe to the mines is 24 ins . diameter. The power is applied at the mine. to Corliss engines, running pumps, hoists, etc., and direct to rock-drills.
A test made in 1888 gave 1430.27 H.P. at the compressors, and $390.1 \%$ H.P. as the sum of the horse-power of the engines at the mines. Therefore, orly $2 \% \%$ of the power generated was recovered at the mines. This includes the loss due to leakage and the loss of energy in heat, but not the friction in the engines or compressors. (F. A. Pocock, Trans. A. I. M. E., 1890.)
W. L. Saunders (Jour. F. $\dot{I}$. 189") says: "There is not a properly designed compressed-air installation in operation to-day that loses over $5 \%$ by transmission alone. The question is altogether one of the size of pipe; and if the pipe is large enough, the friction loss is a small item.
"The loss of power in common practice, where compressed air is nsed 10 drive machinery in mines and tmmels, is about $\% 0 \%$. In the best practice, with the best air-compressors, and without reheating, the loss is about $60 \%$. These losses may be reduced to q point as low as $20 \%$ by combining the best systems of reheating with the best air-compressors."

Gain due to Relneating.-Prof. Kennedy says compressed-air transmission system is now being carried on, on a large commercial scale, in such a fashion that a small motor four miles away from the central station can indicate in round numbers 10 horse-power, for 20 horse-power at the station itself, allowing for the value of the coke used in heating the air.

The limit to successful reheating lies in the fact that air-engines cannü work to advantage at temperatures over $350^{\circ}$.
The efficiency of the common system of reheating is shown by the results obtained with the Popp system in Paris. Air is admitted to the reheater at about $83^{\circ}$, and passes to the engine at about $315^{\circ}$, thus being increased in volume about $42 \%$. The air used in Paris is about 11 cubic feet of free air per minute per horse-power. The ordinary practice in America with cold air is from 15 to 25 cubic feet per minute per horse-power. When the Paris engines were worked without relreating the air consumption was increased to about 15 cubic feet per horse-power per minute. The amount of fucl consumed during relieating is trifling.

Efficiency of Compressedmain Engines.-The efficiency of an air-engine, that is, the percentage which the power given out by the air-engine bears to that required to compress the air in the compressor, depends on the loss by friction in the pipes, valves, etc., as well as in the engine itself. This question is treated at length in the catalogue of the Norwalk Iron Works Co., from which the following is condensed. As the friction increases the most economical pressure increases. In fact, for any given friction in a pipe, the pressure at the compressor must not be carried below a certain limit. The following table gives the lowest pressures which should be used at the compressol with varying amounts of friction in the pipe:

| Friction, lbs.......... | 2.9 | 5.8 | 8.8 | 11.7 | 14.7 | 17.6 | 20.5 | 23.5 | 26.4 | 29.4 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lbs. at Compressor... 20.5 | 29.4 | 38.2 | 47. | 59.8 | 61.7 | 70.5 | 76.4 | 82.3 | 88.2 |  |
| Efficiency \%......... | 70.9 | 64.5 | 60.6 | 57.9 | 55.7 | 54.0 | 52.5 | 51.3 | 50.2 | 49.2 |

An increase of pressure will decrease the bulk of air passing the pipe and its velocity. This will decrease the loss by friction, but we subject ourselves to a new loss, i.e. the diminishing efficiencies of increasing pressures. Yet as each cubic foot of air is at a higher pressure and therefore carries more power, we will not need as many cubic feet as before, for the same work. With so many sources of gain or loss, the question of selecting the proper pressure is not to be decided hastily.
The losses are, first, friction of the compressor. This will amount ordinarily to 15 or 20 per cent, and cannot probably be reduced below 10 per cent. Second, the loss occasioned by pmoming the air of the engine-room, rather than the air drawn from a cooler place. This loss varies with the season and amounts from 3 to 10 per cent. This can all be saved. The third loss, or series of losses, arises in the compressing cylinder, viz., insufficient supply, difficult discharge, defective cooling arrangements, poor lubrication, etc ri he fourth loss is found in the pipe. This loss varies with the situation, and is subject to somewhat complex influences. The fifth loss is chargeable to fall of temperature in the cylinder of the air-engine. Losses arising from leaks are often serious.

Efrect of Temperature of Intake upon the Discharge of a Compressor.-Air should be chawn from ontside the engine-room, and from as cool a place as possible. The gain amounts to one per cent for every five degrees that the air is taken in lowert han the temperature of the engineroom. The inlet conduit should have an area at least $50 \%$ of the area of the air-piston, and should be made of wood, brick, or other non-conductor of heat.

Discharge of a compressor having an intake capacity of 1000 cubic feet per minute, and volunes of the discharge reduced to cubic feet at atmospheric pressure and at temperature of 62 degrees Fahrenheit:
Temperature of Intake, F................ $0^{\circ} 32^{\circ} 622^{\circ} 75^{\circ} 80^{\circ} 90^{\circ} 100^{\circ} 110^{\circ}$ Relative volume discharged, cubic ft... 113510601000945966949932916

Requirements of Rock-drills Driven by Compressed Air. (Norwalk Iron Works Co.)-The speed of the drill, the pressure of air, and the nature of the rock affect the consumption of power of drills.

A three-inch drill using air at 30 lbs , pressure made 300 blows per minute and consumed the equivalent of 64 cubic feet of free air per minute. The same drill, with air of 58 lbs. pressure, made 450 blows per minute and consumed 160 cubic feet of free air per minute. At Hell Gate different
machines doing the same work used from 80 to 150 cubic feet free air per minnte.
An average consumption may be taken generally from 80 to 100 cubic feet per minnte, according to the nature of the work.
The Ropp Compressed-air System in Paris.-A most extensive system of distribution of power by means of complessed air is that of M. Popp, in Paris. One of the central stations is laid out for 24,000 horsepower. For a very complete description of the systen, see Engineering, Feb. 15, June 7, 21, and 3), 1889, and March 13 and 20, April 10, and May 1, 1891. Also Proc. Inst. M. E., July, 1889. A condeused description will bé found in Modern Mechanism, p. 12.

Uinlization of Compressed Air im Small Rotors.-In the earliest stages of the Popp system in Paris it was recognized that no guod results could be obtained if the air were allowed to expand direct into the motor; not ouly did the formation of ice due to the expansion of the air rapidly accumulate and choke the exhaust, but the percentage of nseful work obtained, compared with that put into the air at the central station, was so small as to render commercial results liopeless.

After a number of experiments $\mathbf{~ I}$. Popp adopted a simple form of castiron stove lined with fire-clay, heated either by a gas jet or by a small coke flre. This apparatus answered the desired purpose until some better' arrangement was perfected, and the type was accordingly adopted throngh. out the whole system. The economy resulting from the use of an improved form was very marked, as will be seen from the following table.

|  | Cast-iron Box Stoves. |  | Wronghtiron Coiled Trubes. |
| :---: | :---: | :---: | :---: |
| Heating surface, sq. ft.. | 14 |  |  |
| Air heated per hour, cu. f | 20,34 | 11, 05 | 38,4:8 |
| Temp. of air adnitted to ov | -45 | 1, 45 | 38,428 |
| Total heat absorbed per hour, calories | 17.900 | - $\begin{array}{r}364 \\ 1.200 \\ 1.20\end{array}$ | ${ }^{39} 5$ |
| Do. per sq. ft. of heating surface per hour, cals | 11,2\%8 | 17,200 | 39,200 8,30 |
| Do. per 1b. of coke... | 2,033 | 2.058 | 2,545 |

The results given in this table were obtained from a large number of trials. From these trials it was found that more than $0 \%$ of the total nmmber of calories in the fuel employed was absorbed hy the air and transformed into useful work. Whether gas or coal be employed as the fuel, the amount required is so small as to be scarcely worth consideration; according to the experiments carried ont it does not exteed $0 \geqslant \mathrm{lb}$. per horse-power per hour, but it is scarcely to be expected that in regular practice this quantity is not largely exceeded. The efficiency of fnel consumed in this way is at least six times greater than when utilized in a boiler and steam-engine.

According to Prof. Riedler, from 15\% to 20\% above the power at the central station can be obtained by means at the disposal of the power users, and it has been shown by experiment that by heating the air to $480^{\circ} \mathrm{F}$. an increased efficiency of $30 \%$ can be obtained.

A large number of motors in use among the subscribers to the Compressed Air Company of Paris are rotary engines developing 1 horse-power and less, and these in the early times of the indnstry were very extravagant in their consumption. Small rotary engines, working cold air without expansion, used as high as $!330 \mathrm{cu}$. ft. of air per brake horse-power per hour, and with heated air 1624 cu. ft. Working expansively, a 1 horsepower rotary engine used $1459 \mathrm{cu} . \mathrm{ft}$. of cold air, ol $960 \mathrm{cu} . \mathrm{ft}$. of heated air, and a 2 -horse-pover rotary engine 1059 cu . ft . of cold air, or 847 cu . ft . of air, heated to about $50^{\circ} \mathrm{C}$.
The efficiency of this type of rotary motors, with air heated to $50^{\circ} \mathrm{C}$., may now be assumed at 43\%. With such an efficiency the use of small motors in many industries becomes possible, while in cases where it is necessary to have a constant supply of cold air economy ceases to be a matter of the first importance.
Tests of a small Riedinger rotary engine, used for driving sewing-machines and indicating about 0.1 H.P. showed an ail-consumption of $137_{7} \mathrm{cu} . \mathrm{ft}$. per

H P. per hour when the initial pressure of the air was 86 lbs . per sq. in. and its temperature $54^{\circ} \mathrm{F}$., and 988 cu . ft. when the air was heated to $338^{\circ} \mathrm{F}$., its pressure being $72^{\circ} \mathrm{lbs}$. With a one-half horse-power variable-expansion rotary engine the air-consumıtion was from 800 to $900 \mathrm{cu} . \mathrm{ft}$. per H.P. per hour for initial pressures of 54 to 85 lbs . per sq. int. with the air lieated from $336^{\circ}$ to $388^{\circ} \mathrm{F}$., and $1148 \mathrm{cu} . \mathrm{ft}$. with cold air, $46^{\circ} \mathrm{F}$., and an initial pressure of $\% 2 \mathrm{lbs}$. The volumes of air were all taken at atmospheric pressure.
Trials made with an old single-cylinder 80 -horse-power Farcot steam-en gine, indicating te horse-power, gave a consumption of air per brake horsepower as low as 465 cu . ft. per hour. The temperature of admission was $320^{\circ} \mathrm{F}$., and of exhaust $95^{\circ} \mathrm{F}$.

Prof. Elliott gives the following as typical results of efficiency for various systems of compressors and air-motors:

$$
\begin{aligned}
& \text { Simple compressor and simple motor, efficiency ................ 39.1\% } \\
& \text { Compound compressor and simple motor, " ................. } 44.9 \\
& \text { Triple compressor and triple motor, " ....... } 55.3
\end{aligned}
$$

The efficiency is the ratio of the indicated horse-power in the motor cylinders to the indicated horse-power in the steam-cylinders of the compressor. The pressure assumed is 6 atmospheres absolute, and the lusses are equal to those found in Paris over a distance of 4 miles.

## Summary of Effciencies of Compressed-aif Transmission at Paris, between the Contral station at St. Fargeau and a 10 -horse-power Motor Working with pressure Reduced to $41 / 2$ Armospheres.

(The figures below correspond io mean results of two experiments cold and two heated.)
1 indicated horse-power at central station gives 0.845 indicated horse-power in compressors, and corresponds to the compression of 348 cubic feet of air per hour from atmospheric pressure to 6 atmospheres absolute. (The weight of this air is about 25 pounds.)
0.845 indicated horse-power in compressors delivers as much air as will do 0.52 indicated horse-power in adiabatic expansion after it has fallen in temperature to the normal temperature of the mains.
The fall of pressure in mains between central station and Paris (say 5 kilometres) reduces the possibility of work from $0.5:$ to 0.51 indicated horsepower.

The further fall of pressure through the reducing valve to $41 / 2$ atmospheres (absolute) reduces the possibility of work from 051 to 0.50 .
fncomplete expansion, wire-drawing, and other such causes reduce the actual indicated horse-power of the motor from 0.50 to 0.39 .
By heating the air before it enters the motor to about $320^{\circ} \mathrm{F}$., the actual indicated horse-power at the motor is, however, increased to 0.54 . The ratio of gain oy heating the air is, therefore, $0.54 \div 0.39=1.38$
In this process additional heat is supplied by the combustion of about 0.39 pounds of coke per indioated horse-power per hour, and if this be taken into account, the real indicated efficiency of the whole process becomes 0.47 instead of 0.54 .
Working with cold air the work spent in driving the motor itself reduces the available horse-power from 0.39 to 0.26 .
Working with heated air the work spent in driving the motor itself reduces the available horse-power from 0.54 to 0.44 .
A summary of the effciencies is as follows:
Efficiency of main engines 0.845 .
Efficiency of compressors $0.52 \div 0.845=0.61$.
Efficiency of transmission through mains $0.51 \div 0.52=0.98$.
Efficiency of reducing valve $0.50 \div 0.51=0.98$.
The combined efficiency of the mains and reducing valve between 5 and $41 / 2$ atmospheres is thus $0.98 \times 0.98=0.96$. If the reduction had been to 4 , 31/2, 01.3 atmospheres, the corresponding efficiencies would have been 0.93 , 0.89 , and 0.85 respectively.

Indicated efficiency of motor $0.39 \div 0.50=0.78$.
Indicated efficiency of whole process with cold air 0.39. Apparent indi cated efficiency of whole process with heated air 0.54.
Real indicated efficiency of whole process with heated air 0.47.
Mechanical efficiency of motor, cold, 0.67 .
Mechanical efficiency of motor, hot, 0.81 .

Most of the compressed air in Paris is used for driving motors, but the Fork done by these is of the most varied kind. A list of motors driveu from St. Fargeau station shows 225 installations, nearly all motors working at from $1 / 8$ horse-power to 50 horse-power, and the great majority of them more than two miles away from the station. The new station at Quai de la Gare is much larger than the one at St. Fargeau. Experiments on the Riedler air-compressors at Paris, made in December, 1891, to determine the ratio between the indicated work done by the air-pistons and the indicated work in the steam-cylinders, showed a ratio of 0.8997 . The compressors are driven by four triple-expansion Corliss engines of 2000 horse-power each.
Shops Operated by Compressed Air. - The Iron Age, March 2, 1893, describes the shops oi the Wuerpei Switch and Signal Co.. East St. Lonis, the machine tools of which are operated by compressed air, each of the larger tools having its own air engine, and the smaller tools being belted from shafting driven by an air engine. Power is supplied by a connpound compressor rated at 55 horse-power. The air engines are of the Kriebel make, rated from 2 to 8 horse-power.

Pneumatic Postal Transmission.-A paper by A. Falkenau, Eug'rs Club of Philadelphia, April 189t, entitled the "First United States Pneumatic Postal System," gives a description of the system used in London and Paris, and that recently introduced in Philadelphia between the main post-office and a substation. In London the trubes are $21 / 4$ and 3 inch lead pipes laid in cast-iron pipes for protection. The carriers used in $21 / 4$-inch tubes are but $11 / 4$ inches diameter, the remaining space being taken up by packing. Carriers are despatched singly. First, vacunm alone was used; later, vacuum and compressed air. The tubes used in the Continental cities in Europe are wrought iron, the Paris tubes being $21 / 2$ inches diameter. There the carriers are despatched in trains of six to ten, propelled by a piston. In Philadelphia the size of tube adopted is $61 / 8$ inches, the tubes being of cast iron bored to size. The lengths of the outgoing and return tubes are 2928 feet each. The pressure at the main station is $\%$ lbs., at the substation 4 lbs , and at the end of the return pipe atmospheric pressure. The compressor has two air-cylinders $18 \times 24$ in. Each carrier holds about 200 letters, but 100 to 150 are taken as an average. Eight carriers may be despatched in a minute, giving a delivery of 48,000 to 72,000 letters per hour. The time required in transmission is about 57 seconds.
Pneumatic postal transmission tubes were laid in 1898 by the Batcheller Pneumatic Tube Co. between the general post-offices in New York and Brooklyn, crossing the East River on the bridge. The tubes are cast iron, $1:-\mathrm{ft}$. lengths, bored to $81 / 8 \mathrm{in}$, diameter. The joints are bells, calked with lead and yarn. There are two tubes, one operating in each direction. Both lines are operated by air-pressure above the atmospheric pressure. One tube is operated by an air-compressor in the New York office and the other by one located in the Brooklyn office.
The carriers are 24 in . long, in the form of a cylinder ${ }^{\circ} \mathrm{in}$. in diameter, and are made of steel, with fibrous bearing-rings which fit the tube. Each carrier will contain about 600 ordinary letters. and they are despatched at intervals of 10 seconds in each direction, the time of transit between the two offices being $31 / 2$ minutes, the carriers travelling at a speed of from 30 to 35 miles per liour.
The air-compressors were built by the Rand Drill Co. and the IngersollSergeant Drill Co. The Rand Drill Co. conpressor is of the duplex type and has two steam-cylinders $10 \times 20 \mathrm{in}$. and two air-cylinders $24 \times 20 \mathrm{in}$., delivering $1570 \mathrm{cu} . \mathrm{ft}$. of free air per minute, at 75 revolutions, the power being about 50 H.P. Corliss valve-gear is on the steam cylinders and the Rand mechanical valve-gear on the air-cylinders.
The Ingersoll-Sergeant Drill Co. furnished two duplex Corliss air-compressors, with mechanically moved valves on air-cylinders. The steamcylinders are $14 \times 18 \mathrm{in}$. and the air-cylinders $261 / 4 \times 18 \mathrm{in}$. They are designed for 80 to 90 revs. per min. and to compress to 20 lbs . per sq. in.
Another double line of pneumatic tubes has been laid between the main office and Postal Station H, Lexington Ave. and 44th St., in New York City. This line is about 31/miles in length. There are three intermediate stations: Third Ave. and 8th St., Madison Square, and Third Ave. and 28th St. The carriers can be so adjusted when they are put into the tube that they will traverse the line and be discharged automatically from the tube at the station for which they are intended. The tubes are of the same size as those of the Brooklyn line and are operated in a similar manner. The initial aircompression is about 12 to 15 lbs . On the Brooklyn line it is about 7 lbs .

There is also a tube system between the New York Post-office and the Produce Exchange. For a very complete description of the system and its machinery see "The Pneumatic Despatch Tube System," by B. C. Batcheller. J. B. Lippinentt Co., Philadelphia, 1897.
The Thekarski Compressed-air Tramuay at Berne, Gwitzerland. (Eng'g News, April 20, 1893.) - The Mekarski system has been introduced in Berne, Switzerland, on a line about two miles long, with grades of $0.25 \%$ to $3.7 \%$ and $5.2 \%$. The air is heated by passing it throngh superheated water at $330^{\circ} \mathrm{F}$. It thus becomes saturated with steam, which subsequently partly condenses, its latent heat being absorbed by the expanding air. The pressure in the car reservoirs is 440 lbs . per sq. in.

The engine is constructed like an ordinary steam tramway locomotive, and drives two coupled axles, the wheel-base being 5.2 it. It has a pair of outside horizontal cylinders, $5.1 \times 8.6 \mathrm{in}$; four coupled wheels, $2 \% .5 \mathrm{in}$. diameter. The total weight of the car including compressed air is 7.25 tons, and with 30 passengers, including the driver and condnctor, about 9.5 tons.

The authorized speed is about 7 miles per hour. Taking the resistance due to the grooved rails and to curves under unfavorable conditions at 30 lbs. per toll of car weight, the engine has to overcome on the steepest grade, $5 \%$, a total resistance of about 0.63 ton, and has to develop 25 H.P. At the maximmm authorized working pressure in cylinders of 166 lbs . per sq. in. the motors can develop a tractive force of 0.64 ton . This maximum is, therefore, just sufficient to take the car up the $5.2 \%$ grade, while on the Hatter sections of the line the working pressure does not exceed 73 to 147 lbs. per sq. in. Sand has to be frequently used to increase the adhesion on the $2 \%$ to $5 \%$ grades.

Between the two car frames are suspended ten horizontal compressed-air storage-cylinders, varying in length according to the available space, but of uniform inside diameter of $17.8^{\circ} \mathrm{in}$., composed of riveted $0.27-\mathrm{in}$. sheet iron, and tested up to 588 lbs . per sq. in. These cylinders have a collective capacity of 64.25 cu . ft ., which, according to Mr. Mekarski's estimate, should have been sufficient for a double trip, $\sqrt[3]{4}$ miles. The irial trips, however, showed this estimate to be inadequate, and two further small storage-cylinders had therefore to be added of $5.3 \mathrm{cu} . \mathrm{ft}$. capacity each, bringing the total cubic contents of the 12 storage-cylinders per car up to $75 \mathrm{cu} . \mathrm{ft}$., divided into two groups, the working and the reserve battery, the former of $49 \mathrm{cu} . \mathrm{ft}$. the latter of $26 \mathrm{cu} . \mathrm{ft}$. capacity.

From the results of six official trips, the pressure and the mean consumption of air during a double journey per motor car are as follows:

Pressure of air in storage-cylinders at starting 440 lbs . per sq. in.; at end of up-journey $176 \mathrm{lbs} .$, reserve 260 lbs ; at end of down-journey 103 lbs , reserve $1 \% 6 \mathrm{lbs}$. Consumption of air during up-journey $9 \%$ lbs., during downjourner 31 lbs.

The working experience of 1891 showed that the air consumption per motor car for a donhle juurney was from 103 to 154 lbs , mean 123 lbs , and per car mile from 28 to 43 l 'כs., mean 25 lbs .

The principal advantages of the compressed-air system for urban and suburban tramway traffic as worked at Berne consist in the smoorh and noiseless motion; in the absence of smoke, steam, or heat, of overhead or underground conductors, of the more or less grinding motion of most electric cars, and of the jerky motion to which underground cable traction is subject. On all these grounds the system has vindicated its claims as being preferable to any other so far known system of mechanical traction for street tramways. Its disadvantages, on the other hand, cousist in the extremely delicate adjustment of the different parts of the system, in the comparatively small supply of air carried by one motor car, which necessitates the car returning to the depot for refilling after a run of only four miles or 40 mimutes, although on the Nogent and Paris lines the cars, which are, moreover, larger, and carry outside passengers on the top, run seven miles, and tho loading pressure is 547 lbs . per sq. in. as against only 440 lbs. at Berne

Longer distances in the same direction would involve either more powerful motors, a larger number of storage-cylinders, and consequently heavier cars, or loading siations every four or seven miles; and in this respect the system is manifestly inferior to electric traction, which easily admits of a fine of 10 to 15 miles in length being continuously fed from one cemtral station without the loss of time and expense cansed by reloading.

The cost of working the Berne line is compared in the aunexed table
with some other tramways worked under similar conditions by liorse and mechanical traction for the year 1891.

For description of the Mekarski system as used at Nantes, France, see paper by Prof. D. S. Jacoins, Traus. A. I. M. E., xix, 553.
American Cxperiments on Compressed Air for Street Railvays.-Experimentshave been made recently in Washington, D. C., and in New York City on the use of compressed air for street-railway traction. The air was compressed to 2000 lbs. per sq. in, and passed throngh a reducing-valve and a heater before being admitted to the engine. For an extended discussion of the relative merits of compressed air and electric traction, witl an account of a test of a four-stage compressor giving a pressure of 2500 lbs . per sq. in., see Eng'g News, Oct. 7 and Nov. 4, 1897. A smmmarized statemeut of the probable efficiency of compressed-air traction is given as follows: Efficiency of compression to 2000 lbs . per sq. in. $65 \%$. By wire-drawing to $100 \mathrm{lbs} .57 .5 \%$ of the available energy of the air will be lost, leaving $65 \times .425=2 \pi .635 \%$ as the net efficiency of the air. This may be doubled by heating, making $55.25 \%$, and if the motor las an efficiency of $80 \%$ the net efficiency of traction by compressed air will be $55.25 \times .80=44.2 \%$. For a description of the Hardie compressed-air locomotive, designed for street-railway work, see Eng'g News, June 24, 189\%. For use of compressed air in mine haulage, see Eng'g News, Feb. 10, 1898.

Compressed Air for Working Underground Pumps in Mines.-Eng'g Record, May 19, 1894, describes an installation of compressors for working a number of purrps in the Nottingham No, 15 Mine, Plymouth, Pa., which is claimed to be the largest in America. The com. pressors develop above 2300 H.P., and the piping, horizontal and vertical, is 6000 feet in length. About 25,000 gallons of water per hour are raised.

## FANS ANB BHOWHESS.

Centrifugal Fans.-The ordinary centrifugal fan consists of a number of blades fixed to arms, revolving on a shaft Gt high speed. The width of the blade is parallel to the axis of the shaft. Most engineers' reference books quote the experiments of W. Buckle, Proc. Inst. M.E., 1847, as still standard. Mr. Buckle's conclusions are given below, together with data of nore recent experiments.

Experiments were made as to the proper size of the inlet openings and on the proper proportions to be given to the vane. The inlet openings in the sides of the fan-chest were contracted from 1\%1/2 in., the original diameter, to 12 and 6 in. dian1, when the following results were obtained:

First, that the power expended with the opening contracted to 12 in . diam. was as $21 / 2$ to 1 compared with the opening of $1 \pi 1 / 2 \mathrm{in}$. diam.; the velocity of the fan being nearly the same, as also the quantity and density of air delivered.

Second, that the power expended with the opening contracted to 6 in . diam. was as $21 / 2$ to 1 compared with the opening of $1 \% 1 / 2 \mathrm{in}$. diam.; the velocity of the fan being nearly the same, and also the area of the efflux pipe, but the density of the air decreaned one fourth.

These experiments show that the inlet openings must be made of sufficient size, that the air may have a free and uninterrupted action in its passage to the blades of the fan; for if we impede this action we do so at the expense of power.

With a vane $14 \mathrm{in} . l o n g$, the tips of which revolve at the rate of 236.8 ft . per second, air is condensed to 9.4 ounces per square inch above the pressure of the atmosphere, with a power of 9.6 H . P.; but a vane 8 inches long, the diameter at the tips being the same, and having, therefore, the same velocity, condenses air to 6 ounces per square inch only, and takes 12 H. P.

Thus the density of the latter is little better than six tenths of the former, while the power absorbed is nearly 1.25 to 1 . Although the velocity of the tips of the vanes is the same in each case, the velocities of the heels of the respective blades are very different, for, while the tips of the blades in each case move at the same rate, the velocity of the heel of the 14 -inch is in the ratio of 1 to 1.67 to the velocity of the heel of the 8 -inch blade. The longer blades approaching nearer the centre, strikes the air with less velocity, and allows it to enter on the blade with greater freedom, and with considerably less force than the shorter one. The inference is, that the short blade must take more power at the same time that it accumulates a less quantity of air. These experiments lead to the conclusion that the length of the vane demands as great a consideration as the proper diameter of the inlet opening. If there were no other object in view, it
would be useless to make the vanes of the fan of a greater width than the inlet opening can freely supply. On the proportion of the length and width of the vane and the diameter of the inlet opening rest the three most important points, viz., quantity and density of air, and expenditure of power.

In the 14 -inch blade the tip has a velocity 2.6 times greater than the heel; and, by the laws of centrifugal force, the air will have a density $\ddot{2} .6$ times greater at the tip of the blade than that at the heel. The air cannot enter on the heel with a density higher than that of the atmosphere; but in its passage along the vane it becomes compressed in proportion to its centrifugal force. The greater the length of the vane, the greater will be the difference of the centrifugal force between the heel and the tip of the blade; consequently the greater the density of the air.
Reasoning from these experiments, Mr. Buckle recommends for easy reference the following proportions for the constrnction of the fan:

1. Let the width of the vanes be one fourth of the diameter; 2. Let the diameter of the inlet openings in the sides of the fan-chest be one half the diameter of the fan; 3. Let the length of the vanes be one fourth of the diameter of the fan.

In adopting this mode of construction, the area of the inlet openings in the sides of the fan-chest will be the same as the circumference of the heel of the blade, multiplied by its width; or the same area as the space described by the heel of the blade.

Best Proportions of Fans. (Buckle.)
Pressure from 3 ounces to 6 ounces Per Square inch; or 5.2 inches to 10.1 inches of Water.

| Diameter of F'an. | Vanes. |  | Diameter of Inlet Openings. | Diameter of Fan. | Vanes. |  | Diameter of Inlet Openings. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width. | Length. |  |  | Width. | Length. |  |
| ft. ins. | ft. ins. | ft. ins. | ft. ins. | ft. ins. | ft. ins. | ft. ins. | ft. ins. |
| 30 | $\begin{array}{ll}0 & 9\end{array}$ | $\begin{array}{ll}0 & 9\end{array}$ | 16 | 46 | 1 11/2 | $111 / 2$ | 23 |
| 36 | $\begin{array}{ll}0 & 101 / 2\end{array}$ | 0 | 19 | 50 | $13^{1}$ | $1{ }^{1}$ | 26 |
|  |  | 10 | 20 |  |  | 16 | 30 |

Pressure from 6 ounces to 9 ounces per square inch, and upwards, or 10.4 inches to 15.6 inches of Water.

| 3 | 0 | 0 | 7 | 1 | 0 | 1 | 0 | 4 | 6 | 0 | $101 / 2$ | 1 | $41 / 2$ | 1 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 3 | 6 | 0 | 81 | 1 | 11 | 1 | 3 | 5 | 5 | 0 | 1 | 0 | 1 | 6 | 2 |
| 4 | 0 | 0 | 91 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 31 | 1 | 6 | 6 | 0 | 1 | 2 | 1 | 10 | 2 | 4 |  |

The dimensions of the above tables are not laid down as prescribed limits, but as approximations obtained from the best results in practice.
Experiments were also made with reference to the admission of air into the transit or outlet pipe. By a slide the width of the opening into this pipe was varied from 12 to 4 inches. The object of this was to proportion the opening to the quantity of air required, and thereby to lessen the power necessary to drive the fan. It was found that the less this opening is made, provided we produce sufficient blast, the less noise will proceed from the fan; and by making the tops of this opening level with the tips of the vane, the column of air has little or no reaction on the vanes.

The number of blades may be 4 or 6 . The case is made of the form of an arithmetical spiral, widening the space between the case and the revolving blades, circumferentially, from the origin to the opening for discharge.

The following rules deduced from experiments are given in Spretson's treatise on Casting and Founding:

The fan-case should be an arithmetical spiral to the extent of the depth of the blade at least.

The diameter of the tips of the blades should be about double the diameter of the hole in the centre; the width to be about two thirds of the radius of the tips of the blades. The velocity of the tips of the blades should be rather
more than the velocity due to the air at the pressure required, say one eiglith more velocity.
In some cases, two fans mounted on one shaft would be more useful than one wide one, as in such an arrangement twice the area of inlet opening is obtained as compared with a single wide fan. Such an arrangement may be adopted where occasionally half the full quantity of air is required, as one of them may be put out of gear, thus saving power.

Pressure due to Velocity of the Fan-blades.-"By increasing the number of revolutions of the fan the head or pressure is increased, the law being that the total head produced is equal (in centrifugal fans) to twice the height due to the velocity of the extremities of the blades, or $H=\frac{v^{2}}{g}$ approximatelyin practice" (W. P. Trowbridge, Trans. A. S. M. E., vii. 536.) This law is analogous to that of the pressure of a jet striking a מlane surface. T. Hawksley, Proc. Inst. M. E., 1882, vol. lxix.. says: "The pressure of a fluid striking a plane surface perpendicularly and then escaping at right angles to its original path is that due to twice the height $h$ due the velocity."
(For discussion of this question, showing that it is an error to take the pressure as equal to a colums of air of the height $h=v^{2} \div 2 g$, see Wolff on Windmills, p. 17.)
Buckle says: : From the experiments it further appears that the velocity of the tips of the fan is equal to nine tenths of the velocity a body wonld acquire in falling the height of a homogenecus column of air equivalent to the density." D. K. Clark (R. T. \& D., p. 924), paraphrasing Buckle, appar. ently, says: "It further appears that the pressure generated at the circum. ference is one ninth greater than that which is due to the actual circumferential velocity of the fan." The two statements, however, are not in harmony, for if $v=0.9 \sqrt{2 g H}, H=\frac{v^{2}}{0.81 \times 2!}=1.234 \frac{v^{2}}{2 g}$ and not $1 \frac{1}{9} \frac{v^{2}}{2 g}$.

If we take the pressure as that equal to a head or column of air of twice The beight due the velocity, as is correctly stated by Trowbridge, the paraloxical statements of Buckle and Clark-which would indicate that the actual pressure is greater than the theoretical-are explained, and the formula becomes $H=.61 \tau \frac{v^{2}}{g}$ and $v=1.2 \pi 3 \sqrt{g H}=0.9 \sqrt{2 g H}$, in which $H$ is the head of a column producing the pressure, which is equal to twice the theoretical head due the velocity of a falling body (or $h=\frac{v^{2}}{2 g}$ ), multipiied by the coefficient .617. The difference between 1 and this coefficient expresses the loss of pressure due to friction, to the fact that the inner portions of the blade have a smaller velocity than the outer edge, and probably to other causes. The coefficient 1.263 means that the tip of the blade must be giver a velocity $1.2 \pi_{3}$ times that theoretically required to produce the head $H$.
To convert the head $H$ expressed in feet to pressure in lbs. per sq. in. multiply it by the weight of a cubic foot of air at the pressure and temperature of the air expelled from the fan (about .08 lb . usually) and divide by 144. Muitiply this by 16 to obtain pressure in ounces per sq. in. or by 2.03 .5 to obtain inches of mercury, or by 27.71 to obtain pressure in inches of water column. 'Taking 08 as the weight of a cubic foot of air,

$$
\begin{array}{ll}
p \text { lbs. per sq. in. } & =.00001066 v^{2} ; \\
p_{1} \text { ounces per sq. in. } & =.0001706 v^{2} ; \quad v=80 \sqrt{p} \text { nearly; } \\
p_{2} \text { inches of mercury } & =.00002169 v^{2} ; \quad v=220 \sqrt{p_{1}} \\
p_{3} \text { inches of water } & =.0002954 v^{2} ; \\
\text { " } & v=60 \sqrt{p_{3}}
\end{array}
$$

in which $v=$ velocity of tips of blades in feet per secona.
Testing the above formula by the experiment of Buckle with the vane 14 inches long, quoted above, we have $\mu=.00001066 v^{2}=9.56 \mathrm{oz}$. The experiment gave 9.4 oz .
Testing it by the experiment of H. I. Snell, given below, in which the circumferential speed was about 150 ft . per second, we obtain 3.85 ounces, while the experiment gave from 2.38 to 3.50 ounces, according to the amount of opening for discharge. The numerical coefficients of the above formulæ are all based on Buckle's statement that the velocity of the tips of the fan is equal to nine tenths of the velocity a body would acquire in falling the
height of a homogeneous column of air equivalent to the pressure. Should other experiments show a different law, the coefficients caa be corrected accordingly. It is probable that they will vary to some extent with different proportions of fans and different speeds.
Taking the formula $v=80 \sqrt{p_{1}}$, we have for different pressures in ounces per square inch the following velocities of the tips of the blades in feet per second:


A rule in App. Cyc. Mech, article "Blowers," gives the following velocities of circumference for different densities of blast in ounces: 3,$170 ; 4,180 ; 5$, 195; 6, 205; 7, 215.
The same article gives the following tables, the first of which shows that the density of blast is not constant for a given velocity, but depends on the ratio of area of nozzle to area of blades:

$$
\begin{aligned}
& \text { Velocity of circumference, feet per second. } 150150150100200200220 \\
& \begin{array}{lllllll}
\text { Area of nozzle }+ \text { area of blades............ } 2 & 1 & 1 / 2 & 1 / 4 & 1 / 2 & 1 / 6 & 1 / 8
\end{array}
\end{aligned}
$$

## Quantity of Air of A Given Density Delivered by a Fan.

Total area of nozzles in square feet $\times$ velocity in feet per minute corresponding to density (see table) = air delivered in cubic feet per minute.

| Density, <br> ounces | Velocity, feet | Density, <br> ounses <br> per sq. in. | per minute. | Velocity, feet | Density, <br> ounces |
| :---: | :---: | :---: | :---: | :---: | :---: |
| per sq. in. | per min. | Velocity, feet |  |  |  |
| ouncer minute. |  |  |  |  |  |
| 2 | 5000 | 500 | 5 | 11,000 | per sq. in. |

Experiments with Blowers. (Henry I. Snell, Trans. A. S. M. E. ix. 51.)-The following tables give velocities of air discharging through an aperture of any size under the given pressures into the atmosphere. The volume discharged can be obtained by multiplying the area of discharge opening by the velocity, and this product by the coefficient of contraction: .65 for a thin plate and .93 when the orifice is a conical tube with a convergence oi about 3.5 degrees, as determined by the experiments of Weisbach.

The tables are calculated for a barometrical pressure of 14.69 lbs . ( $=$ 235 oz .), and for a temperature of $50^{\circ}$ Fahr., from the formula $V=\sqrt{2 g h}$.
Allowances have been made for the effect of the compression of the air, but none for the heating effect due to the compression.
At a temperature of 50 degrees, a cubic foot of air weighs .078 lbs , and calling $g=32.1602$, the above formula may be reduced to

$$
V_{1}=60 \sqrt{31.5812 \times(235+P) \times P}
$$

where $V_{1}=$ velocity in feet per minute.
$P=$ pressure above atmosphere, or the pressure shown by gauge, in oz
er square inch. per square inch.

| Pressure per sq. in. in inches of water. | Corresponding Pressure in oz. per sq. inch. | Velocity due the Pressure in feet per minute. | Pressure per sq. in. in inclies of water. | Corresponding Pressure in oz. per sq. incli. | Velocity due the Pressure in feet per ${ }^{-}$ minute. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1/32 | . 01817 | 696.78 |  | . 36340 | 3118.38 |
| 1/16 | . 03634 | 957.66 | 3 | . 43608 | 3416.64 |
| $1 / 8$ | . 07268 | 1393.75 | 洁 | . 508 ¢0 | \$3690.62 |
| $3 / 16$ | . 10909 | 1700.00 | 1 | . 58140 | 3946.17 |
| 3/4 ${ }^{3 / 16}$ | . 145.36 | 1911.30 | 114 | . $226 \%$ | 4362.62 |
| 5/16 | . 18170 | 2204.16 | 11. | .8721 | 4836.06 |
| 3/8 | . 21804 | 2414.70 | $13 / 4$ | 1.0174 | 5224.98 |
| 318 | . 2007 | 2788.74 | 2 | 1.1638 | 5587.58 |


| Press－ ure in oz． per sq． inch． | Velocity due the Pressure in ft．per minute． | Press－ inte in oz． per sq． inch． | Velocity clue the Pressure inft．pel minute． | Press－ ure in oz． peir sq． inch． | Velocity due the Pressure in ft．pel minute． | Pressure in oz． per sq． 11. | Velocity due the Pressure in ft．per minute． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ． 25 | 2，582 | 2.25 | \％，187 | 5.50 | 12，259 | 11.00 | 17，534 |
| ． 50 | 3，658 | 2.50 | 8，213 | 6.00 | 12，817 | 12.00 | 18，350 |
| ． 75 | 4．48\％ | 2.95 | 8，618 | 6.50 | 13，354 | 13.00 | 19，138 |
| 1.00 | 5，178 | 3.00 | 9.006 | \％．00 | 13．8\％3 | 14.00 | 19，901 |
| 1.25 | 5，192 | 3.50 | 9，739 | \％． 50 | 14.344 | 15.00 | 20.641 |
| 1.50 | 6，349 | 4.00 | 10，421 | 8.00 | 14.861 | 16.00 | 21，360 |
| 1.75 | 6，861 | 4.50 | 11，065 | 9.00 | 15，＇195 | 16.00 | 21，360 |
| 2.00 | 7，338 | 5.00 | 11，6\％6 | 10.00 | 16，684 |  |  |


| Pressure in ounces per square inch． |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Velocity in feet per minute． | Pressure in ounces per square inch． | Velocity in feet per minute． |
| ． 01 | 516.90 | ． 06 | $12 \mathrm{C6} 24$ |
| ． 02 | 722.64 | ． 07 | 1367．76 |
| ． 03 | 895． 26 | ：08 | 1462．20 |
| ． 04 | 1033.86 | ． 09 | 1550.50 |
| ． 05 | 1155.90 | ． 10 | 1635.00 |

Experiments on a Fan with Varying Discharge－opening． Revolutions mearly constant．

|  |  |  |  | Horse．power． | ○○ む．ジ E <br> 艺 <br> ซ क <br> E |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1519 | 0 | 3.50 | 0 | ． 80 |  | 1048 |  |
| $14 \% 9$ | 6 | 3.50 | 406 | 1.15 | 353 | 1048 | ．33\％ |
| 1480 | 10 | 3.50 | 676 | 1.30 | 520 | 1048 | ． 496 |
| 14,1 | 20 | 3.50 | 1353 | 1.95 | 694 | 1048 | ． 66 |
| 1485 | 28 | 3.50 | 1894 | 2.55 | \％42 | 1018 | ． 809 |
| 1485 | 36 | 3.40 | 2400 | 3.10 | r\％4 | 10\％8 | .718 |
| 1485 | 40 | 3.25 | 2605 | 3.30 | r90 | 1126 | .70 |
| 1468 | 44 | 3.00 | 2752 | 3.55 | 275 | 122： | ． 6.35 |
| 1590 | 48 | 3.00 | 300： | 3.80 | 790 | 1202 | ． 646 |
| $14: 2$ | 83.5 | 2.38 | $39 \%$ | 4.80 | 82\％ | 1514 | ． 536 |

The fan wheel was 23 inches in diameter， $65 / 8$ inches wide at its periphery， and had an inlet of $121 / 2$ inches in dianteter on either side，which was partially obstructed by the pulleys．which were $59 / 16$ inches in diameter．It had eight blades，each of an area of 45.49 square inches，

The discharge of air was tlirough a conical tin tube with sides tapered at an angle of $31 / 2$ degrees．The actual area of opening was $7 \%$ greater than given in the tables，to compensate for the vena contracta．
In the last experiment， 89.5 sq ．in．represents the actual area of the mouth of the blower less a deduction for a narrow strip of wood placed across it for the purpose of holding the pressure－gauge．In calculating the volume of air discharged in the last experimeut the value of vena contractu is taken at．80．

Experiments were undertaken for the purpose of showing the results ob－ tained by running the same fan at different speeds with the discharge－open－ ing the same throughout the series．

The discharge－pipe was a conical tube $81 / 2$ inches inside diameter at the end，having an area of 56.74 ，which is 7\％larger than 53 sq．inch es ；therefore 53 square inches，equal to .368 square feet，is called the area of discharge，as that is the practical area by which the volume of air is computed．

Experiments on a Fan with constant Dischargeopen－ ing and Varying Speed．－The first four columns are given by Mr． Snell，the others are calculated by the author．

|  |  |  | ® 0.0 0 0 $\dot{0}$ 0 0 0 O |  |  |  |  |  | 苋 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | ． 50 | 1336 | ． 25 | 60.2 | 56.6 | 85.1 | 3，630 | ． 18 |  |
| 800 | ． 88 | 1787 | ． 70 | 80.3 | 75.0 | 85.6 | 4，856 | ． 429 | 61 |
| 1000 | 1.38 | 2245 | 1.35 | 100.4 | 94. | 85.4 | 6，100 | ． 845 | 63 |
| 1200 | 2.00 | 2712 | 2.20 | 120.4 | 113. | 85.1 | 7，3\％0 | 1.479 | 67 |
| 1400 | 2.75 | 3177 | 3.45 | 140.5 | 133. | 84.8 | 8，633 | 2.283 | 66 |
| 1600 | 3.80 | $36 \% 0$ | 5.10 | 160.6 | 156. | 82.4 | 9，973 | 3.803 | 74 |
| 1800 | 4.80 | 4172 | 8.00 | 180.6 | 175. | 82.4 | 11，33\％ | 5.462 | 68 |
| 2000 | 5.95 | 4674 | 11.40 | 200.7 | 195. | 85.6 | 12，701 | 7.586 | 68 |

Mr．Snell has not found any practical difference between the efficiencies of blowers with curved blades and those with straight radial ones．
From these experiments．says Mr．Snell，it appears that we may expect to receive back $65 \%$ to $75 \%$ of the power expended，and no more．
The great amount of power often used to run a fan is not due to the fan itself，but to the method of selecting，erecting，and piping it．
（For opinions on the relative merits of fans and positive rotary blowers． see discussion of Mr．Snell＇s paper，Trans．A．S．M．E．，ix．66，etc．）

Comparative Efficiency of Fans and Positive Blowers：－ （H．M．Howe，Trans．A．I．M．E．，x．482．）－Experiments with fans and positive （Baker）blowers working at moderately low pressures，under 20 ounces，show that they work more efficiently at a given pressure when delivering large volumes（i．e．，when working nearly up to their maximum capacity）than when delivering comparatively small vohmes．Therefore，when great vari－ ations in the quantity and pressure of blast required are liable to arise，the highest efficiency would be obtained by having a number of blowers，always driving them up to their full capacity，and regulating the amount of blast by altering the number of blowers at work，instead of having one or two very large blowers and regulating the amount of blast by the speed of the
There appears to be little difference between the efficiency of fans and of Baker blowers when each works under favorable conditions as regards quantity of work，and when each is in good order．
For a given speed of fan，any diminution in the size of the blast－orifice de－ creases the consumption of power and at the same time raises the pressure of the blast；but it increases the consumption of power per unit of orifice for a given pressure of blast．When the orifice has been reduced to the normal size for any given fan，further diminishing it causes but slight elevation of the blast pressure；and，when the orifice becomes com． paratively small，further diminishing it causes no sensible elevation of the blast pressure，which remains practically constant，even when the orifice is entirely closed．
Many of the failures of fans have been due to too low speed，to too small pulleys，to improper fastening of belts，or to the belts being too nearly ver－ tical；in brief，to bad mechanical arrangement，rather than to inherent de－ fects in the principles of the machine．

If several fans are used, it is probably essential to high efficiency to provide a separate blast pipe for each (at least if the fans are of different size or speed), while any number of positive blowers may deliver into the same pipe without lowering their efficiency.

## Capicity of Fans and Blowers.

The following tables show the guaranteed air-supply and air-removal of leading forms of blowers and exhaust fans. The figures given are often exceeded in practice, especially when the blowers and fans are driven at higher speeds than stated. The ratings, particularly of the blowers, are below those generally given in catalogues, but it was the desire to present only conservative and assured practice. (A. R. Wolff on Ventilation.)
Quantity of Air supplied to Buildings by Blowers of Various Sizes.

| Diam- eter of Wheel in feet | Ordinary of Revs. per min | $\begin{gathered} \text { Iforse- } \\ \text { power } \\ \text { to Drive } \\ \text { Blower. } \end{gathered}$ | Capacity per inin. against a Pressure per sq. in | $\begin{aligned} & \text { Diam- } \\ & \text { eter of } \\ & \text { Wheel } \\ & \text { in feet. } \end{aligned}$ | Ordinary of Revs per min. | Horse- power to Drive to Drive | Capacity cu. ft. per min. against Pressure of 1 ounce per sq. in |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 5 | ${ }_{325}^{350}$ | 9.4 | 17,000 | 10 | 160 | ${ }_{35.5}^{29}$ | 56,800 70,340 |
| 7 | 275 | 13.5 | 29,618 | 12 | 130 | 49.5 | 102,000 |
| 8 | ${ }_{230}$ | 18.4 | 42.700 | 14 | 110 | ${ }^{66}$ | 139,000 |
| 8 | 200 | 24 | 46.000 | 15 | 100 | 77 | 160,000 |

If the resistance exceeds the pressure of one ounce per square inch, of above table, the capacity of the blower will be correspondingly decreased, or power increased, and allowance for this must be made when the distrib: uting ducts are small, of excessive length, and contain many contractions and bends.
Quantity of Air moved by an Approved Form of Exhaust Fan, the fan discearging directiy from room inte tee atmosphere.

| Diameter of Wheel in feet. | Ordinary Number of Revs. per min. | Horsepower to Drive Fan. | Capacity in cu. ft. per min. | Diameter of Wheel in feet. | Ordinary Number of Revs. per min. | Horse power to Drive Fan. | Capacity in cu. ft. per min. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.0 | 600 | 0.50 | 5,000 | 4.0 | 475 | 3.50 | 28,000 |
| 2.5 | 550 | 0.75 | 8,000 | 5.0 | 350 | 4.50 | 35,.000 |
| 3.0 | 500 | 1.00 | 12,000 | 6.0 | 300 | 7.00 | 50,000 |
| 3.5 | 500 | 2.50 | 20,000 | 7.0 | 250 | 9.00 | 80,000 |

The capacity of exhaust fans here stated, and the horse-power to drive them, are for free exhaust from room into atmosphere. The capacity decreases and the horse-power increases materially as the resistance, resulting from lengths, smallness and bends of ducts, enters as a factor. The difference in pressures in the two tables is the main cause of variation in the respective records. The fan referred to in the second table could not be used with as high a resistance as one ounce per square inch, the rated resistance of the blowers.

Caution in Regard to Use of Fan and Blower Tables.Many engineers repurt that manufacturers' tables overrate the capacity of their fans and underestimate the horse-power required to drive them. In some cases the complaints may be due to restricted air outlets, long and crooked pipes, slipping of belts, too small engines, etc.

## CENTREFUGAL FANS.

## Flow of Air through an orifice.

VELOCITY, VOLUME, AND HP. REQUIRED WHEN AIR UNDER GIVEN PRESSURE IN OUNCES PER SQ. IN. IS ALLOWED TO ESCAPE INTO THE ATMOSPHERE.
(P. F. Sturtevant Co.)

|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1, | 12.69 |  |  |  |  |  |  |  |
|  |  | $1 \% .95$ | . 00122 | . 0680 |  |  | 52.13 |  |  |
|  | 3,165 | 21.98 | .00295 | . 1022 | $21 / 4$ | \%, \%2 | 53.63 | 03291 | 6136 |
|  | 3.654 | 25.37 | . 00346 | .1363 | 23 | \%,932 | 55.08 | . 05568 | $64 \% 9$ |
|  | 4,084 | 28.36 | . 00483 | . 1703 | 2 | 8,136 | 56.50 | 03852 | 6818 |
|  | 4,473 | 31.06 | . 00635 | . 2044 | 20 | 8,334 | 57.88 | 04144 | .160 |
|  | 4, | 33.54 | . 00 | .2385 | 23 | 8,528 | 59.22 | . 01442 | . 7500 |
|  | 5 | 35.85 38.01 | . 00 | . 208 | $27 / 8$ | 8,718 | 60.54 | . 04747 | . 7841 |
| $11 / 4$ | 5,768 | 38.01 40.06 | . 011666 | . 3 | ${ }_{31}^{3}$ | 8,903 9,084 | 61.83 | .0505 | . 8180 |
| 19 | 6,048 | 42.00 | . 01575 | . 3750 | 3 | 9,262 | 64.32 | .05:01 | . 8863 |
| 11. | 6,315 | 43.86 | . 01794 | . 4090 | 33 | 9,435 | 65.53 | . 06031 | . 9205 |
| $1 \%$ | 6,5\%1 | 45.63 | .02022 | . 4431 | 31. | 9,606 | 66.61 | .06i'68 | . 9516 |
| 13 | $\stackrel{6,818}{\sim}$ | 47.31 | .02:60 | . $47 \% 2$ | ¢ | 9,773 | $67.8 \%$ | . 06710 | . 9887 |
| 17/8 | $\tau, 055$ | 49.00 | . 02505 | . 5112 |  | 9,938 | 69.01 | . $010 \% 8$ | $1.02: 27$ |
|  |  |  |  |  | 3 | 10,100 | \%0.14 | . 06412 | $1.056 \%$ |

The headings of the $2 d$ and $3 d$ columms in the above table have beert abridged from the original, which read as follows: Velocity of dry air, $50^{\circ}$ F., escaping into the atmosphere through any shaped orifice in ally pipe or reservoil in which the given pressure is maintained. Volume of air in cubic feet which may be discharged in one minute throngh an orifice having an effective area of discharge of one square inch. The 5tli column, not in the original, has been calculated by the author. The figures represent the horse-power theoretically required to move $1000 \mathrm{cu} . \mathrm{ft}$. of air of the given pressures through an orifice, withont allowance for the work of compression or for friction or other losses of the fan. These losses may amount to from $60 \%$ to $100 \%$ of the given horse-power.
The change in density which results from a change in pressure has been taken into account in the caleulations of the table. The volume of air at a given velocity discharged through an orifice depends upon its shape, and is always less than that measured by its full area. For a given effective area the volume is proportional to the velocity. The power required to move air through an orifice is measured by the product of the velocity and the total resisting pressure. This power for a given orifice varies as the cube of the velocity. For a given volume it varies as the square of the velocity. In the movement of air by means of a fan there are unavoidable resistances which, in proportion to their amount, increase the actual power considerably above thre amount here given.

For any size of centrifugal fan there exists a certain maximnm area over which a given pressnre may he maintained, dependent upon and proportional to the speed at which it is operated. If this area, known as its "capacity area," or square inches of blast, be increased, the pressure is lowered (the volume being increased), but if decreased the pressure reniains constant. The revolutions of a given fan necessary to maintain a given pressure under these conditions are given in the table on p. 519, which is based upou the abve table. The pressure produced by a given fan and its effective capacity area being known, its nominal capacity and the horsepower required, without allowance for frictional losses, may be determined from the table above.
In practice the ontlet of a fan greatly exceeds the capacity area; hence the volume moved and the horse-power required are in excess of the amounts determined as above.

Steerphate Full IEcusing Paras. (Buffalo Forge Co.)
Capacities in cubic feet of air per minute. (See also table on p. 525.)

| Size, in. | Revoluticns per Minute. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 4.0 | 500 | 5.50 | 600 |
| 50 | 1650 | $24 \%$ | 3300 | 4125 | 4950 | 5~n5 | 6600 | 7425 | 8:50 | $90 \% 5$ | 9900 |
| 60 | 2480 | ${ }^{3120}$ | 4960 | 6:00 | \%440 | 8680 | 9920 | 11160 | 12400 | 13640 | 14880 |
| 80 | \%0~0 | 10605 | 14140 | $1 \sim 675$ | 21210 | 24745 | 18000 | 20250 | 22500 |  |  |
| 90 | 10400 | 15600 | 20800 | 26000 | 31200 | 36400 | 41600 | 31815 |  |  |  |
| 100 | 14280 | 21420 | 28560 | $35 \% 0$ | 42540 | 49980 | 57120 |  |  |  |  |
| 110 | 18960 | 28440 | 37920 | 47400 | 56880 | 66360 |  |  |  |  |  |
| 120 | 24800 | $3 \uparrow: 00$ | 49600 | $6: 200$ | T'4400 |  |  |  |  |  |  |
| 130 | 31200 | 46800 | 6?400 | 78000 | 109200 |  |  |  |  |  |  |
| 140 | 38354 | $5 \% 531$ | \%6708 | 95885 |  |  |  |  |  |  |  |
| 150 | 49260 | 73890 | 98520 | 123150 |  |  |  |  |  |  |  |

The Sturtevant Steel Pressure-blower Applied to Cupola Furnaces and Forges.

| Number of Blower. | Cupola Furnaces. |  |  |  | Forges. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diameter of Cupola inside of Lining, in. | Melting Capacity of Cupola per hour in lbs. | Blastpressure required in Wins!box in ounces per sq.in. | Rev. per min. of Blower чecessary to produce required pressure. | Number of Forges supplied by Blower. | Rev. per min. Blower necessary to produce pressure for forge fire. |
| 4/0 |  |  |  |  |  | 5,548 |
| 2/0 |  |  |  |  | $\stackrel{1}{2}$ | 4,294 |
| 1 |  |  |  |  | 3 | 3,645 |
| $\stackrel{1}{2}$ | $\stackrel{22}{20}$ | 1,200 1,900 | 5 | 3,569 |  | 3,199 |
| 3 | 30 | 1,900 2,900 | 6 7 | 3,28: | ${ }_{8}^{6}$ | $\stackrel{2,691}{ }$ |
| 4 | 35 | 4,200 | 8 | 2,818 | 10 | $\stackrel{\text { 2,305 }}{2}$ |
| 5 | 40 | 6,200 | 10 | 2,690 | 14 | 1,722 |
| 6 | 46 | 8,900 | 12 | 2,670 | 19 | 1,56\% |
| 7 | 53 | 12,500 | 14 | $\stackrel{2}{2}, 316$ | ${ }_{25}$ | 1,264 |
| 8 | 60 | 16,500 | 14 | 2,023 | 35 | 1,104 |
| 9 | 72 | $\stackrel{24.000}{ }$ | 16 | 1.854 | 45 | 950 |
| 10 | 84 | 34.000 | 16 | 1,6:27 | 60 | $8: 34$ |

The above table relates to common cupolas under ordinary conditions and to forges of medium size. The diameter of enpola given opposite each size blower is the greatest which is recommended; in cases where there is a surplus of power one size larger blower may be used to advantage. Ihe melting capacity per hour is based upon an average of tests on some of the best cupolas found, and is reliable in cases where the cupola is well constructed and carefully operated. The blast-pressure required in wind-box is the maximum under ordinary conditions when coal is used as fuel. When coke is employed the pressure may be lower.
The cupola pressures given are those in the wind-box, while the basis pressinre for forges is 4 onnces in the tuyere pige. The corresponding revolutions of fan given are in each case sufficient to maintain these pressures at the fan outlet when the temperature is $50^{\circ}$. The actual speed must be higher than this by an amount proportional to the resistance of pipes and the increase of temperature, and can only be determined by a knowledge of the existing conditions.
(For other data concerning Cupolas see Foundry Practice.)

## Diameters of Lhasi-pipes Required for Stcel Pressurehlowers. (B. F. Sturtevant Co.)

Based on the loss of pressure resulting from transmission being limited to one-half ounce per square inch.

| Pressure per sq. in. | Lengtlı of Pipe in ft . | Number of Blower. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4/0 | 2/0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 100 | $43 / 4$ | 53/4 | 614 | 6 | \%1/8 | 81/8 |  | 91/8 | 1014 | 1214 | 143/8 | 151/4 | $201 / 4$ |
| N | 200 | 53/8 |  | -1/4 | 75 8 |  | 91/4 | $95 \%$ | 1015 | 113 | 1418 | 1612 | $171 / 2$ | 231/4 |
| $\square$ | 300 | 51/8 |  | $73 / 4$ | $81 / 4$ | 878 | $101 / 8$ | 1038 | 111/4 | 1234 | 1514 | 1978 | 19 | 2514 |
|  |  | 61/8 |  | 81/4 | 83/4 |  |  |  | 12 | $131 / 2$ | 161/4 | 19 | $201 / 8$ | $263 / 4$ |
|  | 100 | 53/8 |  |  |  |  |  | 91/2 | 103/8 | 113/4 | 141/8 | 163/8 |  |  |
| ®i์ | 200 | $01 / 8$ | 71\% | $81 / 4$ | $83 / 4$ | 93\% | $10 \%$ | 11 | 12 | 131/2 | 161/8 | 18\% $\%$ | 20 | 261 |
| $\infty$ | 300 | 6.8 | $81 / 8$ | $87 / 8$ | 93\% | 10 | 111. | 112/8 | 13 | 141\% | $171 \%$ | $201 \%$ | 215/8 | 2878 |
|  | 400 | 71/8 | 85/8 | 912 | 10 | $10 \% 8$ | 121/4 | 12:58 | 133/4 | 151/2 | $181 / 2$ | 215\% | 23 | 301\% |
|  | 100 | 53/4 | r1/8 |  |  | 83/4 | 10 |  | 111/4 |  |  | 173/ | 187/ |  |
| N | 200 | 6\% | 81/8 | 878 | 93\% | 10 | 111/2 | 117\% | $127 / 8$ | 141\% | $173 / 8$ | $203 / 8$ | 215 | $283 / 4$ |
| $\stackrel{9}{9}$ | 300 | 714 | 83/4 | $95 / 8$ | 1018 | $10 \% / 8$ | $121 / 2$ | 11278 | 14 | $153 / 4$ | 187\% | 22.8 |  |  |
|  | 400 | 55/3 |  | 101/4 | $103 / 4$ | 115\% | 131/4 | $135 / 8$ | 14\%/8 | 163/4 | 201/8 | 2312 | $24 \% / 8$ | 1/8 |
|  | 100 |  |  |  |  | 91/4 | 105\% | 10\% 8 |  |  |  | 183/4 |  |  |
| กั่ | 200 | 7 | 85\% | 93\% | 978 | 105/ | 1218 | 1218 | 1358 | 1558 | $183 / 8$ | 181\% | 22\%/8 | 3014 |
| 9 | 300 | 75/8 | ${ }^{93} 8$ | 101/4 | 1034 | 1112 | $131 / 4$ | $135 / 8$ | $14 \%$ | $16: 3$ | $20^{\circ}$ | $233 / 8$ | 2478 | $33^{-1}$ |
|  | 400 | 81/8 |  | $103 / 4$ | 1138 | 121/4 | 141/2 | $141 \%$ | $153 /$ | 1558 | 211/4 | 243 | $261 / 4$ | 35 |

"The above table has been constructed on the following basis: Allowing a loss of pressure of $1 / 2 \mathrm{oz}$. in the process of transmission through any length of pipe of any size as a standard, the increased friction due to lengthening the pipe has been compensated for by an enlargement of the pipe sufficient to keep the loss still at $1 / 2 \mathrm{oz}$. Thus if air under a pressure of 8 oz . is to be delivered by a No. 6 blower, through a pipe 100 ft . in length, with a loss of $1 / 2 \mathrm{oz}$. presstre, the diameter of the pipe must be $113 / 4 \mathrm{in}$. If its length is increased to 400 ft . its diameter should also be increased to $151 / 2 \mathrm{in}$., or if the pressure be increased to 12 oz . the pipe, if 100 ft . long, must $\mathrm{be} 115 / 8 \mathrm{in}$. in diameter, providing the loss of $1 / 2 \mathrm{oz}$. is not to be exceeded. This loss of $1 / 2 \mathrm{oz}$ is to be added to the pressure to be maintained at the fan if the tabulated pressure is to be secured at the other end of the pipe."

Efficiency of Fans. - Much useful information on the theory and practice of fans and blowers, with results of tests of various forms, will be found in Heating and Ventilation, June to Dec. 1897, in papers by Prof. R. C. Carpenter and Mr. W. G. Walker. It is shown by theory that the volume of air delivered is directly proportional to the speed of rotation, that the pressure varies as the square of the speed, and that the horsepower varies as the cube of the speed. For a given volume of air moved the horse-power varies as the square of the speed, showing the great advantage of large fans at slow speeds over small fans at high speeds delivering the same volume. The theoretical values are greatly modified by variations in practical conditions. Prof. Carpenter found that with three fans running at a speed ot 6200 ft . per minute at the tips of the vanes, and an airpressure of $11 / 2 \mathrm{in}$. of water column, the mechanical efficiency, or the horsepower of the air delivered divided by the power required to drive the fan, ranged from $3: \%$ to $47 \%$, under different conditions, but with slow sperds it Was much less, in some cases being under $00 \%$. Mr. Walker in experiments on disk fans found efficiencies ranging all the way from $7.4 \%$ to $43 \%$, the size of the fans and the speed being constant, but the shape and angle of the blades varying. It is evident that there is a wide margin for improvements in the forms of fans and blowers, and a wide field for experiment to determine the conditions that will give maximum efficiency.

Centrifugal Ventilators for Mines.--Of different appliances for ventilating nines various forms of centrifugal machines having proved their efficiency have now almost completely replaced all others. Most if not all of the machines in use in this country are of this class, being either openweriphery fans, or closed, with chimney and spiral casing, of a more or less modified Guibal type. The theory of such machines has been demonstrated by Mr. Daniel Murgue in "Theories and Practices of Centrifugal Ventilating Machines," translated by A. L. Stevenson, and is discussed in a paper by R. Van A. Norris, Trans. A. I. M. E. xx. 637. From this paper the following formulæ are taken:

Let $a=$ area in sq. ft . of an orifice in a thin plate, of such area that its resistance to the passage of a given quantity of air equals the resistance of the mine;
$o=$ orifice in a thin plate of such area that its resistance to the passage of a given quantity of air equals that of the machine;
$Q=$ quantity of air passing in cubic feet per minute;
$V=$ velocity of air passing through $a$ in feet per second;
$\Gamma_{0}=$ velocity of air passing through o in feet per second;
$h=$ head in feet air-column to produce velocity $V$;
$h_{0}=$ head in feet air-column to produce velocity $V_{0}$.

$$
\begin{aligned}
& Q=0.65 \alpha V ; \quad V=\sqrt{2 g h} ; \quad Q=0.65 \alpha \sqrt{2 g h} ; \\
& a=\frac{Q}{0.65 \sqrt{2 g h}}=\text { equivalent orifice of mine; }
\end{aligned}
$$

or, reducing to water-gauge in inches and quantity in thousands of feet per minute,

$$
\begin{gathered}
a=\frac{.403 Q}{\sqrt{W \cdot G} \cdot} ; \quad Q=0.65 o V_{0} ; \quad V_{0}=\sqrt{2 g h_{0}} ; \quad Q=0.650 \sqrt{2 g h_{0}} ; \\
0=\sqrt{\frac{Q^{2}}{0.65^{2} h_{0} 2 g}}=\text { equivalent orifice of machine. }
\end{gathered}
$$

The theoretical depression which can be produced by any centrifugal ventilator is double that due to its tangential speed. The formula

$$
I I=\frac{T^{2}}{2 g}-\frac{V^{2}}{2 g}
$$

in which $T$ is the tangential speed, $V$ the velocity of exit of the air from the space between the blades, and $H$ the depression measured in feet of aircoluinn, is an expression for the theoretical depression which can be produced by an uncovered ventilator; this reaches a maximum when the air leaves the blades without speed, that is, $V=0$, and $H=T^{2} \div 2 g$.

Hence the theoretical depression which can be produced by any uncovered ventilator is equal to the height due to its tangential speed, and one halfthat which can be produced by a covered ventilator with expanding chimney.

So long as the condition of the mine remains constant:
The volume produced by any ventilator varies directly as the speed of rotation.

The depression produced by any ventilator varies as the square of the speed of rotation.

F'or the same tangential speed with decreased resistance the quantity of air increases and the depression diminish es.

The following table shows a few results, selected from Mr. Norris's paper, giving the range of efficiency which may be expected under different circumstances. Details of these and other fans, with diagrams of the results are given in the paper.

Experiments on Mine-ventilating Fans.

| $\stackrel{\dot{\Xi}}{\stackrel{\rightharpoonup}{3}}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 84 | 5517 | 236.684 | 2818 | 3040 | 4290 | 1.80 | 67.13 | 88.40 | 85.9 |  |
|  | 100 | 6:82 | 3:36,862 | 3369 | 3040 | 5:393 | 2.50 | 132.70 | 155 | 85.4 |  |
|  | 111 | 6973 | 347,396 | 3130 | 3040 | 5002 | 3.20 | $175.1 \%$ | :209.64 | 83.6 |  |
|  | 123 | 7727 | 394,100 | 3204 | 3040 | 5100 | 3.60 | 223.56 | 295.21 | 75.7 |  |
|  | 100 | $6 \geq 82$ | 188,888 | 1889 | 1520 | 3007 | 1.40 | 41.67 | 97.99 | 42.5 |  |
|  | 130 | 8167 | 2\% 4,876 | 2114 | $15 \% 0$ | 3366 | 2.00 | 86.63 | 194.95 | 44.6 | 22 |
|  | 59 | 3702 | 59,58\% | 1010 | 1520 | 1610 | 1.20 | 11.27 | 16.76 | 67.83 |  |
|  | 83 | $5: 08$ | 8:2,969 | 1000 | 15\%0 | 1593 | 2.15 | 27.86 | 48.54 | $5{ }^{7 \prime} .38$ |  |
|  | 40 | 3140 | 49,61i | 1240 | 3096 | 1580 | 0.87 | 6.80 | 13.82 | 49.2 | 32 |
|  | 70 | 5495 | 137,760 | 1825 | 3096 | 2507 | 2.55 | 55.35 | 67.44 | 82.07 |  |
|  | 50 | $2 \% 49$ | 147,282 | 2944 | 1502 | 5356 | 0.50 | 11.60 | 28.55 | 40.63 |  |
|  | 69 | 3793 | 205,761 | 2982 | 15:2 | 5451 | 1.00 | 32.42 | 45.98 | 70.50 | 83 |
|  | 96 | 5978 | 299,600 | 3121 | 1522 | 56.6 | 2.15 | 101.50 | 120.64 | 84.10 |  |
|  | 200 | 7540 | 133,198 | 666 | 746 | 1767 | 3.35 | 70.30 | 102.79 | 68.40 | 26.9 |
|  | 200 | 7510 | 180,809 | 904 | 746 | 2398 | 3.05 | 86.89 | 129.07 | 67.30 | 38.3 |
|  | 200 | 7540 | 209,150 | 1046 | 746 | 2774 | 2.80 | 92.50 | 150.08 | 61.70 | 46.3 |
|  | 10 | 785 | 28,896 | 2890 | 3022 | 3680 | 0.10 | 0.45 | 1.30 | 135. |  |
|  | 20 | $15 \% 0$ | 57,120 | 2856 | $30 \geq 2$ | 3637 | 0.20 | 1.80 | 3.70 | 49. |  |
|  | 25 | 1962 | 66,640 | 2665 | 3022 | 3399 | 0.99 | 2.90 | 6.10 | 48. |  |
|  | 30 | 2355 | 73,080 | 2436 | 3022 | 3103 | 0.40 | 4.60 | 9. 80 | 47. | 52 |
|  | 35 | 2747 | 94,080 | 2688 | $30 \div 2$ | 3425 | 0.50 | 7.40 | 15.00 | 48. |  |
|  | 40 | 3140 | 112,000 | 2800 | 3022 | 3567 | 0.70 | 12.30 | 24.90 | 49. |  |
|  | 50 | 3925 | 132,700 | 2654 | 3022 | 3381 | 0.90 | 18.80 | 38.80 | 48. |  |
|  | 60 | 4710 | 173,600 | 2893 | 3022 | 3686 | 1.35 | 36.90 | 66.40 | 55. |  |
|  | 70 | 5495 | 203,280 | 2904 | 3022 | 3718 | 1.80 | 57.70 | 107.10 | 54. |  |
|  | 80 | 6:80 | 222,390 | 2749 | 3022 | 3540 | 2.25 | 78.80 | 152.60 | 52. |  |



An examination of the detailed results of each test in Mr. Norris's table shows a mass of contradictions from which it is exceedingly difficult to draw auy satisfactory conclusions. The following, he states, appear to be more or less warranted by some of the figures :

1. Influence of the Condition of the Airways on the Fan.-Mines with varying equivalent orifices give air per 100 feet periphery-motion of fan, within limits as follows, the quantity depending on the resistance of the mine:

| Equivalent <br> Orifice. | Cu. Ft. Air per <br> 100 ft . Periphery- | Aver- <br> age. | Equivalent <br> Orifice. | Cu. Ft. Air per <br> 100 ft. Periphery- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Speed. |  |  |  |  | Aver.

The influence of the mine on the efficiency of the fan does not seem to be very clear. Eight fans, with equivalent orifices over 50 square feet, give
efficienves over $70 \%$; futir, with smaller equivalent mine-oriffces, give about the same figures; while, on the contrary, six fans, with equivalent orifices of over 50 square feet, give lower efficiencies, as do ten fans, all drawing from mines with small equivalent orifices.

It would seem that, on the whole, large airways tend to assist somewhat, in attaining large efficiency.
2. Influence of the Dianueter of the Fan.-This seems to be practically nit, the only advantage of large fans being in their greater width and the lower speed required of the engines.
3. Influence of the Width of a Fan.-This appears to be small as regards the efficiency of the machine; but the wider fans are, as a rule, exhausting
more air.
4. Influence of Shape of Blades.-This appears, within reasonable limits, to be practicaily nil. Thus, six fans with tips of blades curved forward, three fans with flat blades, and one with blades curved back to a tangent with the circumference, all give very high efficiencies-over $70 \%$.
5. Influence of the Shape of the spital Casing.-This appears to be considerable The shapes of spiral casing in use fall into two classes, the first presenting a large spiral, beginning at or near the point of cut-off, and the second a circular casing reaching around three quarters of the circumference of the fan, with a short spiral reaching to the evasée chimney.
Fans having the first form of casing appear to give in almost every case large efficiencies.
Fans that bave a spiral belonging to the first class, but very much contracted, give only medium efficiencies. It seems probable that the proper shape of spiral casing would be one of such form that the air between each pair of blades could constantly and freely discharge into the space between the fan and casing, the whole being swept along to the evasée chimney. Tbis would require a spiral beginning near the point of cut-off, enlarging by gracually increasing increments to aliow for the slowing of the air caused by its friction against the casing, and reaching the chimney with an area such that the air could make its exit with its then existing speed-somewhat less than the periphery-speed of the fan.
6. Influence of the Shutter. - This certainlv appears to be an advantage, as by it the exit area can be regulated to suit the varying quantity of air given by the fan, and in this way re-entries can be prevented. It is not uncommon to find shutterless fans into the chimneys of which bits of paper may be dropped, which are drawn into the fan, make the circuit, and are again thrown out. This peculiarity has not been noticed with fans provided with
shutters.
7. Influence of the Speed at which a Fin is Run.-It is noticeable that most of the fans giving high efficiency were running at a rather high periphery velocity. The best speed seems to be between 5000 and 6000 feet per minute.

The fans appear to reach a maximum efficiency at somewhere about the speed given, and to decrease rapidly in efficiency when this maximum point passed.
In discussion of Mr. Norris's paper, Mr. A. H. Storrs says: From the "cubic feet per revolution" and "cubical contents of fan-blades," as given in the table, we find that the enclosed fans empty themselves from one half to twice per revolution, while the open fans are emptied from one and threequarter to nearly three times. This for fans of both types, on mines covering the same range of equivalent orifices. One open fan, on a very largs orifice, was emptied nearly four times, while a closed fan, on a still larger orifice, only shows one and one-half times. For the open fans the "cubic fect per 100 ft . motion " is greater, in proportion to the fan width and equivalent orifice, than for the enclosed type. Notwithstanding this apparently free discharge of the open fans, they show very low efficiencies.

As illustrating the very large capacity of centrifugal fans to pass air, if the couditions of the mine are made favorable, a $16-\mathrm{ft}$. diam. fan, 4 ft .6 in . wide, at 130 revolutions, passed $360,000 \mathrm{cu}$. ft. per min., and another, of same diameter, but slightly wider and with larger intake circles, passed $500,000 \mathrm{cu}$. ft ., the water-gauge in both instances being about $1 / 2 \mathrm{in}$.

T'. D. Jones says: The efficiency reported in some cases by Mr. Norris is larger than I have ever been able to determine by experiment. My own exto 1881 , did not show more than $60 \%$ to $65 \%$.

## DISK FANS.

Experiments made with a Elackman Disk Fan, 4. ft. diam., by Geo. A. Suter, to determine the volunies of air delivererl under various conditions, and the power required; with calculations of efficiency and ratio of increase of power to increase of velccity, by G. H. Babcock. (Trans. A. S. M. E., vii. 547):

| $\begin{aligned} & \dot{\bar{E}} \\ & \text { ह } \\ & \dot{\Phi} \\ & \dot{8} \\ & \dot{8} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0.0 \\ & 0 . \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\left\lvert\, \begin{gathered} 1 \\ \exists \\ \text { \# } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$ |  |  | $\begin{aligned} & \dot{E} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 350 | 25,79\% | 0.65 |  |  |  |  |  |  |  |
| 440 | 32,575 | 2.29 |  | 1.257 | 1.26\% | 3.523 | 5.4 |  | . 1.9553 |
| 534 | 41,929 | 4.42 |  | 1.186 | 1.287 | 1.843 | 2.4 |  | 1.062 |
| 612 | 47,756 | 7.41 |  | 1.146 | 1.139 | 1.6 ก | 3.97 |  | . 93558 |
|  | For | series |  | 1.749 | 1.851 | 11.140 | 4. |  |  |
| 340 | 20,3\%2 | 0.76 |  |  |  |  |  |  |  |
| 453 | 26,660 | 1.99 |  | 1.332 | 1.308 | 2.618 | 3.55 |  | 6063 |
| 536 | 31.649 | 3.86 |  | 1.183 | 1.187 | 1.940 | 3.86 |  | . $5: 05$ |
| 627 | 36,543 For | 6.47 |  | 1.167 | 1.155 | 1.676 | 3.59 |  | . 4802 |
|  | For | series |  | 1.761 | 1.194 | 8.513 | 3.63 |  |  |
| 340 | 9.983 | 1.12 | 0.28 |  |  |  |  |  | . 3939 |
| 430 | 13,017 17 18.018 | 3.17 | 0.47 | 1.265 | 1.304 | 2.837 | 3.93 | 1.95 | . $30+46$ |
| 534 | $\begin{aligned} & 17,018 \\ & 18649 \end{aligned}$ | ${ }^{6.07}$ | 0.75 | 1.242 | 1.307 | 1.915 | 2.25 | 1.74 | . $3: 19$ |
| 570 | 18,649 | 8.46 | 0.87 | 1.068 | 1.096 | 1.394 | 3.63 | 1.60 | . $30: 27$ |
|  | For | series |  | $1.6 \% 6$ | 1.704 | 7.554 | 3.24 | 1.81 |  |
| 330 | 8,399 | 1.31 | 0.26 |  |  |  |  |  |  |
| 437 516 | 10,071 | 3.27 6.00 | 0.45 | 1.324 | 1.199 | 3.142 | 6.31 | 3.06 | . 2188 |
| 516 | 11,15\% | 6.00 | 0.75 | 1.181 1.563 | 1.108 | 1.457 4.580 | 3.66 5.35 | 4.96 3.72 | .2202 |

Nature of the Experiments.-First Series: Drawing air through 30 ft . of 43 -in. diam. pipe on inlet side of the fan.
Second Series: Forcing air througb 30 ft . of 48 -in. diam. pipe on outlet side of the fan.
Third Series: Drawing air through 30 ft . of 48 in . pipe on inlet side of the fan-the pipe being obstructed by a diaphragm of cheese-cloth.
Fourth Series: Forcing air through 30 fl . of 48 -in. pipe on outlet side of fan -the pipe being obstructed by a diaphragm of cheese cloth.
Mr. Babcock says concerning these experiments: The first four experiments are evidently the subject of some error, because the efficiency is such as to prove on an average that the fan was a source of power sufficient to overcome all losses and help drive the engine besides. The second series is less questionable, but still the efficiency in the first two experiments is larger than might be expected. In the third and fourth series the resistance of the cheese-cloth in the pipe reduces the efficiency largely, as would be expected. In this case the value has been calculated from the height equivalent to the water-pressure, rather thau the actual velocity of the air.
This record of experiments made with the disk fan shows that this kind of fan is not adapted for use where there is any material resistance to the flow of the air. In the centrifugal fan the power nsed is nearly proportioned to the amount of air moved under a given head, while in this fan the power required for the same number of revolutions of the fan increases very materially with the resistance. notwithstanding the quantity of air moved is at the same time cousiderably reduced. In fact, from the inspection of the third and fourth series of tests, it would appear that the power required is very nearly the same for a given pressure, whether more or less air be in motion. It would seem that the main advantage, if any. of the disk fan over the centrifugal fan for slight resistances consists in the fact that the delivery is the full area of the disk, while with centrifugal fans intended to move the same quantity of air the opening is much smaller.

It will be seen by columns 8 and 9 of the table that the power used increased much more rapidly than the cube of the velocity, as in centrifugal fans. The different experiments do not agree with each other, but a general average may be assumed as about the cube root of the eleventh power.
Full and Threcquarter Housing Fans. (Buffalo Forge Co.) Capacities at different velocitips and pressures. (See also table on p. 519.)

| $\begin{aligned} & \dot{A} \\ & \stackrel{N}{\hat{N}} \end{aligned}$ | Size of Outlet. | Diam. of Inlet. | Pulleys. |  | Velocities in cubic feet per minute; Pressures in ounces at Fan Outlets. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\stackrel{\dot{Z}}{\tilde{\pi}}$ |  | 3654 ft . per min, $1 / 2 \mathrm{oz}$. |  | 4482 ft . per min., $3 / 4 \mathrm{oz}$. |  | 5175 ft . per min., 1 oz . |  |
|  |  |  |  |  | Capacity. | Revs. per miu. | Capacity. | Revs. per min. | Capacity. | $\begin{gathered} \text { Revs } \\ \text { per } \\ \text { min. } \end{gathered}$ |
| 50 |  |  | 9 | 7 | 8.140 | 2 | 9,900 | 600 | 11,440 | 693 |
| 60 | $221 / 4 \times 2 \cdot 1$ | 265 | 10 | 8 | 11, 7 \% 0 | 46. | 13.950 | 562 | 16,120 | 650 |
| 70 | $26 \times 26$ | 341 | 11 | 9 | 16,280 | 361 | 19,800 | 441 | 22,880 | 09 |
| 80 | $293 / 4 \times 293$ | 391/8 | 12 | 10 | 21,460 | 303 | 26,100 | 369 | 30,160 | 42 |
| 90 | $331 / 2 \times 331$ | 43 | 14 | 11 | 27,750 | 266 | 33, 250 | 325 | 39,000 | 346 |
| 100 | $371 / 4 \times 3 \pi 1$ | 453 | 16 | 12 | 31,410 | 242 | 41,850 | 294 | 48,360 | 340 |
| 110 | $41 \times 41$ | 511 | 18 | 13 | 41,540 | 217 | 50,400 | 265 | 58,240 | 307 |
| 120 | $443 / 4 \times 443 / 4$ | 54 | 20 | 14 | 49,580 | 195 | 60,300 | 243 | 68,680 | 280 |
| 130 | $481 / 2 \times 481 / 3$ | 61 | 2 | 15 | 5S,460 | 187 | 71,100 | $22 \%$ | 82,160 | 263 |
| 140 | $5 \because 1 / 4 \times 5 \geqslant 1 / 4$ | 6439 | 24 | 16 | 6テ, 110 | 172 | 8., 350 | 214 | 95,160 | 248 |
| 150 | $56 \times 56$ | 6912 | 20 | 17 | \%7,700 | 161 | $9 \uparrow$,500 | 196 | 109,200 | 224 |
| 160 | $593 / 4 \times 593 / 4$ | r 4114 | 号 | 18 | 88,800 | 149 | 10s,000 | 181 | 124,800 | 209 |
| 18 | $631 / 2 \times 631 / 2$ | 59 | 30 | 19 | 100,2\%0 | 140 | 121,950 | $1 \% 1$ | 140,9 ${ }^{\text {a }}$ | 197 |
| 180 |  |  |  |  | 112,480 | 136 | 136,800 | 135 | 158,050 | 19 |

For $1 / 4 \mathrm{oz}$. pressure, speed 2584 ft . per minute, the capacity and the revolutions are each one-half of those for 1 oz . pressure.
Efficieney of Disk rans.-Prof. A. B. W. Kenmedy (Industries, Jan. 17, 1890) inade a series of tests oll two disk fans, 2 and 3 ft . diameter, known as the Verity Silent Air-propeller. The principal results and conclusions are condensed below.

In each case the efficiency of the fan, that is, the quantity of air delivered per effective horse-power, increases very rapidly as the speed diminishes, so that lower speeds are much more economical than higher ones. On the other hand, as the quantity of air delivered per revolution is very nearly constant, the actual useful wark done by the fan increases almost directly with its speed. Comparing the large and small fans with about the same air delivery, the former (running at a much lower speed, of course) is much the more eccnomical. Comparing the two fans running at the same speed, however, the smaller fan is very much the more economical. The delivery of air per revolution of fan is very nearly directly proportional to the area of the fan's diameter.

The air delivered per minute by the $3-\mathrm{ft}$. fan is nearly $12.5 R$ cubic feet ( $R$ being the number of revolutions made by the fan per minute). For the 2-ft. fan the quantity is $5 . \% R$ cubic feet. For either of these or any other similar fans of which the area is $A$ square feet, the delivery will be about $1.8 A R$ cubic feet. Of course any change in the pitch of the blades might entirely change these figures.
The net H.P. taken up is not far from proportional to the square of the number of revolutions above 100 per minute. Thus for the 3 - ft . fan the net H.P. is $\frac{(R-100)^{2}}{200,000}$, while for the $2-\mathrm{ft}$. fan the net H.P. is $\frac{(R-100)^{2}}{1,000,000}$.

The denominators of these two fractions are very nearly proportional inversely to the square of the fan areas or the fourth power of the fan dianeters. The net H.P. required to drive a fan of diameter $D$ feet or area $A$ square feet, at a speed of $R$ revolutions per minute, will therefore be approximately $\frac{D^{4}(R-100)^{2}}{17,000,000}$ or $\frac{A^{2}(R-100)^{2}}{10,400,000}$.

The 2-ft. fan was noiseless at all speeds. The 3 - ft . fan was also noiseless up to over 450 revolutions per minute.

|  | Propeller, 2 ft . diam. |  |  | Propeller, 3 ft . diam. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Speed of fan, revolutions per minute. | 750 | 676 | 577 | 576 | 459 | 373 |
| Net H.P. to drive fan and belt........ | 0.42 | 0.32 | 0.227 | 1.02 | 0.545 | 0.224 |
| Cubic feet of air per minute.......... | 4,183 | 3,830 | 3,410 | 7,400 | 5,500 | 4,4i0 |
| Mean velocity of air in 3-ft. flue, feet per minute. | 593 | 543 | 482 | 1,046 | 820 | 632 |
| Mean velocity of air in flue, same diameter as fan. $\qquad$ | 1,390 |  | 1,085 |  |  |  |
| Cu.ft.of air per min.per effective M.P. | 9,9\%0 | 11,970 | 15,000 | 7,250 | 10,0r0 | 13,800 |
| Motion given to air per rev. of fan, ft . | 1.75 | 1.81 | 1.88 | 1.82 | 1.59 | 1. 70 |
| Cubic feet of air per rev. of fan....... | 5.58 | 5.66 | 5.90 | 12.8 | 12.6 | 12.0 |

## 

| Size number $\cdot$. . . . . . . . . . . . ${ }^{1 / 1}$ | 1/3 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cubic feet per | 11\% | 3 | 5 | 8 | 13 | 22 |  |  |
| Revolutions per minute, $\{$ | 2:0 | 20 | 200 | 175 | 150 | 125 | 100 |  |
| Smith fires. | to |  |
| 350 | 300 | 2 25 | 250 | 23.5 | 200 | $1 \%$ | 150 | 12 |
| Frrnishes blast for Smith $\{$ | - | 10 | 16 | 24 | $2:$ | 47 | r0 |  |
| fires | $\mathrm{to}_{8}$ | to | to | to | to | to | to |  |
|  |  | 11 | 20 | 30 | 5 | 67 | 100 | 13 |
| Revolutions per minute for $\{$ |  | 275 | 210 | 20 | 185 | 170 | 150 |  |
| pola, melting iron.... |  | 3 to | to | to | 27 | \% | 200 | 173 |
|  |  | 18 | $2 t$ | 30 | 36 | 42 | 50 |  |
| side linin |  | to | 10 | to | to | to |  |  |
|  |  | 24 | 30 | 36 | 42 | 50 |  |  |
|  |  | $11 / 2$ | $21 / 3$ |  | $4 \% 3$ | 8 | 121/2 | 172 |
| mett iron per hour, tons |  | to | to | to | to | to | to |  |
| orse-po |  | $\stackrel{2}{1}$ | 3 | 42/3 |  | 12 | 16\% | $2 / 3$ |

The amount of iron melted is based on 30,000 cubic feet of air per ton of iron. The horse-power is for maximum speed and a pressure of $3 / 4$ pound, ordinary cupola pressure. (See also Foundry Practice.)

## BLOWING-IENGENES.

Corliss Horizontal Cross-compound Condensing

| Indicated Horse-power. |  | Revs. per min. | Cu. Ft. Free Air per min. | Blast-pressure per sq.in., lbs. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| 15 Exp . | 13Exp. |  |  |  |  |  |  |  |  |  |
| $125 \mathrm{lbs}$. | 100 lbs . |  |  |  |  |  |  |  |  |  |
|  | Ste |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 1,050 \\ & 1,596 \end{aligned}$ | 1,5 ${ }^{1} \mathrm{i}$ | 40 | 30,400 | 15 | 44 | r8 | (9) 84 | 60 |  |  |
|  | 2,280 | 60 | 45,600 |  | 44 | 18 | (2) $8 \pm$ | 60 | 500,000 | 605,000 |
|  | 1,290 | 40 | 30,400 | \} 12 | 42 | \% | (9) 81 | 60 | 455,000 | 550,000 |
|  | 2,060 | 60 | 45,600 |  | 4 | [ | (-) $8 \pm$ | 60 | 415,000 | 500,000 |
|  |  | 40 | 30,400 | \} 10 | 32 | 60 |  | 60 |  |  |
|  |  | 60 | 45. 600 | \} 10 | 32 | 60 | (2) 84 | 60 | 305,000 | 436,000 |
|  | 1,340 | 40 | 26,800 | 1 15 | 40 | 72 | (2) 78 | 60 | 445,000 | 545,000 |
|  | 1,980 | 60 | 39.600 |  |  |  |  |  | 45,000 |  |
|  | 1,152 | 40 | 26.800 39.600 | \} 12 | 38 | 70 | (2) 78 | 60 | 425,000 | 491,000 |
|  | 1,702 ,938 | 40 | 39.600 26,800 |  |  |  |  |  |  |  |
|  | 1,386 | 60 | 39,600 | 10 | 30 | 66 | (2) 78 | 60 | 415,000 | 450,000 |
|  | 780 | 40 | 15,680 |  |  |  |  |  |  |  |
|  | 1,175 | 60 | 23,500 | \} 10 | 34 | 60 | (2) 72 | 60 | 340,000 | 430,000 |
|  | 548 | 40 | 15,680 | ¢ 10 | 28 | 50 | (2) 12 | 60 | 270,000 | 300,000 |
|  | $82 \%$ | 60 | 2:3,500 |  |  |  | (コ) 2 |  | ~, |  |

Vertical engines are built of the same dimensions as above, except that the stroke is 48 in. instead of 60 , and they are run at a higher number of revolutions to give the same piston-speed and the same I. H. P.

The calculations of power, capacity, etc., of blowing-engines are the same as those for air-compressors. They are built without any provision for cooling the air during compression. A bout 400 feet per minute is the usual piston-speed for recent forms of engines, but with positive air-valves, which have been introduced to some extent, this speed may be increased. The efficiency of the engine, that is, the ratio of the I.H.P. of the air cylinder to that of the steam cylinder, is usually takeu at 30 per cent, the losses by friction, leakage, etc., being taken at 10 per cent.

## 

A blower and exhauster is made by L. Schutte \& Co., Philadelphia, on the principle of the steam-jet ejector. The following is a table of capacities:

| $\begin{aligned} & \text { Size } \\ & \text { No. } \end{aligned}$ | Quantity of Air per hour cubic feet. | Diameter of Pipes in inches |  | $\begin{aligned} & \text { Size } \\ & \text { No. } \end{aligned}$ | Quantity of Air per hour cubic feet. | Diameter of Pipes in inches. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Steam. | Air. |  |  | Steam. | Air. |
| 000 | 1,000 |  |  |  | 30.000 |  |  |
| 00 | 2,000 | 14 | 112 | 6 | 36,000 | $21 / 3$ |  |
| ${ }_{1}$ | 4,000 6,000 | 11 | ${ }_{2}^{2}$ | 7 | 48,000 | ${ }_{3}^{3}$ | ${ }_{6}$ |
| 2 | 12,000 | $11 / 2$ | ${ }_{3}^{2 / 2}$ | 9 | 48,000 54,000 | ${ }_{31}^{3}$ | 7 |
| 3 | 18,000 | ${ }_{2}$ | 3112 | 10 | 60,000 | $31 / 2$ | 8 |
| 4 | 24,000 | 2 |  |  |  | $3 / 2$ |  |

The admissible vacuum and comnter pressure, for which the apparatus is constructed, is up to a rarefaction of 20 inches of mercury, and a counterpressure up to one sixth of the steam-pressure.
The table of capacities is based on a steam-pressure of about 60 lbs , and a counter-pressure of about 8 lbs . With an increase of steam-pressure or decrease of counter-pressure the capacity will largely increase.
Another steam-jet blower is used for boiler-firing, ventilation, and similar purposes where a low counter-pressure or rarefaction meets the requirements.
The volumes as given in the following table of capacities are under the supposition of a steam-pressure of 45 lbs , and a counter-pressure of, say, 2 inches of water:

| $\begin{aligned} & \text { Size } \\ & \text { No. } \end{aligned}$ | Cubic feet of Air delivered per hour. | Diameter of Steanpipe in inches. | Dianteter in inches of - |  | Size <br> No. | Cubic feet of Air delivered per hour | Diam. of Steampipe in inches. | Diameter in inches of - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Inlet | Disc |  |  |  | Tnlet. | Disch. |
| 00 | 6,000 |  | 4 | 3 |  | 250,000 |  | 17 |  |
| 0 | 12,000 | 2 | 5 | 4 |  | 500,000 | $11 / 4$ | 24 | 20 |
| 1 | 30,000 | $1 / 2$ | 8 |  | 8 | 1,000,000 | $11 / 2$ | 32 | 27 |
| $\stackrel{2}{2}$ | 60,000 | $3 / 4$ | 11 | 8 | 10 | 2,000,000 | \% | 42 | 36 |
| 3 | 125,000 |  |  | 10 |  |  |  |  |  |

The Steam-jet as a Heans for Ventilation.-Between 1810 and 1850 the stean-jet was employed to a considerable extent for ventilating English collieries, and in $185:$ a committee of the House of Commons reported that it was the most powerful and at the same tine the cheapest method for the ventilation of mines ; but experiments made shortly afterwards proved that this opinion was erroneous, and that furnace ventilation was less than half as expensive, and in consequence the jet was soon abandoned as a permanent method of ventilation.

For an acconnt of these experiments see Colliery Engineer, Feb. 1890. The jet, however, is sometimes advantageously used as a substitute, for instance, in the case of a fan standing for repairs, or after an explosion, when the furnace may not be kept going, or in the case of the fan having been readered useless.

## HEATING AND VENTILATION.

Ventilation. (A. R. Wolff, Stevens Indicator, A pril, 1890.)-The popular impression that the impure air falls to the bottom of a crowded room is erroneous. There is a constant mingling of the fresh air admitted with the impure air due to the law of diffusion of gases, to difference of temperature, etc. The process of ventilation is one of dilntion of the impure a ir by the fresh, and a room is properly ventilated in the opinion of the hygienists when the dilution is such that the carbonic acid in the air does not exceed from 6 to 8 parts by volume in 10,000 . Pure country air contains about 4 parts $\mathrm{CO}_{2}$ in 10,000 , and badly-ventilated quarters as high as 80 parts.

An ordinary man exhales 0.6 of a cubic foot of $\mathrm{CO}_{2}$ per hour. New York gas gives out 0.75 of a cubic foot of $\mathrm{CO}_{2}$ for each cubic foot of gas burnt. An ordinary lamp gives out 1 cu . ft . of $\mathrm{CO}_{2}$ per hour. An ordinary candle gives out 0.3 cu . ft . per hour. One ordinary gaslight equals in vitiating effect about $51 / 2$ men, an ordinary lamp $12 / 3$ men, and an ordinary candle $1 / 2$ man.
To determine the quantity of air to be supplied to the inmates of an unlighted room, to dilute the air to a desired standard of purity, we can establish equations as follows:

Let $v=$ cubic feet of fresh air to be supplied per hour;
$r=$ cubic feet of $\mathrm{CO}_{2}$ in each $10,000 \mathrm{cu} . \mathrm{ft}$. of the entering air:
$R=$ cubic feet of $\mathrm{CO}_{2}$ which each $10,000 \mathrm{cu} . \mathrm{ft}$. of the air in the room may contain for proper health conditions;
$n=$ number of persons in the room;
$.6=$ cubic feet of $\mathrm{CO}_{2}$ exhaled by one man per hour.
Then $\frac{v \times r}{10,000}+.6 n$ equals cubic feet of $\mathrm{CO}_{2}$ communicated to the room dur ing one hour.

This value divided by $v$ and multiplied by 10,000 gives the proportion of $\mathrm{CO}_{2}$ in 10,000 parts of the air in the room, and this should equal $R$, the standard of purity desired. Therefore

$$
\begin{equation*}
R=\frac{10,000\left[\frac{v \times r}{10,000}+.6 n\right]}{v}, \text { or } v=\frac{6000 n}{R-r^{\circ}} \tag{1}
\end{equation*}
$$

If we place $r$ at 4 and $R$ at $6, v=\frac{6000}{6-4} n=3000 n$, .
or the quautity of air to be supplied per person is 3000 cubic feet per hour.
If the original air in the room is of the purity of external air, and the cubic contents of the room is equal to 100 cu .ft. per inmate, only $3000-100=2900$ cu. ft. of fresh air from without will have to be supplied the first hour to keep the air within the standard purity of 6 parts of $\mathrm{CO}_{2}$ in 10,000 . If the cubic contents of the room equals 200 cu . ft. per inmate, only $3000-200=2800$ clu. ft. will have to be supplied the first hour to keep the air within the standard purity, and so on.

Again, if we only desire to maintain a standard of purity of 8 parts of carbonic acid in 10,000, equation (1) gives as the required air-supply per hour

$$
v=\frac{6000}{8-4} n=1500 n \text {, or } 1500 \mathrm{cu} . \mathrm{ft} \text {. of fresh air per inmate per hour. }
$$

Cubic feet of air containing 4 parts of carbonic acid in 10,000 necessary per person per hour to keep the air in roon at the composition of

| 6 | 7 | 8 | 9 | 10 | 15 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3000 | 2000 | 1500 | 1200 | 1000 | 545 | 375 |\(\left\{\begin{array}{l}parts of carbonic acid in <br>

10,000 .\end{array}\right.\)

If the original air in the room is of purity of external atmosphere (4 parts of carbonic acid in 10,000 ), the amount of air to be supplied the first hour, for given cubic spaces per inmate, to have given standards of purity not exceeded at the end of the hour is obtained from the following table:
 of
Space in Room per Individual.

Proportion of Carbonic Acid in 10,000 Parts of the Air, not to be Exceeded at End of Hour.

| 6 | 7 | 8 | 9 | 10 | 15 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Cubic Feet of Air, of Composition 4 Parts of Carbonic Acid in 10,000, to be Supplied the First Hour.

| 100 | 2900 | 1900 | 1400 | 1100 | 900 | 445 | 275 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 2800 | 1800 | 1300 | 1000 | 800 | 345 | $1 \%$ |
| 300 | $2{ }^{2} 00$ | 1700 | 1200 | 900 | 700 | 245 | \% |
| 400 | 2600 | 1600 | 1100 | 800 | 600 | 145 | None |
| 500 | 2500 | 1500 | 1000 | \%00 | 500 | 45 |  |
| 600 | 2400 | 1400 | 900 | 600 | 400 | None | ........ |
| 700 | 2300 | 1300 | 800 | 500 | 300 |  |  |
| 800 | 2200 | 1200 | $\stackrel{700}{600}$ | 400 | 200 |  |  |
| 900 | 2100 | 1100 | 600 | 300 | 100 |  |  |
| 1000 | 2000 | 1000 | 500 | 200 | None |  |  |
| $\begin{aligned} & 1500 \\ & 2000 \end{aligned}$ | 1500 1000 | 500 None | None | None | ...... | .... |  |
| $\stackrel{2}{2000}$ | 1000 500 | None |  |  |  |  |  |

It is exceptional that systematic ventilation supplies the 3000 cubic feet per inmate per hour, which adequate health considerations demand. Large auditoriums in which the cubic space per individual is great, and in which the atmosphere is thoroughly fresh before the rooms are occupied, and the occupancy is of two or three hours' duration, the systematic air-supply may be reduced, and 2000 to 2500 cubic feet per inmate per hour is a satisfactory allowance.

Hospitals where, on account of unhealthy excretions of various kinds, the air-dilution must be largest, an air-supply of from 4000 to 6000 cubic feet per inmate per hour should be provided, and this is actually secured in some hospitals. A report dated March 15, 1882, by a commission appointed to examine the public schools of the District of Columbia, says:
"In each class-room not less than 15 square feet of floor-space should be allotted to each pupil. In each class-room the window-space should not be less than one fourth the floor-space, and the distance of desk most remote from the window should not be more than one and a half times the height of the top of the window from the floor. The height of the class room should never exceed 14 feet. The provisions for ventilation should be such as to provide for each person in a class-room not less than 30 cubic feet of fresh air per minute ( 1800 per hour), which amount must be introduced and thoroughly distributed without creating unpleasant draughts, or causing any two parts of the room to differ in temperature more than $2^{\circ}$ Fahr., or the nuaximum temperature to exceed ro Fahr."
When the air enters at or near the floor, it is desirable that the velocity of inlet should not exceed 2 feet per second, which means larger sizes of register openings and fines than are nsually obtainable, and much higher velocities of inlet than two feet per second are the rule in practice. The velocity of current into vent-flues can safely be as high as 6 or even 10 feet per second, withont being disagreeably perceptible.
The entrance of fresh air into a room is co-incident witl, or dependent on, the removal of an equal amount of air from the room. The ordinary means of removal is the vertical vent-duct, rising to the top of the building. Sometimes reliance for the production of the current in this vent-duct is placed solely on the difference of temperature of the air in the room and that of the external atmosphere: sometimes a stean coil is placed within the flue near its bottom to heat the air within the dinct; sometimes steam pipes (risers and returns) run up the duct performing the same functions; or steam jets within the flue, or exhaust fans, driven by stean or electric power, act directly as exhausters; sometimes the heating of the air in the flue is accomplished by gas-jets.

The draft of such a duct is caused by the difference of weight of the
heated air in the duct, and a column of equal height and cross-sectional area of weight of the external air.
Let $d=$ density, or weight in pounds, of a cubic foot of the external air.
Let $d_{1}=$ density, or weight in pounds, of a cubic foot of the heated air within the duct.
Let $h=$ vertical height, in feet, of the vent-duct.
$h\left(d-d_{1}\right)=$ the pressure, in pounds per square foot, with which the air is forced into and out of the vent-duct.

This pressure can be expressed in height of a chlumn of the air of density within the vent-duct, and evidently the height of such column of equai


Or, if $t=$ absolute temperature of external air, and $t_{1}=$ absolute temperature of the air in vent-duct in the form, then the pressure equals

$$
\begin{equation*}
h\left(\frac{\left.t_{1}-t\right)}{t}\right. \tag{4}
\end{equation*}
$$

The theoretical velocity, in feet per second, with which the air would travels through the vent-duct under this pressure is

$$
v=\sqrt{\frac{2 g h_{1}\left(t_{1}-t\right)}{t}}=8.02 \sqrt{\frac{h\left(t_{1}-t\right)}{t}} \ldots \cdots \cdot \text {. } 5 t
$$

The actual velocity will be considerably less than this, on account of loss due to friction. This friction will vary with the form and cross-sectional area of the vent-duct and its connections, and with the degree of smoothness of its interior surface. On this accomnt, as well as to prevent leakage of air through crevices in the wall, tin lining of rent-flues is desirable.
The loss by friction may be estimated at approximately $50 \%$, and so we find for the actual velocity of the air as it flows through the vent-duct:

$$
\begin{equation*}
v=\frac{1}{2} \sqrt{2 g h \frac{\left(t_{1}-t\right)}{t}}, \text { or, approxiniately, } v=4 \sqrt{h \frac{\left(t_{1}-t\right)}{t}} . \tag{6}
\end{equation*}
$$

If $V=$ velocity of air in vent-duct, in feet per minute, and the external air be at $32^{\circ}$ Fahr., since the absolute temperature on Fahrenheit scale equals thermometric temperature plus 459.4 ,

$$
V=240 \sqrt{h \frac{\left(t_{1}-t\right)}{491.4}}
$$

from which has been computed the following table:
Quantity of Air, in Cubic Feet, Discharged per Minute through a Ventilating Duet, of which the Cross-sectional Area is one square Foot (the External Tempera* ture of Air being $32^{\circ}$ Vahro).

| Height of <br> Vent-duct in <br> feet. | Excess of Temperature of Air in Vent-duct above that of <br> External Air. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $5^{\circ}$ | $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $50^{\circ}$ | $100^{\circ}$ | $150^{\circ}$ |
| 10 | 7 | 108 | 133 | 153 | 171 | 188 | 242 | 342 | 419 |
| 15 | 94 | 133 | 162 | 188 | 210 | 230 | 297 | 419 | 514 |
| 20 | 108 | 153 | 188 | 217 | 242 | 265 | 342 | 484 | 593 |
| 25 | 121 | 171 | 210 | 242 | $2 \pi 1$ | $29 \%$ | 383 | 541 | 663 |
| 30 | 133 | 188 | 230 | 265 | $29 \%$ | 325 | 419 | 593 | 726 |
| 35 | 143 | 203 | 248 | 286 | 320 | 351 | 453 | 640 | 784 |
| 40 | 153 | 217 | 265 | 306 | 343 | 375 | 484 | 656 | 838 |
| 45 | 162 | 230 | 283 | 32. | 363 | 395 | 514 | $4 \pi 6$ | 889 |
| 50 | 171 | 242 | $29 \sim$ | 342 | 383 | 419 | 541 | 278 | 937 |

Multiplying the figures in above table by 60 gives the cubic feet of air discharged per hour per square foot of cross-section of vent-duct. Knowing
the cross-sectional area of vent-ducts we can find the total discharge; or for a desired air-removal, we call proportiou the cross-sectional area of vent-ducts required.

Artificial Cooling of Air for Ventilation. (Engineering News, July 7, 1892.) - A pound of coal used to make stean for a fairly efficient refrigerating-machine can produce an actual cooling effect equal to that produced by the melting of 16 to 46 lbs . of ice, the annount varying with the conditions of working. Or, 855 hear-units per 1 b . of coal converted into work iu the refrigerating plant (at the rate of 3 lbs coal per horsepower hour) will abstract 2275 to 6545 heat-units of heat from the refrigerated body. If we allow 2000 cu . ft . of fresh air per hour per person as sufficient for fair ventilation, with the air at an initial temperature of $80^{\circ} \mathrm{F}$., its weight per cubic foot will be .0736 lb . ; hence the homly supply per person will weigh $2000 \times .0736 \mathrm{lb} .=14 \% .2$ lbs. To cool this $10^{\circ}$, the specific heat of air being 0.238 , will require the abstraction of $147.2 \times 0.238 \times 10=350$ heatunits per person per hour.

Taking the figures given for the refrigerating effect per pound of coal as above stated, and the required abstraction of 350 heat-units per person per hour to have a satisfactory cooling effect, the refrigeration obtained from a pound of coal will produce this cooling effect for $2275 \div 350=61 / 2$ hours with the least efficient working, or $6545 \div 350=18.7$ hours with the inost efficient working. With ice at $\$ 5$ per ton, Mr. Wolff computes the cost of cooling with ice at about $\$ 5$ per hour per thousand persons, and concludes that this is too expensive for any general use. With mechanical refrigeration, however, if we assume 10 hours' cooling per person per pound of coal as a fair practical service in regular work, we have an expense of only 15 cts . per thousand persons per hour, coal being estimated at $\$ 3$ per short ton. This is for fuel alone, and the varions items of oil, attendance, interest, and depreciation on the plant, etc., must be considered in making up the actual total cost of mechanical refrigeration.

Mine-ventilation-Friction or Air in Undergronnd Pas-sages.-In ventiating a mine or other underground passage the resistance to be overcome is, according to most writers on the subject, proportional to the extent of the frictional surface exposed; that is, to the product lo of the length of the gangway by its perimeter, to the density of the air in circulation, to the square of its average speed, $v$, and lastly to a coefficient $k$, whose numerical value varies according to the nature of the sides of the gangway and the irregularities of its course.
The formula for the loss of head, neglecting the variation in density as unimportant, is $p=\frac{k s v^{2}}{a}$, in which $p=$ loss of pressure in pounds per square foot, $s=$ square feet of rubbing-surface exposed to the air, $v$ the velocity of "the air in feet per miuute, $a$ the area of the passage in square feet, and $k$ the coefficient of friction. WV. Fairley, in Colliery Engireer, Oct. and Nov. 1893, gives the following formulæ for all the quantifies involved, using the same notation as the above, with these additions: $h=$ lorse-power of ventilation; $l=$ length of air-chamel; $o=$ perimeter of air-channel; $q=$ quantity of air circulating in cubic feet per minute; $u=$ units of work, in footpounds, applied to circulate the air: $w=$ water-gauge in inches. Then,

1. $a=\frac{k s v^{2}}{p}=\frac{k s v^{2} q}{u}=\frac{k s v^{3}}{p v}=\frac{u}{p v}=\frac{q}{v}$.
2. $h=\frac{u}{33,000}=\frac{q p}{33,000}=\frac{5.2 q w}{33,000}$.
3. $k=\frac{p a}{s v^{2}}=\frac{u}{s v^{3}}=\frac{p}{s v^{2}+a}=\frac{5.2 w}{s v^{2} \div a}$.
4. $l=\frac{s}{o}=\frac{p a}{l v v^{2} O}$.
5. $o=\frac{s}{l}=\frac{p \alpha}{k v^{2} l^{2}}$.
6. $p=\frac{k s v^{2}}{a}=\frac{u}{q}=5.2 v=\left(\sqrt[3]{\frac{u}{k s}}\right)^{2} \frac{k s}{a}=\frac{k s v^{9}}{q}=\frac{u}{a v}$.
7. $p a=k s v^{2}=\left(\sqrt[3]{\frac{\pi}{k s}}\right)^{2} k s=\frac{u}{v} ; p a^{3}=k s q^{2}$.
8. $q=v a=\frac{u}{p}=\frac{k s v^{3}}{p}=\sqrt{\frac{p a}{k s}} a=\sqrt{\frac{u}{k s}} a$.
9. $s=\frac{p u}{k v^{2}}=\frac{u}{k v^{3}}=\frac{q p}{k v^{3}}=\frac{v p a}{k v^{3}}=l o$.
10. $u=q p=v p a=\frac{k s v^{2} q}{a}=k s v^{3}=5.2 q w=33,000 h$.
11. $v=\frac{u}{p a}=\frac{q}{a}=\sqrt[8]{\frac{u}{k s}}=\sqrt[8]{\frac{q p}{k s}}=\sqrt{\frac{p a}{k s}}$.
12. $v^{2}=\frac{p a}{k s}=\left(\sqrt[3]{\frac{u}{k s}}\right)^{2}$.
13. $v^{3}=\frac{\tau}{k s}=\frac{q p}{k s}=\frac{v p \pi}{k s}$.
14. $w=\frac{p}{5.2}=\frac{k s v^{2}}{5.2 a^{2}}$

To find the quantity of air with a given horse-power and efficiency (e) of engine:

$$
q=\frac{h \times 33,000 \times e}{p}
$$

The value of $k$, the coefficient of friction, as stated, varies according to the nature of the sides of the gangway. Widely divergent values have been given by different authorities (see Colliery Engineer, Nov. 1893), the most generally accepted one until recently being probably that of J. J. Atlinson, .0000000217 , which is the pressure per square foot in decimals of a pound for each square foot of rubbing-surface and a velocity of one foot per minute. Mr. Fairley, in his "Theory and Practice of Ventilating Coal-mines," gives a value less than half of Atkinson's, or .00000001 ; and recent experiments by D. Murgue show that even this value is high under most conditions. Murgue's results are given in his paper on Experinental Investigations in the Loss of Head of Air-currents in Undergronnd Workings, Trans. A. I. M. E., 1893. vol. xxiii. 63. His coefficients are given in the following table, as determined in twelve experiments:


The French coefficients which are given by Murgue represent the height of water-gauge in millimetres for each square metre of ribbing-surface and a velocity of one metre per second. To convert them to the British measure of pounds per square foot for each square foot of rubbing-surface and a velocity of one foot per minute they have been multiplied by the factor of conversion, .000005283 . For a velocity of 1000 feet per minute, since the loss of head varies as $v^{2}$, move the decimal point in the coefficients six places to the right.

## FANS AND HEATED CHIMNEYS FOR VENTILATION. 533

Equivalent Orifice.-The head absorbed by the working-chambers of a inine cannot be computed a priori, because the openings, cross-passages, irregular-shaped gob-piles, and daily changes in the size and shape of the chambers present much too complicated a network for accurate analysis. In order to overcome this difficulty Murgue proposed in $18 \%$ the method of equivalent orifice. This method consists in substituting for the mine to be considered the equivalent thin-lipped orifice, requiring the same height of head for the discharge of an equal volume of air. The area of this orifice is obtained when the head and the discharge are known, by means of the following formulæ, as given by Fairley:
Let $Q=$ quantity of air in thousands of cubic feet per minute;
$w=$ inches of water-gauge;
$A=$ area in square feet of equivalent orifice.
Then

$$
A=\frac{0.3 \pi Q}{\sqrt{w}}=\frac{Q}{2.7 \sqrt{w}} ; \quad Q=\frac{A \times \sqrt{w}}{0.37} ; \quad w=0.1369 \times\left(\frac{Q}{A}\right)^{2} .
$$

## Motive Column or the Head of Air Due to Diferences of Temperature, etc. (Fairley.) <br> Let $M=$ motive column in feet;

$T=$ temperature of upcast;
$f=$ weight of one cubic foot of the flowing air;
$t=$ temperature of downcast;
$D=$ depth of downcast.
Then

$$
M=D \frac{T-t}{T \times 459} \quad \text { or } \frac{5.2 \times w}{f} ; p=f \times M ; \quad w=\frac{f \times M}{5.2}=\frac{p}{5.2}
$$

To find diameter of a round airway to pass the same amount of air as a square airway the length and power remaining the sanie:
Let $D=$ diameter of round airway, $A=$ area of square airway; $O=$ perimeter of square airway. Thell $D^{3}=\sqrt[5]{\frac{A^{3} \times 3.1416}{.7854^{3} \times O}}$.

If two fans are employed to ventilate a mine, each of which when worked separately produces a certain quantity, which may be indicated by $A$ and $B$ then the quantity of air that will pass when the two fans are worked together will be $\sqrt[3]{A^{3}+B^{3}}$. (For mine-ventilating fans, see page 511. )

## Relative Effeiency of Fans and Heated Chimneys for

 Ventilation.-W. P. Trowbridge, Traus. A. S. M. E. vii. 531, gives a theoretical solution of the relative amounts of heat expended to remove a given volume of impure air by a fan and by a chimney. Assunning the total efficiency of a fan to be only $1 / 25$, which is made up of an efficiency of $1 / 10$ for the engine, $5 / 10$ for the fan itself, and $8 / 10$ for efficiency as regards friction, the fan requires an expenditure of heat to drive it of only $1 / 38$ of the amonnt that would be required to produce the same ventilation by a chimney 100 ft . high. For a chimney 500 ft . high the fan will be 7.6 times nore efficient.In all cases of moderate ventilation of rooms or buildings where the air is heated before it enters the rooms, and spontaneous ventilation is prodnced by the passage of this heated air upwards through vertical flues, no special heat is required for ventilation; and if such ventilation be sufficient, the process is faultless as far as cost is concerned. This is a coudition of things which may be realized in most dwelling houses, and in many halls, schoolrooms, and public buildings, provided inlet and outlet flues of ample cross-section be provided, and the heated air be properly distributed.

If a more active ventilation be demanded, but such as requires the smallest amount of power, the cost of this power may outweigh the advantages of the fan. There are many cases in which steam-pipes in the base of a chimney, requiring no care or attention, may be preferable to mechanical ventilation, on the ground of cost, and trouble of attendance, repairs, etc.

$$
\text { * Murgue gives } A=\frac{0.38 Q}{\sqrt{w}} \text {, and Norris } A=\frac{0.403 Q}{\sqrt{w}} \text {. See page } 521 \text {, ante. }
$$

The following figures are given by Atkinson (Coll. Engr., 1889), showing the minimum depth at which a furnace would be equal to a ventilatingmachine, assuming that the sources of loss are the same in each case, i.e., that the loss of fuel in a furnace from the cooling in the upcast is equivalent to the power expended in overcoming the friction in the machine, and also assunning that the ventilating-machine utilizes $60 \%$ of the engine-power. The coal consumption of the engine per I.H.P. is taken at 8 lbs . per hour:

Average temperature in upcast....... $100^{\circ} \mathrm{F} . \quad 150^{\circ} \mathrm{F} . \quad 200^{\circ} \mathrm{F}$. Minimum depth for equal economy... 960 yards. 1040 yards. 1130 yards.
Heating and Ventilating of Large Buildings. (A. R. Wolff, Jour. Frank. Inst., 1893.) - The transmission of heat from the interior to the exterior of a room or building, through the walls, ceilings, windows, etc., is calculated as follows:
$S=$ amount of transmitting surface in square feet;
$t=$ temperature F. inside, $t_{0}=$ temperature outside;
$K=$ a coefficient representing, for various materials composing buildings, the loss by transmission per square foot of surface in British thermal units per hour, for each degree of difference of temperature on the two sides of the material;
$Q=$ total heat transmission $=S K\left(t-t_{0}\right)$.
This quantity of heat is also the amount that must be conveyed to the room in order to make good the loss by transmission, but it does not cover the additional heat to be conveyed on account of the change of air for purposes of ventilation. The coefficients $K$ given below are those prescribed by law by the German Govermment in the design of the heating plants of its public buildings, and generally used in Germany for all buildings. They have been converted into American units by Mr. Wolff, and he finds that they agree well with good American practice:

## Value of $K$ for Each Square Foot of Brick Waly.

\(\left.\begin{array}{c}Thickness of <br>

brick wall.\end{array}\right\}\)| $4^{\prime \prime}$ | $8^{\prime \prime}$ | $12^{\prime \prime}$ | $16^{\prime \prime}$ | $20^{\prime \prime}$ | $24^{\prime \prime}$ | $28^{\prime \prime}$ | $32^{\prime \prime}$ | $36^{\prime \prime}$ | $40^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K=0.68$ | 0.46 | 0.32 | 0.26 | 0.23 | 0.20 | 0.174 | 0.15 | 0.129 | 0.115 |${ }^{\prime 2}$


| . ft., wooden-beam const | as flooring, $K=0.083$ |
| :---: | :---: |
| planked over or ceiled, | .........as as ceiling, $K=0.104$ |
| sg. ft., fireproof construction, | ..as flooring, $k=0.124$ |
| floored over, | .as ceiling, $K=0.145$ |
| 1 sq . ft., single window | $K=1.030$ |
| 1 sq. ft., single skrlight | $K=1.118$ |
| 1 sq. ft., double window | $K=0.518$ |
| 1 sq. ft., double skylight | $K=0.6 \geqslant 1$ |
| 1 sq. ft., door | $K=0.414$ |

These coefficients are to be increased respectively as follows: $10 \%$ when the exposure is a northerly one, and winds are to be counted on as important factors; $10 \%$ when the building is heated during the dastime only, and the
cation of the building is not an exposed one; $30 \%$ when the building is heated during the daytime only, and the location of the building is exposed; $50 \%$ when the building is heated during the winter months intermittently, with long intervals (say days or weeks) of non-heating.

The value of the radiating-surface is about as follows: Ordinary bronzed cast-iron radiating-surfaces, in American radiators (of Bundy or similar type), located in rooms, give out about 250 heat-units per hour for each square foot of surface, with ordinary stran-pressure, say 3 to 5 lbs . per sq. in., and about 0.6 this amount with ordinars hot-water heating.

Non-parated radiating-surfaces, of the ordinary "indirect" type (Climax or pin surfaces), give ont about 400 heat-units per hour for each square foot of heating-surface, with ordinary steam-pressure, say 3 to 5 lbs. per sq. in.; and about 0.6 this amount with ordinary hot-water heating.

A person gives out about 400 heat-units per hour; an ordinary gas-burner, about 4800 heat-units per hour; an incandescent electric ( 16 candle-power) light, about 1600 heat-mits per hour.

The following example is given by Mr. Wolff to show the application of the formula and coefficients:

Lecture-room $40 \times 60 \mathrm{ft}$., 20 ft . high, 48,000 cubic feet, to be heated to $69^{\circ} \mathrm{F} . ;$ exposures as follows: North wall, $60 \times 20 \mathrm{ft}$., with four windows, each $14 \times 8$ feet, outside temperature $0^{\circ} \mathrm{F}$. Room bejond west wall and

## HEATING AND VENTILATING OF LARGE BUILDINGS.

ronm overhead heated to $69^{\circ}$, except a double skylight in ceiling, $14 \times 24 \mathrm{ft}$., exposed to the outside temperature of $0^{\circ}$. Store-room beyond east wall at $36^{\circ}$. Dnor $6 \times 12 \mathrm{ft}$. in wall. Corridor beyond south wall heated to $59^{\circ}$. Two doors, $6 \times 12$, in wall. Cellar below, temperature $36^{\circ}$.

The following table shows the calculation of heat transmission:

|  | Kind of Transmitting Surface. |  | Calculation of Area of Transmitting Surface. |  | ¢ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 69^{\circ} \\ & 69 \\ & 33 \\ & 33 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 69 \\ & 69 \\ & 33 \end{aligned}$ | Ontside wall................ | 36" | $63 \times 22-448$ |  | 9 | 8.442 |
|  | Four windows (single; |  | $4 \times 8 \times 14$4022$\times 20$ |  | 72 | 3:2,256 |
|  | Inside wall (store-room) Door ................ | $36^{\prime \prime}$ |  |  | 4 | 3,408 |
|  | Inside wall (corridor) | $24^{\prime \prime}$ | $6 \times 12$ $45 \times 2$ | 72 | 19 | 1,368 |
|  | Door... |  | 6×12 ${ }^{1}$ | 918 | 5 | 1,836 |
|  | Inside wall (corridor) | $36^{\prime \prime}$ | $11 \times 22-72$ | 302 | 1 | 302 |
|  | Door.................. |  | $6 \times 12$$6 \times 12$$32 \times 42-336$ |  | 5 |  |
|  | Roof |  |  |  | 10 | 360 10.880 |
|  | Double skyli |  | $32 \times 42-336$ | 2,604 | 434 | $\begin{aligned} & 11,448 \\ & 10,416 \end{aligned}$ |
|  | Flo |  | 62 $\times 42$ |  |  |  |
|  | Supplementary allowance, north outside wall, $10 \%$ |  |  |  |  | $\begin{array}{r} 83,276 \\ 814 \\ 3.226 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
|  | Exposed location |  |  |  |  | $\begin{aligned} & 8 \pi .346 \\ & 26.204 \end{aligned}$ |
|  | Total thermal units. | ....... ...... ............ ... |  |  |  | 26. 13.54 |

If we assume that the lecture-room must be heated to 69 degrees Fahr. in the daytime when unoccupied, so as to be at this temperature whell first persons arrive, there will be required, ventilation not being considered, and bronzed direct low-pressure stean-radiators being the heating media, about $113,550 \div 250=455 \mathrm{sq}$. ft. of radiating-surface. (This gives a ratio of about 405 cll . ft. of contents of room for each sq. ft. of heating-surface.)

If we assume that there are 160 persons in the lecture-room, and we provide 200 cubic feet of fresh air per person nor hour, we will supply $160 \times$ $2500=400,000$ cubic feet of air per hour (i.e., $\frac{400,000}{48,000}=$ over eight changes of contents of room per hour).

To heat thic air from $0^{\circ}$ Fahr, to $69^{\circ}$ Fahr. will require $400,000 \times 0.0189 \times$ $63=521.640$ thermal units per hour ( 0.0189 being the product of a weight of a cubic font by the specific heat of air). Accordingly there must be provided $521,640 \div 400=1304 \mathrm{sq}$. ft. of indirect surface, to heat the air required for ventilation, in zero weather. If the room were to be warmed entirely indirectly, that is, by the air supplied to room (including the heat to be conveyed to cover loss by transmission through walls, etc.), there would have to be conveyed to the fresh-air supply $521,640+113,550=635.190$ heat-units. This would imply the provision of an amount of indirect heating-surface of the "Climax "type of $635,190 \div 400=1589 \mathrm{sq}$. ft., and the fresh air entering the room would have to be at a temperature of about $84^{\circ}$ Fahr., viz., $69^{\circ}=$ $-\frac{113,550}{400,000 \times 0.0189}$, or $69+15=84^{\circ}$ Fahr.

The above calculations do not, however, take into account that 160 per. sons in the lecture-room give out $160 \times 400=64.000$ thermal units per hour; and thav, say, 50 electric lights give out $50 \times 1600=80.000$ therinal units per hour; or, say, 50 gaslights, $50 \times 4800=240,000$ thermal units per hour. The presence of 160 people and the gas-lighting wonld dimiuish considerably the amonnt of heat required. Practically, it appears that the heat generated by the presence of 100 people, 64,010 heat-units, and by 50 electric lights, 80,000 heat-units, a total of 144,000 heaí-units, more than covers the amonnt of heat transmitted through walls, etc. Moreover, that if the 50 gaslights give out 240,000 thermal units per hour, the ail supplied for ventilation must enter considerably below $69^{\circ}$ Fahr., or the room will be heated to an unbearably bigh temperature. If 400.000 cubic feet of fresh air per hour
are supplied, and 240,000 thermal units per hour generated by the gas must be abstracted, it means that the air must, under these conditions, enter $\frac{240,000}{400.000 \times .0189}=$ about $32^{\circ}$ less than $84^{\circ}$, or at about $52^{\circ}$ Fahr. Furthermore, the additional vitiation due to gaslighting would necessitate a much larger supply of fresh air than when the vitiation of the atmosphere by the people alone is considered, one gaslight vitiating the air as much as five men.

Varions Rules for Computing Radiating-surface. -The following rules are compiled from various sources. They are more in the lature of "rule-of-thumb" rules than those given by Mr. Wolff, quoted above, but they may be useful for comparison.
Divide the cubic feet of space of the room to be heated, the square feet of wall surface, and the square feet of the glass surface by the figures given under these headings in the following table, and add the quotients together; the result will be the square feet of radiating-surface required. (F. Schumann.)

Space, Wall and Glass Surface which One Square Foot of Radiating-

|  |  |  | Exposure of Rooms. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | All Sides. |  | Northwest. |  | Southeast. |  |
|  |  | $\left\lvert\, \begin{gathered} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$ | Wall Surface, sq. ft. | Glass Surface, sq. ft. | $\begin{aligned} & \text { Wall } \\ & \text { Surface, } \\ & \text { sq. ft. } \end{aligned}$ | Glass Surface, sq. ft. | Wall Surface, sq. ft. | Glass Surface sq. ft. |
| Once | 1 | 190 | 13.8 | - | 15.87 | 8.05 | 16.56 | 8.4 |
| per | 3 5 5 | 210 | 15.0 16.5 | 7.7 8.5 | 18.97 | 8.85 9.77 | 18.00 19.80 | 9.24 10.20 |
| hour. | 5 | 2\% | 16.5 | 8.5 |  |  |  |  |
| Twice | 1 | 75 80 |  |  |  |  |  |  |
| ${ }_{\text {per }}^{\text {per }}$ ¢ | $\left\lvert\, \begin{aligned} & 1 \\ & 3 \\ & 5\end{aligned}\right.$ | 8. 90 | 12.1 13.0 | 6.2 | 13.911 | 7.13 7.60 | 14.58 15.60 | $\begin{aligned} & 7.44 \\ & 8.04 \end{aligned}$ |

Emission of Heat-units per squaric foot per Hour from Cast-iron Pipes or Ramiators. Temp. of Air in Room, $i 0^{\circ} \mathrm{F}$. (F. Schumanu.)

| Mean Temperature of Heated Pipe, Radiator, etc. | By Contact. |  | By Radiation. | By Radiation and Contact. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Air quiet. | Air moving. |  | Air quiet. | Air moving. |
| Hot water......... . $140^{\circ}$ | 55.51 | 92.52 | 59.63 | 115.14 | 1521.5 |
| " $\ldots . . . . . . . .150^{\circ}$ | 65.45 | 109.18 | 69.69 | 135.14 | 178.87 |
| " " 4 , ..........160 $160^{\circ}$ | 75.68 | 126.13 | 80.19 | 155.87 | 206.32 |
| " " $6 . . . . . . . .1700^{\circ}$ | 86.18 | 143.30 | 91.12 | 177.30 | 234.42 |
|  | 96.93 | 161.55 | 102.15 | 199.43 | 264.05 |
| "...... .... $190^{\circ}$ | 10790 | 179.83 | 114.45 | 222.35 | 294.28 |
| " " $\quad . \ldots \ldots \ldots .200^{\circ}$ | 119.13 | 198.55 | 127.00 | 246.13 | $3: 5.55$ |
| " or steam.. $210^{\circ}$ | 130.49 | 217.48 | 139.96 | 270.49 | 35\%.48 |
| Steam. ............... $2220^{\circ}$ | 142.20 | 237.00 | 155.27 | 297.47 | 392.27 |
| .230 ${ }^{\circ}$ | 153.95 | 256.58 | 169.56 | 3:3.51 | 426.14 |
| 4 . 4 ............. $240^{\circ}$ | 165.90 | $2 \sim 9.83$ | 184.58 | 350.48 | 464.41 |
|  | 178.00 | 296.65 | 200.18 | 378.18 | 496.81 |
| " | 189.90 | 316.50 | 214.36 | 404.26 | 530.86 |
| " ............. .. $2 \pi 0^{\circ}$ | 202.70 | 33\%.83 | 233.42 | 436.12 | 511.25 |
|  | 215.30 | 358.85 | 251.21 | 466.51 | 610.06 |
|  | 228.55 | 380.91 | 267.73 | 496.28 | 648.64 |
| $300^{\circ}$ | 240.85 | 401.41 | 279.12 | 519.97 | 680.53 |

## RadiatMng-surface required for Different Kinds of Buildings.

The Nason Mfg. Co.'s catalogue gives the following: One square foot of surface will heat from 40 to 100 cu ft . of space to $75^{\circ} \mathrm{in}-10^{\circ}$ latitntes. This range is intended to meet conditions of exposed or corner rooms of buildings, and those less so, as intermediate ones of a block. As a general rule, 1 sq . ft. of surface will heat 70 cu . ft . of air in outer or front rooins and $100 \mathrm{cu} . \mathrm{ft}$. in inner rooms. In large stores in cities, with buildings ou each side, 1 to 100 is ample. The followiug are approximate proportions:

One square foot radiating-surface will heat:

## By direct radiation... <br> By indirect radiation.

| In dwellings, <br> schoolroons, <br> offices, etc. | In hall, stores, <br> lofts, factories, |
| :---: | :---: |
| 60 to 80 ft | etc. |
| 40 to 50 ". | 55 to $100 \mathrm{ft}$. |

In churches, large auditoriums, etc. 150 to 200 ft . 100 to 140 "
Isolated buildings exposed to prevailing north or west winds should have a generous addition made to the heating-surface on their exposed sides.
The following rule is given in the catalogue of the Babcock \& Wilcox Co., and is also recornmended by the Nason Mfg. Co.:
Radiating surface may be calculated by the rule: Add together the square reet of glass in the windows, the number of cubic feet of air required to be changed per minute, and one twentieth the surface of external wall and roof; multiply this sum by the difference between the required temperature of the room and that of the external air at its lowest point, and divide the product by the difference in temperature between the steam in the pipes and the required temperature of the room. The quotient is the required radiating-surface in square feet.
Prof. R. C. Carpenter (Heating and Ventilation, Feb. 15, 1897), gives the following handy formula for the amount of lieat required for heating build. ings by direct radiation:

$$
n=\frac{n}{55} C+G+1 / 4 W,
$$

in which $W=$ wall-surface, $G=$ glass- or window-surface, both in sq. ft., $C=$ contents of building in cu. ft., $n=$ number of times the air must be changed per hour, and $h=$ total heat units required per degree of difference of temperature between the room and the surrounding space. To heat the building to $70^{\circ} \mathrm{F}$. when the outside temperature is $0^{\circ}, 70$ times the above quantity of heat will be required. Under ordinary conditions of pressure and temperature 1 sq . ft . of steam-heating surface will supply $₫ 80$ heat units per hour, and 1 sq . ft. of hot-water heating surface 175 heat units per hour. The square feet of radiating-surface required under these conditions will be $R=0.25 h$ for steam heating, and $R=0.4 h$ for hot-water heating. Prof. Carpenter says that for residences it is safe to assume that the air of the principal living-rooms will change twice in an hour, that of the halls threas times and that of the other rooms once per hour, under ordinary conditions.

Overhead Steam-pipes. (A. R. Wolff, Stevens Indicator: 1887.)Whell the overhead system of steam-heating is employed, in which system direct radiating pipes, usually $11 / 4 \mathrm{in}$. in diam., are placed in rows overhearl, suspended upon horizontal racks, the pipes running horizontally, and side by side, around the whole interior of the building, from 2 to 3 ft . from the walls, and from 2 to 4 ft from the ceiling, the amount of $11 / \mathrm{in}$. pipe requireă: according to Mr. C. J. H. Woodbury, for heating mills (for which use this system is deservedly much in vogue), is about 1 fr . in length for every $90 \mathrm{cu} . \mathrm{ft}$. of space. Of course a great range of difference exists, due to the special character of the operating machinery in the mill, both in respect to the amount of air circulated by the machinery, and also the aid to warming the room by the friction of the journals.
Indirect Heating-swriace.-J. H. Kinealy, in Heating and Ventilation, May 15, 1894, gives the following formula, deduced from results of experiments by C. B. Richards, W. J. Baldwin, J. H. Mills, and others, upon indirect heaters of various kinds, supplied with varying amounts of air per hour per square foot of surface:

$$
N=\frac{35.04}{\frac{T_{2}-T_{1}}{T_{0}-T_{2}}-0.369} ; \quad T_{2}=\left(T_{0}-T_{1}\right)\left(0.369+\frac{35.04}{N}\right)+T_{3}
$$

$N=$ cubic feet of air, reduced to $\% 0^{\circ} \mathrm{F}$., supplied to the heater per square foot of heating-surface per hour; $T_{0}=$ temperature of the steam or water in the heater: $T_{1}=$ temperature of the air when it enters the heater; $\eta_{2}=$ temperature of the air when it leaves the heater.

As the formula is based upon an average of experiments made upon all sorts of indirect heaters, the results obtained by the use of the equation may in some cases be slightly too small and in others slightly too large, although the error will in no case be great. No single formula ought to be expected to apply equally well to all dispositions of heating-surface in indirect heaters, as the efficiency of such heater can be vari d between such wide linits by the construction and arrangement of the surface.

In indirect heating, the efficiency of the radiating-surficee will increase, and the temperature of the air will diminish, when the quantity of the air caused to pass through the coil increases. Thus 1 sq . ft. radiating-surface, with steam at $212^{\circ}$, has been found to heat 100 cu . ft. of air per hour from zero to $150^{\circ}$, or $300^{\circ} \mathrm{cu}$. ft. from zero to $100^{\circ}$ in the same time. The best results are attained by using indirect radiation to supply the necessary venti latiou, and direct radiation for the balance of the heat. (Steam.)
In indirect steam-heating the least flue area should be 1 to $11 / 4 \mathrm{sq}$. in. to every square foot of heating-surface, provided there are no long horizon. tal reaches in the duct, with little rise. The register should have twice the area of the duct to allow for the fretwork. For hot water heating from $25 \%$ to $30 \%$ more heating-surface and flue area should be given than for lowpressure steam. (Engineering Record, May 26,1891 .)
Boiler Heating-surface Required. (A.R. Wolff, Stevens Indicator, 1887.)-When the direct system is used to heat buildings in which the street floor is a store, and the upper floors are devoted to sales and stockrooms and to light manufacturing, and in which the fronis are of stone or iron, and the sides and the rear of building of brick-a safe rule to follow is to supply 1 sq . ft . of boiler heating-surface for each $\gamma 00 \mathrm{cu}$. ft ., and $1 \mathrm{sq} . \mathrm{ft}$. of radiating-surface for each 100 cu . ft . of contents of building.

For heating mills, shops, and factories, 1 sq . ft . of bciler heating-surface should be supplied for each $4 \tilde{5} \mathrm{cu}$. fr. of contents of building; and the same allowance should also be made for heating exposed wooden dwellings. For heating foundries and wooden shops, 1 sq . ft . oi boiler heating-surface should be provided for each 400 cu . ft. of contents; and for structures in which glass enters very largely in the construction-such as conservatories, exhibition buildings, and the like -1 sq . ft . of boiler heating surface should be provided for each $275 \mathrm{cu} . \mathrm{ft}$. of contents of building.

When the indirect cystem is eniployed, the radiator-surface and the boiler capacity to be provided will each have to be, on an average, about $25 \%$ more than where direct radiation is used. This percentage also marks approximately the increased fuel consumption in the indirect system.

Steam (Babcock \& Wilcox Co.) has the follo wing: 1 sq . ft. of boiler-surface will supply from $\gamma$ to 10 sq . ft . of radiating-surface, depending upon the size of boiler and the efficiency of its surface, as well as that of the radiatingsurface. Small boilers for house use should be much larger proportionately than large plants. Each horse-power of boiler will supply from 240 to 360 ft . of 1 -in. steam-pipe, or 80 to 120 sq . ft . of radiating-surface. Cubic feet of space has little to do with amount of steam or surface required, but is a convenient factor for rough calculations. Under ordinary conditions $\downarrow$ horse-power will heat, approximately, in-

$$
\begin{aligned}
& \text { Brick dwellings, in blocks, as in cities.. } \\
& \text { "stores " " } 1 . . . . . . . . . . . . . . . .{ }^{4} \text { 10,000 } \\
& \text { " dwellings, exposed ail round................. 10,000 } \\
& \text { " mills, shops, factories, etc..... ......... } 7,000 \\
& \text { Wooden dwellings, exposed ......... .............. 7, } 7,000 \\
& \text { Foundries and wooden shops ....................... } 6,000 \\
& \text { to } 20,000 \mathrm{cu}_{\text {i }} \mathrm{ft} \text {. } \\
& \text { " } 15.000 \\
& \text { " } 15.000 \text { b } \\
& \text { " } 15,000 \text { " } \\
& \text { " } 10,000 \text { " } \\
& \because 10,000 \text { " } \\
& \text { " 10,000 } \\
& \text { Exhibition buildings, largely glass, etc........ 4,000 " 15,000 }
\end{aligned}
$$

## Steam-consumpition in Car-ineating.

## C., M. \& St. Paul Railiway Tests. (Engineeving, June 2 Tr, 1890, p. r64.) <br> Outside Teinperature. <br> 40 <br> 30 <br> 10 <br> Inside Temperature. <br> 70 70 70 <br> Water of Condensation per Car per Hour. 70 lbs. 85

## Internal Diameters of Steam Supply－mains，vith Total Resistance equal to 2 inches of water－column．＊

Steam，Pressure 10 lbs ．per square inch above atm．，Temperature $239^{\circ} \mathrm{F}$ ．
Formula，$d=0.5374 \sqrt[5]{\frac{Q^{2}}{h}} ; \quad$ where $d=$ internal diameter in inches； $Q=9.2$ cubic feet of steam per minute per 100 sq．ft．of radiating－surface $;$
$l=$ length of mains in feet $; h=159.3$ feet head of steam to $m$ modnce flow：

| 近 | 1 ft ． | 10 ft | 20 ft ． | 40 ft ． | 60 | 80 ft ． | 100 ft ． |  | ft ． | 400 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft． | inch． | h． |  |  |
| 10 | 0.19 | 0．119 | 0．136 | 0.157 0.39 | 0．170 | 0.180 0.45 | 0.189 | 0.216 | 0.234 | 0.218 |  |
| 20 | 0.25 | 0.39 | 0.45 | 0.52 | 0.56 | O．45 | 0．47 | － | 0.59 0.8 | －${ }_{\text {0，}}^{0.6}$ | 0.68 0.89 |
| 40 | 0.33 | 0.52 | 0.60 | 0.69 | 0.74 | 0．ヶ9 | 0.82 | 0.95 | 1.03 | 1．09 | 1.18 |
| 60 | 0.39 | 0.61 | 0.71 | 0.8 | 0.87 | 0．93 | 0.97 | 1.11 | 1.21 | 1.28 | 1.39 |
| 80 | 0.43 | 0.68 | 0.79 | 0.90 | 0.98 | 1.04 | 1.09 | 1.11 | 1.35 | 1.43 | 1.55 |
| 100 | 0.47 | 0.75 | 0.86 | 0.99 | 1.07 | 1.14 | 1.19 | 1.36 | 1.48 | 1.57 | 1．70 |
| 200 300 | 0.62 | 0.99 1.16 | 1.14 | ${ }^{1.30}$ | 1.41 | 1.50 | 1.57 | 1.80 | 1.95 | 2.07 | 2.24 |
| 400 | 0．73 | 11613 | 1．34 | $\xrightarrow{1.53} 1$ | 1．66 | 1．76 | ${ }_{2}^{1.84}$ | ${ }^{2} 12$ | 2.30 | 2． 43 | 2. |
| 500 | 0.90 | 1.43 | 1.64 | 1.88 | 1.04 | 1.98 | 2.07 | 2．37 | ${ }_{2}^{2.57}$ | 2．73 | $\stackrel{3}{3}$ ． |
| 600 | 0.97 | 1.53 | 1．76 | 2.03 | $\stackrel{1}{2}$ | 2． 33 | 2.43 | $\stackrel{2}{2.60}$ | $\stackrel{2}{3.81}$ | ${ }^{2} .98$ | 3．23 |
|  | 1.09 | 1.72 | 1.98 | 2.27 | ${ }_{2} 46$ | 2.61 | 2．93 | ${ }_{3.13}$ | 3．03 | ${ }_{3.60}$ | ${ }^{3.48}$ |
| 1,000 | 1.19 | 1.8 | 2.16 | 2.48 | 2.69 | ${ }^{2} .85$ | 2.98 | ${ }_{3.43}$ | 3． 11 | 3.94 | 4. |
| 1，200 | 1.28 | 2.04 | 2.33 | 2.67 | 2.90 | 3．07 | 3.21 | ${ }_{3.68}$ | 4.00 | 4.23 | 4.59 |
| 1，400 | 1.36 | ${ }_{2}^{2.15}$ | 2.47 | $\stackrel{2}{2} 84$ | 3.08 | 3.26 | 3.41 | 3．93 | 4.25 | 4.50 | 4.88 |
| 1，600 | 1.50 | $\stackrel{2}{2.37}$ | ${ }_{2}^{2.61}$ | 3.00 <br> 3.14 | 3．25 | 3．44 | ${ }_{3}^{3.60}$ | 4．13 | 4.49 | 4.75 | 5.15 |
| 2，000 | 1.57 | 2.48 | 2.85 | ${ }_{3.28}$ | ${ }_{3.55}$ | 3．16 |  |  | 4． 40 | 4.98 | 5.4 |
| 3，000 | 1.84 | 2.92 | ${ }_{3.36}$ | ${ }_{3.85}$ | 4.18 | 4．43 | － 4.93 | 4.52 5.32 | ${ }_{5}^{4.90}$ | 5.19 | 5. |
| 4，000 | 2.07 | 3． 28 | 3．76 | 3．32 | 4.18 4.69 | 4.43 | 4.63 | 5.32 5.96 | 5.7 | 6.11 6.85 |  |

[^19]For other resistances and pressures above atmosphere multiply by the respective factors below ：

Water col．． 6 in． $12 \mathrm{in} .24 \mathrm{in} . \mid$ Press．ab．atm． 0 lbs． 3 lbs .30 lbs .60 lbs. Multiply by | 0.8027 | 0.6988 | 0.6084 | Multiply by | 1.023 | 1.015 | 0.973 | 0.948 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Registers and Cold－air Ducts for Indirect Steam Heating．

－－The Locomotive gives the following table of openings for registers and cold－air ducts，which has been found to give satisfactory results．The cold－ air boxes should have $11 / 2 \mathrm{sq}$ ．in．area for each square foot of radiator suface， and never less than $3 / 4$ the sectional area of the hot－air ducts．The hot－air ducts should have 2 sq．in．of sectional area to each square foot of radiator surface on the first floor，and from $11 / 2$ to 2 inches on the second floor．

| Heating Surface in Stacks． |  |  | Cold－air Supply，First Floor． |  |  |  |  |  | $\begin{gathered} \text { Size } \\ \text { Register. } \end{gathered}$ |  | Cold－air Supply Floor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{40}^{30}$ square feet |  |  | $45 \text { square inches }=\begin{aligned} & \text { inches } \\ & 5 \\ & 6 \end{aligned}$ |  |  |  |  |  | inches 9 by 12 |  | ches by 10 |
|  |  |  | 60 75 |  |  | 三 6 |  |  | 10 by 14 |  | 4 by 14 |
| 60 | ＂ | ، | 99 | ＂ | ＂ | 三 8 | $8{ }^{8}$ by |  | 10 by 14 |  | 5 by 15 |
| ${ }_{80}$ | ＂ | ＂ |  |  | ＂ | － 9 | 9 by |  | 12 by 19 |  | 6 by 18 |
|  | ＂ | ＂ |  |  |  | $=10$ $=11$ | 10 by |  | 12 by 22 |  | 8 by 15 |
| 100 | ＂ | ＂ | 150 |  |  | ＝ $=12$ |  |  | 14 16 by |  | 9by |

[^20]that they will allow an easy flow of air and a full distribution throughout the
room to be heated．

Physical Properties of Steam and condensed Water, under Conditions of Ordinary Practice in Warming by Steam. (Briggs.)


* $\mathbf{P}, \mathbf{R}, \mathbf{U}, \mathrm{V}$ are each determined from the formula $d=0.5374 \sqrt[5]{\frac{Q^{2} l}{h}}$.

Size of Steam Pipes for Steam Heating. (See also Flow of Steam in Pipes.)-Sizes of vertical main pipes. Direct radiation. (J. R. Willett, Heating and Ventilation, Feb., 1894.)
$\begin{array}{llllllllll}\text { Diameter of pipe, inches. } & 1 & 11 / 4 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 5\end{array} \quad 6$ Sq.ft. of radiator surface $\begin{array}{lllllllllll}40 & 70 & 110 & 220 & 360 & 560 & 810 & 1110 & 2000 & 3000\end{array}$ A hovizontal branch pipe for a given extent of radiator surface should be one size larger than a vertical pipe for the same surface.

The Nason Mfg. Co. gives the following:
Diameter of pipe, in ............ $11 / 4 \quad 11 / 2 \quad 2 \quad 21 / 2 \quad 3 \quad 31 / 2$
Radiator surface sq ft. (maximum).. $125 \quad 200 \quad 500 \quad 1000 \quad 1500 \quad 2500$
When mains and surfaces are very much above the boiler the pipes need no: be as large as given above: under very favorable circumstances and
conditions a $f$-inch pipe may supply from 2000 to 2500 sq . ft. of surface, a 6 . inch pipe for 5000 sq . ft., and a 10 -inch pipe for 15,000 to 20.000 sq . ft., if the distance of run from boiler is not too great. Less than $11 / 2$-inch pipe should not be used horizontally in a main unless for a single radiator connection.

Steam, by the Babcock \& Wilcox Co., says: Where the condensed water is returned to the boiler, or where low pressure of steam is used, the diameter of mains leading from the boiler to the radiating-sinface should be equal in inches to one tenth the square root of the radiating-surface, mains included, in square feet. Thus a 1 -inch pipe will supply 100 square feet of surface, itself included. Return-pipes should be at least $3 / 4$ inch in diameter, and never less than one half the diameter of the main-longer returns requiring larger pipe. A thorough drainage of steam-pipes will effectually prevent all cracking and pounding noises therein.
A. R. Wolff's Practice.-Mr. Wolff gives the following figures slowing his resent practice (189\%) in proportioning mains and returns. They are based on an estimated loss of pressure of $2 \%$ for a length of 100 ft . of pipe, not including allowance for bends and valves (see p. 6i8). For longer runs divide the thermal units given in the table by $0.1 \sqrt{\text { length in ft. Besides giving the }}$ thermal units the table also indicates the amount of direct radiating surface which the steam-pipes can supply, on the basis of an emission of 250 thermal nuits per hour for each square font of direct radiating surface.

Size of Pipes for Steam Heating.


Heating a Greenhouse by Steam.-Wm. J. Baldwin answers a question in the American Muchinist as below: With five pounds steampressure, how many square feet or inches of heating-surface is necessary to

- heat 100 square feet of glass on the roof, ends, and sides of a greenhouse in order to maintain a night heat of $55^{\circ}$ to $65^{\circ}$, while the thermometer outside ranges at from $15^{\circ}$ to $20^{\circ}$ below zero; also, what boiler-surface is necessary? Which is the best for the purpose to use-2' pipe or $114^{\prime \prime}$ pipe?

Ans.-Reliahle authorities agree that 1.25 to 1.50 cubic feet or air in an enclosed space will be cooled per minute per sq. ft . of glass as many degrees as the internal temperature of the house exceeds that of the air outside. Between $+65^{\circ}$ and $-20^{\circ}$ there will be a difference of $85^{\circ}$, or, say, one cubic foot of air cooled $127.5^{\circ} \mathrm{F}$. for each sq ft . of glass for the most extreme conditiou mentioned. Multiply this by the number of square feet of glass and by 60, and we have the number of cubic feet of air cooled $1^{\circ}$ per hour within the building or house. Divide the number thus found by 48, and it gives the units of heat required, approximately. Divide agaiu by 953 , and it will give the number of pounds of steam that inust be condensed from a pressure and temperature of five pounds above atmosphere to water at the same temperature in an hour to maintain the heat. Each square foot of surface of pipe will condense from $1 / 4$ to nearly $1 / 2 \mathrm{lb}$. of steam per honr, according as the coils are exposed or well or poorly arranged, for which an average of $1 / 3 \mathrm{lb}$. may be taken. According to this. it will require 3 sq. ft. of pipe surface per lb. of steam to be condensed. Proportion the heatingsurface of the boiler to have about one fifth the actual radiating-surface, if you wish to keep steam over night, and proportion the grate to burn not more than six pounds of coal per sq. ft. of grate per hour. With very slow combustion, sush as takes place in base-burning boilers, the grate might be proportioned for four to five pounds of coal per hour. It is cheaper to make coils of $114^{\prime \prime}$ pipe than of $2^{\prime \prime}$, and there is nothing to be gained by using, $2^{\prime \prime}$ pipe unless the coils are very' long. The pipes in a greenhouse should bo
under or in front of the benches, with every chance for a good circulation of air. "Header" coils are better than "return-bend" coils for this purpose.

Mr. Baldwin's rule may be given the following form: Let $H=$ heat-units transferred per hour, $T=$ temperature inside the greenhouse, $t=$ temperature outside, $S=\mathrm{sq}$. ft. of glass surface; then $H=1.5 S(T-t) \times 60 \div 48$ $=1.875 S\left(T^{\prime}-t\right)$. Mrl. Wolff's coefficient $K$ for single skylights would give $H=1.118 S(T-t)$.

MEating a Greenhouse by Hot Water.-W. M. Mackay, of the Richardson \& Boynton Co., in a lecture before the Master Plumbers Association, N. Y., 1889, says: I find that while greenhouses were formerly heated by 4 -inch and 3 -inch cast-iron pipe, on account of the large body of water which they contained, and the supposition that they gave better satisfaction and a more even temperature, florists of long experience who have tried 4 -inch and 3 -inch cast-iron pipe, and also 2 -inch wrought-iron pipe for a number of years in heating their greenhouses by hot water, and who have also tried steam-heat, tell me that they get better satisfaction, greater economy, and are able to maintain a more even temperature with 2inclr wrought-iron pipe and hot water than by any other system they have used. They attribute this result principally to the fact that this size pipe contains less water and on this account the heat can be raised and lowered quicker than by any other arrangement of pipes, and a more uniform temperature maintained than by steam or any other system.

## HOT-WATER HEATING.

(Nason Mfg. Co.)
There are two distinct forms or modifications of hot-water apparatus, depending upon the temperature of the water.

In the first or open-tank system the water is never above $212^{\circ}$ temperature, and rarely above $200^{\circ}$. This method always gives satisfaction where the surface is sufficiently liberal, but in making it so its cost is considerably greater than that for a stean-heating apparatus.

In the second method, sometimes called (erroneously) high-pressure hotwater heating, or the closed-system apparatus, the tank is closed. If it is provided with a safety-valve set at 10 lbs. it is practically as safe as the opentank system.

Lav of Veloeity of Flow. -The motive power of the circulation in a hot-water apparatus is the difference between the specific gravities of the water in the ascending and the descending pipes. This effective pressure is very small, and is equal to about one grain for each foot in height for each degree difference between the pipes; thus, with a height of 12 " in "up" pipe, and a difference between the temperatures of the up and down pipes of $8^{\circ}$, the difference in their specific gravities is equal to 8.16 grains on each square inch of the section of return-pipe, and the velocity of the circulation is proportioned to these differences in temperature and height.

To Caleulate Velocity of Flow. -Thus, with a height of ascending pipe equal to $10^{\prime}$ and a differeuce in temperatures of the flow and return pipes of $8^{\circ}$, the difference in their specific gravities will equal 81.6 grains, or $\div r 000=.01166 \mathrm{lbs}$, or $\times 2.31$ (feet of water in one pound) $=.0269 \mathrm{ft}$., and by the law of falling bodies the velocity will be equal to $8 \sqrt{.0: 69}=1.312 \mathrm{ft}$. per second, o1 $\times 60=78.7 \mathrm{ft}$. per minute. In this calculation the effect of friction is entirely omitted. Considerable deduction must be made on this account. Eren in apparatus where length of pipe is not great, and with pipes of larger areas and with few bends or angles, a large deduction for friction must be made from the theoretical velocity, while in large and complex apparatus with small head, the velocity is so much reduced by friction that sometimes as much as from $50 \%$ to $90 \%$ must be deducted to obtain the true rate of circulation.

Main flow-pipes from the heater, from which branches may be taken, are to be preferred to the practice ot taking off nearly as many pipes from the heater as there are radiators to supply.

It is not necessary that the main flow and return pipes should equal in capacity that of all their branches. The hottest water will seek the highest level, while gravity will cause an even distribution of the heated water if the surface is properly proportioned.
It is good practice to reduce the size of the vertical mains as they ascend, say at the rate of one size for each floor.

As with steam, so with hot water. the pipes must be uncenfined to allow
for expansion of the pipes consequent on having their temperatures ir creased.

An expansiou tank is requred to keep the apparatus filled with water, which latter expands $1 / 24$ of its bulk on being heated from $40^{\circ}$ to $212^{\circ}$, and the cistern must have capacity to hold certamly this increased bulk. It is recommended that the supply cistern be placed on level with or above the highest pipes of the apparatus, in order to receive the air which collects in the mains and radiators. and capable of holding at least $1 / 20$ of the water in the entire apparatus.

## Approximate Proportions of Radiatingmsurfaces to Cubic Capacities of Space to be reated.

| One Square Foot of Ra-diating-surface will heat with- | In Dwellings, School-rooms, Offices, etc. | In Halls, Stores, Lofts, Facto ries, etc. | In Churches, Large Auditoriums, etc. |
| :---: | :---: | :---: | :---: |
| High temperature di-) rect hot-water radiation | 50 to $70 \mathrm{cu} . \mathrm{ft}$. | 65 to $90 \mathrm{cu} . \mathrm{ft}$. | 130 to $180 \mathrm{cu} . \mathrm{ft}$. |
| Low temperature di rect hot-water radi ation | 30 to 50 " " | 35 to 65 " ${ }^{\text {a }}$ | r0 to 130 " |
| High temperature in direct hot-water ra diation. | 30 to 60 " " | 35 to \%5 " 6 | 70 to 150 " ${ }^{\prime}$ |
| $\left.\begin{array}{r}\text { Low temperature in- } \\ \text { direct hot-water ra- } \\ \text { diation .................... }\end{array}\right\}$ | 20 to 40 " " | 25 to 50 " " | 50 to 100 " |

Diameter of Main and Rranch Pipes and square feet of coil surface they will supply, in a low-pressure hot-water apparatus ( $212^{\circ}$ ) for direct or indirect radiation, when coils are at different altitudes for direct radiation or in the lower story for indirect radiation:

|  |  | Direct Radiation. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|  | sq. ${ }_{49} \mathrm{ft}$. | sq. ft | $\mathrm{sq.ft}$ |  |  | $\text { sq. } \underset{\tilde{5}-1 .}{ }$ | sq. ${ }_{59}$ |  |  |  |  |
|  | 87 | 89 | 92 | 95 | 98 | 101 | 103 | 108 | 112 | 65 | 88 |
| 11 | 136 | 140 | 144 | 149 | 153 | 158 | 161 | 169 | 115 | 182 | 89 |
| 11 | 196 | 202 | 209 | 214 | 222 | 228 | 235 | 243 | 252 | 261 | 261 |
| 2 | 349 | 359 | 370 | 380 | 393 | 405 | 413 | 433 | 449 | 465 | 483 |
| 21 | 546 | 501 | 597 | 595 | 618 | 633 | 643 | 678 | r01 | $7 \cdot 27$ | 755 |
|  | 785 | 807 | 835 | 856 | 888 | 912 | $9+1$ | 974 | 1009 | 1046 | 1086 |
| 31 | 1069 | 1039 | 1132 | 1166 | 1202 | 1241 | 1283 | 1327 | 1374 | $14: 5$ | 1490 |
|  | 1395 | 1436 | 1478 | 1520 | 1571 | 1621 | 1654 | 1733 | 1795 | 1861 | 1933 |
| 41 | 1767 | 1817 | $18 \% 1$ | $19: 7$ | 1988 | 2052 | 2120 | 2193 | 22 | 2350 | 245 |
|  | 2185 | 2244 | 2309 | 2376 | 2454 | 25.31 | $25 \% 4$ | $2 \tau 13$ | 2805 | 2907 | 3019 |
| 6 | 3140 | 3298 | 3341 | 3424 | $3: 552$ | 3618 | 3763 | 3897 | 4036 | 4184 | 4344 |
| 8 | 4276 | 4396 | 4528 | 4664 | 4808 | 4964 | 5132 | 5308 | 5496 | $5 \% 00$ | 5920 |
| 8 | 5580 | 5744 | 5912 | 6050 | 6284 | 6484 | 6616 | 6932 | 7180 | 7444 | 7735 |
| 9 | 7068 | 7268 | 7484 | \% 708 | \% 952 | 8208 | $848{ }^{2}$ | $8{ }^{6} 14$ | 9058 | 9 92t | 9:80 |
| 10 | 8740 | 8976 | 9236 | 9516 | 9816 | 10124 | 10:96 | 1085: | 112:0 | 11628 | $120 \% 6$ |
| 11 | 10559 | 10860 | 11180 | 11519 | 1189 | 1226: | 12666 | 13108 | $135 \% 6$ | $140 \% 8$ | 146:0 |
| 12 | 12560 | 12912 | 13:364 | 13696 | 14208 | 14592 | 15052 | 15388 | 16144 | 16736 | 17376 |
| 13 | 14748 | 15169 | 15615 | 16090 | 16591 | 17126 | 17697 | 18307 | 18961 | 19633 | 20420 |
| 14 | 17104 | 17584 | 18109 | 18656 | 1923: | 19856 | 20528 | 21232 | $\because 1984$ | 22800 | 23680 |
| 15 | 19634 | $\because 0195$ | 20789 | 21419 | 22089 | 22801 | 23561 | 24373 | $\because 5244$ | 26179 | 27168 |
| 16 | 22320 | 229\%8 | 23643 | 24320 | 25136 | 25936 | 26464 | $2{ }^{\text {r20 }}$ | 28720 | 29776 | 309:8 |

The best forms of hot-water-heating boilers are proportioned about as follows:

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

Rules for Hot-water Heating.-J. L. Saunders (Heating and Ventilation, Dec. 15, 1894) gives the following: Allow 1 sq . ft. of radiating surface for every 3 ft . of glass surface, and 1 sq . ft . for every $30 \mathrm{sq} . \mathrm{ft}$. of wall surface, also 1 sq . ft. for the following numbers of cubic feet of space in the several cases mentioned.


To find the necessary amount of indirect radiation required to heai a room: Find the required amount of direct radiation according to the foregoing method and add $50 \%$. This if wrought-iron pipe coil surface is used; if castiron pin indirect-stack surface is used it is advisable to add from $70 \%$ to $80 \%$.

Sizes of hot-air flues, colil-air ducts, and registers for indirect work.-Hot-air flues, first floor: Make the net internal area of the flue equal to $3 / 4 \mathrm{sq}$. in. to every square foot of radiating surface in the indirect stack. Hotair fues, second floor: Make the net internal area of the flue equal to $5 / 8 \mathrm{sq}$. in. to every square foot of radiating surface in the indirect stack.

Cold-air ducts, first floor: Make the net internal area of the duct equal to $5 / 8 \mathrm{sq}$. in. to every square foot of radiating surface in the indirect stack. Cold air ducts, second floor: Make the net internal area of the duct equal to $1 / 2$ sq. in. to every square foot of radiating surface in the indirect stack.

Hot-air registers should have their net area equal in full to the area of the hot-air flues. Multiply the length by the width of the register in inches ; $2 / 8$ of the product is the net area of register.

Arrangement of Maing for Hot-water Heating. (W. M. Mackay, Lecture before Master Plumbers' Assoc., N. Y., 1889)-There are two different systems of mains in general use, either of which, if properly placed, will give good satisfaction. One is the taking of a single large-flow main from the heater to supply all the radiators on the several floors, with a corresponding return main of the same size. The other is the taking of a number of 2 -inch wrought-iron mains from the heater, with the same number of return mains of the same size, branching off to the severai radiators or coils with $11 / 4$-inch or 1 -inch pipe, according to the size of the radiator or coil. A 2 -inch main will supply three $11 / 4$ inch or four 1 -inch branches. and these branches should be taken from the top of the horizontal main with a nipple and elbow, except in special cases where it is found necessary to retard the flow of water to the near radiator, for the purpose of assisting the circuJation in the far radiator ; in this case the branch is taken from the side of the horizontal main. The flow and return mains are usually run side by side, suspended from the basement ceiling, and should have a gradual ascent from the heater to the radiators of at least 1 inch in 10 feet. It is customary, and an advantage where 2 -inch mains are used, to reduce the size of the main at every point where a branch is taken off.

The single or large main system is best adapted for large buildings; but there is a limit as to size of main which it is not wise to go beyond-generally 6 -inch, except in special cases.

The proper area of cold-air pipe necessary for 100 square feet of indirect radiation in hot-water heating is 75 square inches, while the hot-air pipe should bave at least 100 square inches of area. There should be a damper in the cold-air pipe for the purpose of controlling the amount of air admitted to the radiator, depending on the severity of the weather.

# BLOWER SISTEM OF HEATING AND VENTILATING. 54 <br> <br> THE BLOWER SYSTENI OE HEATING ANP <br> <br> THE BLOWER SYSTENI OE HEATING ANP VENTILATING. 

The system provides for the use of a fan or blower which takes its supply of fresh air from the outside of the buitling to be heated, forces it over steam coils, located either centrally or divided up into a number of independent groups, and then into the several ducts or flues leading to the various rooms. The movement of the warmed air is positive, and the delivery of the air to the various points of supply is certain and entirely independent of atmospheric conditions. For engines, fans, and steam-coils used with the blower system, see page 519 .
Experiments with Radiators of 60 sq. T. of Surface. (Mech. News, Dec., 1893.)-After having determined the volume and temperature of the warm air passing through the flues and radiators from natural causes, a fan was applied to each flue, forcing in air, and new sets of measurements were made. The results showed that inore than two and onethird times as much air was warmed with the fans in nse, and the falling off in the temperature of this greatly increased air-volume was only about $12.6 \%$. The condensation of stean in the radiators with the forced-air circulation also was only $66 \% / 3 \%$ greater than with natural-air draught. One of the several sets of test figures obtained is as follows:

|  | in Flu | irculati |
| :---: | :---: | :---: |
| Cubic feet of air per minute | $45 \% .5$ | 1:227 |
| Condensation of steam per minute in ounces | 11.7 | 19.6 |
| Steam pressure in radiator, pounds |  | 9 |
| Temperature of air after leaving radiat | $14{ }^{\circ}$ | $124^{\circ}$ |
| " " before passing through | $61^{\circ}$ | $61^{\circ}$ |
| Amount of radiating surface in square feet | 60 | 60 |
| Size of flue in both cases |  | 18 inches. |

There was probably an error in the determination of the volume of air in these tests, as appears from the following calculation. (W. K.) Assmme that 1 lb . of steam in condensing from 9 lbs . pressure and cooling to the temperature at which the water may have been discharged from the radiator gave up 1000 heat-units, or 62.5 h. u. per ounce; that the air weighed .066 lb . per cubic foot, and that its specific heat is .238. We have

Natural Forced
Iraught. Draught.

Or, in the case of forced draught the air received $14 \%$ more heat than the stearm gave out, which is impossible. Taking the heat given up by the steam as the correct measure of the work done by the radiator, the temperature of the steam at $237^{\circ}$, and the averago temperature of the air in the case of natural draught at $109^{\circ}$ and in the other case at $93^{\circ}$, we have for the temperature difference in the two cases $135^{\circ}$ and $144^{\circ}$ respectively; dividing these into the heat-units we find that each square foot of radiating surface transmitted 5.4 heat-units per hour per degree of difference of temperature, in the case of natural draught, and 8.5 heat-units in the case of forced draught ( $=8.5 \times 144^{\circ}=12: 24$ heat-units per square foot of surface).
In the Women's Homœopathic Hospital in Philadelphia, 2000 feet of one-inch pipe heats 250,000 cubic feet of space, ventilating as well; this equals one square foot of pipe surface for about 350 cubic feet of space, or lfiss than 3 square feet for 1000 cubic feet. The fan is located in a separate building about 100 feet from the hospital, and the air, after being heated to about $135^{\circ}$, is conveyed through an underground brick duct with a loss of only five or six degrees in cold weather. (H. I. Snell, Trans. A. S. M. E.ix. 106.
Meating a Fuilding to $\boldsymbol{\gamma}^{\circ}$. Enside when the Outside Eemperature is Zero.-It is customary in some contracts for heating to guarantee that the apparatus will heat the interior of the building to $\% 0^{\circ}$ in zero weather. As it may not be practivable to obtain zero weather for the purpose of a test, it may be difficult to prove the performance of the guarantee. E. E. Macgovern, in Engineering Record, Feb. 3. 1894, gives a calculation tending to slow that a test may be made in weather of a higher temperature than zero, if the heat of the interior is raised above $\% 0^{\circ}$. The higher the temperature of the rooms the lower is the efficiency of the radi$p+i n g$-surface, since the efficiency depends upon the difference between the
temperature inside of the radiator and the temperature of the room. He concludes that a heating apparatus sufficient to heat a given building to $70^{\circ}$ in zero weather with a given pressure of steam will be found to heat the same building, steam-pressure constant, to $110^{\circ}$ at $60^{\circ}, 95^{\circ}$ at $50^{\circ}, 82^{\circ}$ at $40^{\circ}$, and $\gamma^{\circ}$ at $32^{\circ}$, ontside temperature. The accuracy of these figures, however has not been tested by experiment.

The following solution of the question is proposed by the author. It gives results quite different from those of Mr. Macgovern, but, like them, lacks experimental confirmation.

Let $S=\mathrm{sq} . \mathrm{ft}$. of surface of the steam or hot-water radiator;
$W \doteq \mathrm{sq} . \mathrm{ft}$. of surface of exposed walls, windows, etc.;
$T s=$ temp. of the steam or hot water, $T_{1}=$ temp. of inside of building or room, $T_{0}=$ temp. of outside of building, or room;
$a=$ heat-unitstransmitted per sq. ft . of surface of radiator per hour per degree of difference of temperature;
$b=$ average heat-units transmitted per sq. ft. of walls per hour, per degree of difference of temperature, including allowance for ventilation.
It is assumed that within the range of temperatures considered Newton's law of cooling holds good, viz., that it is proportional to the difference of temperature between the two sides of the radiating-surface.

$$
\begin{aligned}
& \text { Then } a S\left(T_{s}-T_{1}\right)=b W\left(T_{1}-T_{0}\right) . \quad \text { Let } \frac{b W}{a S}=C \text {; then } \\
& \qquad T_{s}-T_{1}=C\left(T_{1}-T_{0}\right) ; \quad T_{1}=\frac{T s+C T_{0}}{1+C} ; \quad C=\frac{T_{s}-T_{1}}{T_{1}-T_{0}}
\end{aligned}
$$

$$
\text { If } T_{1}=\gamma 0, \text { and } T_{0}=0, C=\frac{T_{s}-\gamma 0}{70}
$$

$$
\begin{array}{rlrl}
\text { Let } T_{S} & =140^{\circ}, & 213.5^{\circ}, & 308^{\circ} ; \\
\text { Then } C & =1 . & 2.05,
\end{array}
$$

$$
\text { Then } C=1, \quad 2.05, \quad 3.4
$$

From these we derive the following:

| Temperature of | Outside Temperatures, $T_{0}$. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Steam or Aot | - $20^{\circ}$ | $-10^{\circ}$ | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ |
| Water, $T_{s}$. |  | Insid | Tem | ratur |  |  |  |
| $140^{\circ}$ | 60 | 65 | $\%$ | 75 | 80 | 85 | 90 |
| 213.5 | 56.6 | 63.3 | $\%$ | r6.7 | 83.4 | 90.2 | 96.9 |
| 308 | 54.5 | 62.3 | 70 | 76.7 | 85.5 | 93.2 | 100.9 |

Heating by Electricity.-If the electric currents are generated by a dynamo driven by a stean-engine, electric heating will prove very expensive, since the steam-engine wastes in the exhaust-steam and by radiation about $90 \%$ of the heat-units supplied to it. In direct steam-heating, with a good boiler and properly covered supply-pipes, we can utilize about $60 \%$ of the total heat value of the fuel. One pound of coal, with a heating value of 13,000 heat-units, would supply to the radiators about $13,000 \times .60=7800$ heat-units. In electric heating, suppose we have a first-class condensingengine developing 1 H.P. for every 2 lbs . of coal burned per hour. This would be equivalent to $1,980,000 \mathrm{ft}$ - $-\mathrm{lbs}-7 \% 8=2545$ heat-units, or $12 \tau^{2}$ heat-units for 1 lb . of coal. The friction of the engine and of the dynamo and the loss by electric leakage, and by heat radiation from the conducting wires, might reduce the heat-units delivered as electric current to the electric radiator, and these converted into heat to $50 \%$ of this, or only 636 heatunits, or less than one twelfth of that delivered to the steam-radiators in direct steam-heating. Electric heating, therefore, will prove uneconomical unless the electric current is derived from water or wind power, which would otherwise be wasted. (See Electrical Engineering.)

## WATER.

Expansion of Water.-The following table gives the relative volumes of water at differeut temperatures, compared with its volume at $4^{\circ} \mathrm{C}$. according to Kopp, as corrected by Porter.

| Cent. | Fahr. | Volume. | Cent. | Fahr. | Volume. | Cent. | Falır. | Volume. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4^{\circ}$ | $39.1^{\circ}$ | 1.00000 | $35^{\circ}$ | $95^{\circ}$ | 1.00586 | $70^{\circ}$ | $158^{\circ}$ | 1.02241 |
| 5 | 41 | 1.00001 | 40 | 104 | $1.00{ }^{\text {a }} 6 \mathrm{i}$ | 75 | $16{ }^{1}$ | 1.01558 |
| 10 | 50 | 1.00025 | 45 | 113 | 1.00967 | 80 | 176 | $1.0287^{3}$ |
| 15 | 59 | 1.00083 | 50 | 122 | 1.01186 | 85 | 185 | 1.03213 |
| 20 | 68 | 1.00171 | 55 | 131 | 1.01423 | 90 | 194 | 1.035 ¢ 0 |
| 25 | 77 | 1.00286 | 60 | 140 | 1.01678 | 95 | $\stackrel{1}{203}$ | 1.03943 |
| 30 | 86 | 1.00425 | 65 | 149 | 1.01951 | 100 | 212 | 1.04332 |

Weight of $1 \mathrm{cu} . \mathrm{ft}$. at $39.1^{\circ} \mathrm{F} .=62.4245 \mathrm{lb} . \div 1.04332=59.833$, weight of 1 cu . fi. at $212^{\circ} \mathrm{F}$.

Weight of Water at Different Temperatures.-The weight of water at maximum density, $39.1^{\circ}$, is generally taken at the figure given by Rankine, 62.425 lbs . per cubic foot. Some authorities give as low as 6:379. The figure 62.5 commonly given is approximate. The highest authoritative figure is 62.425 . At $63^{\circ} \mathrm{F}$. the figures range from 62.291 to 63.360 . The figure 62.355 is generally accepted as the most accurate.

At $3 \geqslant 0 \mathrm{~F}$. figures given by different writers range from 62.379 to 62.418. Clark gives the latter figure, and Hamilton Smith, Jr., (from Rosetti,) gives 62.416

Wenght of Water at Temperatures above $212^{\circ}$ F.-Porter (Richards" "Steam-engine Indicator," p. 5\%) says that nothing is known about the expansion of water above $212^{\circ}$. Applying formulæ derived from experiments made at temperatures below $212^{\circ}$, however, the weight and volume above $212^{\circ}$ may be calculated, but in the absence of experimental data we are not certnin that the formule hold good at higher temperatures.

Thurston. in his "Engine and Boiler Trials," gives a table from which we take the following (neglecting the third decimal place given by him):

|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { co } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 212 | 59.71 | 280 | 57.90 | 350 | 55.52 | 420 |  | 490 | 0.03 |
| $2: 0$ | 59.64 | 290 | 7.59 | 360 | 55.16 | 430 | 52.47 | 500 | 9.61 |
| 230 | 59.37 | 300 | 5\%.26 | 370 | 54.79 | 440 | 52.07 | 510 | 9.20 |
| 240 | 59.10 | 310 | 56.93 | 380 | 54.41 | 450 | 51.66 | 590 | 48.78 |
| 250 | 58.81 | 3:0 | 56.58 | 390 | 54.03 | 460 | 51.26 | 530 | 48.36 |
| 260 | 58.52 | 330 | 56.24 | 400 | 53.64 | 470 | 50.85 | 540 | 47.94 |
| $2 \% 0$ | 58.21 | 340 | 55.88 | 410 | 53.26 | \% | 50.85 | 5 | \%. 5 |

Box on Heat gives the following :
Temperature F........ $211^{\circ} \quad 250^{\circ} \quad 300^{\circ} \quad 350^{\circ} \quad 400^{\circ} \quad 450^{\circ} \quad 500^{\circ} \quad 600^{\circ}$
$\begin{array}{lllllllll}\text { Lbs. per cubic foot.... } & 59.82 & 58.85 & 57.42 & 55.94 & 54.34 & 52.70 & 51.02 & 47.64\end{array}$
At $212^{\circ}$ figures given by different writers (see Trans. A. S. M. E., xiii. 409) range from 59.56 to 59.845 , averaging about 59.7 \%.

Weight of Water per Cubic Foot, from $32^{\circ}$ to $212^{\circ} \mathrm{F}$., and heatunits per pound, reckoned above $32^{\circ} \mathrm{F}$.: The following table, nade by interpolating the table given by Clark as calculated from Rankine's formula, with corrections for apparent errors, was published by the author in 1881, Trans. A. S. M. E., vi. 90. (For heat units above $212^{\circ}$ see Steam Tables.)

|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 62 | 0. | 78 | 62.25 | 46.0 | 123 | 61.68 | 91.16 | 168 |  |  |
| 33 | 62.4 | 1. | \%9 | 62.24 | 47.03 | 124 | $61.6{ }^{\text {c }}$ | 92.17 | 169 | 60.79 | 137 |
| $3 \pm$ | 62. | 2. | 80 | 62.2 | 48.0 | 125 | 61. | 93.17 | $1 \% 0$ | 60 |  |
| 35 | 62 | 3. | 81 | 62.22 | 49.04 | 126 | 61.63 | 94.1 ? | 171 |  |  |
| 36 | 62.4 | 4. | 82 | 62.21 | 50.04 | 127 | 61.61 | 95.18 | $1 \% 2$ | 60 |  |
| 37 | 62.4 | 5. | 83 | 62.20 | 51.04 | 128 | 61.60 | 96.18 | $1 \% 3$ | 60. | 141 |
| 38 | 62.4 | $\stackrel{6}{6}$ | 84 | 62.19 | 52. 04 | 129 | 61. | 9 9 .19 | 174 |  | 14: |
| 39 | 62.4 | 7. | 85 | 62.18 | 53.05 | 130 | 61.56 | 98.19 | 175 |  |  |
| 40 | 62.42 | 8. | 86 | 62.17 | 54.05 | 131 | 61.54 | 99.20 | 176 | 60. | 14 |
| 41 | 62.42 | 9. | 87 | 62.16 | 55.05 | 132 | 61.53 | 100.20 | $17 \%$ | 60. | 145 |
| 42 | 62.42 | 10. | 88 | 62.15 | 56.05 | 133 | 61.51 | 101.21 | 178 | 60.59 | 146 |
| 43 | 63.4 | 11. | 89 | 62.14 | 5\%.05 | 134 | 61.49 | 102.21 | 179 | 60 |  |
| 44 | 62. | 12. | 90 | 62.13 | 58.06 | 135 | 61.47 | 103.2 | 180 | 60.55 | 148 |
| 45 | 62.42 | 13. | 91 | 62.18 | 59.06 | 136 | 61.45 | 104. | 181 | 60.53 | 149 |
| 46 | 62.42 | 14. | 92 | 62.11 | 60.06 | 137 | 61. | 105. | 18: | 60.50 | 150 |
| 47 | 62.42 | 15. | 93 | 62.10 | 61.06 | 138 | 61.41 | 106.23 | 183 | 60 | 151.5 |
| 48 | 62.41 | 16. | 94 | 62.09 | 62.06 | 139 | 61.39 | 107.24 | 184 | 60.46 | 152.58 |
| 49 | 62.41 | 17. | 95 | 62.08 | 63.02 | 140 | 61.37 | 108.2 | 185 | 60.44 | 153.59 |
| 50 | 62.41 | 18. | 96 | 63.07 | 64.07 | 141 | 61. | 109 | 186 | 60.41 | 154.60 |
| 51 | 62.41 | 19. | 97 | 63.06 | 65.07 | 142 | 61.34 | 110.20 | 187 | 60.39 |  |
| 52 | 69.40 | 20. | 98 | 62.05 | 66.07 | 143 | 6132 | 111.26 | 188 | 60.3 r | 156.62 |
| 53 | 62.40 | 21.01 | 99 | 63.03 | 67.08 | 144 | 61.30 | 112.27 | 189 | 60.34 | $15 \% .63$ |
| 54 | 62.40 | $2 ? .01$ | 100 | 63.02 | 68.08 | 145 | 61.28 | 113. | 190 | 60.32 |  |
| 55 | 62.39 | 23.01 | 101 | 62.01 | 69.08 | 146 | 61.26 | 114. | 191 | 60.23 | 15 |
| 56 | 62.39 | 24.01 | 102 | 62.00 | 70.09 | 147 | 61.24 | 115. | 19: | 60.27 | 160.68 |
| 57 | 62.39 | 25.01 | 103 | 61.99 | 71.09 | 148 | 61.22 | 116. | 193 | 60. | 161.68 |
| 58 | 62.38 | 26.01 | 104 | 61.97 | 72. 09 | 149 | 61.20 | 117. | 194 | 60. | 10. |
| 60 | 62.38 | 27.01 | 105 | 61.96 | ${ }_{\sim}^{73} 10$ | 150 | 61.18 | 118.31 | 195 | 60. |  |
| 60 | 62.37 | 28.01 | 106 | 61.95 | \%4.10 | 151 | 61.16 | 119.31 | 196 | 60.15 | 164.71 |
| 61 | 62.37 | 29.01 | 107 | 61.93 | \% | $15:$ | 61. | 120.3 | 197 | 60. | 165.72 |
| 62 | 62.36 | 30.01 | 108 | 61.92 | ${ }^{76} 6.10$ | 153 | 61.12 | 121. | 198 | 60. |  |
| 63 | 62.36 | 31.01 | 109 | 61.91 | 77. 11 | 154 | 61.10 | 122.33 | 199 | 60. |  |
| 6 | 62.45 | 32.01 | 110 | 61.89 | ${ }^{78} .11$ | 155 | 61.08 | 123.34 | 200 | 60.0 r | 168.75 |
| 65 66 | 62.34 | 33.01 | 111 | 61.83 | ヶ9.11 | 156 | 61.06 | 124.35 | 201 | 60.05 | 169.77 |
| 66 68 | $6 \cdot 2.34$ | 34.02 | 112 | 61.86 | 80.12 | $15 \%$ | 61.04 | 125. | 202 | 6002 |  |
| 68 | 6.3 .33 | 35.02 | 113 | 61.85 | 81.12 | 158 | 61.02 | 126.36 | 203 | 60.00 | 111.59 |
| 69 | 62.33 | 36.02 | 114 | 61.83 | 83.13 | 159 | 61.00 | 127.37 | 204 | 59.97 | $1 \%$ 120 |
| 69 70 | 6.2.32 | 37.02 | 115 | 61.8 \% | 83.13 | 160 | 60.98 | 128.3 | 205 | 59 | 113.81 |
|  | 62.31 | 39.02 | 117 | 61.80 61.78 | 84.13 85.14 | 161 | 60.96 | 129.38 130.39 | ${ }_{20}^{206}$ |  |  |
| 1 | 62.30 | $40.0 \%$ | 118 | 61.72 | 86.14 | 163 | 60. | 131.40 | 208 | 59.8 | 176.85 |
| 13 | 62.29 | 41.02 | 119 | 61.75 | 87.15 | 164 | 60.90 | 132.41 | 209 | 59.84 |  |
| 74 | 62.28 | 43.03 | 1120 | 61.74 | 88.15 | 165 | $60.8 \hat{7}$ | 133.41 | 210 | 59.8 | 8. |
| \% | 62.28 | 43.03 | 121 | 61. 72 | 89.15 | 166 | 60.85 | 134.4\% | 211 | 59.79 | 179.89 |
| 76 | 62.27 69.26 | 44.03 45.03 | 122 | 61.70 | 90.16 | $16 \%$ | 60.83 | 135.43 | 212 | 59.76 | 180.90 |

Comparison of Heads of Water in Fect with Pressures in Various Units.
One foot of water at $39^{\circ} .1$ Fahr. $=62.425 \mathrm{lbs}$. on the square foot;


|  | 0.01602 foot of water; |
| :---: | :---: |
| One lb. on the squa | 2.307 feet of water; |
| One atmosphere of 29.922 inches of mercur | 33.9 " 6 |
| One inch of mercury at | 1.133 " " |
| One foot of air at 3i\% deg., and one atmo | 0.001293 " " |
| One foot of average sea- | 1.026 foot of pure water; |
| One foot of water at $6 \ddot{3}_{6}^{\circ} \mathrm{F}$ | 62.355 lbs. per sq. footi 0.43302 lb . per sq. inch |
| One inch of water at $62^{\circ} \mathrm{F} \ldots . . .0=0.5774$ ounce | 0.036085 lb . per sq. inch; |
| One pound of water on the square inch at $62^{\circ} \mathrm{F} .=$ | 2.3094 feet of water. |
| One ounce of water on the square inch at $62^{\circ} \mathrm{F}$. | 1.7ise inches of wate |

## Prossure in Pounds per Square Hnch for Diferent Heads of Witer.

At $62^{\circ}$ F. 1 foot head $=0.433 \mathrm{lb}$. per square inch, $.433 \times 144=62.352 \mathrm{lbs}$. per cubic foot.

| Head, feet. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 0.433 | 0.866 | 1.299 | 1.732 | 2.165 | 2.598 | 3.031 | 3.464 | $3.88 \%$ |
| 10 | 4.330 | 4.763 | 5.196 | 5.629 | 6.062 | 6.495 | 6.928 | 7.361 | 7.794 | 8.2 .27 |
| 20 | 8.660 | 9.093 | 9.506 | 9.959 | $1039 \cdot 2$ | 10.825 | 11.258 | 11.691 | 12.124 | 12.55 \% |
| 30 | 12.990 | 13.423 | 13.856 | 14.259 | 14.722 | 15.155 | 15.588 | 16.021 | 16.454 | 16.88 \% |
| 40 | 17.320 | 17.75:3 | 18.186 | 18.619 | 19.05: | 19.485 | 19.918 | 20.351 | 20.784 | 21.217 |
| 50 | 21.650 | 22.083 | $2{ }^{2} .516$ | 22.949 | 23.38: | 23.815 | 24.248 | 24.681 | 25.114 | 25.547 |
| 60 | 25.980 | 26.413 | 26.846 | 27.2\%9 | 27.112 | :8.145 | 28.5\%8 | 29.011 | 29.444 | 29.877 |
| 70 | 30.310 | 30.743 | 31.176 | 31.609 | 32.042 | $32.4 \div 5$ | 32.908 | :33.341 | 33.754 | 34.207 |
| 80 | 34.640 | 35.073 | 35.506 | 35.939 | 36.37\% ${ }^{\text {a }}$ | 36.805 | 37. 238 | 37.671 | 38.104 | 38.537 |
| 90 | 38.970 | 39.403 | 39.836 | 40.269 | 40.702 | 41.135 | 41.568 | 42.001 | 42.436 | 42.867 |

## Head in Fect of Water, Corresponding to Pressures in Pounds per Square Inch.

1 lb . per square inch $=2.3094 \%$ feet head, 1 atmosphere $=14.7 \mathrm{lbs}$. per sq. fuch $=33.94 \mathrm{ft}$. head.

| Pressure. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 2.309 | 4.619 | 6.938 | 9.238 | 11.54 | 13.857 | 16.166 | 18.476 | 20.785 |
| 10 | 23.0947 | 25.404 | 27.714 | 30.023 | 32.33313 | 34.642 | 36.95: | 39.261 | 41.570 | 43.880 |
| 20 | 46.1894 | 48.499 | 50.808 | 53.118 | 55.42\% 5 | 57.737 | 60.046 | 62.356 | 64.665 | 66.975 |
| 30 | 69.2841 | 71.594 | 73.903 | T6.213 | 78.5238 | 80.831 | 83.141 | 85.450 | 87.760 | 90.069 |
| 40 | 92.3788 | 91.688 | 96.998 | 99.307 | 101.6: 1 | 103.93 | 106.24 | 108.55 | 110.85 | 113.16 |
| 50 | 115.4735 | 11\%.78 | 120.09 | 12:. 40 | 124.71 | 127.02 | 129.33 | 131.64 | 133.95 | 136.26 |
| 60 | 138.568: | 140.88 | 143.19 | 145.50 | 147.81 | 150.12 | 152.42 | 154.73 | 157.04 | 159.35 |
| 70 | $161.66 \cdot 9{ }^{\prime}$ | '163.97 | 166.28 | 168.59 | 170.90 | 17321 | 175.52 | 177.8:3 | 180.14 | 182.45 |
| 80 | 184.7576 | 187.07 | 189.38 | 191.69 | 194001 | 196.31 | 198.61 | 200.92 | 203.23 | 205.54 |
| 90 | 207.8529 | 210.16 | 212.47 | 214.78 | $\left.\right\|^{217.09}$ \| | 219.40 | 221.71 | 224.02 | 226.33 | 228.64 |

Pressure of Water due to its Weight.-The pressure of still water in pounds per square inch against the sides of any pipe, channel, or vessel of any shape whatever is due solely to the "head," or height of the level surface of the water above the point at which the pressure is considered, and is equal to $4330: \mathrm{lb}$. per square inch for every foot of head, or 62.355 lbs . per square foot for every font of head (at $62^{\circ} \mathrm{F}$. ).

The pressure per square inch is equal in all directions, downwards, upwards, or sideways, and is independent of the shape or size of the containing vessel.

The pressure against a vertical surface, as a retaining-wall, at any point is in clirect ratio to the head above that point, increasing from 0 at the level surface to a maximum at the bottom. The total pressure against a vertical strip of a unit's breadth increases as the area of a right-angled triangle
whose perpendicular represents the height of the strip and whose base represents the pressure on a mit of surface at the bottom; that is, it increases as the square of the depth. The sum of all the horizontal pressures is represented by the area of the triangle, and the resnltant of this sum is equal to this sum exerted at a point one third of the height from the bottom. ('Ihe centre of gravity of the area of a triangle is one third of its height.)
The horizontal pressure is the same if the surface is inclined instead of vertical.
(For an elaboration of these principles see Trautwine's Pocket-Book, or the chapter on Hydrostatics in any work on Physics. For dams, retainingwalls, etc., see Trautwine.)
The amount of pressure on the interior walls of a pipe has no appreciable effect upon the amount of tlow.

1Suoyancy. - When a body is immersed in a liquid, whether it float or sink, it is buoyed up by a force equal to the weight of the bulk of the liquid displaced by the body. The weight of a floating body is equal to the weight of the bulk of the liquid that it displaces. The upward pressure or buoyancy of the liquid may be regarded as exerted at the centre of gravity of the displaced water, which is called the centre of pressure or of buoyancy. A vertical line drawn through it is called the axis of buoyancy or of flota. lion. In a floating lody at rest a line joining the centre of gravity and the centre of buoyancy is vertical, and is called the axis of equilibrium. When an external force causes the axis of equilibrium to lean, if a vertical line be drawn upward from the centre of buoyancy to this axis, the point where it cuts the axis is called the metacentre. If the metacentre is above the centre of gravity the distance between them is called the metacentric height, and the body is then said to be in stable equilibrium, tending to return to its original position when the external force is removed.

Boiling-point.-Water boils at $212^{\circ} \mathrm{F}$. $\left(100^{\circ} \mathrm{C}\right.$.) at mean atmospheric pressure at the sea-level, 14696 lbs . per square inch. The temperature at which water boils at any given pressure is the same as the temperature of saturated steam at the same pressure. For boiling-point of water at other pressure than 14.696 lbs . per square inch, see table of the Properties ot Saturated Steanı.

The Boilingmpoint of Water may be Raised.- When water is entirely freed of air, which may be accomplished by freezing or boiling, the cohesion of its alons is greatly increased, so that its temperature may be raised over $50^{\circ}$ above the ordinary boiling-point before ebullition taker place. It was found by Faraday that when such air-freed water did boil. the rmpture of the liquid was like an explosion. When water is surrounded by a film of oil, its boiling temperatmre may be raised considerably above its normal standard. This has been applied as a theoretical explanation in the instance of boiler-explosions.

The freezing-point also may be lowered, if the water is perfectly quiet, to $-10^{\circ} \mathrm{C}$, or $18^{\circ}$ Falırenheit betow the normal freezing-point. (Hamilton Shith, Jr., on Hydraulics, p. 13.) The density of water at $14^{\circ} \mathrm{F}$. is .99814, its density at $39^{\circ} .1$ being 1 , and at $32^{\circ}, .9998 \%^{\circ}$.

Freezingopoint.- Water freezes at $32^{\circ} \mathrm{F}$. at the ordinary atmospheric pressure, and ice melts at the same temperatu:e. In the melting of 1 pound of ice into water at $33^{\circ} \mathrm{F}$. aboutt 142 heat-unils are absorbed, or become latent: and in freezing 1 lb . of water into ice a like quantity of heat is given ont to the surrounding medium.

Sea-water freezes at $27^{\circ} \mathrm{F}$. The ice is fresh. (Trautwine.)
Cee and Snow. (From Clark.) -1 cubic foot of ice at $3 \geqslant 0 \mathrm{~F}$. weighs $5 \% .50 \mathrm{lbs}$; 1 pound of ice at 320 F . has a volunie of $01 \% 4 \mathrm{cu} . \mathrm{ft} .=30.06 \mathrm{c}$ cu. in. Relative volnme of ice to water at $32^{\circ} \mathrm{F}$., 1.0855 , the expansion in passing into the solid state being $8.55 \%$. Specific gravity of ice $=0.922$, water at

At high pressures the melting.point of ice is lower than $32^{\circ} \mathrm{F}$., being at the rate of $.0133^{\circ} \mathrm{F}$. for each additional atmosphere of pressure
The specific lieat of ice is .504 , that of water being 1 .
1 cubic foot of fresh snow, acco: ding to humidity of atmosphere: 5 lbs . to 12 lbs . I cubic foot of snow moistened aud compacted by rain: 15 lbs . to 50 lbs. ('Trautwine).
Specific Meat of Water. (From Clark's Steam-engine.)-Calculated by means of Regnault's formula, $c=1+0.00004 t+0.0000009 t^{2}$, in which $c$ is the specific heat of water at any temperature $t$ in centigsade dogrees, the specific heat at the freezing-point being 1.

| Temperatures. |  |  |  |  | Temperatures. |  |  |  | $\begin{aligned} & 0.0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cent. | Fanr. |  |  |  | Cent. | Fahr. |  |  |  |
| $0^{\circ}$ | $32^{\bullet}$ | 0.000 | 1.0000 |  | $120^{\circ}$ | $248^{\circ}$ | 217.449 | 1.0177 | 1.0067 |
| 10 | 50 | 18.004 | 1.0005 | 1.0002 | 130 | 266 | 235.791 | 1.0204 | $1.00 \sim 6$ |
| 20 | 68 | 30.018 | 1.0012 | 1.0005 | 140 | 284 | 254.187 | 1.0233 | 1.0087 |
| 30 | 86 | 54.04 \% | 1.0020 | 1.0009 | 150 | $30 \cdot$ | 27.628 | 1.0262 | 1.0097 |
| 40 | 104 | 72.090 | 1.0030 | 1.0013 | 160 | 320 | 291.132 | 1.0294 | 1.0109 |
| 50 | 122 | $90.15 \hat{1}$ | 1.0042 | 1.0017 | 170 | 338 | 309.690 | 1.0338 | 1.0121 |
| ${ }^{6}$ | 140 | 105.24 | 1.0056 | 1.0023 | 180 | 356 | 328.320 | 1.0364 | 1.0133 |
| 70 | 158 | 126.378 | $1.000^{3}$ | 1.0030 | 190 | 374 | 347.004 | 1.0401 | 1.0146 |
| 80 | 176 | 144.508 | 1.0089 | 1.0035 | 200 | 392 | 365.760 | 1.0440 | 1.0160 |
| 90 | 194 | 168.686 | 1.0109 | 1.0042 | 210 | 410 | 384.588 | 1.0481 | 1.0174 |
| 100 | 212 | 180.900 | 1.0130 | 1.0050 | 230 | 428 | 403.48 | 1.0524 | 1.0189 |
| 110 | 23 | 199.152 | 1.0153 | 1.005 | 230 | 446 | 422.4\% | 1.0568 | 1.0:04 |

Compressibility of Water. - Water is very slightly compressible. Its compressibility is from .000010 to .000051 for one atmospliere, decreasing with increase of temperature. For each foot of pressure distilled water will be diminished in volume .0000015 to .0000013 . Water is so incompressible that even at a depth of a mile a cubic foot of water will weigh only about half a pound more than at the surface.

## THE IMPURITIES OF WATER.

## (A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. xvii. 338.)

Commercial analyses are made to determine concerning a given water: (1) its applicability for making steam; (2) its hardness, or the facility with which it will "form a lather" uecessary for washing; or (3) its adaptation to other manufacturing purposes.

At the Buffalo meeting of the Chemical Section of the A. A. A. S. it was decided to report all water analyses in parts per thousand, hundred-thousand, and million.
To convert grains per imperial (British) gallons into parts per 100,000, diride by 0. $\boldsymbol{\sim}$. To convert parts per 100,000 into grains per U. S. gallon, multiply by $7 / 12$ or .583 .
The most common commercial analysis of water is made to determine its fitness for making steam. Water containing more than 5 parts per 100,000 of free sulphuric or nitric acid is liable to cause serious corrosion, not only of the metal of the boiler itself, but of the pipcs, cylinders, pistons, and valves with which the stean comes in contact.
The total residue in water used for making stean causes the interior linings of boilers to become coated, and often produces a dangerous hard scale, which prevents the cooling action of the water from protecting the metal against burning.
Lime and maynesia bicarbonates in water lose their excess of carbonic acid on boiling, and often, especially when the water contains sulphuric acid, produce, with the other solid residues constantly beins formed by the evaporation, a very hard and insoluble scale. A larger amount than 100 parts per 100,000 of total solid residue will ordinarily cause troublesome scale, and shonld condem the water for use in stean-boilers, unless a better supply cannot be obtained.
The following is a tabulated form of the causes of trouble with water for steam purposes, and the proposed remedies, given by Prof. L. M. Norton.

## Causes of Incrustation.

[^21]4. Deposition of sulphates of lime, because sulphate of lime is but slightly soluble in cold water, less soluble in hot water, insoluble above $2 \pi^{\circ} \mathrm{F}$.
5. Deposition of magnesia, because magnesium salts decompose at high temperature.
o. Deposition of lime soap, iron soap, etc., formed by saponification of grease.

## Means for Preventing Incrustation.

1. Filtration.
2. Blowing off.
3. Use of interual collecting apparatus or devices for directing the circulation.
4. Heating feed-water.
5. Chemical or other treatment of water in boiler.
6. Introduction of zinc into boiler.
7. Chemical treatment of water outside of boiler.

Tabrilar View.

Troublesome Substance.
Sediment, mud, clay, etc.
Readily soluble salts.
Bicarbonates of lime, magnesia, iron.

Sulphate of lime.
Cliloride and sulphate of magne- $\}$ silum.
Carbollate of soda in large amounts.
Acid (in mine waters).
Dissolved carbonic acid and \} oxygen.
Grease (from condensed water). '
Organic matter (sewage).

Trouble.
Incrustation. Filtration; blowing off. Blowing off.
Heating feed. Addition of caustic soda, lime, or magnesia, etc.
$\{$ Addition of carb. soda, barium hydrate, etc.
\{ Addition of carbonate of soda, etc.
\{ Addition of barium chloride, etc.

## Alkali.

Feed milk of lime to the boiler, to form a thin internal coating.

Different cases require dif. ferent remedies. Consult a specialist ou the subject.

The mineral matters causing the most troublesome boiler-scales are bicarhonates and sulphates of lime and maguesia, oxides of iron and alumina, and silica. The analyses of some of the most common and troublesome boiler-scales are given in the following table:

Analyses or Foiler-scale. (Chandler.)

|  |  |  |  | Sulphate Lime. | $\begin{aligned} & \text { Mag- } \\ & \text { nesia. } \end{aligned}$ | Silica. | Peroxide of Iron. | Water. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. Y. C. ${ }_{6}^{\text {¢ H. R }}$ /، Ry., |  |  | No. 1 No. 2 | $74.07$ | 9.19 | 0.65 | 0.08 | 1.14 | 14.78 |
| " | " | " | No. 3No. 4 | 62.86 | 18.95 | 2.60 | 0.92 | 1.28 | 12.63 |
| " | " | " |  | $\begin{aligned} & 53.05 \\ & 46.83 \end{aligned}$ |  | $\begin{aligned} & 4.79 \\ & 5.32 \end{aligned}$ |  | $1 . \sim 8$ |  |
| " | " | " | No. 4 |  | $\ldots$ |  | ……. |  |  |
| " | " | " | No. 6 | $\begin{array}{r} 30.80 \\ 4.95 \end{array}$ | 31.17 | 7.75 | $\cdots 1.08$ | 2.44 | $\dddot{26} 9.9$86.2593.19 |
| " | " | " | No. <br> No. |  | 2.84$\ldots . . . .$. | $\stackrel{2}{2.07}$ | 1.03 | 0.63 |  |
| $\because$ | " | " | $\begin{array}{ll} \text { No. } \\ \text { No. } \\ \text { No. } 10 \end{array}$ | $\begin{array}{r} 0.88 \\ 4.81 \\ 30.07 \end{array}$ |  | $\begin{aligned} & 0.65 \\ & 2.92 \\ & 8.24 \end{aligned}$ | 0.36 | 0.15 |  |
| 6 | " | " |  |  |  |  |  |  |  |

Analyses in Parts per 100,000 of Water giving Had Results in Steam-boilers. (A. E. Hunt.)

|  |  |  |  |  |  | $\begin{aligned} & \text { © } \\ & \text { • } \\ & \text { d } \\ & \text { 元 } \end{aligned}$ | ¢ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Coal-mine water | 110 | 25 | 119 | 39 | 890 | 590 | 780 | 30 | 640 |  |
| Salt-well. | 151 | 38 | 190 | 48 | 360 | 990 | 38 | 21 | 30. | 1310 |
| Spring.. | 75 | 89 | 95 | 120 | 310 | 21 | 75 | 10 | 80 | 6 |
|  | 130 | 21 | 161 | 331 | 210 | 38 | 70 |  |  |  |
| "6 ، | 80 | 70 | 94 | 81 | 219 | 210 | 90 |  |  |  |
| ". | 32 | 82 | 61 | 104 | 28 | 190 | 38 |  |  |  |
| Allegheny R., near Oil-works | 301 | 50 | 41 | 68 | 690 | 42 | 23 |  |  |  |

Many substances have been added with the idea of causing chemical action which will prevent boiler-scale. As a general rule, these do more harm than good, for a boiler is one of the worst possible places in which to carry on chemical reaction, where it nearly always canses more or less corrosion of the metal, and is liable to cause dangerous explosions.
In cases where water containing large amounts of total solid residue is necessarily used, a heavy petroleum oil, free from tar or wax, which is not acted upon by acids or alkalies, not having sufficient wax in it to cause saponification, and which has a vaporizing-point at nearly $600^{\circ} \mathrm{F}$., will give the best results in preventing boiler-scale. Its action is to form a thin greasy film over the boiler linings, protecting them largely from the action of acids in the water and greasing the sediment which is formed, thus preventing the formation of scale and keeping the solid residue from the evaporation of the water in sucli a plastic suspended condition that it can be easily ejected from the hoiler by the process of "blowing off." If the water is not blown off sufficiently often, this sediment forms into a "putty" that will necessitate cleaning the boilers. Any boiler using bad water should be blown off every twelve hours.
Hardness of Water.-The hardness of water, or its opposite quality, indicated by the ease with which it will form a lather with soap, depends almost altogether upon the presence of compounds of lime and magnesia. Almost all soaps consist, chemically, of oleate, stearate, and palmitate, of an alkaline base, nsually soda and potash. The inore lime and magnesia in a sample of water, the more suap a given volume of the water will decompose, so as to give insoluble oleate, palmitate, and stearate of lime and magnesia, and consequently the more soa; must be added to a gallon of water in order that the necessary quantity of soapmay remain in solution to form the lather. The relative harduess of samples of water is generally expressed in terms of the number of standard soap-measures consumed by a gallon of water in yielding a permanent lather.
The standard soap-measure is the quantity required to precipitate one grain of carbonate of lime.

It is commonly reckoned that one gallon of pure distilled water takes one soap-measure to produce a lather. Therefore one is deducted from the total number of soap-measures found to be necessary to use to produce a lather in a gallon of water, in reporting the number of soap-measures, or "degrees " of hardness of the water sample. In actnally making tests for hardness, the "miniature gallon," or seventy cubic centimetres, is used rather than the inconvenient larger amount. The standard measure is made by completely dissolving ten grammes of pure castile soap (containing 60 per cent olive-oil) in a litre of weak alcohol (of about 35 per cent alcohol). This yields a solution containing exactly sufficient soap in one cubic centimeter of the solution to precipitate one milligranme of carbonate of lime, or, in other words, the standard soap solution is reduced to terms of the " miniature gallon' of water taken.

If a water charged with a bicarbonate of lime, magnesia, or iron is boiled,
it will, on the excess of the carbunic acid being expelled, deposit a considerable quantity of the lime, magnesia, or iron, and consequently the water will be softer. The hardness of the water after this deposit of lime, after long boiling, is called the permanent hardness and the difference between it and the total hariness is called temporary hardness.

Lime salts in water react immediately on soap-solutions, precipitating the oleate, palmitate, or stearate of lime at once. Magnesia salts, on the contrary, require some considerable time for reaction. They are, however, more powerful hardeners; one equivalent of magnesia salts consuming as much soap as one and one-half equivalents of lime.
The presence of soda and potash salts softens rather than hardens water. Each grain of carbonate of lime per gallon of water causes an increased expenditure for soap of about 2 ounces per 100 gallons of water. (Eng'g. News. Jan. 31, 1885.)
Purifying Feod-water for Stearr-boilers. (Seo also Incrustation and Corrosion, p. il6.)-When tho water ised for steam-boilers contains a large amount of scale-forming material it is usually advisable to purify it before allowing it to enter the boiler rather than to attenipt the prevention of scale by the introduction of chemicals into the boiler. Carbonates of lime and masnesia may be removed to a considerable extent by simple heating of the water in an exhaust-steam feed-water heater or, still bitter, by a live-steam heater. (See circular of the Hoppes Mfg. Co., Springfinld, O) When the water is very bad it is best treated with chemicalslime, soda-ash, callstic soda, etc.-in tanks, the precipitates being separated by settling or filtering. For a description of several systems of water purification see a series of articles on the subject by Albert A. Cary in Eng'g Mag., 1897.

Mr. W. B. Coggswell, of the Solvay Process Co.'s Soda Works in Syracuse, N. Y., thus describes the system of purification of builer feed-water in use at, these works (Trans. A. S. M. E., xiii. 255):

For purifying, we use a weak soda liquor, containing about 12 to 15 grams $\mathrm{Na}_{2} \mathrm{CO}_{3}$ per litre. Say $1 \%$ to $211^{3}$ (or 397 to 530 gals.) of this liquor is run into the precipitating tank. Hot water about $60^{\circ} \mathrm{C}$. is then turned in, and the reaction of the preeipitation goes on while the tank is filling, which requires about 15 minutes. When the tank is full the water is filtered through the Hyatt (4), 5 feet diameter, and the Jewell (1), 10 feet diameter, filters in 30 minutes. Forty tanks treated per 24 hours.

$$
\begin{aligned}
& \text { Charge of water purified at once.................. } 35 M^{3}, 9.275 \text { gallons. }
\end{aligned}
$$

A sample is taken from each boiler every other day and tested for deg. Baumé, soda and salt. If the deg. B. is more than 2 , that boiler is blown to reduce it Lelow 2 deg. B.
The following are some analyses given by Mr. Coggswell :

|  | Lake Water, grams per litre. | Mud from Hyatt Filter. | Scale from Boilertube. | Scale found in Pump. |
| :---: | :---: | :---: | :---: | :---: |
| Calcium sulphate............ | . 261 | 3.70 | 51.24 | 10.9 |
| Calcium chloride.... ........ | . 185 |  |  | 10.9 |
| Calciun carbonate.......... | . 0915 | 63.37 | 19.氵6 | 87. |
| Magnesium chloride........... | . 015 | 1.11 | 25.21 |  |
| Salt, NaCl | . 63 |  |  |  |
| Siliea....... |  | $15.17{ }^{\text {a }}$ | 2.29 | . 8 |
| Iron and aluminum oxide |  | 3.75 | 1.10 | 1.2 |
| Total.. ............. | 1.270 | 87.10 | $99 . \% 4$ | 99.3 |

Softening Hard Water for Locomotive Use.-A water-softening plant in operation at Fossil, in Western Wyoming, on the Union Pacific Railway, is described in Eng'g News, June 9, 1892. 'It is the invention
of Arthur Pennell, of Kansas City. The general plan adopted is to first dissolve the chemicals in a closed tank, and then connect this to the supply main so that its contents will be forced into the main tank, the supply-pipe being so arranged that thorough mixture of the solution with the water is obtained. A waste-pipe from the bottom of the tank is opened from time to time to draw off the precipitate. The pipe leading to the teuder is arranged to draw the water from near the surface.

A water-tank 24 feet in dianneter and 16 feet high will contain about 46,600 gallons of water. About three hours should be allowed for this amount of water to pass through the tank to insure thorough precipitation, giving a permissible consumption of about 15,000 gallons per hour. Should more than this be required, auxiliary settling-tanks should be provided.
The chemicals added to precipitate the scale-forming impurities are sodinm carbonate and quicklime, varying in proportions according to the relative proportions of sulphates and carbonates in the water to be treated. Sufficient sodium carbonate is added to produce just enough sodium sulphate to combine with the remaining lime and magnesia sulphate and prorluce glauberite or its corresponding magnesia salt, thereby to get rid of the sodium sulphate, which produces foaming, if allowed to accumulate.

For a description of a purifying plant established by the Southern Pacific R. R. Co. at Port Los Angeles, Cal.. see a paper by Howard Stillnann in Trans. A. S. M. E., voh xix, Dec. 1897.

## HYDRAULICS-FLOW OF WATER.

Formulac for Discharge of Water though Orifices and Weirs.-For rectangular or circular orifices, with the head neasured from centre of the orifice to the surface of the still water in the feeding reservoir.

$$
\begin{equation*}
Q=C \sqrt{2 g H} \times a \tag{1}
\end{equation*}
$$

For weirs with no allowance for increased head due to velocity of approach:

$$
\begin{equation*}
Q=C 2 / 3 \sqrt{2 g H} \times L H . \tag{2}
\end{equation*}
$$

For rectangular and circular or other shaped vertical or inclined orifices; formula based on the proposition that each successive horizontal layer of water passing through the orifice has a velocity due to its respective head:

$$
\begin{equation*}
Q=c L^{2} / 3 \sqrt{2 g} \times\left(\sqrt{H_{b}^{3}}-\sqrt{H t^{5}}\right) . \tag{3}
\end{equation*}
$$

For rectangular vertical weirs:

$$
\begin{equation*}
Q=c \frac{2}{3} \sqrt{2 g H} \times L h \tag{4}
\end{equation*}
$$

$Q=$ quantity of water discharged in cubic feet per second: $C=$ approximate coefficient for formulas (1) and (2); c=correct coefficient for (3) and (4).
Values of the coefficients $c$ and $C$ are given below.
$g=32.16 ; \sqrt{2 g}=8.02 ; H=$ head in feet measured from centre of orifice to level of still water; $H b=$ head measured from bottom of orifice; $H t=$ head measured from top of orifice; $h=H$, corrected for velocity of approach, $V a,=H+\frac{4}{3} \frac{V a^{2}}{z g} ; a=$ area in square feet; $L=$ length in feet.

Flow of Water from Orifices.-The theoretical velocity of water flowiug from an orifice is the same as the velocity of a falling body which has fallen from a height equal to the head of water, $=\sqrt{2 g H}$. The actual velocity at the smaller sectiou of the rena contractu is substantially the same as the theoretical, but the velocity at the plane of the orifice is $C \sqrt{2 g H}$, in which the coefficient $C$ has the nearly constant value of .62. The smaliest diameter of the vence contracta is therefore about. 79 of that of the orifice. If $C$ be the approximate coefficient $=.62$, and $c$ the correct coeffi-
cient, the ratio $\frac{C}{C}$ varies with different ratios of the head to the diameter of the vertical orifice, or to $\frac{H}{D}$. Hamilton Smith, Jr., gives the following:

$$
\text { For } \begin{array}{rlrccccr}
\frac{H}{D} & =.5 & .875 & 1 & 1.5 & 2 . & 2.5 & 5 . \\
\frac{C}{c} & =.9604 & .9849 & .9918 & .9965 & .9980 & .9987 & .9997
\end{array}
$$

For vertical rectangular orifices of ratio of head to width $W$ :

$$
\text { For } \begin{array}{rlccccccccc}
\frac{H}{W} & =.5 & .6 & .8 & 1 & 1.5 & 2 . & 3 . & 4 . & 5 . & 8 . \\
\frac{C}{c} & =.9428 & .9657 & .9823 & .9890 & .9953 & .9974 & .9988 & .9993 & .9996 & .9998
\end{array}
$$

For $H \div D$ or $H \div W$ over $S, C=c$, practically.
Weisbach gives the following values of $c$ for circular orifices in a thin wall. $H=$ measured head from centre of orifice.

| $D \mathrm{ft}$. | $H \mathrm{ft}$. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 066 | . 33 | . 82 | 2.0 | 3.0 | 45. | 340. |
| .033 .066 .10 .13 | . 711 | . 665 | .637 .629 .622 .614 | .628 .621 .614 .607 | . 611 | . 632 | . 600 |

For an orifice of $D=.033 \mathrm{ft}$. and a well-rounded mouthpiece, $H$ being the effcctive head in feet,

$$
\begin{array}{ccccc}
H= & .066 & 1.64 & 11.5 & 56 \\
c=.959 & .96 \% & .9 \tau 5 & .99 t & .394
\end{array}
$$

Hamilton Smith, Jr., fousd that for great heads, 312 ft . to 336 ft ., with converging mouthpieces, $c$ has a value of about one, and for small circular orifices in thin plates, with full contraction, $c=$ about. 60 . Some of Mr. Smith's experimental values of $c$ for orifices in thin plates discharging into air are as follows. All dimensions in feet.

| Circular, in steel, $D=.020$, | $\begin{gathered} H=.739 \\ c=.6495 \end{gathered}$ | $\begin{aligned} & 2.43 \\ & .6298 \end{aligned}$ | $\begin{aligned} & 3.19 \\ & .6 \div 64 \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circular, in brass, $D=.050,\{$ | $\begin{aligned} H & =.185 \\ c & =.6525 \end{aligned}$ | $\begin{aligned} & .0 \sim 36 \\ & .63665 \end{aligned}$ | $\begin{array}{r} .001 \\ 1.6113 \\ .613 \end{array}$ | $\begin{aligned} & 2.73 \\ & .60 \% 0 \end{aligned}$ | 3.57 6060 | $4.63$ |
| ular, in brass, $D$ | $\begin{aligned} H & =.129 \\ c & =.633 \% \end{aligned}$ | $\begin{aligned} & .457 \\ & .6155 \end{aligned}$ | $\begin{aligned} & .900 \\ & .6096 \end{aligned}$ | $\begin{gathered} 1.33 \\ .6012 \end{gathered}$ | $\begin{aligned} & 2.05 \\ & .6038 \end{aligned}$ | $3.18$ |
| Circular, in iron, $D=.100$, | $\begin{aligned} H & =1.80 \\ c & =.6061 \end{aligned}$ | $\begin{aligned} & 1.81 \\ & .6041 \end{aligned}$ | $\begin{gathered} .0000 \\ 2.81 \\ .6033 \end{gathered}$ | 4.68 . 6026 |  |  |
| re, in brass, $05 \times .05$, | $H=.313$ | $\begin{aligned} & .877 \\ & .6238 \end{aligned}$ | 1.19 | 2.81 .6127 | $3.70$ | $\begin{aligned} & 1.63 \\ & .604 \end{aligned}$ |
| Square, in brass, $.10 \times .10$, | $H=.181$ | $.939$ | $1.71$ | $2.75$ |  |  |
|  | $H=.261$ | . 91 ? | 1.8: | 2.83 | 3.75 | 4.7 |

For the rectangular orifice, $L$, the length, is horizontal.
Mr. Smith. as the result of the collation of much experimental data of others as well as his own, gives tables of the value of $c$ tor vertical orifices, with full contraction, with a free discharge into the air, with the inner face of the plate, in which the orifice is pierced, plane, and with sharp inner corners, so that the escaping vein only tonches these imner edges. These tables are abridged below. The coefficient $c$ is to be nsed in the formulæ (3) and (4) above. For formulæ (1) and (2) use the coefficient $C$ iound from the values of the ratios $\frac{C}{c}$ above.

Values of Coeffcient for Vertical Orifices with Sharp Edges, Full Contraction, and Free Discharge into Air. (Hamilton Smith, Jr.)

|  | Square Orifices. |  |  |  | Length of the Side of the Square, in feet. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 02 | . 03 | . 04 | . 05 | . 07 | .14 | . 1 | 15 | . 20 | . 40 | . 60 | . 80 | 1.0 |
| . 4 |  |  | . 643 | . 637 | . 628 | . 621 | . 616 | . 611 |  |  |  |  |  |
| . 6 | . 660 | . 645 | . 6336 | . 630 | . 623 | . $61 \%$ | . 613 | . 610 | . 605 | . 601 | . 598 | . 596 |  |
| 1.0 | . 648 | . 636 | . 628 | .622 | . 618 | . 613 | . 610 | . 608 | . 605 | . 603 | . 601 | . 600 | 598 |
| 3.0 | . 632 | . 622 | . 616 | . 612 | . 609 | . 607 | . 606 | . 606 | . 605 | . 605 | . 604 | . 603 | 603 |
| 6.0 | . 623 | . 616 | . 612 | . 609 | . 607 | . 605 | . 605 | . 60.5 | . 604 | . 604 | . 603 | . 602 | . 602 |
| 10. | . 616 | . 611 | 608 | . 606 | . 605 | . 604 | . 604 | . 603 | .603 | . 603 | . 603 | . $60 \cdot$ | . 601 |
| 20. | . 606 | . 605 | . 604 | . 603 | .602 | . 602 | . 602 | . 602 | . 602 | 601 | . 601 | . 601 | . 600 |
| 100.(?) | . 599 | . 598 | . 598 | . 598 | . 598 | . 598 | . 598 | . 598 | . 598 | 598 | . 598 | . 598 |  |

Circular Orifices. Diameters, in feet.

|  | . 02 | . 03 | . 04 | . 05 | . 07 | . 10 | . 12 | . 15 | . 20 | . 40 | . 60 | 80 | 1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 4 |  |  |  |  | . 6288 | . 618 | $\begin{aligned} & .61: 2 \\ & .609 \end{aligned}$ | $.606$ | . 601 | . 596 | . 593 | 90 |  |
| 1.0 | . 654 | . 630 | . 630 | . 612 | . 612 | . 608 | . 605 | . 603 | . 600 | . 598 | . 595 | . 593 | . 591 |
| 2. | . $63{ }^{2}$ | . 621 | . 614 | . 610 | . 60 ̃ | . 604 | . 601 | . 600 | . 599 | . 599 | . 593 | .596 | . 5 |
| 4. | .623 | . 614 | . 609 | . 605 | . 603 | . 602 | . 600 | . 599 | . 599 | . 598 | . 597 | . 59 亿 | 59 |
| 6. | . 618 | . 611 | . 607 | . 604 | . 602 | . 600 | . 599 | . 599 | . 598 | . 598 | . 597 | . 596 | 59 |
| 10. | . 611 | . 606 | . 603 | . 601 | . 599 | . 598 | . 598 | . 597 | . 597 | . 597 | . 596 | . 596 | 59 |
| 90. | . 601 | . 600 | . 599 | . 598 | . 594 | . 596 | . 596 | . 596 | . 596 | 596 | . 596 | 595 | 59 |
| 50.(?) | . 596 | . 596 | . 595 | . 595 | . 594 | . 591 | . 594 | . 594 | . 594 | 591 | 591 | 593, |  |
| 170.(?) | . 593 | . 593 | . 592 | . 592 | . 592 | 592 | . 592 | . 592 | . 592 | . 592 | . 592 | .592 |  |

## HYDRATIIC FORMULAE,-FHOW OF WATER IN OPEN AND CLOSED CHANNELS.

Flow of Water in Pipes.-The quantity of water discharged through a pipe depends on the "head;" that is, the vertical distance be$t$ ween the lerel surface of still water in the chamber at the entrance end of the pipe and the level of the centre of the discharge end of the pipe; a.lso upon the length of the pipe, upon the character of its interior surface as to smoothness, and upon the number and sharpness of the bends: but it is independent of the position of the pipe, as horizontal, or inclined upwards or downwards.
The head, instead of being an actual distance between levels, may be caused by pressure, as by a pump, in which case the head is calculated as a vertical distance corresponding to the pressure 1 lb . per sq. in. $=2.309 \mathrm{ft}$. head, or 1 ft . head $=.433 \mathrm{lb}$. per sq. in.
The total head operating to canse flow is divided into three parts: 1. The velocity-head, which is the height through which a body must fall in vacuo to acquire the velocity with which the water flows into the pipe $=v^{2} \div 2 g$, in which $v$ is the velocity in ft. per sec. and $2 g=64.32 ; 2$. the entry-herd. that required to overcome the resistance to entrance to the pipe. With sharpedged entrance the entry-head $=$ about $1 / 2$ the velocity-head; with smooth ronnded entrance the entry-head is inappreciable; 3. the friction-head, duo to the frictional resistance to flow within the pipe.
In ordinary cases of pipes of considerable length the sum of the entry and velocity heads required scarcely exceeds 1 foot. In the case of long pipes with low heads the sum of the velocity and entry heads is generally so small that it may be neglected.
General Formula for Flow or Water in Pipes or Conduits.
Mean velocity in ft . per sec. $=c \sqrt{\text { mean hydraulic radius } \times \text { slope }}$

$$
\text { Do. for pipes running full }=c \sqrt{\frac{\text { diameter }}{4} \times \text { slope }}
$$

in which $c$ is a coefficient determined by experiment. (See pages 559-564.)

$$
\text { The mean hydraulic radius }=\frac{\text { area of wet cross-section }}{\text { wet perimeter. }} .
$$

In pipes running full, or exactly half full, and in semicircular open channels running full it is equal to $1 / 4$ diameter.

The slope $=$ the head (or pressure expressed as a head, in feet)

$$
\div \text { length of pipe measured in a straight line from end to end. }
$$

In open channels the slope is the actual slope of the surface, or its fall per unit of length, or the sine of the angle of the slope with the horizon.

Chezy's Formula: $v=c \sqrt{r} \sqrt{s}=c \sqrt{r} \bar{r} ; v=$ mean hydraulic radius, $s=$ slope $=$ head $\div$ length, $v=$ velocity in feet per second, all dimensions in feet.

Quantity of Water Discharged. -If $Q=$ discharge in cubic feet per second and $a=$ area of chamel, $Q=a v=u c \sqrt{r} s$.
$a \sqrt{r}$ is approximately proportional to the discharge. It is a maximum $a^{*}$ $203^{\circ}$, corresponding to $19 / 20$ of the diameter, and the flow of a conduit 19/20 full is about 5 per cent greater than that of one completely filled.

Table giving Fall in Feet per Mile, the Distance on slope corresponding to a Fall of 1 Ft., and also the Values of $s$ and $\sqrt{\prime} s$ for Use in the Forimula $v=c \sqrt{r} s$.
$s=H \div L=$ sine of angle of slope $=$ fall of water-surface $(H)$, in any dis tance ( $L$ ), divided by that distance.

| Fall in Feet per Mi. | Slope, <br> 1 Foot in | Sine of Slope, $s$. | $\sqrt{s}$ | Fallin Feet per Mi. | Slope, <br> 1 Foot in | Sine of Slope, $s$. | $1 / 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 21120 | . $00004 \% 3$ | . 006881 | 17 | 310.6 |  |  |
| . 30 | 17600 | . 0000568 | . 007538 | 18 | 310.6 293.3 | .0032197 | .056r4\% |
| . 40 | 13200 | . 00000758 | .008704 | 19 | 277.9 | . 0035985 | $.058088$ |
| . 50 | 10560 | . 0000947 | . 009731 | 20 | 264 | . 0037879 | .061546 |
| . 60 | 8800 | .0001136 | . 010660 | 22 | 240 | . 0041667 | . 064549 |
| . 802 | 75 | . 0001230 | . 011532 | 24 | 220 | . 0045455 | . $06 \% 419$ |
| . 805 | 6560 | . 0001594 | .01234\% | 26 | 203.1 | .0049242 | . 070173 |
| . 904 | 5840 | . 0001712 | . 013085 | 28 | 188.6 | . 0053030 | .072822 |
| 1. | 5280 | . 0001894 | .013 6\% | 30 | 186 | . 0056818 | .075378 |
| 1.25 | 42.4 | . 0002367 | . 015386 | 35.20 | 150 | . 0066667 | . 081650 |
| 1.5 | 3520 | . 0002841 | . 016854 | 40 | 132 | .0075758 | .08r039 |
| 1.75 | 3017 | . 0003314 | .018205 | 44 | 120 | . 0083333 | . 091287 |
| 2. | 2610 | .000.3788 | . 019463 | 48 | 110 | . 0090909 | . 095346 |
| 2.25 | 2347 | .00(1)4261 | . 020641 | 52.8 | 100 | . 010 | . 1 |
| 2.5 | 2112 | . 0004735 | .021760 | 60 | 88 | . 0113636 | . 1066 |
| 2.75 | 19:0 | .0005:08 | .022882 | 66 | 80 | . 0125 | . 111803 |
| 3. | 1760 | . 0005682 | . 0238837 | \%0.4 | r5 | . 0133333 | . $1154 \% 0$ |
| 3.25 | 1625 | . 0006154 | . $02480 \%$ | 80 | 66 | . 0151515 | -1234691 |
| 3.5 | 1508 | . 0006631 | .025\%51 | 88 | 60 | . 0166667 | . 12391 |
| 3.75 | 1408 | . 0007102 | . 026650 | 96 | 55 | . 0181818 | . 134839 |
| 4 | 1320 | . 0007576 | . 027524 | 105.6 | 50 | . 02 | . 141421 |
| 5 | 1056 | . 0009470 | .030\%73 | 120 | 44 | .09272\%3 | . 150756 |
| 6 | 880 | . 0011364 | .03371 | 132 | 40 | . 025 | . 158114 |
| 7 | 754.3 | . 0013257 | . 036416 | 160 | 33 | . 0303030 | . $1740 \%$ |
| 8 | 660 | . 0015152 | .0389:5 | 220 | 24 | . 0416667 | . 204124 |
| 9 10 | 586.6 | . 0017044 | . 0.41286 | 264 | 20 | . 05 | . 223607 |
| 10 | 598 | . 0018939 | . 043519 | 330 | 16 | . $06 ? 5$ | . 25 |
| 11 | 443.6 | . 0020833 | . 045643 | 440 | 12 | . 0833333 | . 288675 |
| 12 | 440 | .0022727 | . 047673 | $5: 8$ | 10 | . 1 | . 316228 |
| 13 | 406.1 | . 0024621 | . 0496 | 660 | 8 | . 125 | . 353553 |
| 14 | 377.1 | . 0026515 | . 051493 | 880 | 6 | .1666667 | . 408248 |
| 15 | 352 | . 0028409 | . 05.3:3 | 1056 | 5 |  | . 447214 |
| 16 | 330 | . 0030303 | .055048 | 1320 | 4 | . 25 |  |

## Values of $\sqrt{r}$ for Cireular Pipes, Severs, and Conduits of different Diameters.

$r=$ mean hydraulic depth $=\frac{\text { area }}{\text { perimeter }}=1 / 4$ diam. for circular pipes run ${ }^{\circ}$ ning full or exactly half full.

| Diam., ft. in. | $\text { in } \stackrel{\sqrt{r}}{\text { Feet. }}$ | Diam., ft. in. | $\begin{aligned} & \frac{\sqrt{r}}{r} \\ & \text { ineet. } \end{aligned}$ | Dianl., ft. in. | in Feet. | Diam., ft. in | $\text { in } \stackrel{\sqrt{r}}{\sqrt{r}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 8$ | . 088 | $\stackrel{2}{2}$ | . 708 | $4 \quad 6$ | 1.061 | 9 | 1.500 |
| $1 / 2$ | . 102 | 21 | . $2: 3$ | 47 | 1.0̂̃0 | $9 \quad 3$ | 1.521 |
| $3 / 4$ | . 125 | $\stackrel{2}{2}$ | . 736 | 48 | 1.080 | 96 | 1.541 |
| 1 | . 144 | $\stackrel{2}{2}$ | . 750 | $4 \quad 9$ | 1.089 | $9 \quad 9$ | 1.561 |
| 114 | . 161 | 24 | . 164 | 410 | 1.099 | 10 | 1581 |
| $11 / 2$ | . 178 | 25 | . 777 | 411 | 1.109 | $10 \quad 3$ | 1.601 |
| 13/4 | -191 | $\stackrel{6}{2}$ | . 890 | 5 | 1.118 | $10 \quad 6$ | 1.620 |
| $\stackrel{2}{21}$ | . 204 | 2  <br> 2  <br> 2 8 | . 804 | $\begin{array}{ll}5 & 1 \\ 5 & 2\end{array}$ | 1.127 | 10 | 1.639 |
| ${ }_{3}{ }^{2 / 2}$ | . 2.28 | 2 2 2 | . 817 | 5 | $1.13 \pi$ | 11 | 1.658 |
| 4 | . 290 | 210 | . 842 | 54 |  |  | $1.63 \%$ |
| 5 | . 323 | 211 | . 854 | 5 5 | 1.155 | 11.6 | 1.696 |
| 6 | . 354 | 3 | . 866 | 5 | 1.178 | 112 | 1.714 1.732 |
| 7 | . 382 | 31 | . 878 | 57 | 1.181 | 123 | 1.750 |
| 8 | . 408 | 32 | . 890 | 58 | 1.190 | 126 | 1.68 |
| 9 | . 433 | 33 | . 901 | $5 \quad 9$ | 1.199 | 12 | 1.785 |
| 10 | . 456 | 34 | . 913 | 510 | 1.208 | 13 | 1.803 |
| 11 | . 479 | 35 | . 924 | 511 | 1.216 | 133 | 1.820 |
| 1 | . 500 | 36 | 935 | 6 | 1.205 | 136 | 1.887 |
| 11 | . 520 | 37 | . 946 | 63 | 1.250 | 14 | 1.871 |
| 12 | . 540 | 38 | . 957 | 6 | 1.2\% | 14 | $1.90 \downarrow$ |
| 13 | . 559 | $3 \quad 9$ | . 968 | ${ }^{6} \quad 9$ | 1.299 | 15 | 1936 |
| 14 | . 577 | 3 | . 979 | 7 | 1.323 | 15 | 1.968 |
| 15 | . 595 | 311 | . 990 | 73 | 1.346 | 16 |  |
| 16 | . 612 | 4 | 1. | 76 | 1.369 | $16 \quad 6$ | 2.031 |
| 17 | . 629 | 4 | 1.010 | $\% 9$ | 1.39\% | 17 | 2.061 |
| 18 | . 646 | $4 \quad 2$ | 1.021 | 8 | 1.414 | 176 | 2.091 |
| 19 | . 661 | 43 | 1.031 | $8{ }^{8} 3$ | 1.436 | $18^{\prime}$ | 2.121 |
| 110 | . 677 | 44 | 1.041 | 86 | 1.458 | 19 | 2.180 |
| 111 | . 692 | 45 | 1.051 | $8 \quad 9$ | $1.4 \% 9$ | 20 | 2.236 |

Values of the Coefficient $c$. (Chiefly condensed from P. J. Flynn on Flow of Water.) - Almost all the old hydraulic formulæ for finding the mean velocity in open and closed channels have constant coefficients, and are therefore correct for only a small range of chamels. They have often been found to give incorrect results with disastrous effects. Ganguillet and Kutter thoroughly investigated the American, French, and other experiments, and they gave as the result of their labors the formula now generally known as Kutter's formula. There are so many varying conditions affecting the flow of water, that all hydraulic formula are only approximations to the correct resnlt.

When the surface-slope measurement is good, Kutter's formula will give results seldom exceeding $\% 1 / 2 \%$ error, provided the rugosity coefficient of the formula is known for the site. For small open channels D'Arcy's and Bazin's formulæ, and for cast-iron pipes D'Arcy's formulæ, are generally accepted as being approximately correct.
Kutter's Formula for measures in feet is

$$
v=\left\{\frac{\frac{1.811}{n}+41.6+\frac{.00281}{s}}{1+\left(41.6+\frac{.002 s 1}{s}\right) \times \frac{n}{\sqrt{r}}}\right\} \times \sqrt{r s}
$$

in which $v=$ mean velocity in feet per second $; r=\frac{a}{p}=$ liydraulic mean
depth in feet $=$ area of cross-section in square feet divided by wetted perim. eter in lineal feet ; $s=$ fall of water-surface ( $h$ ) in any distance ( $l$ ) divided by that distance, $=\frac{h}{l},=$ sine of slope $; n=$ the coefficient of rugosity, depending on the nature of the lining or surface of the channel. If we let the first term of the right-hand side of the equation equal $c$, we have Chezy's formula, $v=c \sqrt{r s}=c \times \sqrt{r} \times \sqrt{s}$.

Vilues of $n$ in Kutter's Formula.-The accuracy of Kutter's formula depends, in a great measure, on the proper selection of the coefficient of roughness $\%$. Experience is required in order to give the right value to this coefficient, and to this end great assistance can be obtained, in making this selection, by consulting and comparing the results obtained from experiments on the flow of water already made in different channels.

In some cases it would be well to provide for the contingency of future deterioration of channel, by selecting a high value of $n$, as, for instance, where a dense growth of weeds is likely to occur in small channels, and also where channels are likely not to be kept in a state of good repair.
The foliowing table, giving the value of $n$ for different materials, is compiled from Kutter, Jackson, and Hering, and this value of $n$ applies also in each instance, to the surfaces of other materials equally rough.

## Value of $n$ in Kutter's Formula for Different Channels.

$n=.009$, well-planed timber, in perfect order and alignment ; otherwise, perhaps .01 would be suitable.
$n=.010$, plaster in pure cement ; planed timber ; glazed, coated, or enamelled stoneware and iron pipes; glazed surfaces of every sort in perfect order.
$n=.011$, plaster in cement with one third sand, in good condition ; also for iron, cement, and terra cotta pipes, well joined, and in best order.
$n=.012$, unplaned timber, when perfectly continuous on the inside; fumies.
$n=.013$, ashlar and well-laid brickwork; ordinary metal; earthen and stoneware pipe in good condition, but not new ; cement and terra-cotta pipe not well jointed nor in perfect order, plaster and planed wood in imperfect or inferior condition; and, generally, the materials mentioned with $n=.010$, when in imperfect or inferior condition.
$n=.015$, second class or rough-faced brickwork ; well-dressed stonework ; foul and slightly tuberculated iron ; cement and terra-cotta pipes, with im. perfect joints and in bad order : and canvas lining on wooden frames.
$n=.017$, brickwork, ashlar, and stoneware in an inferior condition; tuberculated iron pipes ; rubble in cement or plaster in good order ; fine gravel. well rammed, $1 / 3$ to $2 / 3$ inch diameter ; and, generally, the materials mentioned with $\because=.013$ when in bad order and condition.
$u=.030$, rubble in cement in an inferior condition; coarse rubble, rough se in a normal condition; coarse rubble set dry : ruined brickwork and masonry: coarse gravel well rammed, from 1 to $11 / 3$ inch diameter ; canals with beds and banks of very firm, regular gravel, carefully trimmed and rammed in defective places : rough rubble with bed partially covered with silt and mud; rectangular wooden troughs. with battens on the inside two inches apart; trimmed earth in perfect order.
$n=.0225$, canals in earth above the average in order and regimen.
$n=.0: 5$, canals and rivers in earth of tolerably uniform cross-section; slope and direction, in moderately good order and reginen, and free from stones and weeds.
$n=.0: 75$, canals and rivers in earth below the average in order and regimen.
$n=.030$, canals and rivers in earth in rather bad order and regimen, having stones and weeds occasionally, and obstructed by detritus.
$u=.035$, suitable for rivers and canals with earthen beds in bad order and regimen, and haviug stones and weeds in great quentizies.
$n=.65$, torrents encumbered with detritus.
Kntter's formula has the advantage of being easily adapted to a change in the surface of the pipe exposed to the flow of water, by a change in the value of $n$. For cast-iron pipes it is usual to use $n=.013$ to provide for the fiture deterioration of the surface.

Reducing Kutter's formula to the form $v=c \times \sqrt{r} \times \sqrt{s}$, and taking $n$, the coefticient of roughness in the formula $=.011, .012$, and .013 , and $s=.001$, we have the following values of the coefticient $c$ for different diameters of conduit.

# Values or $c$ in Formula $v=c \times \sqrt{v} \times \sqrt{s}$ for Metal Pipes and Hodorately Smooth Conduits Gemerally. 

By Kutter's Formula $\quad$ is $=.001$ or greater.)

| Diameter. | $n=.011$ | $n=.012$ | $u=.013$ | Diameter. | $n=.011$ | $u=.012$ | $n=.013$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft. in. | $c=$ | $c=$ | $c=$ | ft . | $c=$ | $c=$ | $c=$ |
| 01 | 47.1 |  |  | 7 | 15:.7 | 139.2 | 127.9 |
| 2 | 61.5 |  |  | 8 | 155.4 | 141.9 | 130.4 |
| 4 | rif. 4 | ... . . . . |  | 9 | $15 \% .7$ | 144.1 | 13:.7 |
| 6 | 8\%. 4 | 77.5 | 69.5 | 10 | 159.7 | 146 | 134.5 |
| 1 | 105.7 | 94.6 | 85.3 | 11 | 161.5 | 147.8 | 136.2 |
| 16 | 116.1 | 104.3 | 94.4 | 12 | 163 | 149.3 | 137.7 |
| 2 | 123.6 | 111.3 | 101.1 | 14 | 165.8 | 152 | 140.4 |
| 3 | 133.6 | 120.8 | 110.1 | 16 | 168 | 154.2 | 14:. 1 |
| 4 | 140.4 | 127.4 | 116.5 | 18 | 169.9 | 156.1 | 144.4 |
| 5 | 145.4 | 132.3 | 121.1 | 20 | 171.6 | 157.7 | 146 |
| 6 | 149.4 | 136.1 | 124.8 |  |  |  |  |

For circular pipes the hydraulic mean depth $r$ equals $1 / 4$ of the diameter.
According to Kutter's formula the value of $c$, the coefficient of discharge, is the same for all slopes greater than 1 in 1000 ; that is, within these limits $c$ is constant. We further find that up to a slope of 1 in 2640 the value of $c$ is, for all practical purposes, constant, and even up to a slope of 1 in 5000 the difference in the value of $c$ is very little. This is exemplified in the following:
Value of $c$ for Different Values of $\sqrt{r}$ and $s$ in Kutter's Formula, with $u=.013$.
$v=c \sqrt{r} \times \sqrt{s}$.

| $\sqrt{r}$ | Slopes. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 in 1000 | 1 in 2500 | 1 in 3333.3 | 1 in 5000 | 1 in 10,000 |
| . 6 | 93.6 | 91.5 | 90.4 | 88.4 | 83.3 |
| 1 | 116.5 | 115.2 | 114.4 | 113.2 | 109.7 |
| 2 | 142.6 | 142.8 | 143.0 | 143.1 | 143.8 |

The reliability of the values of the coefficient of Kutter's formula for pipes of less than 6 in . diameter is considered doubtful. (See note under table on page 564 .)
Values of c for Earthen Channels, by Kutters Formula, for Use in Formula $v=e \sqrt{r s}$.

|  | Coefficient of Roughness,$n=.0 \div 2$ |  |  |  |  | Coefficient of Roughness,$n=.035 .$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\sqrt{r}$ in feet. |  |  |  |  | $1 \bar{r}$ in feet. |  |  |  |  |
|  | 0.4 | 1.0 | 1.8 | 2.5 | 4.0 | 0.4 | 1.0 | 1.8 | 2.5 | 4.0 |
| Slope, 1 in | c | $c$ | c | c | $c$ | $c$ | c | c | c | $c$ |
| 1000 | 35.7 | 62.5 | 80.3 | 89.2 | 99.9 | 19.7 | 37.6 | 51.6 | 59.3 | 69.3 |
| 1250 | 35.5 | 62.3 | 80.3 | 89.3 | 100.2 | 19.6 | 37.6 | 51.6 | 59.4 | 6.1 .4 |
| 1667 | 35.2 | 62.1 | 80.3 | 89.5 | 100.6 | 19.4 | 37.4 | 51.6 | 59.5 | 69.8 |
| 2500 | 34.6 | 61.7 | 80.3 | 89.8 | 101.4 | 19.1 | 37.1 | 51.6 | 59.7 | \%0.4 |
| 3333 | 34. | 61.2 | 80.3 | 90.1 | 102.2 | 18.8 | 36.9 | 51.6 | 59.9 | 71.0 |
| 5000 | 33. | 60.5 | 80.3 | 30.7 | 103. 7 | 18.3 | 36.4 | 51.6 | 60.4 | \% 2.2 |
| 7500 | 31.6 | 59.4 | 80.3 | 91.5 | 106.0 | 17.6 | 35.8 | 51.6 | 60.9 | 73.9 |
| 10000 | 30.5 | 58.5 | 80.3 | 92.3 | 107.9 | 17. 1 | 35.3 | 51.6 | 60.5 | 75.4 |
| 15840 | 28.5 | 56.7 | 80.2 | 939 | 112. ${ }^{2}$ | 16.2 | 34.3 | 51.6 | 62.5 | 78.6 |
| 20000 | 27.4 | 55.7 | 80.2 | 94.8 | 115.0 | 15.6 | 33.8 | 51.5 | 63.1 | 80.6 |

Mr. Molesworth, in the $22 d$ edition of his "Pocket-book of Engineering Formulæ," gives a modification of Kutter's formula as follows: For flow in cast-iron pipes, $v=c \sqrt{r \cdot s}$ in which

$$
c=\frac{181+\frac{.00281}{s}}{1+\frac{.026}{\sqrt{d}}\left(41.6+\frac{.00281}{s}\right)}
$$

in which $d=$ diameter of the pipe in feet.
(This formula was given incorrectly in Molesworth's 21st edition.)
Molesworth's Formula. $-v=\sqrt{k r}$, in which the values of $k$ are as follows :

| Nature of Channel. | Values of $k$ for Velocities. |  |
| :---: | :---: | :---: |
|  | Less than 4 ft . per sec. | More than 4 ft . per sec. |
| Brickwork....... | 8800 | 8500 |
| Earth... | 7200 | 6800 |
|  | 6400 | 5900 |
| Rough, with bowlders...... | 5300 | 4700 |

In very large channels, rivers, etc., the description of the clannel affects the result so slightly that it may be practically neglected, and $k$ assumed $=$ from 8500 to 9000 .
Flynn's Formula.-Mr. Flym obtains the following expression of the value of Kutter's coefficient for a slope of .001 and a value of $n=.013$ :

$$
c=\frac{183.72}{1+\left(44.41 \times \frac{.013}{\sqrt{r}}\right)}
$$

The following table shows the close agreement, of the values of cobtained from Kutter's, Molesworth's, and Flynu's formule:

| Diameter. | Slope. | Kutter. | Molesworth. | Flynn. |
| :--- | :---: | :---: | :---: | ---: |
| 6 inches | 1 in 40 | 71.50 | 71.48 | 69.5 |
| 6 inches | 1 in 1000 | 69.50 | 69.79 | 69.5 |
| 4 feet | 1 in 400 | 117. | 117. | 116.5 |
| 4 feet | 1 in 1000 | 116.5 | 116.55 | 116.5 |
| 8 feet | 1 in 700 | 130.5 | 130.68 | 130.5 |
| 8 feet | 1 in 2600 | 129.8 | 129.93 | 130.5 |

Mr. Flym gives another simplified form of Kutter's formula for use with different values of $n$ as follows:

$$
v=\left(\frac{K}{1+\left(44.41 \times \frac{n}{\sqrt{v}}\right)}\right) \sqrt{r \cdot s .}
$$

In the following table the value of $K$ is given for the several values of $n$ :

| $n$ | $K$ | $n$ | $K$ | $n$ | $K$ | $n$ | $K$ | $n$ | $K$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .009 | 245.63 | .012 | 195.33 | .015 | 165.14 | .018 | 145.03 | .021 | 130.65 |
| .010 | 225.51 | .018 | 183.72 | .016 | 157.6 | .019 | 153.73 | .022 | 126.73 |
| .011 | 209.05 | .014 | 137.76 | .017 | 150.94 | .020 | 14.96 | .0225 | 124.9 |

If in the application of Mr. Flynn's formula given above within the limits of $n$ as given in the table, we substitute for $n, K$, and $\sqrt{r}$ their values, we have a simplified form of Kutter's formula.

For instance, when $n=.011$, and $d=3$ feet, we have

$$
v=\frac{209.05}{1+\left(44.41 \times \frac{.011}{.866}\right)} \times \sqrt{r s .}
$$

## Bazin's Formula :

For very even surfaces, tiue plastered sides and bed, planed planks, etc.,

$$
v=\sqrt{1 \div .00000+5\left(10.16+\frac{1}{v}\right)} \times \sqrt{r \cdot s}
$$

For even surfaces such as cut-stone, brickwork, unplaned planking, mortar, etc. :

$$
v=\sqrt{1 \div .000013\left(4.354+\frac{1}{\gamma}\right)} \times \sqrt{r} \bar{s}
$$

For slightly uneven surfaces, such as rubble masonry:

$$
v=\sqrt{1 \div .00006\left(1.219+\frac{1}{r}\right)} \times \sqrt{r s}
$$

For uneven surfaces, such as earth :

$$
v=\sqrt{1 \div .00035\left(0.2438+\frac{1}{v}\right)} \times \sqrt{1 s}
$$

A modification of Bazin's formula, known as D'Arcy's Bazin's:

$$
v=r \sqrt{\frac{1000 s}{.08=34 r+0.35}} .
$$

For small channels of less than 20 feet bed Bazin's formula for earthen channels in good order gives very fair results, but Kutter's formula is superseding it in almost all countries where its accuracy has been investigated.
The last table on p. 561 shows the value of $c$, in Kutter's formula, for a wide range of channels in earth, that will cover anything likely to occur in the ordinary practice of an engiveer.
D'Arey's Formula for clean iron pipes under pressure is

$$
v=\left\{\frac{r s}{.0000 \pi \sim 26+\frac{.00000162}{r}}\right\}^{1 / 2}
$$

Flynn's modification of D'Arcy's formula is

$$
v=\left(\frac{155256 d}{12 d+1}\right)^{1 / 2} \times \sqrt{r s}
$$

in which $d=$ diameter in feet.
D'Arcy's formula, as given by J. B. Francis, C.E., for old cast-iron pipe, lined with deposit and under pressure, is

$$
v=\left(\frac{144 d^{2} s}{.008 \geqslant(12 d+1}\right)^{1 / 2}
$$

Flynn's modification of D'Arcy's formula for old cast-iron pipe is

$$
v=\left(\frac{\pi 0243.9 d}{1: d+1}\right)^{1 / 2} \times \sqrt{r i s}
$$

For Pipes Less than 5 inches in Diameter, coefficients (c) in the formula $v=c \sqrt{r s}$, from the formula of D'Arcy, Kutter, and Fanning.

| $\begin{gathered} \text { Diam. } \\ \text { inches. } \end{gathered}$ | D'Arcy, for Clean Pipes. | $\begin{aligned} & \text { Kutter, } \\ & \text { for } \\ & n=.011 \\ & s=.001 \end{aligned}$ | Fanning, for Clear Iron Pipes | $\left\|\begin{array}{c} \text { Diam. } \\ \text { in } \\ \text { nehes } \end{array}\right\|$ | D'Arcy, for Clean Pipes. | $\begin{aligned} & \text { Kutter, } \\ & \text { for } \\ & =.011 \\ & s=.001 \end{aligned}$ | Fanning, for Clean Iron Pipes. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 59.4 | 32. |  | 13/4 | 90.7 | 58.8 | 92.5 |
| 13 | 65.7 | 36.1 |  | 2 | 92.9 | 61.5 | 94.8 |
| 3/4 | r4.5 | 42.6 |  | 21/2 | 96.1 | 66. |  |
| 1 | 80.4 | 47.4 | 80.4 | 3 | 98.5 | 70.1 | 96.6 |
| 114 | 84.8 | 51.9 |  | 4 | 101.7 | 77.4 | 103.4 |
| 11/2 | 88.1 | 55.4 | 88. |  | 103.8 | 82.9 |  |

Mr. Flynn, in giving the above table, says that the facts show that the coefficients diminish from a diameter of 5 inches to smaller diameters, and it is a safer plan to adopt coefficients varying with the diameter than a constant coefficient. No opinion is advanced as to what coefficients shoulc. be used with Kutter's formula for small diameters. 'The facts are simply stated, giving the results of well-known authors.

Older Formulie.-The following are a few of the many formulæ for flow of water in pipes given by earlier writers. As they have constant coefficients, they are not considered as reliable as the newer formulæ.

$$
\begin{aligned}
& \text { Prony, } \quad v=97 \sqrt{r s}-.08 ; \\
& \text { Eytelwein, } \quad v=50 \sqrt{\frac{d h}{l+50 d}}, \text { or } v=108 \sqrt{r s}-0.13 ; \\
& \text { Hawksley, } \quad v=48 \sqrt{\frac{d h}{l+54 d}} ; \quad \text { Neville, } v=140 \sqrt{r s}-11 \sqrt[3]{r \cdot s} .
\end{aligned}
$$

In these formulæ $l=$ diameter in feet; $h=$ head of water in feet; $l=$ length of pipe in feet; $s=$ sine of slope $=\frac{h}{l} ; r=$ mean hydraulic depth, $=$ area $\div$ wet perimeter $=\frac{d}{4}$ for circular pipe.

Mr. Santo Crimp (Eng'g, Angust 4, 1893) states that observations on flow in brick sewers show that the actual discharge is $33 \%$ greater than that calculated by Eytelwein's formula. He thinks Kutter's formula not superior to D'Arcy's for brick sewers, the usnal coefficient of roughness in the former, viz., .013 , being too low for large sewers and far too small in the case of small sewers.

D'Arcy's formula for brickwork is

$$
v=\frac{\sqrt{2 g}}{m} r s ; \quad m=a\left(1+\frac{B}{r}\right) ; \quad a=.0037285 ; \quad B=.229663
$$

## VELOCHEY OF WATERE IN OPEN CHANNELS.

Hrrioation Canals.--The minimum mean velocity required to prevent the deposit of silt of the growth of aquatic plants is in Northern India taken at $11 / 2$ feet per second. It is stated that in America a higher velocity is required for this purpose, and it varies from 2 to $31 / 2$ feet per second. The maximum allowable velocity will vary with the nature of the soil of the bed. A sandy bed will be disturberl if the velocity exceeds 3 feet per second. Good loam with not too much sand will bear a velocity of 4 feet per second. The Cavour Canal in Italy, over a gravel bed, has a velocity of about 5 per second. (Flymu's "Trrigation Canals.")

Mean Suriace and Bottom Velocities.-According to the formula of Bazin,

$$
v=v_{\max }-25.41^{\prime} \overline{r s} ; v=v b+10.87 \sqrt{r} \bar{r}
$$

$\therefore v b=v-10.87 \sqrt{r s}$, in which $v=$ mean velocity in feet per second, $v$ max $=$ maximum surface velocity in feet per second, $v b=$ bottom velocity in feet per second, $r=$ hydraulic mean depth in feet $=$ area of cross-section in square feet divided by wetted perimeter in feet, $s=$ sine of slope.
The least velocity, or that of the particles in contact with the bed, is almost as much less than the mean velocity as the greatest velocity is greater than the mean.
Raukine states that in ordinary cases the velocities may be taken as bearing to each other nearly the proportions of 3,4 , and 5. In very slow currents they are nearly as 2,3, and 4.
Safe Bottom and Mean Velocities.-Ganguillet \& Kutter give the following table of safe bottom and mean velocity in chanuels, calculated from the formula $v=v b+10.8 \% \sqrt{r s}$ :

| Material of Chaunel. | Safe Bottom Veloc ity $v b$, in feet per second. | Mean Velocity $v$, in feet per second. |
| :---: | :---: | :---: |
| Soft brown eartl | 0.249 | 0.328 |
| Soft loam. | 0.499 | 0.656 |
| Sand.. | 1.000 | 1.312 |
| Gravel.. | 1.998 | 2.625 |
| Pebbles.... ....... | 2.999 | 3.938 |
| Broken stone, flint ${ }_{\text {Conglomerate, }}$ soft slate | 4.003 | 5.579 |
| Conglomerate, soft slate Stratified rock........... | 4.988 6.006 | ${ }_{8}^{6.564}$ |
| Hard rock... | 6.006 10.009 | 8.204 13.127 |

Ganguillet \& Kntter state that they are unable for want of observations to judge how far these figures are trustworthy. They consider them to be rather disproportionately small than too large, and therefore recommend them more confidently.

Water flowing at a high velocity and carrying large quanties of silt is very destructive to channels, even when constructed of the best masonry.

Thesistance of Soils to Erosion by Water.- W. A. Burr, Eng'g News, Feb. 8, 1894, gives a diagram showiug the resistance of various soils to erosion by flowing water.

Experiments show that a velocity greater than 1.1 feet per second will erode sand, while pure clay will stand a velocity of 7.35 feet per second. The greater the proportion of clay carried by any soil, the higher the permissible velocity. Mr. Burr states that experiments have shown that the line describing the power of soils to resist erosion is parabolic. From his diagram the following figures are selected representing difterent classes of
soils:


Abrading and Transporting Power of water.-Prof. J. LeConte, in his "Elements of Geology," states:

The erosive power of water, or its power of overcoming collesion, varies as the square of the velocity of tire current.

The transporting power of a current varies as the sixth power of the velocity. $* * *$ If the velocity therefore be increased ten times, the transporting nower is increased $1,000,000$ times. A current running three feet per second, or about two miles per hour. will bear fragnients of stone of the size of a hen's egg, or about three ounces weight. A current of ten miles an hour will bear fragments of one and a half tons, and a torrent of twenty miles an hour will carry fragments of 100 tons.

The transporting power of water must not be confounded with its erosive power. The resistance to be overcome in the one case is weight, in the other, cohesion; the latter varies as the square: the former as the sixth power of the velocity.

In many cases of removal of slightly cohering material, the resistance is a
mixture of these two resistances, and the power of removing material will vary at some rate between $v^{2}$ and $v^{6}$.

Baldwin Latham has found that in order to prevent deposits of sewage silt in small sewers or drains, such as those from 6 inches to 9 inches diameter, a mean velocity of not less than 3 feet per second should be produced. Sewers from 12 to 24 inches diameter should have a velocity of not less than 216 feet per second, and in sewers of larger dimensions in no case should the velocity be less than 2 feet per second.

The specific gravity of the materials has a marked effect upon the mean velocities necessary to move them. T. E. Blackwell found that coal of a sp.gr. of 1.26 was moved by a current of from 1.25 to 1.50 ft . per second, while stones of a sp . gr. of 2.32 to 3.00 required a velocity of 2.5 to 2.75 ft . per second.

Chailly gives the following formula for finding the velocity required to move rounded stones or shingle :

$$
v=5.67^{\circ} \sqrt{a g},
$$

in which $v=$ velocity of water in feet per second. $a=$ average diameter in feet of the body to be moved, $g=$ its specific gravity.

Geo. Y. Wisner, Eng'g News, Jan 10, 1895, doubts the general accuracy of statements made by many authorities concerning the rate of flow of a current and the size of particles which different velocities will move. He says:

The scouring action of any river, for any given rate of current, must be an inverse function of the depth. The fact that some engineer has found that a given velocity of current on some stream of unknown depth will move sand or gravel has no bearing whatever on what may be expected of currents of the same velocity in streams of greater depilis. In channels 3 to 5 ft . deep a mean velocity of 3 to 5 ft . per second may produce rapid scouring, while in depths of 18 ft . and upwards current velocities of 6 to 8 ft . per second often have no effect, whatever on the channel bed.

Grade of Sewers. - The following empirical formula is given in Baumeister"s "Cleaning and Sewerage of Cities," for the minimum grade for a sewer of clear diameter equal to $d$ inches, and either circular or oval in section :

$$
\text { Minimum grade, in per cent },=\frac{100}{5 d+50} .
$$

As the lowest limit of grades which can be flushed, 0.1 to 0.2 per cent may be assumed for sewers which are sometimes dry, while 0.3 per cent is allowable for the trunk sewers in large cities. The sewers should run dry as rarely as possible.

Relation of Diameter of $\boldsymbol{F}$ pe to Quantity Discharged. In many cases which arise in practuce the informanous sought is the diameter necessary to supply a given quantity of water muder a given head. The diameter is commonly taken to vary as the two-fifth power of the discharge. This is almost certainly too large. Hagen's formula, with Prof. Unwin's coefficients, give $d=c\left(\frac{Q}{\left(\frac{h}{l}\right)^{\frac{1}{2}}}\right)^{.38 \%}$, where $c=.239$ when $d$ and $Q$ are in feet and cubic feet per second.
Mr. Thrupp has proposed a formula which makes $d l$ vary as the .383 powar of the discharge, and the formula of M. Vallot, a French engineer, makes a vary as the .3rt power of the discharge. (Engineering.)

## FLOW OF WATERETKPERIMENTS AND TABLES。

The Flow of Water through New Cast-iron Pipe was measured by S. Bent Russell, of the st. Louis, Mo.. Water-works. The pipe was 12 inehes in diameter, 1631 feet long, and laid on a uniform grade from end to end. Under an average total head of 3.36 feet the flow was 43,200 cubic feet in seven hours; under an average head of 3.37 feet the flow was the same; under an average total head of 3.41 feet the flow was 46, $\boldsymbol{7} 00$ cubic feet in 8 hours and 35 minutes. Making allowance for loss of head due to entrance and to curves, it was found that the value of $c$ in the formula $v=c \sqrt{r s}$ was from 88 to 93. (Eng' $g$ Record, April 14, 1894.

Flow of Water in a 20 -inch Pipe 75,000 Feet Long.-A comparison of experimental data with calculations by different formulæ is
given by Clias. B. Brush, Trans. A. S. C. E., 1888. The pipe experimented with was that supplying the city of Hoboken, N. J.

Results Obtained by the Hackensack Water Company, from 1882-1887. in Pumping Through a $20-\mathrm{in}$. Cast-iron Main 75,000 Feet Long.
Pressure in lbs. per sq. in. at pumping-station:

| 95 | 100 | 105 | 110 | 115 | 120 | 125 | 130 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total effective head in feet :

| 55 | 66 | $7 \%$ | 89 | 100 | 112 | 128 | 185 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Discharge in U.S. gallons in 24 hours, $1=1000$ :

| 2,848 | 8,165 | 3,354 | 3,566 | 8,804 | 3,904 | 4,116 | 4,255 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Actual velocity in main in feet per second :
2.00
2.24
2.36
2.52
2.68
$2.76 \quad 2.92$
8.00

Cost of coal consumed in delivering each million gals. at given velocities, $\begin{array}{llllllll}\$ 8.40 & \$ 8.15 & \$ 8.00 & \$ 8.10 & \$ 8.30 & \$ 8.60 & \$ 9.00 & \$ 9.60\end{array}$
Theoretical discharge by D'Arcy's formula:

$$
\begin{array}{llllllll}
2,743 & 3,004 & 3,244 & 3,488 & 3,699 & 3,917 & 4,102 & 4,297
\end{array}
$$

Velocities in Smooth Castoiron Watermpipes from 1 Foot to 9 Feet in Diameter, on HHydraulic Grades of 0.5 Foot to 8 Geet per IFile; with Corresponding Walues
of $\boldsymbol{c}$ in $V=\boldsymbol{c} \sqrt{\boldsymbol{r} \boldsymbol{s} .}$. (D. M. Greene, in Eng'g News, Feb. 24, 1894.)

|  |  | Hydraulic Grade; Feet per Mile $=\boldsymbol{=}$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} h=0.5 \\ s=0.0000947 \end{gathered}$ | $\begin{gathered} 1.0 \\ 0.0001894 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 0.000: 2841 \end{aligned}$ | $\begin{gathered} 2.0 \\ 0.0003 \pi 88 \end{gathered}$ | $\begin{gathered} 3.0 \\ 0.0005682 \end{gathered}$ | $\begin{gathered} 4.0 \\ 0.000 \pi 576 \end{gathered}$ |
|  | 0.25 | $V=0.4$ | 0.6 | 0.8 | 0.9 |  |  |
|  |  | $c=92.7$ | 97.0 | 99.1 | 100.7 | 103.0 | 104.7 |
| 2. | 0.5 | $V=0.73$ | 1.0793 | 1.3516 | 1.58 | 1.9857 | 2.3:94 |
|  |  | $c=106.6$ | 110.9 | 113.4 | 115.2 | 117.9 | 119.7 |
|  |  | $V=0.9733$ | 1.4298 | 1. $0^{906}$ | 2.1017 | 2.630 | 3.0860 |
|  | 0.75 | $c=115.5$ | 119.9 | $1 \geqslant 2.6$ | 124.4 | 127.5 | 129.5 |
|  | 1.0 | $V=1.188$ | 1.745 | 2.18 | 2.56 | 3.2116 | 3.76\%6 |
|  |  | $c=12.1$ | 126.8 | 129.7 | 131.8 | 134.7 | 136.9 |
| 5. | 1.25 | $V=1.38$ | 2.037 | 2.5521 | 2.99 | 3.7 | 4.3983 |
|  |  | $\begin{aligned} & c \\ & V \\ & V\end{aligned}=127.5$ | 132.4 2.3126 | 135.5 | 13\%.6 | 140.7 | 42.9 |
| 0. | 1.5 | $V=1.5$ $c$ | ${ }_{137.8}^{2.3126}$ | 2.89 140.3 | 3.3 142.6 | 4.:\% | 4.9913 |
|  |  | $\begin{aligned} V & =132.1 \\ V & =1.75\end{aligned}$ | 13.8 | 140.3 3.2230 | ${ }^{142.6} 3.7809$ | 145.8 | 148.1 5.55 |
|  | 1.75 | $c=135.9$ | 141.4 | 146.0 | 146.8 | 150.2 | 5.55 |
|  | 2.0 | $V=1.921$ | 2.833 | 3.5358 | 4.14 | 5.1945 | 52.5 6.0936 |
|  |  | $c=139.7$ | 1451 | 148.4 | 150.7 | 154.1 | 156.5 |
|  |  | $V=2.0854$ | 3.0638 | 3.8368 | 4.5010 | 5.63 | 6.61 |
|  |  | $c=142.9$ | 148.4 | 151.7 | 154. | 15\%.6 | 60.1 |

The velocities in this table have been calculated by Mr. Greene's modification of the Chezy formula, which modification is found to give results which differ by from 1.29 to - 2.65 per cent (average 0.9 per cent) from very carefully measured flows in pipes from 16 to 48 inches in diameter, on grades from 1.68 feet to 10.296 feet per mile, and in which the velocities ranged from 1.577 to 6.195 feet per second. The only assumption made is that the modified formula for $V$ gives correct results in conduits from 4 feet to 9 feet in diameter, as it is known to do in conduits less than 4 feet in diameter

Other articles on Flow of Water in long tubes are to be found in $E n g \cdot g$ News as follows : G. B. Pearsons, Sept. $23,18 i 6 ;$ E. Sherman Gould, Feb. 16, 23, March 9, 16, and 23, 1889; J. L. Fitzgerald, Sept. 6 and 13, 1890; Jas. Duane, Jan. 2, 1892: J. T. Fanning, July 14, 1892; A. N. T'albot, Aug. 11, 1892.

## Flow of Water in Circular Pipes, Sewers, etc., Flowing Full. Based on Kutter's Formula, with $u=.013$.

Discharge in cubic feet per second.

| Diameter. | Slope, or Head Divided by Length of Pipe. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 in 40 | 1 in 70 | 1 in 100 | 1 in 200 | 1 in 300 | 1 in 400 | 1 in 500 | 1 in 600 |
| 5 | . 456 | . 344 | . 288 | . 204 | . 166 | . 144 | . 137 | 118 |
|  | 762 | . 576 | . 482 | . 341 | . 278 | . 241 | . 230 | 197 |
| 7 | 1.17 | . 889 | . 744 | . 526 | . 430 | . 372 | . 355 | . 304 |
| 8 | 1.70 | 1.29 | 1.08 | . 765 | .624 | . 54 | . 516 | 441 |
| 9 " | 2.37 | 1.79 | 1.50 | 1.06 | . 868 | . 75 | . $71 \%$ | 613 |
| Slope | 1 in 60 | 1 in 80 | 1 in 100 | 1 in 200 | 1 in 300 | 1 in 400 | 1 in 500 | 1 in 600 |
| 10 in. | 2.59 | 2.24 | 2.01 | 1.48 | 1.16 | 1.00 | . 90 | . 82 |
| 11 ' | 3.39 | 2.94 | 2.63 | 1.86 | 152 | 1.31 | 1.17 | 1.07 |
| 12 | 4.32 | 3.74 | 3.35 | 2.37 | 1.93 | 1.67 | 1.5 | 1.37 |
| 13 | 5.38 | 4.66 | 4.16 | 2.95 | 2.40 | 2.08 | 1.86 | $1 . \% 0$ |
| 14 | 6.60 | 5.70 | 5.15 | 3.62 | 2.95 | 2.5 \% | 2.29 | 2.09 |
| Slope | 1 in 100 | 1 in 200 | 1 in 300 | 1 in 400 | 1 in 500 | 1 in 600 | 1 in 700 | 1 in 800 |
| 15 in. | 6.18 | 437 | 3.57 | 3.09 | 2.77 | 2.52 | 2.34 | 2.19 |
| 16 | 7.38 | 5.22 | 4.26 | 3.69 | 3.30 | 3.01 | 2.79 | 2.61 |
| 18 | 10.21 | 7.22 | 5.89 | 5.10 | 4.56 | 4.17 | 3.86 | 3.61 |
| 20 | 13.65 | 9.65 | 7.88 | 6.82 | 6.10 | 5.57 | 5.11 | 4.83 |
| 22 " | 17.71 | 12.52 | 10.22 | 8.85 | 7.92 | \%. 23 | 6.69 | 6.26 |
| Slope | 1 in 200 | 1 in 400 | 1 in 600 | 1 in 800 | 1 in 1000 | 1 in 1250 | 1 in 1500 | 1 in 1800 |
| 2 ft . | 15.88 | 11.23 | 9.17 | 7.94 | \%. 10 | 6.35 | 580 | 5.29 |
| 2 ft .2 | 19.73 | 13.96 | 11.39 | 9.87 | 8.82 | 7.89 | 7.20 | 6.58 |
| $2 \times 4$ | 24.15 | 17.07 | 1394 | 12.07 | 10.80 | 966 | 8.82 | 8.05 |
| 2 "6 " | 29.08 | 20.56 | 16.79 | 14.54 | 13.00 | 11.63 | 10.62 | 9.69 |
| 2 " 8 " | 34.71 | 24.54 | 20.04 | 17.35 | 15.52 | 13.88 | 12.67 | 11.57 |
| Slop | 1 in 500 | 1 in 750 | 1 in 1000) | 1 in 1250 | 1 in 1500 | 1 in 1750 | 1 in 2000 | 1 II 2506 |
| 2 ft .10 in . | 25.84 | 21.10 | 18.27 | 16.34 | 14.92 | 13.81 | 12.92 | 11.55 |
|  | 30.14 | 24.61 | 21.31 | 19.06 | 17.40 | 16.11 | 15.07 | 13.48 |
| 3 " 2 in . | 34.90 | 28.50 | 24.68 | 22.07 | 20.15 | 18.66 | 17.45 | 15.61 |
| 3 " 4 " | 40.08 | 3272 | 28.34 | 25.35 | 23.14 | 21.42 | 20.04 | 17.93 |
| 3"6 " | 45.66 | 37.28 | 32.28 | 28.87 | 26.36 | 24.40 | 22.83 | 20.41 |
| Slop | 1 in 500 | 1 in 750 | 1 in 1000 | 1 in 1250 | 1 in 1500 | 1 in 1750 | 1 in 2000 | 1 in 2500 |
| 3 ft . 8 in . | 51.74 | 42.52 | 36.59 | 32.72 | 29.87 | 27.66 | 25.87 | 23.14 |
| 3 " 10 " | 58.36 | 47.65 | 41.27 | 3691 | 33.69 | 31.20 | 29.18 | 26.10 |
|  | $6: 3.47$ | 53.46 | 46.30 | 41.41 | 37.80 | 34.50 | 32.74 | 29.28 |
| 4 " 6 in. | 89.75 | 73.28 | 63.47 | 56.76 | 51.82 | 47.97 | 44.88 | 40.14 |
| 5 " | 118.9 | 97.09 | 84.08 | 75.21 | 68.65 | 63.56 | 59.46 | 53.18 |
| Slope | 1 in 750 | 1 in 1000 | 1 i 11500 | 1 in 2000 | 1 in 2500 | 1 in 3000 | 1 in 3500 | 1 in 4000 |
| 5 ft .6 in . | 125.2 | 108.4 | 88.54 | \%6.67 | 68.58 | 62.60 | 57.96 | 54. 21 |
| 6 " | 157.8 | 136.7 | 111.6 | 96.66 | 86.45 | 78.92 | 73.0\% | 6835 |
| 6 " 6 | 195.0 | 168.8 | 137.9 | 119.4 | 106.8 | 97.49 | 90.26 | 84.43 |
| $7{ }^{\prime \prime}$ | 237.7 | 205.9 | 168.1 | 145.6 | 130.2 | 118.8 | 110.00 | $10 \% .9$ |
| 7"6 " | 285.3 | 247.1 | 201.7 | 174.7 | 156.3 | 142.6 | 132.1 | 123.5 |
| Slope | 1 in 1500 | 1 in 2000 | in 2500 | 1 in 3000 | 1 in 3500 | 1 in 4000 | 1 in 4500 | 1 in 5000 |
| 8 ft . | 239.4 | 207.3 | 195.4 | 169.3 | $156 . \%$ | 146.6 | 138.2 | 131.1 |
| 8 " 6 in. | 281.1 | 243.5 | 217.8 | 198.8 | 184.0 | 172.2 | 162.3 | 154.0 |
| $9 \times$ | $3: 7.0$ | 283.1 | 253.3 | 231.2 | 214.0 | 200.2 | 188.7 | 179.1 |
| 9 " 6 | $3 \pi 6.9$ | $3 \because 6.4$ | 291.9 | 266.5 | 246.7 | 230.8 | 217.6 | 206.4 |
| 10 | 431.4 | 333.6 | 334.1 | 305.0 | 282.4 | . 2 | 249.1 | 256.3 |

For U. S. gallons multiply the figures in the table by 7.4805.
For a given diameter the quantity of flow varies as the square root of the sine of the slope. From this principle the flow for other slopes than those
given in the table may be found. Thus, what is the flow for a pipe 8 feet diameter, slope 1 in 125? From the table take $Q=207.3$ for slope 1 in 2000. The given slope 1 in 125 is to 1 in 2000 as 16 to 1 , and the square root of this ratio is 4 to 1. Therefore the flow required is $207.3 \times 4=829.2 \mathrm{cu} . \mathrm{ft}$.

## Circular Pipes, Conduits, etc., Flowing Full.

Values of the factor ac $\sqrt{r}$ in the formula $Q=a c \sqrt{r} \times \sqrt{s}$ corresponding to differeut values of the coefficient of roughness, $n$. (Based on Kutter's formula.)

| घ્નં | Value of ac $\sqrt{r}$. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ft. in. | $n=.010$ | $n=.011$. | $n=.012$. | $n=.013$. | $n=.015$. | $n=.017$. |
| 6 | 6.906 | 6.0627 | 5.3800 | 4.8216 | 3.9604 | 3.399 |
|  | 21.25 | 18.742 | 16.708 | 15.029 | 12.421 | 10.50 |
| 1 | 46.93 | 41.487 | 3 3. 149 | 33.49 \% | 27.803 | 2360 |
| 13 | 86.0 万 | r6.347 | 68.44 | 61.867 | 51.600 | 43.93 |
| 16 | 141.2 | 125.60 | 112.79 | 102.14 | 85.496 | 72.99 |
| 19 | 214.1 | 190.19 | 171.66 | 155.68 | 130.58 | 111.8 |
| 2 | 307.6 | 274.50 | 247. 33 | 224.63 | 188.77 | 164 |
| 23 | 421.9 | 317.07 | 340.10 | 309.23 | 260.47 | 223.9 |
| 26 | 559.6 | 500.78 | 452.07 | 411.27 | 347. 28 | 299.3 |
| 29 | 722.4 | 647.18 | 584.90 | $53 \% .16$ | 451.23 | 388.8 |
| 3 | 911.8 | 817.50 | 739.59 | 674.09 | 570.90 | 493.3 |
| 33 | 1128.9 | 1013.1 | 917.41 | 836.69 | r09.56 | 613.9 |
| 36 | 1374.7 | 1234.4 | 1118.6 | 1021.1 | 866.91 | \% 50.8 |
| 39 | 1652.1 | 1484.2 | 1345.9 | 1229.7 | 1045 | 906 |
| 4 | 1962.8 | 1764.3 | 1600.9 | 1463.9 | 1245.3 | 1080.7 |
| 46 | 2682.1 | 2413.3 | 2193 | 2007 | 1711.4 | 148 \%. 3 |
| 5 | 354.3 | 3191.8 | 2903.6 | 2659 | 2272.7 | $19 \% 7$ |
| 56 | 4557.8 | 4111.9 | 3742.7 | 3429 | 2934.8 | 2557.2 |
| 6 | 5731.5 | 5176.3 | 4713.9 | 4322 | 3702.3 | 3232. 5 |
| 66 | 7075.2 | 6394.9 | 58:25.9 | 5339 | 4588.3 | 4010 |
| 7 | 8595.1 | 7T74.3 | 7087 | 6510 | 5591.6 | 4893 |
| 76 | 10296 | 9318.3 | 8501.8 | 7814 | 6717 | 5884.2 |
| 8 | 12196 | 11044 | 10083 | $92 \% 2$ | 7978.3 | 6995.3 |
| 86 | 14298 | 12954 | 11832 | 10889 | 93 \%\%. 9 | 82:6.3 |
| 9 | 16604 | 15049 | 13751 | 12663 | 1091\% | 9580.7 |
| 96 | 19118 | 17338 | 15847 | 14597 | 12594 | 11061 |
| 10 | 21858 | 19834 | 18134 | 16709 | 14426 | 126\%8 |
| 10 6 | -4823 | 22534 | 20612 | 18996 | 16412 | 14434 |
| 11 | 28020 | 25444 | $23: 85$ | 21464 | 18555 | 16333 |
| 116 | $3148 \%$ | 28593 | 26179 | 24139 | 208\%9 | 18395 |
| 12 | 35156 | 31937 | 29254 | 26981 | 23352 | 20584 |
| 126 | 39104 | 35529 | 32558 | 30041 | 26012 | 22938 |
| 13 | 43307 | 39358 | 36077 | 33301 | 28850 | 25451 |
| 136 | 47751 | 43412 | 39802 | 3 3\%\%2 | 31860 | 28117 |
| 14 | 52491 | 47739 | 43 T 73 | 40432 | 35073 | 30965 |
| 148 | 57496 | 52308 | 47969 | 44322 | 38454 | 33975 |
| 15 | $62 \sim 48$ | 57103 | 5238\% | 48413 | 42040 | 3 3147 |
| 16 | 74191 | 67557 | 62008 | 57343 | 49893 | 44073 |
| 17 | $86 \% 69$ | 79050 | 72594 | 67140 | 58387 | 51669 |
| 18 | 100617 | 91711 | 84247 | 77932 | 67839 | 60067 |
| 19 | 115769 | $1055 \% 0$ | 96991 | 89759 | \%8201 | 69301 |
| 0 | 132133 | 1205\%0 | 110905 | 102559 | 89423 | 79259 |

## Flow of Water in Circular Pipes, Conduits, etc., Flowing

Based on D'Arcy's formulæ for the flow of water through cast-iron pipes. With comparison of results obtained by Kutter's formula, with $u=.013$. (Condeused from Flynn on Water Power.)

Values of $a$, and also the values of the factors $c \sqrt{r}$ and ac $\sqrt{r}$ for use in the formulæ $Q=a v ; \quad v=c \sqrt{r} \times \sqrt{-}$, and $Q=a c \sqrt{r} \times \sqrt{s}$.
$Q=$ discharge in cubic feet per second, $a=$ area in square feet, $v=$ velocity in feet per second, $r=$ mean hydraulic depth, $1 / 4$ diam. for pipes running full, $s=$ sine of slope.
(For values of $\sqrt{3}$ see page 558.)


FLOW OF WATER IN CIRCULAR PIPES, ETC. 571

| Size of Pipe. |  |  | Clean Cast-iron Pipes. |  | $\left\|\begin{array}{c} \text { Value of } \\ \text { ac } \sqrt{r} \text { by } \\ \text { Kutter's } \\ \text { Formula, } \\ \text { when } \\ n=.013 \end{array}\right\|$ | Old Cast-iron Pipes Lined with Deposit. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { diam. } \\ & \text { in } \\ & \text { in. } \end{aligned}$ | $\begin{aligned} & a=\text { area } \\ & \text { in } \\ & \text { square } \\ & \text { feet. } \end{aligned}$ | For Velocity, $c \sqrt{r}$. | For Discharge, ac $\sqrt{r}$. |  | For Velocity, c $\sqrt{r}$. | For Discharge, $a c \sqrt{r}$. |
| 10 | 6 | 86.590 | 183.6 | 15893 | 18996 |  |  |
| 11 |  | 95.033 | 187.9 | 17855 | 21464 | 123.4 | 10690 12010 |
| 11 | 6 | 103.869 | 192.2 | 19966 | 24139 | 129.3 | 13429 |
| 12 |  | 113.098 | 196.3 | 22204 | 26981 | 132 | 14935 |
| 12 | 6 | 122 719 | 200.4 | 24.958 | 30041 | 134.8 | 16545 |
| 13 13 | 6 | $13 \cdot .733$ 143.139 | 204.4 208.3 | 27134 | 33301 | 137.5 | 18252 |
| 14 | 6 | 15.3938 | 208.3 | 29818 | 36773 | 140.1 | 20056 |
| 14 | 6 | 165.130 | 216.0 | 35660 | 40432 | 145.7 | 21971 |
| 15 |  | 176.715 | 219.6 | $3880{ }^{\text {\% }}$ | 48413 | 147.7 | 26986 |
| 15 | 6 | 188.69\% | 22.3 .3 | 42125 | 52 253 | 150.1 | 28335 |
| 16 |  | ${ }^{201.06 \%}$ | 226.9 | 456\%1 | 57343 | 152.6 | 20686 |
| 16 | 6 | 213.835 | 230.4 | 49273 | 62132 | 155 | 33144 |
| 17 |  | 2:26.981 | $\stackrel{233.9}{23}$ | 53082 | 67140 | 157.3 | 35704 |
| 18 | 6 | 240.5*9 | $\stackrel{231.3}{2407}$ | 57074 | 72409 | 159.6 | 38389 |
| 19 |  | 283.5:9 | $24 \%$ | \% 0154 | ${ }_{89759}$ | 161.9 | 41199 |
| 20 |  | 314.159 | 25.3 .8 | \%9736 | ${ }_{102559}$ | 166.4 $1 \% 0.7$ | ${ }_{5}^{47186}$ |

Wlow of Water in Circular Pipes from $3 / 8$ inch to 12 inches Diameter.
Based on D'Arcy's formula for clean cast-iron pipes. $Q=a c \sqrt{r} \sqrt{s}$.

| Value of ac $\sqrt{r}$. | Dia. | Slope, or Head Divided by Length of Pipe. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 in 10. | 1 in | 1 in 40. | 1 in 60. | 1 in 80. | 1 in 100. | 1 in 150. | $\begin{aligned} & 1 \mathrm{in} \\ & 200 . \end{aligned}$ |
|  |  |  | Quan <br> 00090 | tity in | cubic |  |  |  |  |
| . 00914 |  | .00128 | . 000901 | . 00064 | . 00052 | . 00045 | . 00040 | . 00033 | . 0 |
| . 02855 |  | . 00903 | . 00158 | . $00+51$ | . 00369 | .00319 | . 00288 | . 00075 | 5 |
| . 06334 |  | . 02003 | . 01416 | . 01001 | . 00818 | . 00708 | . 00633 | .00233 | 2 |
| . 1165 | 11 | 03687 | .02607 | . 01843 | . 01505 | . 01303 |  |  | . 00804 |
| . 19115 | 11 | . 06044 | .04274 | .03022 | .02468 | . 02137 | . 011912 | . 000952 | .00824 |
| . 28933 | 13 | . 09140 | . 06470 | . 045 T5 | .03736 | . 03235 | . 02894 | . 022363 | . 02045 |
| . 41357 | 2 | . 13077 | .09247 | . 035339 | . 05339 | . 04624 | . 04136 | .03377 | 0292r |
| . 7478 | $21 / 2$ | 23647 | .16792 | .11824 | . 09655 | . 08361 | . $074 \sim 9$ | . 06106 | 05288 |
| 2.5630 | 3 | . 81042 | . 573309 | . 19113 | . 15607 | . 13515 | . 12089 | .09871 | . 08548 |
| 4.5610 | 5 | 1.4422 | 1.0198 | . 72109 | . 58882 | . 580992 | . 25636 | . 2 | . 18123 |
| \%. 3068 | ${ }_{6}$ | 2.3104 | 1.6338 | 1.1552 | . 94331 | . 81690 | . 73068 |  | . 51666 |
| 10.852 | $\underset{\sim}{1}$ | 3.4314 | 1. 3.4265 | 1.715 | 1.4110 | 1.2132 | 1.0852 | . 88860 | . 51666 |
| $15.2 \pi 0$ | 8 | 4.8984 | 3.4143 | 2.4141 | 1.9713 | 1.7072 | 1.52\%0 | 1.2468 | 1.079\% |
| 20.652 | 9 | 6.530: | 4.6178 | 3. 2651 | 2.6662 | 2.3089 | 2.0652 | 1.6868 | 1.46 |
| 26.959 | 10 | 8.5922 | - 0.0265 | 4.2611 | 3.4795 | 3.0132 | 2.6952 | 1.2006 | 1.9058 |
| 34.428 | . | 10.886 | 7.6981 | 5.4431 | 4.4447 | 3.8491 | 3.4428 | 2.8110 | $1{ }^{1}$ |
| 42.918 | 12 | 13.571 | 9.5965 | 6.7853 | 5.5407 | 4.7982 | 4.2918 | 3.5043 | 3.0347 |
| Value of $\sqrt{s}=1.3162$ |  |  | . 2836 | . 1581 | . 1291 | 1118 | 1 | 08165 | . 070 |


| Value of $a c \sqrt{r}$. | Dia. | Slope, or Head Divided by Length of Pipe. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 in 250. | 1 in 300. | $1 \mathrm{in} \mathrm{\prime}$ 350. | 1 in 400. | 1 in 450. | 1 in 500. | $\begin{aligned} & 1 \text { in } \\ & 550 . \end{aligned}$ | $\begin{aligned} & 1 \text { in } \\ & 600 . \end{aligned}$ |
| . 00403 | $3 / 8$ | . 00025 | 00023 | .0002: | 00020 | . 00019 | . 00018 | . $0001{ }^{\text {r }}$ | 00016 |
| . 00914 | $1 \%$ | . 00058 | 00053 | . 00049 | . 00046 | . 00043 | . 00041 | . 00038 | 00037 |
| . 02855 | $3 / 4$ | . 00181 | . 00165 | . 00153 | . 00143 | . 00134 | . 00128 | . 00122 | 00117 |
| . $06: 334$ | 1 | . 00400 | . 00366 | . 0033.39 | . 00317 | . 00:29 | . 00283 | .002\% 0 | .00259 |
| . 11659 | $11 / 4$ | .00731 | . 00678 | . 00623 | . 00583 | . 00549 | . 00521 | . 00497 | 00476 |
| . 19115 | $11 / 2$ | . 01209 | . 01104 | .01022 | . 00956 | . 00901 | . 00855 | . 00815 | . 00780 |
| . 28936 | 13.4 | . 018330 | . 01671 | . 01547 | . $0144 \sim$ | . 01363 | . 01394 | .012:34 | . 01181 |
| . 41357 | 2 | .02615 | . 02388 | . 02211 | .02068 | . 01948 | . 01849 | . 01763 | 01688 |
| . 74786 | 21/2 | . 04730 | . 04318 | .03997 | . 03739 | .03523 | . 03344 | . 03189 | . 03053 |
| 1.2089 | $3{ }^{2}$ | . 07645 | . 06980 | . 06468 | . 06045 | . 05695 | . 03406 | . 05155 | . 04935 |
| 2. 5630 | 4 | . 16208 | . $14 \% 99$ | . 13699 | . 12815 | . 12074 | . 11461 | . 10929 | . 10463 |
| 4.5610 | 5 | . 28843 | . 26335 | . 24379 | . $2: 2805$ | . 21487 | . 20397 | .19448 | . 19680 |
| 7.3068 | 6 | . $46: 08$ | . 42189 | . 39055 | . 36534 | . $3442:$ | . 32676 | .31156 | - 29830 |
| 10.852 | 7 | . 68698 | . $6 \times 660$ | .58005 | . 54260 | . 51124 | . 48530 | .46273 | . 44303 |
| 15.270 | 8 | . 96567 | . 88158 | . $8161 \%$ | . 763350 | . 71936 | . 68286 | . 65111 | . 62340 |
| 20.652 | 9 | 1.3060 | 1.1924 | 1.1038 | 1.03:6 | . $9 \sim 292$ | . 92356 | . 88060 | . 84310 |
| 26.952 | 10 | 1.7044 | 1.5562 | 1.4405 | $1.34 \% 6$ | 1.2697 | 12053 | 1.1492 | 1.1003 |
| 34.428 | 11 | 2.1772 | $1.98 \% 8$ | $1.810:$ | 1.7214 | 1.6219 | 1.5396 | 1.4680 | 1.4055 |
| 42.918 | 12 | 2.7141 | 2.4781 | 2.2940 | 2.1459 | 2.0219 | 1.9193 | 1.8300 | 1.7521 |
| Value of | $=$ | . 06324 | .05\%74 | .05345 | . 05 | . 04711 | . 04472 | .04264 | . 04082 |

For U. S. gals. per sec., multiply the figures in the table by...


For any other slope the flow is proportional to the square root of the slope ; thus, flow in slope of 1 in 100 is double that in slope of 1 in 400.

Flow of Water in Pipes from $3 / 8$ Inch to 12 Inches Diameter for a Uniform Velocity of 100 Ft. per Min.

| Diameter <br> in Inches. | $\begin{gathered} \text { Area } \\ \text { in } \\ \text { Square Feet. } \end{gathered}$ | Flow in Cubic Feet per Minute. | Flow in U. S Gallons per Minute. | Flow in U. S. Gallons per Hour. |
| :---: | :---: | :---: | :---: | :---: |
| 3/8 | . $000 \% 7$ | 0.077 | . 57 | 34 |
| 12 | . 00136 | 0.136 | 1.02 | 61 |
| $3 / 4$ | . 0030 \% | 0.307 | 2.30 | 138 |
| 1 | . 00545 | 0.545 | 4.08 | 245 |
| 114 | .00852 | 0.852 | 6.38 | 383 |
| $11 / 2$ | . 01227 | 1.227 | 9.18 | 551 |
| 13/4 | . $016 \%$ | $1.6 \% 0$ | 12.50 | 750 |
| 2 | . 02182 | 2.182 | 16.32 | 979 |
| 21/ | . 0341 | 3.41 | 25.50 | 1,530 |
| 3 | . 0491 | 4.91 | 36.70 | 2,203 |
| 4 | . 0873 | 8.73 | 65.28 | 3,917 |
| 5 | . 136 | 13.6 | 102.00 | 6,120 |
| 6 | . 196 | 19.6 | 146.88 | 8,813 |
| 7 | .267 | 26.7 | 199.92 | 11,995 |
| 8 | . 343 | 84.9 | 261.12 | 15,66 ${ }^{\text {¢ }}$ |
| 9 | . 442 | 44.2 | 330.48 | 19,829 |
| 10 | . 545 | 54.5 | 408.00 | 24,480 |
| 11 | . 660 | 66.0 | 493.68 | 29,621 |
| 12 | . 785 | 78.5 | 58~. 52 | 35,251 |

Given the diameter of a pipe, to find the quantity in gallons it will deliver, the velocity of flow being 100 ft . per minute. Square the diameter in inches And multiply by 4.08 .

If $Q^{\prime}=$ quantity in gallons per minute and $d=$ diameter in inches, then

$$
Q^{\prime}=\frac{d^{2} \times .7854 \times 100 \times 7.4805}{144}=4.08 d^{2}
$$

For any other velocity, $V^{\prime}$, in feet per minute, $Q^{\prime}=4.08 d^{2} \frac{V^{\prime}}{100}=.0408 d^{2} V^{\prime}$.
Given diameter of pipe in inches and velocity in feet per second, to find discharge in cubic feet and in gallons per minute.

$$
\begin{aligned}
Q^{\prime} & =\frac{d^{2} \times .7854 \times v \times 60}{144}=0.32 \pi 25 d^{2} v \text { cubic feet per minute. } \\
& =.32 \pi 25 \times 7.4805 \text { or } 2.448 d^{2} v \mathrm{U} . \text { S. gallons per minute. }
\end{aligned}
$$

To find the capacity of a pipe or cylinder in gallons, multiply the square of the diameter in inches by the length in inches and by .0034. Or mnltiply the square of the diameter in inches by the length in feet and by .0408.

$$
Q=\frac{.7854 d^{2} l}{231}=.0034 d^{2} l(\mathrm{exact}) .0034 \times 12=.0408
$$

## LOSS OF HEAD.

The loss of head due to friction when water, steam, air, or gas of any kind flows through a straight tube is represented by the formula

$$
h=f \frac{4 l}{d} \frac{v^{2}}{2 g} ; \quad \text { whence } v=\sqrt{\frac{61.4}{4 f} \frac{h d}{l}},
$$

in which $l=$ the length and $d=$ the diameter of the tube, both in feet; $v=$ velocity in feet per second, and $f$ is a coefficient to be determined by experiment. According to Weisbach, $f=.00614$, in which case

$$
\sqrt{\frac{64.4}{4 f}}=50, \text { and } \quad v=50, \sqrt{\frac{h d}{l}}
$$

which is one of the older formulæ for flow of water (Downing's). Prof. Unwin says that the value of $f$ is possibly too small for tubes of small bore, and he would put $f=.006$ to .01 for 4 -inch tubes, and $f=.0084$ to 012 for 2 inch tubes. Another formula by Weisbach is

$$
h=\left(.0144+\frac{.01716}{\sqrt{v}}\right) \frac{l}{d} \frac{v^{2}}{2 g^{.}}
$$

Rankine gives

$$
f=.005\left(1+\frac{1}{12 d}\right)
$$

From the general equation for velocity of flow of water $v=c \sqrt{r} \sqrt{s},=$ for round pipes $c \sqrt{\frac{\bar{d}}{4}} \sqrt{\frac{h}{l}}$, we have $v^{2}=c^{2} \frac{d}{4} \frac{h}{l}$ and $h=\frac{4 l v^{2}}{c^{2} d}$, in which $c$ is the coefficient $c$ of D'Arcy's, Bazin's, Kutter's, or other formula, as found by experiment. Since this coefficient varies with the condition of the inner surface of the tube, as well as with the velocity, it is to be expected that values of the loss of head given by different writers will vary as much as those of quantity of flow. Two tables for loss of head per 100 ft . in length in pipes of different diameters with different velocities are given below. The first is given by Clarls, based on Ellis' and Howland's experiments; the second is from the Pelton Water-wneel Co.'s catalogue, based on Cox's formula, see p. 575 , with the divisor 1000 instead of 1200 , as it is for riveted steel pipe. The loss of head as given in these two tables for any given diameter and velocity differs considerably. Either table should be used with caution and the results compared with the quantity of flow for the given diameter and head as given in the tables of flow based on Kutter's and D'Arcy's formule.

Relative Loss of Read by Eriction for cack 100 reer Length of Clean Castoibon Pipe.
(Based on Ellis and Howland's experiments.)

| Velocity in Feet per. Second | Diameter of Pipes in Inches. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 |
|  | Loss of Head in Feet, per 100 Feet Long. |  |  |  |  |  |  |  |  |  |
| Feet | $\left\|\begin{array}{l} \text { Feet } \\ \text { of } \\ \text { ead } \end{array}\right\|$ | $\left\lvert\, \begin{aligned} & \text { Feet } \\ & \text { of } \\ & \text { Head } \end{aligned}\right.$ | $\left\lvert\, \begin{aligned} & \text { Feet } \\ & \text { of } \\ & \text { Head } \end{aligned}\right.$ | $\left\|\begin{array}{c} \text { Feet } \\ \text { of } \\ \text { Head } \end{array}\right\|$ | Feet of Head | Feet of Head | $\begin{aligned} & \text { Feet } \\ & \text { cf } \\ & \text { llead } \end{aligned}$ | Feet of Head | Feet of Head | $\begin{gathered} \text { Feet } \\ \text { of } \\ \text { Head } \end{gathered}$ |
| 2 | . 97 | . 55 | . 41 | . 32 | . 27 | . $\because 3$ | . 19 | . 18 | . 15 | . 19 |
| 2.5 | 1.49 | . 92 | . 64 | . 50 | . 43 | . 36 | .30 | . 27 | . 23 | . 19 |
| 3 | 1.9 | 1.2 | . 82 | . 72 | . 61 | . 51 | . 44 | . 39 | . 33 | . 27 |
| 3.5 | 2.6 | 1.6 | 1.2 | 1.0 | .7 | . 71 | . 61 | . 52 | . 45 | . 37 |
| 4 | 3.3 | 2.2 | 1.7 | 1.3 | . 9 | . 92 | . 79 | . 69 | . 59 | . 49 |
| ${ }_{5}^{4.5}$ | ..... | .... | .... | 1.6 | 1.2 | 1.2 | 1.01 | . 87 | . 75 | . 61 |
| ${ }_{6}^{5.5}$ |  |  | ... |  |  |  | 1.2 | 1.1 | . 90 | 76 .92 |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 42 | 48 |
| 2 | . 11 | . 095 | . 075 | . 065 | 0.55 | . 052 | . 049 | . 047 | . 036 | . 030 |
| 2.5 | . 17 | . 147 | . 117 | . 109 | . 088 | . 085 | . 076 | . 067 | . 056 | . 046 |
| 3 | . 25 | . 21 | . 17 | . 15 | . 13 | . 12 | . 108 | . 10 | . 081 | . 067 |
| 3.5 | . 34 | . 29 | . 23 | $\therefore 0$ | . 18 | 16 | . 15 | . 14 | . 111 | . 092 |
| 4 | . 44 | . 36 | . 31 | . 27 | . 23 | . 2.3 | . 20 | . 17 | . 14 | . 116 |
| 4.5 | . 56 | . 46 | . 39 | . 31 | . 30 | . 28 | . 25 | . 22 | . 18 | . 15 |
| 5 | . 70 | . 58 | . 48 | . 41 | . 37 | . 34 | . 30 | . 27 | . 22 | . 18 |
| 5.5 | . 84 | . 0 | . 59 | . 50 | . 44 | . 39 | . 36 | . 32 | . 27 | . 22 |
| 6 | ...... | .. . | .... | . 59 | . 53 | .49 | 43 | . 4 | . 32 | . 27 |

Loss of Head in Pipe by Friction.-Toss of head by friction in each 100 fret in length of differen dammers of pipe when discharging the following quantities of water per minute (Pelton Water-wheel Co.) :

|  | Inside Diameter of Pipe in Inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 2 |  | 8 |  | 4 |  | 5 |  | 6 |  |
|  |  |  |  | $\begin{aligned} & \stackrel{L}{0} \\ & \stackrel{0}{0} \\ & \text { © } \\ & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & Q \end{aligned}$ |  |  |  |  |  |  |  |  |
| 2.0 | 2.37 | . 65 | 1.185 | 2.62 | 791 | 5.89 | . 503 | 10.4 | . 47 | 16.3 | 395 | 23.5 |
| 3.0 | 4.89 | . 99 | 2.44 | 3.92 | 1.62 | 8.83 | 1.22 | 15.7 | . 978 | 24.5 | . 815 | 35.3 |
| 4.0 | 8.20 | 1.32 | 4.10 | 5.23 | 2.73 | 11.80 | 2.05 | 20.9 | 1.64 | 32.7 | 1.37 | 47.1 |
| 5.0 | 12.33 | 1.65 | 6.17 | C. 54 | 4.11 | 14. 20 | 3.08 | 26.2 | 2.46 | 40.9 | 2.05 | 58.9 |
| 6.0 | 17.23 | 1.98 | 8.61 | 7.85 | 5.74 | 17.70 | 4.31 | 31.4 | 3.45 |  | 2.87 | 70.7 |
| 7.0 | 22.89 | 2.31 | 11.45 | 9.16 | ${ }^{7} .62$ | 20.6 | 5.72 | 36.6 | 4.58 | 58.2 | 3.81 | $8 \stackrel{4}{4}$ |

## (Continued on next prige.)

Flow of Water in Riveted Steel Pipes. - The laps and ifivets tend to decrease the carrying copacity of the pipe. See paper on "New Formulas fon Calculating the Flow of Water in Pipes and Channels," by W. E. Foss, Jour. Assoc. Eng. Soc, xiii, 295. Also Clemens Herschel's book on " 11 s Experiments on the Carrying Capacity of Large Riveted Metal Conduits," Johu Wiley \& Sons, 189\%.

|  | Inside Diameter of Pipe in Inches. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 7 |  | 8 |  | 9 |  | 10 |  | 11 |  | 12 |  |
| $V$ | h | $Q$ | $\pi$ | $Q$ | $h$ | $Q$ | $h$ | $Q$ | $h$ | $Q$ | $h$ | $Q$ |
| 2.0 | . 338 | 32.0 | . 296 | 41.9 | . 264 | 53 | . 237 | 65.4 | . 216 | \%9.2 | 198 | 94.2 |
| 3.0 4.0 | 1. 698 | 48.1 | . 611 | 62.8 | . 544 | 79.5 | . 488 | 98.2 | . 444 | 119 | . 407 | 141 |
| 5.0 | 1.76 | 80.2 | 1.027 | 83.7 | . 913 | 106 | . $8 \%$ | 131 | . $74{ }^{4}$ | 158 | . 685 | 188 |
|  | 2.46 | 96.2 | 1.54 | 105 | 1.37 | 132 | 1.23 | 163 | 1.122 | 198 | 1.028 | 235 |
|  |  |  |  | 146 | 1.92 | 159 | 1.71 | 196 | 1.56 | 237 | 1.43 | ¿88 |
| 7.0 | 3.26 | 119.0 | 2.85 | 146 | 2.52 | 185 | 248 | 229 | $20 \%$ | 277 | 1.91 | -30 |

Inside Diameter of Pipe in Inches.

|  | 13 |  | 14 |  | 15 |  | 16 |  | 18 |  | 20 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V$ | $h$ | $Q$ | $h$ | $Q$ | $n$ | Q | $h$ | $Q$ | $h$ | $Q$ | $h$ | $Q$ |
| 2.0 | . 183 | 110 | . 169 | 128 | . 158 | $14 \%$ | . $14 \%$ | 167 | .132 | 212 | 119 | 69 |
| 4.0 | . 378 | 166 | . 349 | 192 256 | . 325 | 221 | . 306 | 251 | . 271 | 318 | . 245 | 39:3 |
| 5.0 | . 949 | $2 \widetilde{21}^{2}$ | . 888 | 321 | . 818 | 298 | .513 | 335 | . 456 | 424 | . 410 | 5:3 |
| 6.0 | 1.325 | 333\% | 1.229 | 385 | 1.148 | 442 | 1.076 | 419 | . 985 | 530 | .$^{61 \%}$ | 654 |
| 7.01 | 1.75 | 387 | 1.003 | 449 | 1.52 | 515 | 1.43 | 586 | 1.27 | 636 742 | . 861 | ${ }^{785}$ |

Inside Diameter of Pipe in Inches.

|  | 22 |  | 24 |  | 26 |  | 28 |  | 30 |  | 36 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nabla$ | $h$ | $Q$ | $h$ | $Q$ | h | $Q$ | $\pi$ | $Q$ | $n$ | $Q$ | $h$ | $Q$ |
| 2.0 | . 108 | 316 | . 098 | 374 | . 091 | 442 | . 084 | 513 | . 079 | 89 | . 066 |  |
| 3.0 | . 222 | 475 | . 204 | 565 | . 188 | $66{ }^{3}$ | . 1.4 | \%70 | . 163 | 883 | . 135 | 1273 |
| 4.0 | . 373 | 633 | . 342 | 754 | . 315 | 885 | . 293 | 1026 | . 273 | 1178 | - $2 \times 8$ |  |
| 5.0 | . 561 | 792 | . 513 | 942 | . 474 | 1106 | . 440 | 1283 | . 411 | $14 \% 2$ | . 342 | 2121 |
| 6.0 | .782 | 950 | . 717 | 1131 | . 663 | 13.27 | . 615 | 1539 | . 574 | 176\% |  | 2545 |
| 7.0 | 1.040 | 1109 | . 953 | 1319 | . 8 ¢ 9 | 1548 | . 817 | 1796 | . 762 | 2061 | . 4796 | 2545 |

Example.-Given 200 ft . head and 600 ft . of 11 -inch pipe, carrying 119 cubic feet of water per minute. To find effective head : In right-hand column, under 11 -inch pipe, find 119 cubic ft. ; opposite this will be found the loss by friction in 100 ft . of length for this amount of water, which is 444 . Multiply this by the number of hundred feet of pipe, which is 6 , and we have 2.66 ft ., which is the loss of head. Therefore the effective head is $200-2.66$ $=19$ 个. 34 .

Explanation.-The loss of head by friction in pipe depends not only upon diameter and length, but upon the quantity of water passed through it. Th. head or pressure is what would be indicated by a pressure-gauge attached to the pipe near the wheel. Readings of gauge should be taken while tho water is flowing from the nozzle.

To reduce heads in feet to pressure in pounds multiply by .433. To reduce pounds pressure to feet multiply by 2.309 .
Cox's Tormula. - Weisbach's formula for loss of head caused by the
friction of water in pipes is as follows:

$$
\text { Friction-head }=\left(0.0144+\frac{0.01716}{\sqrt{V}}\right) \frac{L . V^{2}}{5.36 r^{2}}
$$ where $L=$ length of pipe in feet;

$$
\begin{aligned}
& V=\text { velocity of the water in feet per second; } \\
& d=\text { diameter of pipe in inches. }
\end{aligned}
$$

William Cox (Amer. Mach., Dec. 28,1893 ) gives a simpler formula which gives almost identical results:

$$
\begin{gather*}
H=\text { friction-head in feet }=\frac{L}{d} \frac{4 V^{2}+5 V}{1200}=2  \tag{1}\\
\frac{H d}{L}=\frac{4 V^{2}+5 V}{1200}-2 \tag{2}
\end{gather*}
$$

He gives a table by means of which the value of $\frac{4 V^{2}+5 V-2}{1200}$ is at once obtained when $V$ is known, and vice versa.

$$
\text { Values of } \frac{4 V^{2}+5 V-2}{1200}
$$

| $V$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 00 | . 00 | . 00813 | . 00 | 01070 | . 01208 | . 01353 | . 01505 | . 01663 | . 01828 |
| 2 | 02000 | .02178 | .02363 | . 02555 | . 02753 | . 022958 | . 03170 | .03358 | . 03613 | . 03845 |
| 3 | . 04083 | . 04338 | . 04550 | . 04838 | . 05103 | . 05375 | . 05653 | . 05938 | . 06230 | . $065 \times 8$ |
| 4 | . 06833 | . 07145 | . 07463 | . 07788 | . 08120 | . 08458 | . 08803 | . 09155 | . 09513 | . 09878 |
| 5 | . 10250 | . 10628 | . 11013 | . 11405 | . 11803 | . 12208 | . 12620 | . 13038 | . 13463 | . 13895 |
| 6 | . 14333 | . 14748 | 15230 | . 15688 | . 16153 | . 16625 | . 1 T103 | . 17588 | . 18080 | . 18548 |
|  | . 19083 | . 19595 | . 20113 | . 2063 | . 21170 | . 21708 | . 22253 | . 22805 | . 22363 | . 23928 |
|  | . 24500 | . 25078 | . 25663 | . 26255 | . 26853 | . 27458 | . 280 ¢0 | . 28688 | . 29313 | . 29945 |
| 9 | . 30583 | . 31228 | . 31880 | . 32538 | . 33203 | . 33875 | . 34553 | . 35238 | . 35930 | . 36688 |
| 10 | . 37333 | . 38045 | . 38763 | . 39488 | . 40220 | . 40958 | . 41703 | . 42455 | . 43213 | . 43978 |
| 11 | . 44750 | . 45528 | . 46313 | . $4 \pi 105$ | . 49903 | . $48 \% 08$ | . $495 \pm 0$ | . 50338 | . 51163 | 51995 |
| 12 | . 52833 | . 53678 | . 54530 | . 55388 | . 56253 | . 57125 | . 58003 | . 58888 | . 5978 | 678 |
| 13 | . 61583 | . $6: 495$ | . 63413 | . 61338 | . 65240 | . 66208 | . 67153 | . 68105 | . 6006 | 002 |
| 14 | . 11000 | . 71978 | .72963 | . 73955 | . 74953 | . 75958 | . 69670 | . 7988 | . 70013 | 80045 |
| 15 | . 81083 | . 82128 | . 83180 | .84:38 | . 85303 | .86:375 | . 87453 | . 88538 | . 89630 | . $90 \sim 28$ |
| 16 | . 91833 | . 92945 | . 94063 | . 95188 | . 96320 | 9r458 | ${ }^{98603}$ | . 99755 | 1.00913 | .02078 |
| 17 | 1.03:50 | 1.04428 | 1.0561 | 1.04805 | 1.08003 | 1.09208 | 1. 10420 | . 11638 | 1. 12863 | . 14095 |
| 18 | 1.15333 | 1.16578 | 1.17830 | 1.19088 | 1.2035 .3 | 1.21625 | 1.22903 | 1.24188 | 1.25450 | $6 \overbrace{}^{1} 8$ |
| 19 | 1.28183 | 1.29395 | 1.30713 | 1.32038 | 1.33370 | 1.34708 | 1.36053 | 1.37405 | 1.38763 | 1.40128 |
| 20 | 1.41500 | 1.42878 | 1.44263 | 1.45655 | 1.47053 | 1.48458 | $1.498{ }^{\text {a }} 0$ | 1.51288 | 1.52713 | 54143 |
| 21 | 1.55583 | 1.57028 | 1.58480 | 1.59938 | 1.61403 | $1.628 \% 5$ | 1.64353 | 1.65838 | 1.61330 | 888 |

The use of the formula and table is illustrated as follows:
Given a pipe 5 inches diameter and 1000 feet long, with 49 feet head, what will the discharge be?

If the velocity $V$ is known in feet per second, the discharge is $0.32725 d^{2} V$ cubic foot per minute.

By equation 2 we have

$$
\frac{4 V^{8}+5 V-2}{1200}=\frac{H d}{L}=\frac{49 \times 5}{1000}=0.245 ;
$$

whence, by table, $V=$ real velocity $=8$ feet per second.
The discharge in cubic feet per minute, if $V$ is velocity in feet per second and $d$ diameter in inches, is $0.32 \pi 25 d^{2} V$, whence, discharge

$$
=0.32725 \times 25 \times 8=65.45 \text { cubic feet per minute } .
$$

The velocity due the head, if there were no friction, is $8.025 \sqrt{H}=56.175$ feet per second, and the discharge at that velocity would be

$$
0.32 \% 25 \times 25 \times 56.175=460 \text { cubic feet per minute } .
$$

Suppose it is required to deliver this amount, 460 cubic feet, at a velocity of 2 feet per second, what diameter of pipe will be required and what will be the loss of head by friction?

$$
d=\text { diameter }=\sqrt{\frac{Q}{V \times 0.32 \tau 25}}=\sqrt{\frac{460}{2 \times 0.32 \tau 25}}=\sqrt{\tau 03}=26.5 \text { inches. }
$$

Having now the diameter, the velocity, and the discharge, the friction-head is calculated by equation 1 and use of the table; thus,

$$
H=\frac{L}{d} \frac{4 V^{2}+5 V-2}{1200}=\frac{1000}{26.5} \times 0.02=\frac{20}{26.5}=0.75 \text { foot }
$$

thus leaving $49-0.75=$ say 48 feet effective head applicable to power-producing purposes.

Problems of the loss of head may be solved rapidly by means of Cox's Pipe Computer, a mechanical device on the principle of the slide-rule, for sale by Keuffel \& Esser, New York.

Frictional Heads at Given Rates of Discharge in Clean Cast-iron Pipes for Each 1000 Feet of Length.
(Condensed from Ellis and Howland's Hydraulic Tables.)

|  | 4-inch Pipe. |  | 6 -inch Pipe. |  | 8 -inch Pipe. |  | 10 -inch Pipe. |  | 12-inch Pipe. |  | 14-inch Pipe. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \approx \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$ |  | $\begin{aligned} & \approx \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\left\lvert\, \begin{array}{\|c} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$ |  |  |  |
| 25 | . 64 | . 59 | 28 | 11 |  | 4 | . 10 |  |  |  |  |  |
| 50 | 1.2 | 2.01 | . 5 | . 32 | 32 | . 10 | . 20 | . 04 | . 14 | 02 | 10 |  |
| 100 | 2.55 | 7.36 | 1.13 | 1.08 | 61 | . 29 | . 41 | . 11 | . 28 | . 05 | 21 |  |
| 150 | 3.83 | 16.05 | 1.70 | 2.28 | . 96 | . 60 | . 61 | .22 | . 43 | . 10 | . 31 |  |
| 200 <br> 250 | 5.11 | 28.09 | 2.27 | 3.92 | 1.28 | 1.01 | . 82 | . 36 | . 57 | . 16 | . 42 |  |
| $\stackrel{350}{300}$ | 6.37 | 43.4í | 2.84 | 6.00 | 1.60 | 1.52 | 1.02 | . 54 | . 71 | . 24 | . 52 | . 12 |
| 350 | 8.94 | 84.26 | 3.97 | 11.48 |  | 2.85 | 1.43 | 99 | 99 |  | . 63 |  |
| 400 | 10.21 | 109.68 | 4.54 | 14.89 | 2.55 | 3.68 | 1.63 | 1.27 | 1.13 | 54 | $\begin{array}{r}73 \\ 83 \\ \hline\end{array}$ |  |
| 500 | 12. $\tilde{1}$ | 170.53 | 5.67 | 23.01 | 3.19 | 5.64 | 2.04 | 193 | 1.42 | 81 | 1.04 |  |
| 600 | 15.32 | 244.76 | 6.81 | 32.89 | 3.83 | 8.03 | 2.45 | 2.72 | r0 | 1.14 | 1.25 |  |
| r00 | $1 \% .8 \%$ | 332.36 | \%.94 | 44.54 | 4.47 | 10.83 | 2.86 | 3.66 | 1.98 | 1.52 |  |  |
| 800 |  |  | 9.08 | 57.93 | 5.09 | 14.05 | 3.27 | 4.73 | 2.27 | 1.96 | . $6 \times$ |  |
| 200 |  |  | 10.21 | 73.12 | 5.74 | 17.68 | 3.68 | 5.93 | 2.55 | 2.45 | 1.88 | 1.17 |
| 1000 |  |  | 1135 | 90.05 | 6.38 | 21.64 | 4.08 | 7.28 | 2.84 | 3.00 | 2.08 | 1.43 |
| 1:00 |  |  | 13.61 | 129.20 | 7.66 | 31.10 | 490 | 10.38 | 3.40 | 4.26 | 2.50 | 2.02 |
| 1400 |  |  | 15.88 | 175.38 | 8.94 | 42.13 | 5.72 | 14.02 | 3.97 | 5.74 | 2. 91 | 2.7 |
| 1600 |  |  | 18.15 | $2: 86$ | 10.21 | 54.84 | 6.53 | 18.22 | 4.54 | 7.41 | 3.33 | 3.51 |
| 1800 |  |  | 20.42 | 288.90 | 11.47 | 69.22 | \%. 3.5 | 22.96 | 5.11 |  | 3.75 | 4.41 |
| $\stackrel{2000}{2500}$ |  |  | 22.69 | 356.22 | 12.7\% | 85 8~ | 8.17 | 28.25 | 5.671 | 11.50 | . 17 | 5.41 |
| $\begin{aligned} & 2500 \\ & 3000 \end{aligned}$ |  |  |  |  | 15.96 | 132.\%0 | 10.21 | 43.871 | \%. 091 | 17.82 | 5.21 | 8.35 |
| $\begin{aligned} & 3000 \\ & 4000 \end{aligned}$ |  |  |  |  |  |  | 12.25 | 62.92 | 8.51 | 25.51 | 6.25 | 11. |


|  | 16-inch Pipe. |  | 18-inch Pipe. |  | 20-inch Pipe. |  | 2f-inch Pipe. |  | 30 -inch Pipe. |  | 36-inch Pipe. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline E \dot{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  | ( |  |  | $\left\|\begin{array}{ll} \approx & 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & = \\ b & =1 \end{array}\right\|$ |  | $\begin{aligned} & a \dot{0} \\ & \begin{array}{l} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \end{aligned}$ |  |
| 500 |  |  | 63 | . 13 | 51 |  | . 35 |  | . 23 |  | . 16 | 01 |
| 1000 | 1. 60 | 76 | 1.26 | . 44 | 1.02 | . 27 | .71 | . 12 | . 45 | . 04 | . 32 | .0: |
| 1500 | 2.39 | 1.63 | 1.89 | . 93 | 1.53 | . 56 | 1.06 | . 24 | . 68 | . 09 | . 47 | . 04 |
| 2000 | 319 3 | 2.82 | 2.52 | 1.60 | 2.04 | . 96 | 1.42 | . 41 | . 91 | . 15 | . 63 | . 06 |
| 2500 | 3.99 | 4.34 | 3.15 | 245 | 2.55 | $1.4 \hat{7}$ | 1.77 |  | 1.13 | . 22 | . 79 | . 09 |
| 3000 | 4.79 | 6.19 | 3.75 | 3.48 | 3.06 | $\stackrel{2}{2.09}$ | 2.13 | . 81 | 1.36 | . 30 | . 95 | . 13 |
| 4000 | 6.58 | 10.87 | 5.04 | 4.09 | 3.57 4.08 | ${ }_{3.64}{ }^{2.81}$ | 2.48 | 1.16 1.50 | 1.59 | . 40 | 1.10 | . 17 |
| 4500 | 7 | 13.\%0 | 5.64 | $\stackrel{7}{7} .6$ | 4.59 | 4.58 | 3.819 | 1.58 |  | . 62 | 1.26 | . 22 |
| 5000 | 7.98 | 16.85 | 6.30 | 9.43 | 5.11 | 5.62 | 3.55 | 2.31 | 2.22 | 7 |  | $\stackrel{27}{ }$ |
| 6000 |  |  | 7.57 | 13.49 | 6.13 | 8.03 | 4.26 | 3.28 | $2 . \%$ | 1.11 |  | . 46 |
| 7000 |  |  |  |  | 7.15 | 10.86 | 4.96 | 4.43 | 3.18 | 1.49 | 2.21 | . 42 |
| 5000 |  |  |  |  |  |  | 5.67 | 5.75 | 3.63 | 1.93 | 2.52 | . 80 |
| 9000 |  |  |  |  |  |  | 6.38 | 725 | 4.08 | 2.43 | 2.84 | 1.00 |
| 10000 |  |  |  |  |  |  |  |  | 4.54 | 2.98 | 3.15 | 1.23 |
| 12000 |  |  |  |  |  |  |  |  | 5.44 | 4.25 | 3.78 | 1.74 |
| 14000 |  |  |  |  |  |  |  |  | 6.36 | 5.75 | 4.41 | 2.35 |
| 16000 |  |  |  |  |  |  |  |  |  |  | 5.05 | 3.04 |
| 18000 |  |  |  |  |  |  |  |  |  |  | 5.68 | 3.83 |
| 20000 |  |  |  |  |  |  |  |  |  |  | 6.30 | 4.71 |

Fffect of Bends and Curves in Pipes.-Weisbach's rule for bends : Loss of head in feet $=\left[.131+1.817\left(\frac{r}{R}\right)^{\frac{7}{2}}\right] \times \frac{v^{2}}{64.4} \times \frac{a}{180}$, in which $r$ $=$ internal radius of pipe in feet, $R=$ radius of curvature of axis of pipe, $v$ $=$ velocity in feet per second, and $\alpha=$ the central angle, or angle subtended by the bend.
Hamilton Smith, J1., in his work on Hydraulies, says: The experimental data at hand are entirely insufficient to permit a satisfactory analysis of this quite complicat $\cdot(\hat{c}$ sulject; in: fact, about the only experinents of value are those made by Bossut and Dubuat with sinall pipes.
Curves.-If the pipe has easy curves, say with radius not less than 5 diameters of the pipe, the flow will not be materially diminished, provided the tops of all curves are kept below the hydraulic grade-line and provision be made for escape of air from the tops of all curves. (Trantwine.)
Hydraulic Grade-line, -In a straight tube of uniform diameter thronghout, runuing full and discharging freely into the air, the hydraulic grade-line is a straight line drawn from the discharge end to a point immediately over the entry end of the pipe and at a depth below the surface equal to the entry and velocity heads. (Trautwine.)
In a pipe leading from a reservoir, no part of its length should be above the hydraulic grade-line.

## Flov of Watcr in Hiouse-service Pipes.

M1. E. Kuichling, C.E., furnished the following table to the Thomson Meter Co.:

| Condition of Discharge. |  | Discharge, or Quantity capable of being delivered, in Cubic Feet per Minute, from the Pipe, under the conditions specified in the first column. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Nominal Diameters of Iron or Lead Service-pipe in Inches. |  |  |  |  |  |  |  |  |
|  |  | 1/2 | 5/8 | $3 / 4$ | 1 | 112 | 2 | 3 | 4 | 6 |
| Through 35 feet of servicepipe, no back pressure. | 30 | 1.10 | 1.92 | 3.01 | 6.13 | 16.58 | 33.34 | 88.16 | 173.85 | 444.63 |
|  | 40 | 1.27 | 2.22 | 3.48 | 7.08 | 19.14 | 38.50 | 101.80 | 200.75 | 444.63 |
|  | 50 | 1.42 | 2.48 | 3.89 | 7.92 | 21.40 | 43.04 | 113.82 | 224.44 | 517.02 |
|  | \% | 1.56 | 2.71 | 4.26 | 8.67 | 23.44 | 47.15 | 124.68 | 245.87 | 628.81 |
|  | 75 | 1.74 | 3.0:3 | 4.79 | 9.70 | 26.21 | 52.71 | 139.39 | $2{ }^{\text {\% }} 4.89$ | 703.03 |
|  | 100 | 1.81 2.29 | 3.030 3.90 | 5.50 | 11.20 | 30.27 | 60.87 | 160.96 | 317.41 | 811.79 |
|  | 130 | 2.29 | 3.99 | 6.28 | 12.76 | 34.51 | 69.40 | 183.52 | 361.91 | 925.58 |
| Through 100 feet of servicepipe, no hack pressure. | 40 | 0.66 | 1.16 | 1.84 | 3.78 | 10.40 | 21.30 | 58.19 | 118.13 | 317.93 |
|  | 40 | 0.97 | 1.34 | 2.12 | 4.36 | 12.01 | 24.59 | 67.19 | 136.41 | 366.30 |
|  | 50 | 0.86 | 1.50 | 2.37 | 4.88 | 13.43 | 27.50 | 75.13 | 152.51 | 409.54 |
|  | 60 | 0.94 | 1.65 | $\underset{\sim}{2} .60$ | 5.34 | 14.71 | 30.12 | 82.30 | 167.06 | 448.63 |
|  | 100 | 1.05 | 1.84 | 2.91 | 5.97 | 16.45 | 33.68 | 92.01 | 186.78 | 501.58 |
|  | 100 | 1.22 | 2.13 | 3.36 | 6.90 | 18.99 | 38.89 | 106.24 | 215.68 | 579.18 |
|  | 130 | 1.39 | 2.42 | 3.83 | 7.86 | 21.66 | 44.34 | 121.14 | 245.91 | 660.36 |
| Through 100 feret of servicepipe and 15 feet vertical rise. | 30 | 0.55 | 0.96 | 1.52 | 3.11 | 8.57 | 17.55 | 47.90 | 97.17 | 260.50 |
|  | 40 | 0.66 | 1.15 | 1.81 | 3.72 | 10.84 | 20.95 | 5\%.20 | 116.01 | 60.50 311.09 |
|  | 50 | 0.75 | 1.31 | 2.06 | 4.24 | 11.67 | 23.87 | 65.18 | 132. 20 | 354.49 |
|  | 60 | 0.83 | 1.45 | 2.29 | 4.70 | 12.94 | 26.48 | 72.28 | 146.61 | 39:3. 13 |
|  | 75 | 0.94 | 1.64 | 2.59 | 5.32 | 14.64 | 29.96 | 81.79 | 165.90 | 444.85 |
|  | 100 | 1.10 | 1.92 | 3.02 | 6.21 | 17.10 | 35.00 | 95.55 | 193.82 | 519.72 |
|  | 130 | 1.26 | 2.20 | 3.48 | 7.14 | 19.66 | 40.23 | 109.82 | 223.75 | 597.31 |
| Throngh 100 fere of servicepipe, and 36 feet vertical rise. | 80 | 0.44 | 0.87 | 1.20 | 2.50 | 6.80 | 14.11 | 38.63 |  |  |
|  | 40 | 0.55 | 0.97 | 1.23 | 2.15 | 8.68 | 17.71 | 48.68 | 78.54 98.98 | 211.54 266.59 |
|  | 50 | 0.65 | 1.14 | 1.69 | 3.69 | 10.16 | 20.82 | 56.98 | $115.8{ }^{\text {r }}$ | 312.08 |
|  | 60 75 | 0.73 0.84 | 1.28 | 2.02 | 4.15 | 11.45 | 23.45 | 64.22 | 130.59 | 351.73 |
|  | 75 | 0.84 1.00 | 1.47 | ${ }^{2} .32$ | 4.78 | 13.15 | 26.05 | 73.76 | 149.99 | 403.98 |
|  | 130 | 1.00 1.15 | 1.14 2.02 | 2.75 | 5.65 | 15.5 S | 31.93 | $8 \% .38$ | 177.67 | 478.55 |
|  | 130 | 1. | 2.02 | 3.19 | 6.55 | 18.07 | 37.02 | 101.33 | 206.04 | 554.96 |

In this table it is assumed that the pipe is straight and smooth inside; that the friction of the main and meter are disregarded; that the inlet from the main is of ordinary character, sharp, not flaring or rounded, and that the outlet is the full diameter of pipe. The deliveries given will be increased if, first, the pipe between the meter and the main is of larger diameter than the outlet; second, if the main is tapped, say for 1 -inch pipe, but is enlarged from the tap to $11 / 4$ or $11 / 2$ inch; $a^{10}$, third, if pipe on the outlet is larger than that on the inlet side of the meter. The exact details of the conditions given are rarely met in practice; consequently the quantities of the table may be expected to be decreased, because the pipe is liable to be throttled at the joints, additionar bends may interpose, or stop-cocks may be used, or the back-pressure may be increased.

Aivebound Pipes.-A pipe is said to be air-bound when, in consequence of air being entrapped at the hign points of vertical curves in the line, water will not flow out of the pipe, although the supply is higher than the outlet. The remedy is to provide cocks or valves at the high points, through which the air may be discharged. The valve may be made automatic by means of a float.

Vertical Jets. (Molesworth.) $-H=$ head of water, $h=$ height of jet, $\boldsymbol{d}=$ diameter of jet, $\boldsymbol{K}=\mathbf{c o e f f i c i e n t , ~ v a r y i n g ~ w i t h ~ r a t i o ~ o f ~ d i a m e t e r ~ o f ~ j e t ~}$ to lead; then $h=K H$.
If $H=d \times \begin{array}{r}300 \\ .96\end{array}$

Water Delivered through Meters. (Thomson Meter Co.).-The best modern practice limits the velocity in water-pipes to 10 lineal feet per second. Assume this as a basis of delivery, and we find, for the several sizes of pipes usually metered, the following approximate results:
Nominal diameter of pipe in inches:

Quantity delivered, in cubic feet per minute, due to said velocity:
0.46
$1.28 \quad 1.85$
3.28
$7.36 \quad 13.1$
$29.5 \quad 52.4$
117.9

Prices Charged for Water in Different Cities (National Meter Co.):
Average minimum price for 1000 gallons in 163 places.............. 9.4 cents. " maximum 100 ،

## FHRE-STHREMIS.

Discharge fiom Nozzles at bifierent pressures.
(J. T. Fanning, Am. Water-works Ass'n, 1892, Eng'g News, July 14, 1892.)

| Nozzle diam., in. | Height of stream, ft. | Pressure at Playpipe, lbs. | Horizontal Projection of Streams, ft. | Gallons per minute. | Gallons per 24 hours. | Friction per 100 ft. Hose lbs. | Friction per 100 ft. Hose, Net Head, ft. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 70 | 46.5 | 59.5 | 203 | 292,298 | 10.75 | 24.77 |
| 1 | 80 | 59.0 | 67.0 | 230 | 331,200 | 13.00 | 31.10 |
| 1 | 90 | 79.0 | 76.6 | 267 | 384,500 | 17.70 | 40.18 |
| 1 | 100 | 130.0 | 88.0 | 311 | 447.900 | 22.50 | 54.14 |
| 11/8 | 70 | 44.5 | 61.3 | 249 | 358,520 | 15.50 | 35.71 |
| 11/8 | 80 | 55.5 | 69.5 | 281 | 404,700 | 19.40 | 44.70 |
| 11/8 | 90 | 72.0 | 78.5 | 324 | 466,600 | 25.40 | 58.52 |
| $11 / 8$ | 100 | 103.0 | 89.0 | 376 | 541,500 | 33.80 | 77.88 |
| 11/4 | 70 | 43.0 | 66.0 | 306 | 440,613 | 22.75 | 52.42 |
| $11 / 4$ | 80 | 53.5 | 72.4 | 343 | 493.900 | 28.40 | 65.43 |
| $11 / 4$ | 90 | 68.5 | 81.0 | 388 | 558,800 | 35.90 | 82.71 |
| $11 / 4$ | 100 | 93.0 | 93.0 | 460 | 662,500 | 57.45 | 86.98 |
| 1\% | 70 | 41.5 | $7 \% .0$ | 368 | 530,149 | 32.50 | 74.88 |
| 13/8 | 80 | 51.5 | 74.4 | 410 | 590.500 | 40.00 | 92.16 |
| 13\% | 90 | 65.5 | 82.6 | 468 | 674,000 | 51.40 | 118.43 |
| 198 | 100 | 88.0 | 32.0 | 540 | Firs. $\% 00$ | r2.00 | 165.89 |

Friction Losses in Hose.-In the above table the volumes of water discharged per jet were for stated pressures at the play-pipe.
In providing for this pressure due allowance is to be made for friction losses in each hose, according to the streams of greatest discharge which are to be used.
The loss of pressure or its equivalent loss of head ( $h$ ) in the hose may be found by the formula $h=v^{2}(4 m) \frac{l}{2 g d}$.

In this formula, as ordinarily used, for friction per 100 ft . of $21 / 2-\mathrm{in}$. hose there are the following constants: $21 / 2$ in. diameter of hose $d=.20833 \mathrm{ft}$. ; length of hose $l=100 \mathrm{ft}$., and $2 g=64.4$. The variables are: $v=$ velocity in feet per second; $h=$ loss of head in feet per 100 ft . of hose; $m=$ a coefficient found by experiment; the velocity $v$ is found from the given discharges of the jets through the given diameter of hose.
Head and Pressure Losses by Friction in $100-\mathrm{ft}$.
Lengths of

| Discharge per minute, gallons. | Velocity per second, ft. | Coefficient, $m$. | Head Lost, ft. | Pressure Lost, lbs. per sq.in. | Gallons per 24 hours. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 13.072 | . 00450 | 22.89 | 9.93 | 288.000 |
| 250 | 16.388 | . 00446 | 35.55 | 15.43 | 360,000 |
| 300 | 18.858 | . 00442 | 46.80 | 20.31 | 432,000 |
| 347 | 21.677 | . 00439 | 61.53 | 26.70 | 499,680 |
| 350 | 22.873 | . 00439 | 68.48 | 29.73 | 504,000 |
| 400 | 26.144 | . 00436 | 88.83 | 38.55 | 5\%6,000 |
| 450 | 29.408 | . 00434 | 111.80 | 48.52 | 648,000 |
| 500 | 32.675 | . 00432 | 137.50 | 59.67 | 72, 7 ,000 |
| 520 | 33.982 | . 00431 | 148.40 | 64.40 | 748,800 |

These frictions are for given volumes of flow in the hose aud the velocities respectively due to those volumes, and are independent of size of nozzle. The changes in nozzle do not affect the friction in the hose if there is no change in velocity of flow, but a larger nozzle with equal pressure at the nozzle augments the discharge and velocity of flow, and thus materially increases the friction loss in the hose.
Loss of Pressure ( $p$ ) and Head ( $h$ ) in Rubber-lined Smooth $21 / 2^{-i n}$. Hose may be found approximately by the formula $p=\frac{l q^{2}}{4150 d^{5}}$ and $h=\frac{l q^{2}}{1801 d^{5}}$, in which $p=$ pressure lost by friction, in pounds per square inch; $l=$ length of hose in feet; $q=$ gallons of water discharged per minute: $d=$ diam. of the hose in inches, $2 \frac{1}{2}$ in.; $h=$ frictionhead in feet. The coefficient of $d^{5}$ would be decreased for rougher hose.
The loss of pressure and head for a $11 / 8$-in. stream with power to reach a height of 80 ft . is, in each 100 ft . of $21 / 2 \mathrm{in}$. hose, approximately 20 lbs. , or 45 ft . net, or, say, including friction in the hydrant, $1 / 2 \mathrm{ft}$. loss of head for each foot of hose.
If we change the nozzles to $11 / 4$ or $13 / 8 \mathrm{in}$. diameter, then for the same 80 ft . height of stream we increase the friction losses on the hose to approximately $2 / 3 \mathrm{ft}$. and 1 ft . head, respectively, for each foot-length of hose.
These computations show the great difficulty of maintaining a high strean through large nozzles unless the hose is very short, especially for a gravity or direct-pressure system.
This single $11 / 8 \mathrm{in}$. stream requires approximately 56 lbs pressure, equivalent to 129 ft . head, at the play-pipe, and 45 to 50 ft . head for each 100 ft . length of smooth $21 / 2-\mathrm{in}$. hose, so that for 100,200 , and 300 ft . of hose we must have available heads at the hydrant or fire engine of 1 r9, 2229, and 279 ft., respectively. If we substitute $11 / 4 \mathrm{in}$. nozzles for same height of stream we must have available heads at the hydrants or engine of 193 , 259 , and 325 ft., respectively, or we must increase the diameter of a portion at least of the long hose and save friction-loss of head.
Rated Capacities of Steam Fire-engines, which is perhaps one third greater than their ordinary rate of work at fires, are substantially
as follows: as follows:


## Pressures required at Nozzle and at Pump, with Quantity and Pressure of Water Necessary to throw Water Various Distances through Different-sized Nozzlesusing $21 / 2-i n c h$ Rubber Hose and Smooth Nozzles.

(Fronı Experiments of Ellis \& Leshure, Fanning's "Water Supply.")

| Size of Nozzles. | 1 Inch. |  |  |  | 11/8 Inch. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pressure at nozzle, lbs. | 4048 | 6073 | 30 | 100 | 40 | 60 | 80 | 100 |
| * Pressure at pump or hydrant with 100 ft . $21 / 2$-inch rubber hose |  |  |  |  |  |  |  |  |
|  |  |  | 97 | 121 | 54 | 81 | 108 | 135 |
| Gallons per minute. | 155 | 189 | 219 | 245 | 196 | 240 | 277 | 310 |
| Horizontal distance thrown, fee | 109 | 142 | 168 | 186 | 113 | 148 | 175 | 193 |
| Vertical distance thrown, feet. | 79 | 108 | 131 | 148 | 81 | 112 | 137 | $15 \%$ |


| Size of Nozzles. | 11/4 Inch. |  |  |  | 13/8 Inch. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pressure at nozzle, lbs. per sq | 40 | 60 | 80 | 100 | 40 | 60 | 80 | 100 |
| * Pressure at pump or hydrant with 100 feet $21 / 2$-inch rubber hose. |  |  |  |  |  |  |  |  |
|  | 61 | 92 | 123 | 154 | 71 | $10 \%$ | 144 | 180 |
| Gallons per minute.. Horizontal distance thrown, feet.......... | 242 | 297 | 342 | 383 | 293 | 358 | 413 | 462 |
|  | 118 | 156 | 186 | 207 | 124 | 166 | 200 | 224 |
| Vertical distance thrown, feet.............\| | 82 | 115 | 142 | 164 | 85 | 118 | 146 | 16 |

[^22]
## Is the Standard American Brand.

> Used by all the leading Engineers and
> Contractors throughout the United States, and preferred by the U.S. Government.

# ATLAS PORTLAND CEMENT CO., <br> 30 BROAD STREET; <br> NEW YORK. 

# Machine=shop Tools and Methods. 

By W. S. LEONARD,

> Instructor in Machine-shop Practice and in Practical Machine Design, Michigan Agricultural College.
> THIRD EDITION, REVISED AND ENLARGED.

8 vo, vii +554 pages, 689 figures. Cloth, $\$ 4.00$.
Contents. - The Measuring System of the Machine shop; Standards of Length. The Hammer and its Use. Chisels: their Forms and Uses Files and Filing. The Surface-plate and Scraper. The Vise and Some Vise Accessories. Drilling machines. Drills and Drilling Drill-sockets, Drill-chucks, and Accessories. Construction and Use of Reamers and Bits. Lathes. Turret-machines and Turret-machine Work. Lathe- and Flaner-tools. Lathe-centers, Workcenters, etc. Methods of Driving Work in the Lathe; Dogs and Chucks Lathearbors. or Mandrels, and Arbor-presses. Some Examples of Engine-lathe Work; Thread-cutting in the Engine-lathe Screw-threads, Taps, and Dies. Bolt- and Nut-threading Machines. The Boring-bar and its Use. Horizontal Boringand Drilling-machines and Work; Crank-boring Machine. Vertical Boring and Turning-nills, Tools and Work. Planers and Shapers and Planer and Shaper Work. Slotting-machines and the Work to which they are Adapted Keyseating Machines and Keys. Milling-machines and Milling-machine Work Special Gear-machines. Grinding-machines and Methods. Polishing- and Buffing-wheels. The Interchangeable System of Manufacturing. Miscellaneous Machine-shop Methods. Tables, Recipes, etc. Appendix : Questions on the Text; Index.

## PUBLISHED BY

## JOHN WILEY \& SGNS.

THE GREATEST

# WATER METER 

RECORD EVER MADE.

# 450,000 <br> Crown, Empire, Nash, Gem 

## METERS IN USE.

National Meter Company, NEW YORK, CHICAGO, BOSTON, LONDON.


The GasEngine.
A Treatise on the inter-nal-Combustion Engine using Gas, Gasoline, Kerosene, or other Hydrocarbon as Source of Energy. By F. R. Hutton, Professor of Mechanical Engineering in Columbia University. Svo, xviii + 481 pages, 243 figures. Cloth, $\$ 5.00$.

Jobn ZJiley \& Sons, NEW YORK.

## PYROMETERS

## FOR ALL TECHNICAL PURPOSES.

The Queen Mercurial Pyrometer, for Stack Temper atures, reading to romo ${ }^{\circ} \mathrm{F}$.

## The Queen Metallic Pyrometer, for Oven Temperatures, reading to $1500^{\circ} \mathrm{F}$.

## The Queen-Chatelier Pyrometer, for Furnace Tem peratures, with direct reading scale to $3000^{\circ} \mathrm{F}$.

For a complete list and descriptions of the Pyrometers manufactured by us send for our Pyrometer Catalogue.

## QUEEN \& CO., Inc.

59 Fifth Avenue, NEW YORK,

1010 Chestnut Street PHILADELPHIA,

## KEUFFEL \& ESSER CO., <br> 127 FULTON ST., NEW YORK. <br> branches: <br> 111 Madison St., Ohicago; 813 Locust St., St. Louis; 421-3 Montgomery St., San Francisco. <br> Manufacturers and Importers of <br> DRAWING MATERIALS, SURVEYING INSTRUMENTS, MEASURING TAPES.

Paragon, Key, and other Brands of Drawing Instruments.
Paragon, Anvil, Universal. Normal, Duplex, and other Drawing Papers.
Standard Profile and Cross=section I'apers, Cloths, and Books.
Helios, Columbia, and Parchmine Blue Print Papers.
Nigrosine and Umbra Positive Black Process Paper.
Maduro Brown Print Paper.
K. \& E. Co.'s Patent Adjustable and Duplex Slide Rules.

Thacher's Calculating Instrument.
Paragon Scales, with White Edges. Patent Triangular Scales, Triangles, T'Squares, Drawing Boards and Tables. Columbia and Kallos Indelible Drawing Ink.


TRANSITS, LEVELS, \&c. ${ }^{\text {SUPERIOR CONSTRUCTION; ACCU- }}$ Architects' Convertible Levels Surve wear guarantees.

Compasses. Aneroid Barometers, etc.
Surveyors' Chains, Rods, Poles, etc.
We Warrant all our Goods!
K. \& E. Steel and Metallic Tapes.

Catalogue 500 Pages sent free on Application. Write for our Pamphlet on "Photo. Printing from Tracings."

## WALWORTH M'F’G CO.

 Installation of High=pressure Power Plants a Specialty.

## Extra Heavy <br> Bronze Seat Gate Valves.

Bent Pipes
Gun-iron Flanged Fittings and Drums
FOR HIGH-PRESSURE STEAM PLANTS

NEW YORK OFFICE
PARK ROW BUILDING

GENERAL OFFICES 128=136 FEDERAL ST. BOSTON, MASg.

CAble address WALMANCO.

## Write for Draughtsman's Book of Dimensions

"The Best is the Cheapest". The BEST ROOF is made of

## MF Roofing Tin

It has held during the last sixty years the Most Favored and leading place in the race for superiority in Roofing Materials
The BEST METAL CORNICES are made of

## Apollo Best Bloom Galvanized Sheets

The trade mark signifies the highest standard of reliability. The easy working qualities of the Metal make it the favorite of the Metal Worker. When in need of galvanized sheets for construction work, don't be satisfied with substitutes, insist on the genuine.

Our Products are for sale by all Metal Houses
American Sheet \& Tin Plate Company PITTSBURGH, PA.
,

# PLEASE DO NOT REMOVE <br> CARDS OR SLIPS FROM THIS POCKET 

UNIVERSITY OF TORONTO LIBRARY

(A)


[^0]:    Syracuse, N. Y.

[^1]:    * Corrected by addition of $1,260,078$, estimated error of the census of $\mathbf{1 8 7 0}$ Census Bulletin No, 16, Dec. 1iN, 1890 .

[^2]:    * The British Admiralty takes the round figure of 6080 ft . which is the length of the "measured mile" used in rials of vessels. The value varies from 6080.26 to 6088.44 ft . according to different measures of the earth's diameter. There is a difference of opinion among writers as to the use of the word "knot" to mean length or a distance-some holding that it should be used only to denote a rate of speed. The length between knots on the log line is $1 / 1: 0$ of a nantical mile, or $50 . \hat{f}$ ft., when a half-minute glass is used; so that a speed of 10 knots is equal to 10 nautical miles per hour.

[^3]:    "There are limitations, however, arising from difficulties in casting, and by the strain produced ly shocks, which cause the thickness to be made greater than that given by the above formula."

[^4]:    * These two sizes are calculated for exact diameter.

    Rivets with button heads weigh approximately the same as cone-head rivets.

[^5]:    Joints in Telegraph Wires.-The fewer the joints in a line the better: All joints should be carefully made and well soldered over, for a bad joint may cause as much resistance to the electric current as several miles of wire.

[^6]:    Moments of Inertia and Radius of Gyration for Various Sections, and their Use in the Formulas for Strength of Girders and columns.-The strength of sections to resist strains, either as girders or as columns. depends not only on the area but also on the form of the section, and the property of the section which forms the basis of the constants used in the formulas for strength of girders and columns to express the effect of the form, is its moment of inertia about its neutral axis. The modulus of resistance of any section to transverse bending is its

[^7]:    $H=$ height of stand-pipe in feet above joint;
    $T^{\prime}=$ thickness of plate in inches;
    $p=$ wind-pressure per square foot:
    $W=$ wind-pressure per foot in height above joint;
    $W=D_{p}$ where $D$ is the diameter in feet;
    $m=$ average leverage or movement about neutral axis
    or central points in the circumference; or,
    $m=$ sine of $45^{\circ}$, or . $70 \%$ times the radius in feet.

[^8]:    Demerara greenheart, 9 tests (thrusting)
    8169 to 10,785
    Oregon pine, 2 tests.
    5888 and 7284
    Honduras mahogany, 1 test$6 \pi 69$
    Tobasco mahogany, 1 test ..... 5978
    Norway spruce, 2 tests

    5259 and 5494
    American yellow pine, 2 tests $38 \% 5$ and 3993

    English ash, 1 test.

[^9]:    * The tests of the alloys of copper and tin and of copper and zinc, the results of which are published in the Report of the U. S. Board appointed to test Iron, Steel, and other Metals, Vols. T and II, 18 r 9 and 1881, were made by the author under direction of Prof. R. H. Thurston, chairman of the Committee on Alloys. See greface to the report of the Conmittee, in Vol. I.

[^10]:    * The subscript 1 neans the outside coil of a concentric group or cluster;

[^11]:    Description of Samples.-No. 1. Well known Ohio Scoteh iron, almost silvery, but carries two-thirds scrap; made from part black-band ore. Very successful brand. The high silicon gives it its scrap-carrying capacity.

    No. 2. Brier Hill Scotch castings, made at scale works ; castings demanding more fluidity than strength.

[^12]:    * Excepting that in pin-connected members taking alternate stresses, the bearing stress must not exceed 9000 lbs . for iron or steel.

[^13]:    Use the formula giving the greatest area of section.
    The compression flanges of beams and plate girders shall hove the same cross-section as the tension flanges.

[^14]:    * The complete specifications may be found in book form in "American Standard Specifications for Steel," by Albert Ladd Colby (Chemical Publishing Co., Easton, Pa., 1902).

[^15]:    * The Penna. R. R. specifications of the several dates given are still in force, July, 1902.

[^16]:    * Order of samples from bar.

[^17]:    * The statement by Prof. W. D. Marks, in Nystrom`s Mechanics, 20th edition, p. 454, that this formula is in error is itself erroneous.

[^18]:    * Classes $A, C, G$, and $H$ are also built in intermediate sizes for lower pressures. + Furnished either duplex or half duplex. $\ddagger$ Most economical form of compressor. Compound air-cylinders are two-stage. § Self-contained stean-compressor.

[^19]:    ＊From Robert Briggs＇s paper on American Practice of Warming Buildings by Steam（Proc．Inst．C．E．，1882，vol．lxxi）．

[^20]:    The sizes in the table approximate to the rules given，and it will be found

[^21]:    1. Deposition of suspended matter.
    2. Deposition of deposed salts from concentration.
    3. Deposition of carbonates of lime and maguesia by boiling off carbonic acid, which holds them in solution.
[^22]:    * For greater length of $21 / 2$-inch hose the increased friction can be obtained by noting the differences between the above given "pressure at nozzle" and "pressure at pump or hydrant with 100 feet of hose." For instance, if it requires at hydrant or pump eight pounds more pressure than it does at nozzle to overcome the friction when pumping through 100 feet of $21 / 2$-inch hose (using 1 -inch nozzle, with 40 -pound pressure at said nozzle) then it requires 16 -pounds pressure to overcome the friction in forcing through 200 feet of same size hose.


    ## Decrease of Flow due to Increase of Length of Hose.

    (J. R. Freeman's Experiments, Trans. A. S. C. E. 1889.)-If the static pres. sure is 80 lbs . and the hydrant-pipes of such size that the pressure at the hydrant is 70 lbs ., the hose $21 / 2 \mathrm{in}$. nominal diam., and the nozzle $11 / 8 \mathrm{in}$. diam., the height of effective fire-stream obtainable and the quantity in gallons per mirute will be:

    With 500 ft . of smoothest and best rubber-lined hose, if diameter be exactly $21 / 2$ in., effective height of stream will be 39 ft . ( 177 gals .); if diameter be $1 / 8 \mathrm{in}$. larger, effective height of stream will be 46 ft . ( 192 gals.)

    ## 'RHE SIPHON.

    The Siphon is a bent tube of unequal branches,"open at both ends, and is used to convey a liquid from a higher to a lower level, over an intermediate point higher than either. Its parallel branches being in a vertical plane and plunged into two bodies of liquid whose upper surfaces are at different levels, the fluid will stand at the same level both within and without each branch of the tube when a vent or small opening is made at the bend. If the air be withdrawn from the siphon through this vent, the water will rise in the branches by the atmospheric pressure without, and when the two columns unite and the vent is closed, the liquid will flow from the upper reservoir as long as the end of the shorter branch of the siphon is below the surface of the liquid in the reservoir.

    If the water was free from air the height of the bend above the supply level might be as great as 33 feet.

    If $A=$ area of cross-section of the tube in square feet, $H=$ : the difference in level between the two reservoirs in feet, $D$ the density of the liquid in pounds per cubic foot, then $A D H$ measures the intensity of the force which causes the movement of the fluid, and $V=\sqrt{2 g H}=8.02 \sqrt{H}$ is the theoretica: velocity, in feet per second, which is reduced by the loss of head ior entry and friction, as in other cases of flow of liquids through pipes. In the case of the difference of level being greater than 33 feet, however, the velocity of the water in the shorter leg is limited to that due to a height of 33 feet, or that due to the difference oetween the atmospheric pressure at the entrance and the vacuum at the bend.
    Leicester Allen (Am. Mach., Nov. 2, 1893) says: The supply of liquid to a siphon must be greater than the flow which would take place from the discharge end of the pipe, provided the pipe were filled with the liquid, the supply end stopped, and the discharge end opened when the discharge end is left free, unregulated, and unsubmerged.
    To illustrate this principle, let us snppose the extreme case of a siphon having a calibre of 1 foot, in which the difference of level, or between the point of supply and discharge, is 4 inches. Let us further suppose this siphon to be at the sea-level, and its highest point above the level of the supply to be $2 \pi$ feet. Also suppose the discharge end of this siphon to be unregulated, unsubmerged. It would be inoperative because the water in the longer leg would not be held solid by the pressure of the atmospliere against it, and it would therefore break up and run out faster than it could be replaced at the inflow end under an effective head of only 4 inches.
    Long Siphons.-Prof. Joseph Torrey, in the Amer. Machinist, describes a long siphon which was a partial failure.
    The length of the pipe was 1792 feet. The pipe was 3 inches diameter, and rose at one point 9 feet above the initial level. The final level was 20 feet below the initial level. No automatic air valve was provided. The highest point in the siphon was about one third the total distance from the ponti and nearest the pond. At this point a pump was placed, whose mission was to fill the pipe when necessary. This siphon would flow for about two hours and then cease, owing to accumulation of air in the pipe. When in full operation it discharged $431 / 2$ gallons per minute. The theoretical discharge from sinch a sized pipe with the specified head is $551 / 2$ gallons per minute.
    Siphon on the Water-supply of Mrount Vermon, N. Y. (Eng'g Neves, May 4, 1893.)-A 12 -inch siphon, 925 feet long, with a maximumi lift of 22.12 feet and a $45^{\circ}$ change in aligmment, was put in use in $189 \%$ by the New York City Suburban Water Co., which supplies Mount Vernon, N. Y.

    At its sumniit the siphon crosses a supply main, which is tapped to cliarge the siphon.

    The air-chamber at the siphon is 12 inches by 16 feet long. A $1 / 2$-inch tap and cock at the top of the chamber provide an ontlet for the collected air.

    It was found that the siphon with air-chamber as desc.ibed would run until 125 cubic feet of air had gathered, and that this took place only half as soon with a 14 -foot lift as with the full lift of $2 \geqslant .12$ feet. The siphon will operate abont 12 hours without being recharged, but more water can be gotten over by charging every six hours. It can be kept running 23 hours out of 24 with only one man in attendance. With the siphon as described above it is necessary to close the valves at each end of the siphon to recharge it.
    It has been found by weir measurements that the discharge of the siphon before air accumulates at the summit is practically the same as through a straight pipe.

    ## MLEASURETIENT OF RLOWING WATER.

    Piezometer.-If a vertical or oblique tube be inscrted into a pipe containing water under pressure, the water will rise in the former, and the vertical height to which it rises will be the head producing the pressure at the point where the tube is attached. Such a tube is called a piezometer or pressure measure. If the water in the piezometer falls below its proper level it shows that the pressure in the main pipe has been reduced by an obstruction between the piezometer and the reservoir. If the water rises above its proper level, it indicates that the pressure there has been insreased by an obstruction beyond the piezometer.
    If we imagine a pipe full of water to be provided with a number of piezometers, then a line joining the tops of the columns of water in them is the hydraulic grade-line.

    Pitot reube gauge.-The Pitot tub is used for measuring the velocity of thuids in motion. It has been used with great success in measuring the flow ef natural gas. (S. W. Robinson, Report Ohio Geol. Survey, 1890.) (See also Van Nostrand's Mag., vol. xxxv.) It is simply a tube so bent that a short leg extends into the current of fluid flowing from a tube, with the plane of the entering orifice opposed at right angles to the direction of the current. The pressure caused by the impact of the current is transmitted through the tube to a pressure-gange of any kind, such as a column of water or of mercury, or a Bourdon spring-gauge. From the pressure thus indicated and the known density aud temperature of the flowing gas is obtained the head corresponding to the pressure, and from this the velocity, In a modification of the Pitot tube described by Prof. Robinson, there are two tubes inserted into the pipe conveying the gas, one of which has the plane of the orifice at right angles to the current, to receive the static pressure plus the pressure due to impact; the other has the plane of its onifice parallel to the current, so as to receive the static pressure onis. These tubes are comnected to the legs of a $U$ tube partly filled with mercury, which then registers the difference in pressure in the two tubes, from which the velocity may be calculated. Comparative tests of Pitot tubes with gasmeters, for measurement of the flow of natural gas, have shown an agreement within $3 \%$.

    The Venturi Meter, invented by Clemens Herschel, and described in a pamphiet issued by the Builders' Iron Foundry of Providence, R. I. is named from Venturi, who first called attention, jn 1796, to the relation between the velocities and pressures of flnids when flowing through couverging and diverging tubes.

    It cousists of two parts--the tube, through which the water flows, and the recorder, which registers the quantiiy of water that passes through the tube.

    The tube takes the shape of two truncated cones joined in their smallest diameters by a short throat-piece. At the up-srrean end and at the throat there are pressure-chambers, at which points the pressures are taken.

    The action of the tube is based on that property which causes the small section of a gently expanding frustum of a cone to receive, without material resultant loss of head, as much water at the smallest diameter as is discharged at the large end, and on that further property which causes the pressure of the water flowing, through the throat to be less, by virtue of its greater velocity, than the pressure at the up-stream end of the tube, each pressure being at the same time a function of the velucity at that point and of the hydrostatic pressure which-would obtain were the water motionless within the pipe.

    The recorder is connected with the tube by pressure-pipes which lead to it from the chambers surrounding the up-stream end and the throat of the tube. It may be placed in any convenient position within 1000 feet of the tube. It is operated by a weight and clockwork.

    The difference of pressure or head at the entrance and at the throat of the meter is balanced in the recorder by the difference of level in two columns of mercury in cylindrical receivers, one within the other. The inner carries a float, the position of which is indicative of the quantity of water flowing through the tube. By its rise and fall the float varies the time of contact between an integrating drum and the counters by which the successive readings are registered.

    There is no limit to the sizes of the meters nor the quantity of water that may be measured. Meters with 24 -inch, 36 -inch, 48 -inch, and even 20 -foot tubes can be readily made.
     and Jan., 1858.) - Mr. Herschel recomments the use of a Venturi tube, inserted in the force-main of the pumping ellgine, for determining the quantity of water discharged. Such a tube applied to a 24 -inch main has a total length of about 20 feet. At a distance of 4 feet from the end nearest the engine the inside diameter of the tube is contracted to a throat having a diameter of about 8 inches. A pressure-gange is attached to each of two chambers, the one surrounding and communicating with the entrance or main pipe, the other with the throat. According to experiments made upon two tubes of this kind, one 4 in . in diameter at the throat and 12 in . at the entrance, and the other about 36 in . in diameter at the throat and 9 feet at its entrance, the quantity of water which passes through the tube is very nearly the theoretical discharge through an opening having an area equal to that of the throat, and a velocity which is that due to the difference in head shown
    by the two gauges. Mr. Herschel states that the coefficient for these two widely-varying sizes of tubes and for a wide range of velocity through tho pipe, was found to be within two per cent, either way, of $98 \%$. In other words, the quantity of water flowing through the tube per second is expressed within two per cent by the formula $W=0.98 \times A \times \sqrt{2 g h}$, in which $A$ is the area of the throat of the tube, $h$ the head, in feet, corresponding to the difference in the pressure of the water eritering the tube and that found at the throat, and $g=32.16$.
    Measurcment of Bischarge of Pumping-engines by Means of Nozzles. (Trans. A. S. M. E., xii. 575).-The measurement of water by computation from its discharge through orifices, or through the nozzles of fire-hose, furnishes a means of determining the quantity of watel deli vered by a pumping-engine which can be applied without much difficulty. John R. Freeman, Trans. A. S. C. E., Nov., 1889, describes a series of experi: ments covering a wide range of pressures and sizes, and the results showed that the coefficient of discharge for a smooth nozzle of ordinary good form was within one half of one per cent, either way, of $0.97 \%$; the diameter of the nozzle being accurately calipered, and the pressures being deternined by means of an accurate gauge attached to a suitable piezometer at the base of the play-pipe.
    In order to use this method for determining the quantity of water discharged by a pumping-engine, it would be recessary to provide a pressurebox, to which the water would be conducted, and attach to the box as many nozzles as would be required to carry off the water. According to Mr. Freeman's estimate, four $11 / 4$-inch nozzles, thus connected, with a pressure of 80 lbs . per square inch, would discharge the full capacity of a two-and a. half-million engine. He also suggests the use of a portable apparatus with a single opening for discharge, consisting essentially of a siamese nozzle, so-called, the water being carried to it by three ot more lines of fire-hose.
    To insure reliability for these measuremeuts, it is necessary that the shutoff valve in the force-main, or the several slut-off valves, should be tight, so that all the water discharged by the engine may pass through the nozzles.
    Flow through Rectangular Orifices. (Approximate. See p. 556.) Cubic Feet of Water Discharged per Minute through an Orifice One Inch Square, under any Head of Water from 3 to 72 Inches.

    For any other orifice multiply by its area in square inches.
    Formula, $Q^{\prime}=.624 \sqrt{h^{\prime \prime}} \times a . \quad Q^{\prime}=\mathrm{cu}$. ft. per min.; $a=$ area in sq. in.

    |  |  | $18$ |  |  |  | $\begin{aligned} & 30 \\ & 0.0 \\ & 0 . E \end{aligned}$ | $\left\{\begin{array}{l} 0 \\ \text { en } \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$ | $\left\lvert\, \begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}\right.$ |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 3 | 1. | 13 | 2.20 | 23 |  | 33 |  |  |  |  |  |  |  |
    | 4 | 1.27 | 14 | 2.28 | 24 | 2.97 | 34 | 3.59 | 44 | 3.05 4.00 | 53 | 4.39 | ${ }_{64}^{63}$ | 4.781 4.81 |
    | ${ }_{5}^{5}$ | 1.40 | 15 | ${ }^{2} .36$ | ${ }_{26}^{25}$ | 3.03 | 35 | ${ }^{3.57}$ | 45 | 405 | 55 | 4.46 | cor | 析 |
    | 7 | 1.64 | 17 | ${ }_{2} .51$ | 27 | 3.14 | ${ }_{3} 36$ | 3.62 | 47 | 4.09 | 56 | ${ }_{4}^{4.52} 4$ | ${ }_{6}^{66}$ | 4.89 |
    | 8 | 1.75 | 18 | ${ }^{2} .58$ | 28 | 3.20 | 38 | 3. ${ }^{\text {a }}$ | 48 | 4.18 | 58 | 4.58 | ${ }_{68}^{61}$ | ${ }_{4}^{4.97}$ |
    | 10 | 1.8 | 19 |  | 29 | 3. ${ }^{3} 5$ | 39 | 3.77 | 49 | 4.21 | 59 | 4.63 | 69 | 5.00 |
    | 10 | ${ }^{1.94}$ | $\stackrel{2}{21}$ | 2. 21 | 30 | ${ }_{3}^{3.31}$ | 40 | 3. 81 | 50 | 4.27 | 60 | 4.65 | - | 5.03 |
    | 12 | $\stackrel{1}{2.12}$ | $2{ }_{2}^{2}$ |  | 31 32 | 3.36 3.41 | 41 | ${ }^{3} 8$ | 51 | 4.30 | 61 | 4. $\mathrm{T}^{2}$ | i1 | $5.0{ }^{\text {\% }}$ |
    |  |  |  |  |  |  |  |  | 52 | 4.34 | 62 | 4.74 | \%2 | 5.0 |

    Weasurement of an open Stream by Velocity and Crosse section.-Measire the depth of the water at from 6 to 12 points across the stream at equal distances between. Add all the depths in feet together and divide by the number of measurements made; this will be the average depth of the stream, which multiplied by its width will give its area or crosssection. Multiply this by the velocity of the strean in feet per minute, and the result will be the discharge in cubic feet per minite of the stream.
    The velocity of the stream can be found by laying off 100 feet of the bank and throwing a float into the middle, noting the time taken in passing over the 100 ft . Do this a number of times and take the average ; then, dividing
    this distance by the time gives the velocity at the surface. As the top of the stream flows faster than the bottom or sides-the average velocity being about $83 \%$ of the surface velocity at the midde-it is convenient to measure a distance of 120 feet for the float and reckon it as 100.
    

    Fig. 130.
    Miners' Inch Measurements. (Pelton Water Wheel Co.)
    The cut, Fig. 130, shows the form of measuring-box ordinarily used, and the following table gives the discharge in cubic feet per minute of a miner's inch of water, as measured under the various heads and different lengths and heights of apertures used in California.

    | $\begin{gathered} \text { Length } \\ \text { of } \\ \text { Opening } \\ \text { in } \\ \text { inches. } \end{gathered}$ | Openings 2 Inches High. |  |  | Openings 4 Inches High. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Head to Centre, 5 inches. | Head to Centre, 6 inches. | Head to Centre, 7 inches. | Head to Centre, 5 inches. | Head to Centre, 6 inches. | Head to Centre, 7 inches. |
    |  | Cu. ft. | $\mathrm{Cu} . \mathrm{ft} .$ | $\mathrm{Cu} . \mathrm{ft} \text {. }$ | $\mathrm{Cu} . \mathrm{ft} .$ | $\mathrm{Cu} . \mathrm{ft}$. <br> Cu. 450 | $\mathrm{Cu} . \mathrm{ft} \text {. }$ |
    | 6 | 1.355 | 1.480 | 1.596 | 1.336 | 1.400 | 1.595 |
    | 8 | 1.358 | 1.484 | 1.600 | 1.344 | 1.481 | 1.608 |
    | 10 | 1.361 | 1.485 | 1.609 | 1.349 | 1.487 | 1.615 |
    | 12 | 1.363 | 1.487 | 1.604 | 1.352 | 1.491 | 1.620 |
    | 14 | 1.364 | 1.488 | 1.604 | 1.354 | 1.494 | 1.623 |
    | 16 | 1.365 | 1.489 | 1.605 | 1.356 | 1.496 | 1.626 |
    | 18 | 1.365 | 1.489 | 1.606 | 1.357 | 1.498 | 1.628 |
    | 20 | 1.365 | 1.490 | 1.606 | 1.359 | 1.499 | 1.630 |
    | 22 | 1.366 | 1.490 | 1. 607 | 1.359 | 1.500 | 1.631 |
    | 24 | 1.366 | 1.490 | $1.60 \%$ | 1.360 | 1.501 | 1.632 |
    | 26 | 1.366 | 1.490 | 1.607 | 1.361 | 1.502 | 1.633 |
    | 28 | 1.367 | 1.491 | 1.607 | 1.361 | 1.503 | 1.634 |
    | 30 | 1.367 | 1.491 | 1.608 | 1.362 | 1.503 | 1.635 |
    | 40 50 | 1.367 1.368 | 1.492 1.493 | 1.608 | 1.363 1.364 | 1.505 | 1.639 |
    | 60 | 1.368 | 1.493 | 1.609 | 1.365 | 1.508 | 1.640 |
    | $\%$ | 1.368 | 1.493 | 1.609 | 1.365 | 1.508 | 1.641 |
    | 80 | 1.368 | 1.493 | 1.609 | 1.366 | 1.509 | 1.641 |
    | 90 | 1.369 | 1.493 | 1.610 | 1.366 | 1. 509 | 1.641 |
    | 100 | 1.369 | 1.494 | 1.610 | 1.366 | 1.509 | 1.642 |

    Note.-The apertures from which the above measurements were obtained
    were through material $11 / 4$ inches thick, and the lower edge 2 inches above the bottom of the measuring-box, thus giving full contraction.
    Flow of Water Over Weirs. Weir Dam Mhezsurement. (Pelton Water Wheel Co.)-Place a board or plank in the strean, as shown
    

    Fig. 131.
    in the sketch, at some point where a pond will form above. The length of the notch in the dam should be from two to four times its depth for small quantities and longer for large quantities. The edges of the notch should be bevelled toward the intake side, as shown. The overfall below the notch sliould not be less than twice its depth. [Francis says a fall below the crest equal to one-half the head is sufficient, but there must be a free access of air under the sheet. 1

    In the pond, about 6 ft . above the dam, drive a stake, and then obstruct the water milil it rises precisely to the bottom of the notch and mark the stake at this level. Then complete the dam so as to cause all the water to flow through the notch, and, after time for the water to settle, mark the stake again for this new level. If preferred the stake can be driven with its top precisely level with the bottom of the notch and the depth of the water be measured with a rule after the water is flowing free, but the marks are preferable in most cases. The stake can then be withdrawn; and the distance between the marks is the theoretical depth of flow corresponding to the quantities in the table on the following page.

    Francis's Formulac for Weirs.

    Weirs with both end contractions suppressed ....... ... .. ....... \}

    > As given by Francis.

    Weirs with one end contraction $\left.\begin{array}{l}\text { Weirs with one end contraction } \\ \text { suppressed............................ }\end{array}\right\}$
    Weirs with full contraction.......

    $$
    \text { The greatest variation of the Francis formulæ from the values of } c \text { civen bv }
    $$ Smith amounts to $31 / 2 \%$. The modified Francis formulæ, says Smith, will give results sufficienty exact, when wreat accuracy is not required, within the limits of $h$, from .5 ft . to 2 ft ., $l$ weing not less than 3 h .

    As modified by Smith.
    $3.29\left(l+\frac{h}{7}\right) h^{\frac{3}{2}}$
    $3.297 h^{\frac{3}{2}}$
    $3.29\left(l-\frac{\hbar}{10}\right) h^{\frac{3}{2}}$
    $Q=$ discharge in cubic feet per second, $l=$ length of weir in feet, $h=$ effective head in feet, measured from the level of the crest to the level of still water above the weir.
    If $Q^{\prime}=$ discharge in cubic feet per minute, and $l^{\prime}$ and $h^{\prime}$ are taken in inches, the first of the above formulæ reduces to $Q^{\prime}=0.4 l^{\prime} h^{\frac{3}{2}}$. From this formula the following table is calculated. The values are sufficiently accurate for ordinary computations of water-power for weirs without end contraction, that is, for a weir the full width of the channel of approach, and are approximate also for weirs with end contraction when $l=$ at least $10 h$, but about $6 \%$ in excess of the truth when $l=4 h$.

    ## Weir Table。

    Giving Cubic Feet of Water per Minute that will Flow over a Weir ONE INCH WIDE AND FROM $1 / 8$ TO $207 / 8$ INCHES DEEP.

    For other widths multiply by the width in inches.

    |  |  | $1 / 8 \mathrm{in}$. | $1 / 4 \mathrm{in}$. | 3/8in. | $1 / 2 \mathrm{in}$. | 5/8 in. | 3/4in. | \%/8 in. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | in. | cu. ft. | cu. ft . | cu. ft. | cu. ft. | $\mathrm{cu} . \mathrm{ft} .$ | $\begin{aligned} & \hline \mathrm{cu} . \mathrm{ft.} \\ & .19 \end{aligned}$ | $\mathrm{cu} . \mathrm{ft.}$ | $\begin{array}{r} \mathrm{cu} . \mathrm{ft} . \\ .32 \end{array}$ |
    | 1 | . 40 | . $4{ }^{\text {r }}$ | . 55 | . 64 | . 9 | . 82 | . 92 | 1.02 |
    | 2 | 1.13 | 1.23 | 1.35 | 1.46 | 1.58 | 1.71 | 1.82 | 1.95 |
    | 3 | 2.07 | 2.21 | 2.34 | 2.48 | 2.61 | 2.76 | 2.90 | 3.05 |
    | 4 | 3.20 | 3.35 | 3.50 | 3.66 | 3.81 | 3.97 | 4.14 | 4.30 |
    | 5 | 4.47 | 4.64 | 4.81 | 4.98 | 5.15 | 5.33 | 5.51 | 5.69 |
    | 6 | 5.87 | 6.06 | 6.25 | 6.44 | 6.62 | 6.82 | 7.01 | \%. 21 |
    | 7 | 7.40 | 7.60 | 7.80 | 8.01 | 8.21 | 8.42 | 8.63 | 8.83 |
    | 8 | 9.05 | 9.26 | 9.47 | 9.69 | 9.91 | 10.13 | 10.35 | 10.57 |
    | 9 | 10.80 | 11.02 | 11.25 | 11.48 | 11.71 | 11.94 | 12.17 | 12.41 |
    | 10 | 12.64 | 12.88 | 13.10 | 13.36 | 13.60 | 13.85 | 14.09 | 14.34 |
    | 11 | 14.59 | 14.84 | 15.09 | 1534 | 15.59 | 15.85 | 16.11 | 16.36 |
    | 12 | 16.62 | 16.88 | 17.15 | 17.41 | 17.67 | 17.94 | 18.21 | 18.47 |
    | 13 | 18.14 | 19.01 | 19.29 | 19.56 | 19.84 | 20.11 | 20.39 | 20.67 |
    | 14 | 20.95 | 21.23 | 21.51 | 21.80 | 29.08 | $2 \cdot .37$ | 22.65 | 23.94 |
    | 15 | 23.23 | 23.52 | 23.82 | 24.11 | 24.40 | 24.60 | 25.00 | 25.30 |
    | 16 | 25.60 | 25.90 | 26.20 | 26.50 | 26.80 | 27.11 | 27.42 | 27.72 |
    | 17 | 28.03 | 28.34 | 28.65 | 28.97 | 29.28 | 29.59 | 29.91 | 30.22 |
    | 18 | 30.54 | 30.86 | 31.18 | 31.50 | 31.82 | $3 \cdot .15$ | 32.47 | 32.80 |
    | 19 | 33.12 | 33.45 | 33.78 | 3411 | 34.44 | 34.78 | 35.10 | 35.44 |
    | 20 | 35.77 | 36.11 | 36.45 | 36.78 | 3\%.12 | 37.46 | 37.80 | 38.15 |

    For more accurate computations, the coefficients of flow of Hamilton Smith, Jr., or of Bazin should be used. In Smith's hydraulics will be found a collection of results of experinents on orifices and weirs of various shapes made by many different authorities, together with a discussion of their several formulæ. (See also Trautwine's Pocket Book.)

    Hazin's Cxperiments.--M. Bazin (Annales des Pouts et Chaussées, Oct., 1888, translated by Marichal and Trautwine, Proc. Engrs. Club of Phila., Jan., 1890), made an extensive series of experiments with a sharp-crested weir without lateral contraction, the air being admitted freely behind the falling sheet, and found values of $m$ vary ing from 0.42 to 0.50 , with variations of the length of the weir from 1934 to $883 / 4 \mathrm{in}$, of the height of the crest above the bottom of the channel from 0.79 to 2.46 ft ., and of the head from 1.97 to 23.62 in. From these experiments he deduces the following formula:

    $$
    Q=\left[0.425+0.21\left(\frac{H}{P+H}\right)^{2}\right] L H \sqrt{2 g H}
    $$

    in which $P$ is the height in feet of the crest of the weir above the bottom of the channel of approach, $L$ the length of the weir, $H$ the head, both in feet, and $Q$ the discharge in cu. ft. per sec. This formula, says MT. Bazin, is entirely practical where errors of $2 \%$ to $3 \%$ are admissible. The following table is condensed from M. Bazin's paper :

    Valdes of the Coefficient $m$ in the Formula $\ell=m L H \sqrt{2 g H}$, for a Sharp-crested Weir without lateral Contraction ; the alr beine admitted Freely behind the Falling Sheet.

    | $\begin{aligned} & \text { Head, } \\ & H . \end{aligned}$ | Height of Crest of Weir Above Bed of Channel. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Feet ... 0.66 | $\left\|\begin{array}{r} 0.98 \\ 11.31 \end{array}\right\|$ | $\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$ | $\begin{array}{r} 1.64 \\ 19.69 \end{array}$ |  |  | 39.38 | $859.0 \%$ | $\begin{aligned} 656 \\ 58.76 \end{aligned}$ | ${ }_{\infty}^{\infty}$ |
    | Ft. ${ }_{\text {In }} \mathrm{In}_{9}$ |  |  |  |  |  |  |  |  |  |  |
    | .164 1.97 <br> .230 1.96 <br> 2.76  | 0.458 0.455 | 0.453 0.448 | 0.451 | 0.450 | 0.449 | 0.449 | 0.449 | 0.448 | 0.448 | 0.4481 |
    | .230 ${ }^{2} \times 1.54$ | ${ }^{0.455}$ | 0.448 0.447 | 0.445 0.442 | 0.413 0.440 | 0.442 0.438 | 0.441 0.436 | 0.440 | 0.440 0.435 | 0.439 |  |
    | . 394 4.\% | 0.462 | 0.448 | 0.442 | 0.438 | ${ }_{0} .436$ | 0.433 | 0.432 | 0.430 | 0.430 | 0.429 |
    | . 525.5 6.30 | 0.471 | 0.453 | 0.444 | 0.438 | 0.435 | 0.431 | 0.429 | 0.427 | 0.426 | 0.4246 |
    | . $6.786{ }^{\text {. }}$ | 0.480 0.488 | 0.459 | 0.417 <br> 0.452 | O. $\begin{aligned} & 0.440 \\ & 0.444\end{aligned}$ | 0.436 <br> 0.438 | 0.431 0.432 | 0.428 | 0.425 | 0.423 | 0.4215 |
    | . 91911.02 | 0.496 | 0.472 | 0.457 | ${ }_{0}^{0.444}$ | ${ }_{0}^{0.438}$ | -0.432 <br> 0.433 | 0.429 |  |  | 0.4194 0.4181 |
    | 1.050112 .60 |  | 0.478 | 0.462 | 0.452 | 0.444 | 0.436 | 0.430 | 0.424 | 0.421 | 0.4 |
    | 1.181 1.314 .17 |  | 0.483 0.489 | ${ }^{0.467}$ | 0.456 0.459 | 0.448 0.451 | 0 | 0 0 0 433 | 0.424 0.424 | 0.421 | 0.4156 0.4144 |
    | 1.444 17.32 |  | 0.494 | 0.476 | 0.463 | 0.454 | 0.442 | ${ }_{0}^{0} 433$ | 0.424 |  |  |
    | ${ }_{1}^{1.555} 18.900$ |  |  | 0.480 | 0.467 | 0.457 | 0.444 | 0.436 | 0.425 | - | 0.4 |
    | 1:837 $2 \times 2.05$ |  |  |  |  |  |  |  | . | 0.4 | 0.4112 |
    | 1.96923 .62 |  |  | 0.490 | . 476 | 0.466 | 0.451 | 0.441 | $0.42 \%$ | 0.421 | 0.409: |

    A comparison of the results of this formula with those of experiments, says M. Bazin, justifies us in believing that, except in the unusual case of a very low weir (which shonld always be avoided), the preceding table will give the coefficient $m$ in all cases within $1 \% ;$ provided, however, that the arrangements of the standard weir are exactly reprodiced. It is especially important that the admission of theair behind the falling sheet be perfectly assured. If this condition is not conıplied with, m may vary within much wider limits. The type adopted gives the least possible variation in tha coefficient.

    ## WATER-POWER.

    Power of a Fall of Water-Effiency.-The gross power of a fall of water is the product of the weight of water discharged in a mit of time into the total head. i.e., the difference of vertical elevation of the upper surface of the water at the points where the fall in question begins and ends. The term "head "used in connection with water-wheels is the difference in height from the surface of the water is the wheel-pit to the surface in the pen-stock when the wheel is running.

    If $Q=$ cubic feet of water discharged per second, $D=$ weight of a cubin foot of water $=62.36 \mathrm{lbs}$. at $60^{\circ} \mathrm{F} ., H=$ total head in feet; then

    $$
    D Q H=\text { gross power in foot-pounds per second, }
    $$

    and $D Q H+550=.11: 3+Q H=$ gross horse-power.
    If $Q^{\prime}$ is taken in cubic feet per minute, H. $I_{.}=\frac{Q^{\prime} H \times 62.36}{33,000}=.00189 Q^{\prime} H$.
    A water-wheel or motor of any kind carnot utilize the whole of the head $H$, since there are losses of head at both the elltrance to aud the exit from the wheel. There are also losses of energy due to friction of the water in its passage through the wheel. the ratio of the power developed by the wheel to the gross power of the fall is the efficiency of the wheel. For $75 \%$ efficiency, net horse-power $=.00142 Q^{\prime} H=\frac{Q^{\prime} H}{706}$.

    A head of water can be made use of in one or other of the following ways viz.

    1st. By its weight, as in the water-balance and overshot-wheel.
    2d. By its pressure, as in turbines and in the hydraulic engine, hydraulic press, crane, etc.
    3d. By its impulse, as in the undershot-wheel, and in the Pelton wheel. 4th. By a combination of the above.
    Horse-power of a Pumning Stream.-The gross horse-power is, H. P. $=Q H \times 62.36+550=.1134 Q H$, in $"$ hich $Q$ is the discharge in cubic feet per second actually impinging on the float or bucket, and $H=$ theoretical head due to the velocity of the stream $=\frac{v^{2}}{2 g}=\frac{v^{2}}{64.4}$, in which $v$ is the velocity in feet per second. If $Q^{\prime}$ be taken in cubic feet per minute, H. P. $=.00189 Q^{\prime} H$.

    Thus, if the floats of an undershot-wheel driven by a current alone be 5 feet $\times 1$ foot, and the velocity of stream $=210 \mathrm{ft}$. per minute, or $31 / 2 \mathrm{ft}$. per sec., of which the theoretical head is $.19 \mathrm{ft} ., Q=5 \mathrm{sq} . \mathrm{ft} . \times 210=1050 \mathrm{cu}$. ft . per minute ; $H=.19 \mathrm{ft} . ; \mathrm{H} . \mathrm{P} .=1050 \times .19 \times .00189=.377 \mathrm{H} . \mathrm{P}$.
    The wheels would realize only about. 4 of this power, on account of friction and slip, or $.151 \mathrm{H} . \mathrm{P}$., or about $.03 \mathrm{H} . \mathrm{F}$. per square foot of float, which is equivalent to 33 sq . ft . of float per H. P.
    Current IKotors.-A current motor could only utilize the whole power of a running stream if it could take all the relocity out of the water, so that it would leave the floats or buckets with no velocity at all; or in other words, it would require the backing up of the whole volume of the stream until the actual head was equivalent to the theoretical head due to the velocity of the stream. As but a small fiaction of the velocity of the strean can be taken up by a current motor, its efficiency is very small. Current motors may be used to obtain small amounts of power from large streams, but for large powers they are not practicable.
    Horsemower of Water Whowingin a rebbe.-The head due to the velucity is $\frac{v^{2}}{2 g}$; the head due to the pressure is $\frac{f}{w}$; the head due to actual height above the datum plane is $h$ feet. The total head is the sum of these $=$ $\frac{v^{2}}{2 g}+h+\frac{f}{w}$, in feet, in which $v=$ velucity in feet per second, $f=$ pressure in lbs. per sq. ft ., $w=$ weight of 1 cu . ft . of water $=62.36 \mathrm{lbs}$. If $p=$ pres sure in lbs. per sq. in., $\frac{f}{w}=2.309$ p. In hydraulic transmission the velocity and the height above datum are usually small compared with the pressurehead. The work or energy of a given quantity of water under pressure $=$ its volume in cubic feet $X$ its pressure in lbs. per sq . ft .; or if $Q=$ quantity in cubic feet per second, and $p=$ pressure in lbs. per square inch, $W=$ $144 p Q$, and the H. P. $=\frac{144 p Q}{550}=.261$ sp $Q$.

    Maximum Eficiency of a Long Conduit.-A. L. Adams and R.C.('emmell (Eng'y News, May 4, 1893), show by mathematical analysis that the conditions for securing the maximum amount of power through a long conduit of fixed diameter, without regard to the economy of water, is that the draught from the pipe should be such that the frictional loss in the pipe will be equal to one thind of the entire static head.

    HIEll-Power.-A "mill-power" is a unit used to rate a water-power for the purpose of renting it. The value of the unit is different in different localities. The following are examples (from Emerson):

    Holyoke, Mass.-Each mill-power at the respective falls is declared to be the right during 16 hours in a day to draw 38 cu . ft . of water per second at the upper fall when the head the ee is 20 feet, or a quantity proportionate to the height at the falls. This is equal to 86.2 horse-power as a maximum.

    Lowell, Mass.-The right to draw during 15 hours in the day so much water as shall give a power equal to 25 cu. ft . a second at the grear fall, when the fall there is 30 feet. Equal to 85 H . P. naximum.

    Lavrence, Mass.-The right to draw during 16 hours in a day so much water as shall give a power equal to $30 \mathrm{cu} . \mathrm{ft}$. per second when the head is 25 feet. Equal to 8.5 H.P. Maximum.

    Minneapmlis, Minn. -30 cu . ft . of water per second with liead of 22 feet. Equal to $74.8 \mathrm{H} . \mathrm{P}$.

    Manchester, N. H.-Divide 7:5 by the number of feel of fall minus 1 , and
    the quotient will be the sumber of cubic feet per second in that fall. For 20 feet fall this equals 38.1 cu . ft., equal to $86.4 \mathrm{IF} . \mathrm{P}$. maximum.
    Cohoes, N. Y. - "Mill-power" "equivalent to the power given by $6 \mathrm{cu} . \mathrm{ft}$. per second, when the fall is 20 feet. Equal to 13.6 H. P., maximum.

    Passaic, $N$. J.-Mill-power: The right to draw $81 / 2 \mathrm{cu}$. ft. of water per sec., fall of $2:$ feet, equal to 21.2 horse-power. Maximum rental $\$ 200$ per year for each mill-power $=\$ 33.00$ per H. P.

    The horse-power maximum above given is that due theoretically to the weight of water and the height of the fall, assuming the water-wheel to have perfect efficiency. It should be multiplied by the efficiency of the wheel, say $5 \%$ for good turbines, to obtain the H. P. delivered by the wheel.

    Vaine of a Waterapower.-In estimating the value of a waterpower, especially where such value is used as testimony for a plaintifi whose water-power has been diminished or confiscated, it is a common custom for the person making such estimate to say that the value is represented by a sum of money which, when put at interest, would maintein a steam-plant of the same power in the sane place.

    Mr. Charles T. Main (Trans. A. S. M. E. xiii. 140) points out that this sys tem of estimating is erroneous; that the value of a power depends upon a great mmmber of conditions, such as location, quantity of water, fall or head, uniformity of flow, conditions which fix the expense of dams, canals, founda' tions of buildings, freight charges for fuel, raw materials and finished prod. nct, etc. He gives an estimate of relative cost of steam and water-power for a $500 \mathrm{H} . \mathrm{P}$. plant from which the following is condensed:

    The amount of heat required per H P. varies with different kinds of business, but in anl average plain cotton-mill, the steam required for heating and slashing is equivalent to about $25 \%$ of steam exhausted from the highpressure cylinder of a compound engine of the power required to run that inill, the steam to be taken from the receiver.

    The coal consumption per If. P. per hour for a compound engine is taken at $13 / 4 \mathrm{lbs}$. per loour, when no stean is taken from the receiver for heating purposes. The gross consumption when $25 \%$ is taken from the receiver is about 2.06 lbs .
    ${ }_{25 \%}^{75 \%}$ of the steam is used as in a compound engine at $1.75 \mathrm{lbs}=1.31 \mathrm{lbs}$.
    

    The running expenses per H. P. per year are as follows:
    2.06 lbs coal per hour $=21.115 \mathrm{lbs}$. for $101 / 4$ hours or one day $=6503.42$
    lbs. for 308 days, which, at $\$ 3.00$ per long ton $=$
    Attendance of boilers, one man @ $\$ 2.00$, and one man @ $\$ 1.25=$ " " engine, " "• $\$ 3.50$.
    Oil, waste, and supplies.
    The cost of such a steam-plant in New England and vicinity of 500 H. P. is about $\$ 65$ per H. P. Taking the fixed expenses as $4 \%$ on engine, $5 \%$ on boilers, and $2 \%$ ou other portions, repairs at $2 \%$, interest at $5 \%$, taxes at $112 \%$ on $3 / 4$ cost. anl insurance at $1 / 2 \%$ on exposed portion, the total average per cent is about $121 / 2 \%$, or $\$ 65 \times .121 / 2=$

    ## Gross cost of power and low-pressure steam per H. P. $\overline{\$ 2180}$

    Comparing this with water-power, Mr. Main says: "At. Lawrence the cost of dant and canals was about $\$ 650,000$, or $\$ 65$ per $H_{H}$ P. The cost per H. P. of wheel-plant from canal to river is about $\$ 45$ per $\dot{H}$. $\dot{P}$. of plant, or about $\$ 65$ per H. P. used, the additional $\$: 2$ being caused by making the plant large enough to compensate for fluctuation of power due to rise and fall of river. The total cost per H. P. of developed plant is then about $\$ 1.30$ per H. P. Placing the depreciation on the whole plant at $2 \%$, repairs at $1 \%$, interest at $5 \%$, taxes and insurance at $1 \%$, or a total of $9 \%$, gives:

    $$
    \begin{aligned}
    & \text { Fixed expenses per } \mathrm{H}_{6} \text { P. } \\
    & \text { Funning } \\
    & \text { (Estimated) } \\
    & \$ 130 \times .09 \\
    & \$ 1370 \\
    & \$ 11 \\
    & \$ 00 \\
    & \$ 1370
    \end{aligned}
    $$

    "To this has to be added the amount of steam required for heating purposes, said to be abont $25 \%$ of the total amount used, but in winter months the consumption is at least $3 \pi 1 / 2 \%$. It is therefore necessary to have a boiler plant of about $371 / \%$ of the size of the one considered with the steam-plant,
    costlug about $\$ 20 \times .375=\$ 7.50$ per H. P. of total power used. The expense of running this boiler-plant is, per H. P. of the the total plant per year:

    Fixed expenses 121/2\% on $\$ 7.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$.

    Coal
    3.26

    Labor...................................................................................... 1.23
    Total
    $\$ 5.43$
    Making a total cost per year for water-power with the auxiliary boiler plant $\$ 13 . \% 0+\$ 5.43=\$ 19.13$ which deducted from $\$ 21.80$ make a difference in favor of water-power of $\$ 2.67$, or for $10,000 \mathrm{H} . \mathrm{P}$. a saving of $\$ 26, \% 00$ per year.
    "It is fair to say," says Mr. Main," that the value of this constant power is a sum of money which when put at interest will produce the saving; or if $6 \%$ is a fair interest to receive on money thus invested the value would be $\$ 26.700 \div .06=\$ 445,000 . "$
    Mr. Main makes the following general statements as to the value of a water-power: "The value of an undeveloped variable power is usually nothing if its variation is great, unless it is to be supplemented by a steam-plant. It is of value then only when the cost per horse-power for the double-plant is less than the cost of steam-power under the same conditions as mentioned for a permanent power, and its value can be represented in the same manner as tlie value of a permanent power has been represented.
    "The value of a developed power is as follows: If the power call be run cheaper than steam, the value is that of the power, plus. the cost of plant, less depreciation. If it cannot be 1 mm as cheaply as steam, considering its cost, etc., the value of the power itself is nothing, but the value of the plant is such as could be paid for it new, which would bring the total cost of running down to the cost of stean-power, less depreciation."
    Mr. Samuel Webber, Iron Age, Feb. and March, 1893, writes a series of articles showing the development of American turbine wheels, and incidentally criticises the statements of Mr. Main and others who have made comparisons of costs of steam and of water-power unfavorable to the latter. Hesays: "They have based their calculations on the cost of steam, on large compound engines of 1000 or more H. P. and 120 pounds pressure of steam in their boilers, and by careful 10-hour trials succeeded in figuring down steam to a cost of about $\$ 20$ per H. P., ignoring the well-known fact that its average cost in practical use, except near the coal mines, is from $\$ 40$ to $\$ 50$. In many instances dams, canals, and modern turbines can be all completed for a cost of $\$ 100$ per H. P.: and the interest on that, and the cost of attendance and oil, will bring water-power up to but about $\$ 10$ or $\$ 12$ per annum; and with a man competent to attend the dynamo in attendance, it can probably be safely estimated at not over $\$ 15$ per H. P."

    ## TUREINE WHECES.

    Proportions of Turbines.-Prof. De Volson Wood discusses at length the theory of turbines in his paper on Hydraulic Reaction Motors, Trans. A. S. M. E. xiv. 266. His principal deductions which have an immediate bearing upon practice are condensed in the following:

    ## Notation.

    $Q=$ volume of water passing through the wheel per second,
    $h_{1}=$ head in the supply chamber above the entrance to the bucksts,
    $\mu_{2}=$ head in the tail-race above the exit from the buckets,
    $z_{1}=$ fall in passing through the buckets.
    $H=h_{1}+z_{1}-h_{2}$, the effective head,
    $\mu_{1}=$ coefficient of resistance along the guides,
    $\mu_{2}=$ coefficient of resistance along the buckets,
    $r_{1}=$ radius of the initial rim,
    $r_{2}=$ radius of the terminal rim,
    $V=$ velocity of the water issuing from supply chamber,
    $v_{1}=$ initial velocity of the water in the bucket in reference to the bucket,
    $v_{a}=$ terminal velocity in the bucket,
    $\omega=$ angular velocity of the wheel,
    $a=$ terminal angle between the guide and initial rim = CAB, Fig. 132,
    $\gamma_{1}=$ angle between the initial element of bucket and initial rim $=E A D$,
    $\boldsymbol{\gamma}_{2}=G F^{\prime} I$, the angle between the terminal rim and terminal element of
    the bucket.
    $a=e b$, Fig. $183=$ the are subtending one gate opening,
    $a_{1}=$ the arc subtending one bucket at entrance. (In practice $a_{1}$ is larger than $a$, )
    $a_{2}=g h$, the arc subtending one bucket at exit,
    $K=b f$, normal section of passage, it being assumed that the passages and buckets are very narrow.
    $k_{1}=b d$, initial normal section of bucket,
    $k_{2}=g i$, terminal normal section,
    $\omega r_{1}=$ velocity of initial rim,
    $\omega r_{2}=$ velocity of terminal rim,
    $\theta=H F I$, angle between the terminal rim and actual direction of the water at exit,
    $Y=$ depth of $K, y$, of $a_{1}$, and $y_{2}$ of $K_{2}$, then
    $K=Y a \sin a ; K_{1}=y_{1} a_{2} \sin \gamma_{1} ; K_{2}=y_{2} \alpha_{2} \sin \gamma_{2}$.
    

    FIG. 132.
    Fig. 133.
    Three simple systems are recognized, $r_{1}<r_{2}$ ? called outward flow; $r_{1}>r_{3}$, called inward flow; $r_{1}=r_{2}$, called parallel flow. The first and second may be combined with the third, making a mixed system.

    Value of $\gamma_{2}$ (the quitting angle). The efficiency is increased as $\gamma_{2}$ decreases, and is greatest for $\gamma_{2}=0$. Hence, theoretically, the terminal element of the bucket should be tangent to the quitting rim for best efficiency. This however, for the discharge of a finite quantity of water, would require an infinite depth of bucket. In practice, therefore, this angle must have a tinite value. The larger the diameter of the terminal rim the smaller may be this angle for a given depth of wheel and given quantity of water discharged. In practice $\gamma_{2}$ is from $10^{\circ}$ to $20^{\circ}$.

    In a wheel in which all the elements except $\gamma_{2}$ are fixed, the velocity of the wheel for best effect must increase as the quitting angle of the bucket decreases.

    Values of a $+\gamma_{1}$ must be less than $180^{\circ}$, but the best relation cannot be determined by analysis. However, since the water should be deflected from its course as much as possible from its entering to its leaving the wheel, the angle a for this reason should be as small as practicable.

    In practice, a cannot be zero, and is made from $20^{\circ}$ to $30^{\circ}$.
    The value $r_{1}=1.4 r_{2}$ makes the width of the crown for internal flow about the same as for $r_{2}=r_{2} \sqrt{\frac{1}{2}}$ for outward flow, being approximately 0.3 of the external radius.

    Values of $\mu_{2}$ and $\mu_{2}$. -The frictional resistances depend upon the construction of the wheel as to smoothness of the surfaces, sharpness of the angles,
    regularity of the curved parts, and also upon the speed it is run. These values cannot be definitely assigned beforehand, but Weisbach gives for good conditions $\mu_{1}=\mu_{2}=0.05$ to 0.10 .

    They are not uecessarily equal, and $\mu_{1}$ may be from 0.05 to 0.075 , and $\mu_{2}$ from 0.06 to 0.10 or evell larger.

    Values of $\gamma_{1}$ must be less than $180^{\circ}-a$.
    To be on the safe side, $\gamma_{1}$ may be 20 or 30 degrees less than $180^{\circ}-2 a$, giving

    $$
    \gamma_{1}=180^{\circ}-2 a-25 \text { (say) }=155-2 a .
    $$

    Then if $a=30^{\circ}, \gamma_{1}=95^{\circ}$. Some designers make $\gamma_{1} 90^{\circ}$; others more, and still others less, than that amount. Weisbach suggests that it be less, so that the bucket will be slorter and friction less. This reasoning appears to be correct for the inflow wheel, but not for the outflow wheel. In the Tremont turbines, described in the Lowell Hydraulic Experiments, this angle is $90^{\circ}$, the angle a $20^{\circ}$, and $\gamma_{2} 10^{\circ}$, which proportions insured a positive pressure in the wheel. Fourneyron made $\gamma_{1}=90^{\circ}$, and a from $30^{\circ}$ to $33^{\circ}$, which values made the initial pressure in the wheel neal zero.

    Form of Bucket.-The form of the bucket cannot be determined analytically. From the initial and terminal directions and the volume of the water flowing through the wheel, the area of the normal sections may be found.
    The normal section of the buckets will be:

    $$
    K=\frac{Q}{V} ; k_{1}=\frac{Q}{v_{1}} ; \quad k_{9}=\frac{Q}{v_{9}} .
    $$

    The depths of those sections will be:

    $$
    Y=\frac{k}{a_{1} \sin a} ; \quad y_{1}=\frac{k_{1}}{a_{1} \sin \gamma_{2}} ; \quad y_{2}=\frac{k_{2}}{a_{2} \sin \gamma_{2}}
    $$

    The changes of curvature and section must be gradual, and the general form regular, so that eddies and whirls shall not be formed. For the same reason the wheel must be run with the correct velocity to secure the best effect. In practice the buckets are made of two or three arcs of circles, mutually tangential.

    The Value of $\omega$.-So far as analysis indicates, the wheel may run at any speed; but in order that the stream shall flow smoothly from the supply chamber into the bucket, the velocity $V$ should be properly regulated.

    If $\mu_{1}=\mu_{2}=0.10, r_{2} \div r_{1}=1.40, a=25^{\circ}, \gamma_{1}=90^{\circ}, \gamma_{2}=120$, the velocity of the initial rim for outward flow will be for maximun efficiency 0.614 of the velocity due to the head, or $\omega r_{1}=0.614 \sqrt{2 g H}$.

    The velocity due to the head would be $\sqrt{2 g H}=1.414 \sqrt{g H}$.
    For an inflow wheel for the case in which $r_{1}{ }^{2}=2 r_{2}{ }^{2}$, and the other dimen sions as given above, $\omega r_{1}=0.682 \sqrt{2 g H}$.

    The highest efficiency of the Tremont turbine, found experimentally, was 0.79375 , and the corresponding velocity, 0.62645 of that due to the head, and for all velocities above and below this value the efficiency was less.

    In the Tremont wheel $a=20^{\circ}$ instead of $25^{\circ}$, and $y_{2}=10^{\circ}$ instead of $12^{\circ}$. These would make the thenretical efficiency and velocity of the wheel some what greater. Experiment showed that the velocity might be considerably larger or smaller than this amount without much diminution of the efficiency.

    It was found that if the velocity of the initial (or interior) rim was not less than $44 \%$ nor more than $75 \%$ of that due to the fall, the efficiency was $75 \%$ or more. This wheel was allowed to run freely without any brake except its own friction, and the velocity of the initial rim was observed to be $1.335 \sqrt{2 g H}$, half of which is $0.66 \% 5 \sqrt{2 g H}$, which is not far from the velocity giving maximum effect; that is to say,when the gate is fully raised the coefficient of effect is a maximum when the wheel is moving with about half its maximum velocity.

    Number of Buckets.-Successful wheels have been made in which the distance between the buckets was as small as $0 . \% 5$ of an inch, and others as much as 2.75 inches. Turbines at the Centennial Exposition had buckets from $41 / 2$ inches to 9 inches from centre to centre. If too large they will not work properly. Neither should they be too deep. Horizontal partitions are sometimes introduced. These secure more efficient working in case the gates are only partly opened. The form and number of buckets for commercial purposes are chiefly the result of experience.

    # Ratio of Radii.-Theory does not limit the dimensions of the wheel. In practice 

    > for outward flow, $r_{2} \div r_{2}$ is from 1.25 to 1.50 for inward flow, $r_{2} \div r_{2}$ is from 0.66 to 0.80 .

    It appears that the inflow-wheel has a higher efficiency than the outwardflow wheel. The inflow-wheel also runs :omewhat slower for best effect, The centrifugal force in the outward-flow wheel tends to force the water outward faster than it would otherwise flow; while in the inward-flow wheel it has the contrary effect, acting as it does in opposition to the velocity in the buckets.

    It also appears that the efficiency of the outward-flow wheel increases slightly as the width of the crown is less and the velocity for maximum efficiency is slower; while for the inflow-wheel the efficiency slightly increases for increased width of crown, and the velocity of the outer rim at the same time also increases.
    Efficiency.-The exact value of the efficiency for a particular wheel must
    be found by experiment.
    It seems hardly possible for the effective efficiency to equal, much less exceed, $80 \%$, and all claims of 90 or more per cent for these motor's should be discarded as improbable. A turbine jielding from $75 \%$ to $80 \%$ is extremely good. Experiments with higher efficiencies have been reported.
    The celebrated Tremont turbine gave $791 / 4 \%$ without the " diffuser," which might have added some 2\%. A Jonval turbine (parallel flow) was reported as yielding 0.75 to 0.90 , but Morin suggested corrections reducing it to 0.63 to 0.71 . Weisbach gives the results of many experiments, in which the efficiency ranged from $50 \%$ to $84 \%$. Numerons experiments give $E=0.60$ to $0.6 \%$. The efficiency, considering only the energy imparted to the wheel, will ex: ceed by several per cent the efficiency of the wheel, for the latter will include the friction of the support and leakage at the joint between the sluice and wheel, which are not included in the former; also as a plant the resistances and losses in the supply-chamber are to be still further delucted.
    The Crowns.-The crowns may be plane annular disks, or conical, or curved. If the partitions forming the buckets be so thin that they may be discarded, the law of radial flow will be deterninted bv the form of the crowns. If the crowns be plane, the radial flow (or radial component) will diminish, for the outward flow-wheel, as the distance from the axis increases -the buckets being full-for the angular space will be greater.
    Prof. Wood deduces from the formulæ in his paper the tables on page 595.
    It appears from these tables: 1 . That the terminal angle, $\alpha$, has frequently been made too large in practice for the best efficiency.
    2. That the terininal angle, $a$, of the guile thould be for the inflow less than $10^{\circ}$ for the wheels heree considered. Wut when the initial angle of the bucket is $90^{\circ}$, and the terminal angle of the guide is $5^{\circ} 28^{\prime}$, the gain of efficiency is not $2 \%$ greater than when the latter is $25^{\circ}$.
    3. That the initial angle of the bucket should exceed $90^{\circ}$ for best effect for outflow-wheels.
    4. That with the initial angle between $60^{\circ}$ and $120^{\circ}$ for best effect on inflow wheels the efficiency varies scarcely $1 \%$.
    5. In the outflow-wheel, column (9) shows that for the outflow for best effect the direction of the auitting water in reference to the earth should be nearly ladial (from $76^{\circ}$ to $97^{\circ}$ ), but for the inflow wheel the water is thrown forward in quitting. This shows that the velocity of the rim should somewhat exceed the relative final velocity backward in the bucket, as shown in columns (is) and (5).
    6. In these tables the velocities given are in terms of $\sqrt{2 g h}$, and the coefficients of this expression will be the part of the head which would produce that velocity if the water issued freely. There is only one case, column (5), where the coefficient exceeds unity, and the excess is so small it may be discarded; and it may be said that in a properly proportioned turbine with the conditions here given none of the velocities will equal that due to the head in the supply-chamber when running at best effect.
    \%. The inflow turbine presents the best conditions for construction for producing a given effect, the only apparent disadvantage being an increased first cost due to an increased depth, or an increased diameter for producing a given amount of work. The larger efficiency should, howeves, more than neutralize the increased first cost.

    ## Outward-fiow Turbine.

    | $r_{1}=r_{2} \sqrt{\frac{1}{2}}$. |  | $\mu_{1}=\mu_{2}=0.10$. |  | $\gamma_{2}=1 \overbrace{}^{\circ} . \quad P$ |  | rallel Crowns. |  | $v_{1}=k_{2} v_{2}=K V=Q=1$. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Initial Angle. $\gamma_{t}$ | $\begin{gathered} \text { Effi- } \\ \text { ciency. } \end{gathered}$ | Velocity Outer Rim. $r_{2} \omega^{\prime}$ | Velocity Inner Rim. $r_{1} \omega^{\prime}=\sqrt{\frac{1}{2}} r_{2} \omega^{\prime}$ | Relative Velocity of Exit. $v_{2}$ | Relative Velocity of Entrance. $v_{1}$ | Velocity of Exit from supplyChamber. | $\begin{gathered} \text { Termi- } \\ \text { nal } \\ \text { Angle } \\ \text { of } \\ \text { Guide. } \\ a \end{gathered}$ | Direction of quitting Water. $\theta$ | Head Equivalent of. Energy in quitting Water. $\frac{\boldsymbol{w}^{2}}{2 g}$ | $k_{2} \sqrt{g H}$ |
    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
    | $50^{\circ}$ | 0.804 | $0.972 \sqrt{2 g H}$ | $0.687 \sqrt{2 g H}$ | $1.048 \sqrt{2 g H}$ | $0.356 \sqrt{2 g H}$ | $0.595 \sqrt{2 g H}$ | $31^{\circ} 17^{\prime}$ | $76^{\circ}$ | $0.051 H$ | 0.67 |
    | $90^{\circ}$ | 0.828 | $0.874 \sqrt{2 g H}$ | $0.619 \sqrt{2 g H}$ | $0.931 \sqrt{2 g H}$ | $0.274 \sqrt{2 g H}$ | $0.676 \sqrt{2 g H}$ | $23^{\circ} 56^{\prime}$ | $79^{\circ}$ | 0.039H | 0.76 |
    | $120^{\circ}$ | 0.839 | $0.798 \sqrt{2 g H}$ | . $0.565 \sqrt{2 g H}$ | $0.843 \sqrt{2 g H}$ | $0.286 \sqrt{2 g H}$ | $0.749 \sqrt{2 g H}$ | $19^{\circ} 5^{\prime}$ | $82^{\circ}$ | $0.031 H$ | 0.84 |
    | $150^{\circ}$ | 0.921 | $0.709 \sqrt{2 g H}$ | $0.501 \sqrt{2 g H}$ | $0.70 \% \sqrt{2 g H}$ | $0.416 \sqrt{2 g H}$ | $0.886 \sqrt{2 g H}$ | $13^{\circ} 31^{\prime}$ | $97^{\circ}$ | $0.022 H$ | 1.00 |
    | Inward-flow Turbine. |  |  |  |  |  |  |  |  |  |  |
    | $r_{1}=$ | $\sqrt{2} r_{2}$ | $\mu_{1}=\mu_{2}=0.10$. |  | $\gamma_{2}=12^{\circ}$. | Parallel Crowns. |  | $k_{1} v_{1}=k_{2} v_{2}=K V=Q=1$. |  |  |  |
    | $\gamma_{1}$ | $E$. | Velocity Outer $\mathrm{Rim}_{r_{1} \omega^{\prime}}$. | Velocity Inner Rim. $r_{2} \omega^{\prime}$ | $v_{2}$ | $v_{1}$ | $V$ | $a$ | $\theta$ | $\frac{u^{2}}{2 g}$ | $k_{2} \sqrt{g \bar{H}}$ |
    | $60^{\circ}$ | 0.920 | $0.709 \sqrt{2 g H}$ | $0.501 \sqrt{2 g H}$ | $0.4761 / \overline{2 g H}$ | $0.089 \sqrt{2 / 2 H}$ | $0.672 \sqrt{ } \overline{2 g H}$ | $77^{\circ} 0^{\prime}$ | $110^{\circ}$ | 0.010H | 1.48 |
    | $90^{\circ}$ | 0.920 | $0.688 \sqrt{2 g H}$ | $0.48 \% \sqrt{2 g H}$ | $0.470 \sqrt{2 g H}$ | $0.069 \sqrt{\text { ®gH }}$ | $0.691 \sqrt{2 g H}$ | $5^{\circ} 28^{\prime}$ | $106^{\circ}$ | 0.010H | 1.50 |
    | $120{ }^{\circ}$ | 0.919 | $0.6681 / \overline{2 g H}$ | $0.473 \sqrt{2 g H}$ | $0.456 \sqrt{2 g H}$ | $0.077 \sqrt{2 g H}$ | $0.6091 \overline{2 g H}$ | $4^{\circ} 46^{\prime}$. | $105^{\circ}$ | 0.010H | 1.55 |
    | $150^{\circ}$ | 0.918 | $0 . 6 3 4 1 \longdiv { 2 g H }$ | $0.448 \sqrt{2 g H}$ | $0.429 \sqrt{2 g H}$ | $0.126 \sqrt{2 g H}$ | $0.7431 \overline{2 g H}$ | $3^{\circ} 08^{\prime}$ | $10 \%^{\circ}$ | 0.009H | 1.65 |

    Tests of Turbines:-Emerson says that in testing turbines it is a rare thing to find two of the sane size which can be made to do their best at the same speed. The best speed of one of the leading wheels is invariably wide from the tabled rate. It was found that a $54-\mathrm{in}$. Leffel wheel under 12 ft . head gave much better results at ris revoluions per minute than at 90.

    Overshot wheels have been known to give riv\% efficiency, but the average performance is not over $60 \%$.

    A fair a verage for a good turbine wheel may be taken at $75 \%$. In tests of 18 wheels made at the Philadelphia Water-works in 1859 and 1860, one wheel gave less than $50 \%$ efficiency, two between $50 \%$ and $60 \%$, six between $60 \%$ and $70 \%$, seven between $71 \%$ and $\% \%$, two $8 \% \%$, and one $87 . \pi \% \%$. (Emerson.)
     Turbine Wheels in the United States, Trans. A. S. M. E., viii. 359.) - In $18{ }^{2} \boldsymbol{i}_{\theta}$ the judges at the International Exhibition condncted a series of trials of turbines. Many of the wheels offered for tests were found to be more or less defective in fitting and workmanship. The following is a statement of the results of all turbines entered which gave an efficiency of over $75 \%$. Seven other wheels were tested, giving results between $65 \%$ and $\% \%$.

    | Maker's Name, or Name the Wheel is Known By. |  |  |  | $\left\lvert\, \begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$ |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Risdon | 87.68 |  | 86.20 | 82.41 |  | 75.35 |  |
    | National | 83.79 |  |  | \% 0.79 |  |  |  |
    | Geyelin (single) | 83.30 |  |  |  |  |  |  |
    |  | 8.2.13 |  |  | \% 0.40 | 66.35 |  | $\ddot{55.00}$ |
    | Goldie \& McCullough | 81.21 78.70 | 71.66 | 71.01 | 55.90 |  |  |  |
    | Tyler Wheel...... | 79.59 | 11.66 | 81.24 | 68.60 <br> 79.92 |  |  |  |
    | Geyelin (duplex). | 77.57 |  | 81.24 | 6.92 | 61.23 | 69.59 |  |
    | Knowlton \& Dolan | 77.43 | \%4.25 |  |  | 62.75 |  |  |
    | E. 'T. Cope \& Sons | 76.94 |  | 69.92 |  |  |  |  |
    | Barber \& Harris. | \%6.16 | 73.30 |  |  |  | \%1. |  |
    | York Manufacturing | 75.10 |  | $\dddot{67.08}$ | 67.57 | 62.06 | 1. |  |
    | W. F. Mosser \& Co... ...... | 7515 | $\because 4.83$ | -1.90 | r0.52 |  | 66.04 |  |

    The limits of error of the tests, says Prof. Thurston, were very uncertain; they are undoubtedly considerable as compared with the later work done in the permanent flume at Holyoke-possibly as much as $4 \%$ or $5 \%$.
    Experiments with "draught-ubbes," or "snction-tubes," which were actnally "diffusers" in their effect, so far as Prof. Thurston has analyzed them, indicate the loss by friction which should be anticipated in such cases, this loss decreasing as the tube increased in size, and increasing as its diameter approached that of the wheel-the minimum diameter tried. It was sometimes found very difficult to free the tube from air completely, and next to impossible, during the interval, to control the speed with the brake. Several trials were often necessary before the power due to the full head could be obtained. The loss of power by gearing and by belting was variable with the proportions and arrangement of the gears and pnlleys, length of belt, etc., but averaged not far from $30 \%$ for a single pair of bevelgears, uncut and dry, but smoth for such gearing, and but $10 \%$ for the same gears, well lubricated, after they had been a short time in operation. The amount of power transmitted was, however, small. and these figures are probably much higher than those representing ordinary practice. Introducing a secon'l pair-spur-gears-the best figures were but little changed, although the diffurence between the case in which the larger gear was the driver, and the case in which the small wheel was the driver, was perceivable, and was in favor of the former arrangement. A single straight belt gave a loss of but $2 \%$ or $3 \%$, a crossed belt $6 \%$ to $8 \%$, when transmitting 14
    horse-power with maximum tightness and transmitting power. A "quarter turn" wasted about $10 \%$ as a maximum, and a "quarter twist" about $5 \%$.
    Dimensions of Turbines.-For dimensions, power, etc., of standard makes of turbines consult the catalogues of clifferent manufacturers. The wheels of different makers vary greatly in their proportions for any given capacity.

    The Pelton Water-wheel.-Mr. Ross E. Browne (Eng'g News, Feb. 20, 1892) thus ovilines the principles upon which this water-wheel is constructed:
    The function of a water-wheel, operated by a jet of water escaping from a nozzle, is to convert the energy of the jet, due to its velocity, into useful work In order to utilize this energy fully the wheel-bucket, after catching the jet, must bring it to rest before discharging it, without inducing turbulence or agitation of the particles.
    This cannot be fully effected, and unavoidable difficulties necessitate the loss of a portion of the energy. The principal losses occur as follows: First, in sharp or angular diversion of the jet in entering, or in its course through the bucket, causing impact, or the conversion of a portion of the energy into heat instead of useful work. Second, in the so-called frictional resistance offered to the motion of the water by the wetted surfaces of the buckets, causing also the conversion of a portion of the energy into heat instead of useful work, Third, in the velocity of the water, as it leaves the bucket, representing energy which has not been converted into work.
    Hence, in seeking a high efficiency: 1. The bucket-surface at the entrance should be approximately parallel to the relative course of the jet, and the bucket should be curved in such a manner as to avoid sharp angular defhection of the stream. If, for example, a jet strikes a surface at an angle and is sharply deflected, a portion of the water is backed, the smothness of the stream is disturbed, and there results considerable loss by inpact and otherwise. The entrance and deflection in the Pelton bucket are such as to avoid
    

    Fig. 134.
    

    Fig. 135. these losses in the main. (See Fig. 136.)
    2. The number of buckets should be small, and the path of the jet in the bucket short; in other words, the total wetted surface should be small, as the loss by friction will be proportional to this.
    3. The discharge end of the bucket should be as nearly tangential to the wheel periphery as compatible with the clearance of the bucket which follows; and great differences of velocity in the parts of the escaping water should be avoided. In order to bring the water to rest at the discharge end of the bucket, it is shown, mathematically, that, the velocity of the bucket should be one half the velocity of the jet.

    A bucket, such as shown in Fig. 135, will cause the heaping of more or less dead or turbulent water at the point indicated by dark
    

    Fig. 136. shading. This dead water is subsequently thrown from the wheel with considerable velocity, and represents a large loss of energy. The introduction of the wedge in the Pelton bucket (see Fig. 134) is an efficient means of avoiding this loss.

    A wheel of the form of the Pelton conforms closely in construction to each of these requirements.

    In a te. made by the proprietors of the Idaho mine, near Grass Valley, Cal., the dimensions and results were as foll is: Main supply-pipe, 29 il. diameter, 6900 ft . long, with a head of $3861 / 2$ feet above centre of nozzle. The loss hy friction in the pipe was 1.8 ft ., reducing the effective hearl to 384.7 ft . The Pelton wheel used in the $t$ st was 6 ft . in diameter and the nozzle was 1.89 in . diameter. The work done was mcasured by a Prony brake, and the mean of 13 tests showed a useful effect of $87.3 \%$.
    The Pelton wheel is also used as a motor for small powers. A test by M. E. Cooley of a 12 -inch wheel, with a $3 / 8$-inch nozzle, under 100 lbs. pressure, gave 1.9 horse-power. The theorctical discharge was .0935 cubic feet per second, and the cheoretical horse-power 2.45; the efficiency being 80 per cent. Two other sityles of water-motor tested at the same time pach gave efficiencies of 55 per cent.

    ## Pelton Watermincel Tables. (Abridged.)

    The smaller figures under those denoting the various heads give the spouting velocity of the water in feet per minute. The cubic-feet measurement is also based on the flow per minnte.

    | Head in ft. | Size of Wheels. | ¢ ${ }_{\text {ing }}^{6}$ | 12 in. No. 2 | 18 <br> in. <br> No. 3 | ¢ 18 | 24 in. No. 5 | 3 ft | ft. | ${ }_{\text {ft. }}$ | ft. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 20 | Horse-power. | . 05 | . 12 | . 20 | 37 | 66 | 50 | 2.64 | 4.18 |  |
    |  | Cubic feet.... | 1.67 | 3.91 | 16.62 | 11.720 | 20.83 | 46.93 | 83.32 | 130.36 | 187. \% $^{\text {\% }}$ |
    | 2151.97 | Revolutions.. | 684 | 342 | 228 | 2:8 | 171 | 114 | 45 | 70 | 57 |
    | 30 | Ho | . 10 | . 23 | . 38 | 69 | 1.22 | 2.76 | 4.88 | 7.69 | 11.04 |
    |  | Cubic fee | 2.05 | 4.79 | 8.11 | 14.36 | 25.51 | 57.44 | 102.04 | 159.66 | 229.76 |
    | 2635.62 | Revolutions.. | 837 | 418 | 279 | 279 | 209 | 139 | 9104 | 8.3 | 69 |
    | 40 | Horse-power. | . 15 | 35 | 59 | 1.06 | 1.89 | 4.24 | 7.58 | 11.85 | 16.96 |
    |  | Cubic feet | 2.31 | 5.53 | 3.37 | 16.59 | 29.46 | 66.36 | 107.84 | 184.36 | 265.44 |
    | 3043.39 | Revolutions.. | 969 | 481 | 3:331 | 393 | 242 | 161 | 121 | 96 | 80 |
    | 50 | Horse-p | . 21 | . 49 | . 84 | 1.49 | 2.65 | 5.98 | 10.60 | 16.63 | 23.93 |
    |  | Cubic fee | 2.61 | 6.18 | 10.47 | 18.54 | 3.23 | r4.17 | 131.72 | 206.13 | 296. 0 |
    | 3102.61 | Revolutions.. | 1083 | 541 | 361 | 361 | $2 \% 0$ | 180 | 135 | 108 | 90 |
    | 60 | Horse-power. | . 28 | 65 | 1.10 | 1.96 | 3.48 | 7.84 | 13.94 | 21. | 31.36 |
    |  | Cubic fe | 2.90 | 6. 77 | 11.47 | 20.31 | 36.08 | 81.25 | 144.32 | 225.80 | 325.00 |
    | $3727.3 \uparrow$ | Revolutions.. | 1185 | 592 | 39.) | 395 | 296 | 197 | 148 | 118 | 98 |
    | 70 | Horse-po | . 35 | 82 | 1.39 | $2.4 \pi$ | 4.39 | 9.88 | 17.58 | 27.51 | 39.52 |
    |  | Cubic feet | 3.13 | 7.31 | 12.39 | 21.94 | 38.97 | 87.76 | 155.88 | 243.89 | 51.04 |
    | 4026.00 | Revolutions.. | 1281 | 640 | 427 | 427 | $3: 0$ | 213 | 3 160 | 130 | 106 |
    | 80 | Horse-power. | . 43 | 1.00 | 1.\% | 3.01 | 5.36 | 12.04 | 21.44 | 33. | 48.16 |
    |  | Cubic fee | 3.35 | 7.82 | 1385 | 23.46 | 41.66 | 9384 | 166.64 | 260.73 | 5.36 |
    | 4303.99 | Revolutions.. | 1368 | 684 | 456 | 456 | 342 | 228 | 171 | 137 | 114 |
    | 90 | Horse-po | . 51 | 1.20 | 2.03 | 3.60 | 6.39 | 14.40 | 25.59 | 40.04 | 5\%. 60 |
    |  | Cubic fee | 3.55 | 8. 29 | 14.05 | 24.88 | 44.19 | 99.52 | 176.75 | 276.55 | 398.08 |
    | 4565.04 | Revolutions.. | 1452 | 726 | 484 | 484 | 363 | 242 | 181 | 145 | 121 |
    | 100 | Horse-po | . 60 | 1.40 | 2.32 | 4.21 | \%. 49 | 16.84 |  | 46.85 | 67.36 |
    |  | Cubic feet | 3.74 | 8. 74 | 14.81 | 26.22 | 46.58 | 104.88 | 186.32 | 291.51 | 419.52 |
    | 4812.00 | Revolutions.. | 1530 | 765 | 510 | 510 | 382 | 255 | 191 | 152 | 127 |
    | 120 | Horse-po | . 79 | 1.84 | 3.12 | 5.54 | 9.85 | 22.18 | 32.41 | 1.66 |  |
    |  | Cubic fee | 4.10 | 9.54 | 16.21 | 28.12 | 51.02 | 114.91 | 204.10 | 319.33 | 459.64 |
    | 5271.30 | Revolutions. | 167\% | 8.38 | 559 | 559 | 419 | $2 \sim 9$ | 209 | $16 \pi$ | 139 |
    | 140 | Horse-po | . 99 | 2.33 | 3.94 | 6.99 | 12.41 | 27.96 | 49.64 | \%7.71 |  |
    |  | Cubic feet. | 4.43 | 10.34 | 17.53 | 31.03 | 55.11 | 124.12 | 220.44 | 344.92 | 496.48 |
    | 5693.65 | Revolutions.. | 1812 | 906 | $60+$ | 604 | 453 | 302 | 226 | 181 | 151 |
    | 160 | Horse-power. | 1.22 | 2.84 | 4. 83 | 8.54 | 15.17 | 34.16 |  | 94.34 | 136.65 |
    |  | Cubic feet. . | 4.73 | 11.05 | 18.74 | 33.17 | 58.92 | 13:.68 | $235.68$ | 368.73 | 530.75 |
    | 6056.74 | Revolutions.. | 1938 | 969 | 646 | 646 | 484 | 323 | 242 | 193 | 161 |
    | 180 | Horse p | 1.45 | 3.39 | 5.75 | 10.19 | 18.10 | 40.77 | 72.41 | 113.30 |  |
    |  | Cubic fe | 5.02 | 11.720 | 19.8 i | 35.18 | 62.49 | 140.74 | 249.97 | 391.10 | 562.96 |
    | 6455.97 | Revoluti | 049 | 1024 | 683 | 683 | 513 | $3{ }^{2}$ | 256 | 206 | 171 |
    | 200 | Horse-power. | 1. 70 | 3.97 | 6.74 | 11.93 | 21.20 | 47.75 | 84.81 | 132.70 | 191.00 |
    |  | Cubic feet. | 5.29 | 12.36 | 20.94 | 37.08 | $6 \overline{5} .81$ | 148.35 | 263.49 | 412.25 | 593.40 |
    | 6805.17 | Revolutions. | 2160 | 1080 | T20 | 720 | 540 | 360 | 270 | 216 | 180 |
    | 250 | Horse-power. | 2.38 | 5.56 | 9.42 | 16.68 | 29.63 | 66.74 | 118.54 |  |  |
    |  | Cubic feet... |  | 13.82 | 23.42 | 41.46 | 73.64 | 165.86 | 294.59 | 460.91 | 663.45 |
    | \%608.44 | Revolutions. | 2418 | 12091 | 806 | 806 | 605 | 403 | 302 | 241 | 202 |

    Pelton Water-wheel Tables.-Continued.

    | Head in ft . | Size of Wheels. | $\left\lvert\, \begin{gathered} 6 \\ \text { in. } \\ \text { No. } \end{gathered}\right.$ | $\begin{array}{\|c\|c} 12 \\ \text { in. } \\ \text { inc. } \end{array}$ | 18 <br> in. <br> No. 3 | $\begin{gathered} 18 \\ \text { in. } \\ \text { No. } 4 \end{gathered}$ | $\begin{gathered} 24 \\ \text { in. } \\ \text { No. } 5 \end{gathered}$ | $\stackrel{3}{\text { ft. }}$ | 4 $\mathrm{ft}$. | 5 ft. | 6 f. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 300 | Horse-pow'r | 3.13 | 7.31 | 12.38 | 21.93 | 38.95 | 87.73 | 155.83 | 243.82 |  |
    |  | Cubic feet... | 6.48 | 15.13 | 25.66 | 45.42 | 80.67 | 181.69 | 322.71 | 504.91 | ${ }^{350.94}$ |
    | 8334.62 | Revolutions | 2652 | 1326 | 884 | 884 | 663 | 442 | 331 | 265 | 221 |
    | 350 | Horse-pow'l | 3.94 | 9.21 | 15.61 | 27.64 | 49.09 | 110.56 | 196.38 | 307.25 |  |
    |  | Cubic feet... | 7.00 | 16.35 | 27. 71 | 49.06 | 87.14 | 196.25 | 348.57 | 545.36 | 785.00 |
    | 9002.43 | Revolutions | 2865 | 1432 | 955 | 955 | $\stackrel{r}{16}$ | 477 | 358 | 285 | 238 |
    | 400 | Horse-pow'r | 4.82 | 11.25 | 19.0 | 33.71 | 59.98 | 135.08 | 239.94 | 3\%5.40 | 540.35 |
    |  | Cubic feet... | 7.49 | 17.48 | 2963 | 52.45 | 93.16 | 209.80 | $3 \% .64$ | 583.02 | 839.20 |
    | 9624.00 | Revolutions | 3063 | 1531 | 1021 | 1021 | \%65 | 510 | - 382 | 306 | 255 |
    | 450 | Horse-pow'r | 5.75 | 13.43 | 22. 66 | 40.29 | 71.57 | 161.19 | 286.31 | 447.95 |  |
    |  | Cubic feet... | 7.94 | 18.54 | 31.42 | 55.63 | 98.81 | 222.52 | 395.24 | 618.38 | $\begin{aligned} & 641.78 \\ & 890.11 \end{aligned}$ |
    | 10:07.79 | Revolutions | 3249 | $16: 4$ | 1083 | 1083 | 812 | 541 | 406 | 324 | 270 |
    | 500 | Horse-pow'r | 6.74 | 15.73 | 26.66 | 47.20 | 83.83 | $\overline{188.80}$ | 335.34 | 524.66 | 855.20 |
    |  | Cubic feet... Revolutions | 8.37 | $19.54$ | 33.12 | 58.64 | 104.15 | 234.56 | 416.62 | 651.83 | 938.25 |
    | 10759.96 | Revolutions | 3426 | $1{ }^{1} 13$ | 1142 | 1142 | 856 | 571 | 428 | 342 | 285 |
    | 600 | Horse-pow'r. <br> Cubic feet |  |  |  | 62.04 | 110.19 | 248.16 | 440.77 | 689.63 |  |
    |  | Cubic feet... Revolutions |  |  |  | 64.24 | 114.09 | 256.95 | 456.38 | 714.05 | 1027.80 |
    | 11866.94 | Revolutions |  |  |  | 1251 | 938 | 625 | 469 | 375 | 31\% |
    | 650 | Horse-pow'r Cubic feet |  |  |  | 69.95 | 124.25 | $2{ }^{29} 92$ | 497.01 |  |  |
    |  | Cubic feet .. Revolutions |  |  |  | 66.86 | 118.75 | 267.44 | 475.02 | 743.21 | $\begin{aligned} & 111.2 .29 \\ & 1069.77 \end{aligned}$ |
    | 268.24 | Revolutions |  |  |  | 1302 | 9 T 6 | 651 | 488 | 390 | $3: 5$ |
    | 700 | Horse-pow'r Cubic feet.. |  |  |  |  | $\overline{138.86}$ |  |  | 869.06 | 1250.92 |
    | 12\%31.34 | Cubic feet... Revolutions |  |  |  | $69.38$ | $\begin{array}{r} 123.23 \\ 1013 \end{array}$ | 277.54 | $49 \because .95$ | $7 \% 1.26$ | 1110.16 |
    |  |  |  |  |  |  |  | 6 | 506 | 405 | 337 |
    | 750 |  | - | .. |  | 86.70 | 154.00 | 346.83 | 616.03 | 96:3.82 | 1387.34 |
    | 13178.19 | Cubic feet... <br> Revolutions | . |  |  |  <br> 1399 | 127.56 | 287.28 | 510.20 | 「98.33 | 1149.13 |
    |  |  |  |  |  | 1399 | 1049 | 699 | 524 | 419 | 349 |
    | 800 | Horse-pow'r Cubic feet |  |  |  | 95.521 | 169.66 | 382.09 | 678.66 | 1061.81 | 1528.36 |
    | 3610.40 | Cubic feet... <br> Revolutions |  |  |  | 「4.171 | 131.74 | 296.r0 | 526.99 | 824.51 | 1186.81 |
    |  |  |  |  |  | 144 | 108. | 12: | 542 | 433 | 361 |
    | 900 | Horse-pow'r Cubic feet |  |  |  | 13.38 | 202.45 | 455.94 | 809.82 | 1267.02 | 1823.36 |
    | 4436.00 | Cubic feet... Revolutions |  |  |  | 78.67 | 139.14 ${ }^{14}$ | 314. 70 | 558.96 | 884.53 | 1258.81 |
    |  |  |  |  |  | 1532 | 1149 | r'66 | 574 | 459 | 383 |
    | 1000 | Horse-pow'r Cubic feet |  |  |  | 33.50 | 237.12 | 534.019 | 948.48 | 1483.97 | 2136.04 |
    |  | Cubic feet... Revolutions |  |  |  | 82.93 | 147.30 | 331.72 | 589.19 | $9: 1.831$ | 1326.91 |
    | 5216.89 | Revolutions |  |  |  | 1615 | 1210 | $80 \%$ | 605 | 484! | $\xrightarrow{403}$ |

    ## THE POWER OE OCEAN WAVES.

    Albert W. Stahl, U. S. N. (Trans. A. S. M. E., xiii. 438), gives the following formulæ and table, based upon a theoretical discussion of wave motion:
    The total energy of one whole wave-length of a wave $H$ feet high, $L$ feet long, and one foot in breadth, the length being the distance between successive crests, and the height the vertical distance between the crest and the trough, is $E=8 L H^{2}\left(1-4.935 \frac{I^{2}}{L^{2}}\right)$ foot-pounds.

    The time required for each wave to travel through a distance equall to its own length is $P=\sqrt{\frac{L}{5.123}}$ seconds, and the number of waves passing any
    given point in one minute is $N=\frac{60}{P}=60 \sqrt{\frac{5.123}{L}}$. Hence the total energy of an indefinite series of such waves, expressed in horse-power per foot of breadth, is

    $$
    \frac{E \times N}{33000}=.0329 H^{2} L\left(1-4.935 \frac{H^{2}}{L^{2}}\right)
    $$

    By substituting various values for $H \div L$, within the limits of such values actually occurring in nature, we obtain the following table of

    ## Total Energy of Deep-sea Waves in Terms of Horse-power per Foot of Breadti.

    | Ratio of Length of Waves to Height of Waves. | Length of Waves in Feet. |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 25 | 50 | 75 | 100 | 150 | 200 | [300 | 400 |
    | 50 | . 04 | . 23 | . 64 | 1.31 | 3.62 | 7.43 | 20.46 | 42.01 |
    | 40 | . 06 | . 36 | 1.00 | 2.05 | 5.65 | 11.59 | 31.95 | 65.58 |
    | 30 | . 12 | . 64 | 1.77 | 3.64 | 10.02 | 20.57 | 56.\% ${ }^{\circ}$ | 116.38 |
    | 20 | . 25 | 1.44 | 3.96 | 8.13 | 21.9 | 45.68 | 120.70 | 260.08 |
    | 15 | . 42 | 2.83 | 6.97 | 14.31 | 39.43 | 80.94 | 223.06 | 45 T .89 |
    | 10 | . 98 | 5.53 | 15.24 | 31.29 | 86.22 | 177.00 | 487.75 | 1001.25 |
    | 5 | 3.30 | 18.68 | 5148 | 105.68 | 291.20 | 597. 78 | 161\%.01 | 3381.60 |

    The flgures are correct for trochoidal deep-sea waves only, but they give a close approximation for any nearly regular series of waves in deep water and a fair approximation for waves in shallow water.

    The question of the practical utilization of the energy which exists in ocean waves divides itself into several parts:

    1. The various motions of the water which may be utilized for power purposes.
    2. The wave motor proper. That is, the portion of the apparatus in direct contact with the wat $r$, and receiving and transmitting the energy thereof; ogether with the mechanism for transmitting this energy to the machinery for utilizing the same.

    Regulating devices, for obtaining a uniform motion from the irregular and more or less spasmodic action of the waves, as well as for adjusting the apparatus to the state of the tide and condition of the sea.
    4. Storage arrangements for insuring a continuous and uniform output of power during a calm, or when the waves are comparatively small.

    The motions that may be utilized for power purposes are the following: 1. Vertical rise and fall of particles at and near the surface. 2. Horizontal to-and-fro motion of particles at and near the surface. 3. Varying slope of surface of wave. 4. Impetus of waves rolling up the beach in the forin of breakers. 5. Motion of distorted verticals. All of these motions, except the last one mentioned, have at varions times been proposed to be utilized for power purposes; and the last is proposed to be used in apparatus described by Mr. Stahl.
    The motion of distorted verticals is thus defined: A set of particles, originally in the same vertical straight line when the water is at rest, does not remain in a vertical line during the passage of the wave; so that the line connecting a set of such particles, while vertical and straight in still water, becomes distorted, as well as displaced, during the passage of the wave, its upper portion moving farther and more rapidly than its lower portion.

    Mr. Stahl's paper contains ilhustrations of several wave-motors designed mpon various principles. His conclusions as to their practicability is as follows: "Possibly none of the methods described in this paper may ever prove comnercially successful; indeed the problem may not be susceptible of a financially successful solution. My own investigations. however, so far as I have yet been able to carry them, incline me to the belief that wave-power can and will be utilized on a paying basis."

    Continuous Utilization of Tidal Power, (P. Decour, Proc. [ast. C. E. 1890.)-In connection witli the training-walls to be constructed in
    the estuary of the Seine, it is proposed to construct large basins, by means of which the power available from the rise and fall of the tide could be utilized. The methou pronosed is to have two basins separated by a bank rising above high water, within which turbines would be placed. The upper basin would be in communication with the sea during the higher one third of the tidal range, rising, and the lower basin during the lower one third of the tidal range, falling. If $H$ be the range in feet, the level in the upper basin would never fall below $2 / 3 H$ measured from low water, and the level in the lower basin would never rise above $1 / 3 H$. The available head varies between $0.53 H$ and $0.80 H$, the mean value being $2 / 3 H$. If $S$ square feet be the area of the lower basin, and the above conditions are fulfilled, a quantity $1 / 3 S H$ cu. ft . of water is delivered through the turbines in the space of $91 / 4$ hours. The mean flnw is, therefore, $S H \div 99,900 \mathrm{cu}$. ft . per sec., and,
    the mean fall being $2 / 3 H$, the available gross horse-power is about $1 / 30^{\prime} S^{\prime} H^{2}$ the mean fall being $2 / 3 H$, the available gross horse-power is about $1 / 30 S^{\prime} H^{2}$, where $S^{\prime}$ is measured in acres. This might be increased by about one third if a variation of level in the basins amounting to $1 / 2 H$ were permitted. But
    to reach this end the number of turbines would have to be doubled, to reach this end the number of turbines would have to be doubled, the mean head being reduced to $1 / 2 H$, and it would be more difficult to transmit a constant power from the turbines. The turbine proposed is of an improved model designed to utilize a large flow with a moderate diameter. One has been designed to produce 300 horse-power, with a minimum head of 5 ft .3 in. at a speed of 15 revolutions per minute, the vanes having 13 ft . internal diameter. The speed would be maintained constant by regulating sluices.

    ## PUMPS AND PUMPING ENGINES.

    Theoretical Capacity of a Pump.-Let $Q^{\prime}=\mathrm{cu}$. ft. per min.; $G^{\prime}=$ Amer. gals. per min. $=7.4805 Q^{\prime} ; d=$ diam. of punnp in inches; $l=$ stroke in inches; $N=$ number of single strokes per min.

    Capacity in cu. ft. per min. $=Q^{\prime}=\frac{\pi}{4} \cdot \frac{d^{2}}{144} \cdot \frac{l N}{12}=.0004545 \mathrm{Nd}^{2} l$;
    Capacity in gals. per min. $G^{\prime}=\frac{\pi}{4} \cdot \frac{N d^{2} l}{231} \ldots \ldots \ldots .=.0034 N d^{2} l$; Capacity in gals. per hour ............................ $=.204 N d^{2} l$.
    $\left.\begin{array}{r}\text { Diameter required for }{ }^{\text {a }} \\ \text { given capacity per min. }\end{array}\right\} d=46.9 \sqrt{\frac{Q^{\prime}}{N l}}=17.15 \sqrt{\frac{G^{\prime}}{N l}}$.
    If $v=$ piston speed in feet per min., $d=13.54 \sqrt{\frac{Q^{\prime}}{v}}=4.95 \sqrt{\frac{G^{\prime}}{v}}$.
    If the piston speed is 100 feet per min.:

    $$
    N l=1200, \text { and } d=1.354 \sqrt{Q^{\prime}}=.495 \sqrt{G^{\prime}} ; \quad G^{\prime}=4.08 d^{2} \text { per min. }
    $$

    The actual capacity will be from $60 \%$ to $95 \%$ of the theoretical, according to the tightness of the piston, valves, suction-pipe, etc.

    ## Theoretical Horse-power required to raise Water to a given Meight.-Horse-power =

    $\frac{\text { Volume in cu.ft. per inin. } \times \text { pressure per sq.ft. }}{33,000}=\frac{\text { Weight }}{\frac{\times \text { height of lift }}{33,000} .}$
    $Q^{\prime}=$ cu. ft. per min.; $G^{\prime}=$ gals. per min.; $W=w t$. in lbs. $P=$ pressure In lbs. per sq. ft.; $p=$ pressure in lbs. per sq. in.; $H=$ height of lift in ft. $W=62.36 Q^{\prime}, P=144 p, p=.433 H, H=2.309 p, G^{\prime}=7.4805 Q^{\prime}$.

    $$
    \begin{aligned}
    & \mathrm{HP}=\frac{Q^{\prime} P}{33,000}=\frac{Q^{\prime} H \times 144 \times .433}{33,000}=\frac{Q^{\prime} H}{529.2}=\frac{G^{\prime} H}{3958.7} \\
    & H P=\frac{W H}{33,000}=\frac{Q^{\prime} \times 6236 \times 2.309 p}{33,000}=\frac{Q^{\prime} p}{229.2}=\frac{G^{\prime} p}{1714.5} .
    \end{aligned}
    $$

    For the actual horse-power required an allowance must be made for the friction, slips, etc., of engine, pump, valves, and passages.

    Depth of Suction. - Theoretically a perfect pump will draw water from a height of nearly 34 feet, or the height corresponding to a perfect vacuum ( $14.7 \mathrm{lbs} . \times 2.309=33.95$ feet); but since a perfect vacuum cannot be obtained, on account of valve-leakage, air contained in the water, and the vapor of the water itself, the actual height is generally less than 30 feet. When the water is warm the height to which it can be lifted by suction decreases, on account of the increased pressure of the vapor. In pumping hot water, therefore, the water must flow into the pump by gravity. The following table shows the theoretical maximum depth of suction for different temperatures, leakage not considered:

    | $\underset{\mathrm{F} .}{\mathrm{Temp}} .$ | Absolute Pressure ofVapor, lbs. per sq. in. | Vacnum in <br> Inches of Mercury | Max. <br> Depth of Suction, feet. | Temp. F. | Absolute Pressure ot Vapor, lbs. per sq. in. | Vacuum in <br> Inches of Mercury | Max. <br> Depth of Suction feet. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 102.1 | 1 | 27.88 | 31.6 | 180.9 | 8 | 13.63 | 15.4 |
    | 126.3 | 2 | 25.85 | 29.3 | 188.3 | 9 | 11.60 | 13.1 |
    | 141.5 |  | 23.83 | 27.0 | 193.3 | 10 | 9.56 | 10.8 |
    | 153.1 | 4 | 21.78 | 24.7 | $19 \% .8$ | 11 | 7.52 | 8.5 |
    | 162.3 | 5 | 19.74 | $2 \cdot 2$ | 20.0 | 12 | 5.49 | 6.2 |
    | $1 \tau 0.1$ | 6 | 17.\%0 | 20.0 | $\because 0.9$ | 13 | 3.45 | 3.9 |
    | 176.9 | 7 | 15.64 | $17 . \%$ | 209.0 | 11 | 1.41 | 1.6 |

    Amount of Water raised by a Single-acting Lirt-pump. -It is common to estimate that the quantity of water raised by a single-acting bucket-valve pump per minute is equal to the number of strokes in one direction per minute, multiplied by the volume traversed by the pistou in a single stroke, on the theory that the water rises in the pump only when the piston or bucket ascends; but the fact is that the colunn of water does not cease flowing when the bucket descends, but flows on continuously through the valve in the bucket, so that the discharge of the pump, if it is operated at a high speed, may amount to nearly double that calculated from the displacement multiplied by the number of single strokes in one direction.
    Proportioning the Steam-cylinder of a Direct-acting Puimp.-Let

    $$
    \begin{aligned}
    & A=: \text { area of steam-cylinder; } \quad a=\text { area of pump-cylinder; } \\
    & D=\text { diameter of steam-cylinder; } d=\text { diameter of pump-cylinder; } \\
    & P=\text { steam-pressure, lbs. per sq. in. } ; p=\text { resistance per sq. in. on pumps; } \\
    & H=\text { head }=2.309 p ; \quad, \quad, p=.433 \mathrm{H} \text {; } \\
    & E=\text { efficiency of the pump }=\frac{\text { work done in pump-cylinder }}{\text { work done by the steam-cylinder }} \text {. } \\
    & A=\frac{a p}{E P} ; \quad a=\frac{E A P}{p} ; \quad D=d \sqrt{\frac{p}{E P}} ; \quad d=D \sqrt{\frac{\overline{E P}}{p}} ; \quad P=\frac{a p}{E A} ; \quad p=\frac{E A P}{a} . \\
    & \frac{A}{a}=\frac{p}{E P}=\frac{.433 H}{E P} ; \quad H=2.309 E P \frac{A}{a} ; \quad \text { If } E=75 \%, H=1.732 P \frac{A}{a} .
    \end{aligned}
    $$

    $E$ is commonly taken at 0.7 to 0.8 for ordinary direct-acting pumps. For the highest class of pumping-engines it may amount to 0.9. The steam. pressure $P$ is the mean effective pressure, according to the indicator-diagram; the water-pressure $p$ is the mean total pressure acting on the pump plunger or piston, including the snction, as could be shown by an indicatordiagram of the water-cylinder. The pressure on the pump-piston is frequently much greater than that due to the height of the lift, on account of the friction of the valves aud passages, which increases rapidly with velocity of flow.

    Speed of Water through Pipes and Pump=passages.The speed of the water is commonly from 100 to 200 feer per minute. If 200 feet per minute is exceeded, the loss from friction may be considerable.

    The diameter of pipe required is $4.95 \sqrt{\frac{\text { gallons per minute }}{\text { velocity in feet per minute }}}$.
    For a velocity of 200 feet per misute, diameter $=35 \times \sqrt{\text { gallons per min. }}$

    Slzes of Direct－acting Pumps．－The tables on this and the next page are selected from catalogues of manufacturers，as representing the two common types of direct－acting pump，viz．，the single－cylinder and the duplex．Both types are now made by most of the leading manufacturers．

    The Deane Single Boiler－fecd or Pressure Pump．－Suitable for pumping clear liquids at a pressure not exceeding 150 lbs ．

    |  | Sizes． |  |  |  | Capacity permin． at Given Speed． |  |  |  | sizes of Pipes． |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | シ் |  | $\dot{y}$ | $\stackrel{8}{\ddot{O}}$ |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { घ゙ } \\ & \text { İ } \\ & \text { 汤 } \end{aligned}$ |  |  |  |
    | 0 | 3 | 2 | 5 | ． $0 i_{i}$ | 150 | 10 |  |  |  |  |  |  |  |
    | 1 | $31 / 2$ | $21 /$ | 5 | ． 09 | 150 | 13 | 3313／2 | 21／2 | 15 | 34 | $11 / 4$ | 1 |
    | 112 | 4 | 238 | 5 | ． 10 | 150 | 15 | $331 \%$ | \％1\％ | $1 \%$ | 3 | $11 / 4$ | 1 |
    | ${ }^{2}$ | 4 | ${ }^{211}$ | 5 | .11 | 150 | 16 | $331 / 2$ | 71／2 | 1／3 | 3 | $11 /$ | 1 |
    | 216 | 43／4 |  | 5 | ． 15 | 150 | 22 | 34 | 81 | 12 | $3 / 4$ | $11 / 2$ | $11 / 4$ |
    | 3 |  | 814 | 7 | ． 25 | 125 | 31 | 431／2 | 91／4 | $3 / 4$ |  | $2^{2}$ | 11. |
    | 4 | $51 / 2$ | $33 / 4$ | r | ． 33 | 125 | 4. | 431／2 | 914 | $3 / 4$ |  | ～ | $11 \%$ |
    | 412 | － | $41 / 4$ | 8 | .49 | 120 | 58 | $511 / 2$ | $1: 1$ |  | 1112 |  | ${ }_{2}$ |
    | 5 | 7 | $41 \%$ | 10 | ． 69 | 100 | 69 | 55 | 12 | 1 | 11\％ | 3 | $\underset{2}{ }$ |
    | 6 | 712 |  | 10 | ． 85 | 100 | 85 | 55 | 12 | 1 | 11／2 | 3 | 2 |
    | $61 / 2$ | \％ | 5 | 12 | 1.02 | 100 | 102 | 63 | 14 | 1 | 11／2 | 3 | $21 / 2$ |
    |  | 10 | 6 | 12 | $1.4{ }^{\text {c }}$ | 100 | $14 \%$ | 69 | 19 | 1120 | $2^{2}$ | ， | ～ 12 |
    | 8 | 12 | 7 | 12 | 2.00 | 100 | 200 | 69 | 19 | ， | $21 / 2$ | 5 | 4 |
    | 9 | 14 | 8 | 12 | 2.61 | 100 | 261 | 69 | 21 | $\stackrel{\sim}{2}$ | $21 / 2$ | 5 | 4 |

    The Deane Single Tank or Light－service Pump．－These pmups will all stand a constant working pressure of 55 lbs ．on the water－ cylinders．

    | Sizes． |  |  |  | Capacity per min． at Given Speed． |  |  | Width in inches. | Sizes of Pipes． |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\xrightarrow[8]{80}$ |  |  |  |  |  |  |  |  |  |  |
    |  | 定 |  |  |  |  |  |  | $\begin{aligned} & \dot{\Xi} \\ & \underset{\sim}{む} \\ & \underset{\sim}{\Delta} \end{aligned}$ |  |  |  |
    | 4 | 4 | 5 | ． 27 | 130 | 35 |  | $3: 3$ | 91／2 | 1／2 | $3 / 4$ | 2 | 11\％ |
    | 5 | 4 | 7 | ． 38 | 125 | 48 | $451 / 2$ | $15^{\sim}$ | 3 |  | 3 | 21／2 |
    | 51／2 | $51 / 8$ | 7 | ． 72 | 125 | 90 | 451\％ | 15 | $3 / 4$ | ， | 3 | $21 / 2$ |
    | r1\％ | 71\％ | 10 | 1.91 | 110 | 210 | 58 | 15 | $1{ }^{1}$ | $11 \%$ | 5 | 4 |
    | 8 | 6 | 12 | 1.46 | 100 | 146 | 67 | $201 / 2$ | 1 | 11\％ | 4 | 4 |
    | 6 | 7 | 12 | 2.00 | 100 | 200 | 66 | $17^{2}$ | $3 / 4$ | 1 | 4 | 4 |
    | 8 | 7 | 12 | 2.00 | 100 | 200 | 67 | 201／2 | $1{ }^{1}$ | 112 | 5 | 4 |
    | 8 | 8 | 12 | 2.61 | 100 | 261 | 68 | 30 | 1 | 11\％ | 5 | 5 |
    | 10 | 8 | 12 | 2.61 | 100 | 261 | 681／2 | 30 | 11／2 | 2 | 5 | 5 |
    | 8 | 10 | 12 | 4.08 | 100 | 408 | 68 | 201\％ | 1 | 11\％ | 8 | 8 |
    | 10 | 10 | 12 | 4.08 | 100 | 408 | 681／2 | $30^{\sim}$ | 11／2 | 2 | 8 | 8 |
    | 12 | 10 | 12 | 4.08 | 100 | 408 | 64 | 24 | 2 | 242 | 8 | 8 |
    | 10 | 12 | 12 | 5.87 | 100 | 587 | 681／2 | 30 | 11／2 | 2 | 8 | 8 |
    | 12 | 12 | 12 | 5.87 | 100 | 587 | 64 | 281\％ | $2_{2}^{2}$ | $81 / 2$ | 8 | 8 |
    | 10 | 12 | 18 | 8.79 | 70 | 616 | 95 | 25 | 11／2 | ${ }_{2}{ }^{2}$ | 8 | 8 |
    | 12 | 12 | 18 | 8.79 | 70 | 616 | 95 | 2812 | 2 | 21／2 | 8 | 8 |
    | 12 | 14 | 18 | 12.00 | r0 | 840 | 95 | 281\％ | 2 | $21 \%$ | 8 | 8 |
    | 14 | 16 | 18 | 15.66 | 70 | 1093 | 95 | 34 | 2 | $21 \%$ | 12 | 10 |
    | 16 | 16 | 18 | 15.66 | 70 | 1096 | 95 | 34 | 2 | 21／2 | 12 | 10 |
    | 18 | 16 | 18 | 15.66 | r0 | 1096 | 97 | 34 | 3 | 31\％ | 12 | 10 |
    | 16 | 18 | 24 | 26.42 | 50 | 1321 | 115 | 40 | 2 | 21\％ | 14 | 12 |
    | 18 | 18 | 24 | 26.42 | 50 | 1321 | 135 | 40 | 3 | 31\％ | 14 | 12 |

    Efficiency of Small Direct-acting Pumps.-Chas. E. Emery, in Reports of Judges of Philadelphat Exhibition, $18 \%$, Group xx., says: "Experiments made with steam-pumps at the American Institute Exhibition of 1867 showed that average-sized steam-pumps do not, on the average, utilize more than 50 per cent of the indicated power in the steam-cylinders, the remainder being absorbed in the friction of the eugine, but more particularly in the passage of the water through the pump. It may be safely stated that ordinary steam-pumps rarely require less than $1: 20$ pounds of steam per hour for each horse-power utilized in raising water. equivalent to a duty of only $15,000,000$ foot-pounds per 100 pounds of coal. With larger steampumps, particularly when they are proportioned for the work to be done, the duty will be materially increased."

    The Worthington Duplex Pump.
    Standard Sizes for Ordinary Service.
    

    Speed of Piston.- A piston speed of 100 feet per minute is commonly assumed as correct in practice, but for short-stroke pumps this gives too high a speed of rotation, requiring too frequent a reversal of the valves. For long stroke pumps, 2 feet and upward, this speed may be considerably exceeded, if valves and passages are of ample area.
    Number of Strokes required to Attain a Piston Speed from 50 to 125 Feet per Ininute for Pumps having Strokes from 3 to 18 Inches in Length.

    |  | Length of Stroke in Inches. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 12 | 15 | 18 |
    |  | Number of Strokes per Minute. |  |  |  |  |  |  |  |  |  |
    | 50 | 200 | 150 | 120 | 100 | 86 | 75 | 60 | 50 | 40 | 33 |
    | 55 | 220 | 165 | 132 | 110 | 94 | 82.5 | 66 | 55 | 44 | 37 |
    | 60 | 240 | 180 | 144 | 120 | 103 | 90 | 72 | 60 | 48 | 40 |
    | 65 | 260 | 195 | 156 | 130 | 111 | 97.5 | 78 | 65 | 52 | 43 |
    | 70 | 280 | 210 | 168 | 140 | 120 | 105 | 84 | 70 | 56 | 47 |
    | \% 5 | 300 | 225 | 180 | 150 | 128 | 112.5 | 90 | 75 | 60 | 50 |
    |  | 320 | 240 | 192 | 160 | 137 | 120 | 96 | 80 | 64 | 53 |
    | 85 | 340 | 255 | 204 | 170 | 146 | 127.5 | 102 | 85 | 68 | 57 |
    | 90 | 360 | 270 | 216 | 180 | 154 | 135 | 108 | 90 | 72 | 60 |
    | 95 | 380 | 285 | 228 | 190 | 163 | 142.5 | 114 | 95 | 76 | 63 |
    | 100 | 400 | 300 | 240 | 200 | 171 | 150 | 120 | 100 | 80 | 67 |
    | 105 | 420 | 315 | 25.3 | 210 | 180 | 157.5 | 126 | 105 | 84 | 70 |
    | 110 | 440 | 330 | 264 | 220 | 188 | 165 | 132 | 110 | 88 | 73 |
    | 115 | 460 | 345 | 276 | 230 | 197 | 172.5 | 138 | 115 | 92 | 77 |
    | 120 | 480 | 360 | 288 | 240 | 206 | 180 | 144 | 120 | 96 | 80 |
    | 125 | 500 | 375 | 300 | 250 | 214 | $18 \% .5$ | 150 | 125 | 100 | 83 |

    Piston Speed of Pumping-engines. (John Birkinbine, Trans. A. I. M. E., v. 459.)-In dealing with such a ponderous and unyielding substance as water there are many difficulties to overcome in making a pump work with a high piston speed. The attainment of moderately high speed is, however, easily accomplished. Well-proportioned pumping-engines of large capacity, provided with ample water-ways and properly constructed valves. are operated successfully against heavy pressures at a speed of 250 ft . per minute, without "thug," concussion, or injury to the apparatus, and there is no doubt that the speed can be still further increased.
    Speed of Water through Valves. - If areas through valves and water passages are sufficieut to give a velocity of 250 ft . per min. or less, they are ample. The water should be carefully guided and not too abruptly deflected. (F. W. Dean, Eng. News, Aug. 10, 1893.)
    Boiler-fecd Pumps. - Practice has shown that 100 ft . of piston speed per minute is the limit, if excessive wear and tear is to be avoided.
    The velocity of water through the suction-pipe must not exceed 200 ft . per minute, else the resistance of the suction is too great.
    The approximate size of suction-pipe, where the length does not exceed 25 ft . and there are not more than two elbows, may be found as follows :
    $\pi / 10$ of the diameter of the cylinder multiplied by $1 / 100$ of the piston speed in feet. For duplex pumps of small size, a pipe one size larger is usually employed. The velocity of flow in the discharge-pipe should not exceed 500 ft . per minute. The volume of discharge and length of pipe vary so greatly in different installations that where the water is to be forced more than 50 ft . the size of discharge-pipe should be calculated for the particular conditions, allowing no greater velocity than 500 ft . per minute. The size of discharge-pipe is calculated in single-cylinder pumps from 250 to 400 ft . ner minute. Greater velocity is permitted in the larger pipes.
    In determining the proper size of pump for a steam-boiler. allowances must be made for a supply of water snfficient to cover all the demands of engines, steam-heating, etc., up to the capacity of generator, and should not be calculated simply according to the requirements of the engine. In practice engines use all the way from 12 up to 50 , or more, pounds of steam per H.P. per hour when being worked up to capacity. When an engine is overloaded or underloaded more water per H.P. will be required than when operating at its rated capacity. The average run of horizontal tubular
    boilers will evaporate from 2 to 3 lbs . of water per sq. ft. of heating-surface per hour, but may be driven up to 6 lbs. if the grate-surface is too large or the drauglit too great for economical working.

    Pump-Valves.-A. F. Nagle (Trans. A. S. M. E., x. 521) gives a nuinber of designs with dimensions of double-beat or Cornish valves used in large pumping-engines, with a discussion of the theory of their proportions. The following is a summary of the proportions of the valves described.

    Summary of Valve Profortions.

    | Location of Engine. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Providence high-service engine ....... | 12 | $\begin{aligned} & 1 \mathrm{lb} . \\ & \text { reduced to } \\ & .66 \mathrm{lb} \text {. } \end{aligned}$ | 16\% | 377 lbs. | Good |
    | Providence Cornishengine | 16 | 1.28 | 12 | 680 | Good |
    | St. Louis Water Wks. | 16 | 1.86 | 67 | 250 | Some noise |
    | Milwaukee " " | 7 | . 40 | 88 | 120 | $\{$ Some noise at $\{$ high speed. |
    | Chicago " " | 25 | 1.41 | 75 | 151 | Noisy |
    | $\begin{array}{ll}66 & 6 \\ 60\end{array}$ | 15 | 1.31 | 85 | 140 | 4 |
    | wood seats. | 15 | 1.16 | 94 | 132 | $\cdots$ |
    | Chicago Water Wiks. | 8 | . .196 | 75 | 151 | - |

    Mr. Nagle says: There is one feature in which the Cornish valves are necessarily defective, namely, the lift must always be quite large, unless great power is sacrificed to reduce it. It is undeniable that a small lift is preferable to a great one, and hence it naturally leads to the substitution of numerous small valves for one or several large ones. To what extreme reduction of size this view might safely lead must be left to the judgment of the engineer for the particular case in hand, but certainly, theoretically, we must adopt small valves. Mr. Corliss at one time carried the theory so far as to make them only $13 / 8$ inches in diameter, but from 3 to 4 inches is the more common practice now. A small valve presents proportionately a larger surface of discharge with the same lift than a larger valve, so that whatever the total area of valve-seatopening, its full contents can be discharged with less lift through numerous small valves than with one large one.

    Henry R. Worthington was the first to use numerons small rubber valves in preference to the larger metal valves. These valves work well under all the conditions of a city pumping-engine. A volute spring is generally used to limit the rise of the valve.

    In the Leavitt high-duty sewerage-engine at Boston (Am. Machinist, May 31. 1884), the valves are of rubber, $3 / 4$-inch thick, the opening in valve-seat being $131 / 2 \times 41 / 6$ inches. The valves have iron face and back-plates, and form their own hinges.

    ## CENTRIEUGAL PUMPS.

    Relation of Heiglit of Lift to Velocity. -The height of lift depends only on the tangential velocity of the circumference, every tangential velocity giving a coustant height of lift-sometimes termed "head "whether the pump is small or large. The quantity of water discharged is in proportion to the area of the diseharging orifices at the circumference, or in proportion to the square of the diameter, when the breadth is kept the same. R. H. Buel (App. Cyc. Mech., ii, 606) gives the following:

    Let $Q$ represent the quantity of water, in cubic feet, to be pumped per minute, $h$ the height of suction in feet, $h^{\prime}$ the height of discliarge in feet, and d the diameter of suction-pipe, equal to the diameter of discharge-pipe, in

    ## feet; then, according to Fink, $d=0.36 \sqrt{\frac{Q}{1 / \sqrt{g\left(h+h^{\prime}\right)}}}, g$ being the accel

    eration due to gravity.If the suction takes place on one side of the wheel, the inside diameter of the wheel is equal to $1.2 d$, and the outside to $2.4 d$. If the suction takes place at both sides of the wheel. the inside diameter of the wheel is equal to $0.85 d$, and the outside to $1.7 d$. Then the suction-pipe will have two branches, the area of each equal to half the area of $d$. The suction-pipe should be as short as possible, to prevent air from entering the pump. The tangential velocity of the outer edge of wheel for the delivery $Q$ is equal to $1.25 \sqrt{2 g\left(h+h^{\prime}\right)}$ feet per second.
    The arms are six in number, constructed as follows: Divide the central angle of $60^{\circ}$, which incloses the outer edges of the two arms, into any number of equal parts by drawing the radii, and divide the breadth of the wheel in the same manner by drawing concentric circles. The intersections of the several radii with the corresponding circles give points of the arm.
    In experiments with Appold's pump, a velocity of circumference of 500 $f \mathrm{t}$. per min. raised the water 1 ft . high, and maintained it, at that level without discharging any; and double the velocity raised the water to four times the height, as the centrifugal force was proportionate to the squar of the velocity; consequently,

    | 1000 |  | " | " | " | " | 4 " |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2000 | " | " | 6 | " | 6 | 16 " | \% | 6 |
    | 4000 | " | 6 | 6 | " | 6 | 64 " | " | ، |

    The greatest height to which the water had been raised without discharge, in the experiments with the $1-\mathrm{ft}$. pump, was $67 . \mathrm{f} \mathrm{ft}$., with a velocity of 4153 ft. per min., being rather less than the calculated height, owing probably to leakage with the greater pressure. A velocity of 1128 ft . per min. raised the water $5 \% \mathrm{ft}$. without any discharge, and the maximum effect from the power employed in raising to the same height $51 / 2 \mathrm{ft}$. was obtained at the velocity of $16 \pi 8 \mathrm{ft}$, per min., giving a discharge of 1400 gals . per min. from the $1-\mathrm{ff}$. pump. The additional velocity required to effect a discharge of 1400 gals. per min., through a $1-\mathrm{ft}$. pump working at a dead level withont any heiglit of lift, is 550 ft . per min. Consequently, adding this number in each case to the velocity given above, at which no discharge takes place, the following velocities are obtained for the maximum effect to be produced in each case :

    | 1050 |  |  | Oc |  |  | ig |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1550 |  |  |  | " | $4{ }^{6}$ |  |  |
    | 2550 | " | 6 | " | '6 | 16 " | 6 | 6 |
    | 4550 | '6 | " | " | " | 64 " | 6 | 6 |

    Or, in general terms, the velocity in feet per minute for the circumference of the pump to be driven, to raise the water to a certain height, is equal to $550+500$ height of lift in feet.

    ## Lawrenco Centrifugal Pumps, Class B-For Lifts from 15 to 35 ft .

    | $\begin{gathered} 40 \\ 0 \\ x_{z}^{2} \\ x_{1} \end{gathered}$ |  |  |  |  |  | $\left\|\right\|$ |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 1 |  | 35 | . 028 | 65 | 10 | 10 | 10 | 3000 | 1.60 | 3000 |
    | 11/2 | 2 | 11/2 | 70 | . 05 | 230 | 12 | 12 | 12 | 4200 | 2.15 | 6800 |
    | 2 | $21 / 2$ | 2 | 100 | . 08 | 265 | 15 | 15 | 15 | ro00 | 3.50 | 8840 |
    | 3 | $31 / 2$ | 3 | 250 | . 15 | 500 | 18 | 18 | 18 | 10000 | 5.00 | 10000 |
    | 4 | 412. | 4 | 450 | . 27 | 680 | 24 | 24 | 24 | 18000 | 7.60 | 9000 * |
    | 5 | 6 | 5 | \% 200 | . 36 | 1032 | 30 | 30 | 30 | 25000 | 10.50 | 20000* |
    | 6 | 6 | 6 | 1200 | . 65 | 1260 | 36 | 36 | 36 | 35000 | 14.75 | $22000^{*}$ |
    | 8 | 8 | 8 | 2000 | 1.10 | 2460 |  |  |  |  |  |  |

    ## * Without base.

    The economical capacity corresponds to a flow not exceeding 10 ft . per second in the delivery-pipe. Small pipes and high rate of flow cause a great loss of power.

    ## Size of Pulleys, Width of Relts, and Revolutions per Minute Necessary to Raise the Rated Quantityof Water to Different Heights with Pumps of Class $B$.

    |  |  |  |  |  | Height in Feet and Revolutions per Minute. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\ddot{v}$ |  |  | $6^{\prime}$ |  | $8^{\prime}$ | $10^{\prime}$ | 12 | $16^{\prime}$ | $20^{\prime}$ | $25^{\prime}$ | $30^{\prime}$ | $35^{\prime}$ |  |
    |  | 5 | 5 |  | 3 | 70 | 520 | 590 | 665 | 720 | 835 | 930 | $10+5$ | 1125 | 0 | 11/3 |
    |  | 6 | 5 | 4 | 100 | 475 | 540 | 605 | 660 | 765 | 850 | 90.5 | 1025 | 1100 |  |
    | 3 | $71 / 2$ | 7 | 6 | 250 | 435 | 500 | 560 | 610 | T05 | 790 | 830 | 945 | 1000 | 3 |
    | 4 | 10 | 7 | 7 | 450 | 400 | 465 | 5:0 | 570 | 655 | 730 | 815 | 880 | 945 | 4 |
    | 5 | 14 | 11 | 8 | \%00 | 355 | 410 | 454 | 595 | $5{ }^{2} 5$ | 640 | 715 | 765 | 8:5 |  |
    | 6 | 16 | 11 | 9 | 1200 | 315 | 365 | 400 | 440 | 510 | 570 | 635 | 685 | 745 | 6 |
    | 8 | 20 | 12 | 10 | 2000 | 234 | 270 | 300 | 330 | 385 | 425 | 475 | 500 | 555 | 8 |
    | 10 | 22 | 12 | 10 | 3000 | 234 | 270 | 300 | 330 | 385 | 425 | $4 \pi 5$ | 500 | 555 | 10 |
    | 12 | 30 | 14 | 12 | 4200 | 160 | 185 | 200 | 220 | 255 | 285 | 318 | 340 | 360 | 12 |
    | 15 | 36 | 16 | 15 | 7000 | 140 | 165 | 180 | 198 | 228 | 25 | 285 | 305 | 330 | 15 |
    | 18 | 40 | 16 | 15 | 10000 | 125 | 145 | 160 | 173 | 200 | 225 | 250 | 270 | 290 | 1 |
    | 24 |  |  |  | 18000 | 105 | 125 | 135 | 150 | 170 | 190 | 214 | 230 | 250 | 30 |
    | 30 |  |  |  | 25000 | 95 | 106 | 118 | 130 |  | 165 | 185 | 204 | 215 |  |
    | 36 |  |  |  | 35000 | 95 | 106 | 118 |  | 148 | 165 | 185 | 204 | 215 |  |

    Enciencies of Centrifugal and Reciprocating Pumps.W. O. Webber (Trans. A. S. M. E., vii. 598) gives diagrams showing the relative efficiencies of centrifugal and reciprocating pumps, from which the following flgures are taken for the different lifts stated: Lift, feet:
    $\begin{array}{lllllllllllllllll}2 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 50 & 60 & 80 & 100 & 120 & 160 & 200 & 240 \\ 280\end{array}$ Efficiency reciprocating pump:
     Efficiency centrifugal pump:
    . 50 . 56 . 64 . 68 . 69 . 68 . 66 . 62 . 58 . 50 . 40 .
    The term efficiency here used indicates the value of W. H. P. - I. H P or horse-power of the water raised divided by the indicated horse-power of the steam-engine, and does not therefore show the full efficiency of the pump, but that of the combined pump and engine. It is, however, a very simple way of showing the relative values of different kinds of pumping-evgiues having their motive power forming a part of the plant.

    The highest value of this term. given by Mr. Webber, is .9164 for a lift of 170 ft ., and 3615 gals. per min. This was obtained in a test of the Leavitt pumping engine at Lawrence, Mass., July $24,18 \uparrow 9$.

    With reciprocating pumps, for higher lifts than 170 ft ., the curve of eff ciencies falls, and from 200 to 300 ft . lift the average value seems about 84. Below $1 \% 0 \mathrm{ft}$. the curve also falls reversely and slowly, until at about 90 ft. its descent becomes more rapid, and at 35 ft . 727 appears the best recorded performance. There are not any very satisfactory lecords below this lift, but some figures are given for the yearly coal consumption and total number of gallons pmomped by engines in Holland under a $16-\mathrm{ft}$. lift, from which an efficiency of 44 has been deduced.
    With centrifugal pumps, the lift at which the maximum efficiency is obtained is approximately 17 ft . At lifts from 12 to 18 ft . some makers of large experience claim now to obtain from $65 \%$ to $70 \%$ of useful effect, but 613 appears to be the best done at a public test under 14.7 ft . head.
    The drainage-pumps constructed some years ago for the Haarlem Lake were designed to lift 70 tons per min. 15 ft ., and they weighed about 150 tons. Centrifugal pumps for the same work weigh only 5 tons. The weight of a centrifugal pump and engine to lift 10,000 gals. per min. 35 ft . high is 6 tons.
    The pumps placed by Gwynne at the Ferrara Marshes, Northern Italy, in 1865 , are, it is believed, capable of handling more water than other set of pumping-engines in existence. The work performed by these pumps is the lifting of 2000 tons per min-over $600.000,000$ gals. per 24 hours-on a mean lift of about 10 ft . (maximum of 12.5 ft .). (See Engincering, 1876.)
    The efficiency of centrifugal pumps seems to increase as the size of pump
    fncreases, approximately as follows: A $2^{\prime \prime}$ pump (this designation meaning always the size of discharge-outlet in inches ot diameter), giving an efficiency of $38 \%$, a $3^{\prime \prime}$ pump $45 \%$, and a $4^{\prime \prime}$ pump $5 \% \%$ a $5^{\prime \prime}$ pump $60 \%$, and a $6^{\prime \prime}$ pump 64\% efficiency.

    ## Tests of Centrifugal Pumps.

    W. O. Webber, Trans. A. S. M. E., ix. 237.

    | Maker. | An- | $\begin{gathered} \text { An- } \\ \text { drews. } \end{gathered}$ | $\begin{gathered} \mathrm{An}- \\ \text { drews. } \end{gathered}$ | $\begin{gathered} \text { Heald } \\ \& \\ \text { Sisco. } \end{gathered}$ | Heald \& Sisco. | $\begin{aligned} & \text { Heald } \\ & \& \\ & \text { Sisco. } \end{aligned}$ | Berlin. Schwartz kopff. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Size | No. 9. | No. 9. | No. 9. | No. 10. | No. 10. | No. 10. | No. 9. |
    | Diam. discharge. | $91 / 8^{\prime \prime}$ $981 \prime$ | 91/8" | 91/8' |  |  |  | 91/3" ${ }^{\text {9/ }}$ |
    | "\% suction ${ }^{\text {c/.. }}$ | ${ }_{26} 93 /{ }^{\prime \prime}{ }^{\prime \prime}$ | 933/4' | 26314 ${ }^{\text {9 }}$ | ${ }^{12}{ }^{\prime \prime}{ }^{\prime \prime} 5^{\prime \prime}$ | ${ }^{12^{\prime \prime}} 30.5^{\prime \prime}$ | ${ }^{12}{ }^{\prime \prime \prime}{ }^{\prime \prime} 5^{\prime \prime}$ | ${ }_{20}^{10.3^{\prime \prime}}$ |
    | Rev. per minute. | 191.9 | 195.5 | 200.5 | 188.3 | 20: 7 | 213.7 | 500 |
    | Galls. per minute | 1513.12 | 2023.82 | 2499.33 | 1673.37 | 2044.9 | $23 \% 1.67$ | 1914.8 |
    | Height in feet.... | 12.25 | 12.62 | 13.08 | 12.33 | 12.58 | 13.0 | 16.46 |
    | Water H.P. | 4.69 | 6.47 | 8.28 | 5.22 | 6.51 | 7.81 |  |
    | Dynam'eter H.P. | 10.09 | 12.2 | 14.38 | 8.11 | 1074 | 14.02 | 11 |
    | Efficiency.. | 46.52 | 53.0 | 57.57 | 64.5 | 60.74 | 55.72 | 73.1 |

    Vanes of Centrifugal Pumps.-For forms of pump vanes, see paper by W. O. Webber, Trans. A. S. M. E., ix. 2:88, and discussion thereon by Profs. Thurston, Wood, and others.
    The Centrifugal Pump used as a Suction Dredge.-The Andrews centrifugal pump was used by Gen. Gilhore, U. S. A., in 18il. in deepening the channel over the bar at the mouth of the St. John's River, Florida. The pump was a No. 9 , with suction and discharge pipes each 9 inches diam. It was driven at 300 revolutions per minute by belt from an engine developing 26 useful hor'se-power.

    Although 200 revolutions of the pump disk per minute will easily raise 3000 gallons of clear water 12 ft high, through a straight vertical 9 -inch pipe, 300 revolutions were required to raise 2500 gallons of sand ard water 11 ft . high, through two inclined suction-pipes having two turns each, discharged through a pipe having one turil.
    The proportion of sand that can be pumped depends greatly upon its specific gravity and fineness. The calcareous and argillaceous sands flow more freely than the silicious, and fine sands are less liable to choke the pipe than those that are coarse. When working at high speed, $50 \%$ to $55 \%$ of saud can be raised through a straight vertical pipe, giving for every 10 cubic yards of material discharged 5 to $51 / 2$, cubic yards of compact sand. With the appliances used on the St. John's bar, the proportion of sand celdom exceeded $45 \%$, generally ranging from $30 \%$ to $35 \%$ when working under the most favorable conditions.

    In pumping 2500 gallons, or 12.6 cubic yards of sand and water per minnte there would therefore be obtained from 3.7 to 4.3 cubic yards of sand. Dur: ing the early stages of the work, before the teeth under the drag had been properly arranged to aid the flow of sand into the pipes, the sield was considerably below this average. (From catalogue of Jos. Edwards \& Co., Mfrs. of the Andrews Pump, New York.)

    ## DUTY TREALS OE PUTRENG-ENGENES.

    A committee of the A. S. M. E. (Trans., xii. 530) reported in 1891 on a standard method of conducting duty trials. Instead of the cld unit of duty of $\hat{\text { r }}$ oot-pounds of worls per 100 lbs . of coal used, the connsittee reconmend a new unit, foot-pounds of work per million heat-units furnished by the boiler. The variations in quality of coal make the old standard minfit as a basis of duty ratings. The new unit is the precise equivalent of 100 lbs of coal in cases where each pound of coal imparts 10,000 heat-units to the water in the boiler, or where the evaporation is $10,000 \div 965.7=10.355$ lbs. of water from and at $212^{\circ}$ per pound of fuel. This evaporative result is readily obtained from all grades of Cumberland bituminous coal, used in horizontal return tubular boilers, and, in many cases, from the best grades of anthracite coal.

    The committee also recommend that the work done be determined by plunger displacement, after making a test for leakage, instead of by meas. urement of flow by weirs or other apparatus, but advise the use of such apparatus when practicable for obtaining additional data. The following extracts are taken from the report. When important tests are to be made the complete report should be consulted.

    The necessary data having been obtained, the duty of an engine, and other quantities relating to its performance, may be computed by the use of the following formulæ:

    $$
    \text { 1. } \begin{aligned}
    \text { Duty } & =\frac{\text { Foot-pounds of work done }}{\text { Total number of heat-units consumed }} \times 1,000,000 \\
    & =\frac{A(P \pm p+s) \times L \times N}{H} \times 1,000,000 \text { (foot-pounds). }
    \end{aligned}
    $$

    2. Percentage of leakage $=\frac{C \times 144}{A \times L \times N} \times 100$ (per cent).
    3. Capacity $=$ number of gallons of water discharged in 24 hours

    $$
    =\frac{A \times L \times N \times 7.4805 \times 24}{D \times 144}=\frac{A \times L \times N \times 1.24675}{D} \text { (gallons). }
    $$

    4. Percentage of total frictions,

    $$
    \begin{aligned}
    & =\left[\frac{\text { I.H.P: }-\frac{A(P \pm p+s) \times L \times N}{D \times 60 \times 33,000}}{\text { I.H.P. }}\right] \times 100 \\
    & =\left[1-\frac{A(P \pm p+s) \times L \times N}{A s \times \text { M.E.P. } \times L s \times N_{s}}\right] \times 100 \text { (per cent) }
    \end{aligned}
    $$

    or, in the usual case, where the length of the stroke and number of strokes of the plunger are the same as that of the steam-piston, this last formula becomes:

    Percentage of total frictions $=\left[1-\frac{A(P \pm p+s)}{A s \times \text { M.E.P. }}\right] \times 100$ (per cent).
    In these formulæ the letters refer to the following quantities:
    $A=$ Area, in square inches, of pump plunger or piston, corrected for area of piston rod or rods;
    $P=$ Pressure, in pounds per square inch, indicated by the gauge on the force main;
    $p=$ Pressure, in pounds per square inch, corresponding to indication of the vacuum-gauge on suction-main (or pressure-gauge, if the suctionpipe is under a head). The indication of the vacumm-gauge, in inches of mercury, may be converted into pounds by dividing it by 2.035;
    $s=$ Pressure, in pounds per square inch, corresponding to distance between the centres of the two gauges. The computation for this pressure is made by multiplying the distance, expressed in feet, by the weight of one cubic foot of water at the temperature of the pump-well, and dividing the prodnct by 144 ;
    $L=$ Average length of stroke of pump-plunger, in feet;
    $N=$ Total number of single strokes of pump-plunger made during the trial;
    $A_{s}=$ Area of steam-cylinder, in square inches, corrected for area of pistonrod. The quantity $A s \times M . E . P$., in an engine having more than one cylinder, is the sum of the various quantities relating to the respective cylinders;
    $L_{s}=$ Average length of stroke of steam-piston, in feet;
    Ns = Total number of single strokes of steam-piston during trial;
    M.E.P. = Average mean eifective pressmre, in pounds per square inch, measured from the indicator-diagrams taken from the steam-cylinder;
    I.H.P. $=$ Indicated horse-power developed by the steam-cylinder;
    $C=$ Total number of cubic feet of water which leaked by the pump-plunger during the trial, estimated from the results of the leakage test;
    $D=$ Duration of trial in hours:
    $H=$ Total number of heat-units (B.T. U.) consumed by engine $=$ weight of water supplied to boiler by main feed-pump $\times$ total heat of steam of boiler pressure reckoned from temperature of main feed-water + weight of water supplied by jacket-pump $\times$ total heat of steam of boiler-pressure reckoned from temperature of jacket-water + weight of any other water supplied $\times$ total heat of steam reckoned from its temperature of supply. The total heat of the steam is corrected for the moisture or superheat which the steam may contain. No allowance is made for water added to the feed-water, which is derived from any source, except the engine or some accessory of the engine. Heat added to the water by the use of a flue-heater at the boiler is not to be cleducted. Should heat be abstracted from the flue by means of a steam reheater connected with the intermediate receiver of the engine, this heat must be included in the total quantity supplied by the boiler.
    Leakage Test of Pump.-The leakage of an inside plunger (the only type which requires testing) is most satisfactorily determined by making the test with the cylinder-head removed. A wide board or plank may be temporarily bolted to the lower part of the end of the cylinder, so as to hold back the water in the manner of a dam, and an opening made in the temporary head thus provided for the seception of an overflow-pipe. The plunger is blocked at some intermediate point in the stroke (or, if this position is not practicable, at the end of the stroke), and the water from the force main is admitted at full pressure behind it. The leakage escapes through the overflow-pipe, and it is collected in barrels and measured. The test should be made, if possible, with the plunger in various positions.
    In the case of a pump so planued that it is difficult to remove the cylinder.head, it may be desirable to take the leakage from one of the openings which are provided for the inspection of the suction-valves, the head being allowed to remain in place.
    It is assumed that there is a practical absence of valve leakage. Examination for such leakage should be made, and if it occurs, and it is found to be due to disordered valves, it should be remedied before making the planger test. Leakage of the discharge valves will be shown by water passing down into the empty cylinder at either end when they are under pressure. Leakage of the suction-valves will be shown by the disappearance of water which covers them.
    If valve leakage is found which cannot be remedied the quantity of water thus lost should also be tested. One method is to measure the amount of water required to maintain a certain pressure in the pump cylinder when this is introduced through a pipe temporarily erected, no water being allowed to enter through the discharge valves of the pump.
    Table of Data and Resulif. - In order that uniformity may be secured, it is suggested that the data and results, worked out in accordance with the standard method. be tabulated in the manner indicated in the following scheme:

    DUTY TRIAL OF ENGINE.
    DIMENSIONS.

    1. Number of steam-cylinders
    ins.
    2. Diameter of steam-cylinders
    ins.
    ins.
    3. Diameter of piston-1ods of steam-cylinders
    4. Diameter of piston-1ods of steam-cylinders ..... ft.
    5. Nominal stroke of steam-pistons
    6. Nominal stroke of steam-pistons
    ins.
    7. Niambeter of plungers
    8. Diameter of piston-rods of water-cylinders. ..... ins.
    9. Nominal stroke of plungers. ..... ft.
    10. Net area of steam-pistons ..... sq. ins.
    11. Net area of plungers. ..... sq. ins.
    12. Average length of stroke of steam-pistons during trial ..... ft.
    13. Average length of stroke of plungers during trial ..... ft.(Give also complete description of plant.)

    ## TEMPERATURES.

    13. Temperature of water in pump-well ..... degs.
    14. Temperature of water supplied to boiler by main feed-pump..
    15. Temperature of water supplied to boiler from various othersourcesdegs.

    ## FEED-WATER.

    16 Weight of water supplied to boiler by main feed-pump ..... lbs.
    17. Weight of water supplied to boiler from various other sources. ..... lbs.
    18. 'Total weight of feed-water supplied from al! sources ..... lbs.
    PRESSURES.
    19. Boiler pressure indicated by gauge ..... lbs.
    20. Pressure indicated by gauge on force main ..... lbs.
    21. Vacuum indicated by gauge on suction main ..... ins.
    2:2. Pressure corresponding to vacuun given in preceding line ..... lbs.
    23 . Vertical distance between the centres of the two gauges ..... ins.
    24. Pressure equivalent to distance between the two gauges ..... Jbs.
    mscellaneous data.
    2\%. Duration of trial ..... his.
    26. 'Total number of single strokes during trial
    27. Percentage of moisture in steam supplied to engine, or numberof degrees of superheating\% or deg
    28. Total leakage of puinp during trial, determined from results of leakage test ..... lbs.
    99. Mean effective pressure, measured from diagrams taken from steam-cylinders M.E.P.
    PRINCIPAL RESULTS.
    30. Duty ..... ft. lbs.
    31. Percentage of leakage ..... \%
    32. Capacity ..... gals.
    33. Percentage of total friction ..... \%
    ADDITIONAL RESULTS.
    34. Number of double strokes of steam-piston per minute
    35. Indicated horse-power developed by the various steam-cylinders I.H.P.
    36. Feed-water consumed by the plant per hour ..... lbs.
    3\%. Feed-water consumed by the plant per indicated horse-powerper hour, corrected for moisture in steam. ........ .......... lbs.
    38. Number of heat units consumed per indicated liorse-powerper houlB.T.U.
    39. Number of heat units consumed per indicated horse-power per minute. ..... B.T.U.
    40. Steam accounted for by indicator at cut-off and release in the various steam-cylinders ..... lbs.
    41. Proportion which steain accounted for by indicator bears to the feed-water consumption
    42. Number of double strokes of pump per minute
    43. Mean effective pressure, measured from pump diagrams ..... M.E.P.
    44. Indicated horse-power exerted in pump-cylinders ..... I.H.P.
    45. Work done (or duty) per 100 lbs of coal ..... ft. lbs.
    SAMPLE DIAGRAM TAKEN FROM STEAM-CYLINDERS.(Also, if possible, full measurement of the diagrams, embracing pressuresat the initial point, cut-off, release, and compression; also back pressure,and the proportions of the stroke completed at the various points noted.)

    These are not necessary to the main object, but it is desirable to give theil.

    ## data and results of boller test.

    (In accordance with the scheme recommended by the Boiler-test Committee of the Society.)

    ## VACUUN PUMPS-AIR-LIFT PUMP.

    The Pulsometer. - In the pulsometer the water is raised by suction into the pump-chamber by the condensation of steam within it, and is then forced into the delivery-pipe by the pressure of a new quantity of steam on the surface of the water. Two clianbers are used which work alternately, one raising while the otlier is discharging.

    Test of a Pulsometer.-A test of a pulsometer is described by De Volson Wood in Trans. A. S. M. E. xiit. It had a $31 / 2 \cdot \operatorname{inch}$ suction-pipe, stood 40 in. high, and weighed 69.) lbs.

    The steam-pipe was 1 inch in diameter. A throttle was placed about 2 feet
    from the pump, and pressure gauges placed on both sides of the throttle, and a mercury well and thermometer placed beyond the throttle. The wire drawing due to throttling caused superheating.

    The pounds of steam used were computed from the increase of the tem perature of the water in passing through the pump.
    Pounds of steam $\times$ loss of heat $=$ lbs. of water sucked in $\times$ increase of temp.
    The loss of heat in a pound of steam is the total heat in a pound of saturated steam as found from "steam tables" for the given pressure, plus the heat of superheating, minus the temperature of the discharged water; or

    $$
    \text { Pounds of steam }=\frac{\text { lbs. water } \times \text { increase of temp. }}{H-0.48 t-T .}
    $$

    The results for the four tests are given in the following table :

    | Data and Results. | Number of Test. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 1 | 2 | 3 | 4 |
    | Strokes per minute | 71 | 60 | 57 | 64 |
    | Steam press.in pipe before throtil'g | 114 | 110 | 127 | 104.3 |
    | Steam press. in pipe after throttl'g. | 19 | 30 | 43.8 | 26.1 |
    | Steam temp. after throttling, deg. F. | 20.4 | 277 | 309.0 | 200.1 |
    | Steanı am'nt of superheat'g,deg. F. | 3.1 | 3.4 | 17.4 | 1.4 |
    | Steam used as det'd from temp., libs. | 1617 | 931 | 1518 | 1019.9 |
    | Water pumped, lbs................ | 404,786 | 186.362 | 228,425 | 248.053 |
    | Water temp.before entering pump, | 75.15 | 80.6 | 76.3 | \%0.25 |
    | Water temp., rise of............ | 4.47 | 5.5 | 7.49 | 4.55 |
    | Water head by gauge on lift, ft.. | 29.90 | 54.05 | 54.05 |  |
    | Water head by gauge on suction... | 12.26 | 12.26 | 19.67 | 19.67 |
    | Water head by gauge, total ( $H$ ).... | 42.16 | 66.31 | 75.72 | $49.5 \%$ |
    | Water head by measure, total ( $h$ ) | 32.8 | 57.80 | 66.6 | 41.68 |
    | Coeff. of friction of plant ( $h$ ) $\div(H)$ | 0.757 | 0.877 | 0.911 | 0.839 |
    | Efficiency of pulsometer. | 0.012 | 0.0155 | 0.0126 | 0.0138 |
    | Effic. of plant exclusive of boiler... | 0.0093 | 0.0136 | 0.0115 | 00116 |
    | Effic. of plant if that of boiler be 0.7 | 0.6065 | 0.0095 | 0.0080 | 0.0081 |
    | Duty, if 1 lb.evaporates 10 lbs water | 10,511,400 | 13,391,000 | 11,059,000 | 12,036,300 |

    Of the two tests having the highest lift ( 54.05 ft .), that was more efficient which had the smaller suction ( 12.26 ft .), and this was also the most efficient of the four tests. But, on the other hand, the other two tests having the same lift ( 29.9 ft .), that was the more efficient which had the greater suction (19.6 $\boldsymbol{\sim}$ ), so that no law in this regard was established. The pressures used, $19,30,43.8,26.1$, follow the order of magnitude of the total heads, but are not proportional thereto. No attempt was made to determine what pressure would give the best efficiency for any particular head. The pressure used was intrusted to a practical runner, and he judged that when the pump was running regularly and well, the pressure then existing was the proper one It is peculiar that, in the first test, a pressure of 19 lbs . of steam should produce a greater number of strokes and pump over $50 \%$ more water than $₫ 6.1$ lbs.. the lift being the same, as in the fourth experiment.

    Chas. E. Emery in discussion of Prof. Wood's paper says, referring to tests made by himself and others at the Centennial Exhibition in $186^{6}$ (see Report of the Judges, Group xx.), that a vacunm-pump tested by him in 1871 gave a duty of 4.7 millions; one tested by J. F. Flagg, at the Cincinnati Exposition in 1875, gave a maximum duty of 3.25 millions. Several vacuum and small steam-pumps, compared later on the same basis, were reported to have given duties of 10 to 11 millious, the steam-pumps doing no better than the vacuum-pumps. Injectors, when used for lifting water not required to be heated, have an efficiency of 2 to 5 millions; vacuun1-pumps vary generally between 3 and 10 ; small steam-pumps between 8 and 15 : larger steam-pumps, between 15 and 30, and pumping-engines between 30 and 140 millions.

    A very high record of test of a pulsometer is given in Eng'g. Nov. 24, 1893, p. 639 , viz. : Height of suction 11.27 ft . ; total height of lift, 102.6 ft . ; horizontal length of delivery-pipe, 118 ft , ; quantity delivered per hour,' 26,188 British gallons. Weight of steam used per H. P. per hour, 9\%. 76 lbs ; work
    done per pound of steam 21,345 foot-pounds, equal to a duty of $21,345,000$ foot-pounds pe 100 lbs . of coal, if 10 lbs of steam were generated per pound of coal.

    The Jet-pumpo-This machine works by means of the tendency of a stream or jet of fluid to drive or carry contiguous particles of fluid along with it. The water-jet pump, in its present form, was invented by Prof. James Thomson, and first described in 1852. In some experiments on a small scale as to the efficiency of the jet-pump, the greatest efficiency was found to take place when the depth from which the water was drawn by the suction-pipe was about nine tenths of the height from which the water fell to form the jet; the flow up the suction-pipe being in that case about one fifth of that of the jer, and the efficiency, consequently, $9 / 10 \times 1 / 5=0.18$. This is but a low efficiency; but it is probable that it may be increased by improvements in proportions of the machine. (Rankine, S. E.)
    The Injector when used as a pump has a very low efficiency. (See Injectors, under Steam-boilers.)

    Airwlift Pump.-The air-lift pump consists of a vertical water-pipe with its lower end submerged in a well, and a smaller pipe delivering air into it at the bottom. The rising column in the pipe consists of air mingled with water, the air being in bubbles of various sizes, and is therefore lighter than a column of water of the same height; consequently the water in the pipe is raised above the level of the surrounding water. This method of raising water was proposed as early as 1797, by Loescher, of Freiberg. and was mentioned by Collon in lectures in Paris in 1876, but its first practical application probably was by Werner Siemens in Herlin in 1885. Pohle experimented on the principle in California in 1886, and U. S. patents on apparatus involving it were granted to Pohle and Hill in the same year. A paper describing tests of the air-lift pump made by Randall, Browne and Behr was read before the Technical Society of the Pacific Coast in Feb. 1890.
    The diameter of the pump-column was 3 in., of the air-pipe 0.9 in ., and of the air-discharge nozzle $\overline{2} / \mathrm{in}$. The air-pipe had four sharp bends and a length of 35 ft . plus the depth of submersion.
    The water was pumped from a closed pipe-well ( 55 ft . deep and 10 in . in dianeter). The efficiency of the pump was based on the least work theoretically required to compress the air and deliver it to the receiver. If the efficiency of the compressor be taken at $\% 0 \%$, the efficiency of the pump and compressor together would be $70 \%$ of the efficiency found for the pump alone.

    For a given submersion ( $h$ ) and lift ( $H$ ), the ratio of the two being kept within reasonable limits, $(H)$ being not much greater than $(h)$, the efficiency was greatest when the pressure in the receiver did not greatly exceed the head due to the submersion. The smaller the ratio $H \div h$, the higher was the efficiency.

    The pump, as erected, showed the following efficiencies :

    | For $H \div h=$ | 0.5 | 1.0 | 1.5 | 2.0 |
    | :--- | :--- | :--- | :--- | :--- |
    | Efficiency | $50 \%$ | $40 \%$ | $30 \%$ | $25 \%$ |

    The fact that there are absolutely no moving parts makes the pump especially fitted for handling dirty or gritty water, sewage, mine water, and acid or alkali solutions in chemical or metallurgical works.

    In Newark, N. J., pumps of this type are at work having a total capacity of $1,000,000$ gallons daily, ifting water from three 8 -in. artesian wells. The Newark Chemical Worlis use an air-lift pump to raise sulphuric acid of $1.72^{\circ}$ gravity. The Colorado Central Consolidated Mining Co., in one of its mines at Georgetown, Colo., lifts water in one ass 250 ft ., using a series of lifts.

    For a full account of the theory of the pump, and details of the tests above referred to, see Eng'g Neivs, June 8, 1893.

    ## 

    Eficieney. - The hydraulic ram is used where a considerable flow of water with a moderate fall is a vailable, to raise a small portion of that flow to a height exceeding that of the fall. The following are rules given by Eytelwein as the results of his experiments (from Rankine):
    Let $Q$ be the whole supply of water in cubic feet per second, of which $q$ is lifted to the height $h$ above the pond, and $Q-q$ runs to waste at the depth $H$ below the pond; $L$, the length of the supply-pipe, from the pond to the waste-clack ; $D$, its diameter in feet; then

    $$
    D=\sqrt{(1.63(2) ;} \quad L=H+h+\frac{h}{H} \times 2 \text { feet; }
    $$

    Volume of air vessel = volume of feed pipe;

    Efficiency, $\frac{q h}{(Q-q) H}=1.12-0.2 \sqrt{\frac{h}{H}}$ when $\frac{h}{H}$ does not exceed 20 .
    or

    $$
    1 \div\left(1+\frac{h}{10 \bar{H}}\right) \text { nearly, when } \frac{h}{H} \text { does not exceed } 12 .
    $$

    D'Aubuisson gives $\quad \frac{q(H+h)}{Q H}=1.42-.28 \sqrt{\frac{\bar{h}}{H}}$.
    Clark. using five sixths of the values giran lw D'Aul uisson's formula, gives:
    $\begin{array}{lllllllllllll}\text { Ratio of lift to fall.... } & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26\end{array}$
    Efficiency per cent.... $72 \begin{array}{llllllllllll} & 61 & 52 & 44 & 37 & 31 & 25 & 19 & 14 & 9 & 4 & 0\end{array}$
    Prof. R. C. Carpenter (Eng'g Mechanics, 1894) reports the results of four tests of a ram constructed by Rumsey \& Co., Seneca Falls. The ram was fitted for pipe connection for $11 / 4$-inch supply and 1/2-inch discharge. The supply-pipe used was $1 \frac{1}{2}$ inches in diameter, about 50 feet long, with 3 eibows, so that it was equivalent to about 65 feet of straight pipe, so far as resistance is concerned. Each run was made with a different stroke for the waste or clack-valve, the supply and delivery head being constant; the object of the experiment was to flld that stroke of clack-valve which would give the lighest efficiency.

    | Length of stroke, per cent. | 100 | 80 | 60 | 46 |
    | :---: | :---: | :---: | :---: | :---: |
    | Number of strokes per minute | 52 | 56 | 61 | 66 |
    | Supply head, feet of water | 5.67 | 5.77 | 5.58 | 5.65 |
    | Delivery head, feet of water. | 19.75 | 19.75 | 19.75 | 19.75 |
    | Total water pumped, pounds. | 297 | 296 | 301 | 297.5 |
    | Total water supplied, pounds | 1615 | 1567 | 1518 | 1455.5 |
    | Efficiency, per cent... | 64.9 | 66 | 74.9 | 70 |

    The efficiency, 74.9, the highest realized, was obtained when the clack-valve travelled a distance equal to $60 \%$ of its full stroke, the full travel being $15 / 16$ of one inch.

    Quantity of 耳Uater Delivered by the Fiydraulic Fam. (Chadwick Lead Works.)-From 80 to 100 feet conveyance, one seventh of supply from spring can be discharged at an elevation five times as high as the fall to supply the ram; or, one fourteenth can be raised and discharged say ten times as high as the fall applied.

    Water can he conveyed by a ranl 3000 feet, and elevated 200 feet. The drive-pipe is from 25 to 50 feet long.

    The following table gives the capacity of several sizes of rams, the dimensions of the pipes to be used, and the size of the spring or brook to which they are adapted:

    | Size of Ram. | Quantity of Water Furnished per Min. by the Spring or Brook to which the Ram is Adapted. | Caliber of Pipes. |  | Weight of Pipe (Lead), if Wrought Iron, then of Ordinary Weight. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 号 |  | Drive-pipe for head or fall not over 10 ft . | Dischargepipe for 110 t over 50 ft . rise. | Discharge pipe fol over 50 ft and not ex ceeding 100 ft . in height. |
    |  | Gals. per min <br> $3 / 4$ to 2 <br> $11 / 2$ 4 <br> $\begin{array}{rrr}6 & \text { " } & 14 \\ 12 & \text { " } & 25\end{array}$ <br> $\begin{array}{ll}20 & " 40 \\ 25 & \\ \end{array}$ | inch. $3 / 4$ 1 $11 / 4$ 2 $21 / 2$ $21 / 2$ 4 | $\begin{gathered} \text { inch. } \\ 3 / 8 \\ 1 / \\ 1 / 2 \\ 3 \\ 1 \\ 11 / 4 \\ 2 \end{gathered}$ |  |  |  |

    ## HYDRAUEYC-PRESSURE TRANSEHESSON.

    Water under high pressure (\%00 to 2000 lbs. per square inch and upwardst affords a very satisfactory meihod of transmitting power to a distance, especially for the movement of heavy loads at small velocities, as by cranes and elevators. The system consists usually of one or more pumps capable of developing the required pressure; accumulators, which are vertical cylinders with heavily-weighted plungers passing through stuffing-boxes in the upper end, by which a quantity of water may be accumulated at the pressur $\theta$ to which the plunger is weighted; the distributing-pipes; and the presses, cranes, or other machinery to oe operated.

    The earliest important nse of hydraulic pressure probably was in the Bramah hydraulic press, patented in 1796. Sir W. G. Armstrong in 1846 was one of the pioneers in the adaptation of the hydraulic system to cranes. The use of the accumulator by Armstrong led to the extended use of hydraulic machinery. Recent developments and applications of the system are largely due to Ralph Tweddell, of London, and Sir Joseph Whitworth. Sir Henry Bessemer, in his patent of May 13, 1856, No. 1292, first suggested the use of hydraulic pressure for compressing steel ingots while in the fluid state.
    The Gross Amount of Energy of the water under pressure stored in the accurnulator, measured in foot-pounds, is its volume in cubic feet $X$ its pressure in pounds per square foot. The horse-power of a given quantity steadily flowing is H.P. $=\frac{144 p Q}{550}=.2618 p Q$, in which $Q$ is the quantity flowing in cubic feet per second and $p$ the pressure in pounds per square inch.
    The loss of energy due to velocity of flow in the pipe is calculated as follows (R. G. Blaine, Eng'g, May 22 and June 5, 1891):
    According to D'Arcy, every pound of water loses $\frac{\lambda 4 L}{D}$ times its kinetic energy, or energy due to its velocity, in passing along a straight pipe $L$ feet in length and $D$ feet diameter, where $\lambda$ is a variable coefficient. Hor clean cast-iron pipes it may be taken as $\lambda=.005\left(1+\frac{1}{12 D}\right)$, or for diameter in inches $=d$.

    | $d=$ | $1 / 2$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\lambda$ | $=.015$ | .01 | .0075 | .00667 | .00625 | .006 | .00583 | $.005 \pi$ | .00563 | .00556 | .0055 |

    The loss of energy per minute is $60 \times 62.36 Q \times \frac{\lambda 4 L}{D} \frac{v^{2}}{2 g}$, and the horse power wasted in the pipe is $W=\frac{.6363 \lambda L(H . P .)^{3}}{\nu^{3} D^{5}}$, in which $\lambda$ varies with the diameter as above. $p=$ pressure at entrance in pounds per square inch. Valnes of . $6363 \lambda$ for different diameters of pipe in inches are:
     $.00954 .00636 .00477 .00424 .00398 .00383 .003 \% 11.00363 .00358 .00353 .00350 .00345$
    Efficiency of Hydranlic Apparatus.-The useful effect of a direct hydraulic plunger or ram is usually taken at $93 \%$. The following is given as the efficiency of a ram with chain-and-pulley multiplying gear properly proportioned and well lubricated: $\begin{array}{lllllllllll}\text { Multiplying.... } 2 \text { to } 1 & 4 \text { to } 1 & 6 \text { to } 1 & 8 \text { to } 1 & 10 \text { to } 1 & 12 \text { to } 1 & 14 \text { to } 1 & 16 \text { to } 1 \\ \text { Efficiency } \% \ldots . & 80 & 76 & 72 & 67 & 63 & 59 & 54 & 50\end{array}$

    With large sheaves, small steel pins, and wire rope for multiplying gear the efficiency has been found as high as $66 \%$ for a multiplication of 90 to 1.
    Henry Adams gives the following formula for effective pressure in cranes and hoists:
    $\begin{aligned} P & =\text { accumulator pressure in pounds per square inch; } \\ m & =\text { ratio of multiplyiug power. }\end{aligned}$
    $m=$ ratio of multiplying power:
    $E=$ effective pressure in pounds per square inch, including all allowances for friction;

    $$
    E=P(.84-.02 m)
    $$

    J. E. Tuit (Eng'g, June 15, 1888) describes some experiments on the friction of hydraulic jacks from $31 / 4$ to $135 / 8$-inclı diameter, fitted with cupped leather packings. The friction loss varied from $5.6 \%$ to $18.8 \%$ according to the condition of the leather, the distribution of the load on the ram, etc. The friction increased considerably with eccentric loads. With hemp packing a plnnger, 14 -inch diameter, showed a friction loss of from $11.4 \%$ to $3.4 \%$, the load being central, and from $15.0 \%$ to $7.6 \%$ with eccentric load, the per: centage of loss decreasing in both cases with increase of load.

    Thickness of Hydraulic Cylinders.-From a table used by Sir W. G. Armstrong we take the following, for cast-iron cylinders, for an interior pressure of 1000 lbs . per square inch:

    | Diam. of cylinder, inches.. | 2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Thickness, inches............ $0.8321 .1461 .5521 .8752 .222 \quad 2.578 \quad 3.193 .694 .11$ For any other pressure multiply by the ratio of that pressure to 1000. These figures correspond nearly to the formula $t=0.175 d+0.48$, in which $t=$ thickness and $d=$ diameter in inches, up to 16 inches diameter, but for 20 inches diameter the addition 0.48 is reduced to 0.19 and at 24 inches it disappears. For formulæ for thick cylinders see page 287, ante.

    Cast iron should not be used for pressures exceeding 2000 lbs . per square inch. For higher pressures steel castings or forged steel should be used. For working pressures of 750 lbs . per square inch the test pressure should be 2500 lbs . per square inch, and for 1500 lbs . the test pressure should not be less than 3500 lbs .
    Speed of Hoisting by Hydraulic Pressure.-.The maximum allowable speed for warehouse cranes is 6 feet per second; for platform cranes 4 feet per second; for passenger and wagon hoists, heavy loads, 2 feet per second. The maximum speed under any circumstances should never exceed 10 feet per second.

    The Speed of Water Through Valves should never be greater than 100 feet per second.

    Speed of Water Through Pipes.-Experiments on water at 1600 lbs. pressure per square inch flowing into a flanging-machine ram, 20 -inch diameter, through a $1 / 2$-inch pipe contracted at one point to $1 / 4$-inch, gave a velocity of 114 feet per second in the pipe, and 456 feet at the reduced section. Through a $1 / 2$-inch pipe reduced to $3 / 8$-inch at one point the velocity was 213 feet per second in the pipe and 381 feet at the reduced section In a $1 / 2$-inch pipe without contraction the velocity was 355 feet per second.

    For many of the above notes the author is indebted to Mr. John Platt, consulting engineer, of New York.

    High-pressure Hydraulic Presses in Hron-works are described by R. M. Daelen, of Germany, in Trans. A. I. M. E. 1893. The folJowing distinct arrangements used in different systems of high-pressurg hydraulic work are discussed and illustrated:

    1. Steam-pump, with fly-wheel and accumulator.
    2. Steam pump, without fly-wheel and with accumulator.
    3. Steam-pump, without fly-wheel and without accumulator.

    In these three systems the valve-motion of the working press is operated in the high-pressure column. This is avoided in the following:
    4. Single-acting steam-intensifier without accumulator.
    5. Steam-pump with fly-wheel, without accumulator and with pipe-circuit.
    6. Steam-pump with fly-wheel, without accumulator and without pipecircuit.

    The disadvantages of accumulators are thus stated: The weighted plungers which formerly served in most cases as accumulators, cause violent shocks in the pipe-line when changes take place in the movement of the water, so that in many places, in order to avoid bursting from this cause, the pipes are made exclusively of forged and bored steel. The seats and cones of the metallic valves are cut by the water (at high speed), and in such cases only the most careful maintenance can prevent great losses of power.

    Hydraulic Power in Lomdon. -The general principle involved is pumping water into mains laid in the streets, from which service-pipes are carried into the houses to work lifts or three-cylinder motors when rotatory power is required. In some cases a small Pelton wheel has been tried, working sunder a pressure of over 700 lbs . on the square inch. Over 55 miles of hydraulic mains are at present laid (1892).

    The reservoir of power consists of capacious accumulators, loaded to a pressure of 800 lbs . per square inch, thus producing the same effect as if large supply-tanks were placed at $1 \% 00$ feet above the street-level. The water is taken from the Thames or from wells, and all sediment is removed therefrom by filtration before it reaches the main engine-pumps.

    There are over 1750 machines at work, and the supply is about $6,500,000$ gallons per week.

    It is essential that the water used should be clean. The storage-tank extends over the whole boiler-house and coal-store. The tank is divided, and a certain amount of mud is deposited here. It then passes through the surface condenser of the engines, and it is turned into a set of filters, eight in number. The body of the filter is a cast-iron cylinder, coutaining a layer of
    granular fitering material resting upon a false bottom; under this is the distributing arrangement, affording passage for the air, and under this the real bottom of the tank. The dirty water is supplied to the filters from an overhead tank. After passing through the filters the clean effluent is pumped into the clean-water tank, from which the pumping-engines derive their supply. The cleaning of the filters, which is done at intervals of 24 hours, is effected so thoroughly in situ that the filtering material never requires to be removed.
    The engine-house contains six sets of triple-expansion engines. The cylinders are 15 -iuch, 22 -inch, 36 -inch $\times 24$-inch. Each cylinder drives a single plunger-pump with a 5 -inch ranı, secured directly to the cross-head, the connecting-rod being double to clear the pump. The boiler-pressure is 150 lbs . on the square inch. Each pump will deliver 300 gallons of water per minute under a pressure of 800 lbs . to the square inch, the engines making about 61 revolutions per minute. This is a high velocity, considering the heavy pressure; but the valves work silently and without perceptible shock.

    The consumption of steam is 14.1 pounds per horse per hour.
    The water delivered from the main pumps passes into the accumulators. The rams are 20 inches in diameter, and have a stroke of 23 feet. They are each loaded with 110 tons of slag, contained in a wrought-iron cylindrical box suspended from a cross-head on the top of the ram.

    One of the accumulators is loaded a little more heavily than the other, so that they rise and fall successively; the more heavily loaded actuates a stopvalve on the main steam-pipe. If the engines supply more water than is wanted, the lighter of the two rams first rises as far as it can go; the other then ascends, and when it has nearly reached the top, shuts off steam and checks the supply of water automatically.

    The mains in the public streets are so constructed and laid as to be perfectly trustworthy and free from leakage.

    Every pipe and valve used throughout the system is tested to 2500 lbs. per square inch before being placed on the ground and again tested to a reduced pressure in the trenches to insure the perfect tightness of the joints. The jointing material used is gutta-percha.

    The average rate obtained by the company is about 3 shillings per thousand gallons. The principal use of the power is for intermittent work in cases where direct pressure can be employed, as, for instance, passenger elevators, cranes, presses, warehouse hoists, etc.

    An important use of the hydraulic power is its application to the extinguishing of fire by means of Greathead's injector hydrant. By the use of these hydrants a continuous fire-engine is available.

    Hydraulic Riveting-machines,-Hydraulic riveting was introduced in England by Mr. R. H. Tweddell. Fixed riveters were first used about 1868. Portable riveting-machines were introduced in $18 i 2$.

    The riveting of the large steel plates in the Forth Bridge was done by small portable machines working with a pressure of 1000 lbs . per square inch. In exceptional cases 3 tons per inch was used. (Proc. Inst. M. E., May, 1889.)

    An application of hydraulic pressure invented by Andrew Higginson, of Liverpool, dispenses with the necessity of accumulators. It consists of a three-throw pump driven by shaftivg or worked by steam, and depends partially upon the work accumulated in a heavy fly-wheel. The water in its passage from the pumps and back to them is in constant circulation at a very feeble pressure, requiring a minimum of power to preserve the tube of water ready for action at the desired moment, when by the use of a tap the current is stopped from going back to the pumps, and is thrown upon the piston of the tool to be set in motion. The water is now confined, and the driving-belt or steam-engine, supplemented by the momentum of the heavy fly-wheel, is employed in closing up the rivet, or bending or forging the object subjected to its operation.

    Hydraulic Forging. -In the production of heavy forgings from cast ingots of mild steel it is essential that the mass of metal should be operated on as equally as possible throughout its entire thickness. When employing a steam-hammer for this purpose it has been found that the external surface of the ingot absorbs a large proportion of the sudden impact of the blow, and that a comparatively small effect only is produced on the central portions of the ingot, owing to the resistance offered by the inertia of the mass to the rapid motion of the falling hammer-a disad vantage that is entirely overcome by the slow, though powerful, compression of the hydraulic forging-press, which appears destined to supersede the steamhammer for the production of massive steel forgings.

    In the Allen forging-press the force-pump and the large or main cylinder of the press are in direct and constant communication. There are no intermediate valves of any kind, nor has the pump any clack-valves, but it simply forces its cylinder full of water direct into the cylinder of the press, and receives the same water, as it were, back again on the return stroke. Thus, when both cylinders and the pipe connecting them are full, the large ram of the press rises and falls sinultaneously with each stroke of the pump, keeping up a continuous oscillating motion, the ram, of course, travelling the shorter distance, owing to the larger capacity of the press cylinder. (Journal Iron and Steel Institute, 1891. See also illustrated article in "Modern Mechanism," page 668.)

    For a very complete illustrated account of the development of the liy. draulic forging-press, see a paper by R. H. Tweddell in Proc. Inst. C. E., vol. cxvii. 1893-4.

    Hydraulic Forging-press.-A 2000 -ton forging-press erected at the Couillet forges in Belgium is described in Eng. and M. Jour., Nov. 25, 1893.

    The press is composed essentially of two parts-the press itself and the compressor. The compressor is formed of a vertical steam-cylinder and a hydraulic cylinder. The piston-rod of the former forms the piston of the latter. The hydraulic piston discharges the water into the press proper. The distribution is made by a cylindrical balanced valve; as soon as the pressure is released the steam-piston falls automatically under the action of gravity. During its descent the steam passes to the other face of the piston to rebeat the cylinder, and finally escapes from the upper end.

    When steam enters under the piston of the compressor-cylinder the piston rises, and its rod forces the water into the press proper. The pressure thus exerted on the piston of the latter is thansmitted through a cross-head to the forging which is upon the anvil. To raise the cross-head two small single-acting steam-cylinders are used, their piston-rods being connected to the cross-head; steam acts only on the pistons of these cylinders from below. The admission of steam to the cylinders, which stand on top of the press frame, is regulated by the same lever which directs the motions of the compressor. The movement given to the dies is sufficient for all the ordinary purposes of forging.

    A speed of 30 blows per minute has been attained. A double press on the same system, having two compressors and giving a maximum pressure of 6000 tons. has been erected in the Krupp works, at Essen.

    The Aiken Intensifier. (Iron Age, Aug. 1890.)-The object of the machine is to increase the pressure obtained by the ordinary accumulator which is necessary to operate powerful hydraulic machines requiring very high pressures, without increasing the pressure carried in the accummlator and the general hydraulic system.

    The Aiken Intensifier consists of one outer stationary cylinder and one inner cylinder which moves in the outer cylinder and on a fixed or stationary hollow plunger. When operated in connection with the hydraulic bloomshear the method of working is as follows: The inner cylinder having been filled with water and counected through the hollow plunger with the hy draulic cylinder of the shear, water at the ordinary accumulator-pressure is admitted into the outer cylinder, which being four times the sectional area of the plunger gives a pressure in the inner cylinder and shear cylinder connected therewith of four times the accumulator-pressure-that is, if the accumulator $\cdot$ pressure is 500 lbs . per square inch the pressure in the intensifier will be 2000 lhs . per square inch.

    Hydraulie Engine driving an Air-compressor and a Forging-hammer. (Iron Age, May 12, 189\%.)-The great hammer in Terni, near Rome, is one of the largest in existence. Its falling weight amounts to 100 tcins, and the foundation belonging to it consists of a block of cast iron of 1000 tons. The stroke is 16 feet $43 / 4$ inches; the diameter of the cylinder 6 feet $31 / 2$ inches: diameter of piston-rod 13,4 inches; total height of the hammer, 62 feet 4 inches. The power to work the hanmer, as well as the two cranes of 100 and 150 tons respectively, and other anxiliary appliances belonging to it, is furnished by four air-compressors coupled together and driven directly by water-pressure engines, by means of which the air is compressed to 73.5 pounds per square inch. The cylinders of the waterpressure engines, which are provided with a bronze lining, have a $133 / 4$-inch bore. The stroke is $473 / 4$ inches, with a pressure of water on the piston amounting to 264.6 pounds per square inch. The compressors are bored out to $311 / 2$ inches diameter, and have $4 \% / 4$-inch stroke. Each of the four cylinders requires a power equal to 280 horse-power. The compressed air is de-
    livered into huge reservoirs, where a uniform pressure is kept up by means of a suitable water-colnmm.
    The Hydraulic Forging Plant at Bethlehem, Pa.a is described in a paper by R. W. Davenport, read before the society of Naval Engineers and Marine Architects, 1893. It includes two hydraulic forging. presses complete, with engines and pumps, one of 1500 and one of 4500 tons capacity, together with two Whitworth hydranlic travelling forging-cranes and other necessary appliances for each press; and a complete fluid-compression plant, including a press of 7000 tons capacity and a 125 ton hydraulic travelling crane for serving it (the upper and lower heads of this press weighing respectively about 135 and 120 tons).

    A new forging.press has been designed by Mr. John Fritz, for the Bethlehem Works, of 14,000 tons capacity, to be run by engines and pumps of 15,000 horse-powel. The plant is served by four open-hearth steel furnaces of a united capacity of 120 tons of steel per heat.
    Some References on Hy fraulic Rransmission.-Reuleaux's "Constructor:" "Hydraulic Motors, 'Turbines, and Pressure-engines," G. Bodmer, London, 1889 ; Robinson's "Hydraulic Power and Hydraulic Machinery," London, 1888 ; Colyer's "Hydraulic Steam, and Hanr-power Lifting and Pressing Machinery," Jondon, 1881. See also Engineering (London), Ang. 1, 1884, p. 99, March 13, 1885, p. 262; May 22 and June 5, 1891, pp. 612, 665 ; Feb. 19, 189:, p. 25 ; Feb. 10, 1893, p. 170.

    ## FUEL.

    Theory of Combustion of Solid Fuel. (From Rankine, somewhat altered.)-The ingredients of every kind of fuel commonly used may be thus classed: (1) Fixed or free carbon, which is left in the form of charcoal or coke after the volatile ingredients of the fuel have been distilled away. These ingredients burn either wholly in the solid state ( C to $\mathrm{CO}_{2}$ ), or part in the solid state and part in the gaseous state ( $\mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2}$ ), the latter part being first dissolved by previously formed carbonic acid by the re. action $\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}$. Carbonic oxide, CO , is produced when the supply of air to the fire is insufficient.
    (2) Hydrocarbons, suclı as olefiant gas, pitch, tar, naphtha, ctc., all of which must pass into the gaseous state before being burned.
    If mixed on their first issuing from amongst the burning carbon with a large quantity of hot air, these inflammable gases are completely burned with a transparent blue flame, producing carbonic acid and steanı. When mixed with cold air they are apt to be chilled and pass off unburned. When raised to a red heat, or thereabouts, before being mixed with a sufficient quantity of air for perfect combustion, iney disengage carbon in fine powder, and pass to the condition partly of marsh gas, and partly of free hydrogen; and the higher the temperature, the greater is the proportion of carbou thus disengaged.

    If the disengaged carbon is cooled below the temperature of ignition before coming in contact with oxygen, it constitutes, while floating in the gas, smoke, and when deposited on solid bodias, soot.

    But if the disengaged carbon is maintained at the temperature of ignition and supplied with oxygen sufficient for its combustion, it burns while floating in the inflammable gas, and forms red, yellow, or white flame. The flame from fuel is the larger the more slowly its combustion is effected. The flame itself is apt to be chilled by radiation, as into the heating surface of a steam-boiler, so that the combustion is not completed, and part of the gas and smoke pass off unburned.
    (3) Oxygen or hydrogen either actually forming water, or existing in combination with the other constituents in the proportions which form water. Such quantities of oxygen and hydrogen are to left be out of acconnt in determining the heat generated by the combustion. If the quantity of water actually or virtually present in each pound of fuel is so great as to make its latent heat of evaporation worth considering, that heat is to be deducted from the total heat of combustion of the fuel
    (4) Nitrogen, either free or in combination with othar constituents. This substance is simply inert.
    (5) Sulphuret of iron, which exists in coal and is detrimental, as tending to cause spontaneous combustion.
    (6) Other mineral compounds of various kinds, which are also inert, and form the ash left after complete combustion of the fuel, and also the rlinker or glassy material produced by fusion of the ash, which tends to chaze the grate.

    Totrl Heat of Combustion of Fuels. (Rankine.)-The following labie shows the total heat of combustion with oxygen of one pound of each of the substances named in it, in British thermal mnits, and also in Ibs. of water evaporated from $211^{\circ}$. It also shows the weight of oxygen required to combine with each pound of the combustible and the weight of nir necessary in order to supply that oxygen. The quantities of heat are given on the authority of MM. Favre and silbermann.

    | Combustible. | Lbs.Oxygen per lb. Conıbustible. | Lb. Air (about). | Total British Heatunits. | Evaporative Power from $212^{\circ}$ F., lbs. |
    | :---: | :---: | :---: | :---: | :---: |
    | Hydrogen gas.... ${ }^{\text {a }}$............. | 8 | 36 | 62,032 | 64.2 |
    | Carbon imperfectly burned so as to make carbonic oxide.. ....... . | 11/3 | 6 | 4,400 | 4.55 |
    | Carbon perfectly burned so as to make carbonic acid. | $22 / 8$ | 12 | 14,500 | 15.0 |
    | Oiefiant gas, $1 \mathrm{lb} . . . . .$. . ........ | $33 / 7$ | $153 / 7$ | 21,344 | 22.1 |
    | Various liquid hydrocarbons, 1 lb . |  |  | $\left\lvert\, \begin{gathered} \text { from } 21,200 \\ \text { to } 19,000 \end{gathered}\right.$ | $\begin{aligned} & \text { from } 221,1 \\ & \text { to } 20 \end{aligned}$ |
    | Carbonic oxide, as much as is made by the imperfect combustion of 1 lb . of carbon, viz., $21 / 3 \mathrm{lbs}$ | $\} 11 / 2$ | 6 | 10,000 | 10.45 |

    The imperfect combustion of carbon, making carbonic 'oxide, produces less than one third of the heat which is yielded by the complete combustion.
    The total heat of combustion of any compound of hydrogen and carbon is nearly the sum of the quantities of heat which the constituents would produce separately by their combustion. (Marsh-gas is an exception.)

    In computing the total heat of combustion of compounds containing oxygen as well as hydrogen and carbon, the following principle is to be observed: When hydrogen and oxygen exist in a compound in the proper proportion to form water (that is, by weight one part of hydrogen to eight of oxygenl, these constituents have no effect on the total heat of combustion. If hydrogen exists in a greater proportion, only the surplus of hydrogen above that which is required by the oxygen is to be taken into account.

    The follow ing is a general formula (Dulong's) for the total heat of combustion of any compound of carbon, hydrogen, and oxygen:

    Let $C, H$, and $O$ be the fractions of one pound of the compound, which consists respectively of carbon, hydrogen, and oxygen, the remainder being nitrogen, ash, and other impurities. Let $h$ be the total heat of combustion of one pound of the compound in British thermal units. Then

    $$
    h=14,500\left\{C+4.28\left(H-\frac{O}{8}\right)\right\}
    $$

    The following table shows the composition of those compounds which are of importance, either as furnishing oxygen for combustion, as entering into the composition, or as being prodnced by the combustion of fuel :

    | Names. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Air. |  | $\mathrm{N} \%+\mathrm{O} 23$ | 100 | $\mathrm{N} \% 9+\mathrm{O}$ ¢1 |
    | Water | $\mathrm{H}_{2} \mathrm{O}$ | H: $2+\mathrm{O} 16$ | 18 | H2 $2+\mathrm{O}$ |
    | Ammonia | $\mathrm{NH}_{3}$ | $\mathrm{H} 3+\mathrm{N} 14$ | 17 | $\mathrm{H} 3+\mathrm{N}$ |
    | Carbonic oxide | CO | C $10+$ O 10 | 28 | $\mathrm{C}+\mathrm{O}$ |
    | Carbonic acid | $\mathrm{CO}_{2}$ | C12+032 | 44 | $\mathrm{C}+\mathrm{O}:$ |
    | Olefiant gas | $\mathrm{CH}_{2}$ | C 12 + H2 | 14 | $\mathrm{C}+\mathrm{H} 2$ |
    | Maish-gas or fire-damp | $\mathrm{CH}_{4}$ | $\mathrm{C} 12+\mathrm{H} 4$ | 16 | C + H |
    | Sulphurous acid...... | $\mathrm{SO}_{2}$ | S $32+032$ | 64 |  |
    | Sulphuretted hydrogen | $\mathrm{SH}_{2}^{2}$ | $\mathrm{S} 3{ }^{3}+\mathrm{H} \stackrel{ }{2}$ | 3.4 |  |
    | Silphuret of carbon.. | $\mathrm{S}_{2} \mathrm{C}^{2}$ | S $64+\mathrm{C} 12$ | \% | . . ... .... |

    Since each lb . of C reqnires $22 / 3 \mathrm{lbs}$. of O to burn it to $\mathrm{CO}_{2}$, and air contains $23 \%$ of O. by weight, $22 / 3 \div 0.23$ or 11.6 lbs . of air are required to burn 1 lb . of C .

    Analyses of ciases of Combustion.-The following are selected from a large number of analyses of gases from locomotive boilers, to show the range of composition under different circumstances (P. H. Dudley, Trans. A. I. M. E., iv. 250):

    | Test. | $\mathrm{CO}_{2}$ | CO | 0 | N |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 13.8 | 2.5 | 2.5 | 81.6 | No smoke visible. |
    | 2 | 11.5 |  | ${ }_{6}$ | $825$ | Old fire, escaping gas white, engine working hard |
    | 3 | 8.5 |  | 8 | 83. | Fresh fire, much black gas, |
    | 4 | .2. 3 |  | $\left.\begin{array}{\|c\|} 17.2 \\ 1.2 \end{array} \right\rvert\,$ | 80.5 79 8 | Old fire, damper closed, engine standing still. |
    | 5 | 5. 8.4 | 1.2 | 14. 8 | ${ }_{72}{ }^{79} 6$ | smoke white, engine working hard. <br> New fire eugine not working hard |
    | ? | 12.4 | $1 . \sim$ | 4.4 | 8?.6 | Smoke black, engine not working hard. |
    | 8 | 3.4 |  | 16.8 | 76.8 | "6 dark, blower on, engine standing still. |
    | 9 | 6 | ... | 13.5 | 81.5 | " white, engine working hard. |

    In analyses on the Cleveland and Pittsburgh road, in every instance when the smoke was the blackest, there was found the greatest percentage of unconsumed oxysen in the product, showing that something besides the mere presence for oxygen is required to effect the combustion of the volatile carbon of fuels.
    J. C. Hoadley (Trans. A. S. M. E., vi. 749) found as the mean of a great number of analyses of flue gases from a boiler using anthracite coal :

    $$
    \mathrm{CO}_{2}, 13.10 ; \mathrm{CO}, 0.30 ; \mathrm{O}, 11.94 ; \mathrm{N}, \tau 4.66
    $$

    The loss of heat due to burning C to CO instead of to $\mathrm{CO}_{2}$ was $2.13 \%$. The surplus oxygen averaged $113.3 \%$ of the $O$ required for the $\mathbf{C}$ of the fuel, the average for different weeks ranging from $88.6 \%$ to $13 \%$.

    Analyses made to determine the CO produced by excessively rapid firing gave results from $251 \%$ to $4.81 \% \mathrm{CO}$ and 5.12 to $8.01 \% \mathrm{CO}_{2}$; the ratio of C in the CO to total carbon burned being from $43.80 \%$ to $48.55 \%$, and the number of pounds of air supplied to the furnace per pound of coal being from 33.2 to 19.3 lbs. The loss due to burniug C to CO was from $27.84 \%$ to 30.86 of the full power of the coal.
    Temperature of the Fire. (Rankine, S. E., p. 283.)--By temper. ature of the fire is meant the temperature of the products of combustion at the instant that the combustion is complete. The elevation of that temperature above the temperature at which the air and the fuel are supplied to the furnace may be computed by dividing the total heat of combustion of one lb. of fuel by the weight and by the mean specific heat of the whole prodncts of combnstion, and of the air employed for their dilution under constant pressure. The specific heat under constant pressure of these products is about as follows:

    Carbonic-acid gas, 0.217 ; steam, 0475 ; nitrogen (probably), 0.245 ; air, 0.238 ; ashes, probably about 0.200 . Using these data, the following results are obtained for pure carbon and for olefiant gas burned, respectively, first, in just sufficient air, theoretically, for their combustion, and, second, when an equal amount of air is supplied in addition for dilution.

    | Fuel. | Products undiluted. |  | Products diluted. |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | Carbon. | Olefiant Gas. | Carbon. | Olefiant Gas. |
    | Total heat of combustion, per lb... | 14,500 | 21,300 |  |  |
    | Wt of products of combustion, lbs. | 13 | 16.43 | $\stackrel{2}{2}$ | - 31.86 |
    | Their mean specific heat.... ..... . <br> Specific heat $X$ weight | 0.237 3.08 | 0.257 | 0.238 | 0.248 |
    | Elevation of temperature, F......... | ${ }^{3} 5.080^{\circ}$ | $5050^{\circ}$ | 5.94 2440 | ${ }_{2710}{ }^{\circ}$ |

    [The above calcnlations are marde on the assumption that the specific heats of the gases are constant. but they probably increase with the increase of temperature (see Specific Heat), in which case the temperature
    would be less than those above giver would be less than those above given. The temperature would be further
    peduced by the heat rendered latent by the conversion into steam of any water present in the fuel.]

    Rise of 'Eemperature in Combustion of Gases. (Eng'g, March 12 and April : 2,1886 .)-It is found that the temperatures obtained by experiment fall short of those obtained by calculation. Three theories have been given to account for this: 1. The cooling effect of the sides of the containing vessel; ?. The retardation of the evolution of heat caused by dissociation; 3. The increase of the specific heat of the gases at very high temperatures. The calculated temperatures are obtainable only on the condition that the gases sliall combine instantaneously and simultaneously throughout their whole mass. This condition is practically impossible in experiments. The gases formed at the beginning of an explosion dilute the remaining combustible ggases and tend to retard or check the combustion of the remainder.

    ## CLASSHEICATHON OF SOLID FUELS.

    Gruner classifies solid fuels as follows (Eng'g and M'g Jonvr., July, 18r4):

    | Name of Fuel. | $\begin{array}{r} \text { Ratio } \frac{\mathrm{O}}{\mathrm{H}} \\ \text { or } \frac{\mathrm{O}+\mathrm{N} *}{\mathrm{H}} \end{array}$ | Proportion of Coke or Charceal yielded by the Dry Pure Fuel |
    | :---: | :---: | :---: |
    | Pure cellulose. | ${ }_{8}^{\mathrm{H}}$ | 0.28 @ 0.30 |
    | Wood (cellulose and encasing inatter). | 7 | . 30 @ . 35 |
    | Peat and fossil fuel ..... ........... .. | $6 @ 5$ | . 35 @.40 |
    | Lignite, or brown coal. | 5 | . 40 @ . 50 |
    | Bituminous coals | 4@1 | . 50 @ . 90 |
    | Anthracite | $1 @ 0.75$ | . 90 @ . 92 |

    The bituminous coals he divides into five classes as below:

    | Name of Type. | Elementary Composition. |  |  | $\left\{\begin{array}{l} \operatorname{Ratio} \frac{\mathrm{O}}{\mathrm{H}} \\ \operatorname{or} \frac{\mathrm{O}+\mathrm{N}^{*}}{\mathrm{H}} \end{array}\right.$ | Proportion of Coke yielded by Dis. tilla. tion. | Nature and Appear. ance of Coke. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | C. | H. | O. |  |  |  |
    | 1. Long flaming dry coal, <br> 2. Long flaming fat $\left.\begin{array}{l}\text { or coking coals, } \\ \text { or gas coals, }\end{array}\right\}$ | 70@80 | 5.5@4.5 | 19.5@15 |  |  | $\left\{\begin{array}{l}\text { Pulveru } \\ \text { lent. } \\ \text { Melted, } \\ \text { but } \\ \text { friable }\end{array}\right.$ |
    |  | $80 @ 85$ | 5.8@5 | 14.2@10 | 4@3 | 0.50@.60 |  |
    |  |  |  |  | $3 \times 2$ | .60@.68 |  |
    | 3. Caking fat coals; $\left.\begin{array}{l}\text { or blacksmiths' } \\ \text { coals, }\end{array}\right\}$ | 84 @ 89 | 5 @4.5 | 11 (35.5 | 2 @1 |  |  |
    |  |  |  |  |  | .68@.74 | $\left\{\begin{array}{l}\text { Ifelted; } \\ \text { some- } \\ \text { what } \\ \text { com- } \\ \text { pact. }\end{array}\right.$ |
    |  |  |  |  |  |  |  |
    | 4. Short flaming fat or caking coals, coking coals, | 88@91 | 5.5@4.0 | 6.5@5.5 | 1 | .74@.82 |  |
    |  |  |  |  |  |  | $\left\{\begin{array}{l}\text { Melted; } \\ \text { very } \\ \text { conl } \\ \text { pact }\end{array}\right.$ |
    | $\left.\begin{array}{l}\text { 5. Lean or anthra- } \\ \text { citic coals, }\end{array}\right\}$ | $90 @ 93$ | 4.5@4 |  |  |  |  |
    |  |  |  | 5.5@3 | 1 | .82@.90 | $\left\{\begin{array}{c} \text { Pulveru } \\ \text { lent. } \end{array}\right.$ |


    ## Diminution of $H$ and $O$ in Series from Wood to Anthracite

    > (Groves and Thorp's Chemical Technology, vol. i., Fuels, p. 58.)

    Substance.
    

    Carbon. Hydrogen. Oxygen.
    59.57
    66.04
    73.18
    75.06
    89.29
    91.58

    | 5.25 | 42.10 |
    | :--- | ---: |
    | 5.96 | 34.47 |
    | 5.27 | 28.69 |
    | 5.88 | 21.14 |
    | 5.84 | 19.10 |
    | 5.05 | 5.66 |
    | 3.96 | 4.46 |

    ## Progressive Change from Wood to Graphite.

    (J. S. Newberry in Johnson's Cyclopedia.)| Carbon. | Wood. Loss. |  | Lignite. | Loss. | Bitumi- Loss. |  | Anthracite. 14.53 | Loss. <br> 1.42 | Graph ite. 13.11 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 49.1 | 18.65 | 30.45 | 12.35 | 18.10 | 3.57 |  |  |  |
    | Hydrogen. | 6.3 | 3.25 | 3.05 | 1.85 | 1.20 | 0.93 | 0.27 | 0.14 | 0.13 |
    | Oxygen. | 44.6 | 24.40 | 20.20 | 18.13 | 2.07 | 1.32 | 0.65 | 0.65 | 0.00 |
    |  | 100.0 | 46.30 | 53.70 | 32.33 | 21.37 | 5.82 | 15.45 | 2.21 | 13.24 |

    Classification of Coals, as Anthracite, Bituminous, etc.-
    Prof. Persifer Frazer (Trans. A. I. M. E., vi, 430) proposes a classification of coals according to their "fuel ratio," that is, the ratio the fixed carbon bears to the volatile hydrocarbon.
    In arranging coals under this classification, the accidental impurities, such as sulphur, earthy matter, and moisture, are disiegarded, and the fuel constituents alone are considered.

    |  | Carbon | Fixed | Volatile |
    | :---: | :---: | :---: | :---: |
    |  | Ratio. | Carbon. | Hydrocarl |
    | I. Hard dry anthracite. | 100 to 12 | 100. to $92.31 \%$ | 0 . to $7.69 \%$ |
    | II. Semi-anthracite.. | 12 to 8 | 92.31 to 88.89 | 7.69 to 11.11 |
    | III. Semi-bituminous. | 8 to 5 | 88.89 to 83.33 | 11.11 to 16.67 |
    | IV. Bituminous. | 5 to | 83.33 to 0 . | 16.67 to 100 |

    It appears to the author that the above classification does not draw the line at the proper point between the semi-bituminous and the bituminous coals, viz., at a ratio of $\mathrm{C} \div \mathrm{V} . \mathrm{H} . \mathrm{C} .=5$, or fixed carbon $83.33 \%$, volatile hydrocarbon $16.6 \%$, since it would throw many of the steam coals of Clearfield and Somerset counties, Penn., and the Cumberland, Md., and Pocahontas, Va., coals, which are practically of one class, and properly rated as semi-bituminous coals, into the bituminous class. The dividing line between the semi-anthracite and semi-bituminous coals, $\mathrm{C}+\mathrm{V} . \mathrm{H} . \mathrm{C} .=8$, would place several coals known as semi-anthracite in the semi-bituminous class. The following is proposed by the author as a better classification :

    |  | Carbon Ratio. | Fixed Carbon. | Vol. H.C. |
    | :---: | :---: | :---: | :---: |
    | I. Hard dry enthracite | .. 100 to 12 | 100 to $92.31 \%$ | 0 to ${ }^{\text {r }}$. $69 \%$ |
    | II. Semi-anthracite. | 12 to 7 | 92.31 to 87.5 | 7.69 to 12.5 |
    | (II. Semi-bitumino |  | 87.5 to 75 | 12.5 to 25 |
    | IV. Bituminous | 3 to 0 | 75 to | 25 to 100 |

    Reade Island Graphitic Anthracite. - A peculiar graphite is found at Cranston, near Providence, R. I. It resembles both graplite and anthracite coal, and has about the following composition (A.E. Hunt, Trans. A. I. M. E., xvii., 678): Graphitic carbon, $78 \%$; volatile matter, $2.60 \%$; silica, $15.06 \%$; phosphorus, $.045 \%$. It burns witl extreme difficulty.

    ## ANALYSES OF COALS.

    Composition of Pennsylvania Anthracites. (Trans. A. I, M. E., xiv., F06.) - Samples weighing 100 to $\dot{B} 00$ lbs. were collected from lots of 100 to 200 tons as shipped to market, and reduced by proper methods to laboratory samples. Thirty-three samples were analyzed by McCreath, giving results as follows. They show the mean character of the coal of the niore important coal-beds in the Northern field in the vicinity of Wilkesbarre, in the Eastern Middle (Lehigli) field in the vicinity of Hazleton, in the Western

    Middle field in the vicinity of Shenandoah, and in the Southern field between Mauch Chunk and Tanaqua.

    |  |  | 边 |  |  | $\frac{\text { 寺 }}{4}$ | $\frac{\dot{\Xi}}{\tilde{Z}}$ |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Wharton. | E. Middle | 8.71 | 3.08 | 86.40 | 6.22 | . 58 | 3.44 | 28.07 |
    | Mammoth.. | E. Middle | 4.12 | 3.08 | 86.38 | 5.92 | . 49 | 3.45 | $2{ }^{21.99}$ |
    | Primrose | W. Middle | 3.54 | 3.72 | 81.59 | 10.65 | . 50 | 4.36 | 21.93 |
    | Mammoth. | W. Middle | 3.16 | 3.72 | 81.14 | 11.08 | . 90 | 4.38 | 21.83 |
    | Primrose F | Southern | 3.01 | 4.13 | 87.98 | 4.38 | . 50 | 4.48 | 21.32 |
    | Buck Mtr.. | W. Middle | 3.04 | 3.95 | 82.66 | 9.88 | . 46 | 4.56 | 20.93 |
    | Seven Foot | W. Middle | 3.41 | 3.98 | 80.87 | 11.23 | . 51 | 4.69 | 20.32 |
    | Mammoth | Southern | 3.09 | 4.28 | 83.81 | 8.18 | . 64 | 4.85 | 19.62 |
    | Mainmoth | Northern | 3.42 | 4.38 | 83.27 | 8.20 | . 73 | 5.00 | 19.00 |
    | B. Coal Bed | Loyalsock | 1.30 | 8.10 | 83.34 | 6.23 | 1.003 | 8.86 | 10.29 |

    The above analyses were made of coals of all sizes (mixed). When coal is screened into sizes for shipment the purity of the different sizes as regarde ash varies greatly. Samples from oue mine gave results as follows:

    | Name ofCoal. | Screened |  | Analyses. |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | Throngh | Over | Fixed |  |
    |  | inches. | incees. | Carbon. | Ash. |
    | Egg | 2.5 | 1.75 | 88.49 | 5.66 |
    | Stove | 1.75 | 1.25 | 83.67 | 1017 |
    | Chestnut.. | 1.25 | . $\%$ | 80.72 | 12.67 |
    | Pea. | . 75 | . 50 | 7905 | 14.66 |
    | Buckwheat | . 50 | . 25 | \%6.92 | 16.62 |

    ## Bernice Basin, Pa., Coals.

    | Bernice | Water | $\begin{aligned} & \text { Vol. H.C. } \\ & 3.56 \\ & \text { to } \end{aligned}$ | $\begin{aligned} & \text { Fixed C. } \\ & 82.52 \\ & \text { to } \end{aligned}$ | $\underset{3.27}{\text { A sh. }}$ | Sulphur 0.24 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\{0.96$ |  |  |  |  |
    |  |  |  |  |  |  |
    |  | 1.97 | 8.56 | 89.39 | 9.34 | 1.04 |

    This coal is on the dividing-line between the anthracites and semi-anthracites, and is similar to the coal of the Lykens Valley district.
    More recent analyses (Trans. A. I. M. E., xiv. 'i21) give:

    |  | Water. | Vol. H.C. | Fixed Carb. | Ash. | Sulphur. |
    | :--- | :---: | :---: | :---: | :---: | :---: |
    | Vorking seam...... 065 | 9.40 | 83.69 | 5.34 | 0.91 |  |
    | 60 ft below seain... .3 .67 | 15.42 | 71.34 | 8.97 | 0.59 |  |

    The first is a semi-anthracite, the second a semi-bituminous.
    Space occupied by Anthracite Coal. (J. C. I. W., vol. iii.)-The cubic contents of $2: 240$ lbs. of hard Lehigh coal is a little over 36 feet; an average Schuylkill W. A., 37 to 38 feet; Shamokin, 38 to 39 feet; Lorberry, nearly 41.

    According to measurements made with Wilkesbarre anthracite coal from the Wyoming Valley, it requires $32.2 \mathrm{cu} . \mathrm{ft}$. of lump, $33.9 \mathrm{cu} . \mathrm{ft}$. broken, $34.5 \mathrm{cu} . \mathrm{ft} . \mathrm{egg}, 34.8 \mathrm{cu} . \mathrm{ft}$. of stove, $35.7 \mathrm{cu} . \mathrm{ft}$. of chestnut, and $36.7 \mathrm{~cm} . \mathrm{ft}$, of pea, to make one ton of coal of 2240 lbs ; while it requires 28.8 cu . ft . of lump, 30.3 cu . ft. of broken, $30.8 \mathrm{cu} . \mathrm{ft}$. of egg, 31.1 cu . ft. of stove, 31.9 cu . ft . of chestnut. and 39.8 cu . ft . of pea, to make one ton of 2000 lbs .
    Composition of Anthracite and Semi-bituminous Coals. (Trans. A. I. M. E., vi. 430.)-Hard dry anthracites, 16 analyses by Rogers, show a range from 94.10 to 83.47 fixed carbon, 1.40 to 9.53 volatile matter, and 4.50 to 8.00 ash , water, and impurities. Of the fuel constitnents alone, the fixed carbon ranges from 98.53 to 89.63 , and the volatile matter from $1.4 \%$ to 10.37 , the cornesponding carbon ratios, or $\mathrm{C} \div$ Vol. H.C. being from $6 \% .02$ to E.64.

    Semi-anthrocites. -12 analyses by Rogers show a range of from 90.23 to "4.55 fixed carbon, 7.07 to $13 . i 5$ volatile matter, and 2.20 to 12.10 water, ash, and impurities. Excluding the ash, etc., the range of fixed carbon is $92 . \%$ to 84.42 , and the volatile combustible 7.27 to 15.58 , the corresponding carbon ratio being from 12.75 to 5.41.

    Semi-bituminous Coals.-10 analyses of Penna. and Maryland coals give fixed carbon 68.41 to 84.80 , volatile matter 11.2 to $1 \% .28$, and ash, water, and impurities 4 to 13.99. The percentage of the fuel constituents is fixed carbon $\% 9.84$ to 88.80 , volatile combustible 11.20 to 20.16 , and the carbon ratio 11.41 to 3.96 .

    ## American Semiobituminous and Rituminous Coals.

    (Selected chiefly from various papers in Trans. A. I. M. E.)|  | Moisture. | Vol. Hydroarbon. | Fixed Carbon | Ash. | Sulphur. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Penna Semi-bituminous : |  |  |  |  |  |
    | Broad Top, extremes of 5 | $\left\{\begin{array}{l}.9 \\ 78\end{array}\right.$ | 13.84 | ${ }_{78}^{78.46}$ | 6.00 | . 91 |
    |  | $\left\{\begin{array}{r}.78 \\ 1.27 \\ 1.8\end{array}\right.$ | 17.38 | 76.14 77.77 | 4.81 6.63 | . 88 |
    | Somerset Co., extremes of 5 | $\left\{\begin{array}{l}1.8 \\ 1.89\end{array}\right.$ | 18.51 | 77.17 65.90 | 6.63 10.62 | 0.66 3.08 |
    | Blair Co., average of 5 . | 1.07 | $26 . \% 2$ | $60 . \tilde{\tau}$ | 9.45 | $\stackrel{1}{2}$ 20 |
    | Cambria Co., average of 7 , lo wer bed, B. | 0.74 | 21.21 | 68.94 | 7.51 | 1.98 |
    | Cambria Co., 1 , upper bed, C. | 1.14 | 17.18 | 73.42 | 6.58 | 1.41 |
    | Cambria Co., South Fork, 1. |  | 15.51 | 78.60 | 5.84 |  |
    | Centre Co., ${ }_{\text {Clear }}$ Cle...... | 0.60 | 2260 | 68.71 | 5.40 | 2.69 |
    | Clearneld Co., average of 9 , upper bed, C. | 0.6 | 23.94 | 69.28 | 4.62 | 1.42 |
    | $\left.\begin{array}{c}\text { Clearfield Co., average of } 8, \\ \text { lower bed, D. }\end{array}\right\} \ldots$ | 0.81 | 21.10 | 74.08 | 3.36 | 0.42 |
    |  | f0.41 | 20.09 | 66.69 | 2.65 | 0.43 |
    | Clearfield Co., range of 17 anal.. | $\left\{\begin{array}{c}\text { to } \\ 1.94\end{array}\right.$ | to <br> 25. | to 74.02 | - ${ }_{\text {to }}$ | to |
    | Bituminous : 1 (1.01 |  |  |  |  |  |
    | Jefferson Co., average of 26. | 1.21 | 32.53 | 60.99 | 3.76 |  |
    | Clarion Co., average of $7 . .$. | 1.97 | 38.60 | 54.15 | 4.10 | 1.19 |
    | Armstrong Co., 1 | 1.18 | 42.55 | 49.69 | 4.58 | 2.00 |
    | Connellsville Coal............... | 1.26 | 30.10 | 59.61 | 8.23 | . 78 |
    | Coke from Connville (Standard) | 1.49 | 0.01 | 87.46 | 11.32 | . 69 |
    | Youghiogheny Coal. ${ }^{\text {P }}$ (........ | 1.03 | 36.49 | 59.05 | 2.61 | . 81 |
    | Pittsburgh, Ocean Min | . 28 | 39.09 | $5 \% .33$ | 3.30 |  |

    The percentage of volatile matter in the Kittaning lower bed B and the Freeport lower bed D increases with great uniformity from east to west; thus'
    

    Connellsville Coal and Coke. (Trans. A. I. M. E., xiii. 33\%.) The Comellsville coal-field, in the southwestern part of Pemsylvania, is a strip about 3 miles wide and 60 miles in length. The mine workings are confined to the Pittsburgh seam, which here has its best development as to size, and its quality best adapted to colse-maving. It generally affords

    The following analyses by T. T. Morrell show about its range of composition:

    In comparing the composition of coals across the Appalachian field, in the western section of Pennsylvania, it will be noted that the Connellsville variety occupies a peculiar position between the rather dry semi-bituminous coals eastward of it and the fat bituminous coals flanking it on the west.
    Beneath the Connellsville or Pittsburgh coal-bed occurs an interval of from 400 to 600 feet of "barren measures," separating it from the lower productive coal measures of Western Pennsylvania. The following tables
    show the great similarity in composition in the coals of these upper and lower coal-measures in the same geographical belt or basin.

    ## Analyses from the Upper Coal-measures (Penira.) in a Westward Order.

    | Localities. | Moisture. | Vol. Mat. | Fixed Carb. | Ash. | Sulphur. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Anthracite...... | .. 1.35 | 3.45 | 89.06 | 5.81 | 0.30 |
    | Cumberland, Md. | 0.89 | 15.52 | 74.28 | 9.29 | 0.71 |
    | Salisbury, Pa... | 1.66 | 22.35 | 68.17 | 5.96 | 1.24 |
    | Connellsville, Pa. |  | 31.38 | 60.30 | \%. 24 | 1.09 |
    | Greensburg, Pa... | . 1.02 | 33.50 | 61.34 | 8.28 | 0.86 |
    | Irwin's, Pa...... | .. 1.41 | 37.66 | 54.44 | 5.86 | 0.64 |

    ## Analyses from the Lower Coal-measures in a Westward Order.

    Localities. Moisture. Vol. Mat. Fixed Carb. Ash. Sulphur.

    Anthracite . ......... 1.35
    Broad Top ........... 0.77
    Bennington........ .. 1.40
    Johnstown..... .... 1.18
    Blairsville ............. 0.92
    Armstrong Co........ 0.96
    3.45
    18.18
    27.23
    16.54
    24.36
    38.20
    89.06
    73.34
    61.84
    r4.46
    62.22
    52.03

    030
    1.02
    2.60
    1.86
    4.9:
    3.66

    ## Pennsylvania and Ohio Situminous Coals. Variation

    in Charracter of Coals of the same Beds in different Dis-tricts.-From 50 analyses in the reports of the Pennsylvania Geolngical Survey, the following are selected. They are divided into different groups, and the extreme analysis in each group is given, ash and other impurities being neglected, and the percentage in 100 of combustible matter being alme considered.|  | No. of Analyses | Fixed Carbon | Vol. H. C. | Carbon Ratio. |
    | :---: | :---: | :---: | :---: | :---: |
    | Waynesburg coal-bed, upper b $\llcorner$ nch....... | 5 |  |  |  |
    | Jefferson township, Greene Co..... .... |  | 59.72 | 40.28 | 1.48 |
    | Hopewell township, Washington Co... |  | 53.22 | 16.78 | 1.13 |
    | Waynesburg coal-bed, lower bench....... | 9 |  |  |  |
    | Morgan township, Greene Co.... . . . . |  | 60.69 | 39.31 | 1.54 |
    | Pleasant Valley, Washington Co........ |  | 54.31 | 45.69 | 1.19 |
    | Sewickley coal-bed.. . ................... | 3 |  |  |  |
    | Whitely Creek, Greene Co................ |  | 64.39 | 35.61 | 1.80 |
    | Gray's Bank Creek, Greene Co. ...... |  | 60.35 | 39.65 | 1.52 |
    | Pittsburgh coal-bed: |  |  |  |  |
    | Upper bench, Washington Co........... |  | $\left\{\begin{array}{l}60.87 \\ 59.11\end{array}\right.$ | 39.13 | 1.65 |
    |  |  | $\left\{\begin{array}{r}59.11 \\ 63.54\end{array}\right.$ | 40.89 | 1.20 |
    | Lower bench, "6 | 5 | $\left\{\begin{array}{l}63.54 \\ 50.9 \%\end{array}\right.$ | 36.46 49.03 | 1.74 |
    | Main bench, Greene Cc | 3 | $\{61.80$ | 38.20 | 1.61 |
    | Main bench, Greene Cc.................... | 3 | $\{54.33$ | 45.67 | 1.19 |
    | Frick \& Co., Washington Co., average . |  | 66.44 | 33.56 | 1.98 |
    | Lower bench, Greene Co............... | 1 | 57.83 | 42.17 | 1.37 |
    |  | ) 8 | $\left\{\begin{array}{r}59.73 \\ 49.77\end{array}\right.$ | 20.27 | 393 |
    | decrease of vol. mat. to the eastward). Beaver Co. Pa | $\zeta 8$ | \{ 75.47 | 24.53 | $3.0 \%$ |
    | Beaver Co., Pa ${ }_{\text {Diehl's Bank, Georgetown }}$ | 7 | 40.68 |  |  |
    | Bryan's Bank, Georgetow |  | $62.5 \%$ | 57.43 | 1.66 |
    | OHI |  |  |  |  |
    | Pittsburgh coal-bed in Ohio: <br> Jefferson Co., Ohio. |  |  |  |  |
    | Belmont Co. |  | $\{63.46$ | 36.54 | 1.73 |
    | Bersont Co. |  | \{ 6614 | 33.86 | 1.95 |
    | Harrison Co., Ohio |  | \{ 63.46 | 36.54 | 1.73 |
    |  |  | ) 64.93] | 35.07 | 1.85 |
    | Pomeroy Co., Ohio. |  | $\left\{\begin{array}{l}60.92 \\ 60.92\end{array}\right.$ | 39.08 | 1.55 |
    | Pomeroy Co., Ohio. |  | \} 62.33 | 37.67 | 1.65 |

    Analyses of Southern and Western Coals.

    |  | Moisture. | Vol. Mat. | Fixed C. | Ash. | Sul- |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Oifio. <br> Hocking | 5.00 | 32.80 | 53.15 | 9.05 | 0.44 |
    |  | 7.40 | 29.20 | 60.45 | 2.95 | 0.93 |
    | C | 95 | 19.13 | 72.70 | 6.40 | 0.78 |
    | C | 1.23 | 15.47 | 73.51 | 9.09 | $0 . \% 0$ |
    | Virginia. South of Jaines River, 2 3 | ( from 0.6r | 27.28 | 46.70 | 2.00 | 0.58 |
    | yses, range | $\{$ to 2.46 | 38.60 | 67.83 | 15.76 | 2.89 |
    | Average of 23. | 1.48 | $3 \% .24$ | 58.89 | 7.\%2 | 1.45 |
    | North of James River, eastern | 0.40 | 18.60 | 71.00 | 10.00 |  |
    | outcrop, | 1.79 | 23.96 | 59.98 | 14.28 |  |
    | Carbonite or Natural Coke | 1.57 | 9.64 | 79.93 | 8.86 |  |
    | Western outcrop, 11 analyses, | from 1.56 | 14.26 21.33 | 81.61 54.97 | 2.24 3.35 | 0.23 |
    | range | \{ to | 30.50 | \%0.80 | 22.60 |  |
    | Average of 1 |  | 26.06 | 63.75 | 10.06 |  |
    | Pocahontas Flat-top* | 0.59 | 23.90 | \%4.20 | 1.38 | 0.52 |
    | (Castner \& Curran's Circular) <br> West Virginia (New River.) | 0.63 | 18.48 | 75.22 | 5.68 | 0.28 |
    | Quinnimont, 3 analyses .... . | \{ from 0.76 | $1 \% .57$ | 75.89 | 1.11 | 0.23 |
    |  | to 0.94 | 18.19 | 79.40 | 4.92 | 0.30 |
    | Nuttalburgh $\dagger$ | 0.34 | 29.59 | 69.00 | 1.07 |  |
    | Virginia and |  | . 35 | 80.67 | 2.10 | 0.08 |
    | Big Stone Gap Fitld, $\ddagger 9$ anal- | \{ from 0.80 | 31.44 | 54.80 | 1.73 | 056 |
    | yses, lange | $\{$ to 2.01 | 36.27 | 63.50 | 8.25 | 1.72 |
    | Kentucky. |  |  |  |  |  |
    | Pulaski Co., 3 analyses, range | $\left\{\begin{array}{l}\text { from 1.26 } \\ \text { to } 1.32\end{array}\right.$ | 35.15 | 60.85 52.48 | 1.23 | 0.40 1.00 |
    | Muhlenberg Co., 4 analyses, | $\left\{\begin{array}{r}\text { from } 3.60 \\ \text { to } 7.06\end{array}\right.$ | $30.60$ | 58.80 53.70 | 3.40 6.50 | 0.79 3.16 |
    | Pike Co., Eastern Ky., 37 an- | from 1.80 | 56.80 | 6 6. 60 | 3.80 | 0.97 |
    | alyses, range... | ) to 1.60 | 41.00 | 50.37 | \%.80 | 0.03 |
    | Kentucky Cammel Coals,s 5 an. | from. | 40.2011 | 59.80 coke | 8.81 | 0.96 |
    | alyses, range.... ............ |  | 66.30\|| | 33.\% 0 coke | 4.80 | 1.32 |
    | Seott Tennessee. | \{ from 70 | 32.33 | 46.61 | 16.94 |  |
    | Scott Co., Range of several.T.. | $\{$ to 1.83 | 41.29 | 61.66 | 1.11 | 0.77 |
    | Roane Co., Rockwood. | 1.75 | 26.62 | 60.11 | 11.52 | 1.49 |
    | Hamilton Co., Mel | 2.74 | 26.50 | 67.08 | 3.68 | 91 |
    | Marion Co., Etna | 94 | 23.72 | 63.94 | 11.40 | 1.19 |
    | Sewanee Co., Tracy Cit | 1.60 | 29.30 | 61.00 | 7.80 |  |
    | Kelly Co., Whiteside. | 1.30 | 21.80 | 74.20 | 2.70 |  |
    | Dade Co............. | 1.20 | 23.05 | 60.50 | 15.16 | 0.84 |
    | Alabama. |  |  |  |  |  |
    | Warren Field: |  |  |  |  |  |
    | Jefferson Co., Birmingham.. | 3.01 | $42 . \% 6$ | 48.30 | 3.21 | 2. 22 |
    | " " Black Creek . | .12 | 26.11 | 71.64 | 2.03 | 10 |
    | Tuscaloosa Co.......... | 1.59 | 38.33 | 54.64 | 5.45 | 1.33 |
    | Cahaba Field, ${ }_{\text {Bibb Co }}$ Helena Vein. | 2.00 | 32.90 | 53.08 | 11.34 | . 68 |
    | Bibb Co ..... , Coke Vein.. | 1.78 | 30.60 | 66.58 | 1.09 | 04 |

    + These coals are coked in beehive ovens, and yield from $63 \%$ to $64 \%$ of coke. $\ddagger$ Th is field covers about $1 \approx 0$ square miles in Virginia, and about 30 square miles in Kentucky.

    8 The principal use of the cannel coals is for enriching illuminating-gas. \| Volatile matter including moisture.
    TSingle analyses from Morgan, Rhea, Andersou, and Roane counties fall within this range.
    

    |  | Moisture. | Vol. Mat. | Fixed C. | Ash. | Sulphur. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Iowa.* |  |  |  |  |  |
    | Hiteman | 4.99 |  | 44.35 | ${ }^{24.35}$ |  |
    | Klagl | 9.84 | 40.16 | 37.69 | 12.31 |  |
    | Chisholm | 9.18 | 40.42 | 39.58 | 10.82 |  |
    | Missouri.* |  |  |  |  |  |
    | Brookfield. | 4.34 | 40.27 | 50.60 | 4.79 |  |
    | Mendota. | 9.03 | 37.48 | 46.24 | 7.25 |  |
    | Hamilton | 5.06 | 34.24 | 47.69 | 13.01 |  |
    | Lingo.. | 7.3:3 | 38.29 | 47.24 | 7.14 |  |
    | Hastings.... ${ }_{\text {Nebraska. }}$ *..... | 0.21 | 27.82 | 60.88 | 11.08 |  |
    | Wyoming.* |  |  |  |  |  |
    | Cambria | 4.2 | 40.6 | 41.5 | 13.7 |  |
    |  | 2.5 | 37.4 | 37.9 | 22.2 |  |
    | Goose Creek | 9.7 | 40.2 | 46.3 | 3.8 |  |
    | " ${ }^{\text {a }}$ | 13.92 | 36.18 | 42.03 | 7.24 |  |
    | Deek Creek. | 12.8 | 35.0 | 47.7 | 3.6 |  |
    | Sheridan .. | 6.04 | 42.37 | 35.57 | 16.02 |  |
    | Colorado. $\ddagger$ |  |  |  |  |  |
    | Sunshine, Colo, average. | 2.8 | 36.3 37 37 | 37.1 48.6 | 123.8 |  |
    | Newcastle, "، " | 1.72 | 37.95 38.23 | 48.6 55.86 | 11.6 |  |
    | Crested Buttes, " | 1.10 | 23.20 | 72.60 | 3.10 |  |
    | Utah (Southern). |  |  |  |  |  |
    | Castledale ....... .. | 3.43 | 42.81 | 47.81 $\dagger$ | 9.73 |  |
    | Cedar City.. | 3.50 | 43.66 | $43.11+$ | 5.95 |  |
    | Oregon. |  |  |  |  |  |
    | Coos Bay | 15.45 | 41.55 | 34.95 | 8.05 | 2.53 |
    | " | 17.27 | 44.15 | 32.40 | 6.18 | 1.37 |
    | Yaquina Bay | 13.03 | 46.20 | 32.60 | 7.10 | 1.07 |
    | John Day River | 4.55 | 40.00 | 48.19 | 7.26 | . 60 |
    | " Vancouver İ...... | 6.51 | 34.45 | 52.41 | 5.95 | . 65 |
    | Comox Coal.............. | 1.7 | 27.17 | 68.27 | 2.86 |  |

    the Boghead coal of Linlithgowshire. Scotland, an analysis of which by Dr. Penny is as follows: Proximate-moisture 0.84 ; vol. 67.95 ; fixed C, 9.51 , ash, 21.4; Ultimate-C,63.94; H, 8.86; O, 4.i0; N, 0.96 ; which is remarkable for the high percentage of H .

    * The analyses of Iowa, Missouri, Nebraska, and Wyoming coals are selected from a paper on The Heating Valne of Westeru Coals, by Wm. Forsyth, Mech. Engr. of the C., B. \& Q. R. R., Eng'g News, Jan. 17, 1895.
    † Includes sulphur, which is very high. Coke from Cedar City analyzed : Water and volatile matter, 1,42 ; fixed carbon, $\boldsymbol{r 6 . r 0}$; ash, 16.61 ; sulphur, 5.27 .
    \$ Colorado Conls.-The Colorado coals are of extremely variable composition, ranging all the way from lipnite to anthracite. G. C. Hewitt (Trans. A. I. M. E., xvii. 37\%) says : The coal seams, where unchanged by heat and flexure, carry a lignite containing from $5 \%$ to $20 \%$ of water. In the south-eastern corner of the field the same have been metamorphosed so that in four miles the same seams are an anthracite, coking, and dry coal. In the basin of Coal Creek the coals are extremely fat, and produce a hard, bright, sonorous coke. North of coal basin half a mile of development shows a gradnal change from a good coking coal with patches of dry coal to a dry coal that will barely agglutinate in a beelive oven. In another half mile the same seam is dry. In this transition area, a small cross-fault makes the coal fat for twenty or more feet on either side. The dry seams also present wide chemical and physical changes in short distances. A soft and loosely bedded coal has in a hmined feet become compact and hard without the intervention of a fault. A comple of hundred feet has reduced the water of combination from $12 \%$ to $5 \%$.

    Western Arkansas and Indian Territory. (H. M. Chance, Trans. A. I. M. E. 1890.)-The (hortaw coal-field is a direct westward exten-
    sion of the Arkansas coal-field, but its coals are not like Arkansas coals, except in the country immediately adjoining the Arkansas line.

    The western Arkansas coals are dry semi-bituminous or semi-anthracitic coals, mostly mon-coking, or with quite feeble coking properties, ranging from $14 \%$ to $16 \%$ in volatile matter, the highest percentage yet found, according to Mr. Winslow's Arkausas report, being 17.655.

    In the Mitchell basin, about 10 miles west from the Arkansas line, coal recently opened shows $19 \%$ volatile matter; the Mayberry coal, about 8 miles farther west, contains $23 \%$ volatile matter; and the Bryail Mine coal, about the same distance west, shows $20 \%$ volatile matter. About 30 miles farther west, the coal shows from $38 \%$ to $411 \% \%$ volatile matter, which is also about the percentage in coals of the McAlester and Lehigh districts.
    Western Lignites. (R. W. Raymond, Trans. A. I. M. E., vol. ii. 1873.)

    |  | C. | H. | N. | 0. | S. | Moistu: | $\frac{\pi}{4}$ | Calorific Power, calories. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Monte Dia | 59.12 | 5.08 | 1.01 | 15.69 | 3.92 | 8.94 | 5.64 | 5757 |
    | Weber Cañon, Utah | 64.84 | 4.34 | 1.29 | 15.53 | 1.60 | 941 | 3.00 | 5912 |
    | Echo Cañon, Utah | 69.84 | 3.90 | 1.93 | 10.99 | 0.7i | 9.15 | 3.40 | 6400 |
    | Carbon Station, Wy | 64.99 | 3.76 | 1.74 | 15.20 | $1.0 \%$ | 11.56 | 1.68 | 5738 |
    |  | 69.14 | 4.36 | 1.25 |  |  | 8.06 | 6.62 | 6578 4565 |
    | Coos Bay, Oregon. | 56.24 55.29 |  | 0.42 | 19.01 | 0.81 0.63 | 13.28 | 4.05 4.18 | 4565 4610 |
    | Alaska | 55.69 67.67 | 3.66 | 1.58 | 12.80 |  | 16.02 | 4.18 | 6428 |
    | Canon City, Colo | 67.58 | 7.42 |  | 13.42 | 0.63 | 5.18 | 5.74 | 7330 |
    | Baker Co., Ore. | $60 . \%$ | 4.30 |  | 14.42 | 2.08 | 14.68 | 3.80 | 5602 |

    The calorific power is calculated by Dulong's formula,

    $$
    8080 \mathrm{C}+34462\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right),
    $$

    deducting the heat required to vaporize the moisture and combined water, that is, 53 calories for each unit of water. 1 calorie $=1.8$ British thermal ınits.
    Analyses of Toreign Coals. (Selected from D. L. Barnes's paper on American Locomotive Practice, A. S. C. E., 1893.)

    |  | Volatile <br> Matter. | Fixed Carbon. | Ash. |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Great Britain : |  |  |  |  |
    | South Wales....... ... | 8.5 | 88.3 92.3 | 3.2 1.5 |  |
    | Lancashire, Ěng | 17.2 | 80.1 | 2.7 |  |
    | Derbyshire, " | 17.7 | 79.9 | 2.4 |  |
    | Durham, | 1505 | 86.8 | 1.1 | Semi-bit. coking coal. |
    | Scotland. | 17.1 17.5 | 63.1 80.1 | 19.8 2.4 | Boghead cannel gas coal Semi-bit. steam-coal. |
    | Staffordshire, Eng | 20.4 | 78.6 | 1.0 |  |
    | South America: |  |  |  |  |
    | Chili, Conception Bay | $\stackrel{21.93}{24}$ | 70.55 38.98 | ${ }^{7} \mathbf{7} .521$ |  |
    | Patagonia.............. | 24.11 24.35 | 38.98 | 36.91 13.4 |  |
    | Brazil..... | 40.5 | 57.9 | 1.6 |  |
    | Canada: |  | 60.7 | 125 |  |
    | Cape Breton............ | 26.9 | 67.6 | 5.5 |  |
    | Australia.............. |  |  |  |  |
    | Anstralian lignite...... | 15.8 | 64.3 | 10.0 |  |
    | Sydney, South Wales.. | 14.98 | 88.39 | $\stackrel{2.04}{1.9}$ |  |
    | Borneo................. | 26.5 | 80.3 | 14.2 |  |
    | Van Diemen's Land..... | 6.16 | 63.4 | 30.45 |  |

    An analysis of Pictou, N. S., coal, in Trans. A. I. M. E., xiv. 560, is: Vol., ת9.63; carbon. 56.98 ; ash, 13.39 ; and one of Sydney, Cape Breton, coal is: vol., 34.07 ; carbon, 61.43 ; ash, 4.50.

    Nixon's Navigation Welsh Coal is remarkably pure, and contains not more than 3 to 4 per cent of ashes, giving 88 per cent of hard and lustrous coke. The quantity of fixed carbon it contains would classify it among the dry coals, but on account of its coke and its intensity of combustion it belongs to the class of fat, or long flaming coals.
    Chemical analysis gave the following resnlts: Carbon, $90.2 \%$; hydrogen, 4.39; sulphur, .69; nitiogen. .49; oxygen (difference), 4.16.

    The alalysis sliowed the following composition of the volatile parts: Carbon, 2.2.53; hydrogen, $34.96 ; \mathrm{O}+\mathrm{N}+\mathrm{S}$. 42.51
    The heat of combustion was found to be, as a result of several experiments, 8864 calories for the unit of weight. Calculated according to its composition, the heat of conbustion would be 8805 calories $=15,849$ British thermal units per pound.

    This coal is generally used in trial-trips of steam-vessels in Great Britain.
    Sampling Coal for Analysiso-J. P. Kimball, Trans. A. I. M. E.; xii. 317, says: The msuitable sampling of a coal-seam, or the improper preparation of the sample in the laboratory, often gives rise to errors in determinations of the ash so wide in range as to vitiate the analysis for all practical purposes; every other single determination, excepting moisture, showing is relative part of the error. The determination of sulphur and ash are especially liable to error, as they are intimately associated in the
    slates.
    Wm. Forsyth, in his paper on The Heating Value of Western Coals (Eng'g Nerrs, Jant. 17, 1895), says : This trouble in getting a fairly average sample of anthracite coal has compelled the Reading R. R. Co., in getting their samples, to take as much as 300 lbs . for one sample, drawn direct from the chutes, as it stands ready for shipment.
    The directions for collecting samples of coal for analysis at the C., B. \& Q. laboratory are as follows:
    Two samples shonld be taken, one marked "average," the other "select." Each sample should contain about 10 lbs.., nade up of lumps about the size of an orange taken from different parts of the dump or car, and so selceted that they shall represent as nearly as possible, first, the average lot; second,
    the best coall
    An example of the difference between an "average" and a "select" samble, taken from Mr. Forsyth's paper, is the following of an Illinois coal:
    

    The theoretical evaporative power of the former was 9.13 lbs . of water from and at $211^{\circ}$ per lt . of coal, and that of the latter 11.44 ibs .
    Relative Value of Eine sizes of Anthracite.--For burning on a grate coal-dust is commercially valneless, the finest commercial anthracites being sold at the following rates per ton at the mines, according to all address by Mr. Eckley B. Coxe (1593):

    | Size. | Rance of Size. | Price at Mines. |
    | :---: | :---: | :---: |
    | Chestn | $11 / 2$ to $7 / 8$ inch | \$2.75 |
    | Pea | 7/8 to 9/16 | 1.25 |
    | Ruce | 9/16 to 3/8 | 0.75 |
    | Rarlej | $3 / 8$ to $3 / 16$ $3 / 16$ to $2 / 39$ | 0.25 |

    But when coal is reduced to an impalpable dust, a method of burning it becomes possible to which eventhe finest of these sizes is wholly unadapted; the coal may be blown in as dust, mixed with its proper proportion of air. and no grate at all $i$ : then required.

    Pressed Fuel. (E. F. Loiseau, Trans. A. I. M. F., viii. 314.)-Pressed fnel has been made from anthracite dust by mixing the dust with ten per cent of its bulk of dry pitch, which is prepared by separating from tar at a temperature of $5 \pi^{\circ} \mathrm{F}$. the volatile matter it contains. The mixture is kept heated by steam to $212^{\circ}$, at which temperature the pitch acquires its cementing mroperties, and is passed between two rollers. on the periphery of which are milled out a series of semi-oval cavities. The lumps of the mixture. about the size of an egg, drop out under the rollers on an endless belt which carries them to a screan in eight minutes, which time is sufficient to cool the lmmps. and they are then ready for delivery.

    The enterprise of making the pressed fuel above described was not commercially snccessful, on account of the low price of other coal. In France. lowever, "briquettes" are regularly made of coal-dust (bituminous and semi-bituminous),

    ## RELATIVE VALUE OF STREATE COALS.

    The heating value of a coal may be determined, with more or less approximation to accuracy, by three different methods.

    1st, by chemical analysis ; $\stackrel{\sim}{2} d$. by combustion in a coal calorimeter ; 3d, by actual trial in a steam-boiler. The first two methods give what may be called the theoretical heating value, the third gives the practical value.

    The accuracy of the first two methods depends on the precision of the method of analysis or calorimetry adopted, and upon the care and skill of the operator. The results of the third method are subject to numerous sources of variation and error, and may be taken as approximately true only for the particular conditious under which the test is made. Analysis and calorimetry gire with cousiderable accuracy the heating value which may be obtained under the conditions of perfect combustion and complete absorption of the heat produced. A boiler test gives the actual result under conditions of inore or less imperfect combustion, and of numerous and variable wastes. It may give the highest practical heating value, if the conditions of grate-bars, draft, extent of heating surface, method of firing, etc-, are the best possible for the particular coal tested. and it may give results far beneath the highest if these conditions are adverse or uusuitable to the coal.

    The results of boiler tests being so extremely variable, their use for the purpose of determining the relative steaming values of different coals has frequently led to false conclusions. A notable instance is found in the record of Prof. Johnson's tests, made in 1844, the only extensive series of tests of American coals ever made. He reported the steaming value of the Lehigh Coal \& Navigation Co.'s coal to be far the lowest of all the anthracites, a result which is easily explained by an examination of the conditions under which he made the test, which were entirely unsuited to that coal. He also reported a result for Pittsburgh coal which is far beneath that now obtainable in every-day practice, his low result being chiefly due to the use of an improper furnace.

    In a paper entitled Proposed Apparatus for Determining the Heating Power of Different Coals (Trans. A. I. M. E., xiv. F2r) the author described and illustrated an apparatus designed to test fuel on a large scale, avoiding the errors of a steam-boiler test. It consists of a fire-brick furnace enclosed in a water- casing, and two cylindrical shells containing a great number of tubes, which are surrounded by cooling water and through which the gases of combustion pass while being cooled. No steam is generated in the apparatus, but water is passed through it and allowed to escape at a temperature below $200^{\circ} \mathrm{F}$. The product of the weight of the water passed through the apparatus by its increase in temperature is the measure of the heating value oif the fuel.
    There has been much difference of opinion concerning the value of chemical analysis as a means of approximating the heating power of coal. It was found by Scheurer-Kestner and Meunier-Dollfus, in their extensive series of tests, made in Europe in 1868, that the heating power as determined by calorimetric tests was greater than that given to chemical analysis according to Dulong's law.

    Recent tests made in Paris by M. Mahler, however, show a much closer agreement of analysis and calorimetric tests. A brief descriptiou of these tests, translated from the French, may be found in an article by the author in The Mineral Iudustry, vol. i. page 97.

    Dulong's law may be expressed by the formula,

    $$
    \text { Heating Power in British Thermal Units }=14,500 \mathrm{C}+62,500\left(\mathrm{H}-\frac{0}{8}\right) \text {,* }
    $$

    in which $\mathrm{C}, \mathrm{H}$, and O are respectively the percentage of carbon, hydrogen, and oxygen, each divided by 100 . A study ô̂ M. Mahler's calorimetric tests shows that the maximum difference between the results of these tests and the calculated heating power by Dulong's law in any single case is only a little over $3 \%$, and the results of 31 tests show that Dulong's formula gives an average of only 47 thermal units less than the calorimet!ic tests, the average total heating value being over 14,000 thermal units, a difference of less than $4 / 10$ of $1 \%$.


    ## 634

    Mahler's calorimetric apparatus consists of a strong steel vessel or " bosab" immersed in water, proper precaution being taken to prevent radiation. One gram of the coal to be tested is placed in a platinum boat within this bomb, oxygen gas is introduced under a pressure of 20 to 25 atmospheres, and the coal ignited explosively by an electric spark. Combustion is complete and instantaneous, the heat is radiated into the surrounding water, weighing 2200 grams, and its quantity is determined by the rise in temperature of this water, due corrections being made for the heat canacity of the apparatus itself. The accuracy of the apparatus is remarkable, duplicato tests giving results varying ouly about 2 parts in 1000 .
    The close agreement of the results of calorimetric tests when properly conducted, and of the heating power calculated from chennical analysis, in dicates that either the chemical or the calorimetric niethod may be accepted as correct enough for all practical purposes for cietermining the total heating power of coal. The results obtained by either method may be taken as a standard by which the results of a boiler test are to be compared, and the difference between the total heating power: and the result of the boiler test is a measure of the inefficiency of the boiler under the conditions of any particular test.
    In practice with good antliracite coal, in a steam-boiler properly proportioned, and with all conditions favorable, it is possible to obtain in tha steam $80 \%$ of the total heat of combustion of the coal. This result was nearly obtained in the tests at the Centennial Exhibition in 1876, in five different boilers. An efficiency of $70 \%$ to $75 \%$ may easily be obtained in regular practice. With bituminous coals it is difficult to obtain as close an approach to the theoretical maximunn of economy, for the reason that some of the vola. tile combustible portion of the coal escapes unburned, the difficulty increas. ing rapidly as the content of volatile matter increases beyond $20 \%$. With most coals of the Western States it is with difficulty that as much as $60 \%$ or $65 \%$ of the theoretical efficieucy can be obtained without the use of gas-pro. ducers.
    The chemical analysis heretofore referred to is the nltimate analysis, or the percentage of carbon, hydrogen, and oxygen of the dry coal. It is found, however, from a study of Milller's tests that the proximate analysis, which gives fixed carbon, volatile matter, moisture, and ash, may be relied on as giving a measure of the leating value with a limit of error of only about $3 \%$. After deducting the moisture and ash, and calculating the fixed carbon as a percentage of the coal dry and free from ash, the anthor has constructed the
    following table:

    Approximate Heating Value of Coals.

    | Percentage <br> F. C. in <br> Coal Dry <br> and Free <br> from Ash | Heating Value per lb. | Equiv. Wate <br> Evap. from and at $212^{\circ}$ per 1 b . Combustible | Percentage F. C. in Coal Dry and Free from Ash | $\begin{aligned} & \text { Heating } \\ & \text { Valulue } \\ & \text { B.T.U.U. } \\ & \text { per ib. } \end{aligned}$ | Equiv. Wate Evap. from and at $212^{\circ}$ per lb. $\qquad$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 100 | 14500 | 15.00 |  |  |  |
    | 97 | 14760 | 15.28 | 63 | 15480 15120 | 16.03 |
    | 94 | 15120 | 15.65 | 60 | 14580 | 15.09 |
    | 90 | 15480 | 16.03 | 57 | 14040 | 14.53 |
    | 87 | 15660 | 16.21 | 54 | 13320 | 13.79 |
    | 80 | 15840 | 16.40 | 51 | 12600 | 13.04 |
    | 72 | 1:660 | 16.21 | 50 | 12240 | 112.67 |

    Below $50 \%$ the law of decrease of heating-power shown in the table apparently does not hold, as some cannel coals and lignites show much higher heating-power than would be predicted from their chemical constitution.
    The use of this table may be slowu as follows:
    Given a coal contaiuing moisture $2 \%$ ash $8 \%$, fixed carbon $61 \%$, and volatile matter $29 \%$ what it probable heating value? Deducting moisture and ash we find the fixed carbon is $61 / 90$ or $68 \%$ of the total of fixed carbou and volatile matter. One pound of the coal dry and free from ash would, by the table, have a heating value of 15,480 thermal units, but as the ash and moisture, having no heating value, are $10 \%$ of the total weight of the coal, the coal would have $90 \%$ of the table value, or 13,932 thermal units. This divided by 966 , the latent heat of stean at $212^{\circ}$ gives an equivalent evaporation per

    The heating value that can be obtained in practice from this coal would depend upon the efficiency of the boiler, and this largely upon the difficulty of thoroughly burning its volatile combustible matter in the boiler furnace. If a boiler efficiency of $65 \%$ could be obtained, then the evaporation per lb. of coal from and at $212^{\circ}$ would be $14.42 \times .65=9.37 \mathrm{lbs}$.

    With the best anthracite coal, in which the combustible portion is, say, $9 \% \%$ fixed carbon and $3 \%$ volatile matter, the highest result that can be expected ill a boiler-test with all conditions favorable is 12.2 lbs . of water evaporated from and at $212^{\circ}$ per lb . of combustible, which is $80 \%$ of 15.28 lbs . the theoretical heating-power. With the best semi-bituminous coals, such as Cumberland and Pocahontas, in which the fixed carbon is $80 \%$ of the total combustible, 12.5 lbs , or ${ }^{7} 6 \%$ of the theor tical 16.4 lbs ., may be obtained. For Pittsburgh coal, with a fixed carbon ratio of $68 \%, 11 \mathrm{lbs}$., $0169 \%$ of the theoretical 16.03 Jbs ., is about the best practically obtainable with the best boilers. With some good Ohio coals, with a fixed carbon ratio of $60 \%, 10 \mathrm{lbs}$, or $66 \%$ of the theoretical 15.09 Jbs ., has been obtained, under favorable conditions, with a fire-brick arch over the furnace. With coals mined west of Ohio, with lower carbon ratios, the boiler efficiency is not apt to be as high as $60 \%$.

    From these fignres a table of probable maximum boiler-test results from coals of different fixed carbon ratios may be constructed as follows: Fixed carbon ratio.............. $97 \quad 80 \quad 68 \quad 60 \quad 54 \quad 50$ Evap. from and at $210^{\circ}$ per Ib. combustible, maximum in boiler-tests: $\begin{array}{llllllll}\text { Boiler efficiency, per cent...... } & 80 & 12.2 & 12.5 & 11 & 10 & 8.3 & 7.0\end{array}$ Loss, chimney, radiation, imperfect combustion, etc : $\begin{array}{llllll}20 & 24 & 31 & 34 & 40 & 45\end{array}$
    The difference between the loss of $20 \%$ with anthracite and the greater losses with the other coals is chiefly due to imperfect combustion of the bituminous coals, the more highly volatile coals sending up the chimney the greater quantity of smoke and unburned hydrocarbon gases. It is a measure of the inefficiency of the boiler furnace and of the inefficiency of heatingsmface caused by the deposition of soot. the latter being primarily caused by the imperfection of the ordivary furnace and its ubsuitability to the proper burning of bituminous coal. If in a boiler-test with an ordinary furnace lower results are obtained than those in the above tatle, it is an indication of unfavorable conditions, such as bad firing, wrong proportions of boiler, defective draft, and the like, which are remediable. Higher results can be expected only with gas-producers, or other styles of furnace especially designed for smokeless combustion.

    Kind of Furnace Adapted for Different Coals. (From the author's paper on "The Evaporative Power of Bituminous Coals," Trans. A.S. M. E., iv, 257 .)-Almost any kind of a furnace will be found well adapted to burning anthracite coals and semi-bituminous coals containing less than $20 \%$ of volatile matter. Probably the best furnace for burning those coals which contain between $20 \%$ and $40 \%$ volatile matter, including the Scotch, English, Welsh, Nova Scotia, and the Pittsburgh and Monongahela river coals, is a plain grate-bar furnace with a flre-brick arch thrown over it, for the purpose of keeping the combustion-cliamber thoroughly hot. The best furnace for coals containing over $40 \%$ volatile matter will be a furnace surrounded by fire-brick with a large combustion-chamber, and some special appliance for introducing very hot air to the gases distilled from the coal. or, preferably, a separate gas-producer ànd combusion-chamber, with facilities for heating both air and gas before they unite in the combustionchamber. The character of furnace to be especially avoidtd in burning all bituminous coals containing over $20 \%$ of volatile matter is the ordinary furnace, in which the boiler is set directly above the grate bars, and in which the heating-surfaces of the coiler are directly exposed to radiation from the coal on the grate. The question of admitting air above the grate is still unsettled. The London Engineer recently said: "All onr experience, extending over many years, goes to show that when the production of smoke is prevented by special devices for admitting air, either there is an increase in the consumption of fuel or a diminution in the production of steam. * * * The best smoke-preventer yet devised is a good fireman."
    Downward-draught Furnaces.-Recent experiments show that with bituminous coal considerable saving may be made by causing the draught to go downwards from the freshly-fired coal through the hot coal on the grate. Similar good results are also obtained by the upward draught by feeding the fresh coal under the bed of hot coal instead of on top. (See Boilers.)

    Calorimetric Tosts of American Coals.-From a number of tests of American and foreign coals, made with an oxygen calorimeter, by Geo. H. Barrus (Trans. A. S. M. E., vol. xiv. 816), the following are selected, showing the range of variation:

    |  | $\begin{aligned} & \text { Percentage } \\ & \text { of Ash. } \end{aligned}$ | Total Heat of Combustion. B. T. U. | Total Heat reduced to Fuel free from Ash. |
    | :---: | :---: | :---: | :---: |
    | Semi-bituminous. <br> George's Cr'k, Cumberl'd, Md., 10 tests |  |  |  |
    |  | $\left\{\begin{array}{l}6.1 \\ 8.6\end{array}\right.$ | 14,21\% | 15,141 |
    |  |  | 12,874 |  |
    | Pocahontas, Va., 5 tests............... | $\{3.2$ | 14,603 | 15,086 |
    |  | 6.2 | 13,608 | 14,507 |
    | New River, Va., 6 tests.................. | ) 3.5 | 13,922 | 14,427 |
    | Elk Garden, Va., 1 test.......... ....... | 7.8 | 13,858 | 14,696 |
    | Welsh, 1 test.. ........ | 7.7 | 13,180 | 14,295 |
    |  |  | 13,581 | 14, 14 |
    | Youghiogheny, Pa., lump | 5.9 | 12,941 | 13,75.2 |
    | Fron " ${ }^{\text {chek }}$ | 10.2 | 11,664 | 12,988 |
    | Frontenac, Kansas ...... | 17.7 | 10,506 | 12,65 |
    | Cape Breton, (Caledonia) | 8.7 | 12,420 | 13,602 |
    | L,ancashire, Eng | 6.8 | 12,122 | 13,006 |
    | Authracite, 11 tests. | 10.5 | 11,521 | 12,873 |
    |  | 9.1 | 13,189 | 14,509 |

    Evaporative Power of Bituminous Coals.
    (Tests with Babcock \& Wilcox Boilers, Trans. A. S. M. E., iv. 207.)

    | Name of Coal. | $\begin{aligned} & \text { Dura- } \\ & \text { tion of } \\ & \text { Test. } \end{aligned}$ |  | Heating Surface, sq. ft. |  <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 4 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 <br> 0 |  |  |  |  |  | ※ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1. Welsh........... | 131/2 hrs | 40 | 16 |  | 6.3 | 2.07 | 11.53 | 12.46 | 146 | 96 |
    | 2. Anthracite scr's 1/5 |  |  |  |  |  |  |  |  |  |  |
    | Powelton, Pa., Semi-bit. 4/5, | $101 / 4 \mathrm{~h}$ | 60 |  |  | 17.6 | 4.32 | 11.32 | 12.42 | 270 | 448 |
    | Pittsbg'h fine slack |  | 33.7 | 1679 |  | 21.9 | 4.47 | 8.12 | 9.29 | 146 | 50 |
    | " 3d Pool lump |  | 43.5 | 2.60 |  | 27.5 | 4.76 | $10.4 \sim$ | 11.00 | 240 | 41 ? |
    | 4. Castle Shannon, nr |  |  |  |  |  |  |  |  |  |  |
    | Pittsb'gh, 3/8 nut, 5 lump | $-421 / 4 \mathrm{~h}$ | 69.1 | 4784 | 10.5 | 27.9 | 4.13 | -10.00 | 11.17 | 416 | 570 |
    | 4. Ill. "run of mine" | 6 days. |  | 1196 |  |  | 1. |  |  |  | 4 |
    | " Ind. block, "very | \} 3 d'ys |  |  |  |  | 2.95 |  |  |  | 111 |
    | 6. Jackson, O., nut .. |  | 48 |  |  |  | 4.11 |  |  | 4 | 111 |
    | "Staunton, Iil., nut.. | 8 " | 60 | 3358 |  |  | 2.27 | 5.09 | 6.19 | 292 | $\stackrel{460}{246}$ |
    | 7. Renton screenings. | 5 h 50 m | 21.2 | 1564 | 13.8 | 31.5 | 2.95 | 6.88 | 7.98 | 136 | 151 |
    | "، Wellington scr"gs.. | 6 h 30 m | 21.2 | 1564 | 18.3 | 27 | 2.93 | 7.89 | 9.66 | 136 | 150 |
    | " Black Diam. scrers | 51.58 m | 21.2 | 1564 | 19.3 | 36.4 | 3.11 | 6.29 | 7.80 | 136 | 160 |
    | "t Seattle screenings. | 6 6 6 h 19 mm | 21.2 21.2 21.2 | 1564 | 13.4 138 | 31.3 | 2.91 | 6.86 | 7.92 | 136 | 150 |
    | "Cardiff lump...... |  | 21.2 | 1564 | 11.8 | 28.2 | 3.52 3.69 | 9.02 10.07 | 10.46 11.40 | 136 136 | 171 |
    |  | \%h 23 m | 21.2 | 1564 | 19.1 | 25.6 | 3.35 | 9.62 | 11.89 | 136 | 174 |
    | " South Paine lump. | 6 h 35 m | 21.2 | 1564 | 13.9 | 28.9 | 3.53 | 8.96 | 10.41 | 136 | 18: |
    | Seattle lump | 6 h 5 m | 21.2 | 1564 |  | 34.1 | 3.57 | 7.68 | 8.49 | 136 | 184 |

    Place of Test：1．London，England；2．Peacedale，R．I．；3．Cincinnati，O．； 4．Pittsburgh．Pa．；5．Chicago，Ill．；6．Springfield，O．；7．San Francisco， Cal．
    In all the above tests the furnace was supplied with a fire－brick arch for preventing the radiation of heat from the coal directly to the boiler．

    Weathering of Coal．（I．P．Kimball，Trans．A．I．M．E．，viii．204．）－ The practical effect of the weathering of coal，while sometimes increasing its absolute weight，is to diminish the quantity of carbon and disposable hydrogen and to increase the quantity of oxygen and of indisposable hy－ drogen．Hence a reduction in the calorific value．

    An excess of pyrites in coal tends to produce rapid oxidation and mechan－ ical disintegration of the mass，with development of heat，loss of coking power，and spontaneous ignition．

    The only appreciable results of the weathering of anthracite within the ordinary limits of exposure of stocked coal are conined to the oxidation of its accessory pyrites．In coking coals，however，weathering reduces and finally destroys the coking power，while the pyrites are converted from the state of bisulphide into comparatively innocuous sulphates．

    Richters found that at a temperature of $158^{\circ}$ to $180^{\circ}$ Fahr．，three coals lost in fourteen days an average of $3.6 \%$ of calorific power．（See also paper by R．P．Rothwell，Trans．A．I．M．E．，iv．55．）

    ## COKE．

    Coke is the solid material left after evaporating the volatile ingredients of coal，either by means of partial combustion in furnaces called coke ovens， or by distillation in the retorts of gas－works．

    Coke made in ovens is preferred to gas coke as fuel．It is of a dark－gray color，with slightly metallic lustre，porous，brittle，and hard．
    The proportion of coke yielded by a given weight of coal is very different for different kinds of coal，ranging from 0.9 to 0.35 ．

    Being of a porous texture，it readily attracts and retains water from the atmosphere，and sometimes，if it is kept without proper shelter，from 0.15 to 0.20 of its gross weight consists of moisture．

    ## Analyses of coke．

    （From report of John R．Procter，Kentucky Geological Survey．）

    | Where Made． |  |  |  | Fixed Carbon | Ash． | Sul－ phur． |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Connellsville，Pa． | （Average of 3 samples）． |  |  | 88.96 | 9.74 | 0.810 |
    | Chattanooga，Tenn． |  | ＂4 4 |  | 80.51 | 16.34 | 1.505 |
    | Birmingham，Ala． | ＂ | ＂ 4 | ＂ | 87.29 | 10.54 | 1.195 |
    | Pocahontas，Va． | ＂ | ＂ 3 | ＂ | 92.53 | 5.74 | 0.597 |
    | New River，W．Va． |  | $\because 8$ | ＂ | 92.38 | 7.21 | 0.562 |
    | Big Stone Gap，Ky． | ＂ | ＇ 7 | ＂ | 93.23 | 5.69 | 0.749 |

    Experiments in Coking．Connellsville Region．
    （John Fulton，Amer．Mfr．，Feb．10，1893．）

    | 范 | $\begin{aligned} & \text { a } \\ & \text { on } \\ & \text { 品 } \end{aligned}$ |  |  |  |  |  | Per cent of Yield． |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{gathered} \stackrel{\rightharpoonup}{\xi} \\ \stackrel{0}{0} \\ \dot{8} \\ \ddot{z} \end{gathered}$ |  |  |  |  |  |  | 蜽 |  |  |  |  |
    |  | h．m |  | 1 lb | lb． | 1 lb ． | lb |  |  |  |  |  |
    | 1 | 68 <br> 68 <br> 00 | 12，420 | 99 | 385 359 | 6，518 | 7,903 6,939 | 00.80 | 310 3.24 | 60.53 59.33 | 63.63 62.57 | 35.51 36.62 |
    | 3 | $45 \quad 00$ | 9，120 | \％ 7 | 272 | 5，418 | 5，690 | 00.84 | 2.98 | 59.41 | 62.39 | 3677 |
    | 4 | $45 \quad 00$ | 9，020 | 74 | 349 | 5，334 | 5，683 | 00.82 | 387 | 59.13 | 63.00 | 36.1 |
    |  |  | 41，650 | 340 | 1365 | 24，850 | 26，215 | 00.82 | 3.28 | 59.66 | 62．94 | 36.24 |

    These results show，in a general average，that Connellsville coal carefully coked in a modern beehive oven will yield $66.1 \% \%$ of marketable coke， $2.30 \%$ of small coke or braize，and $0.82 \%$ of ash．

    The total average loss in volatile inatter expelled from the coal in coking amounts to $30.71 \%$.
    The modern beehive coke oven is 12 feet in diameter and 7 feet high at crown of dome. It is used in making 48 and $\tau 2$ hour coke.
    In making these tests the coal was weighed as it was charged into the oven; the resultant marketable coke, sinall coke or braize and ashes weighed dry as they were drawn from the oven.
    Coal Wasking -In making coke from conls that are high in ash and sulplum, it is advisable to crush and wash the coal before colking it. A coalwashing plant at Brookwood, Ala., has a capacity of 50 tons per hour. The average percentage of ash in the coal during ten days' run varied from $14 \%$ to $21 \%$, in the wasled coal from $4.8 \%$ to $8.1 \%$, and in the cole from $6.1 \%$ to $10.5 \%$. During three months the average reduction of ash was $60.9 \%$. (Eng. and Mining Jour., March 25, 1893.)
    Recovery of Hyproducts in Coke Manufacture. -In Germany considerable progress has been made in the recovery of by products. The Hoffman-Otto oven has been most largely used, its principal feature being that it is connected with regeareators. In 188440 ovens on this system were running, and in 1802 the number had increased to 1209 .

    A Hoffman-Otto oven in Westphalia takes a charge of $61 / 4$ tons of dry coal and converts it into coke in 48 hours. The product of an oven annually is $10: 5$ tons in the Ruhr district, $11: 0$ tons in Silesia, and 960 tons in the Saar district. The yield from dry coal is $75 \% 107 i \%$ f f coke, $2.5 \%$ to $3 \%$ of 1 ar, and $1.1 \%$ to $1.2 \%$ of sulphate of ammonia in the Rulre district; $65 \%$ to $\% \%$ of coke, $4 \%$ to $4.5 \%$ of tar, and $1 \%$ to $1.2: \%$ of sulphate of crathonia in the Upper Silesia region and $68 \%$ to $7 \% \%$ of coke, $4 \%$ to $4.3 \%$ of tar and $1.8 \%$ to $1.9 \%$ of sulphate of ammonia in the Saar district. A group of 60 Hoffman ovens, therefore, yields annually the follo wing:

    District. Coke, Tar tons. tons.
    Ruhr Upper Silesia
    Saar..........

    $$
    \begin{gathered}
    \text { Sulphate } \\
    \text { Ammonia, } \\
    \text { tons. } \\
    780 \\
    840 \\
    492
    \end{gathered}
    $$

    An oven which has been introducerl lately into Germany in connection with the recovery of by-prodıcts is the Semet-Solvay, which works hotter than the Hoffman-Otto, and for this reason $7.3 \%$ to $7 \% \%$ of gas coal can be mixed with $23 \%$ to $2 \% \%$ of cual low in volatile matter, and yet yield a good coke. Mixtures of this kind yield a larger percentage of coke, but, on the other hand, the amount of gas is lessened, and therefore the yield of tar and ammonia is not so great.

    The sield of colse by the beehive and the retort ovens respectively is given as follows in a pamphlet of the Solvay Process Co.: Connellsville coal : beelive, $66 \%$, retort, $73 \%$; Pocahontas: beehive, $62 \%$ retort, $83 \%$; Alabama: beehive, $60 \%$, retort, $74 \%$. (See article in Mineral Industry, vol. viii., 1900.)

    References: F. W. Luerman, Verein Deutscher Eisenhuettenleute 1891, Iron Age, March 31, 1892 ; Amer. Mfi:, April 28, 1893. An excellent series of articles on the manufacture of coke, by Joln Fulton, of Johnstown, Pa., is published in the Colliery Engineer, beginning in Jauuary, 1893.
    Making Hapd Corie.-J. J. Fromheiser and C. Si Price, of the Cam)ria Iron Co., Johnstown, Pa., have made an improvement in coke manufacture by which coke of any degree of hardness may be turned out. It is accomplished by first grinding the coal to a coarse powder and mixing it with a hydrate of lime (air or water slacked caustic lime) before it is charged into the coke-ovens. The caustic lime or other fluxing material used is mechanically combined with the coke, filling up its cell-walls. It has been found that about $5 \%$ by weight of caustic lime mixed with the fine coal gives the best results. However, a larier quantity of lime can be added to coals containing more than $5 \%$ to $\% \%$ of ash. (Amer. Mf\%)
    Generation of Steam from the Waste Heat and Cases of Cokeooverss. (Erskine Ramsey, Amer. Mfr., Feb. 16, 1894.)-The gases from a number of adjoining ovens of the beehive type are led into a long horizontal flue, and thence to a combustion chamber under a hattery of boilers. Two plants are in satisfactory operation at Tracy City, Tenn., and two at Prat. Mines. Ala.
    A Bushel of Coal.-The weight of a bushel oí coal in Indiana is rolbs., in Penna. r6 llss.; in Ala., Colo., Ga., Ill., Ohio, Tenn., and W. Va. it is 90 lbs .
    A Bushel of Coke is almost miformly 40 ibs., but in exceptional
    cases, when the coke is very light, 38,36 , and 33 lbs , are regarded as a bushel. In others, from 42 to 50 lbs are given as the weight of a bushel ; in this case the coke would be quite heavy,

    Products of the Distillation of Coal.-S. P. Sadler's Handbook of Industrial Organic Chemistry gives a diagram showing over 50 chemical products that are derived from distillation of coal. The first derivatives are coal-gas, gas-liquor, coal-tar, and coke. From the gas-liquor are derived ammonia and sulphate, chloride and carbonate of ammonia. The coal-tar is split up into oils lighter than water or crude naphtha, oils heavier than water-otherwise dead oil or tar, commonly called creosote,--and pitch. From the two former are derived a variety of chemical products.
    From the coal-tar there comes an almost endless chaill of known combinations. The greatest industry based upon their use is the manufacture of dyes, and the enormous extent to which this has grown can be judged from the fact that there are over 600 different coal-tar colors in use, and many more which as yet are ton expensive for this purpose. Many medicinal preparations come from the series, pitch for paving purposes, and chemicals for the photographer, the rubber manufacturers and tanners, as well as for preserving timber and cloths.
    The composition of the hydrocarbons in a soft coal is uncertain and quite complex; but the ultimate analysis of the average coal shows that it approaches quite nearly to the composition of $\mathrm{CH}_{4}$ (marsh-gas). (W. H. Blauvelt, Trans. A. I. M. E., xx. 625.)

    ## WOOD AS FUEL.

    Wood, when newly felled, contains a proportion of moisture which varies very much in different kinds and in different specimens, ranging between $30 \%$ and $50 \%$, and being on an averrage about $40 \%$. After 8 or 12 inonths' ordinary drying in the air the proportion of moisture is from 20 to $25 \%$. This degree of dryness, or almost perfect dryness if required, can be produced by a few dass' drying in an oven supplied with air at about $240^{\circ} \mathrm{F}$. When coal or coke is used as the fuel for that oven, 1 lb . of fuel suffices to expel about 3 lbs. of moisture from the wood. This is the result of experiments on a large scale by Mr. J. R. Napier. If air dried wood were used as fuel for the oven, from 2 to $21 / 2 \mathrm{lbs}$. of wood would probably be required to produce the same effect.
    The specific gravity of different kinds of wood ranges from 0.3 to 1.2.
    Perfectly dry wood contains about $50 \%$ of carbon, the remainder consisting almost entirely of oxygen and hydrogen in the proportions which form water. The coniferous family contain a small quantity of turpentine, which is a hydrocarbon. The proportion of asl in wood is from $1 \%$ to $5 \%$. The total heat of combustion of all kinds of wood, whell dry, is almost exactly the same, and is that due to the $50 \%$ of carbon.
    The above is from Rankine; but according to the table by S. P. Sharpless in Jour. C. I. W., iv. 36, the ash varies from $0.03 \%$ to $1.20 \%$ in American woods, and the fuel value, instead of being the same for all woods, langes from 3667 (for white oak) to 5546 calories (for long-leaf pine) $=6600$ to 9883 British thermal units for dry wood, the fuel value of 0.50 lbs . carbon being r27 B. T. U.

    Heating Value of Wood.--The following table is given in several books of reference, authority and quality of coal referred to not stated.
    The weight of one cord of different woods (thoroughly air-dried) is about as follows:
    Hickory or hard maple.... 4500 lbs . equal to 1800 lbs coal. (Others give 20c0.) White oak................ 3850 " " 1540 " " 6 ( " 1715.) $\begin{array}{lllllll}\text { Beech, red and bolack oak.. 3250 } & \text { " } & \text { "6 } & 1300 & \text { " } & \text { ". } \\ \text { Poplar, chestnut, and elm.. } 2350 & \text { " } & \text { " } & 940 & \text { " } & \text { " } & \text { " } \\ 14500\end{array}$ $\begin{array}{llllll}\text { Poplar, chestnut, and elm.. } 2350 & \text { " } & \text { " } & 940 & 6 & \text { " } \\ \text { The arerage pine ......... } 2000 & \text { " } & \text { " } & 800 & \text { " } & \text { "6 } \\ \text { ( } & 1050.5 \\ 925 .)\end{array}$
    Referring to the figures in the last column, it is said:
    From the above it is safe to assume that $21 / 4 \mathrm{lbs}$. of dry wood are equal to 1 lb . average quality of soft coal and that the full value of the same weight of different woods is very nearly the same-that is, a pound of hickory is worth no more for fuel than a pound of pine, assuming both to be dry. It is important that the wood be dry, as each $10 \%$ of water or moisture in wood will detract about $12 \%$ from its value as fuel.

    Taking an average wood of the analysis C $51 \%$, H $6.5 \%$, 0 42.0\%, ash $0.5 \%$, perfectly dry, its fuel value per pound, according to Dulong's formula. $V=$
    $\left[14,500 \mathrm{C}+02,000\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)\right]$, is 8170 British thermal units. If the wood, as ordinarily dried in air, contains $25 \%$ of moisture, then the heating value of a pound of such wood is three quarters of $8170=6127$ heat-units, less the heat required to heat and evaporate the $1 / 4 \mathrm{lb}$. of water from the atmospheric temperature, and to heat the steam made from this water to the temperature of the chimney gases, say 150 heat-units per pound to heat the wate: to $212^{\circ}, 966$ units to evaporate it at that temperature, and 100 heat-units to raise the temperature of the steam to $420^{\circ} \mathrm{F}$., or 1216 in all $=304$ for $1 / 4 \mathrm{lb}$., which subtracted from the 6127 , leaves 5824 heat-units as the net fuel value of the wood per pound, or about 0.4 that of a pound of carbon.

    ## Composition of Wood.

    (Analysis of Woods, by M. Eugene Chevandier.)

    | Woods. | Composition. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Carbon. | Hydrogen. | Oxygen. | Nitrogen. | Asl. |
    | Beech | 49.36\% | 6.01\% | 42.69\% | 0.91\% | 1.0f\% |
    | Oak | 49.64 | 5.92 | 41.16 | 1.29 | 1.97 |
    | Birch. | 50.20 | 6.20 | 41.62 | 1.15 | 0.81 |
    | Poplar | 49.37 | 6.21 | 41.60 | 0.96 | 1.86 |
    | Willow | 49.96 | 5.96 | 39.56 | 0.96 | 3.37 |
    | Average .. | 49.70\% | 6.06\% | 41.30\% | 1.05\% | 1.80\% |

    The following table, prepared by M. Violette, shows the proportion of water expelled from wood at gradually increasing temperatures:

    | Temperature. | Water Expelled from 100 Parts of Wood. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | Oak. | Ash. | Elm. | Walnut. |
    | $257^{\circ}$ Fahr. | 15.26 | 14.78 | 15.3 \% | 15.55 |
    | $302^{\circ}$ Fahr. | 17.93 | 16.19 | 17.02 | 17.43 |
    | $347^{\circ}$ Fahr | 32.13 | 21.22 | 36.91 ? | 21.00 |
    | $39{ }^{\circ} \mathrm{O}$ Fahr | 35.80 | 27.51 | 33.38 | 41.77\% |
    | $437^{\circ}$ Fahr | 44.31 | 33.38 | 40.56 | 36.56 |

    The wood operated upon had been kept in store during two years. When wood which has been strongly dried by means of artificial lieat is left exposed to the atmosphere, it reabsorbs about as much water as it contains in its air-dried state.
    A cord of wood $=4 \times 4 \times 8=128 \mathrm{cu}$. ft. About $56 \%$ solid wood and $44 \%$ interstitial spaces. (Marcus Bull, Phila., 1829. J. C. I. W., vol. i. p. 293.)
    B. E. Fernow gives the per cent of solid wood in a cord as determined off cially in Prussia (J. C. I. W., vol. iii. p. 20):

    Timber cords, $74.0 \% \%=80 \mathrm{cu}$. ft. per cord;
    Firewood cords (over $6^{\prime \prime}$ diam.), $69.44 \%=75 \mathrm{cu} . \mathrm{ft}$. per cord;
    "Billet" cords (over $3^{\prime \prime}$ diam.), $55.55 \%=60 \mathrm{cu} . \mathrm{ft}$. per cord;
    "Brush " woods less than $3^{\prime \prime}$ diam., $18.52 \%$; Roots, $37.00 \%$.

    ## CHARCOAL.

    Charcoal is made by evaporating the volatile constituents of wood and peat, either by a partial combustion of a conical heap of the material to be charred, covered with a layer of earth, or by the combustion of a separate portion of fuel in a furnace, in which are placed retorts containing the material to be charged.

    According to Peclet, 100 parts by weight of wood when cliarred in a heap yield from 17 to 22 parts by weight of charcoal, and when charred in a retort from 28 to 30 parts.

    This has reference to the ordinary condition of the wood used in charcoalmaking, in which 25 parts in 100 consist of moisture. Of the remaining 75 parts the carbon amounts to one half, or $3 \pi 1 / 2 \%$ of the gross weight of the wood. Hence it appears that on an average nearly half of the carbon in the
    wood is lost during the partial combustion in a heap, and about one quarter during the distillation in a retort.

    To char 100 parts by weight of wood in a retort, $121 / 2$ parts of wood must be burned in the furnace. Hence in this process the whole expenditure of wood to produce from 28 to 30 parts of charcoal is $1121 / 2$ parts; so that if the weight of charcoal obtained is compared with the whole weight of wood expended, its amount is from $25 \%$ to $2 \pi \%$; and the proportion lost is on an average $111 / 2+3 \uparrow 12=0.3$, nearly.

    According to Peclet, good wood charcoal contains about 0.07 of its weight of ash. The proportion of ash in peat charcoal is very variable, and is estimated on an average at about 0.18. (Rankine.)

    Much information concerning charcoal may be found in the Journal of the Charcoal-iron Workers' Assn., vols. i. to vi. From this source the following notes have been taken:

    Yield of Charcoal from a cord of Wood.-From 45 to 50 bushels to the cord in the kiln, and from 30 to 35 in the meiler. Prof. Egleston in Trans. A. I. M. E., viii. 395, says the yield from kilus in the Lake Champlain region is often from 50 to 60 bushels for hard wood and 50 for soft wood; the average is about 50 bushels.

    The apparent yield per cord depends largely upon whether the cord is a full cord of 128 cu . ft. or not.

    In a four months' test of a kiln at Goodrich, Tenn., Dr. H. M. Pierce found results as follows: Dimensions of kiln-inside diameter of base, 28 ft .8 in .: diam. at spring of arch, 26 ft .8 in .; height of walls, 8 ft .; rise of arch, 5 ft ; capacity, 30 cords. Highest yield of charcoal per cord of wood (measured) 59.27 bushels, lowest 50.14 bushels, average 53.65 bushels.

    No. of charges 12, length of each turn or period from one charging to another 11 days. (J. C. I. W., vol. vi. p. 26.)

    ## Results from Diferent Rethods of Charcoal-making.

    | Coaling Methods. | Character of Wood used. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Odelstjerna's experiments | Birch dried at 230 | 35.9 |  |  |
    | Mathieu's retorts, fuel excluded. | \{ Air dry, av. good yel-\} | 77.028 .3 | 63.4 | 15.7 |
    | Mathieu's retorts, fuel included $\qquad$ | low pine weighing abt. 28 lbs . per cu.ft. | 65.824 .2 | 54.2 | 15.7 |
    | Sivedish ovens, av. results | $\left\{\begin{array}{c}\text { Good dry fir and pine, } \\ \text { mixed. }\end{array}\right.$ | 81.027 .7 | 66.7 | 13.3 |
    | Swedish ovens, av. results | $\left\{\begin{array}{c}\text { Poor wood, mixed fir } \\ \text { and pine }\end{array}\right\}$ | 10.0 258 | 62.0 | 13.3 |
    | Swedish meilers exceptional $\qquad$ | $\left\{\begin{array}{c}\text { Fir and white-pine } \\ \text { wood, mixed. Av. } 25\end{array}\right\}$ | 2.224 | 59.5 | 13.3 |
    | Swedish meilers, av. results | lbs. per cu.ft. | 52.5183 | 43.9 | 13.3 |
    | American kilns, av . results | (Av. good yellow pine) | 54.722 .0 | 45.0 | 175 |
    | American meilers, av. results $\qquad$ | $\left\{\begin{array}{l} \text { weighing abt. } 25 \mathrm{lbs} .\} \\ \text { per cu.ft. } \end{array}\right.$ | 42.917 .1 | 350 | 17.5 |

    Consumption of Charcoal in Rlast-furnaces per Ton of
    Pig Iron; average consumption according to census of 1880, 1.14 tons charcoal per ton of pig. The consumption at the best furnaces is much below this average. As low as 0853 ton, is recorded of the Morgan furnace; Bay furnace, 0.858 ; Elk Rapids, 0.884 . (1892.)

    Absorption of Water and of Gases by Charcoal. - Svedlius, in his hand-book for charcoal-burners, prepared for the Swedish Government, says: Fresh charcoal, also reheated charcoal, contains scarcely any water but when cooled it absorbs it very rapidly, so that after twenty-four hours, it may contain $4 \%$ to $8 \%$ of water. After the lapse of a few weeks the moisture of charcoal may not increase perceptibly, and may be estimated at $10 \%$ to $15 \%$, or an average of $12 \%$. A thoroughly charred piece of charcoal ought, then, to contain about 84 parts carbon, 12 parts water, 3 parts ash, and 1 part hydrogen.
    M. Saussure, operating with blocks of fine boxwood charcoal, freshly burnt, found that by simply placing such blocks in contact with certain gases they absorbed them in the following proportion:

    Volumes.

    | mmonia | 90.00 |
    | :---: | :---: |
    | Hydrochloric acid | 85.00 |
    | Sulphurous acid. | 65.00 |
    | Sulphuretted hydrogen | 55.00 |
    | Nitrous oxide (laughing | 40.00 |
    |  |  |

    Volumes.
    Carbonic oxide...................... 9.42
    Oxygen.......... ................... 9.25
    Nitrogen............................. . 6.50
    Cariouretted hydrogen......... 5.00
    Hydrogen. .......................... . . 1.15

    It is this enormous absorptive power that renders of so much value a comparatively slight sprinkling of charcoal over dead animal matter, as a preventive of the escape of odors arising from decomposition.

    In a box or case containing one cubic foot of charcoal may be stored without mechanical compression a little over nine cubic feet of oxygen, representing a mechanical pressure of one hundred and twenty-six pounds to the square inclı. From the store thus preserved the oxygen can be drawn by a small hand-pump.

    Composition of Charcoal Produced at Various Temperam tures. (By M. Violette.)
    

    The wood experimented on was that of black alder, or alder buckthorn, which furnishes a charcoal suitable for gunpowder. It was previously dried at 150 deg. C. $=302$ deg. F .

    ## MISCELHANEOUS SOEHT FUELS.

    Dust Tuel-Dust Explosions.-Dust when mixed in air burns with such extrente rapidity as in some cases to cause explosions. Explosions of flour-mills have been attributed to ignition of the dnst in confined passages. Experiments in England in $18 \% 6$ on the effect of coal-dust in carrying flame in mines showed that in a dusty passage the flame from a blown-out shot may travel 50 yards. Prof. F. A. Abel (Trans. A. I. M. E., xiii. 260) says that coaldust in mines much promotes and extends explosions, and that it may readily be brought into operation as a fiercely burning agent which will carry flame rapidly as far as its mixture with air extends, and will operate as $\because$ n explosive arent though the medium of a very small proportion of fire-damp in the air of the mine. The explosive violence of the combustion of dust is largely due to the instantaneous heating and consequent expansion of the air. (See also paper" on "Coal Dust as an Explosive Agent," by Dr. R. IV. Raymond, Trans. A. I. M. E. 1894.) Experiments made in Germany in $1893^{\circ}$ show that pulverized fuel may be burned without smoke, and with high economy. The fuel, instead of being introduced into the fire-box in the ordinary manner, is first reduced to a powder by pulverizers of any construction. In the place of the ordinary boiler fire-box there is a combustion chamber in the form of a closed furnace lined with fire-brick and provided with an air-inje tor. The nuzzle ihrows a constant stream of fuel into the chamber, scattering it throughout the whole space of the fire-box. When this powder is once ignited, and it is very readily done by first raising the
    lining to a high temperature by an open fire, the combustion continues in an intense and regular manner under the action of the current of air which carries it in. (Mfis. Record, April, 1893.)

    Records of tests with the Wegener powdered-coal apparatus, which is now (1900) in use in Germany, are giveu in Eng. News, Sept. 16, 1897. Coaldust fuel is now extensively used in the United States in rotary kilns for burning Portland cement.

    Powdered tuel was ued in the Crompton rotary puddling-furnace at Wonlwich Arsenal, England, in 1873. (Jour. I. \& S. I., i. 1873, p. 91.)

    Peat or Turf, as nsually dried in the air, contains from $25 \%$ to $30 \%$ of water, which must be allowed for in estimating its lheat of combustion. This water having been evaporated, the analysis of M. Regnault gives, in 100 parts of perfectly dry peat of the best quality: C $58 \%, \mathrm{H} 6 \%, \mathrm{O} 31 \%$, Ash $5 \%$.

    In some examples of peat the quantity of ash is greater, amounting to \% \% and sometimes to $11 \%$.

    The specific gravity of peat in its ordinary state is about 0.4 ol 0.5 . It can be compressed by machinery to a much greater density. (Rankine.)

    Clark (Steam-engine, i. 61) gives as the average composition of dried Irish peat: C $59 \%, \mathrm{H} 6 \%, \mathrm{O} 30 \%, \mathrm{~N} 1.25 \%$, Ash $4 \%$.

    Applying Dulong's formula to this analysis, we obtain for the heating value of perfectly dry peat 10,260 heat-units per pound, and for air-dried peat containing $25 \%$ of moisture, after making allowance for evaporating the water, 7391 heat-units per pound.

    Sawdust as Fuel.-The heating power of sawdust is naturally the same per pound as that of the wood from which it is derived, but if allowed to get wet it is more like spent tan (which see below). The conditions necessary for burning sawdust are that plenty of room should be given it in the furnace, and sufficient air supplied on the snrface of the mass. The same applies to shavings, refuse lumber, etc. Sawdust is frequently burned in saw-mills. etc., by being blown into the furnace by a fan-blast.

    Wet Tan Bark as Fuel.--Tan, or oak bark, after having been used In the processes of taming, is turned as fuel. The spent tan consists of the fibrous portion of the bark. According to M Peclet, five parts of oak bark produce four parts of dry tan; and the heating power of perfectly dry tan, containing $15 \%$ of ash, is 6100 English units: whilst that of tan in an ordinary state of dryness, containing $80 \%$ of water, is only 4284 English units. The weight of water evaporated from and at $212^{\circ}$ by one pound of tan, equivalent to these heating powers, is, for perfectly dry tan, 5.46 lbs , for tan with $30 \%$ moisture, 3.84 lbs. Experiments by Prof. R. H. Thurston (Jour. Frark. Inst., 1874) gave with the Crockett furnace, the wet tan containing $5 \% \%$ of water, an evaporation from and at $212^{\circ} \mathrm{F}$. of $4.2 \nmid \mathrm{lbs}$. of water per pound of the wet tan, and with the Thompson furnace an evaporation of 3.19 lbs . per pound of wet tan containing $55 \%$ of water. The Thompson furnace consisted of six fire-brick ovens. each 9 feet $\times 4$ feet 4 inches, containing 234 square feet of grate in all, for three boilers with a total heating surface of 2000 square feet, a ratin of heating to grate surface of 9 to 1. The tan was fed through holes in the top. The Crockett furnace was an ordinary firebrick furnace, $6 \times 4$ feet, built in fiont of the hoiler, instead of under it, the ratio of heating surface to grate being 14.6 to 1 . According to Prof. Thurston the conditions of success in burning wet fuel are the surrounding of the mass so completely with heated surfaces and with burning fuel that it may be rapidly dried, and then so arranging the apparatus that thorough combustion may be secured. and that the rapidity of combustion be precisely equal to and never exceed the rapidity of desic cation. Where this rapidity of combustion is exceeded the dry portion is consumed completely, leaving an uncovered mass of fuel which refinses to take fire.

    Straw as ruel. (Eng'g Mfechanics, Feb., 1893, p. 55.)-Experiments in Russia showed that winter-wheat straw, dried at $230^{\circ} \mathrm{F}$., had the following tomposition: C, 46.1; H, 5.6; N, 0.42: O, 43.7. Ash, 4.1. Heating value in British thermal units: dry straw, 6290 ; with $6 \%$ water, $5 \pi r 0$; with $10 \%$ water, 5448. With straws of other grains the heating value of dry straw ranged from 5590 for buckwheat to 6 int for fiax.

    Clark (S. E., vol. 1, p. 62) gives the mean composition of wheat and barley straw as $\mathrm{C}, 36 ; \mathrm{H} .5 ; \mathrm{O}, 38 ; \mathrm{O}, 0.50 ; \mathrm{Ash}, 4.75$; water, 15.75 , the two straws varying less than $1 \%$. The heating value of straw of this composition, according to Dulong's formula, and deducting the heat lost in evaporating the water, is 5155 heat units. Clark erroneously gives it as 8144 heat units.

    Pagasse as Fuelin Sugar Thanufacture.--Bagasse is the name given to refuse sugar-cane, after the juice has been extracted. Prof. L. A.

    Becuel, in a paper read before the Louisiana Sugar Chemists' Association, in 1892, says: "With tropical calle containing $1: 25 \%$ woods fibre, a juice containing $16.13 \%$ solids, and $83.3 \% \%$ water, bagasse of, say, $66 \%$ and $\% 2 \%$ mill extraction would have the following percentage composition:

    |  | Woody | Combustible | Water. |
    | :---: | :---: | :---: | :---: |
    | 66\% bagasse. | Fibre. | Salts. | Water. |
    | 72\% bagasse | 45 | 9 | 46 |

    "Assuming that the woody fibre contains $51 \%$ carbon, the sugar and other combustible matters an average of $42.1 \%$, and that 12,906 units of heat are generated for every ponnd of carbon consumed, the $66 \%$ bagasse is capable of generating 297, 834 heat units per 100 lbs . as against 345,200 , or a difference of 47,366 units in favor of the $72 \%$ bagasse.
    'Assuming the temperature of the waste gases to be $450^{\circ} \mathrm{F}$., that of the surromiding atmosphere and water in the bagasse at $86^{\circ} \mathrm{F}$., and the quantity of air necessary for the combnstion of one pound of carbon at $2 \ddagger$ lbs., the lost heat will be as follows: In the waste gases, heating air from $86^{\circ}$ to $450^{\circ}$ F., and in vaporizing the moisture, etc., the $66 \%$ bagasse will require 112,546 heat units, and 116,150 for the $\because 1 \%$ bagasse.
    "Subtracting these quantities from the above, we find that the 66\% hagasse will produce 185,288 available heat mits per 100 lbs ., or nearly $24 \%$ less than the $72 \%$ bagasse, which gives $2: 29,050$ units. Accordingly, one ton of cane of 2000 lbs . at $66 \%$ mill extraction will produce 680 lbs . bagasse, equal to $1,259,958$ available heat units, while the same cane at $\% \%$ extraction will produce 560 lbs. bagasse, equal to $1,282,680$ units.

    A similar calculation for the case of Louisiana cane containing $10 \%$ woody fibre, and $16 \%$ 'otal solids in the juice, assuming $75 \%$ mill extraction, shows that bagasse from one ton of cane contains $1,573,956$ heat units, from which 561,465 liave to be deducted.
    "This would make such bagasse worth on an average nearly 92 lhs . coal per ton of cane ground. Under fairly good conditions, 1 lb . coal will eraporate $71 / 2 \mathrm{lbs}$. water, while the best boiler plants evaporate 10 lbs . Therefore, the bagasse from 1 ton of cane at $75 \%$ inili extraction should evaporate fiom 689 lbs . to 919 lbs. of water. The juice extracted from such cane would under these conditions contain 1260 lor. of water. If we assume that the water added during the process of manufacture is $10 \%$ (by weight) of the juice made, the total water handled is 1410 lbs . From the juice represented in this case. the commercial massecuite would be about $15 \%$ of the weight of the original mill juice, or $22 y 225 \mathrm{lbs}$. Said mill juice 1500 lbs. plus $10 \%$ equals 1650 lbs . liquor handled; and $1650 \mathrm{lbs.o}$ minus 225 lbs ., equals 1425 lbs ., the quantity of water to be evaporated during the process of manufacture. To effect a $\tau 1 / 2-1 \mathrm{~b}$. evaporation requires 190 lbs . of coal, aud $1421 / 2 \mathrm{lbs}$. for a 1 C . lb. evaporation.
    "To reduce 1650 lbs . of juice to syrup of, say, $2 \tau^{\circ}$ Banmé. requires the evaporation of $11 \% 0 \mathrm{lbs}$ of water, leaving 480 lbs. of Syrup. If this work he accomplished in the open air, it will require about 156 lbs . of coal at $\tau 1 / 2 \mathrm{lbs}$. boiler evaporation, and $11 \tilde{r}$ at 10 lbs . evaporation.
    "With a double effect the fuel required would be from 59 to 78 lbs ., and with a triple effect, from 36 to 52 lbs .
    "To reduce the above 480 lbs . of syrup to the consistency of commercial massecuite means the firther evaporation of 255 lbs . of water, requiring the expenditure of 34 lbs . coal at $\tau 1 / 2 \mathrm{lbs}$. boiler evaporation, and $251 / 2 \mathrm{lbs}$. with a $10-\mathrm{lb}$. evaporation. Hence, to manufacture one ton of cane into sugar and molasses, it will take from 145 to 190 lbs. additional coal to do the work by the open evaporator process; firm 85 to 112 lbs . with a donble effect, and only $\tau 121 \mathrm{l}$ s. evaporation in the boilers, while with 10 lbs . boiler evaporation the bagasse alone is capable of fumishing $8 \%$ more heat than is actually required to do the work. With triple-effect evaporation depending on the excellence of the boiler plant, the $14: 5 \mathrm{lhs}$. of water to be evaporated from the juice will require between 62 and 86 lbs . of coal. These valnes show that from 6 to 30 lbs . of coal can be spared from the value of the bagasse to run engines, grind calse, etc.
    "It accordingly appears." says Prof. Becuel, "that with the best boiler plants, those taking up all the available heat generated, by using this heat economically the bagasse can be made to supply all the fuel required by our

    ## PETROLEUM.

    ## Products of the Distillation of Crude Petroleum.

    Crude American petroleum of sp. gr. 0.800 may be split up by fractional distillation as follows (Robinson's Gas and Petroleum Engines):

    | Temp. of Distillation Fahr. | Distillate. | Percentages. | Specific Gravity. | Flashing Point. Deg. F. |
    | :---: | :---: | :---: | :---: | :---: |
    | $\begin{gathered} 113^{\circ} \\ 113 \text { to } 140^{\circ} \end{gathered}$ | Rhigolene. | traces. | . 590 to .625 |  |
    | 140 to $158^{\circ}$ | Gasolene (petroleum spirit)... | 1.5 | . 636 to . $65{ }^{\text {r }}$ |  |
    | 158 to $248^{\circ}$ | Benziue, naphtha C, benzolene. | 10. | . 680 to . 700 | 14 |
    | 2480 to | $\{$ Benzine, naphtha B | 2.5 | . 714 to . 718 105 to | 32 |
    | $34{ }^{\text {to }}$ | \{ Polishing oils. .. .............. |  |  | 32 |
    | $\left.\begin{array}{l} 338^{\circ} \text { and } \\ \text { upwards. } \end{array}\right\}$ | Kerosene (lamp-oil). | 50. | . 802 to 8820 | 100 to 1 |
    | $48 \%^{\circ}$ | Lubricating oil Paraffine wax. | $\begin{array}{r} 15 . \\ 2 . \end{array}$ | . 850 to . 915 | 230 |
    |  | Residue and Loss. . . . . . . . . | 16. |  |  |

    Lima Petroleum, produced at Lima, Ohio, is of a dark green color, very fluid, and marks $48^{\circ}$ Baumé at $15^{\circ} \mathrm{C}$. (sp. gr., 0.792 ).
    The distillation in fifty parts, each part representing $2 \%$ by volume, gave the following results :

    | Per | Sp. | Per | Sp. | Per | Sp. | Per | Sp. | Per | Sp. | Per | Sp. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | cent. | Gr. | cent. | Gr. | cent. | Gr. | cent. | Gr. | cent. | Gr. | cent. | Gr. |
    | 2 | 0.680 | 18 | 0.720 | 34 | 0.764 | 50 | 0.802 | 68 | 0.820 | 88 | 0.815 |
    | 4 | . 683 | 20 | . 728 | 36 | . 68 | 52 |  | 70 | .8:5 | 90 | . 815 |
    | 6 | . 685 | 22 | . 330 | 38 | . 2 T2 | to $\}$ | . 806 | \%2 | . 830 |  |  |
    | 8 | . 690 | 24 | . 735 | 40 | . 78 | 58 |  | T3 | . $8: 80$ | 921 | E |
    | 10 | . 694 | 26 | . 740 | 42 | . 782 | 60 | . 800 | \%'6 | . 810 | to $\}$ | z |
    | 12 | . 698 | 28 | . 742 | 44 | . 788 | 62 | . 804 | 78 | .820 | 100 | \% |
    | 14 | . 700 | 30 | . 746 | 46 | . 792 | 64 | . 808 | 82 | . 818 |  | \% |
    | 15 | . $\% 06$ | 32 | .'60 | 48 | . 800 | 66 | .812 | 86 | . 816 |  | ¢ |

    ## 16 per cent naphtha, $70^{\circ}$ Baumé

    6 per cent paraffine oil.

    ## 68 " burning oil. 10 " residuum.

    The distillation started at $23^{\circ} \mathrm{C}$., this being due to the large amount of naphtha present, and when $60 \%$ was reached, at a temperature of $310^{\circ} \mathrm{C}$., the hydrocarbons remaining in the retort were dissociated, then gases escaped, lighter distillates were obtained, and, as usual in such cases, the temperature decreased from $310^{\circ} \mathrm{C}$. down gradually to $200^{\circ} \mathrm{C}$, until $75 \%$ of oil was obtained, and from this point the temperature remained constant until the end of the distillation. Therefore these hydrocarbons in statu moriendi absorhed much heat. (Jour. Am. Chem. Soc.)

    Value of Petroleum as Fuel.-Thos. Urquhart, of Russia (Proc. Inst. M. E., Jan. 1889), gives the following table of the theoretical evaporative power of petroleun in comparison with that of coal, as determined by Messrs. Favre \& Silbermann:

    | Fuel. | Specific Gravity $32^{\mathrm{a}} \mathrm{F}$., Water $=1.000$. | Chem. Comp. |  |  | Heatingpower, British Thermal Units. | Theoret. Evap., lbs. Water per lb. Fuel, from and at $21 \gtrsim^{\circ} \mathrm{F}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | C. | H. | O. |  |  |
    |  | S. G. | p. c. | p. c. | p. c. | Units. | lbs. |
    | Penua. heavy crude oil .... | 0.886 | 84.9 | 13.7 | 1.4 | 20,736 | 21.48 |
    | Caucasian light crude oil.. | 0.884 | 86.3 | 13.6 | 0.1 | 22,027 | 22.79 |
    | " heavy " ".. | 0.938 | 86.6 | 12.3 | 1.1 | 20,138 | 20.85 |
    | Petroleum refuse.......... | 0.928 | 87.1 | 11.6 | 1.2 | 19,832 | 20.53 |
    | of 98 Sainples............ . | 1.380 | 80.0 | 5.0 | 8.0 | 14,112 | 14.61 |

    In experiments on Russian railways with petroleum as fuel Mr. Urquhart obtained an actual efficiency equal to $82 \%$ of the theoretical heating-valne The petrolem is fed to the furnace by means of a spray-injector driven by steam. An induced current of air is carr ied in around the injector-nozzle, and additional air is supplied at the botton of the furnace.
    Oil vs. Coal as Fuel. (Iron Age, Nov. 2, 1893.)-Test by the Twin City Rapid Transit Company of Kinneapolis and St. Paul. This test showed that with the ordinary Lima oil weighing $66 / 10$ pounds per gallon, and costing $\geqslant 1 / 4$ cents per gallon, and coal that gave an evaporation of $71 / 2 \mathrm{lbs}$. of water per pound of coal, the two fuels were equally economical when the price of coal was $\$ 385$ per ton of 2000 lbs . With the same coal at $\$ 2.00$ per ton, the coal was $3 \% \%$ more economical, and with the coal at $\$ 4.85$ per ton, the coal was $20 \%$ more expensive than the oil. These results include the difference in the cost of handling the coal, ashes, and oil.
    In 1892 there were reported to the Eugineers' Chub of Philadelphia some comparative figures, from tests undertaken to ascertain the relative value of coal, petroleum, and gas.

    ## Lbs. Water, from and at $212^{\circ} \mathrm{F}$.

    1 lb. anthracite coal evaporated........................................ 90
    1 lb bituminous cnal ..................................................... 10.14
    1 lb fuel oil, $36^{\circ}$ gravity ............................................. 16 . 48
    1 cubic fout gas, 20 C . P.............................................. 1.28
    The gas used was that obtained in the destillation of petroleum, having about the same fuel-value as natural or coal-gas of equal candle-power.
    Taking the efficiency of bitumincus coal as a basis, the calorific energy of petrolemm is more than cu\% greater than that of coal; whereas, theoretically, petroleum exceeds coal only about $45 \%$-the one containing 14,500 heat-units. and the other 21,000.

    Crude Petroleum vs. Indiant Elock Coal for Steamraising at the South Chicago Steel Works. (E. C. Potter,
     quired 25 men to operate them ; with fuel oil, 6 men were required, a saving of 19 men at $\$ 3$ per day, or $\$ 3 s^{\text {p }}$ per day.

    For one week's work 2731 bartels of oil were used, against 848 tons of coal requirel for the same work, showing 3.22 barrels of oil to be equivalent to 1 ton of coal. With oil at 60 cents per barrel and coal at $\$ 2.15$ per ton, the relative cost of oil to coal is as $\$ 1.93$ to $\$ 2.15$. No evaporation tests were made.

    Petroleum as a Metallurgical Fuel.-C. E. Felton (Trans. A. I. M. E, Xvii, $80 \%$ ) reports a selres of luals with oil as fuel in steel-heating and open-liearth steel-furnaces, and in raising steam, with results as follows: 1. In a run of six weeks the consumption of oil, partly refined (the paraffine and some of the naphtha being removed), in heating 14-inch ingots in siemens furnaces was about 616 gallons per ton of blooms. ?. In melting in a 30 -ton open-hearth furnace 48 gallons of oil were used per ton of ingots. 3. In a six weeks' trial with Lima oil from 47 to 54 gallons of oil were required per ton of ingots. 4. In a six months' trial with Siemens heating-furnaces the consumption of Lima oil was 6 gallons per ton of ingots Under the most favorable circimstances, charging lot ingots and running full capacity. 41/2 to 5 gallons per ton were required. 5. In raising steam in two 100-H.P. tubular boilers, the feed-water being supplied at $160^{\circ} \mathrm{F}$., the a verage praporation was about 12 pounds of water per pound of oil, the best 12 hours ${ }^{2}$ work being 16 pounds.

    In all of the trials the oil was vaporized in the Archer producer, an anparat. us for mixing the oil and superheated steam, and heating the mixture to a high temperature. From 0.5 lb . to 0.75 lb . of pea-coal was used per gal!on of oil in the producer itself.

    ## WUEL GAS.

    The following notes are extractell from a paper by W. J. Taylor on "The Energy of Fuel" (Trans. A. I. M. E., xviii, 205):

    Carbon Gas.-In the old Siemens producer, practically, all the heat of primary combustion-that is, the burning of solid carbon to carbon monoxide, or about $30 \%$ of the total carbon energy-was lost, as little or no stean was used in the prodncer, and nearly all the sensible heat of the gas was dissipated in its passage from the prolucer to the furnace, which was usually placed at a considerable distance.
    Modern practice has improved on this plan, by introducing steam with the
    air blown into theo producer, and by utilizing the sensible heat of the gas in the combustion-firnace. It ought to be possible to oxidize one out of every four lbs. of carbon with oxygen derived from water-vapor: The thermic reactions in this operation are as follows:

    Heat-units.
    4 lbs C burned to CO ( 3 lbs . gasified with air and 1 lb . with water)
    develop...... (which furrish 1.33 lbs of oxygen to combine with 1 $600^{\circ}$, absorbs

    3,748
    Leaving for radiation and loss 3,519

    17,600
    The steam which is blown into a producer with the air is almost all condensed into finely-divided water before entering the fuel, and consequently is considered as water in these calculations.
    The 1.5 lbs . of water liberates .167 lb . of hydrogen, which is delivered to the gas, and fields in combustion the same heat that it absorbs in the producer by dissociation. According to this calculation. therefore, $60 \%$ of the heat of primary combustion is theoretically recovered by the dissociation of steam, and, evell if all the sensible heat of the gas be counted, with radiation and other ninor items, as loss, jet the gas must carry $4 \times 14,500-$ $(3 \pi 48+3519)=50,733$ heat-units, or $8 \% \%$ of the calorific energy of the carbon. This estimate slows a loss in conversion of $13 \%$, without crediting the gas with its sensible hrat, or charging it with the heat required for generating the necessary steam, or taking into account the loss due to oxidizing some of the carbon to $\mathrm{CO}_{2}$. In good producer-practice the proportion of $\mathrm{CO}_{2}$ in the gas represents fiom $4 \%$ to $7 \%$ of the C burned to $\mathrm{CO}_{2}$, but the extra heat of this combustion should be largely recovered in the dissociation of more water-vapor, and therefore does not represent as much loss as it would indicate. As a conveyer of energy, this gas has the advantage of carrying 4.46 lbs. less nitrogen than would be present if the fourth pound of coal had been gasified with air; and in practical working the use of steam reduces the a mount of clinkering in the producer.
    Anthracite Gas.-In anthracite coal there is a volatile combustible varying in quantity from $1.5 \%$ to over $\% \%$. The amount of energy derived from the coal is shown in the following theoretical gasification made with coal of assumed composition: Carbon, $85 \%$ : vol. HC, $5 \%$; ash, $10 \%$; 80 lbs. carbon assumed to be burned to $\mathrm{CO} ; 5 \mathrm{lbs}$ carbon burned to $\mathrm{CO}_{2}$; three fourths of the necessary oxygen derived from air, and one fourth from water.

    | Process. | Pounds. | Cubic Feets. Anal by Vol. |  |
    | :---: | :---: | :---: | :---: |
    | $80 \mathrm{lbs}$. C burned to.... . .. . ... CO | 186.66 | 2529.24 | 33.4 |
    | 5 lbs. C burned to ....... ........ $\mathrm{CO}_{2}$ | 18.33 | 157.64 | 2.0 |
    | 5 lbs. vol. HC (distilled).......... ... | 5.00 | 116.60 | 1.6 |
    | 120 lbs . oxygen are required, of which 30 lbs froin $\mathrm{H}_{2} \mathrm{O}$ liberate | 3.75 | 712.50 | 9.4 |
    | 90 lbs . from air are associatied with N | 301.05 | 4064.17 | 53.6 |
    |  | 514.79 | 7580.15 | 100.0 |

    Energy in the above gas obtained from 100 lbs . anthracite:
    186.66 lbs CO .......... 807,304 heat-units.
    

    Total energy in gas per lb....... 2,248 " 100 lbs. of coal.. $1,349,500$ "
    Efficiency of the conversion ............... $86 \%$.
    The sum of CO and H exceeds the results obtained in practice. The sensible heat of the gas will probably account for this discrepancy, and, therefore, it is safe to assume the possibility of delivering at least $82 \%$ of the energy of the anthracite.

    Bituminous Gas.-A theoretical gasification of 100 lbs . of coal, containiug $55 \%$ of carbon and $32 \%$ of volatile combustible (which is above the average of Pittsburgh coal), is made in the following table. It is assumed that 50 lbs. of C are burned to CO and 5 lbs . to $\mathrm{CO}_{2}$; one fourth of the O is
    derived from sream and three fourths from air; the heat value of the volatile combustible is taken at 20,000 heat-units to the pound. In computing volumetric proportions all the volatile hydrocarbons, fixed as well as condensing, are classed as marsh-gas, since it is only by some such tentative assumption that even an approximate idea of the volunnetric composition can be formed. The energy, however, is calculated from weight:
    

    Water-gas.-Water gas is made in an intermittent process, by blowing up the fuel-bed of the producer to a high state of incandezcence (and in some cases utilizing the resulting gas, which is a lean producer-gas), then shutting off the air and forcing steam through the fuel, which dissociates the water into its elements of oxygen and hydrogen, the former combining with the carbon of the coal, and the latter being liberated.

    This gas can never play a very important part in the industrial field, owing to the large loss of energy entailed in its production, yet there are places and special purposes where it is desirable, even at a great excess in cost per unit of heat over producer-gas; for instance, in small high-temperature furnaces, where much regeneration is impracticable, or where the "blow-up" gas can be used for other purposes instead of being wasted.

    The reactions and energy required in the production of 1000 feet of watergas, composed, theoretically, of equal volumes of CO and H , are as follows:

    > 500 cubic feet of H weigh
    > 2.635 lbs .
    > 500 cubic feet of CO weigh
    > 36.89

    Total weight of 1000 cubic feet.
    39.525 lbs.

    Now, as CO is composed of 12 parts C to 16 of O , the weight of C in 36.89 lbs is 15.81 lbs. and of 021.08 lbs. When this oxygen is derived from water it liberates, as above, 2.635 lbs . of hydrogen. The heat developed and absorbed in these reactions (roughly, as we will not take iuto account the energy required to elevate the coal from the temperature of the atmosphere to say $1800^{\circ}$ ) is as follows:

    If this excess conld be made up from C burnt to $\mathrm{CO}_{2}$ withont loss by radiation, we would only have to burn an additional $4.83{ }^{2} \mathrm{lbs}$. C to supply this heat, and we conld then make 1000 feet of water-gas from $20.6 t$ lbs. of carbon (equal 24 lbs , of $85 \%$ coal). This won!d be the pertection of gas-making. as ihe gas would contain really the same energy as the coal; but instead, we require in practice more than donble this amount of eoal, and do not deliver more than $50 \%$ of the energy of the fuel in the gas, because the supporting heat is obtained in an indrect way and with imperfect combustion. Besides this, it is not often that the sum of the CO and H exceed $90 \%$, the balance being $\mathrm{CO}_{2}$ and N. But water-gas shonld be made twith much less loss of energy by buruing the "blow-up" (producer') gas in brick regenerators, the stored-up heat of which can be returned to the producer by the air used in blowing-up.
    'Ihe following table shows what may be considered average volumetric
    analyses，and the weight and energy of 1000 cubic feet，of the four types of gases used for heating and illuminating purposes：

    |  | $\left\|\begin{array}{c} \text { Natural } \\ \text { Gas. } \end{array}\right\|$ | Coal－ gas． | Water－ gas． | Producer－gas． |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | CO． | 0.50 | 6.0 | 45.0 | ${ }_{\text {Anthra }}$ | ${ }_{\text {Bitu }}$ |
    | H | 2.18 | 46.0 | 45.0 | 12.0 | 12．0 |
    | $\mathrm{CH}_{4}$ | 92.6 | 40.0 | 2.0 | 1.2 | 2.5 |
    | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 0.31 | 4.0 |  |  | 0.4 |
    | $\mathrm{CO}_{2}$ | 0.26 | 0.5 | 4.0 | 2.5 | 2.5 |
    | N | 3.61 | 1.5 | 2.0 | $5 \uparrow .0$ | 56.2 |
    | $\bigcirc$ | 0.34 | 0.5 | 0.5 | 0.3 | 0.3 |
    | Vapor |  | 1.5 | 1.5 |  |  |
    | Pounds in 1000 cubic feet． | \％15．6 | 3－2 0 | 45.6 | 65.6 | 65.9 |
    | Heat units in 1000 cubic feet | 1，100，000 | 7．55，000 | 322，000 | 13\％，455 | 156，917 |

    Natural Gas in Ohio and 耳ndiana．
    （Eng．and M．J．，April ：1，1894．）

    | Description． | Ohio． |  |  | Indiana． |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Fos－ tolia． | Findlay | $\left\lvert\, \begin{gathered} \text { St } \\ \text { Mar'y's. } \end{gathered}\right.$ | Muncie． | Ander－ son． | Koko－ ino． | Mar－ ion． |
    | Hydrogen． | 1.89 | 1.64 | 1.94 | 2.35 | 1.86 | 1.42 | 1.20 |
    | Marsh－gas． | 92.84 | 93.35 | 93.85 | 92.67 | 93.07 | 94.16 | 93．57 |
    | Olefiant gas． | ． 20 | ． 35 | ． 20 | ． 25 | ． 47 | ． 30 | ． 15 |
    | Carbon monoxide．． | ． 55 | ． 41 | ． 44 | ． 45 | ．73 | ． 55 | ． 60 |
    | Carbon dioxide．．．． | ． 20 | ． 25 | ． 23 | ． 25 | ． 26 | ． 29 | ． 30 |
    | Oxygen | ． 35 | ． 39 | ． 35 | ． 35 | ．4： | ． 30 | 55 |
    | Nitrogen． | 3.82 | 3.41 | 2.98 | 3.53 | 3.02 | 2.80 | 3.42 |
    | Hydrogen sulphide | ． 15 | ． 20 | ． 21 | ． 15 | ． 15 | 18 | ． 20 |

    Approximately 30,000 cubic feet of gas have the heating power of one ton of coal．

    Producermas from One Ton of coal．
    （W．H．Blauvelt，Trans．A．I．M．E．，xviii．614．）

    | Analysis by Vol． | $\left\lvert\, \begin{gathered} \text { Per } \\ \text { Cent. } \end{gathered}\right.$ | Cubic Feet． | Lbs． | Equal to－ |
    | :---: | :---: | :---: | :---: | :---: |
    | CO | 25.3 | 33，213．84 | 2451.20 | $1050.51 \mathrm{lbs} . \mathrm{C}+1400.7 \mathrm{lbs} . \mathrm{O}$ |
    | H． | 9.2 | 12，0ヶ亿． 66 | $6: 3.56$ | 63.56 ＂H． |
    | $\mathrm{CH}_{4}$ | 3.1 | 4，069．68 | 174.66 | $1 \widetilde{4} 4.66$＂ $\mathrm{CH}_{4}$ ． |
    | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 0.8 | 1，050．24 | 77.78 | 75．73＂ $\mathrm{C}_{2} \mathrm{H}_{4}$ ． |
    | $\mathrm{CO}_{2} \ldots$ ．${ }^{\text {a }}$ | 3.4 | 4，463．52 | 519.02 | 141.54 ＂${ }^{2}+377.44 \mathrm{lbs}$ O． |
    | $N$（by difference． | 58.2 | \％6，404．96 | 5659.63 |  |
    |  | 100.0 | 131，280．00 | 8945.85 |  |

    Calculated upon this basis，the $131,280 \mathrm{ft}$ ．of gas from the ton of coal con－ tained $20,311,162$ B．T．U．，or 155 B．T．U．per cubie ft．，or $22 \tilde{2} 0$ B．T．U．per lb．

    The composition of the coal from which this gas was made was as follows： Water． $1.26 \%$ ；volatile matter， $36.29 \%$ ；fixed carbon， $5 \% .95 \%$ ；sulphur， $0.70 \%$ ； ash， $3.18 \%$ ．One ton contains 1159.6 lbs．carbon and rie4 4 lbs．volatile com－ bustible，the energy of which is $31,302,200$ B．T．U．Hence，in the processes of gasification and purification there was a loss of $35.2 \%$ of the energy of the coal．

    The composition of the hydrocarbons in a soft coal is uncertain and quite complex；but the ultimate analysis of the average coal shows that it ap－ proaches quite nearly to the composition of $\mathrm{CH}_{4}$（marsh－gas）．

    Mr．Blauvelt emphasizes the following points as highly important in soft－ coal producer－practice：

    First. That a large percentage of the energy of the coal is lost when the gas is made in the ordinary low producer and cooled to the temperatmre of the air before being used. To prevent these sources of loss, the prodncer should be placed so as to lose as little as possible of the sensible heat of the gas, and prevent condensation of the hydrocarbon vapors. A high fuel-bed should be carried, keeping tbe producer cool on top, thereby preventing the breaking-down of the hydrocarbons and the deposit of soot, as well as keeping the carbonic acid low.
    Second. That a producer shonld be blown with as much steam mixed with the air as will maintain incandescence. This reduces the percentage of nitrogen and increases the hydrogen, thereby greatly enriching the gas. The temperature of the producer is kept down, diminishing the loss of heat wy radiation through the walls, and in a large measure preventing clinkers.
    The Comibustion of Producer-gas. (H. H. Campbell, Trans. A. I. M. E., xix, $1: 8$.) -The combustion of the components of ordinary pro-ducer-gas may be represented by the following formulæ:

    $$
    \begin{array}{ll}
    \mathrm{C}_{2} \mathrm{H}_{4}+6 \mathrm{O}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; & \stackrel{2 \mathrm{H}}{\mathrm{CH}_{4}}+\mathrm{O}=\mathrm{H}_{2} \mathrm{O} ; \\
    \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} ; & \mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2} .
    \end{array}
    $$

    Average Composition by Volume of Producer-gas: A, made with Open Grates, no Steam in Blast; B, Open Grates, Steam-Jet in Blast. 10 Samples of Each.

    |  | $\mathrm{CO}_{2}$. | O. | $\mathrm{C}_{3} \mathrm{H}_{4}$. | CO. | H. | $\mathrm{CH}_{4}$. | N. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | A min | 3.6 | 0.4 | 0.2 | 20.0 | 5.3 | 3.0 | 58.7 |
    | A max | 5.6 | 0.4 | 0.4 | 24.8 | 8.5 | 5.2 | 64.4 |
    | A average. | 4.84 | 0.4 | 0.34 | 22.1 | 6.8 | 3.74 | 61.88 |
    | $B \mathrm{~min}$ | 4.6 | 0.4 | 0.2 | 20.8 | 6.9 | 2.2 | 5~. ${ }^{\text {a }}$ |
    | $B \max$ | 6.0 | 0.8 | 0.4 | 24.0 | 9.8 | 3.4 | 6.2 |
    | B average. | 5.3 | 0.54 | 0.36 | 29.74 | 8.37 | 2.56 | 60.13 |

    The coal used contained carbon $82 \%$, hydrogen $4.7 \%$.
    The following are analyses of products of combustion :

    |  | $\mathrm{CO}_{2}$ | O. | CO. | $\mathrm{CH}_{4}$. | H. | N. |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | Minimum....... | 15.2 | 0.2 | trace. | trace. | trace. | 80.1 |
    | Maximum ...... | 17.2 | 1.6 | 2.0 | 0.6 | 2.0 | 83.6 |
    | Average ....... 16.3 | 0.8 | 0.4 | 0.1 | 0.2 | 82.2 |  |

    Use of Steam in Producers and in Roiler-iurnaces. ( $R$. W. Raymond, Thans. A. I. M. L., xa. 6:35.)-No possible use of steam can canse a gain of heat. If steam be introduced into a bed of incandescent carbon it is decomposed into hydrogen and oxygen.

    The heat absorbed by the reduction of one pound of steam to hydrogen is mich greater in amount than the heat generated by the union of the oxygen thus set free with carbon, forming either carbonic oxide or carbonic acid. Consequently, the effect of steam alone upon a bed of incandescent fuel is to chill it. In every water-gas apparatus, designed to produce by means of the decomposition of steam a fuel-gas relatively free from nitrogen. the loss of heat in the producer must be compensated by some reheating device.
    'this loss may be recovered if the hydrogen of the steam is subsequently burned, to form steam again. Such a combustion of the hydrogen is contemplated, in the case of fuel-gas, as secured in the subsequent use of that gas. Assuming the oxidation of $H$ to be complete, the use of steam will cause neither gain nor loss of heat, but a simple transference, the heat absorbed by steam decomposition being restored by hydrogen combustion. In practice, it may be donbted whether this restoration is ever complete. But it is certain that an excess of steam would defeat the reaction altogether, and that there nust be a certain proportion of steam, which permits the realization of important advantages, without too great a net loss in heat.

    The advantage to be secured (in boiler furnaces using small sizes of anthracite) consists principally in the transfer of heat from the lower side of the fire, where it is not wanted, to the npper side, where it is wanted. The decomposition of the steam below cools the fuel and the grate-bars, whereas a blast of air alone would produce, at that point, intense combustion (forming at first $\mathrm{CO}_{2}$ ), to the injury of the grate, the fusion of part of the fuel, etc.
    The proportion of steam most economical is not easily determined. The temperature of the steam itself, the nature of the fuel mixture, and the use or non-use of auxiliary air-supply, introduced into the gases above or
    beyond the fire-hed, are factors affecting the problem. (See Trans. A. I. M. E., xx. 625.)

    Gas Analyses by Volume and by Weight.-To convert an analysis of a mixed gas by volume into analysis by weight: Multiply the percentage of each constituent gas by the density of that gas (see p. 166). Divide each product by the sum of the products to obtain the percentages by weight.

    Gas-fuel for Small Furnaces.-E. P. Reichhelm (Am.' Mach., Jan. 10, 1895) discusses the use of gaseous fuel for forge fires, for dropforging, in annealing-ovens and furnaces for melting brass and copper, for case-hardening, muffe-furnaces, and kilns. Under ordinary conditions, in such furnaces he estimates that the loss by draught, radiation, and the heating of space not occupied by work is, with coal, $80 \%$, with petroleum $\% \%$, and with gas above the grade of producer-gas $25 \%$. He gives the following table of comparative cost of fuels, as used in these furnaces:

    | Kind of Gas. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Natural gas | 1,000,000 | 750.000 |  |  |
    | Coal-gas, 20 candle-power | 675,000 | 506.250 | \$1.25 | \$2.46 |
    | Carburetted water-gas. | 646,000 | 484,500 | 1.00 | 2.06 |
    | Gasolene gas, 20 candle-p | 690,000 | 517.500 | . 90 | 1.73 |
    | Water-gas from coke. | 313,000 | 234.750 | . 40 | 1.70 |
    | Water-gas from bituminous coal. | 317,00c | 28:2,750 | 45 | 1.59 |
    | Water-gas and producer-gas mixed | 185.000 | 138,750 | 20 | 1.44 |
    | Producer-gas... $\dddot{N}$............ | 150,004 | ${ }^{112,500}$ | 15 | 1.33 |
    | Naphtha-gas, fuel 212 gals. per 1000 ft . | 306.36: | 229,:44 | 15 | 65 |
    | Coal, $\$ 4$ per ton, per $1,000,000$ heat-units utilized .. ....... Crude petroleum, 3 cts. per gal., per 1,000.000 heat-units. |  |  |  | .73 .73 |

    Mr. Reichhelm gives the following figures from practice in melting brass with coal and with naphtha converted into gas: 1800 lbs . of metal require 1080 lbs . of coal, at $\$ 4.65$ per ton, equal to $\$ 251$, or, say, 15 cents per 100 lbs . Mr. T.'s report : 2500 lbs . of metal require 47 gals. of naphtha, at 6 cents per gal., equal to $\$ 2.82$, or, say, $111 / 4$ cents per 100 lbs .

    ## IILUMINATING-GAS.

    Coal-gas is made by distilling bituminous coal in retorts. The retort is usually a long horizontal semi-cylindrical or o shaped chamber, holding from 160 to 300 lbs . of coal. The retorts are set in "benches" of from 3 to 9 , heated by one fire, which is generally of coke The vapors distilled from the coal are converted into a fixed gas by passing through the retort, which is heated alınost to whiteness.

    The gas passes out of the retort through an "ascension-pipe" into a long horizontal pipe callerl the hydraulic main, where it deposits a portion of the tar it contains: thence it goes into a condenser, a series of iron tubes surrounded by cold water, where it is freed from condensable vapors, as ammonia-water, then into a waslier, where it is exposed to jets of water, cund into a scrubber, a large chamber partially filled with trays made of wood or iron, containing coke, fragments of brick or paving-stones, which are wet with a spray of water. By the washer and scrubber the gas is freed from the last portion of tar and ammonia and from some of the sulphur compounds. The gas is then finally purified trom sulphur compounds by passing it through lime or oxide of iron. The gas is drawn from the hydraulic main and forced through the washer, scrubber, etc., by an exhanster or gas pump.
    The kind of coal used is generally caking bituminons, but as usually this coal is deficient in gases of high illuminating power, there is added to it a portion of cannel coal or other enricher.

    The following table, abritged from one in Juhnson's Cyclopedia, shows the analysis, candle power, etc., of ₹ome gas coals and eurichers:

    | Gas-coals, etc. |  |  | 年 |  |  | Coke per ton of 2240 lbs. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |  | lbs. | bush |  |
    | Pittsburgh, Pa | 36.76 | 51.93 | $7.0 \%$ |  |  |  |  |  |
    | Wesimoreland, Pa | 36.00 | 58.00 | 6.00 | 10.642 | 16.6: | 1544 | 40 | 6420 |
    | Sterling, O. | 37.50 | 56.90 | 5.60 | 10.528 | 18.81 | 1480 | 36 | 3993 |
    | Despard, W. V | 40.00 | 53.30 | 6. 70 | 10,765 | 20.41 | 1540 | 36 | 2494 |
    | Darlington, O |  | 40.00 | 17.00 | 9,800 | 34.98 | 1320 | 32 | 2806 |
    | Petonia, W. Va | 46.00 | 41.00 | 13.00 | 13,200 | 42.79 | 1380 | 32 | 4510 |
    | Gralsamite, W. | 53.50 | 44.50 | 2.00 | 15,000 | 28.70 | 1056 | 44 |  |

    The products of the distillation of 100 lbs . of average gas-coal are about as follows. They vary according to the quality of coal and the temperature of distillation.

    Coke, 64 to 65 lbs .; tar, 6.5 to 7.5 lbs.; ammonia liquor, 10 to 12 lbs .; purified gas, 15 to 12 lbs ; ; impurities and loss, $4.5 \%$ to $3.5 \%$.
    The composition of the gas by volume ranges about as follows: Hydrogen, $38 \%$ to $48 \%$; carbonic oxide, $2 \%$ to $14 \%$; marsh-gas (Methane, $\mathrm{CH}_{4}$ ), $43 \%$ to $31 \%$; heavy hydrocarbons ( $\mathrm{C}_{n} \mathrm{H}_{2} n$, ethylene, propylene, benzole vapor, etc.), $7.5 \%$ to $4.5 \%$, nitrogen. $1 \%$ to $3 \%$.

    In the burning of the gas tlie nitrogen is inert; the hydrogen and carbonic oxide give heat but no light. The luminosity of the flame is due to the decomposition by heat of the heavy hydrocarbons into lighter hydrocarbons and carbon, the latter being separated in a state of extreme subdivision. By the leat of the flame this separated carbon is heated to intense whiteness, and the illuminating effect of the flame is due to the light of incandescence of the particles of carbon.
    The attainment of the highest degree of luminosity of the flame depends upon the proper adjnstment of the proportion of the heavy hydrocarbons (with due regard to their individual character) to the nature of the diluent mixed therewith.
    Investigations of Percy F . Frankland show that mixtures of ethylene and hydrogen cease to have any luminous effect when the proportion of ethylene does not exceed $10 \%$ of the whole. Mixtures of ethylene and carbonic oxide cease to have any lmminous effect when the proportion of the former does not exceed $20 \%$, while all mixtures of ethylene and marsh-gas have more 01 less liminons effect. The luminosity of a mixture of $10 \%$ etliylene and $90 \%$ marsh gas being equal to about 18 candles, and that of one of $20 \%$ ethylene and $80 \%$ marsh-gas about 25 candles. The illuminating effect of marsh-gas alone, when burned in an argand burner, is by no means inconsiderable.
    For further description. see the Treatises on Gas by King. Richards, and Hnghes: also Appleton's Cyc. Mech., vol. i. p. 900.

    Water-gas. - Water-gas is obtained by passing steam through a bed of coal; coke, or charcoal heated to redness or beyond. The steam is decomposed, its hydrogen being liberated and its oxygen burning the carbon of the fuel, producing carbonic-oxidegas. The chemical reaction is, $\mathrm{C}+\mathrm{H}_{2} \mathrm{O}$ $=\mathrm{CO}+2 \mathrm{H}$, or $2 \mathrm{C}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{C}+\mathrm{CO}_{2}+4 \mathrm{H}$, followed by a splitting up of the $\mathrm{CO}_{2}$. 1 laking $2 \mathrm{CO}+4 \mathrm{H}$. By weight the normal gas $\mathrm{CO}+2 \mathrm{H}$ is composed of $\mathrm{C}+\mathrm{O}+\mathrm{H}=25$ parts CO and 2 parts H , or $93.33 \% \mathrm{CO}$ and $6.66 \% \mathrm{H}$; by volnme it is composed of equal parts of carbonic oxide and hydrogen. Water-gas prodnced as above described las great heating-power, but no illuminating-power. It may, however, be used for lighting by causing it to heat to whiteness some solid substance, as is done in the Welsbach incandescent light.
    An illuninating-gas is made from water-gas by adding to it hydrocarbon gases or vapors, which are usually obtained from petroleum or some of its prodncts. A history of the development of modern illuminating water-gas processes, together with a description of the most recent forms of apparatus, is given by Alex. C. Humphreys, in a paper on "Water-gas in the United States," read before the Mechanical Section of the British Association for Advancement of Science, in 1889. After describing many earlier patents, be states that success in the manufacture of water-gas may be said to date

    ## ANALYSES OF WATER-GAS AND COAL-GAS COMPARED. 653

    from 1874, when the process of T. S. C. Lowe was introduced. All the later most successful processes are the modifications of Lowe's, the essential features of which were " an apparatus consisting of a generator and superlieater internally fired; the superheater being heated by the secondary combustion from the generator, the heat so stored up in the loose brick of the superheater being used, in the second part of the process, in the fixing or rendering permanent of the hydrocarbon gases; the secoud part of the process consisting in the passing of steam through the generator fire, and the admission of oil or hydrocarbon at some point between the fire of the generator and the loose filling of the superheater."

    The water-gas process thus has two periods: first the "blow," during which air is blown through the bed coal in the generator, and the partially burned gaseous products are completely iourned in the superheater, giving up a great portion of their heat to the fire-brick work contained in it, and then pass out to a chimney; second, the "run" during which the air blast is stopped, the opening to the chimney closed, and steam is blown through the incandescent bed of fuel. The resulting water-gas passing into the carburetting chamber in the base of the superheater is there charged with hydrocarbon vapors, or spray (such as naphtha and other distillates or crude oil) and passes through the superheater, where the hydrocarbon vapors become converted into fixed illuminating gases. From the superheater the combined gases are passed, as in the coal-gas process, through washers, scrubbers, etc., to the gas-holder. In this case, however, there is no am. monia to be removed.
    The specific gravity of water-gas increases with the increase of the heavy hydrocarbons which give it illuminating power. The following figures, taken from different authorities, are given by F. H. Shelton in a paper on Watergas, read before the Ohio Gas Light Association, in 1894:
    $\begin{array}{llllllllllll}\text { Candle-power } & \ldots & 19.5 & 20 & 22.5 & 24 . & 25.4 & 26.3 & 28.3 & 29.6 & .30 \text { to } & 31.9\end{array}$
    

    ## Analyses of Water-gas and Coal-gas Compared.

    The following analyses are taken from a report of Dr. Gideon E. Moore on the Granger Water-gas, 1885 :

    |  | Composition by Volume. |  |  | Composition by Weight. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Water-gas. |  | Coal-gas. Heidelberg. | Water-gas. |  | Coalgas. |
    |  | Worcester. | Lake. |  | Worcester. | Lake. |  |
    | Nitrogen ..... | 2.64 | 3.85 | 2.15 | 0.04402 | 0.06175 | 0.04559 |
    | Carbonic acid | 0.14 | 0.30 | 3.01 | 0.00365 | 0.00753 | 0.09992 |
    | Oxygen.. | 0.06 | 0.01 | 0.65 | 0.00114 | 0.00018 | 0.01569 |
    | Pthylene. | 11.29 | 12.80 | 2.55 | 0.18759 | 0.20454 | 0.05389 |
    | Propylene .. | 0.00 1.53 | 0.00 | 1.21 |  |  | $0.0383+$ |
    | Carbonic oxide | 28.26 | 2.63 23.58 | 1.33 8.88 | 0.07077 0.46934 | 0.11700 | 0.078 .5 |
    | Marsh-gas.... | 18.88 | 20.95 | 8.88 34.02 | 0.46934 0.17928 | 0.37664 0.19133 | 0.18758 |
    | Hydrogen | 37.20 | 35.88 | 46.20 | 0.04421 | 0.04103 | $0.0698 \%$ |
    |  | 100.00 | 100.00 | 100.00 | 1.00000 | 1.00000 | 1.00000 |
    | Density : Theory. | $\begin{aligned} & 0.5825 \\ & 0.5915 \end{aligned}$ | $\begin{aligned} & 0.6057 \\ & 0.6018 \end{aligned}$ | 0.4580 | .... . |  |  |
    | B. T. U. from 1 cu . ft.: Water liquid. " vapor. | $\begin{aligned} & 650.1 \\ & 597.0 \end{aligned}$ | $\begin{aligned} & 688.7 \\ & 646.6 \end{aligned}$ | $\begin{aligned} & 642.0 \\ & 577.0 \end{aligned}$ |  | ... |  |
    | Flame-temp.. | $5311.2^{\circ} \mathrm{F}$ | $5281.1^{\circ} \mathrm{F}$. | $5202.9^{\circ} \mathrm{F}$ |  |  |  |
    | Av.candle-power. | 22.06 | 26.31 |  |  |  |  |

    The heating values (B. T. U.) of the gases are calculated from the analysis by weight, by using the multipliers given below (computed from results of

    J . Thomsen), and multiplying the result by the weight of $1 \mathrm{cu} . \mathrm{ft}$. of the gas at $62^{\circ} \mathrm{F}$., and atmospleric pressure.
    The flame temperatures (theoretical) are calculated on the assumption of complete combustion of the gases in air, without excess of air.
    The candle-power was determined by photometric tests, using a pressure of $36-\mathrm{in}$. water-column, a candle consumption of 120 grains of spermaceti per hour, and a meter rate of $5 \mathrm{cu} . \mathrm{ft}$. per hour, the result being corrected for a temperature of $6 \%^{\circ} \mathrm{F}$. and a barometric pressure of 30 in . It appears that the candle-power may be regulated at the pleasure of the person in charge of the apparatus, the range of candle-power being from 20 to 29 candles, according to the manipulation employed.

    ## Calorific Equivalents of Constituents of Illuminatinggas.

    Heat-units from 1 lb .
    Water Water Liquid. Vapor.
    Ethylene
    P.

    Benzole vapor:
    18,954.0
    $20,134.8$
    19 881 Carbonic oxide. 1,034.2 Marsh.gas 17,845.0 Hydrogen.

    Heat-uuits from 1 lb
    Water Water
    Liquid. Vapor.
    4,395.6 4,395.6
    $24,0210 \quad 21,592.8$
    61,524.0 51,804.0

    Efficiency of a Water-gas Plant.-The practical efficiency of an illmminating water-gas setring is discussed in a paper by A. G. Glasgow (Proc. Ain. Gaslight Assn., 1890), from which the following is abridged:

    The results refer to 1000 cu . ft. of unpurified carburetted gas, reduced to $60^{\circ} \mathrm{F}$. The total anthracite charged per $1000 \mathrm{cu} . \mathrm{ft}$. of gas was 33.4 lbs ., ash and unconsumed coal removed 9.9 lbs., leaving total combustible consumed $23.5 \mathrm{lbs} .$, which is taken to have a fuel-value of 14500 B . 'I. U. per pound, or a total of 340,450 heat-units.

    |  |  | $\begin{gathered} \text { Composi- } \\ \text { tion by } \\ \text { Volume. } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Weight } \\ \text { per } \\ 100 \mathrm{cu} . \mathrm{ft} . \end{gathered}\right.$ | Composition by Weight. | Speciftc Heat. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | I. Carburettei $\begin{aligned} & \text { Water-gas. }\end{aligned}$ | $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{~S}$. | 3.8 | . 465842 | . 09647 | . 02088 |
    |  | $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n} \ldots \ldots$. | 14.6 | 1.139968 | . $2360 \%$ | . 08720 |
    |  | CO | 28.0 | 2.1868 | . 45285 | . 11226 |
    |  | $\mathrm{CH}_{4}$ | 17.0 | . 25854 | . 15710 | . 09314 |
    |  |  | 35.6 | . 1991464 | . 01124 | . 14041 |
    |  |  | 1.0 | .0ヶ8596 | .0162r | . 00397 |
    |  |  | 100.0 | 4.8288924 | 1.00000 | . $45 \% 86$ |
    | II. Uncarburetted | $\mathrm{CO}_{2}$ | 3.5 | . 429065 | . 1019 | . 02205 |
    |  | CO | 43.4 | 3.389540 | . 8051 | . 19958 |
    |  | H | 51.8 | . 289891 | . 0688 | . 23424 |
    |  | N | 1.3 | .102175 | . 0212 | . 00591 |
    |  |  | 100.0 | 4.210601 | 1.0000 | . $461 \% 8$ |
    | III. Blast products | ( CO | 17.4 | 2.133066 | . 2464 | . 05342 |
    |  |  | 3.2 | . 2850096 | .0329 | . 00718 |
    |  |  | 79.4 | $6.2405 \geqslant 24$ | . 2007 | . 17585 |
    |  |  | 100.0 | 8.6591980 | 1.0000 | . 23645 |
    | IV. Generator $\begin{aligned} & \text { blast-gases }\end{aligned}$ | $\mathrm{CO}_{2}$ | 9.7 | 1.189123 | . 1436 | . 031075 |
    |  | CO | 17.8 | 1.390180 | . 1680 | . 04164 亿 |
    |  |  | 72.5 | 5.698210 | . 6884 | . 167970 |
    |  |  | 100.0 | 8.274513 | 1.0000 | . 240692 |

    The heat energy absorbed by the apparatus is $23.5 \times 14,500=340,750$ heatunits $=A$. Its disposition is as follows :
    $R$, the euergy of the CO produced;
    $C$, the energy absorbed in the decomposition of the steam;
    $D$, the difference between the sensible heat of the escaping illuminating. gases and that of the entering oil;
    $\frac{E}{F}$, the heat carried off by the escaping blast products;
    $F$, the heat lost by radiation from the shells:
    $G$. the heat carried away from the shells by convection (air-currents);
    $H$, the heat rendered latent in the gasification of the oil;
    $I$, the sensible heat in the ash and unconsumed coal recovered from the generator.
    The heat equation is $A=B+C+D+E+F+G+H+I ; A$ being known. A comparison of the CO in Tables I and II show that $\frac{280}{434}$, or $64.5 \$$ of the volume of carburetted gas is pure water-gas, distriouted thus: $\mathrm{CO}_{2}$, $23 \% ; \mathrm{CO}, 28.0 \% ; \mathrm{H}, 33.4 \% ; \mathrm{N}, 0.8 \% ;=64.5 \%$. 1 lb . of CO at $60^{\circ} \mathrm{F} .=13.531 \mathrm{cu}$. ft . CO per 1000 cu . ft. of gas $=280 \div 13.531=20.694 \mathrm{lbs}$. Energy of the CO $=20.694 \times 4395.6=91,043$ heat-units, $=B .1 \mathrm{lb}$. of H at $60^{\circ} \mathrm{F} .=189.2 \mathrm{cu}$. ft. H per M of gas $=334 \div 1892=1.7653 \mathrm{lbs}$. Energy of the H per lb . (according to Thomsen, considering the steam generated by its combustion to be condensed to water at $75^{\circ} \mathrm{F}$.) $=61,524 \mathrm{~B}$. T. U. In Mr. Glasgow's experiments the steam entered the generator at $331^{\circ} \mathrm{F}$,; the heat required to raise the product of combustion of 1 lb . of H , viz., $8.98 \mathrm{lbs} . \mathrm{H}_{2} \mathrm{O}$, from water at $\hat{5} 5^{\circ}$ to steam at $331^{\circ}$ must therefore be deducted from Thomsen's figure, or $61,524-(8.98 \times 1140.2)=51,285$ B. T. U. per Ib. of H. Energy of the H, then, is $1.1653 \times 51,285=90,533$ heat-units, $=C$. The leat lost due to the sensible beat in the illuminatiing-gases, their temperature being $1450^{\circ} \mathrm{F}$., and that of the entering oil $235^{\circ} \mathrm{F}$., is 48.29 (weight) $\times .45 \% 86 \mathrm{sp}$. heat $\times 1215$ (rise of temperature) $=26,864$ heat-units $=D$.
    (The specific heat of the entering oil is approximately that of the issuing gas.)
    The heat carried off in 1000 cu . ft. nf the escaping blast products is 86.592 (weight) $\times .23645$ (sp. heat) $\times 1147^{4} 1^{\circ}$ (rise of tenp.) $)=30,180$ heat-units: the temperature of the escaping blast gases being $1550^{\circ} \mathrm{F}$., and that of the entering air $\mathrm{r}^{\circ} \mathrm{F}$. But the amount of the blast gases, by registration of an anemometer, clecked by a calculation from the analyses of the blast gases, was 2457 cubic feet for every 1000 cubic feet of carburetted gas Hiade. Hence the heat carried off per M1. of carburetted gas is $30,180 \times$ $2.457=74,152$ heat-units $=E$.
    Experiments made by a radiometer covering four square feet of the shell of the apparatus gave figures for the amount of heat lost by radiation $=12,454$ heat units $=F$, and by convection $=15,696$ leat-units $=G$.
    The heat rendered latent by the gasefication of the oil was found by taking the difference between all the heat fed into the carburecter and superheater and the total heat dissipated therefrom to be 12,841 heat-units $=H$. The sensible heat in the ash and unconsumed coal is $9.9 \mathrm{lbs} . \times 1500^{\circ} \times .25$ $($ sp. ht. $)=3712$ heat-units $=I$.
    The sum of all the items $B+C+D+E+F+G+H+I=327,295$ heatunits, which substracted from the heat energy of the coinbustible consumed, 340,750 heat-units, , leaves 13,455 heat-units, or 4 per cent, unaccounted for.
    Of the total heat energy of the coal consumed, or 310,750 heat-units, the energy wasted is the sum of items $D, E, F, G$, and $I$, anlounting to $132,8 \% 8$ heat-units, or 39 per cent; the remainder, or 207,872 heat-units, or 61 per cent, being utilized. The efficiency of the apparatus as a heat machine is therefore 61 per cent.
    Five gallons, or 35 lbs . of crude petroleum were fed into the carburetter per 1000 cu .ft. of gas made; deducting 5 lbs . of tar recovered, leaves 30 lbs . $\times 20,000=600,000$ heat-units as the net heating value of the petroleun used. Adding this to the heating value of the coal, 340,750 B. T. U., gives 940,750 heat-units, of which there is found as heat energy in the carburetted gas, as in the table below, 764.050 heat units, or 81 per cent, which is the conmercial efficiency of the apparatus, i.e., the ratio of the energy contained in the finished product to the total energy of the coal and oil consumed.
    The heating power per M. cu. ft. of | The heating power per M. of the the carburetted gas is
    

    The candle-power of the gas is 31 , or 6.2 candle-power per gallon of oil used. The calculated specific gravity is .6355, air being 1 .
    For description of the operation of a modern carburetted water-gas plant, see paper by J. Stelfox, Eng'g, July 20, 1894, p. 8?
    Space required for a Water-gas Planto-Mr. Shelton, taking 15 modern plants of the form requiring the most floor-space, figures the average floor-space required per 1000 cubic feet of daily capacity as follows:

    | Water-gas Plants of Capacity in 24 hours of | Require an Area of Floor-sp each 1000 cu . ft. of about |
    | :---: | :---: |
    | 100,000 cubic feet | . 4 square feet. |
    | 200,000 " " | 3.5 " ${ }^{\text {a }}$ |
    | 400,000 " | 2.75 |
    | 600,000 " | 2 to 2.5 sq |
    | 7 to 10 million cubic | .1.25 to 1.5 sq. ft. |

    These figures include scrubbing and condensing rooms, but not boiler and engine rooms. In coal-gas plants of the most modern and compact forms one with 16 benches of 9 retorts each, with a capacity of $1,500,000$ cubic feet per 24 hours, will require 4.8 sq . ft. of space per $1000 \mathrm{cu} . \mathrm{ft}$. of gas, and one of 6 benches of 6 retorts each, with 300,000 cu. ft. capacity per 24 hours will require 6 sq . ft. of space per 1000 cu . ft. The storage-room required for the gas-making materials is: for coal-gas, 1 cubic foot of room for every 232 cubic feet of gas made; for water-gas made from coke, 1 cubic foot of roont for every 373 cu . ft . of gas made; and for water-gas made from anthracite, $1 \mathrm{cu} . \mathrm{ft}$. of room for every 645 cu . ft . of gas made.
    The comparison is still more in favor of water-gas if the case is considered of a water-gas plant added as an auxiliary to an existing coal-gas plant; for, instead of requiring further space for storage of coke, part of that already required for storage of coke produced and not at once sold can be cut off, by reason of the water-gas plant creating a constant demand for more or less of the coke so produced.

    Mr. Shelton gives a calculation showing that a water-gas of $.625 \mathrm{sp} . \mathrm{gr}$. would require gas-mains eight per cent greater in diameter than the same quantity coal-gas of $.4 * 5 \mathrm{sp}$. gr. if the same pressure is maintained at the holder. The same quantity may be carried in pipes of the same diameter if the pressure is increased in proportion to the specific gravity. With the same pressure the increase of candle-power about balances the decrease of flow. With five feet of coal-gas, giving, say, eighteen candle-power, 1 cubic foot equals 3.6 candle-power; with water-gas of 23 candle-power, 1 cubic foot equals 4.6 candle-power, and 4 cubic feet gives 18.4 candle-power, or more than is given by 5 cubic feet of coal-gas. Water-gas may be nade from oven-coke or gas-house coke as well as from anthracite coal. A watergas plant may be conveniently run in connection with a coal-gas plant, the surplus retort coke of the latter being used as the fuel of the former.
    In coal-gas making it is impracticable to enrich the gas to over twenty candle-power without causing too great a tendency to smoke, but water-gas of as high as thirty candle-power is quite common. A mixture of coal-gas and water-gas of a higlier C.P. than $\because 0$ can be advantageously distributed.

    Fuel-value of, Illuminating-gas.--E. G. Love (School of Mines Qtly, January, 1892) describes F. W. Hartley's calorimeter for determining the calorific power of gases, and gives results obtained in tests of the carburetted water-gas made by the municipal branch of the Consolidated Co. of New York. The tests were made from time to time during the past two years, and the figures give the heat-mnits per cubic foot at $60^{\circ} \mathrm{F}$. and 30 inches pressure: $715.692,725,732,691,738,735,703,734,730,731,727$. Average, F:21 heat units. Similar tests of mixtures of coal-and water-gases made hy other branches of the same company give 694, $715,681,692,727,665,695$, and 686 heat-units per foot, or an average of 694.7. The average of all these tests was 710.5 heat-units, and this we may fairly take as representing the calorific power of the illuminating gas of New York. One thousand feet of this gas, costing $\$ 1.25$, would therefore yield $\$ 10,500$ heat-units, which would be equivalent to 568,400 heat-units for $\$ 1.00$.
    The comınon coal-gas of London, with an illuminating power of 16 to 17 candles, has a calorific power of about 668 units per foot, and costs from 60 to $i 0$ cents per thousand.

    The product obtained by decomposing steam by incandescent carbon, as effected in the Motay process, consists of about $40 \%$ of CO , and a little over $50 \%$ of H .

    This mixture would have a heating-power of about 300 units per cubic foot, and if sold at 50 cents per 1000 cubic feet would furnish 600,000 units for $\$ 1.00$ as compared with 568,400 units for $\$ 1.01$ from illuminating gas at $\$ 1.25$ per 1000 cubic feet. This illuminating-gas if sold at $\$ 1.15$ per thousand would therefore be a more economical heaving agent than the fuel-gas mentioned, at 50 cents per thousand, and be much more advantageous than the latter, in that one main, service, and meter could be used to furnish gas for both lighting and heating.

    A large number of fuel-gases tested by Mr. Love gave from 184 to 470 heatunits per foot, with an average of 309 units.

    Taking the cost of heat from illuminating-gas at the lowest figure given by Mr. Love, viz., $\$ 1.00$ for 600,000 heat-units, it is a very expensive fuel, equal to coal at $\$ 40$ per ton of 2000 lbs ., the coal having a calorific power of only 12,000 heat-units per pound, or about $83 \%$ of that of pure carbon:

    $$
    600,000:(12,000 \times 2000):: \$ 1: \$ 40 .
    $$

    ## FLOW DF GAS IN PIPES.

    The rate of flow of gases of different densities, the diameter of pipes required, etc., are given in King's Treatise on Coal Gas, vol. ii. 374, as follows:

    $$
    \text { If } \left.\begin{array}{rl}
    d & =\text { diameter of pipe in inches, } \\
    Q & =\text { quantity of gas in cu. ft. per } \\
    \text { hour, } \\
    h & =\text { length of pipe in yards, } \\
    h & =\text { pressure in inches of water, } \\
    s & =\begin{array}{l}
    \text { specific gravity of gas, air be- } \\
    \text { ing } 1,
    \end{array}
    \end{array}\right\} \begin{aligned}
    & d=\sqrt[5]{\frac{Q^{2} s l}{(1350)^{2} l}}, \\
    & h=\frac{Q^{2} s l}{(1350)^{2} d^{5}}, \\
    & Q=1350 d^{2} \sqrt{\frac{d h}{s l}}=1350 \sqrt{\frac{d^{5} h}{s l}} .
    \end{aligned}
    $$

    Molesworth gives $Q=1000 \sqrt{\frac{d^{b} h}{s l}}$.
    J. P. Gill, Am. Gas-light Jour. 1894, gives $Q=1291 \sqrt{\frac{d^{6} h}{s(l} \frac{1-d)}{}}$.

    This formula is said to be based on experimental data, and to make allowance for obstructions by tar, water, and other bodies tending to check the flow of gas through the pipe.
    A set of tables in Appleton's Cre. Mech. for flow of gas in 2,6 , and 12 in . pipes is calculated on the supposition that the quantity delivered varies as the square of the diameter instead of as $d^{2} \times \sqrt{\bar{l},}$ or $\sqrt{i^{5}}$.
    These tables give a flow in large pipes much less than that calculated by the formulæ above given, as is shown by the following example. Length of pipe 100 yds ., specific gravity of gas 0.42 , pressure 1 -in. water-column

    $$
    \begin{aligned}
    & \boldsymbol{Q}=1350 \sqrt{\frac{d^{5} h}{s l}} \\
    & Q=1000 \sqrt{\frac{d^{6} h}{s l}} \cdots \ldots \ldots \ldots \ldots \ldots \quad 873 \\
    & \boldsymbol{Q}=1291 \sqrt{\frac{d^{5} h}{s(l+d)} \cdots \ldots \ldots \ldots . \quad 1116} \\
    & \text { Table in App. Cyc. } \\
    & 1290
    \end{aligned}
    $$

    An experiment made by Mr. Clegg, in London, with a $4-\mathrm{in}$. pipe, 6 miles long, pressure 3 in . of water, specific gravity of gas 398 , gave a discharge into the atmosphere of 852 cu . ft. per hour, after a correction of 33 cu . ft. was made for leakage.

    Substituting this value, 852 cu . ft., for $Q$ in the formula $Q=C \sqrt{l^{6} h \div s l}$, we find $C$, the coefficient, $=997$, which corresponds nearly with the formula giveu by Molesworth.

    Services for Lamps. (Molesworth.)

    |  | Ft. from | Require |  | Ft. from | Requirs |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lamps. | Main. | Pipe-bore. | Lamps. | Main. | Pipe-bors. |
    | 2 | 40 | $3 / 8 \mathrm{in}$. | 15 | 130 | 1 in . |
    | 4. | .. 40 | $1 / 2 \mathrm{in}$. | 20. | 150 | $11 / 4 \mathrm{in}$. |
    |  | . 50 | 5 in. | 25 | 180 | $11 / 2 \mathrm{in}$. |
    | 10... | .. 100 | $3 / 4 \mathrm{in}$. | 30 | 200 | $13 / 4 \mathrm{in}$. |

    (In cold climates no service less than $\frac{3}{4}$ in. should be used.)

    ## Maximum Supply of Gas through Pipes in cu. ft. per Hour, Specinic Gravity being taken at .45 , calculated from the Formula $Q=1000 \sqrt{d^{5} / t \div s l}$. (Molesworth.)

    Length of Pipe $=10$ Yards.

    | Diameter of Pipe in Inches. | Pressure by the Water-gauge in Inches. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | . 1 | . 2 | . 3 | . 4 | . 5 | . 6 | . 7 | . 8 | . 9 | 1.0 |
    | 3/8 | 13 | 18 | 22 | 26 | 29 | 31 | 34 | 36 | 38 | 41 |
    | 1/3 | 26 | 37 | 46 | 53 | 59 | 64 | $\%$ | 74 | 79 | 83 |
    | $3 / 4$ | 73 | 103 | 126 | 145 | 16: | 187 | 192 | 205 | 218 | 230 |
    | 1 | 149 | 211 | 25.5 | 298 | 333 | 365 | 394 | $42 \%$ | 447 | 471 |
    | 11/4 | 260 | 368 | 451 | $5 \because 1$ | $58 \%$ | 6:38 | 659 | 7.37 | 781 | 82:3 |
    | $11 / 3$ | 411 | 581 | 711 | 821 | 918 | $100{ }^{\text {c }}$ | 108: | 1162 | 123: | 1299 |
    | 2 | 843 | 1192 | 1460 | 1686 | 1886 | 2066 | 2231 | 2385 | 25:30 | 2667 |

    Lengti of Pipe $=100$ Yards.

    Pressure by the Water-gauge in Inches.

    |  | . 1 | . 2 | . 3 | . 4 | . 5 | . 75 | 1.0 | 1.25 | 1.5 | 2 | 2.5 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 88 | 12 | 14 |  | 19 51 | $\begin{aligned} & 23 \\ & 68 \end{aligned}$ |  |  | 32 89 | 36 103 | 42 115 |
    | 3 | 23 | $3 \cdot 2$ | 42. | 46 | 51 | 63 | \%3 | 81 | 89 | 103 | 115 |
    | 1. | 47 | $6 \pi$ | 88 | 91 | 105 | 129 | 149 | 167 | 183 | 211 | 236 |
    | 11/4 | 82 | 116 | 14.3 | 165 | 184 | 22.5 | 2' 6 | 291 | 319 | 368 | 412 |
    | 1112 | 130 | 184 | 225 | 260 | 290 | 356 | 411 | 459 | 503 | 581 | 649 |
    | ${ }_{2}$ | 26 T | $37 \%$ | 462 | 533 | 596 | \% 73 | 84.3 | 943 | 1033 | 1193 | 1333 |
    | $21 / 3$ | 466 | 659 | $80 \%$ | 932 | 104: | 1276 | 14\%3 | 1647 | 1804 | 2083 | 23:39 |
    | 3 | 735 | 1039 | 1270 | $14 \% 0$ | 1643 | 2012 | 23.3 | 2598 | 28.16 | 3286 | 36.4 |
    | 31/2 | 1080 | 15.8 | 18.1 | 2161 | 2416 | 2958 | 3416 | 3820 | 4184 | 4831 | 540: |
    | 4 | 1508 | 21:3) | 2613 | 3017 | 33373 | 4131 | $4{ }^{17} 0$ | 5333 | 584\% | 6746 | \%542 |

    Lengtif of Pipe $=1000$ Yards.

    |  | Pressure by the Water-gauge in Inches. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | . 5 | . 75 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
    | 1 | 33 | 41 | 47 | 58 | 67 | 75 | 82 |
    | 1312 | 92 | 113 | 130 | 159 | 184 | 205 |  |
    | 2 | 189 | 231 | 267 | 327 | 377 | 422 | 462 |
    | 21/2 | 329 | 403 | 466 | 571 | 659 | 737 | 807 |
    | 3 | 520 | 636 | 735 | 900 | 1039 | 1162 | 1273 |
    | 4 | 1067 | 1306 | 1508 | $184 \%$ | 2133 | 2385 | 2613 |
    | 5 | 1863 | 298\% | $\because 635$ | 3224 | 3727 | 4167 | 4564 |
    | 6 | 2939 | 3600 | 4157 | 5091 | $58 \% 9$ | 6573 | 7200 |

    Length of Pipe $=5000$ Yards.

    | Diameter | Pressure by the Water-gauge in Inches. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Inches. | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
    | ${ }_{3}^{2}$ | 119 329 | 146 402 | 169 | 189 | 207 |
    | 4 | 6T5 | ${ }_{826}$ | ${ }_{955}^{465}$ | 520 1067 | 569 |
    | 5 | 1179 | 1443 | ${ }_{1667}$ | 1067 1863 | 1168 2041 |
    | ${ }_{7}^{6}$ | 1879 2733 | 2237 3347 | 2629 | 2939 | $3 \times 20$ |
    | 8 | ${ }_{3816}$ | 3347 $46 \% 4$ | 3865 <br> 5397 | 4321 6034 | 4734 6610 |
    | 9 10 | 5123 6667 | $627^{4} 4$ | ${ }_{7245}$ | ${ }_{8100}^{6034}$ | 6610 8873 |
    | 12 |  | 8165 | 9428 | 10541 | 11547 |
    |  |  | 12880 | 14872 | 16628 | 18215 |

    Mr. A. C. Humphreys says his experience goes to show that these tables give too small a flow, but it is difficult to accurately check the tables, on account of the extra friction introduced by rough pipes, bends, etc. For bends, one rule is to allow 1/42 of an inch pressure for each right-angle bend.
    Where there is apt to be trouble from frost it is well to use no service of less diameter than $3 / 4$ in., no matter how short it may be. In extremely cold climates this is now oftell increased to 1 in ., even for a single lamp. The best practice in the U. S. now condemns any service less than $3 / 4 \mathrm{in}$.

    ## STEAM.

    The Temperature of Steam in coutact with water depends upon the pressure under which it is generated. At the ordinary atmospheric pressure ( 14.7 lbs . per sq. in.) its temperature is $212^{\circ} \mathrm{F}$. As the pressure is increased, as by the steam being generated in a closed vessel, its temperature, and that of the water in its presence, increases.

    Saturated Steam is steam of the temperature due to its pressurenot superlieated

    Superheated steam is steain heated to a temperature above that due to its pressure.
    Dry Steam is steam which contains no moisture. It may be either saturated or superheated.

    Wet Steam is steam containing intermingled moisture, mist, or spray. It lias the same temperature as dry saturated steam of the same pressure.

    Water introduced into the presence of superheated steam will flash into vapor until the temperature of the steam is reduced to that due its pressure. Water in the presence of saturated steam has the same temperature as the steam. Should cold water be introduced, lowering the temperature of the whole mass, some of the steam will be condensed, reducing the pressure and temperature of the remainder, until an equilibrinm is established.
    Temperature and Pressure of Saturated Steam. - The relation between the temperature and the pressure of steann, according to Regnault's experiments, is expressed by the formula (Buchanan's, as given by Clark) $t=\frac{2938.16}{6.199354}$ then $p$ is the pressure in pounds per square inch and the temperature of the steam in Fahrenheit degrees. sures of from 1.68 lbs between $120^{\circ} \mathrm{F}$. and $446^{\circ} \mathrm{F}$., corresponding to presWood's and Peabody's Thermodynamics.) 445 lbs per square (For other formulæ see rootal HPeat of Saturated Stea.)
    Regnault's experiments, the formula feam (above $32^{\circ} \mathrm{F}$.) - According to $305\left(t-3 \%^{\circ}\right)$, in which $t$ is temperature Falr heat of steam is $H=1091.7+$ kine and many others; Clark gives 1091.16 instead $H$ the heat-units. (Ran-

    Latent Heat of Steam. -The formilead of 1091.7.
    givell by Rankine and others, is $L=1091$ r mula, in Fahrenheit units, as given by Clark, is $695\left(t-32^{\circ}\right)$. Clausius's for

    The total heat in steam (above $32^{\circ}$ ) includes three elements:
    1st. The heat required to raise the temperature of the water to the temperature of the steam
    $2 d$. The heat required to evaporate the water at that temperature, called internal latent heat.

    3d. The latent heat of volume, or the external work done by the steam in making roon for itself against the pressure of the superincumbent atmosphere (or surrounding stean if inclosed in a vessel).
    The sum of the last two elements is called the latent heat of steam. In Buel's tables (Weisbach, vol. ii., Dubois's translation) the two elements are given separately.

    Hatem Heat of Volume of Saturated Steam. (External Work.)-The following formulas are sufficiently accurate for occasional use within the given ranges of pressure (Clark, S. E.):
    From 14.7 lbs . to 50 lbs . total pressure per square inch... $55.900+.0772 t$. From 50 lbs . to 200 lbs . total pressure per square inch.... $59.191+.0655 t$.

    Heat required to Generate 1 lb . of Steam from water at $39^{\circ} \mathrm{F}$. Sensible heat, to raise the water from $3 \mathfrak{2}^{\circ}$ to $212^{\circ}=\ldots$. Heat-units. 180.9 Latent heat, 1 , of the formation of steam at $212^{\circ}=\ldots . .894 .0$ 2 , of expansion against the atmospheric pressure, 2116.4 lbs . per sq. $\mathrm{ft}, \times 26.36 \mathrm{cu} . \mathrm{ft}$. $\begin{array}{rlll}=55,786 \text { foot-pounds } \div 788 & =\ldots \ldots \ldots \ldots & 71.7 & \frac{965.7}{1146.6} \\ \text { Total heat above } 3 \overbrace{}^{\circ} \mathrm{F} \ldots \ldots \ldots . & & & \end{array}$

    The Heat Unit, or British rhermal Unit. -The definition of the heat-unit used in this work is that of Rankine, accepted by most modern writers, viz., the quantity of heat required to raise the temperature of 1 lb . of water $1^{\circ} \mathrm{F}$. at or near its temperature of inaximum density ( $39.1^{\circ} \mathrm{F}$.). Peabody's definition, the heat required to raise a pound of water from $6: 3^{\circ}$ to $63^{\circ} \mathrm{F}$. is not generally accepted. (See Thurstou, Trans. A. S. M. E., xiii. 351.)

    Specific FIeat of Saturated Steam.-The specific heat of saturated steam is .315 , that of water being 1 ; or it is 1.281 , if that of air be 1 . The expression . 305 for specific heat is taken in a compound sense, relating to changes both of volume and of pressure which takes place in the elevation of temperature of saturated steam. (Clark, S. E.)

    This statement by Clark is not surictly accurate. When the temperature of saturated steam is elevated, water being present and the steam remaining saturated, water is evaporated. To raise the temperathre of 1 lb . of water $1^{\circ} \mathrm{F}$. requires 1 thermal unit, and to evaporate it at $1^{\circ} \mathrm{F}$. higher would require 0.695 less thermal unit, the latent heat of saturated steain decreasing 0.695 B.T.U. for each increase of temperature of $1^{\circ} \mathrm{F}$. Hence 0.305 is the specific heat of water and its saturated vapor combined.
    When a unit weight of saturated steam is increased in temperature and in pressure, the volume decreasing so as to just keep it saturated, the specific heat is negative, and decreases as temperature increases. (See Wood, Therm., p. 147; Peahody, Therm., 1. 93.)
    Density and Volume of Saturated Steam. -The density of steam is expressed by the weight of a given volume, say one cubic foot; and the volume is expressed by the number of cubic feet in one pound of steam.

    Mr. Brownlee's expression for the density of saturated stean in terms of the pressure is $D=\frac{p^{.941}}{330.36}$, or $\log D=.941 \log p-2.519$, in which $D$ is the density, and $p$ the pressure in pounds per square inch. In this expression, p.041 is the equivalent of $p$ raised to the $16 / 17$ power, as employed by Rankine.
    The volume $v$ being the reciprocal of the density,

    $$
    v=\frac{330.36}{p^{.941}}, \text { or } \log v=2.519-.941 \log p
    $$

    Relative Volume of Steam. - The relative volume of saturated steam is expressed by the number of volumes of steam produced from cne
    volume of water, the volume of water being measured at the temperature $39^{\circ} \mathrm{F}$. The relative volume is found by multiplying the volume in cu. ft . of one lb. of staam by the weight of a cn. ft. of water at $39^{\circ} \mathrm{F}$., or 62.425 lbs .
    Gaseous Steam.-When saturated steam is superheated, or surcharged with heat, it advances from the condition of saturation into that of gaseity. The gaseons state is only arrived at by considerably elevating the temperature, supposing the pressure remains the same. Steam thus sufficiently superheated is known as gaseous steam or steam gas.

    Total Heat of Gaseous Steam.-Regnault found that the total heat of gaseous steam increased, like that of saturated steam, uniformly with the temperature, and at the rate of $4 \% 5$ thermal units per pound for each degree of temperature, under a constant pressure.

    The general formula for the total heat of gaseous steam produced from 1 pound of water at $32^{\circ} \mathrm{F}$. is $H=1074.6+.475 t$. [This formula is for vapor generated at $33^{\circ}$. It is not true if generated at $212^{\circ}$, or at any other temperature than $3 \geqslant^{\circ}$. (Prof. Wood)]

    Tho specfic Heat of Gaseous Stearm is .475 , under constant pressure, as found by Kegnanlt. It is identical with the coefficient of inerease of total heat for each degree of temperature. [This is at atmospheric pressure and $2 \omega^{\circ} \mathrm{F}$. He found it not trie for any other pressure. Theory indicates that it would be greater at higher temperaturer. (Prof. Wood))
    rine Specidic Density of Gaseous Steam is .622 , that of air being 1. That is to say, the weight of a cubic foot of Laseous steam is about five eighths of that of a cubic foot of air, of the same pressure and temperature.
    The density or weight of a cubic foot of gaseons steam is expressible by the same formula as that of air, except that the multiplier or coefficient is less in proportion to the less specific density. Thms,

    $$
    D^{\prime}=\frac{2.70 \pi 4 p \times .622}{t+461}=\frac{1.684 p}{t+461}
    $$

    in which $D^{\prime}$ is the weight of a cubic foot of gaseous steam, $p$ the total pressure per square inch, and the temperature Fahrenheit.
    Superheated Stean. - The above remarks concerning gaseous steam gre taken from Clark's sieam engine. Wood gives for the total heat (above $3 \%^{\circ}$ ) of superheated steam $H=1091.7+0.48\left(t-3 \%^{\circ}\right)$.
    The following is abridged from Peaborly (Therm., p. 115, etc.).
    When far removed from the temperature of saturation, superheated steam follows the laws of perfect gases very nearly, but near the temperature of saturation the departure from those laws is too great to allow of calculations by them for engineering purposes.
    The specific heat at constant pressure, $C p$, from the mean of three experiments by Regnault, is 0.4805 .

    Values of the ratio of $C p$ to specific heat at constant volume:

    $$
    \begin{array}{ccccccc}
    \text { Pressure } p, \text { pounds per square inch.. } & 5 & 50 & 100 & 200 & 300 \\
    \text { Ratio } C p \div C v=k= & 1.335 & 1.332 & 1.330 & 1.3 \div 4 & 1.316
    \end{array}
    $$

    Zeuner takes $k$ as a constant $=1.333$.
    Specific Heat at Constant Volume, Superheated Steam.

    | Pressure, pounds per square inch...... | 5 | 50 | 100 | 200 | 300 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Specific heat $C v \ldots . . . . . . . . . . . . . . . . . . . . . . . . .3 .51 ~$ | .348 | .346 | .344 | .341 |  |

    It is quite as reasonable to assume that $C_{v}$ is a constant as to suppose that $C r$ is constant, as has been assmmed. If we take $C v$ to be constant, the $C_{p}$ will appear as a variable.
    If $p=$ pressure in lbs. per sq. ft., $v=$ volume in cubic feet, and $T=$ temperature in degrees Falrenheit +460.7 , then $p v=93.5 T-9 \% 1 \mu^{\frac{1}{4}}$.

    Total heat of superheated steant, $H=0.4805\left(T-10.38 p^{\frac{T}{4}}\right)+85 \% .2$.
    rehe IRationalization of Eegnanlt's Experiments on Steam. (J. McFarlane Gray, Proc. Insr. M. E., July, 188:\%)--The formulæ constructed by Regnault are strictly empirical, and were based entirely on his experiments. They are therefore not valid beyond the range of temperatures and pressures observed.

    Mr. Gray has made a most elaborate calculation, based not on experiments but on fundamental principles of the:modynanics. fron which he deduces formulæ for the pressure and total heat of steam, and presents tables calcu-
    lated therefrom whiclt show substantial agreerrient with Regnault's figures. He gives the following examples of steam-pressures calculated for tempere tures beyond the range of Regnault's experiments.

    | Temperature. |  | Pounds per sq. in. | Temperature. |  | Pounds per sq. in. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | C. | Fahr. |  | C. | Fahr |  |
    | 230 | 446 | 406.9 | 310 | 644 | 2156.2 |
    | 240 | 464 | 488.9 | 360 | 680 | 2742.5 |
    | 250 | 482 | 579.9 | 380 | 716 | 3448.1 |
    | 260 | 500 | 691.6 | 400 | 759 | 4300.2 |
    | 280 | 5336 | 940.0 | 415 | ${ }^{779} 8$ | 5017.1 5659 |
    | 300 | 57.2 | 1261.8 | 427 | 800.6 | 5659.9 |
    | 320 | 608 | 1661.9 |  |  |  |

    These pressures are higher than those obtained by Regnault's formula, which gives for $41.5^{\circ} \mathrm{C}$. only $406 \%^{\circ} \mathrm{i}$ lbs. per square inch.
    Table of the Properties of Saturated Steam.- In the table of properties of saturated steam on the following pages the figures for tem. perature, total heat, and latent heat are taken, up to 210 lbs . absolute pressure, from the tables in Porter's Steam-engine Indicator, which tables have been widely accepted as standard by American engineers. The figures for total heat, given in the original as from $0^{\circ} \mathrm{F}$., have been changed to heat above $32^{\circ} \mathrm{F}$. The figures for weight per cubic foot and for cubic feet per pound have been taken from Dwelshauvers-Dery's table, Trans. A. S. M. E., vol. xi., as being probably more accurate than those of Porter. The figures for relative volume are from Buel's table, in Dubois's translation of Weisbach, vol. ii. They agree quite closely with the relative volumes calculated from weights as given by Dwelshauvers. From 211 to 219 lbs . the figures for temperature, total heat, and latent heat are from Dwelshauvers' table ; and from 220 to 1000 lbs all the figures are from Buel's table. The figures have not been carried out to as many rlecimal places as they are in most of the tables given by the different authorities; but any figure bevond the fourth siguificant figure is unnecessary in practice, and beyond the limit of error of the observations and of the formulæ from which the figures were derived.

    ## Weight of 1 Cubic Foot of Steam in Decimals of a Pound. Comparison of Difrerent Authorities.

    |  | Weight of 1 cubic foot according to- |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Porter. | Clark | Buel. | Dery. | $\begin{aligned} & \text { Pea- } \\ & \text { body } \end{aligned}$ |
    | 1 | .0030 | . 003 | . 00303 | . 00299 | . 00229 |
    | $14 . \sim$ | . 03797 | . 0380 | .03793 |  | .03\%6 |
    | 20 | . 0511 | . 0507 | . 0507 | . 0507 | . 0502 |
    | 40 | . 0994 | . 0974 | .09~0 | . $097{ }^{2}$ | . 0964 |
    | 60 | . 1457 | . 1425 | . $14: 4$ | .1402 | . 1409 |
    | 80 | . 19015 | . 1863 | . 1866 | . 1862 | . 1843 |
    | 100 | .23302 | . $230 \%$ | .2303 | .2296 | . 22 |

    Weight of 1 cubic foot according to-

    | Porter. | Clark | Buel. | Dery. | Pea. body |
    | :---: | :---: | :---: | :---: | :---: |
    | .274:8 | . 2738 | . 2735 | . 2724 | . 2605 |
    | . 31386 | . 3162 | . 3163 | . 314 r | . 3113 |
    | . 35209 | . 3590 | . 3589 | . 3567 | . 3530 |
    | . 38895 | . 4009 | . 4012 | . 3983 | . 3945 |
    | . 42496 | . 4431 | . 4433 | . 4400 | 4359 |
    |  | . 4842 | . 4852 |  | .4782 <br> 5186 |

    There are considerable differences between the figures of weight and volume of steam as given by different authorities. Porter's figures are based oll the experiments of Fairbairn and Tate. The figures given by the other anthorities are derived from theoretical formulæ which are believed to give more reliable results than the experiments. The figures for temperature, total heat, and latent heat as given by different authorities show a practical agreement, all being derived from Regnanlt's experiments. See Peabody's Tables of Saturated Stean; also Jacobus, Trans, A. S. M. E., vol, xii., 593.

    Properties of Saturated Steam.

    |  |  |  |  | Heat$32^{\circ} \mathrm{F}$.In the <br> Steam <br> $H$ <br> Heat- <br> units. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 29.74 | . 089 | 32 | 0 | 1091.7 | 1091.7 | 208080 | 3333.3 | .00030 |
    | 29.67 | . 122 | 40 | 8. | 1094.1 | 1086.1 | 154330 | 2472.2 | . 00040 |
    | 29.56 | . 176 | 50 | 18. | 109\%.2 | 1079.2 | 107630 | 1724.1 | . 00058 |
    | 29.40 | . 254 | 60 | 28.01 | 1100.2 | 1072. ${ }^{2}$ | $763 \% 0$ | 1293.4 | . 00082 |
    | 29.19 | . 359 | 70 | 38.02 | 1103.3 | 1065.3 | 54660 | 875.61 | . 00115 |
    | 28.90 | . 502 | 80 |  | 1106.3 | 1058.3 | 39690 | 635.80 | . 00158 |
    | 28.51 | . 692 | 90 | 58.06 | 1109.4 | 1051.3 | 29290 | 469.20 | . 00213 |
    | 28.00 | . 943 | 100 | 68.08 | 1112.4 | 1044.4 | 21830 | 349.70 | . 00286 |
    | 27.88 | 1 | 102.1 | 70.09 | 1113.1 | 1043.0 | 20623 | 334.23 | . 00299 |
    | 25.85 | $\stackrel{1}{3}$ | 126.3 | 94.44 | 1120.5 | 1026.0 | $10 \div 30$ | 173.23 | . 00577 |
    | 23.83 | 3 | 141.6 | 109.9 | 1125.1 | 1015.3 | 7325 | 117.98 | . 00848 |
    | 21.78 | 4 | 153.1 | 121.4 | 1128.6 | 1007.2 | 5588 | 89.80 | .01112 |
    | 19.74 | 5 | 162.3 | 130.7 | 1131.4 | 1000.7 | 4530 | 72.50 | . 01373 |
    | 17.70 | 6 | 170.1 | 138.6 | 1133.8 | 995.2 | 3816 | 61.10 | . 01631 |
    | 15.67 13.63 | 8 | 176.9 182.9 | 145.4 151.5 | 1135.9 | 990.5 | 3302 | 53.00 | . 01887 |
    | 13.63 11.60 | 8 8 | 188.9 | 151.5 156.9 | 1137.7 1139.4 | 986.2 982.4 | ${ }_{2607}^{2912}$ | 46.60 | . 02140 |
    | 9.56 | 10 | 193.2 | 161.9 | 1140.9 | 979.0 | 2361 | 37.80 |  |
    | 7.52 | 11 | 197.8 | 166.5 | 1142.3 | 975.8 | $\stackrel{23159}{ }$ | 34.61 | . 02888 |
    | 5.49 | 12 | 202.0 | 170.7 | 1143.5 | 972.8 | 1990 | 31.90 | . 03136 |
    | 3.45 | 13 | 205.9 | 174.7 | 1144.7 | 970.0 | 1846 | 29.58 | . 03381 |
    | 1.41 | 14 | 209.6 | 178.4 | 1145.9 | 967.4 | $1 \% 21$ | 27.59 | .03625 |
    | Gauge Pressure lbs. per sq. in. | 14.7 | 212 | 180.9 | 1146.6 | 965.7 | 1646 | 26.36 | . 03794 |
    | 0.304 | 15 | 213.0 | 181.9 | 1146.9 | 965.0 | 1614 | 25.87 | . 03868 |
    | 1.3 | 16 | 216.3 | 185.3 | 1147.9 | 962.7 | 1519 | 24.33 | . 04110 |
    | 2.3 3.3 | 17 | 219.4 | 188.4 | 1148.9 | 960.5 | 1434 | 22.98 | . 04352 |
    | 3.3 4.3 | 18 | 222.4 | 191.4 194.3 | 11498 1150.6 | 958.3 956.3 | 1359 | 21.78 | . 04592 |
    |  |  |  |  |  |  |  |  |  |
    | 5.3 | 20 | 227.9 | 197.0 | 1151.5 | 954.4 | 1231 | 19.72 | .05070 |
    | ${ }^{6.3}$ | 21 | 230.5 | 199.7 | 1152.2 | 952.6 | 1176 | 18.84 | . 05308 |
    | 7.3 8.3 | ${ }_{23}^{22}$ | $\stackrel{233.0}{235.4}$ | 202.2 204.7 | 1153.0 | 950.8 | 1126 | 18.03 | . 05545 |
    | 9.3 | 24 | 237.8 | 207.0 | 1154.5 | 947.4 | 1038 | 17.30 | . 05782 |
    | 10.3 | 25 | 240.0 | 209.3 | 1155.1 | 915.8 | 998.4 | 15.99 | . 06253 |
    | 11.3 | 26 | 242.2 | 211.5 | 115 | 944.3 | 962.3 | 15.42 | . 06487 |
    | 12.3 | 27 | 244.3 | 213.7 | 1156.4 | 942.8 | 928.8 | 14.88 | . $06 \% 21$ |
    | 13.3 | 28 | 246.3 | 215.7 | 1157.1 | 941.3 | 897.6 | 14.38 | . 06955 |
    | 14.3 | 29 | 248.3 | 217.8 | . 7 | 939.9 | 868.5 | 13.91 | . 07188 |
    | 15.3 | 30 | 250.2 | 219.7 | $1158.3$ | 938.9 | 841.3 | 13.48 | .0\%420 |
    | 16.3 | ${ }^{31}$ | 25.1 | 221.6 | $8$ | 937.2 | 8158 | 13.07 | .07652 |
    | 17.3 18.3 | 32 33 | 254.0 255.7 | 223.5 225.3 | 1159.4 | 935.9 | 791.8 | 12.68 | . 07884 |
    | 19.3 | 33 34 | 255.7 | 225.3 227.1 | 1160.5 | 931.6 933.4 | 769.2 748.0 | 12.32 | . 08115 |
    | 20.3 | 35 | 259.2 | 228.8 | 1161.0 | 932.2 |  |  |  |
    | 21.3 | 36 | 260.8 | 230.5 | 1161.5 | ${ }^{931.0}$ | \% 208.8 | 11.66 11.36 | $.08576$ |
    | 22.3 | 37 | 262.5 | 232.1 | 1162.0 | 929.8 | 690.8 | 11.07 | . 09035 |

    Properties of Saturated Steam.

    |  |  |  | Total <br> above <br> In the <br> Water <br> $h$ <br> Heat- <br> units. | Heat <br> $32^{\circ} \mathrm{F}$. <br> In the <br> Steam H Heatunits. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 23.3 | 38 | 264.0 | 233.8 | 1162.5 | 928.7 | 673.7 | 10.79 | . 09264 |
    | 24.3 | 39 | 265.6 | 235.4 | . 9 | 927.6 | 657.5 | 10.53 | . 09493 |
    | 25.3 | 40 | 267.1 | 236.9 | 1163.4 | 926.5 | 642.0 | 10.28 | . 09721 |
    | 26.3 | 41 | 268.6 | 238.5 | . 9 | 925.4 | 627.3 | 10.05 | . 09949 |
    | 27.3 | 42 | 270.1 | 240.0 | 1164.3 | $9: 4.4$ | 613.3 | 9.83 | . 1018 |
    | 28.3 | 43 | 271.5 | 241.4 | . 71 | 923.3 | 599.9 | 9.61 | .1040 |
    | 29.3 | 44 | 272.9 | 242.9 | 1165.2 | 922.3 | 587.0 | 9.41 | . 1063 |
    | 30.3 | 45 | 274.3 | 244.3 | . 6 | 921.3 | $5 \% 4$ | 9.21 | . 1086 |
    | 31.3 | 46 | 275.7 | 245.7 | 1166.0 | 920.4 | 563.0 | 9.02 | . 1108 |
    | 32.3 | 47 | 277.0 | 247.0 | . 4 | 919.4 | 551.7 | 8.84 | . 1131 |
    | 33.3 | 48 | 278.3 | 248.4 | . 8 | 918.5 | 540.9 | 8.67 | . 1153 |
    | 34.3 | 49 | 279.6 | 249.7 | 1167.2 | 917.5 | 530.5 | 8.50 | . 1176 |
    | 35.3 | 50 | 280.9 | 251.0 | . 6 | 916.6 | 520.5 | 8.34 | . 1198 |
    | 36.3 | 51 | 282.1 | 252.2 | 1168.0 | 915.7 | 510.9 | 8.19 | . 1221 |
    | 37.3 | 52 | 283.3 | 253.5 | . 4 | 914.9 | 501.7 | 8.04 | . 1243 |
    | 38.3 | 53 | 284.5 | 254.7 | . 7 | 914.0 | 492.8 | 7.90 | . 1266 |
    | 39.3 | 54 | 285.7 | 256.0 | 1169.1 | 913.1 | 484.2 | 7.76 | . 1288 |
    | 40.3 | 55 | 286.9 | 257.2 | . 4 | 912.3 | 475.9 | 7.63 | . 1311 |
    | 41.3 | 56 | 288.1 | 258.3 | . 8 | 911.5 | 467.9 | 7.50 | . 1333 |
    | 42.3 | 57 | 289.1 | 259.5 | 1170.1 | 910.6 | 460.2 | 7.38 | . 1355 |
    | 43.3 | 58 | 290.3 | 260.7 | . 5 | 909.8 | 452.7 | 7.26 | . 1377 |
    | 44.3 | 59 | 291.4 | 261.8 | . 8 | 909.0 | 445.5 | 7.14 | . 1400 |
    | 45.3 | 60 | 292.5 | 262.9 | 1171.2 | 908.2 | 438.5 | 7.03 | . 1422 |
    | 46.3 | 61 | 293.6 | 264.0 | . 5 | 907.5 | 431.7 | 6.92 | . 1444 |
    | 47.3 | 62 | 294.7 | 265.1 | . 8 | 906.7 | 425.2 | 6.82 | . 1466 |
    | 48.3 | 63 | 295.7 | 266.2 | 1172.1 | 905.9 | 418.8 | 6.7\% | . 1488 |
    | 49.3 | 64 | 296.8 | 267.2 | . 4 | 905.2 | 412.6 | 6.62 | . 1511 |
    | 50.3 | 65 | 297.8 | 268.3 | . 8 | 904.5 | 406.6 | 6.53 | . 1533 |
    | 51.3 | 66 | 298.8 | 269.3 | 1173.1 | $903 \%$ | 400.8 | 6.43 | . 1555 |
    | 52.3 | 67 | 299.8 | 270.4 | . 4 | 903.0 | 395.2 | 6!34 | . 157 ¢ |
    | 53.3 | 68 | 300.8 | 271.4 | . 7 | 902.3 | 389.8 | 6.25 | . 1599 |
    | 54.3 | 69 | 301.8 | $2 \% 2.4$ | 1114.0 | 901.6 | 384.5 | 6.17 | . 1621 |
    | 55.3 | 70 | 302.7 | 273.4 | . 3 | 900.9 | 379.3 | 6.09 | . 1643 |
    | 56.3 | \%1 | 303.7 | 274.4 | . 6 | 900.2 | 374.3 | 6.01 | . 1665 |
    | 57.3 | 72 | 304.6 | 275.3 | . 8 | 899.5 | 369.4 | 5.93 | . $168{ }^{\prime \prime}$ |
    | 58.3 | 73 | 305.6 | $2 \% 6.3$ | 1175.1 | 898.9 | 364.6 | 5.85 | . 1709 |
    | 59.3 | 74 | 306.5 | $27 \% .2$ | . 4 | 898.2 | 360.0 | 5.78 | . 1731 |
    | 60.3 | 75 | 307.4 | 278.2 | . 7 | 897.5 | 355.5 | 5.71 | . 1853 |
    | 61.3 | 76 | 308.3 | $2 \% 9.1$ | 1176.0 | 896.9 | 351.1 | 5.63 | . 1775 |
    | 62.3 | 78 | 309.2 | 280.0 | . 2 | 896. 2 | 346.8 | 5.57 | . 1797 |
    | 63.3 | 78 | 310.1 | 280.9 | . 5 | 895.6 | 342.6 | 5.50 | . 1819 |
    | 64.3 | 79 | 310.9 | 281.8 | . 8 | 895.0 | 338.5 | 5.43 | . 1840 |
    | 65.3 | 80 | 311.8 | 282.7 | 117\% ${ }^{\prime \prime}$ | 894.3 | 334.5 | 5.37 | . 1862 |
    | 66.3 | 81 | 312.7 | 283.6 | . 3 | 893.7 | 330.6 | 5.31 | . 1884 |
    | 67.3 | 82 | 313.5 | 284.5 | . 6 | 893.1 | 326.8 | 5.25 | . 1906 |
    | 68.3 | 83 | 314.4 | 285.3 | . 8 | 892.5 | 323.1 | 5.18 | . 1928 |
    | 69.3 | 84 | 315.2 | 286.2 | 1178.1 | 891.9 | 319.5 | 5.13 | . 1950 |
    | 70.3 | 85 | 816.0 | 287.0 | . 3 | 891.3 | 815.9 | 5.07 | . 1971 |

    Properties of Saturated Steam.

    |  |  |  | $\begin{gathered} \begin{array}{c} \text { Total } \\ \text { above } \end{array} \\ \hline \text { In the } \\ \text { Water } \\ h \\ \text { Heat- } \\ \text { units. } \end{gathered}$ | Heat $32^{\circ} \mathrm{F}$. <br> In the Steam H Heatunits. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 71.3 | 86 | 316.8 | 287.9 | 1178.6 | 890.7 | 312.5 | 5.02 | . 1993 |
    | 72.3 | $8 \%$ | 317.7 | 288.7 | 11.8 | 890.1 | 309.1 | 4.96 | . 2015 |
    | 73.3 | 88 | 318.5 | 289.5 | 1179.1 | 889.5 | 305.8 | 4.91 | . 2036 |
    | 74.3 | 89 | 319.3 | 290.4 | . 3 | 888.9 | 302.5 | 4.86 | . 2058 |
    | 75.3 | 90 | 320.0 | 291.2 | . 6 | 888.4 | 299.4 | 4.81 | . 2080 |
    | 76.3 | 91 | 320.8 | 292.0 | . 8 | 887.8 | 296.3 | 4.76 | . 2103 |
    | 77.3 | 92 | 321.6 | 292.8 | 1180.0 | 887.2 | 293.2 | 4.71 | . 2123 |
    | 78.3 | 93 | 322.4 | 293.6 | . 3 | 886.7 | 290.2 | 4.66 | . 2145 |
    | 79.3 | 94 | 323.1 | 294.4 | . 5 | 886.1 | 287.3 | 4.62 | . 2166 |
    | 80.3 | 95 | 323.9 | 295.1 | . 7 | 885.6 | 284.5 | 4.57 | . 2188 |
    | 81.3 | 96 | $3 \geq 4.6$ | 295.9 | 1181.0 | 885.0 | 281.7 | 4.53 | . 2210 |
    | 82.3 | 97 | 325.4 | 296.7 | . 2 | 884.5 | 279.0 | 4.48 | . 2231 |
    | 83.3 | 98 | 326.1 | 297.4 | . 4 | 884.0 | 26.3 | 4.44 | . 2253 |
    | 84.3 | 99 | 326.8 | 298.2 | . 6 | 883.4 | 273.7 | 4.40 | .2274 |
    | 85.3 | 100 | 3.77 .6 | 298.9 | . 8 | 882.9 | 271.1 | 4.36 | . 2296 |
    | 86.3 | 101 | 328.3 | 299.7 | 1182.1 | 882.4 | 268.5 | 4.3 ? | . 2317 |
    | 87.3 | 102 | $3 \cdot 9.0$ | 300.4 | . 3 | 881.9 | 266.0 | 4.88 | .2339 |
    | 88.3 | 103 | 329.7 | 301.1 | . 5 | 881.4 | 263.6 | 4.24 | . 2360 |
    | 89.3 | 104 | 330.4 | 301.9 | . 7 | 880.8 | 261.2 | 4.20 | . 2382 |
    | 90.3 | 105 | 331.1 | 302.6 | . 9 | 880.3 | 258.9 | 4.16 | . 2403 |
    | 91.3 | 106 | 331.8 | 303.3 | 1183.1 | 879.8 | 256.6 | 4.12 | . 2425 |
    | 92.3 | 107 | 332.5 | 304.0 | . 4 | 879.3 | 254.3 | 4.09 | . 2446 |
    | 93.3 | 108 | 333.2 | 304.7 | . 6 | 878.8 | 252.1 | 4.05 | . 2467 |
    | 94.3 | 109 | 333.9 | 305.4 | . 8 | 878.3 | 249.9 | 4.02 | . 2489 |
    | 95.3 | 110 | 334.5 | 306.1 | 1184.0 | 877.9 | $24 \% .8$ | 3.98 | . 2510 |
    | 96.3 | 111 | 335.2 | 306.8 | 1184 .2 | 877.4 | 245.7 | 3.95 | . 2531 |
    | 97.3 | 112 | 335.9 | 307.5 | . 4 | 876.9 | 243.6 | 3.92 | . 2553 |
    | 98.3 | 113 | 336.5 | 308.2 | .6 | 876.4 | 241.6 | 3.83 | . 2574 |
    | 99.3 | 114 | 337.2 | 308.8 | .8 | 875.9 | 239.6 | 3.85 | . 2596 |
    | 100.3 | 115 | 337.8 | 309.5 | 1185.0 | 875.5 | 237.6 | 3.82 | . 2617 |
    | 101.3 | 116 | 338.5 | 310.2 | . 2 | 875.0 | 235.7 | 3.79 | . 2638 |
    | 102.3 | 117 | 339.1 | 310.8 | . 4 | $8{ }^{\text {r }} 4.5$ | 233.8 | 3.76 | . 2660 |
    | 103.3 | 118 | 339.7 | 311.5 | . 6 | 874.1 | 231.9 | 3.73 | . 2681 |
    | 104.3 | 119 | 340.4 | 312.1 | . 8 | 873.6 | 230.1 | 3.70 | . 2703 |
    | 105.3 | 120 | 341.0 | 312.8 | . 9 | 873.2 | 228.3 | 8.67 | . 2724 |
    | 106.3 | 121 | 341.6 | 313.4 | 1186.1 | 872.7 | 226.5 | 3.64 | . 2745 |
    | 107.3 | 122 | 342.2 | 314.1 | . 3 | 872.3 | 224.7 | 3.62 | .2766 |
    | 198.3 | 123 | 342.9 | 314.7 | . 5 | 871.8 | 223.0 | 3.59 | . 2788 |
    | 109.3 | 124 | 343.5 | 315.3 | .7 | 871.4 | 221.3 | 3.56 | . 2809 |
    | 110.3 | 125 | 344.1 | 316.0 | . 9 | 870.9 | 219.6 | 3.53 | . 2830 |
    | 111.3 | 126 | 344.7 | 316.6 | $118 \% .1$ | 870.5 | 218.0 | 3.51 | . 2851 |
    | 112.3 | 127 | 345.3 | 317.2 | 118. 3 | $8 \% 0.0$ | 216.4 | 3.48 | . 2878 |
    | 113.3 | 128 | 345.9 | 317.8 | . 4 | 869.6 | 214.8 | 3.46 | . 2894 |
    | 114.3 | 129 | 346.5 | 318.4 | .6 | 869.2 | 213.2 | 3.43 | . 2915 |
    | 115.3 | 130 | 347.1 | 319.1 | . 8 | 868.7 | 211.6 | 3.41 | . 2936 |
    | 116.3 | 131 | 347.6 | 319.7 | 1188.0 | 868.3 | 210.1 | 3.38 | . 2957 |
    | 117.3 | 132 | 348.2 | 320.3 | . 2 | $86 \% .9$ | 208.6 | 3.36 | . 2978 |
    | 118.3 | 133 | 348.8 | 320.8 | . 3 | 867.5 | 207.1 | 3.33 | . 3000 |
    | 119.3 | 134 | 349.4 | 321.5 | . 5 | 867.0 | 205.7 | 3.31 | . 3021 |

    Properties of Saturated Steam.

    |  |  |  | Total Heat above $32^{\circ} \mathrm{F}$. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | In the | In the |  |  |  |  |
    |  |  |  | Water | $\stackrel{\text { Steam }}{H}$ |  |  |  |  |
    |  |  |  | Heat- | Heat |  |  |  |  |
    |  |  |  | units. | units. |  |  |  |  |
    | 120.3 | 135 | 350.0 | 322.1 | 1188.7 | 866.6 | 204.2 | 3.29 | . 3042 |
    | 121.3 | 136 | 350.5 | 322.6 |  | 866.2 | 202.8 | 3.27 | . 3063 |
    | 122.3 | 137 | 351.1 | 323.2 | 1189.0 | 865.8 | 201.4 | 3.24 | . 3084 |
    | 123.3 | 138 | 351.8 | 323.8 | . 2 | 865.4 | 200.0 | 3.22 | . 3105 |
    | 124.3 | 139 | 352.2 | 324.4 | . 4 | 865.0 | 198.7 | 3.20 | . 3126 |
    | 125.3 | 140 | 352.8 | 325.0 | . 5 | 864.6 | 197.3 | 3.18 | .3147 .3169 |
    | 126.3 | 141 | 353.3 | 335.5 | .7 .9 | 864.2 863.8 | 196.0 | 3.18 3.14 | .3169 .3190 |
    | 127.3 | 142 | 353.9 354.4 | 326.1 326.7 | 1190.0 | 863.8 863.4 | 194.7 193.4 | 3.14 3.11 | . 31911 |
    | 128.3 129.3 | 143 | 354.4 355.0 | ${ }_{327}^{326.7}$ | 1190.0 .2 | 863.4 863.0 | 192.2 | 3.09 | . 3232 |
    | 130.3 | 145 | 355.5 | 327.8 | . 4 | 862.6 | 190.9 | 3.07 | . 3223 |
    | 131.3 | 146 | 356.0 | 328.4 | . 5 | 862.2 | 189.7 | 3.05 | . 3274 |
    | 132.3 | 147 | 356.6 | 328.9 | . 7 | 861.8 | 188.5 | 3.04 | . 3295 |
    | 133.3 | 148 | 357.1 | 329.5 | . 9 | 861.4 | 187.3 | 3.02 | . 3316 |
    | 134.3 | 149 | $35 \% .6$ | 330.0 | 1191.0 | 861.0 | 186.1 | 3.00 | . 3338 |
    | 135.3 | 150 | 358.2 | 330.6 | . 2 | 860.6 | 184.9 | 2.98 | . 3358 |
    | 136.3 | 151 | 358.7 | 331.1 | . 3 | 860.2 | 183.7 | 2.96 | . 3379 |
    | 137.3 | 152 | 359.2 | 331.6 | . 5 | 859.9 | 182.6 | 2.94 | . 3400 |
    | 138.3 | 153 | 359.7 | 3312.2 332 | .8 | 859.5 859.1 | 181.5 180.4 | $\stackrel{2.92}{2.91}$ | . 3442 |
    | 139.3 | 154 | 360.2 | 332.7 | . 8 | 859.1 | 180.4 | 2.91 | . 344 |
    | 140.3 | 155 | 360.7 | :333.2 | 1192.0 | 858.7 | 179.2 | 2.89 | . 3463 |
    | 141.3 | 156 | 361.3 | 333.8 | . 1 | 858.4 | 178.1 | 2.87 | . 3483 |
    | 142.3 | 157 | 361.8 | 334.3 | . 3 | 858.0 | 177.0 | 2.85 | . 3504 |
    | 143.3 | 158 | 362.3 | 334.8 | . 4 | 857.6 | 176.0 | 2.84 | . 3525 |
    | 144.3 | 159 | 362.8 | 335.3 | . 6 | 857.2 | 174.9 | 2.82 | . 3546 |
    | 145.3 | 160 | 363.3 | 385.9 | . 7 | 856.9 | 173.9 | 2.80 | . 3567 |
    | 146.3 | 161 | 363.8 | 336.4 | . 9 | 856.5 | 172.9 | 2.79 | . 3588 |
    | 147.3 | 169 | 364.3 | 336.9 | 1193.0 | 856.1 | 171.9 | 2.77 | . 3609 |
    | 148.3 | 163 | 364.8 | 337.4 | $\cdot \stackrel{2}{2}$ | 855.8 | 171.0 | 2.76 | . 3630 |
    | 149.3 | 164 | 365.3 | 337.9 | . 3 | 855.4 | 170.0 | 2.74 | . 3650 |
    | 150.3 | 165 | 365.7 | 338.4 | . 5 | 855.1 | 169.0 | 2.72 | . 3671 |
    | 151.3 | 166 | 366.2 | 338.9 | . 6 | 854.7 | 168.1 | 2.71 | 3692 |
    | 152.3 | 167 | 366.7 | 339.4 | . 8 | 885.4 | 167.1 | 2.69 2.68 |  |
    | 153.3 | 168 | 367.2 $36 \%$ | 339.9 340.4 | r 1194.1 | 854.0 853.6 | 166.2 165.3 | 2.68 2.66 | .3734 .3754 |
    | 154.3 | 169 | 367.7 | 340.4 | 1194.1 | 853.6 | 165.3 | 2.66 | . 3754 |
    | 155.3 | 170 | 368.2 | 340.9 | . 2 | 853.3 | 164.3 | 2.65 | . 3775 |
    | 156.3 | 171 | 368.6 | 341.4 | . 4 | 852.9 | 163.4 | 2.63 | . 3796 |
    | 157.3 | 172 | 369.1 | 341.9 | . 5 | 852.6 | 162.5 | 2.62 | . 3817 |
    | 158.3 | 173 | 369.6 | 342.4 | . 8 | 852.3 | 161.6 | $\stackrel{2.61}{2}$ |  |
    | 159.3 | 174 | 370.0 | 342.8 | . 8 | 851.9 | 160.7 | 2.59 | . 3858 |
    | 160.3 | 175 | 370.5 | 343.4 | . 9 | 851.6 | 159.8 | 2.58 | . 8879 |
    | 161.3 | 176 | 371.0 | 343.9 | 1195.1 | 851.2 | 158.9 | 2.56 | . 3900 |
    | 162.8 | 177 | 371.4 | 344.3 | . 2 | 850.9 | 158.1 | 2.55 | . 3921 |
    | 163.3 | 178 | 371.9 | 344.8 | . 4 | 850.5 | 157.2 | 2.54 | . 3942 |
    | 164.3 | 179 | $3 \% 2.4$ | 345.3 | 5 | 850.2 | 156.4 | 2.52 | . 3962 |
    | 165.3 | 180 | 372.8 | 345.8 | . 7 | 849.9 | 155.6 | 2.51 | . 3983 |
    | 166.3 | 181 | 373.3 | 346.3 | . 8 | 849.5 | 154.8 | $\stackrel{2.50}{ }$ | . 4004 |
    | 167.3 | 182 | 373.7 | 346.7 | . 9 | 849.2 | 154.0 | 2.48 | . 4025 |
    | 168.3 | 183 | 374.2 | 317.2 | 1196.1 | 848.9 | 153.2 | 2.47 | . 4046 |

    Properties of Saturated Steam.

    |  |  |  | Total <br> above <br> In the <br> Water <br> $h$ <br> Heat- <br> units. | IVeat $32^{\circ} \mathrm{F}$. <br> In the Steam H Heatunits. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 169.3 | 184 | 374.6 | 347.7 | 1196.2 | 848.5 | 159.4 | 2.46 | . 4066 |
    | 170.3 | 185 | 375.1 | 348.1 | . 3 | 848.2 | 151.6 | 2.45 | . 4087 |
    | $1 \% 1.3$ | 186 | 375.5 | 348.6 | . 5 | 847.9 | 150.8 | 2.43 | . 4108 |
    | 172.3 | 187 | 375.9 | 349.1 | . 6 | 847.6 | 150.0 | 2.42 | . 4129 |
    | 173.3 | 188 | 376.4 | 349.5 | .7 | 847.2 | 149.2 | 2.41 | . 4150 |
    | 174.3 | 189 | $3 \uparrow 6.9$ | 350.0 | . 9 | 846.9 | 148.5 | 2.40 | .41\%0 |
    | 175.3 | 190 | 3178 | 350.4 | 1197.0 | 846.6 | 147.8 | 2.39 | . 4191 |
    | 176.3 | 191 | $37 \% . \%$ | 350.9 | . 1 | 846.3 | 147.0 | 2.37 | . 4212 |
    | $17 \% .3$ | 192 | 378.2 | 351.3 | . 3 | 845.9 | 146.3 | 2.36 | . 4233 |
    | 178.3 | 193 | 378.6 | 351.8 | . 4 | 845.6 | 145.6 | 2.35 | . 4254 |
    | 179.3 | 194 | 379.0 | 35:.2 | . 5 | 845.3 | 144.9 | 2.34 | . 4275 |
    | 180.5 | 195 | 379.5 | 352.7 | . 7 | 845.0 | 144.2 | 2.33 | . 4296 |
    | 181.3 | 196 | 380.0 | 353.1 | . 8 | 844.7 | 143.5 | 2.32 | . 4317 |
    | 18 ¢. 3 | 197 | 380.4 | 353.6 | . 9 | 844.4 | 142.8 | 2.31 | . 4337 |
    | 183.3 | 198 | 380.7 | 354.0 | 1198.1 | 844.1 | 142.1 | 2.29 | . 4358 |
    | 184.3 | 199 | 381.2 | 354.4 | . 2 | 843.7 | 141.4 | 2.28 | . 4379 |
    | 185.3 | 200 | 381.6 | 354.9 | . 3 | 843.4 | 140.8 | 2.27 | . 4400 |
    | 186.3 | 201 | 382.0 | 355.3 | . 4 | 843.1 | 140.1 | 2.26 | . 4420 |
    | 187.3 | 202 | 382.4 | 355.8 | . 6 | 812.8 | 139.5 | 2.25 | . 4441 |
    | 188.3 | 203 | 382. 8 | 356.2 | . 7 | 842.5 | 138.8 | 2.24 | . 4462 |
    | 189.3 | 204 | 383.2 | 356.6 | . 8 | 842.2 | 138.1 | 2.23 | .448: |
    | 190.3 | 205 | 383.7 | 357.1 | 1199.0 | 841.9 | 137.5 | 2.22 | . 4503 |
    | 191.3 | 206 | 384.1 | 357.5 | 1 | 841.6 | 136.9 | 2.21 | . 4523 |
    | 192.3 | 207 | 384.5 | $35 \% .9$ | . 2 | 841.3 | 136.3 | 2.20 | . 4544 |
    | 19.3 .3 | 208 | 384.9 | 358.3 | . 3 | 8410 | 135.7 | 2.19 | . 4564 |
    | 194.3 | 209 | 385.3 | 358.8 | . 5 | 840.7 | 136.1 | 2.18 | . 4585 |
    | 195.3 | 210 | 385.7 | 359.2 | . 6 | 840.4 | 134.5 | 2.17 | . 4605 |
    | 196.3 | 211 | 386.1 | 359.6 | . 7 | 840.1 | 133.9 | 2.16 | . 4626 |
    | 197.3 | 212 | 386.5 | 360.0 | . 8 | 839.8 | 133.3 | 2.15 | . 4646 |
    | 198.3 | 213 | 386.9 | 360.4 | . 9 | 839.5 | 132.7 | 2.14 | . 4667 |
    | 199.3 | 214 | 387.3 | 360.9 | 1200.1 | 839.2 | 132.1 | 2.13 | . 4687 |
    | 200.3 | 215 | 387.7 | 361.3 | . 2 | 838.9 | 131.5 | 2.12 | . 4707 |
    | 201.3 | 216 | 388.1 | 361.7 | . 3 | 838.6 | 130.9 | 2.12 | . 47.98 |
    | 202.3 | 217 | 388.5 | 362.1 | . 4 | 838.3 | 130.3 | 2.11 | . 4748 |
    | 203.3 | 218 | 388.9 | 362.5 | . 6 | 838.1 | 129.7 | 2.10 | . 4768 |
    | 204.3 | 219 | 389.3 | 362.9 | . 7 | 837.8 | 129.2 | 2.09 | . 4788 |
    | 205.3 | 220 | 389.7 | 362.2* | 1200.8 | 838.6* | 129.7 | 2.06 | . 4852 |
    | 215.3 | 230 | 393.6 | 366.2 | 1202.0 | 835.8 | 123.3 | 1.98 | . 5061 |
    | 225.3 | 240 | 397.3 | 370.0 | 1203.1 | 833.1 | 118.5 | 1.90 | .52\% 0 |
    | 235.3 | 250 | 400.9 | 373.8 | -1204.2 | 830.5 | 114.0 | 1.83 | . $54 \% 8$ |
    | 245.3 | 260 | 404.4 | 377.4 | 1205.3 | 827.9 | 109.8 | 1.76 | . 5686 |
    | 255.3 | 270 | 407.8 | 380.9 | 1206.3 | 825.4 | 105.9 | 1.70 | . 5894 |
    | 265.3 | 280 | 411.0 | 384.3 | 1207.3 | 823.0 | 102.3 | 1.64 | . 6101 |
    | 275.3 | 290 | 414.2 | 387.7 | 1208.3 | 820.6 | 99.0 | 1.585 | . 6308 |
    | 285.3 | 300 | 417.4 | 390.9 | 1209.2 | 818.3 | 95.8 | 1.535 | . 6515 |
    | 335.3 | 350 | 432.0 | 406.3 | 1213.7 | 807.5 | 82.7 | 1.325 | . 6545 |

    Dwelshauvers-Dery's to Buel's figures.

    Propertics of Saturated Steam.

    |  |  |  | Total Heat above $32^{\circ} \mathrm{F}$. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | In the | In the |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |
    |  |  |  | Heatunits. | Heatunits. |  |  |  |  |
    | 385.3 | 400 | 444.9 | 419.8 | 121\%.7 | \%97. 9 | 72.8 | 1.167 | 85\%2 |
    | 435.3 | 450 | 456.6 | 432.2 | 1221.3 | 789.1 | 65.1 | 1.042 | . 9595 |
    | 485.3 | 500 | 467.4 | 443.5 | 1224.5 | 781.0 | 58.8 | . 942 | 1.062 |
    | 535.3 | 550 | 477.5 | 454.1 | $1 \leq 24.6$ | 7735 | 53.6 | . 859 | 1.164 |
    | 58.5 .3 | 600 | 486.9 | 464.2 | 1230.5 | 766.3 | 49.3 | . 790 | 1.266 |
    | 635.3 | 650 | 495.7 | 473.6 | 1233.2 | 759.6 | 45.6 | . 731 | 1.368 |
    | 685.3 | $\% 00$ | 504.1 | 48.4 | 1235.7 | 753.3 | 42.4 | . 680 | 1.470 |
    | 735.3 | 750 | 512.1 | 490.9 | $1: 338.0$ | 747.2 | 39.6 | . 636 | $1.5 \chi^{2}$ |
    | 785.3 | 800 | 519.6 | 498.9 | 1240.3 | 741.4 | 37.1 | . 597 | 1.674 |
    | 835.3 | 850 | 526.8 | 506.7 | 1242.5 | r35.8 | 34.9 | . 563 | 1.776 |
    | 885.3 | 900 | 533.7 | 514.0 | 1244.7 | 730.6 | 33.0 | . 532 | 1.878 |
    | 935.3 | 950 | 540.3 | 521.3 | 1246.7 | 725.4 | 31.4 | . 505 | 1.980 |
    | 985.3 | 1000 | 546.8 | 528.3 | 1248.7 | \% 20.3 | 30.0 | . 480 | $2.08 \%$ |

    ## HLOW OE STEADI.

    Flow of Steam through a Nozzle. (From Clark on the Steamengine.) - The flow of stean of a greater pressure into an atmosphere of a less pressure increases as the difference of pressure is increased, until the external pressure becomes only $58 \%$ of the absolute pressure in the boiler. The flow of steam is neither increased nor diminished by the fall of the exrernal pressure below $58 \%$ or about 4 /iths of the inside pressure, even to tho extent of a perfect vacnum. In flowing through a nozzle of the best form, the steam expands to the external pressure, and to the volume due to this pressure, so long as it is not less than $58 \%$ of the internal pressure. For an external pressure of $58 \%$, and for lower percentages, the ratio of expansion is 1 to 1.64 . The following table is selected from Mr. Brownlee's data exemplifying the rates of discharge under a constant internal pressure, into various external pressures:

    ## Outfow of Steam; from a Given Initial Pressure into Various Lower Presstures.

    Absolute initial pressure in boiler, $\boldsymbol{i} 5 \mathrm{lbs}$. per sq. in.

    | Absolute Pressure in Boiler per square inch. | External Pressure per square inch. | Ratio of Expansion in Nozzle. | Velocity of Outflow at Constant Density. | Actual Velocity of Outflow Expanded. | Discharge per square inch of Orifice per minute. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | lbs. | lbs. | ratio. | feet per sec. | feet p. sec. | lbs. |
    | 75 | 74 | 1.012 | $22 \sim 5.5$ | 230 | 16.68 |
    | \% 5 | 72 | 1.037 | 386.7 | 401 | 28.35 |
    | \% 5 | \%0 | 1.063 | 490 | 521 | 35.93 |
    | 75 | 65 | 1.136 | 660 | 749 | 48.38 |
    | 75 | 61.62 | 1.198 | 736 | 876 | 53.97 |
    | 75 | 60 | 1.219 | 765 | 9333 | 56.12 |
    | 75 | 50 | 1.434 | 873 | 1252 |  |
    | 75 | 45 | 1.5\%5 | 890 | 1401 | 65.24 |
    | 75 | $\left\{\begin{array}{c}43.46 \\ 58 \\ \text { p.cent }\end{array}\right\}$ | 1.624 | 890.6 | 1446.5 | 65.3 |
    | 75 75 | ¢ 15 | 1.624 | 890.6 | 1446.5 | 65.3 |

    When steam of varying initial pressures is discharged into the atmos-phere-the atmospheric pressure being not more than $58 \%$ of the initial pressure-the velocity of outflow at constant density, that is, supposing the initial density to be maintained, is given by the formula $V=3.5953 \mathrm{dh}$.
    $\nabla=$ the velocity of outflow in feet per second, as for steam of the initial density;
    $h=$ the beight in feet of a column of steam of the given absolute initial pressure of uniform density, the weight of which is equal to the pressure on the unit of base.
    The lowest initial pressure to which the formula applies, whell the steam is discharged into the atmosphere at 14.7 lbs . per square inch, is ( $14.7 \times$ $100 / 58=$ ) 25.37 lbs. per square inch. Examples of the application of the formula are given in the table below.

    From the contents of this table it appears that the velocity of outflow into the atmosphere, of steam above 25 lbs . per square inch absolute pressure, or 10 lbs. effective, increases very slowly with the pressure, obviously because the density, and the weight to be moved, increase with the pressure. An average of 900 feet per second may, for approximate calculations, be taken for the velocity of outflow as for constant density, that is, taking the volume of the steam at the initial volume.

    Qutflow of Steam into the Atmosphere.-External pressure per square inch 14.7 lbs . absolute. Ratio of expansion in nozzle, $1.6 \% 4$.

    |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | lbs. |  | per | lbs. | H.P. | lbs. |  |  | lbs | H. |
    | 25.3 |  | 1401 | 22.8 | 45.6 | 90 | 895 | 145 | 77.94 | 155.9 |
    | 30 | 867 | 1408 | 26.8 | 53.7 | 100 | 89 | 145 | 86.34 | \% |
    | 40 | 874 | 1419 | 35.18 | r0.4 | 115 | 902 | 146 | 98.61 | 197 |
    | 50 | 88. | 1429 | 44.06 | 88.1 | 135 | 906 | $14 \%$ | 115.61 | 231.2 |
    |  | 8 | 1437 | 52.59 | 105.2 | 10, | 910 | 1478 | 132.21 | 264.4 |
    | 70 | 889 | 1444 | 61.0 亿̂ | 122.1 | 165 | 912 | 1481 | 140.46 | 280.9 |
    | 75 | 891 | $144 \%$ | 65.30 | 130.6 | 215 | 919 | 1493 | 181.58 | 363.2 |

    Napier's Approximate Rule. -Flow in pounds per second $=$ absolute pressure $x$ area in square inches $\div$ - 70 . This rule gives results which closely correspond with those in the above table, as shown below.
    $\begin{array}{lllllllll}\text { Abs. press., lbs. p. sq. in. } 25.37 & 40 & 60 & 75 & 100 & 135 & 165 & 215\end{array}$
    Discliarge per min., by
    table, los............... $22.81 \quad 35.1852 .5965 .30 \quad 86.34115 .61 \quad 140.46$
    By Napier's rule.......... $21.7434 .29 \quad 51.43 \quad 64.29 \quad 85.71 \quad 115.71 \quad 141.43 \quad 184.29$
    Prof. Peabody, in Trans. A. S. M. E., xi, 187, reports a series of experiments on flow of steam through tubes $1 / 4$ inch in diameter, and $1 / 4,1 / 2$, and $11 / 2$ inch long, with rounded entrances, in which the results agreed closely with Napier's formula, the greatest difference being an excess of the experimental over the calculated result of $3.2 \%$. An equation derived from the theory of thermodynamics is given by Prof. Peabody, but it does not agree with the experimental results as well as Napier's rule, the excess of the actual fow being $6.6 \%$.

    Flov of Steam in Pipes.-A formula commonly used for velocity of flow of steam in pipes is the same as Downing's for the flow of water in smooth cast-iron pipes, viz., $V=50 \sqrt{\frac{H}{L}} D$, in which $V=$ velocity in feet nee second, $L=$ length and $D=$ diameter of pipe in feet, $H=$ height in feet ai a column of steam, of the pressure of the steam at the entrance,
    which would produce a pressure equal to the difference of pressures at the two ends of the pipe. (For derivation of the coefficient 50, see Briggs on "Warming Buildings by Steam," Proc. Inst. C. E. 1882.)

    If $Q=$ quantity in cubic feet per minute, $d=$ diameter in inches, $L$ and $H$ being in feet, the formula reduces to

    $$
    Q=4.7233 \sqrt{\frac{H}{L} d^{5}}, \quad H=.0448 \frac{Q^{2} L}{d^{5}}, \quad d=.5374 \sqrt[5]{\frac{Q^{2} L}{H}}
    $$

    (These formulæ are applicable to air and other gases as well as steam.)
    If $p_{1}=$ pressure in pounds per square inch of the steam (or gas) at the entrance to the pipe, $p_{2}=$ the pressure at the exit, then $144\left(p_{1}-p_{2}\right)=$ difference in pressure per square foot. Let $w=$ density or weight per cubic foot of steam at the pressure $p_{1}$, then the height of column equivalent to the difference in pressures

    $$
    =H=\frac{144\left(p_{1}-p_{2}\right)}{w}, \text { and } Q=60 \times . .8854 \times 50 D^{2} \sqrt{\frac{144\left(p_{1}-p_{2}\right) D}{w L}}
    $$

    If $W=$ weight of steam flowing in pounds per minute $=Q w$, and $d$ is taken in inches, $L$ being in feet,

    $$
    \begin{gathered}
    W=56.68 \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}} ; \quad Q=56.68 \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{6}}{L w}} ; \\
    d=0.109 \sqrt[5]{\frac{W^{2} L}{w\left(p_{1}-p_{2}\right)}}=0.199 \sqrt[5]{\frac{Q^{2} w L}{p_{1}-p_{2}}} .
    \end{gathered}
    $$

    Velocity in feet per minute $=V=Q \div .7854 \frac{d^{2}}{144}=10392 \sqrt{\frac{\left(p_{1}-p_{q}\right) d}{w L}}$.
    For a velocity of 6000 feet per minute, $d=\frac{w L}{3\left(p_{1}-p_{2}\right)} ; p_{1}-p_{2}=\frac{w L}{3 d}$.
    For a velocity of 6000 feet per minute, a steam-pressure of 100 lbs . gauge, or $w=.264$, and a length of 100 feet, $d=\frac{8.8}{p_{1}-p_{2}} ; p_{1}-p_{2}=\frac{8.8}{d}$. That is, a pipe 1 inch diameter, 100 feet long, carrying steam of 100 lbs . gauge-pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 lbs . per square inch, while steam travelling at the same velocity in a pipe 8.8 inches diameter would lose only 1 lb , pressure.
    G. H. Babcock, in "Steam," gives the formula

    $$
    W=8^{7} \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{6}}{L\left(1+\frac{3.6}{d}\right)}}
    $$

    In earlier editions of "Steam" the coefficient is given as 300 , -evidently an error,-and this value has been reprinted in Clark's Pocket-Book (1892 edition). It is apparently derived from one of the numerous formulæ for flow of water in pipes, the multiplier of $L$ in the denominator being used for an expression of the increased resistance of small pipes. Putting this formula in the form $W=c \sqrt{\frac{\left.\mathcal{O}_{( } p_{1}-p_{2}\right) d^{5}}{L}}$, in which $c$ will vary with the diameter of the pipe, we have,

    | For diameter, inches.... | 1 | 2 | 3 | 4 | 6 | 9 | 12 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Value of $c \ldots \ldots \ldots \ldots$. | 40.7 | 52.1 | 58.8 | 63 | 68.8 | 73.7 | 79.3 | instead of the constant value 56.68 , given with the simpler formula.

    One of the most widely accepted formulæ for flow of water is D'Arcy's, $V=c \sqrt{\frac{H D}{L 4}}$, in which $c$ has values ranging from 65 for a $1 / 2$-inch pipe up to
    111.5 for 24 -inch. Using D'Arcy's coefficients, and modifying his formula tc make it apply to steam, to the form

    $$
    Q=c \sqrt{\frac{\left(p_{1}-p_{2}\right) d^{b}}{w L}}, \text { or } W=c \sqrt{\frac{w\left(p_{1}-p_{2}\right) d^{5}}{L}},
    $$

    we obtain,
    $\begin{array}{lllllllllll}\text { For diameter, inches.... } & 1 / 2 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ $\begin{array}{lllllllllll}\text { Value of } c \ldots \ldots \ldots \ldots . & 36.8 & 45.3 & 52.7 & 56.1 & 5 \pi .8 & 58.4 & 59.5 & 60.1 & 60.7\end{array}$ $\begin{array}{llllllllll}\text { For diameter, inches... } & 9 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24\end{array}$ $\begin{array}{lllllllllll}\text { Value of } c \ldots \ldots \ldots . . . . . . & 61.2 & 61.8 & 62.1 & 62.3 & 62.6 & 62.7 & 62.9 & 63.2 & 63.2\end{array}$
    In the absence of direct experiments these coefficients are probably as accurate as any that may be derived from formulæ for flow of water.

    Loss of pressure in lbs. per sq. in. $=p_{1}-p_{2}=\frac{Q^{2} w L}{c^{2} d^{5}}=\frac{W^{2} L}{c^{2} w d^{5}}$.
    Loss of Pressure due to Radiation as well as Friction.E. A. Rudiger (Mechanics, June 30, 1883) gives the following formulæ and tables for flow of steam in pipes. He takes into consideration the losses in pressure due both to radiation and to friction.

    Loss of power, expressed in heat-units due to friction, $H_{f}=\frac{W^{3} f l}{10 p^{2} d^{5}}$.
    Loss due to radiation, $\quad H_{r}=0.262 \cdot \cdot l d$.
    In which $W$ is the weight in lbs. of steam delivered per hour, $f$ the coeff cient of friction of the pipe, $l$ the length of the pipe in feet, $p$ the absolute terminal pressure, $d$ the diameter of the pipe in inches, and $r$ the coefficient of radiation. $f$ is taken as from .0165 to .0175 , and $r$ varies as follows:

    TABLE OF VALUES FOR $\rho^{\circ}$.

    | Pipe Covering. | Absolute Pressure. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 40 lbs . | 65 lbs . | 90 lbs . | 115 lbs . |
    | Uncovered pipe........ | 437 | 555 | 620 | 684 |
    | ${ }_{2}^{2}$-inch cement composition | 146 | 178 | 193 | 209 |
    | 2 " asbestos flock. | 157 | 192 | 202 | 222 |
    | $2{ }_{2}$ "، wooden log... | 100 | 185 | 197 | 210 |
    | ${ }_{2}^{2}$ "، mineral wool. | 61 | 128 | 145 | 151 |
    | 2 " hair felt...... | 48 | 58 | 86 | ${ }_{73}$ |

    The appended table shows the loss due to friction and radiation in a steam. pipe where the quantity of steam to be delivered is 1000 lbs . per hour, $l=$ 1000 feet, the pipe being so protected that loss by radiation $r=64$, and the absolute terminal pressure being 90 lbs .:

    | Diameter of Pipe, inches. | Loss by Friction, Hf. | Loss by Radiation, $H r$. | Total Loss, $L$ | Diam. of Pipe, inches. | Loss by Friction, Hf. | Loss by Radiation, $H_{r}$ | Total Loss, L. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 197,531 | 16,768 | 214,300 | 31/2 | 376 | 58,688 | 064 |
    | 114 | 64,727 | 20,960 | 85,687 | 4 | 193 | 67,072 | 67,265 |
    | 118 | 26,012 | 25,152 | 51,164 | 5 | 63 | 88, 840 | 83,903 |
    | $13 / 4$ | 12,005 | 29,344 | 41,379 | 6 | 25 | 100,608 | 100,623 |
    |  | 6,173 2,023 | 33,536 | 39,709 | 8 | 12 | 117,376 | 117,388 |
    | $21 / 2$ | 2,023 813 | 41,920 50,304 | 43,943 51,117 | 8 |  | 134,144 | 134,150 |

    If the pipes are carrying steam with minimum loss then for same $r, q_{\text {, }}$ and $p$, the loss of pressure $L$ for pipes of different diameters varies inversely as the diameters.
    The general equation for the loss of pressure for the minimal loss from friction and radiation is

    $$
    L=\frac{0.000 \% 023 d r \cdot l p}{W}
    $$

    The loss of pressure for pipes of 1 inch diameter for different absolute terminal pressures when stean is flowing with minimal loss is expressed by the formula $L=C l \sqrt[3]{r^{2}}$, in which the coefficient $C$ has the following values.
    

    In order to find the loss of pressure for any other diameter, divide the loss of pressure in a 1 -inch pipe for the given terminal pressure by the given diameter, and the quotient will be the loss of pressure for that diameter.

    The following is a general sunmary of the results of Mr. Rudiger's investigation :
    The flow of steam in a pipe is determined in the same manner as the flow of water, the formula for the flow of steam being modified only by substituting the equivalent loss of pressure, divided by the density of the steam, for the loss of head.
    The losses in the flow of steam are two in number-the loss due to the friction of flow and that due to radiation from the sides of the pipe. The sum of these is a minimum when the equivalent of the loss due to friction of flow is equal to one fifth of the loss of heat by radiation. For a greater or less loss of pressure-i.e., for a less or greater diameter of pipe -the total loss increases very rapidly.
    For delivering a given quantity of steam at a given terminal pressure, with ininimal total loss, the better the non-conducting inaterial employed, the larger the diameter of tlie steam-pipe to be used.
    The most economical loss of pressure for a pipe of given diameter is equal to the most economical loss of pressure in a pipe of 1 inch diameter for same conditions, divided by the diameter of the given pipe in inches.
    The following table gives the capacity of pipes of different diameters, to deliver steam at different terminal pressures through a pipe one half mile long for loss of pressure of 10 lbs ., and a mean value of $f=0.0175$. Let $W$ denote the number of pounds of steam delivered per hour :

    | Diameter of Pipe, inclies. | Abs. Term. Pressure. |  |  | Diameter of Pipe, inches. | Abs. Term. Pressure. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 65 lbs. | 80 lbs . | 100 lbs. |  | 65 lbs. | 80 lbs . | 100 lbs |
    |  | W | W | W |  | W | 1 W | W |
    | 1 | 102 | 113 | 125 | 412. | 4,39\% | 4,8\%2 | 5,390 |
    | 11/1 | 179 | 198 | 219 |  | 5,721 | 6,339 | \%,013 |
    | $11 /$ | 282 | 312 | 346 |  | 9,024 | 10,000 | 11.063 |
    | 13 | 415 | 459 | 508 |  | 13,268 | 14,701 | 16,265 |
    | 2 | 579 | 641 | 710 |  | 18,526 | 20,528 | 2:,711 |
    | 21 | 1,011 | 1,121 | 1,240 | 9 | 24,870 | 27,556 | 30,488 |
    |  | 1,595 | 1,668 | 1,956 | 10 | 32,364 | 35,860 | 39,6\%5 |
    | 31 | 2,346 | 2,583 | 2,8\% | 11. | 41,081 | 45,507 | 50,349 |
    |  | 3,2\%5 | 3.629 | 4,012 | 12. | 51.049 | 56,564 | 62,581 |

    Resistance to Flow by Hends, Valves, etc. (From Briggs ors Warming Buildings by Steam.)--The resistance at the entrance to a tube when no special bell-mouth is given consists of two parts. The head $v^{2} \div 2 g$ is expended ingiving the velocity of flow; and the head $0505 \frac{v^{2}}{2 g}$ in over.
    coming the resistance of the mouth of the tube. Hence the whole loss of head at the entrance is $1.505 \frac{v^{2}}{2 g}$. This resistance is equal to the resistance of a straight tube of a length equal to about 60 times its diameter.
    The loss at each sharp right-angled elbow is the same as in flowing through a length of straight tube equal to about 40 times its diameter. For a globe steam stop-valve the resistance is taken to be $11 / 2$ times that of the right-angled elbow.
    Sizes of Steam-pipes for Stationary Engines.-Authorities on the steam-engine generally agree that stean-pipes supplying engines should be of such size that the mean velocity of steam in them does not exceed 6000 feet per minute, in order that the loss of pressure due to friction may not be excessive. The velocity is calculated on the assumption that the cylinder is filled at each stroke. In very long pipes, 100 feet and upward, it is well to make them larger than this rule would give, and to place a large steam receiver on the pipe near the engine, especially when the engine cuts oft early in the stroke.
    An article in Power, May, 1893, on proper area of supply-pipes for engines gives a table showing the practice of leading builders. To facilitate com parison, all the engines have been rated in horse-power at 40 pounds nean effective pressure. The table contains all the varieties of simple engines, from the slide-valve to the Corliss, and it appear's that there is no general difference in the sizes of pipe used in the different types.
    The averages selected from this table are as follows:
    

    Formula (1) is: 1 HP . requires $.13 \% \mathrm{sq}$. in. of steam-pipe area.
    Furmula $(\stackrel{2}{2})$ is: Horse-power $=6 d^{2}$. $\quad d=$ diam. of pipe in inches.
    The factor $.13 \% 5$ in formula (1) is thus derived: Assume that the linear velocity of steam in the pipe should not exceed 6000 feet per minute, then pipe area $=$ cyl. area $\times$ piston-speed $\div 6000(\alpha)$. Assume that the av, mean effective pressure is 40 lbs. per sq. in., then cyl. area $\times$ piston-speed $\times 40 \div$ $33,000=$ horse-power (b). Dividing ( $a$ ) by (b) and cancelling, we have pipe area $\div$ H.P. $=.13 \% \mathrm{sq}$. in. If we use 8000 ft . per min. as the allowable velocity, then the factor 1375 becomes .1031 ; that is, pipe area $\div \mathrm{H} . \mathrm{P} .=$ .1031 , or pipe area $\times 9.7=$ horse-power. This, however, gives areas of pipe smaller than are used in the most recent practice. A formula which gives results closely agreeing with practice, as shown in the above table is

    $$
    \text { Horse-power }=6 d^{2}, \text { or pipe diameter }=\sqrt{\frac{H_{. P .}}{6}}=.408 \sqrt{1 / \bar{H} . P_{0}}
    $$

    Diameters of Cylinders corresponding to Various Sizes of Steampipes based on Piston-speed of Engine of 600 ft. per Minute, and allowable Mean Velocity of Steam in Pipe of 4000,6000 , and 8000 Ft. per hin. (Steam aisisumed to be Admitted during Full Stroke.)

    | Diam. of pipe, incres | 2 | 212 | 3 | 31/6 |  |  | 5 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Vel. 4000.. | 5.2 | 6.5 | 7.7 | 9.0 | 10.3 | 11.6 | 12.9 | 15.5 |
    | 6000. | 6.3 | 7.9 | 9.5 | 11.1 | 12.6 | 14.2 | 15.8 | 19. |
    | 8000. | 7.3 | 9.1 | 10.9 | 12.8 | 14.6 | 16.4 | 18.3 | 21.8 |
    | Horse-power, approx | 20 | 31 | 45 | 62 | 80 | 100 | 125 | 180 |
    | Diam. of pipe, inche | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
    | Vel. 4000...... | 18.1 | 20.7 | 23.2 | 25.8 | 28.4 | 31.0 | 33.6 | 36.1 |
    | 6000. | 22.1 | 25.3 | 28.5 | 31.6 | 34.8 | 37.9 | 41.1 | 44.3 |
    | 8000 | 25.6 | 29.2 | 3:. 9 | 36.5 | 40.2 | 43.8 | 47.5 | 51.1 |
    | Horse-pow | 245 | 3:0 | 406 | 500 | 608 | 718 | 845 | 981 |

    Formula. Area of pipe $=\frac{\text { Area of cylinder } \times \text { piston-speed }}{\text { mean velocity of steam in pipe }}$.
    For piston-speed of 600 ft . per min. and velocity in pipe of 4000,6000 , and 8000 ft . per min. area of pipe $=$ respectively $.15, .10$, and $.075 \times$ area of cylinder. Diam. of pipe $=$ respectively $.3873,3162$, and $.2739 \times$ diam. of cylin-
    der. Reciprocals of these figures are $2.582,3.162$, and 3.651 .
    The first line in the above tablemay be used for proportioning exhausto
    pipes, in which a velocity not exceeding 4000 ft . per minute is advisable. The last line, approx. H.P. of engine, is based on the velocity of 6000 ft . per min. in the pipe, using the corresponding diameter of piston, and taking H.P. $=1 / 2(\text { diam. of piston in inches })^{2}$.

    Sizes of Steam-pipes for Marine Engines. - In marine-engine practice the steam-pipes are generally not as large es in stationary practice for the same sizes of cylinder: Seaton gives the following rules:

    Main Steam-pipes should be of such size that the mean velocity of flow does not exceed 8000 ft . per 1 nin.

    In large engines, 1000 to $2000 \mathrm{H} . \mathrm{P}$., cutting off at less than half stroke, the steam-pipe may be desigued for a mean velocity of 9000 ft ., and 10.000 ft . for still larger engines.

    In small engines and engines cutting later than half stroke, a velocity of less than 8000 ft . per minute is desirable.

    Taking 8100 ft . per min. as the mean velocity, $S$ speed of piston in feet per min., and $D$ the diameter of the cyl.,

    $$
    \text { Diam. of main steam-pipe }=\sqrt{\frac{D^{2} S}{8100}}=\frac{D}{90} \sqrt{S .}
    $$

    Stop and Throttle Valves should have a greater area of passages than the area of the main steam-pipe, on account of the friction through the circuitous passages. The shape of the passages should be designed so as to avoid abrupt changes of direction and of velocity of flow as far as possible. Area of Steam Ports and Passages $=$

    $$
    \frac{\text { Area of piston } \times \text { speed of piston in ft. per min. }}{6000}=\frac{(\text { Diam. })^{2} \times \text { speed }}{\tau 639}
    $$

    Opening of Port to Steam.-To avoid wire-drawing during admission the area of opening to steam should be such that the mean velocity of flow does not exceed $10,000 \mathrm{ft}$. per min. To avoid excessive clearance the width of port should be as short as possible, the necessary area being obtained by length (measured at right angles to the line of travel of the valve). In practice this length is usually 0.6 to 0.8 of the diameter of the cylinder, but in long-stroke engines it may equal or even exceed the diameter.

    Exhaust Passages and Pipes.-The area should be such that the mean velocity of the steam should not exceed 6000 ft . per min., and the area should be greater if the length of the exhaust-pipe is comparatively long. The area of passages from cylinders to receivers should be such that the velocity will not exceed 5000 ft . per min.

    The following table is computed on the basis of a mean velocity of flow of 8000 ft . per min . for the main steam-pipe, 10,000 for opening to steam, and 6000 for exhaust. $A=$ area of piston, $D$ its diameter.

    Steam and Exhaust Openings.

    | Piston- <br> speed, <br> ft. per min. | Diam. of <br> Steam-pipe <br> $\div D$. | Area of <br> Steam-pipe <br> $\div A$. | Diam. of <br> Exhaust <br> $\div-D$. | Area of <br> Exhaust <br> $+A$. | Opening <br> to Steam <br> $\div \boldsymbol{A}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 300 | $\mathbf{0 . 1 9 4}$ | 0.0375 | 0.223 | 0.0500 | 0.03 |
    | 400 | 0.224 | 0.0500 | 0.258 | 0.0667 | 0.04 |
    | 500 | 0.250 | 0.0625 | 0.288 | 0.0833 | 0.05 |
    | 600 | 0.274 | 0.0750 | 0.316 | 0.1000 | 0.06 |
    | 700 | 0.296 | 0.0875 | 0.311 | 0.1167 | 0.07 |
    | 800 | 0.316 | 0.1000 | 0.365 | 0.1333 | 0.08 |
    | 900 | 0.335 | 0.1125 | 0.387 | 0.1500 | 0.09 |
    | 1000 | 0.353 | 0.1250 | 0.400 | 0.1667 | $\mathbf{0 . 1 0}$ |

    ## STEAM PIPES.

    Bursting-tests of Copper Steam-pipes. (From Report of Chief Engineer Melville, U. S. N., for 1892.)-Some tests were made at the New York Navy Yard which show the unreliability of brazed seams in copper pipes. Each pipe was 8 in . diameter inside and 3 ft .15 in in. long. Both ends were closed by ribbed heads and the pipe was subjected to a hotwater pressure, the temperature being maintained constant at $871^{\circ}$ F. Three
    of the pipes were made of No. 4 sheet copper ("Stubbs" gauge) and the fourth was made of No. 3 sheet.
    The following were the results, in lbs. per sq. in., of bursting-pressure:

    | Pipe number. | 1 | 2 | 3 | 4 | $4^{\prime}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Actual bursting-strength. | $8: 35$ | 785 | 950 | 1225 | 1275 |
    | Calculated " | 1336 | $13: 36$ | 1569 | 1568 | 1568 |
    | Difference | 501 | 551 | 619 | 343 | 293 |

    The theoretical bursting-pressure of the pipes was calculated by using the figures obtained in the tests for the strength of copper sheet with a brazed joint at $350^{\circ} \mathrm{F}$. Pipes 1 and $刃$ are considered as having been annealed.

    The tests of specimens cut from the ruptured pipes show the injurious action of heat upon copper sheets; and that, while a white heat does not change the character of the metal, a heat of only slightly greater degree causes it to lose the fibrous nature that it has acquired in rolling, and $\mathbf{a}$ serious reduction in its tensile strength and ductility results.

    All the brazing was done by expert workmen, and their failure to make a pipe-joint without burning the metal at some point makes it probable that, with copper of this or greater thickness, it is seldom accomplished.

    That it is possible to make a joint without thus injuring the metal was proven in the cases of many of the specimens, both of those cut from the pipes and those made separately, which broke witlı a fibrous fracture.

    Rule for Thickness of Copper Steam-pipes. (U. S. Supervising Inspectors of Steam Vessels.) - Iultiply the working steam-pressure in lbs. per sq. in. allowed the boiler by the diameter of the pipe in inches, then divide the product by the constant whole number 8000 , and add .0625 to the quotient; the sum will give the thickness of material required.

    Example.-Let 175 lbs . = working steam-pressure per sq. in. allowed the boiler, $5 \mathrm{in} .=$ diameter of the pipe; then $\frac{175 \times 5}{8000}+.0625=.1718+$ inch, thickness required.
    Reinforcing Steam=pipes. (Eng., Aug. 11, 1893.)-In the Italian Navy copper pipes above 8 in. dian. are reinforced by wrapping them with a close spiral of copper or Delta-metal wire. Two or three independent spirals are used for safety in case one wire breaks. They are wound at a tension of about $1 \frac{2}{2}$ tons per sq. in.

    Wire-wound steam-pipes.-The system instituted by the British Admiralty of winding all steam-pipes over 8 in . in diameter with $3 / 16-\mathrm{in}$. copper wire, thereby about doubling the bnrsting-pressure, has within recent years been adopted on many merchant steamers using high-pressure steam, says the London Engineer. The results of some of the Admiralty tests showed that a wire pipe stood just about the pressure it ought to have stond when unwired, had the copper not been injured in the brazing.
    Riveted Steel Steam-pipes have recently boen used for high pressures. See paper on A Method of Manufacture of Large Steam-pipes, by Chas. H. Manning, Trans. A. S. M. E., vol. xv.
    Valves in Steam-pipes. - Should a globe-valve on a steam-pipe have the steam-pressure on top or underneath the valve is a disputed question. With the steam-pressure on top, the stuffing-box around the valve-stem cannot be repacked without shutting off steam from the whole line of pipe; on the other hand, if the steam-pressure is on the bottom of the valve it all has to be sustained by the screw-thread on the valve-stem, and there is danger of stripping the thread.

    A correspondent of the American Machinist, 1892, says that it is a very uncommon thing in the ordinary globe-valve to have the thread give out, but by water-hammer and merciless screwing the seat will be cruslied down quite frequently. Therefore with plants where only one boiler is used he advises placing the valve with the boiler-pressure underneath it. On plants where several boilers are connected to one main steam-pipe he would reverse the position of the valve, then when one of the valves needs repacking the valve can be closed and the pressure in the boiler whose pipe it controls can be reduced to atmospheric by lifting the safety-valve. The repacking can then be done without interfering with the operation of the other boilers of the plant.

    He proposes also the following other rules for locating valves: Place valres with the stems horizontal to avoid the formation of a water-pocket. Never put the junction-valve close to the boiler if the main pipe is above the boiler, but put it on the highest point of the junction-pipe. If the other

    ## STEAM.

    plan is followed, the pipe fills with water whenever this boiler is stopped and the others are running, and breakage of the pipe may cause serious results. Never let a junction-pipe run into the bottom of the main pipe, but into the side or top. Always use an angle-valve where convenient, as there is more room in them. Never use a gate valve under high pressure unless a by-pass is used with it. Never open a blow-off valve on a boiler a little and then shut it; it is sure to catch the sediment and ruin the valve; throw it well open before closing. Never use a globe-valve on an indicator-pipe. For water, always use gate or angle valves or stop-cocks to obtain a clear passage. Buy if possible valves with renewable disks. Lastly, never let a man go inside a boiler to work, especially if he is to hammer on it, unless you break the joint between the boiler ard the valve and put a plate of steel between the flanges.

    A Failure or a Brazed Cdpper Steam-pipe on the British steamer Prodano was investigated by Prof. J. O. Arıold. He found that the brazing was originally sound, but that it had deteriorated by oxidation of the zinc in the brazing alloy by electrolysis, which was due to the presence of fatty acids produced by decomposition of the oil used in the engines. A full account of the investigation is given in The Engineer, April 15, 1898.

    The ${ }^{66}$ Steam Loop'9 is a system of piping by which water of condensation in steam-pipes is automatically returned to the boiler. In its simplest form it consists of three pipes, which are called the riser, the horizontal, and the drop-leg. When the steam-loop is used for returning to the boiler the water of condensation and entrainment from the steam-pipe through which the steam flows to the cylinder of an engine, the riser is generally attached to a separator; this riser empties at a suitable height into the horizontal, and from thence the water of condensation is led into the Arop-leg, which is connected to the boiler, into which the water of condensation is fed as soon as the hydrostatic pressure in drop-leg in connection with the steam-pressure in the pipes is sufficient to overcome the boiler-pressure. The action of the device depends on the following principles: Difference of pressure may be balanced by a water-column; vapors or liquids tend to flow to the point of lowest pressure; rate of flow depends on difference of pressure and mass; decrease of static pressure in a steam-pipe or chamber is proportional to rate of condensation; in a steam-current water will be carried or swept along rapidly by friction. (Illustrated in Modern Mechanism,
    p. $80 \%$.)

    Loss from an Uncovered Steam-pipe. (Bjorling on Pumping-engines.)-Tle amount of loss by condensation in a stean-pipe carried down a deep mine-shaft has been ascertained by actual practice at the Clay Cross Colliery, near Chesterfield, where there is a pipe $\% 1 / 5$ int. interval diam. 1100 ft . long. The loss of steam by condensation was ascertained by direct measurement of the water deposited in a receiver, and was found to be equivalent to about 1 lb. of coal per I.H.P. per hour for every 100 ft . of stean-pipe; but there is no donbt that if the pipes had been in the upcast shaft, and well covered with a good non-conducting material, the loss would have been less. (For Steam-pipe Coverings, see p. 469, ante.)

    ## THE STEAM-BOILER.

    The Horse-power of a Steam-boller.-The term horse power has two meanings in engineering: First, an absolute unit or measure of the rate of work, that is, of the work done in a certain definite period of time, by a source of energy, as a steam-boiler, a waterfall, a current of air or water, or by a prime mover, as a steam-engine, a water-wheel, or a windmill. The value of this unit, whenever it can be expressed in foot-pounds of energy, as in the case of steam-engines, water-wheels, and waterfalls, is 33,000 foot-pounds per minute. In the case of boilers, where the work done, the conversion of water into steam, cannot be expressed in foot-pounds of a vailable energy, the usual value given to the term horse-power is the evaporation of 30 lbs . of water of a temperature of $100^{\circ} \mathrm{F}$. into steam at 70 lbs . pressure above the atmosphere. Both of these units are arbitrary; the first, 33,000 foot-pounds per minute, first adopted by James Watt, being considered equivalent to the power exerted by a good London draught-horse, and the 30 lbs . of water evaporated per hour being considered to be the steam requirement per indicated horse-power of an average engine.

    The second definition of the term lorse-power is an approximate measure of the size, capacity, value, or "rating" of a boiler, engine, water-wheel, or other source or conveyer of energy, by which measure it may be described, bought and sold, advertised, etc. No definite value can be given to this measure, which varies largely with local custom or individual opinion of makers and users of machinery. The nearest approach to uniformity which can be arrived at in the term "horse-power," used in this sense, is to say that a boiler, engine, water-wheel, or other machine, "rated" at a certain horse-power, should be capable of steadily developing that horse-power for a long period of time under ordinary conditions of use and practice, leaving to local custom, to the judgment of the buyer and seller, to written contracts of purchase and sale, or to legal decisions upon such contracts, the interpretation of what is meant by the term "ordinary conditions of use and practice." (Trans. A. S. M. E., vol. vii. p. 226.)
    The committee of the A. S. M. E. on Trials of Steam-boilers in 1884 (Trans., vol. vi. p. 265) discussed the question of the horse-power of boilers as follows:
    The Committee of Judges of the Centennial Exhibition, to whom the trials of competing boilers at that exhibition were intrusted, met with this same problem, and finally agreed to solve it, at least so far as the work of that committee was concerned, by the adoption of the unit, 30 lbs . of water evappressure of 70 lbs . per square inch above the atmosphere, these conditions being considered by them to represent fairly average practice. The quantity of heat demanded to evaporate a pound of water under these conditions is $\mathbf{1 1 1 0 . 2}$ Britisl thermal units, or 1.1496 units of evaporation. The urat of power proposed is thus equivalent to the development of 33,305 heat-units per hour, or 34.488 units of evaporation.
    Your committee, after due consideration, has determined to accept the Centennial Standard, the first above mentioned, and to recommend that in all standard trials the commercial horse-power be taken as an evaporation of 30 lbs . of water per hour from a feed-water temperature of $100^{\circ} \mathrm{F}$. into steam at 70 lbs. gauge pressure, which shall be considered to be equal to $341 / 3$ units of evaporation, that is, to $341 / 2 \mathrm{lbs}$. of water evaporated from a feedwater temperature of $212^{\circ} \mathrm{F}$. into steam at the same temperature. This standard is equal to 33,305 thermal units per hour.
    It is the opinion of this committee that a boiler rated at any stated number of horse-powers should be capalle of developing that power with easy firing, moderate draught, and ordinary fuel, while exhibiting good economy ; and further, that the boiler should be capable of developing at least one third more than its rated power to meet emergencies at times when maximum economy is not the most importart object to be attained.

    Unit of Evaporation.-It is the custom to reduce results of boilertests to the common standard of weight of water evaporated by the unit weight of the combustible portion of the fuel, the evaporation being considered to have taken place at mean atmospheric pressure, and at the temperature due that pressure, the feed-water being also assumed to have been supplied at that temperature. This is, in technical language, said to be the equivalent evaporation from and at the boiling point at atmospheric pressuro, oi" "from and at $212^{\circ} \mathrm{F}$." This unit of evaporation, or one pound of
    water evaporated from and at $212^{\circ}$, is equivalent to 965.7 British thermal units.
    Measures for Comparing the iluty of Boilers.-The measure of the efficiency of a boiler is the number of pounds of water evaporated per pound of combustible, the evaporation being reduced to the standard of "from and at 2120 ;" that is, the equivalent evaporation from feed-water at a temperature of $212^{\circ} \mathrm{F}$. into stean at the same temperature.
    The measure of the capacity of a boiler is the amount of " boiler horsepower" "developed, a horse-power being defined as the evaporation of 30 lbs. of water per hour from $100^{\circ} \mathrm{F}$. into steam at $\% \mathrm{lbs}$. pressure, or $341 / 2 \mathrm{lbs}$. per hour from and at 2120.
    The measure of relative rapidity of steaming of boilers is the number of pounds of water evaporated per hour per square foot of water-heating surface.
    The measure of relative rapidity of combustion of fuel in boiler-furnaces is the number of pounds of coal burned per hour per square foot of gratesurface.

    ## STEAIL-BOLLER PROPOTRTIONS.

    Proportions of Grate and Heating Surface required for a given Horse-power.-The term horse-power here means capacity to evaporate 30 lbs . of water from $100^{\circ} \mathrm{F}$., temperature of feed-water, to steam of 70 lbs ., gauge-pressure $=34.5 \mathrm{lbs}$. from and at $212^{\circ} \mathbf{F}$.

    Average proportions for maximum economy for land boilers fired with good anthracite coal:
    

    The rate of evaporation is most conveniently expressed in pounds evaporated from and at 2120 per sq. ft. of water-heating surface per hour, and the rate of combustion in pounds of coal per sq. ft. of grate-surface per hour.

    Heating-surface.-For maximum economy with any kind of fuel a boiler should be proportioned so that at least one square foot of heatingsurface should be given for every 3 lbs. of water to be evaporated from and at 2120 F . per hour. Still more liberal proportions are required if a portion of the heating-surface has its efficiency reduced by: 1. Tendency of the heated gases to short-circuit, that is, to select passages of least resistance and flow through them with high velocity, to the neglect of cther passages. 2. Deposition of soot from smoky fuel. 3. Incrustation. If the heating-surfaces are clean, and the heated gases pass over it uniformly, little if any increase in economy can be obtained by increasing the heating-surface beyond the proportion of 1 sq . ft. to every 3 lbs . of water to be evaporated, and with all conditions favorable but little decrease of economy will take place if the proportion is 1 sq . ft. to every 4 lbs . evaporated; but in order to provide for driving of the boiler beyond its rated capacity, and for possible decrease of efficiency due to the causes above named, it is better to adopt 1 sq. ft. to 3 lbs. evaporation per hour as the minimum standard proportion.

    Where economy may be sacrificed to capacity, as where fuel is very cheap, it is customary to proportion the heating-surface much less liberaliy. The following table shows approximately the relative results that may be expected with different rates of evaporation, with anthracite coal.

    $$
    { }_{2}^{\text {Lbs. water evapor'd from and at }} \underset{3}{2150}{ }_{5}^{212} \text { per sq. ft. heating-surface per hour: }
    $$

    Sq. ft. heating-surface required per horse-power:

    | 17.3 | 13.8 | 11.5 | 9.8 | 8.6 | 6.8 | 5.8 | 4.9 | 4.3 | 3.8 | 3.5 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    

    Probable temperature of chimney gases, degrees F.:
    $\begin{array}{llllllllllll}450 & 450 & 450 & 518 & 585 & 652 & 720 & 787 & 855 & 922 & .990\end{array}$

    The relative economy will vary not only with the amount of heating-surface per horse-power, but with the efficiency of that heating-surface as regards its capacity for transfer of heat from the heated gases to the water, which will depend on its freedom from soot and incrustalion, and upon the circulation of the water and the heated gases.

    With bituminous coal the efficiency will largely depend upon the thoroughness with which the combustion is effected in the furnace.
    The efficiency with any kind of fuel will greatly depend upon the amount. of air supplied to the furnace in excess of that required to support combustion. With strong draught and thin fires this excess may be very great, causing a serious loss of economy.

    Measurement of Heating-surface.-Authorities are not agreed as to the methods of measuring the heating-surface of steam-boilers. The usual rule is to consider as heating-surface all the surfaces that are surrounded by water on one side and by flame or heated gases on the other, but there is a difference of opinion as to whether tuoular heating-surface slould be figured from the inside or from the outside diameter. Some writers say, measure the heating-surface always on the smaller side-the fire side of the tube in a horizontal return tubular boiler and the water side in a water-tube boiler. Others would deduct from the heating-surface thus measured an allowance for portions supposed to be ineffective on account of being covered by dust, or being out of the direct current of the gases.
    It has hitherto been the common practice of boiler-makers to consider all surfaces as heating-surfaces which transmit heat from the flame or gases to the water, making no allowance for difieerent degrees of effectiveness; also, to use the external instead of the internal diameter of tubes, for greater convenience in calculation, the external diameter of boiler-tubes usually being made in even iuches or half inches. This method, however, is inaccurate, for the true heating-surface of a tube is the side exposed to the hot gases, the inner surface in a fire-tube boiler and the outer surface in a water-tube boiler. The resistance to the passage of heat from the hot gases on one side of a tube or plate to the water on the other consists almost entirely of the resistance to the passage of the heat from the gases into the metal, the resistance of the metal itself and that of the wetted surface being practically nothing. See paper by C. W. Baker, Trans. A. S. M. E., vol. xix.

    Rule for finding the heating-surface of vertical tubular boilers: Multiply the circumference of tlie fire-box (in inches) by its heiglit above the grate: multiply the combined circumference of all the tubes by their length, and to these two products add the area of the lower tube-sheet; from this sum subtract the area of all the tubes, and divide by 144: the quotient is the number of square feet of heating-surface.

    Rule for finding the heating-surface of horizontal tubular boilers: Take the dimensions in inches. Multiply two thirds of the circumference of the shell by its length; multiply the sum of the circumferences of all the tubes by their common length; to the sum of these products add two thirds of the area of both tube-sheets; from this sum subtract twice the combined area of all the tubes; divide the remainder by 144 to obtain the result in square feet.
    Rule for finding the square feet of heating-surface in tubes: Pultiply tbe number of tubes by the diameter of a tube in inches, by its length in feet, and by . 2618 .
    Horse-power, Ruilders Rating. Heating-surface per Horse-power.-It is a general practice among builders to furnish about 12 square feet of heating-surface per horse-power, but as the practice is not uniform, bids and contracts should slways specify the amount of heatingsurface to be furnished. Not less than one third square foot of grate-surface should be furnished per horse-power.

    Engineering News, July 5, 1894, gives the following rongh-and-ready rule for finding approximately the commercial horse-power of tubular or watertube boilers: Number of tubes $\times$ their length in feet $\times$ their nominal diameter in inches $\div 50=n L d \div 50$. The number of square feet of surface in the tubes is $\frac{n \pi d L}{12}=\frac{n L d}{3.82}$, and the horse-power at 12 square feet of surface of tubes per horse-power, not counting the shell, $=n L d \div 45.8$. If 15 square feet of surface of tubes be taken, it is $n L d \div 57.3$. Making allowance for the heating-surface in the shell will reduce the divisor to about 50 .

    Horse-power of Marine and Eocomotive Boilers.-The term horse-power is not generally used in connection with boilers in marine practice, or with locomotives. The boilers are designed to suit the engines, and are rated by extent of grate and heating-surface only.

    Grate-sirface. - The amount of grate-surface required per horse power, and the proper ratio of heating-surface to grate-surface are extremely variable, depending chiefly upon the character of the coal and upon the rate of dranght. With good coal, low in ash, approximately equal results may be obtained with large grate-surface and light draught and with small grate-surface and strong draught, the total amount of coal burned per hour being the same in both cases. With good bituminous coal, like Pittsburgh, low in ash, the best results apparently are obtained with strong draught and high rates of combustion, provided the grate-surfaces are cut down so that the total coal burned per hour is not too great for the capacity of the heating-surface to absorb the heat produced.

    With coals high in ash, especially if the ash is easily fusible, tending to choke the grates, large grate-surface and a slow rate of combustion are required, unjess means, such as shaking grates, are provided to get rid of the ash as fast as it is made.

    The amount of grate-surface required per horse-power under various conditions may be estimated from the following table:

    |  |  |  | Pounds of Coal burned per square foot of Grate per hour. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | 8 | 10 | 12 | 15 | 20 | 25 | 30 | 35 | 40 |
    |  |  |  | Sq. Ft. Grate per H. P. |  |  |  |  |  |  |  |  |
    | Good coal | 10 | 3.45 | . 43 | . 35 |  | . 23 | . 17 | . 14 |  | . 10 | . 09 |
    | and boiler, |  | 3.83 |  |  |  | . 25 | . 19 |  |  | . 11 | . 10 |
    | Fair coal or | 8.61 | 4. |  |  | . 33 | . 26 | . 20 | . 16 | . 13 | . 12 | . 11 |
    | boiler, | $\left\{{ }^{8}\right.$ | 4.31 |  | . 43 |  | 29 | . 22 | . 17 |  | . 13 | . 11 |
    |  | 6.9 |  |  |  | . 42 | . 34 | . 25 | . 20 | . 17 | . 15 | . 11 |
    | Poor coal or | 6.9 | 5.75 |  | . 58 |  | . 38 | . 29 | . 23 | . 19 | 17 | . 14 |
    | boiler, |  | 6.9 |  |  |  | . 46 | . 35 | . 28 | $\cdots$ | $2{ }_{2}^{12}$ | . 14 |
    | Lignite and | \} 3.45 | 10. | 1.25 |  | . 83 | . 67 | . 50 | . 40 | 33 | . 29 | . 25 |

    In designing a boiler for a given set of conditions, the grate-surfaceshould be made as liberal as possible, say sufficient for a rate of combustion of 10 lbs. per square foot of grate for anthracite, and 15 lbs . per square foot for bituminous coal, and in practice a portion of the grate-surface may be bricked over if it is found that the draught, fuel, or other conditions render it advisable.
    Proportions of Areas of Flues and other Gas-passages.
    -Rules are usually given making the area of gas-passages bear a certain ratio to the area of the grate-surface; thus a common rule for horizontal tubular boilers is to mako the area over the bridge wall $1 / 7$ of the gratesurface, the flue area $1 / 8$, and the chimmey area $1 / 9$.
    For average conditions with anthracite coal and moderate draught, say a rate of combustion of 12 lbs . coal per square foot of grate per hour, and a ratio of heating to grate surface of 30 to 1 , this rule is as good as any, but it is evident that if the draught were increased so as to cause a rate of combustion of 24 lbs ., requiring the grate-surface to be cut down to a ratio of 60 to 1 , the areas of gas-passages slould not be reduced in proportion. The amount of coal burned per hour being the same under the changed conditions, and there being no reason why the gases should travel at a higher velocity, the actual areas of the passages should remain as before, but the ratio of the area to the grate-surface would in that case be doubled.
    Mr. Barrus states that the highest efficiency with anthracite coal is obtained when the tube area is $1 / 9$ to $1 / 10$ of the grate-surface, and with bitumiuous coal when it is $1 / 6$ to $1 / 7$, for the conditions of medium rates of combustion, such as 10 to 12 lbs . per square foot of grate per hour, and 12 square feet of heating-surface allowed to the horse-power.
    The tube area should be made large enough not to choke the draught, and so lessen the capacity of the boiler; if made too large the gases are apt to select the passages of least resistance and escape from them at a high velocity and high temperature.
    This coudition is very commonly found in horizontal tubular boilers where
    tine gases go chiefly through the upper rows of tubes; sometimes also in vertical tubular boilers, where the gases are apt to pass most rapidly throngh the tubes nearest to the centre.
    Air-passages through Grate-bars.-The usual practice is, airopering $=30 \%$ to $50 \%$ of area of the grate ; the larger the better, to avoid stoppage of the air-supply by clinker; but with coal free from clinker much smaller air-space may be used without detriment. See paper by F. A. Scheffler, Trans. A. S. M. E., vol. xv. p. 503.

    ## PERFORIMANCE OF BOLLERS.

    The performance of a steam-boiler comprises both its capacity for generating steam aud its economy of fuel. Capacity depends upon size, both of grate-surface and of heating-surface, upon the kind of coal burned, upon the draft, and also upon the econony. Econemy of fuel depends upon the completeness with which the coal is burned in the furnace, on the proper regnlation of the air-supply to the amount of coal burned, and upon the thorouglness with which the boiler absorbs the heat generated in the furnace. The absorption of heat depends on the extent of heating-surface in relation to the amount of coal burned or of water evaporated, upon the arrangement of the gas-passages, and upon the cleanness of the surfaces. The capacity of a boiler may increase with increase of economy when this is due to more thorough combustion of the coal or to better regulation of the air-supply, or it may iucrease at the expense of economy when the increased capacity is due to overdriving, causing an increased loss of heat in the chimney gases. The relation of capacity to economy is therefore a complex one, depending on many variable conditions.
    Many attempts have been made to construct a formula expressing the relation between capacity, rate of driving, or evaporation per square foot of heating-surface, to the economy, or evaporation per pound of combustible, but none of them can be considered satisfactory, since they make the economy depend only on the rate of driving (a few so-called "constants," however, being introduced in some of them for different classes of boilers, kinds of fuel, or kind of draft), and fail to take into consideration the numerous other conditions upon which economy depends. Such formulæ are Rankine's, Clark's, Emery's. Isherwood's, Carpenter's, and Hale's. A discussion of them all may be found in Mr. R. S. Hale's paper on "Efficiency of Boiler Heating Surface," in Trans. A. S. M. E., vol. xviii. p. 328. Mr. Hale's formula takes into acconnt the effect of radiation, which reduces the economy considerably when the rate of driving is less than 3 lbs . per square foot of heating-surface per hour.

    Selecting the highest results obtained at different rates of driving obtained with anthracite coal in the Centennial tests (see p. 685), and the highest results with anthracite reported by Mr. Barrus in his book on Boiler Tests, the author has plotted two curves slowing the maxinum results which may be expected with anthracite coal, the first under exceptional conditions such as obtained in the Centennial tests, and the second under the best conditions of ordinary practice. (Trans. A. S. M. E., xviii. 354). From these curves the following figures are obtained.

    Lbs. water evaporated from aud at $212^{\circ}$ per sq. ft . heating-surface per hour:

    $$
    \begin{array}{llllllllllll}
    1.6 & 1.7 & 2 & 2.6 & 3 & 3.5 & 4 & 4.5 & 5 & 6 & 7 & 8
    \end{array}
    $$

    Lbs. water evaporated from and at $212{ }^{\circ}$ per lb. combustible:

    | Centennial. | 11.8 | 11.9 | 12.0 | 12.1 | 12.05 | 12 | 11.85 | $11 . \%$ | 11.5 | 10 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Barrus..... | 11.4 | 11.5 | 11.55 | 11.6 | 11.6 | 11.5 | 11.2 | 10.9 | 10.8 | 9.9 |
    | Avg. Cent'1 | $\ldots$. | $\ldots .$. | 12.0 | 11.6 | 11.2 | 10.8 | 10.4 | 10.0 | 9.6 | 8.8 |
    | A. | 8.5 |  |  |  |  |  |  |  |  |  |

    The figures in the last line are taken from a straight line drawn as nearly as possible through the average of the plotting of all the Centennial tests. The poorest results are far, below these figures. It is evident that no formula can be constructed that will express the relation of economy to rate of driving as well as do the three lines of figures given above.
    For semi-bituminous and bituminous coals the relation of economy to the rate of driving no doubt follows the same general law that it does with anthracite, i.e., that beyond a rate of evaporation of 3 or 4 lbs . per sq. ft . of heating-surface per hour there is a decrease of economy, but the figures obtained in different tests will show a wider range between maximum and average results on account of the fact that it is more difficult with bituminous than with anthracite coal to secure complete combustion in the furnace.

    The amount of the decrease in economy due to driving at rates exceeding 4 lbs . of water evaporated per square foot of heating-surface per hour differs greatly with different boilers, and with the same boiler it may differ with different settings and with different coal. The arrangement and size of the gas-passages seem to have an important effect upon the relation of economy to rate of driving. There is a large field for future research to determine the causes which influence this relation.

    General Conditions which secure Economy of Steam. boilers.-In general, the highest results are produced where the temperafure of the escaping gases is the least. An examination of this question is made by Mr. G. H. Barrus in his book on "Boiler Tests," by selecting those tests made by him, six in number, in which the temperature exceeds the average, that is, $375^{\circ} \mathrm{F}$., and comparing with five tests in which the temperature is less than $375^{\circ}$. The boilers are all of the common horizontal type, and all use anthracite coal of either egg or broken size. The average flue temperatures in the two series was $444^{\circ}$ and $343^{\circ}$ respectively, and the difference was $101^{\circ}$. The average evaporations are 10.40 lbs . and 11.02 lbs . respectively, and the lowest result corresponds to the case of the highest flue temperature. In these tests it appears, therefore, that a reduction of $101^{\circ}$ in the temperarure of the waste gases secured an increase in the evaporation of $6 \%$. This result corresponds quite closely to the effect of lowering the temperature of the gases by means of a flue-heater where a reduction of $107^{\circ}$ was attended by an increase of $\% \%$ in the evaporation per pound of coal.

    A similar comparison was made on horizontal tubular boilers using Cumberiand coal. The average flue temperature in four tests is $450^{\circ}$ and the average evaporation is 11.34 lbs . Six boilers have temperatures below $415^{\circ}$, the average of which is $383^{\circ}$, and these give an average evaporation of 11.75 lbs. With $67^{\circ}$ less temperature of the escaping gases the evaporation is higher by about 4\%.

    The wasteful effect of a high flue temperature is exhibited by other boilers than those of the horizontal tnbular class. This source of waste was shown to be the main cause of the low economy produced in those vertical boilers which are deficient in heating-surface.

    Relation between the Herting-surface and Grate-surface to obtain the Highest Efficiency.-A comparison of three tests of horizontal tubular boilers with anthracite coal, the ratio of heating-surface to grate-surface being 36.4 to 1 , with three other tests of similar boilers, in which the ratio was 48 to 1 , showed practically no difference in the results. The evidence shows that a ratio of 36 to 1 provides a sufficient quantity of heating-surface to secure the full efficiency of authracite coal where the rate of combustion is not more than 12 lbs . per sq. ft. of grate per hour.

    In tests with bituminous coal an increase in the ratio from 36.8 to 42.8 secured a small improvement in the evaporation per pound of coal, and a high temperature of the escaping gases indicated that a still further increase would be beneficial. Among the high results produced on common horizontal tubular boilers using bitnminous coal, the highest occurs where the ratio is 53.1 to 1 . This briler gave an eraporation of 12.47 lbs . A double-deck boiler furnishes another example of high performance, an evaporation of 12.42 lbs . having been obtained with bituminous coal, and in this case the ratio is 65 to 1. These examples indicate that a much larger amount of heating-surface is required for obtaining the full efficiency of bituminous coal than for boilers using anthracite coal. The temperature of the escaping gases in the same koiler is invariably higher when bituminous coal is used than when anthracite coal is used. The deposit of soot on the surfaces when bituminous coal is used interferes with the full efficiency of the surface, and an increased area is demanded as an offset to the loss which this deposit occasions. It would seem, then, that if a ratio of 36 to 1 is sufficient for anthracite coal, from 45 to 50 should be provided when bituminous coal is burned, especially in cases where the rate of combustion is above 10 or 12 lbs. per sq. ft. of grate per hour.

    The number of tubes controls the ratio between the area of grate-surface and area of tube-opening. A certain minimum amount of tube-opening is required for efficient work.

    The best results obtained with anthracite coal in the common horizontal boiler are in cases where the ratio of area of grate-surface to area of tubeopeuing is larger than 9 to 1. The conclusion is drawn that the highest efficiency with anthracite coal is obtained when the tube-opening is from $1 / 9$ to $1 / 10$ of the grate-surface.

    When bituminous coal is burned the requirements appear to be different. The effect of a large tube-opening does not seem to make the extra tubes inefficient when bituminous coal is used. The highest result on any boiler of the horizontal tubular class, fired with bituminous coal, was obtained where the tube-opening was the largest. This gave an evaporation of 12.47 lbs ., the ratio of grate-surface to tube-opening being 5.4 to 1 . The next highest result was 12.42 lbs ., the ratio being 5.2 to 1 . Three high results, a veraging 12.01 lbs ., were obtained when the average ratio was 7.1 to 1 . Without going to extremes, the ratio to be desired when bituminous coal is used is that which gives a tube-opening having an area of from $1 / 6$ to $1 / 7$ of the gratesurface. This applies to medium rates of combustion of, say, 10 to 12 lbs. per sq. ft. of grate per hour, 12 sq . ft. of water-heating surface being allowed per horse-power.

    A comparison of results obtained from different types of boilers leads to the general conclusion that the economy with which different types of boilers operate depends much move upon their proportions and the conditions under which they work, than upon their type; and, moreover, that when these proportions are suitably carried out, and when the conditions are favorable, the various types of boilers give substantially the same economic result.

    Efficiency of a Steam-bofler.-The efficiency of a boiler is the percentage of the total heat generated by the combustion of the fuel which is utilized in heating the water and in raising steam. With anthracite coal the heating-value of the combustible portion is very nearly 14,500 B. T. U. per lb., equal to an evaporation from and at $212^{\circ}$ of $14,500 \div 966$ $=15$ lbs. of water. A boiler which when tested with anthracite coal shows an evaporation of 12 lbs . of water per lb. of combustible, has an efficiency of $12 \div 15=80 \%$, a figure which is approximated, but scarcely ever quite reached, in the best practice. With bituminous coal it is necessary to have a determination of its heating-power made by a coal calorimeter before the efficiency of the boiler using it can be determined, but a close estimate may be made from the chemical analysis of the coal. (See Coal.)

    The difference between the efficiency obtained by test and $100 \%$ is the sum of the numerous wastes of heat, the chief of which is the necessary loss due to the temperature of the chimney-gases. If we have an analysis and a calorimetric determination of the heating-power of the coal (properly sampled), and an average analysis of the chimney-gases, the amounts of the several losses may be determined with approximate accuracy by the method described below.

    Data given:

    1. Analysis of the Coal.

    Cumberland Semi-bituminous.

    | Carbon.. | 80.55 |
    | :---: | :---: |
    | Hydrogen | 4.50 |
    | Oxygen | 2.70 |
    | Nitrogen | 1.08 |
    | Moisture. | 2.92 |
    | Ash.... | 8.25 |
    |  | 100.00 |

    2. Analysis of the Dry Chimneygases, by Weight.
    

    Heating-value of the coal by Dulong's formula, 14,243 heat-units.
    The gases being collected over water, the moisture in them is not determined.
    3. Ash and refuse as determined by boiler-test, 10.25 , or $2 \%$ more than that found by analysis, the difference representing carbon in the ashes obtained in the boiler-test.
    4. Temperature of external atmosphere, $60^{\circ} \mathrm{F}$.
    5. Relative humidity of air, $60 \%$, corresponding (see air tables) to .007 lb . of vapor in each lb. of air.
    6. Temperature of chimney-gases, $560^{\circ} \mathrm{F}$.

    Calculated results :
    The carbon in the chimney-gases being $3.8 \%$ of their weight, the total weight of dry gases per lb . of carbon burned is $100 \div 3.8=26.32 \mathrm{lbs}$. Since the carbon burned is $80.55-2=78.55 \%$ of the weight of the coal, the weight of the dry gases per lb . of coal is $26.32 \times 78.55 \div 100=20.67 \mathrm{lbs}$.
    Each pound of coal furnishes to the dry chimney-gases. $.7855 \mathrm{lb}, \mathbf{C}, .0108 \mathrm{~N}$, and $\left(2.70-\frac{4.50}{8}\right)+100=.0214 \mathrm{lb} .0$; a total of .8177 , say .82 lb . This sub-
    tracted from 20.6 flbs . leaves 19.85 lbs as the quantity of dry ail (not including moisture) which emters the furnace per pound of coal, not counting the air required to burn the available hydrogen, that is, the hydrogen minus one eighth of the oxygen chemically combined in the coal. Each lb. of coal burned contained .045 lb . H , which requires $.045 \times 8=. .36 \mathrm{lb}$. O for its combustion. Of this, $.02 \% \mathrm{lb}$. is furnisled by the coal itself, leaving .333 lb . to come from the air: The quantity of air needed to supply this oxygen (air containing $23 \%$ by weight of oxygen) is $.333 \div .23=1.45 \mathrm{lb}$., which added to the 19.85 lbs . already found gives 21.30 lbs . as the quantity of dry air supplied to the furnace per lb. of coal burned.

    The air carried in as vapor is .0071 lb . for each lb. of dry air, or $21.3 \times .0071$ $=0.15 \mathrm{lb}$. for each lb . of coal. Each lb . of coal contained .029 lb . of moisture, which was evaporated and carried into the chinney-gases. The .045 lb . of H per lb. of coal when burnt formed $.045 \times 9=.405 \mathrm{lb}$. of $\mathrm{H}_{2} \mathrm{O}$.

    From the analysis of the chimney-gas it appears that $.09 \div 3.80=2.3 i \%$ of the carbon in the coal was burned to CO instead of to $\mathrm{CO}_{2}$.

    We now have the data for calculating the various losses of heat, as follows, for each pound of coal burned:
    

    The heat lost by radiation from the boiler and furnace is not easily determined directly, especially if the boiler is enclosed in brickwork, or is pratected by non-conducting covering. It is customary to estimate the heat lost by radiation by difference, that is, to charge radiation with all the heat lost which is not otherwise accounted for.

    One method of determining the loss by radiation is to block off a portion of the grate-surface and build a sniall fire on the remainder, and drive this fire with just enough draught to keep up the steam-pressure and supply the heat lost by radiation without allowing any steam to be discharged, weighing the coal consumed for this purpose during a test of several hours' duration.

    Estimates of radiation by difference are apt to be greatly in error, as in this difference are accumulated all the elrors of the analyses of the coal and of the gases. An average value of the heat lost by radiation from a boiler set in brickwork is about 4 per cent. When several boilers are in a battery and enclosed in a boiler-house the loss by radiation may be very much less, since much of the lieat radiated from the boiler is returned to it $i_{1}$ the air supplied to the furnace, which is taken from the boiler-room.
    An important source of error in making a "heat balance" such as the one above given, especially when highly bituminous coal is used, may be due to the non-combustion of part of the hydrocarbon gases distilled from the coal immediately after firing, when the temperature of the furnace may be reduced below the point of ignition of the gases. Each pound of hydrogen which escapes burning is equivalent to a loss of heat in the furnace of 62,500 heat-units.
    In analyzing the chimney gases by the usual method the percentages of. the constituent gases are obtained by volume instead of by weight. To reduce percentages by volume to percentages by weight, multiply the percentage by voluise of each gas by its specific gravity as compared with air, and divide each product by the sum of the products.

    If $\mathrm{O}, \mathrm{CO}, \mathrm{CO}_{2}$, and N represent the per cents by volume of oxygen, carwic oxide, carbonic acid, and nitrogen, respectively, in the gases of combustion:

    $$
    \left.\begin{array}{l}
    \text { Lbs. of air required to burn } \\
    \text { one pound of carbon }
    \end{array}\right\}=\frac{3.03 \cdot \mathrm{~N}}{\mathrm{CO}_{3}+\mathrm{CO}} .
    $$

    Ratio of total air to the theoretical requirement $=\frac{\mathrm{N}}{\mathrm{N}-3.780 \mathrm{O}}$.
    $\left.\begin{array}{l}\text { L.bs. of air per pound } \\ \text { of coal }\end{array}\right\}=\left\{\begin{array}{c}\text { Lbs. of air per pound } \\ \text { of carboul }\end{array}\right\} \times\left\{\begin{array}{l}\text { Per cent of carbon } \\ \text { in coal. }\end{array}\right.$
    Lbs. dry gas produced per pound of carbon $=\frac{11 \mathrm{CO}_{2}+80+r(\mathrm{CO}+\mathrm{N})}{3\left(\mathrm{CO}_{2}+\mathrm{CO}\right)}$.

    ## TESTS OF STEAMIBOLLERS.

    Boiler-tests at the Centennial Exhibition, Philadelphia, 1876 .- (See Reports and Awards Group XX, Internalional Exhibition, Phila., 1876; also, Clark on the Steam-engire, vol. i, page 253.)
    Competitive tests were made of fourteen boilers, using good anthracite coal, one boiler, the Galloway, being tested with both anthracite and semibituminous coal. Two tests were made with each boiler: one called the capacity trial, to determine the economy and capacity at a rapid rate of driving; and the other called the economy trial, to determine the economy when driven at a rate supposed to be near that of maximum economy and rated capacity. The following table gives the principal results obtained in the economy trial, together with the capacity and economy figures of the capacity trial for comparison.

    |  | Economy Tests. |  |  |  |  |  |  |  | Capacity Tests. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & \text { Name } \\ & \text { of } \\ & \text { Boiler. } \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \dot{\sim} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{W} \\ & 0 \\ & 0 \\ & \text { 出 } \end{aligned}$ |  |  |
    |  | - $34.6{ }^{165} 9.1$ |  |  | lids. |  | \% | deg | H.P. |  | lbs. |
    |  | 64.312 .0 | 10.4 | 1.68 | 11.988 | 415 |  | 32.6 | 57.8 | 68.4 | 11.064 |
    | Low | 30.66 .8 | 11.3 | 1.87 | 11.923 | 333 |  | 9.4 | 47.0 | 69.3 | 11.163 |
    | Smith | 45.812 .1 | 11.1 | 2.421 | 11.906 | 411 | 1.3 |  | 99.8 | 125.0 | 11.925 |
    | Babcock \& Wilcox | 37.710 .0 | 11.0 | 2.43 | 11.822 | 296 | 2.7 |  | 135.6 | 186.6 | 10.330 |
    | Galloway........... | 23.79 .6 | 11.1 | 3.631 | 11583 | 303 |  | 1.4 | 103.3 | 133.8 | 11.216 |
    | Do. semi-bit. coal | 23.7 78.9 |  | 3.20 | 12.125 | 325 | 0.3 |  | 90.9 | 125.1 | 111.609 |
    | Andrews |  | 10.3 | 2.32 | 11.039 <br> 10 <br> 10 | 420 | 0.9 | 71.7 | . 6 | 58 | 9.145 9.889 |
    | Wiegand | 27.3 12.4 <br> 30.712 .3  <br> 12  |  | 2.75 | 10.930 | 517 | 0.9 | 20.5 | 82.4 | 162.8 | 9.885 |
    | Anderson | 17.519 .6 | 9.3 | 2.64 | 10.618 | 417 |  | 15.7 | 98.0 | 132.8 | 9.568 |
    | Kelly | 20.910 .8 | 9.0 | 3.82 | 10.312 |  | 5.6 |  | 81.0 | 99.9 | S. 397 |
    | Exeter | 33.519 .3 | 11.4 | 1.38 | 10.041 | 430 | 4.2 |  | 72.1 | 108.0 | ${ }^{9.974}$ |
    | Pierce | 14.088 | 11.0 | 4.44 | 10.021 | 374 | 5 |  | 51.7 | 67. 8 | 9.865 |
    | Rogers \& Black ... <br> Averages | $19.08 .6$ | 9.9 | $\frac{3.43}{2.74}$ | $\frac{9.613}{11.123}$ |  | 2.1 |  | 85.7 | $\frac{67.2}{110.8}$ | $\frac{9.429}{10.251}$ |

    The comparison of the economy and capacity trials shows that an average Increase in capacity of 30 per cent was attended by a decrease in economy of 8 per cent, but the relation of economy to rate of driving varied greatly in the different boilers. In the Kelly boiler an increase in capacity of 22 per cent was attended by a decrease in economy of over 18 per cent, while the Smith boiler with an increase of 25 per cent in capacity showed a slight increase in economy.

    One of the most important lessons gained from the above tests is that there is no necessary relation between the type of a boiler and economy. of the five boilers that gave the best results, the total range of variation between the highest and lowest of the five being only $2.3 \%$, three were watertube boilers, one was a horizontal tubular boiler, and the fifth was a combination of the two types. The next boiler on the list, the Galloway, was an internally fired boiler, all of the others being externally fired. The following is a brief description of the principal constructive features of the fourteen boilers:
    Root.................... $\{$
    4-in. water-tubes, inclined $20^{\circ}$ to horizontal; reversed draught.
    Firmenich .............. 3-in. water-tubes, nearly vertical; reversed draught.
    Lowe. Cylindrical shell, multitubular flue.
    Smith....................
    Babcock \& Wilcox.... $\left\{\begin{array}{l}312 \text {-ine } \\ \text { suter-tubes, inclined } 15^{\circ}\end{array}\right.$ to horizontal; reversed draught.
    Galloway...... ....... Cylindrical shell, furnace-tubes and water-tubes.
    Andrews.... .......... Square fire-box and double return multitubular flues.
    Harrison................ $\{8$ slabs of cast-iron spheres, 8 in. in diameter; reversed draught.
    Wiegand.............. $\left\{\begin{array}{l}4 \text {-in.water-tubes, vertical, with internal circulating } \\ \text { tubes. }\end{array}\right.$
    Anderson............... 3-in. flue-tubes, nearly horizontal; return circulation.
    Kelly................... $\left\{\begin{array}{l}3 \text {-in. water-tubes, slightly inclined; each divided by } \\ \text { internal }\end{array}\right.$
    Exeter $\qquad$ internal diaphragm to promote circulation.
    27 hollow rectangular cast-iron slabs.
    Pierce ................. Rotating horizontal cylinder, with flue-tubes.
    Rogers \& Black....... Vertical cylindrical boiler, with external water-tubes.
    Tests of Tubulous Boilers.-The following tables are given by S. H. Leonard, Asst. Engr. U. S. N., in Jour. Am. Soc. Naval Engrs. 1890. The tests were made at different times by boards of U. S. Naval Engineers, except the test of the locomotive-torpedo boiler, which was made in England.

    |  | Type. |  | Evaporation from and at $212^{\circ} \mathrm{F}$. |  |  | Weights, lbs. |  |  |  | $\stackrel{4}{\circ}$ . <br>  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | $\begin{aligned} & \bar{E} \\ & 0 \\ & 0 \\ & \dot{~} \\ & \text { B } \\ & \text { م } \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \text { d. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |
    | $1$ | Belle | 12.8 | 10. | 5.2 | 6.4 |  | 04 | 53.2 | 10.1 | Nat'l. | 111 | 1 B |
    |  |  |  | 10.23 | 3.1 | 9.1 | E | 96 |  | 4.8 | Jet. | 120 | 0 |
    | 2 | Herreshoff | $\{25.8$ | 8.68 |  | 23.8 | S 3,050 | 36 |  | 1.8 | Jet. | 195 | 5 |
    |  |  | $\left\{\begin{array}{l}4.3 \\ 2.3\end{array}\right.$ | 13.4 | 2.7 | 10 | $\stackrel{\text { E }}{ }$ | 172 | 21.8 | 8.1 | Nat'l. | 148 | 8 |
    | 3 | To | $\left\{\begin{array}{r}24.5 \\ 7\end{array}\right.$ | 6.77 | 8.2 | 30.4 5.8 | S 1,640 | 56 | 21.8 | 2.6 | 1.14 | 152 | 2 |
    | 1 | War |  | 10.77 | 1.7 3.2 |  | ${ }^{\mathrm{E}} \quad 1,682$ | 154 |  | 7.7 4.0 | Nat'l. |  | 0 |
    | 1 | Ward | $\left\{\begin{array}{l}15.5 \\ 62.5\end{array}\right.$ | 7.01 | 10 | 34.2 | S 1,930 | 26 |  | 1.3 | Jet. | 161 | B. |
    |  |  | \{ 24.8 | 9.93 | 8.6 | 11 | E 18,900 | 120 |  | 4.7 | 2.08 | 7 |  |
    | 5 |  | ) 38 | 9.06 | 12.8 | 16.3 | S 30,000 | 80 |  | 3.1 | 4.01 | 78 |  |
    | 6 |  |  |  |  |  |  | 47.7 |  | 1.8 | 3.13 | 125 | 5 |
    |  | torpedo, | $\{120.8$ |  | 20.05 | 36.2 | S 34,990 | 33.3 |  | 1.2 | 4.95 | 123 | B |
    |  | Ward...... | 55.04 | 8.44 | 9.47 | 32.1 | $\left\|\begin{array}{ll} \mathrm{E} & 26,533 \\ \mathrm{~S} & 30,474 \end{array}\right\|$ | 26 | 12. | 1.3 | 2 | 160 | B |
    | 8 | $\begin{aligned} & \text { Thorny- } \\ & \text { croft. (U. } \\ & \text { S.S.Cush- } \\ & \text { ing.) } \end{aligned}$ | 45 |  |  |  | - | *31 | 10.3 |  | 8 | 245 | 5 |

    Per cent moisture in steam: Belleville, 6.31; Herreshoff (first test), 3.5 Scotch, 1st, 3.44; 2d, 4.29; Ward, 11.6; others not given.

    Dimensions of the Boilers.

    | No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Length, ft. and in. | $8^{\prime} 6^{\prime \prime}$ | $4^{\prime} 9^{\prime \prime}$ | $2^{\prime} 6^{\prime \prime}$ | $3^{\prime} 2^{\prime \prime}$ | $9^{\prime} 0^{\prime \prime}$ | $16^{\prime} 8$ | $10^{\prime} 3^{\prime \prime *}$ | $10^{\prime} 0^{\prime \prime} \ddagger$ |
    | Width, " " ".. | 70 | 38 | 26 | 17 | 90 | $\begin{array}{ll}6 & 4\end{array}$ | 46 t | $70 \ddagger$ |
    | Height, " " | 110 | 40 | 33 | 73 |  | 76 | 118 | $80 \ddagger$ |
    | Space, cu.ft.. | 645.5 | 69.6 | 203 | 42.7 | 572.5 | 630.3 | 729.3 | $560 \pm$ |
    | Grate-area, sq. ft. . | 34.17 | 9 | 4.25 | 3.68 | 31.16 | 28 | 66.5 | 33.3 |
    | Heating-surface, sq.ft.... | 804 | 205 | 75 | 146 | 727 | 1116 | 2490 | 2375 |
    | Ratio H.S. $\div \mathrm{G}$ | 23.5 | 22 | 17.6 | 39.5 | 23.3 | 39.8 | 37.4 | 62 |

    ## * Diameter. † Diam. of drum. $\ddagger$ Approximate.

    The weight per I.H.P. is estimated on a basis of 20 lbs . of water per hour for all cases excepting the Scotch boiler, where 25 lbs . have been used, as this boiler was limited to 80 lbs . pressure of steam.

    The following approximation is made from the large table, on the assumption that the evaporation varies directly as the combustion, and 25 lbs . of coal per square foot of grate per hour used as the unit.

    | Type of Boiler. | Com bustion. | Evapora tion per $\mathrm{cu} . \mathrm{ft}$. of Space. | $\begin{aligned} & \text { Weight } \\ & \text { per } \\ & \text { I.H.P. } \end{aligned}$ | Weight per sq. ft. Heatingsurface. | Weight per lb. Water Evaporated. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Belleville | 0.50 | 0.50 | 2.02 | 2.10 | 2.50 |
    | Herreshoff. | 1.00 | 0.95 | 0.72 | 0.60 | 0.90 |
    | Towne. | 1.00 | 1.20 | 1.12 | $0.8{ }^{\text {\% }}$ | 1.30 |
    | Scotch. | 1.00 | 0.44 | 2.40 | 1.64 | 2.30 |
    | Locomotive | 3.90 | 0.31 | 3.70 | 1.25 | 3.50 |
    | Ward | 2.20 | 0.58 | 1.27 | 0.50 | 1.53 |

    The Belleville boiler has no practical advantage over the Scotch either in space occupied or weight. All the other tubulous boilers given greatly exceed the Scotch in these advantages of weight and space.

    Some High Rates of Evaporation.-Eng'g, May 9, 1884, p. 415.

    |  |  | tive. | Torped | bo |
    | :---: | :---: | :---: | :---: | :---: |
    | Water evap. per sq. ft. H.S. per hour | 12.57 | 13.73 | 12.54 | 20.74 |
    | " ${ }^{\text {6 }} \mathrm{lb}$. fuel from and at $212^{\circ}$. | 8.22 | 8.94 | 8.37 | 7.04 |
    | Thermal units transf'd per sq. ft. of H.S. | 12,142 | 13,263 | 12,113 | 20,034 |
    | Efficiency | . 586 | . 637 | . 542 | . 468 |

    Economy Efrected by Heating the Air Supplied to Boiler-furnaces. (Clark, S. E.)-Meunier and Scheurer-Kestner obtained about $7 \%$ greater evaporative efficiency in summer than in winter, from the same boilers under like conditions,-an excess which had been explained by the difference of loss by radiation and conduction. But Mr. Poupardin, surmising that the gain might be due in some degree also to the greater temperature of the air in summer, made comparative trials with two groups of three boilers, each working one week with the heated air, and the next week with cold air. The following were the several efficiencies:

    > First Trials: Three Boilers; Ronchamp Coal. Water per lb, of Water per lb. of Coal. Combustible.
    > With heated air (1280 F.) .............. 7.77 lbs.
    > With cold air $\left(69^{\circ} .8\right) . \ldots . . . . . . . . . . .$. . 7.33 " 8.63 "
    > Difference in favor of heated air .... 0.44 " 0.32 "

    Second Trials: Same Coal; Three Otyer Bollers.
    With heated air ( $120^{\circ} .4$ F.)............. $8.70 \mathrm{lbs} \quad 10.08 \mathrm{lbs}_{66}$
    With cold air (750.2) .................... 8.09 " 9.34 "
    Difference in favor of heated air..... $0.6!^{\circ}$ " 0.74 "

    These results show economies in favor of heating the air of $6 \%$ and $71 / 2 \%$.
    Mr. Poupardin believes that the gain in efficiency is due chiefly to the better combustion of the gases with heated air. It was observed that with heated air the flames were much shorter and whiter, and that there was notably less smoke from the chimuey.

    An extensive series of experiments was made by J. C. Hoadley (Trans. A. S. M. E., vol. vi., $6 \pi 6$ ) on a "Warm-blast Apparatus," for utilizing the heat of the waste gases in heating the air supplied to the furnace. The apparatus, as applied to an ordinary horizontal tubular boiler 60 in . diameter, 21 feet long, with $6531 / 2$-inch tubes, consisted of $240 \cdot 2$-inch tubes, 18 feet long, through which the hot gases passed while the air circulated around them. The net saving of fuel effected by the warm blast was from $10.7 \%$ to $15.5 \%$ of the fuel used with cold blast. The comparative temperatures averaged as follows, in degrees F.:

    Cold-blast
    Boiler. $\underset{\text { Warm-blast }}{\text { Boiler. }}$ Difference.

    | In heat of fire | 2493 | 2793 | 300 |
    | :---: | :---: | :---: | :---: |
    | At bridge wall. | 1340 | 1600 | 260 |
    | In smoke box | 373 | 375 | 2 |
    | Air admitted to furnace | 32 | 332 | 300 |
    | Steam and water in boiler. | 300 | 300 | 0 |
    | Gases escaping to chimney | 373 | 162 | 211 |
    | External air....... | 32 | 32 | 0 |

    With anthracite coal the evaporation from and at $212^{\circ}$ per lb . combustible was, for the cold-blast boiler, days 10.85 lbs ., days and nights 10.51 ; and for the warm-blast boiler, days 11.83, days and nights 11.03 .

    ## Results of Tests of Heine Water-tube Boilers with Different Coals.

    (Communicated by E. D. Meier, C.E., 1894.)

    | Number. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Kind of Coal. |  | 2d Pool, Youghiogheny. |  |  |  |  |  | $\begin{aligned} & \text { 解 } \\ & \text { 品 } \\ & \text { 응 } \end{aligned}$ |
    | Per cent ash | 5.1 | 4.89 |  | 11.6 | 16.1 | 11.5 | 1.8 | . 8 |
    | Heating-surface, sq. ft | 2900 | 2040 | 2040 | 2300 | 1260 | 3730 | 1168 | 27.0 |
    | Grate-surface, sq. ft... | 54 | 44.8 | 44.8 | 50 | 21 | 73.3 | 27.9 | 50 |
    | Ratio H.S. to G.S... | 53.7 | 45.5 | 45.5 | 46 | 60 | 50.9 | 41.9 | 55.4 |
    | Coal per sq. ft. G.per hr. | 24.7 | 23.5 | 22.7 | 35 | 33.7 | 26.2 | 27.7 | 36 |
    | Water per sq. ft. H.S.per <br> hr. from and at $212^{\circ} \ldots$ | 5.03 | 5.14 | 5.24 | 5.56 | 4.26 | 4.28 | 4.86 | 5.08 |
    | Water evap. from and at $212^{\circ}$ per 1b, coal........ | 10.91 | 9.94 | 10.51 | 7.31 | 7.59 | 8.33 | 7.36 | 7.81 |
    | Per lb. combustible...... | 11.50 | 10.48 |  | 8.27 | 9.05 | 9.41 | 9.41 | 8.96 |
    | Temp. of chimney gases | $530^{\circ}$ |  | 400 | ${ }^{56}{ }_{6}^{4}$ | ${ }^{571}$ |  | ${ }^{609}$ | ${ }_{\text {r }}^{\sim}$ |
    | Calorific value of fuel. | 13,800 | 12,936 | 12,936 | 10,48\% | 11,785 | 11,610 |  | 10,359 -2.6 |
    | Efficiency of boiler perc. | 77.0 | 74.3 | 78.5 | 67.2 | $6 \cdot 5$ | 69.3 | 73.0 | ¢. 6 |

    Tests Nos. 7 and 8 were made with the Hawley Down-draught Furnace, the others with ordinary furnaces.
    These tests confirm the statement already made as to the difficulty of obtaining, with ordinary grate-furnaces, as high a percentage of the calorific value of the fuel with the Western as with the Eastern coals.
    Test No $3,78.5 \%$ efficiency, is remarkably good for Pittsburgh (Youghiogheny) coal. If the washington coal had given equal efficiency, the saving of fuel would be $\frac{78.5-62.5}{78.5}=20.2 \%$. The results of tests Nos. 7 and 8 indicate that the downward-draught furnace is well adapted for burning Illinois coals.

    ## Maximum Boiler Efficiency with Cumberland Coal. -

    About 12.5 lbs . of water per lb . combustible from and at $212^{\circ}$ is about the highest evaporation that can be obtained from the best steam fuels in the United States, such as Cumberland, Pocahontas, and Clearfield. In exceptional cases 13 lbs . has been reached, and one test is on record (F. W. Dean, Eng'g News, Feb. 1, 1894) giving 13.23 lbs. The boiler was internally fired, of the Belpaire type, 82 inches diameter, 81 feet long, with 1603 -inch tubes $121 / 2$ feet long. Heating surface, 1998 squarefeet; grate-surface, 45 square feet, reduced during the test to $301 / 2$ square feet. Double furnace, with fire-brick arches and a long combustion-chamber. Feed-water heater in smoke-box. The following are the principal results:

    ## BOHLERS USING WASTE GASES.

    Proportioning Boilers for Blast-Furnaces.-(F. W. Gordon, Traus. A. I. M. E., vol. xii., 1883.)
    Mr. Gordon's recommendation for proportioning boilers when properly set for burning blast-furnace gas is, for coke practice, 30 sq . ft . of heating-surface per ton of iron per 24 hours, which the furnace is expected to make, calculating the heating-surface thus: For double-flued boilers, all shellsurface exposed to the gases, and half the flue-surface; for the French type, all the exposed surface of the upper boiler and half the lower boilersurface; for cylindrical boilers, not more than 60 ft . long, all the heatingsurface.

    To the above must be added a battery for relay in case of cleaning, repairs, etc., and more than one battery extra in large plants, when the water carries much lime.

    For anthracite practice add $50 \%$ to above calculations. For charcoal practice deduct $20 \%$.

    In a letter to the author in May, 1894, Mr. Gordon says that the blastfurnace practice at the time when his article (from which the above extract is taken) was written was very different from that existing at the present time; besides, more economical engines are being iutroduced, so that less than 30 sq. ft . of boiler-surface per ton of iron made in 24 hours may now be adopted. He says further: Blast-furnace gases are seldom used for other than furnace requirements, which of course is throwing away good fuel. In this case a furnace in an ordinary good condition, and a condition where it can take its maximum of blast, which is in the neighborhood of 200 to 225 cubic ft., atmospheric measurement, per sq. ft. of sectional area of hearth, will generate the necessary H.P. with very small heating-surface, owing to the high heat of the escaping gases from the boilers, which frequently is 1000 degrees.

    A furnace making 200 tons of iron a day will consume about $900 \mathrm{H} . \mathrm{P}$. in blowing the engine. About a pound of fuel is required in the furnace per pound of pig metal.

    In practice it requires $70 \mathrm{cu} \mathrm{ft}_{\text {. of }}$ of air-piston displacement per lb . of fue! consumed, or $22,400 \mathrm{cu}$. ft. per minute for 200 tons of metal in 1400 working minutes per day, at, say, 10 lbs . discharge-pressure. This is equal to $91 / 4 \mathrm{lbs}$. M.E.P. on the steam-piston of equal area to the blast-piston, or 900 I.H.P. To this add $20 \%$ for hoisting, pumping and other purposes for which steam is employed around blast-furnaces, and we have 1100 H.P., or say $51 / 2$ H.P. per ton of iron per day. Dividing this into 30 gives approximately $51 / 2 \mathrm{sq}$. ft. of heating-surface of boiler per H.P.

    Water-tube Boilers using Blast-furnace Gases.-D. S. Jacobus (Trans. A. I. M. E., xvii, 50) reports a test of a water-tube boiler using blast-furnace gas as fuel. The heating-surface was 2535 sq . ft . It developed 328 H.P. (Centennial standard), or 5.01 lbs . of water from and at $212^{\circ}$ per sq. ft. of heating-surface per hour. Some of the principal data obtained were as follows: Calorific value of 1 lb . of the gas, 1413 B T.U., including the effect of its initial temperature, which was $650^{\circ} \mathrm{F}$. Amount of air used to burn 1 lb . of the gas $=0.9 \mathrm{lb}$. Chimney draught, $11 / 3 \mathrm{in}$. of water. Area of gas inlet, $300 \mathrm{sq} . \mathrm{in}$.; of air inlet, $100 \mathrm{sq} . \mathrm{in}$. Temperature of the chimney
    gases, $775^{\circ} \mathrm{F}$. Efficiency of the boiler calculated from the temperatures and analyses of the gases at exit and entrance, $61 \%$. The average analyses were as follows, hydrocarbons being included in the nitrogen:

    |  | By Weight. |  | By Volume. |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | At Entrance. | At Exit. | At Entrance. | At Exit. |
    | $\mathrm{CO}_{2}$ | 10.69 | 26.37 | 7.08 | 18.64 |
    | CO | 26.71 | 3.05 1.88 | 27.10 | 12.96 |
    | Nitrogen | 62.48 | 68.80 | 65.02 | 76.42 |
    | C in $\mathrm{CO}_{2}$ | 2.92 | 7.19 |  |  |
    | C in CO. | 11.45 | . .76 |  |  |
    | Total C. | 14.37 | 7.95 |  |  |

    Steam-boilers Fired with Waste Gases from Puddling and Heating Furnaces. -The Iron Age, April 6, 1893, contains a report of a number of tests of steam-boilers utilizing the waste heat from pud dling and heating furnaces in rolling-mills. The following principal data are selected: In Nos. 1, 2, and 4 the boiler is a Babcock \& Wilcox water-tube boiler, and in No. 3 it is a plain cylinder boiler, 42 in . diam. and 26 ft . long. No. 4 boiler was connected with a heating-furnace, the others with puddling furnaces.

    |  | No. 1. | No. 2. | No. 3. | No. 4. |
    | :---: | :---: | :---: | :---: | :---: |
    | Heating-surface, sq. ft | 1026 | 1196 | 143 | 1380 |
    | Grate-surface, sq. ft. | 19.9 | 136 | 13.6 | 16.7 |
    | Ratio H.S. to G.S. . | 52 | 87.2 | 10.5 | 82.8 |
    | Water evap. per hour, lbs.................. | 3358 | 2159 | 1812 | 3055 |
    | "، "\% per sq. ft. H.S. per hr., los... | 3.3 | 1.8 | 12.7 | 2.2 |
    | ". "per lb. coal from and at $212^{\circ}$. | 5.9 | 6.24 | 3.76 | 6.34 |
    | ". " "6 comb. " " " | .... | 7.20 | 4.31 | 8.34 |

    In No. 2, 1.38 lbs . of iron were puddled per lb . of coal.
    In No. 3, 1.14 lbs . of iron were puddled per lb. of coal.
    No. 3 shows that an insufficient amount of heating-surface was provided for the amount of waste heat available.

    ## RULES FOR CONDUCTENG BOHLER-TESTS.

    ## Code of 1899.

    (Reported by the Committee on Boiler Trials, Am. Soc. M. E.*)
    I. Determine at the outset the specific object of the proposed trial, whether it be to ascertain the capacity of the boiler, its efficiency as a steam-generator, its efficiency and its defects under usual working conditions, the economy of some particular kind of fuel, or the effect of changes of design, proportion, or operation; and prepare for the trial accordingly.
    II. Examine the boiler, both outside and inside; ascertain the dimensions of grates, heating surfaces, and all important parts; and make a full record, describing the same, and illustrating special features by sketches.
    III. Notice the general condition of the boiler and its equipment, and record such facts in relation thereto as bear upon the objects in view.

    If the object of the trial is to ascertain the maximum economy or capacity of the boiler as a steam-generator, the boiler and all its appurtenances should be put in first-class condition. Clean the heating surface inside and outside, remove clinkers from the grates aud from the sides of the furnace. Remove all dust, soot, and aslies from the chambers, smoke-connections, and flues. Close air-leaks in the masonry and poorly fitted cleaning-doors. See that the damper will open wide and close tight. Test for air-leaks by firing a few shovels of smoky fuel and immediately closing the damper, observing the escape of smoke through the crevices, or by passing the flame of a candle over cracks in the brickwork.


    IV. Determine the character of the coal to be used. For tests of the efficiency or capacity of the boiler for comparison with other boilers the coal should, if possible, be of some kind which is commercially regarded as a standard. For New Eugland and that portion of the country east of the Alleglreny Mountains, good anthracite egg coal, containing not over 10 per cent. of ash, and semi-bituminous Clearfield (Pa.), Cumberland (Md.), and Pocahontas (Va.) coals are thus regarded. West of the Allegheny Mountains, Pocahontas (Va.) and New River (W. Va.) semi-bituminous, and Youghioghery or Pittsburg bituminous coals are recognized as standards.*

    For tests made to deternine the performance of a boiler with a particular kind of coal, such as may be specified in a contract for the sale of a boiler, the coal used should not be higher in ash and in moisture than that specified, since increase in ash and moisture above a stated amount is apt to cause a falling off of both capacity and economy in greater proportion than the proportion of such increase.
    V. Establish the correctness of all apparatus used in the test for weigling and measuring. These are:
    i. Scales for weighing coal, ashes, and water.
    2. Tanks or water-meters for measuring water. Water-meters, as a rule, should only be used as a check on other measurements. For accurate work the water should be weighed or measured in a tank.
    3. Thermometers and pyrometers for taking temperatures of air, steam, feed-water, waste gases, etc.
    4. Pressure-gauges, draught-gauges, etc.
    VI. See that the boiler is thoroughly heated before the trial to its usual working temperature. If the boiler is new and of a form provided with a brick setting, it should be in regular use at least a week before the trial, so as to dry and heat the walls. If it has been laid off and become cold, it should be worked before the trial until the walls are well heated.
    VII. The boiler and connections should be proved to be free from leaks brfore beginning a test, and all water connections, including blow and extra feed-pipes, should be disconnected, stopped with blank flanges, or bred throngh special openings beyond the valves, except the particular pipe through which water is to be fed to the boiler during the trial. During the test the blow-off and feed pipes should remain exposed to view.
    If an injector is used, it should receive steam directly through a felted pipe from the boiler being tested. $\dagger$
    If the water is metered after it passes the injector, its temperature should be taken at the point where it leaves the injector. If the quantity is determined before it goes to the injector, the temperature should be determined on the suction side of the injector, and if no change of temperature occurs other than that due to the injector, the temperature thas determined is properly that of the feed-water. When the temperature changes between the injector and the boiler, as by the use of a heater or by radiation, the temperature at which the water enters and leaves the injector and that at which it enters the boiler should all be taken. In that case the weight to be used is that of the water leaving the injector, computed from the heat units if not directly measured; and the temperature, that of the water entering the boiler.

    Let
    

    Then

    $$
    \begin{aligned}
    w+x & =\text { weight of water leaving injector; } \\
    x & =w \frac{h_{\mathrm{e}}-h_{1}}{h_{2}-h_{3}}
    \end{aligned}
    $$

    See that the steam-main is so arranged that water of condensation cannot run back into the boiler.
    VIII. Duration of the Test. -For tests made to ascertain either the maximum economy or the maximum capacity of a boiler, irrespective of the particnlar class of service for which it is regularly used, the duration should be at least ten hours of continuous running. If the rate of combustion exceeds 25 pounds of coal per square foot of grate-surface per hour, it may be stopped when a total of $\$ 50$ pounds of coal has been burned per square foot of grate.
    IX. Starting and Stopping a Test.-The conditions of the boiler and furnace in all respects shonld be, as nearly as possible, the same at the end as at the beginning of the test. The steam-pressure should be the same; the water-level the same; the fire upon the grates should be the same in quantity and condition; and the walls, flues, etc., should be of the same temperathre. Two methods of obtaining the desired equality of conditions of the fire may be used, viz. those which were called in the Code of 1885 "the standard method" and "the alternate method," the latter being employed where it is inconvenient to make use of the standard method.*
    X. Standard Method of Sturting and Stopping a Test.-Steam being raised to the working pressure, remove rapidly all the fire from the grate, close the damper, clean the ash-pit, and as quickly as possiole start a new fire with weighed wood and coal, noting the time and the water-level $\dagger$ while the water is in a quiescent state, just before lighting the fire.
    At the end of the test remove the whole fire, which has been burned low, clean the grates and ash-pit, and note the water-level when the water is in a quiescent state, and record the time of hauling the fire. The water-level should be as nearly as possible the same as at the beginning of the test. If it is not the same, a correction should be made by computation, and not by operating the pump after the test is completed.
    XI. Alternate Method of Starting and Stopping a Test.-The boiler being thoroughly heated by a preliminary run, the fires are to be burned low and well cleaned. Note the amount of coal left on the grate as nearly as it can be estimated; note the pressure of steam and the water-level. Note the time, and record it as the starting-time. Fresh coal which has been weighed should now be fired. The asli-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave a bed of coal on the grates of the same depth, and in the same condition, as at the start. When this stage is reached, note the time and record it as the stopping-time. The water-level and stean-pressures should previously bo brought as nearly as possible to the same point as at thestart. If the waterlevel is not the same as at the start, a correction should be made by compatation, and not by operating the pump after the test is completed.
    XII. Uniformity of Conditions.-In all trials made to ascertain maximum economy or capacity the conditions should be maintained uniformly constant. Arrangements should be made to dispose of the steam so that the rate of evaporation may be kept the same from beginning to end.
    XIII. Keeping the Records.-Take note of every event connected with the progress of the trial, however unimportant it may appear. Record the time of every occurrence and the time of taking every weight and every observation.
    The coal should be weighed and delivered to the fireman in equal proportions, each sufficient for not more than one hour's run, and a fresh portion


    should not be delivered until the previous one has all been fired. The time required to consume each portion should be noted, the time being recorded at the instant of firing the last of each portion. It is desirable that at the same time the amount of water fed into the boiler should be accurately noted and recorded, including the height of the water in the boiler, and the average pressure of steam and temperature of feed during the time. By thus recording the amount of water evaporated by successive portions of coal, the test may be divided into several periods if desired, and the degree of uniformity of combustion, evaporation, and economy analyzed for each period. In addition to these records of the coal and the feed-water, halfhourly observations should be made of the temperature of the feed-water, of the flue-gases, of the external air in the boiler-room, of the temperature of the furnace when a furnace-pyrometer is used, also of the pressure of steam, and of the readings of the instruments for determining the moisture in the steam. A log should be kept on properly prepared blanks containing columns for record of the various observations.
    XIV. Quality of Steam.-The percentage of moisture in tlie steam should be determined by the use of either a throttling or a separating steam-calorimeter. The sampling-nozzle should be placed in the vertical stean-pipe rising from the boiler. It should be made of $\frac{1}{2}$-inch pipe, and should extend across the diameter of the steam-pipe to within lialf an inch of the opposite side, being closed at the end and perforated with not less than twenty $\frac{1}{8}$-inch holes equally distributed along and aronnd its cylindrical surface, but none of these holes should be nearer than $\frac{1}{2}$ inch to the inner side of the steampipe. The calorimeter and the pipe leading to it should be well covered with felting. Whenever the indications of the throttling or separating calorimeter show that the percentage of moisture is mregular, or occasionally in excess of three per cent., the results should be checked by a steamseparator placed in the steam-pipe as close to the boiler as convenient, with a calorimeter in the steam-pipe jnst beyond the outlet from the separator. The drip from the separator should be caught and weighed, and the percentage of moisture computed therefrom added to that shown by the calorimeter.
    Superheating should be determined by means of a thermometer placed in a mercury-well inserted in the steam-pipe. The degree of superheating should be taken as the difference between the reading of the thermometer for superheated steam and the readings of the same thermometer for saturated stean at the same pressure as determined boy a special experiment, and not by reference to steam-tables.
    XV. Sampling the Coal and Determining its Moisture.-As each barrowload or fresh portion of coal is taken from the coal-pile, a representative shovelful is selected from it and placed 111 a barrel or box in a cool place and kept until the end of the trial. The samples are then mixed and broken into pieces not exteeding one inch in diameter, and reduced by the process of repeated quartering and crushing until a final sample weighing about five pounds is obtained, and the size of the larger pieces is such that they will pass through a sieve with $\frac{1}{4}-i n c h ~ m e s h e s . ~ F r o m ~ t h i s ~ s a m p l e ~ t w o ~$ one-quart, air-tight glass preserving-jars, or other air-tight vessels which will prevent the escape of moisture from the sample, are to be promptly filled, and these samples are to be kept for subsequent determinations of moisture and of heating value and for chemical analyses. During the process of quartering, when the sample has been reduced to about 100 pounds, a quarter to a half of it may be taken for an approximate determination of moisture. This may be made by placing it in a shallow iron pan. not over three inches deep, carefully weighing it, and setting the pan in the hottest place that can be found on the brickwork of the boiler-setting or flues, keeping it there for at least 12 hours, and then weighing it. The determination of moisture thus made is believed to be approximately accurate for anthracite and semi-bituminous coals, and also for Pittsburg or Youghiogheny coal ; but it cannot be relied upon for coals mined west of Pittsburg, or for other coals containing inherent moisture. For these latter coals it is important that a more accurate method be adopted. The method recommended by the Committee for all accurate tests, whatever the character of the coal, is described as follows:

    Take one of the samples contained in the glass jars, and subject it to a thorough air-drying, by spreading it in a thin layer and exposing it for several hours to the atmosphere of a warin room, weighing it before and after, thereby determining the quantity of surface moisture it contains.

    Then crush the whole of it by running it through an ordinary coffee-mill adjusted so as to produce somewhat coarse grains (less than $\frac{1}{16}$ inch), thoroughly mix the crushed sample, select from it a portion of from 10 to 50 grams, weigh it in a balance which will easily show a variation as small as 1 part in 1000, and dry it in an air- or sand-bath at a temperature between 240 and 280 degrees Fahr. for one hour. Weigh it and record the loss, then heat and weigh it again repeatedly, at intervals of an hour or less, until the minimum weight has been reached and the weight begins to increase by oxidation of a portion of the coal. The difference between the original and the minimum weight is taken as the moisture in the air-dried coal. This moisture test should preferably be made on duplicate samples, and the results should agree withi 0.3 to 0.4 of one per cent., the mean of the two determinations being taken as the correct result. The sum of the percentage of moisture thus found and the percentage of surface moisture previously determined is the total moisture.
    XVI. Treatment of Ashes and Refuse. -The ashes and refuse are to be weighed in a dry state. If it is found desirable to show the principal characteristics of the ash, a sample shonld be subjected to a proximate analysis and the actual amount of incombustible material determined. For elaborate trials a complete analysis of the ash and refuse should be made.
    XVII. Calorific Tests and Analysis of Coal.-The quality of the fuel should be determined either by heat test or by analysis, or by both.

    The rational method of determining the total heat of combustion is to burn the sample of coal in an atmosphere of oxygen gas, the coal to be sampled as directed in Article XV of this code.
    The chemical analysis of the coal should be made only by an expert chemist. The total heat of combustion computed from the results of the ultimate analysis may be obtained by the use of Dulong's formula (with constants modified by recent determinations), viz.,

    $$
    14,600 \mathrm{C}+62,000\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+4 \mathrm{C} 00 \mathrm{~S},
    $$

    in which $\mathrm{C}, \mathrm{H}, \mathrm{O}$, and S refer to the proportions of carbon, hydrogen, oxygen, and sulphur respectively, as determined by the ultimate analysis.*
    It is desirable that a proximate analysis should be made, thereby determining the relative proportions of volatile matter and fixed carbon. These proportions furnish an indication of the leading characteristics of the fuel, and serve to fix the class to which it belongs.
    XVIII. Analysis of Flue-gases.-The analysis of the flue-gases is an especially valuable method of determining the relative value of different methods of firing or of different kinds of furnaces. In making these analyses great care should be taken to procure average samples, since the composition is apt so vary at different points of the flue. The composition is also apt to vary from minute to minute, and for this reason the drawings of gas should last a considerable period of time. Where complete determinations are desired, the analyses should be intrusted to an expert chemist. For approximate determinations the Orsat or the Henıpel apparatus may be used by the engineer.
    For the continuous indication of the amount of carbonic acid present in the flue-gases an instrument may be employed which shows the weight of $\mathrm{CO}_{2}$ in the sample of gas passing throngh it.
    XIX. Smoke Observations.-It is desirable to have a uniform system of determining and recording the quantity of smoke produced where bituminons coal is used. The system commonly employed is to express the degree of smokiness by means of percentages dependent upon the judgment of the observer. The actual measurement of a sample of soot and smoke by some form of meter is to be preferred.
    XX. Miscellaneous.-In tests for purposes of scientific research, in which the determination of all the variables entering into the test is desired, certain observations should be made which are in general unnecessary for ordinary tests. As these determinations are rarely undertaken, it is not deemed advisable to give directions for making them.
    XXI. Calculations of Efficiency.-Two methods of defining and calculating the efficiency of a boiler are recommended. They are:

    1. Efficiency of the boiler $=\frac{\text { Heat absorbed per } 1 \mathrm{lb} . \text { combustible }}{\text { Calorific value of } 1 \mathrm{lb} . \text { combustible }}$.
    2. Efficiency of the boiler and grate $=\frac{\text { Heat absorbed per } \mathrm{lb} \text {. coal }}{\text { Calorific value of } 1 \mathrm{lb} . \text { coal }}$.

    The first of these is sometimes called the efficiency based on combustible, and the second the efficiency based on coal. The first is recommended as a standard of comparison for all tests, and this is the one which is understood to be referred to when the word "efficiency" alone is used without qualification. The second, however, should be included in a report of a test, together with the first, whenever the object of the test is to determine the efficiency of the boiler and furnace together with the grate (or mechanical stoker), or to compare different furnaces, grates, fuels, or methods of firing.

    The heat absorbed per pound of combustible (or per pound coal) is to be calculated by multiplying the equivalent evaporation from and atiliz degrees per pound combustible (or coal) by $965 . \tilde{1}$.
    XXII. The Heat Balance.-An approximate "heat balance," may be inclnded in the report of a test when analyses of the fuel and of the chimneygases have been made. It should be reported in the following form:

    ## Heat Balance, or Distribution of the Hetting Value of the CombUSTIBLE.

    Total Heat Value of 1 lb . of Combustible............. B. T. U.

    |  | B. T. U. | Per <br> Cent. |
    | :---: | :---: | :---: |
    | 1. Heat absorbed by the boiler = evaporation from and at 212 degrees per pound of combustible $\times 965.7$ |  |  |
    | 2. Loss due to moisture in coal = per cent of moisture referred to combustible $\div 100 \times[(212-t)+966+$ $0.48(T-212)](t=$ temperature of air in the boiler- room,$T=$ that of the flue-gases)............................... |  |  |
    | 3. Loss due to moisture formed by the burning of hydrogen $=$ per cent of hydrogen to combustible $\div 100 \times 9$ $\times[(212-t)+966-0.48(T-212)]$. |  |  |
    | 4.* Loss due to heat carried away in the dry chimney-gases $=$ weight of gas per pound of combustible $\times 0.24 \times$ ( $T-t$ ) |  |  |
    | $5 .+$ Loss due to incomplete combustion of carbon $=\frac{\mathrm{CO}}{\mathrm{CO}_{2}+\mathrm{CO}} \times \frac{\text { per cent. } \mathrm{C} \text { in combustible }}{100} \times 10,150 \ldots$ |  |  |
    | 6. Loss due to unconsumed hydrogen and hydrocarbons, to lieating the moisture in the air, to radiation, and unaccounted for. (Some of these losses may be separately itemized if data are obtained from which they may be calculated). |  |  |
    | Totals |  | 00.00 |


    XXIII. Report of the Trial.-The data and results should be reported in the manner given in either one of the two following tables [only the "Shoit Form" of table is given here], omitting lines where the tests have not been made as elaborately as provided for in such tables. Additional lines may be added for data relating to the specific object of the test. The Short Form of Report, Table No. 2, is recommended for commercial tests and as a convenient form of abridging the longer form for publication when saving of space is desirable. For elaborate trials it is recommended that the full log of the trial be shown graphically, by means of a cliart.

    TABLE NO. 2.
    Data and Results of Evaporative Test,
    Arranged in accordance with the Short Form advised by the Boiler Test Committee of the American Society of Mechanical Engineers.

    Code of 1899.
    $\qquad$
    determine
    Kind of fuel
    Kind of furnace
    Method of starting and stopping the test ("stand ard " or "alternate," Arts. X and XI, Code)
    Grate surface
    Water-heating surface
    Superheating surface
    TOTAL QUANTITIES.

    1. Date of trial
    2. Duration of trial
    3. Weight of coal as fired *
    4. Percentage of moisture in coal $\dagger$
    5. Total weight of dry coal consumed.
    $\qquad$
    6. Total ash and refuse.
    \%. Percentage of asli and refuse in diy coal
    7. Total weight of water fed to the boiler $\ddagger$
    8. Water actually evaporatel, corrected for moisture or superheat in steam
    $9 a$. Factor of evaporation \&
    9. Equivalent water evaporated into dry steam from and at 212 degrees. $\|$ (Item $9 \times$ Item 9a.)

    HOURLY QUANTITIES.
    11. Dry coal consumed per hour
    12. Dry coal per square foot of grate surface per hour
    13. Water evaporated per hour corrected for quality of steam
    hours
    lbs.
    per cent.
    lbs.
    per cent.
    lbs.
    ، quivalent evaporation per hour from and at 212 degrees |l
    15. Equivalent evaporation per hour from and at 212 degrees per square foot of water-heating surface

    * Including equivalent of wood used in lighting the fire, not inclnding unburnt coal withdrawn from furnace at times of cleaning and at end of test. One pound of wood is taken to be equal to 0.4 pound of coal, or, in case greater accuracy is desired, as having a heat value equivalent to the evaporation of 6 pounds of water from and at 212 degrees per pound. $(6 \times 965.7=5794$ B. T.U. $)$ The term "as fired" means in its actual condition, including moisture.
    + This is the total moisture in the coal as found by drying it artificially, as described in Art. XV of Code.
    $\ddagger$ Corrected for inequality of water-level and of steam-pressure at beginning and end of test.
    § Factor of evaporation $=\frac{H-h}{965.7}$, in which $H$ and $h$ are respectively the total heat in steam of the average observed pressure, and in water of the average observed temperature of the feed.
    \& The symbol "U. E.," meaning "units of evaporation," may be con-

    AVERAGE PRESSURES, 'TEMPERATURES, ETC.
    16. Steam pressure by gauge.
    17. Temperature of feed-water entering boiler......
    18. Temperature of escaping gases from boiler
    19. Force of draft between damper and boiler
    20. Percentage of moisture in stean, or number of degrees of superheating
    per cent.or deg.

    ## HORSE-POWER.

    21. Horse-power developed. (Item $14 \div 341$.) $\uparrow$.....
    2.. Builders' rated horse-power
    22. Percentage of builder's' rated horse-power developed

    ECONOMIC RESULTS.
    24. Water apparently evaporated under actual conditions per
    $8 \div 1$ tem 3. pound of coal as fired. (Item $8 \div$ ltem 3.)
    .)..
    2.5. Equivalent evaporation from and at 212 degrees per pound of coal as fired (Item $10 \div$ Item 3.)
    26. Equivalent evaporation frcin and at 212 degrees per pound of dry coal \|| (Item $10 \div$ Item 5.)..
    27. Equivalent evaporation from and at 212 degrees per pound of combustible. [Item $10 \div$ (Item 5 - Item 6).]...
    (If Items 25,26 , and 27 are not corrected for quality of steam, the fact should be stated.)

    ## EFFICIENCY.

    28. Calorific value of the dry coal per pound...

    29 Calorific value of the combustible per pound...
    30. Efficiency of boiler (based on combustible)**..
    31. Efficiency of boiler, including grate (based on dry coal)

    ## COST OF EVAPORATION.

    32. Cost of coal per ton of - lbs. delivered in boiler-room.
    33. Cost of coal required for evaporating 1000 pounds of water from and at 212 degrees.
    lbs. per sq. in. deg.
    ins. of water
    H.P.
    per cent.
    lbs.
    "
    "
    "
    B. T. U.
    per cent.
    "

    9
    $\$$
    veniently substituted for the expression "Equivalent water evaporated into dry steam from and at 212 degrees," its definition being given in a foot-note.

    THeld to be the equivalent of 30 lbs . of water evaporated from 100 degrees Fahr. into dry steam at 70 lbs. gauge-pressure.
    ** In all cases where the word "combustible" is used, it means the coal without moisture and ash, but including all other constituents. It is the same as what is called in Europe "coal-dry and free from ash."

    Factors of Evaporation.-The table on the following pages was originally published by the author in Trans. A. S. M. E., vol. vi., 1884, underthe title, T'ables for Facilitating Calculations of Boiler-tests. The table gives the factors for every $3^{\circ}$ of temperature of feed-water from $33^{\circ}$ to $212^{\circ}$ F., and for every two ponnds pressure of steam within the limits of ordinary working steam-pressures.
    The difference in the factor corresponding to a difference of $3^{\circ}$ tempera. ture of feed is always either . 0031 or .0032 . For interpolation to find a factor for a feed-water temperature between $32^{\circ}$ and $212^{\circ}$, not given in the table, take the factor for the nearest temperature and add or subtract, as the case may be, .0010 if the difference is .0031 , and .0011 if the difference is .0032 . As in nearly all cases a factor of evaporation to three decimal places is accurate enough, any error which may be made in the fourth decimal place by interpolation is of no practical importance.
    The tables used in calculating these factors of evaporation are those given in Charles T. Porter's Treatise on the Richards' Steam-engine Indicator: The formula is Factor $=\frac{H-\hbar}{965.7}$, in which $H$ is the total heat of steam at the observed pressure, and $h$ the total heat of feed-water of the observed temperature.

    | Gauge-pressures.... $0+$ <br> Absolute pressures <br> 15 | 10 <br> 25$+$ | $\underset{35}{20}+$ | 30 <br> 45$+$ | 40 <br> 55 | 45 <br> 60 | 50 <br> 65 | 52 <br> 67 | 54 <br> 69 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    Feed-water
    Temperature.

    ## Factors of Evaforation.

    | $212^{\circ} \mathrm{F}$. | 1.0003 | 1.0088 | \|1.0149 | 1.0197 | 1.0237 | 1.0254 | 1.0271 | 276 | 1.0283 | 1.0290 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 209 | 35 | 1.0120 |  | 1.0228 | 68 | 86 | 1.03021 | 1.0309 | 1.0315 | 1.0321 |
    | 206 | 66 | 51 | 1.0212 | 60 |  | 1.0317 | 34 | 40 | 46 |  |
    | 203 | 98 | 83 | 43 | 91 | 1.0331 | 49 | 65 | 72 | 78 | 84 |
    | 200 | 1.0129 | 1.0214 | \% 5 | 1.0323 | 62 | 80 | 97 | 1.0403 | 1.0409 | 1.0415 |
    | 197 | 60 |  | 1.0306 | 54 |  | 1.0412 | 1. 0428 |  | 41 |  |
    | 194 | 92 | 78 | 38 | 83 | 1.0425 | 43 | 60 | 66 | 72 | 78 |
    | 191 | 1.0223 | 1.0308 | 69 | 1.0417 | 57 | 74 | 91 | 97 | 1.0503 | 1.0510 |
    | 188 | 55 | 40 | 1.0400 | 48 | 88 | 1.0506 | 1.05921 | 1.0528 | 35 |  |
    | 185 | 86 | 71 | 32 | 80 | 1.0519 | 37 | 54 |  | 66 | 72 |
    | 182 | $1.031 \%$ | 1.0403 | 63 | 1.0511 | 51 |  | 85 |  |  | 1.0604 |
    | 179 | 49 |  | 95 | 42 | 82 | 1.0600 | 1.0616 | 1.0623 | 1.0629 | 35 |
    | 176 | 80 | 65 | 1.0526 | 74 | 1.0613 | 31 | 48 | 54 | 60 |  |
    | 173 | 1.0411 | 97 | 57 | 1.0605 | 45 |  | 79 |  | 92 | 98 |
    | 170 | 43 | 1.0528 | 89 | 36 | 76 | 94 | 1.0710 | 1.0717 | 1.0723 | 1.0729 |
    | 167 | 74 | 59 | 1.0620 | 68 | 1.0\%07 | $1.0 \sim 25$ | 42 |  | 54 |  |
    | 164 | 1.0505 | 91 | 51 | 99 | 39 |  | r3 |  | 86 | 9: |
    | 161 | 37 | 1.0622 | 82 | 1.0730 | 70 | 88 | 1.0804 | 1.0811 | 1.0817 | 1.0893 |
    | 158 | 68 | 53 | 1.0714 | 62 | 1.0801 | 1.0819 | 36 |  | 48 |  |
    | 155 | 99 | 84 | 45 | 93 | 33 | 50 | 67 |  | 80 | 86 |
    | 152 | 1.0631 | 1.0716 | 76 | 1.08:4 | 64 | 8 82 |  | 1.0905 | 1.0911 | 1.091 |
    | 149 | 62 | 47 | 1.0808 | 55 | 95 | 1.0913 | 1.0930 | 36 | 42 | 48 |
    | 146 | 93 | 78 | 39 | 87 | $1.09 ? 6$ | 44 | 61 | 67 | 73 | 79 |
    | 143 | 1.0721 | 1.0810 | 70 | 1.0918 | 58 | 75 | 92 | 98 | 1.1005 | 1.1011 |
    | 140 | 56 | 41 | 1.0901 | 49 | 89 | $1.100 \%$ | 1.1023 | 1.1030 | 36 | 42 |
    | 137 | 87 | 72 | 33 | 80 | 1.1020 | 38 | 55 |  | 7 | 73 |
    | 131 | 1.0818 | 1.0903 | 64 | 1.1012 | 51 | 69 | 86 |  | 98 | 1.1101 |
    | 131 | 49 | 34 | 95 | 43 | 83 | 1.1100 | 1.1117 | 1.1123 | 1.1130 | 36 |
    | 128 | 81 | 66 | 1.10\%6 | 74 | 1.1114 | $3 \cdot$ | 48 |  | 61 | 67 |
    | 125 | 1.0912 | 97 | 5í | 1.1105 | 45 | 63 | r9 |  | $9 \cdot$ | 98 |
    | 122 | 43 | 1.1028 | 89 | 36 | \% 6 | 94 | 1.1211 | 1.1217 | 1.1223 | 1.1229 |
    | 119 | \% 4 | 59 | 1.1120 | 68 | $1.120 \%$ | 1.1225 | 42 |  | 54 | 1.10 |
    | 116 | 1.1005 | 90 | 51 | 99 | 39 | 56 | 73 | $\begin{array}{r}79 \\ \hline\end{array}$ | 86 | 93 |
    | 113 | 36 | 1.1122 | 82 | 1.1230 | r0 | 88 | 1.1204 | 1.1310 | 1.1317 | 1.1328 |
    | 110 | 68 | 53 | 1.1213 | 61 | 1.1301 | 1.1319 | 35 |  | 48 | 51 |
    | 107 | 99 | 84 | 45 | 92 | 32 | 50 | 66 |  | 79 | 85 |
    | 104 | 1.1130 | 1.1215 | \% 6 | 1.1393 | 63 | 81 | 98 | 1.1404 | 1.1410 | 1.1416 |
    | 101 | - 61 | 46 | $1.130 \%$ | 55 | 94 | 1.1412 | $1.14 \div 9$ | 35 | 41 | 47 |
    | 98 | 92 | \% 5 | 38 | 86 | 1.1426 | 43 | 60 | 66 | $7: 3$ | 79 |
    | 95 | 1.1203 | 1.1309 | 69 | $1.141 \%$ | 57 | 75 | 91 | 97 | 1.1504 | 1.1510 |
    | 92 | 55 | 40 | 1.1400 | 48 | 88 | 1.1506 | 1.1522 | 1.1529 | 35 | 41 |
    | 89 | 86 | 71 | 31 | 79 | 1.1519 | 37 | 5.3 |  | 66 | $7{ }^{\text {7 }}$ |
    | 86 | 1.1317 | 1.1402 | 63 | 1.1510 | 50 | 68 | 84 | 91 | 97 | 1.1603 |
    | 83 | 48 | - 33 | 91 | 41 | 81 | 99 | 1.1616 | 1.1692 | 1.1688 | 34 |
    | 80 | 79 | 61 | 1.1525 | 73 | 1.1612 | 1.1630 | 47 | 53 | 59 | 65 |
    | 79 | 1.1410 | 95 | 56 | 1.1604 | 44 | 61 | r8 | 84 | 90 | 96 |
    | 74 | 41 | 1.15:26 | $8{ }^{i}$ | 35 | 75 | 92 | $1.1 \% 09$ | 1.1715 | 1.1722 | 1.1798 |
    | 71 | 72 | 58 | 1.1618 | 66 | 1.1706 | 1.1723 | 40 | 46 | 5.3 | 59 |
    | 68 | 1.1504 | 89 | 19 | 97 | 37 | 55 | 71 | 78 | 84 | 90 |
    | 65 | 1.15 | 1.1620 | 80 | 1.1708 | 68 | 86 | 1.1802 | 1.1809 | 1.1815 | 1.1821 |
    | 62 | 66 | 51 | 1.1711 | 59 | 99 | $1.181 \%$ | 33 | 40 | 46 | 52 |
    | 59 | 97 | $8 ?$ | 1.13 | 90 | 1.1830 | 48 | 61 | 71 | ${ }^{17}$ | 83 |
    | 56 | 1.1628 | 1.1713 | r4 | 1.18:1 | 61 | 79 | 96 | 1.1902 | 1.1908 | 11914 |
    | 53 | 59 | 44 | 1.1805 | 52 | 92 | 1.1910 | 1.1927 | 33 | 33 | 45 |
    | 50 | 90 | 75 | 36 | 81 | 1.1923 | 41 | 58 | 64 | 70 | 76 |
    | 47 | 1.1721 | 1.1806 | 67 | 1.1915 | 54 |  | 89 |  | 1.2001 | $1.200 \%$ |
    | 44 | 1. 52 | 3 3 | 98 | 46 | 86 | 1.2003 | 1.2020 | 1.2026 | 32 | 39 |
    | 41 | 83 | 68 | $1.19 \% y$ | 77 | 1.2017 | 31 | 51 | 57 | 64 | 70 |
    | 38 | 1.1814 | 1.1900 | - 60 | 1.2008 | 48 |  | 82 |  | -95 | 1.2101 |
    | 35 | 45 | 31 |  | 39 |  | 96 | 1.2113 | 1.2119 | 1.2126 | 32 |
    | 32 | 76 |  | 11.2022 | $\%$ | $1 \stackrel{110}{ }$ | $1.21 \% 8$ | 44 | 51 | 57 | 63 |


    | Gauge-press Absolute |  | ${ }_{75}^{60}+$ | ${ }_{77}^{62+}$ | $\frac{64+}{79}$ | $\begin{aligned} & 66+1 \\ & 81 \end{aligned}$ | ${ }_{83}^{68}+$ | ${ }_{85}^{70}+$ | ${ }_{87}^{72+1}$ | $\begin{aligned} & 74 \\ & 89 \end{aligned}$ | ${ }_{91}^{76}+$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Feed-water Temp. |  |  |  | Factor | RS OF | Evapo | TION. |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |
    | $\begin{aligned} & 212^{\circ} \\ & 20 \end{aligned}$ | 1.0295 | 1.0301 |  |  |  |  | 29 |  | 1.0339 |  |
    | 206 |  |  |  |  |  |  |  |  | 70 |  |
    | 203 | 90 | 96 |  |  |  |  | 1 |  |  |  |
    | 200 | 1.0421 | 1.0427 |  |  | 44 |  | 1.0423 <br> 54 | 1.0428 <br> 59 | 5 | 38 |
    | 197 | 53 | 58 |  |  |  |  | 6 |  | 6 | 1.0501 |
    | 194 | 84 |  |  | 1.0501 | $1.050 \%$ | 1.0512 | 1.0517 | 1.0592 | 1.0527 |  |
    | 191 | 1.0515 | 1.0521 | 1.0527 |  |  |  | 49 | . 54 | 1. 59 | 64 |
    | 188 |  |  |  |  |  |  | 80 |  | 90 |  |
    | 185 | 78 | 84 | 90 | 95 | 1.0601 | 1.0606 | 1.0611 | 1.0616 | 1.0622 | 1.0628 |
    | 182 | 1.0610 | 1.0615 | 1.0621 | 1.0627 |  | 37 | 43 | - 48 | 53 | 58 |
    | 179 | 41 | 1.0615 47 | 52 |  |  |  | 74 | 79 | 84 | 89 |
    | 176 | 72 | 78 |  |  | 95 | 1.0700 | 1.0705 | 1.0\%11 | 1.0716 | 1.0721 |
    | 173 | 1.0704 | 1.0709 | $1.0 \% 15$ | 1.0721 | 1.0726 | 32 | 37 | - 42 | 47 | 52 |
    | 170 | 35 | 41 |  |  | 57 | 63 | 68 | 73 | \% | 83 |
    | 167 | 66 | 72 | 78 | -83 | 89 | 94 | 99 | 1.0805 | 1.0810 | 1.0815 |
    | 164 | 98 | 1.0803 | 1.0809 | 1.0815 | 1.0820 | 1.0825 | 1.0831 | 36 | 41 | 46 |
    | 161 | 1.0829 | 1.085 | 40 |  | 51 | - 57 | 1.02 | 67 | 72 | 77 |
    | 158 |  | 66 |  |  |  |  |  |  | 1.0904 | 1.0908 |
    | 155 | 92 | 97 | 1.0903 | 1.0909 | 1.0914 | 1.0919 | 1.0925 | 1.0930 | 35 | 40 |
    | 152 | 1.0923 | 1.0929 |  | 40 |  | 51 | 56 | 61 | 66 | 71 |
    | 149 | 54 | 1.00 60 | 66 |  |  |  |  | 92 |  | $1.100{ }^{2}$ |
    | 146 | 85 | 91 | - ${ }^{97}$ | 1.1002 | 1.1008 | 1.1013 | 1.1018 | 1.1024 | 1.1029 | 34 |
    | 143 | 1.1017 48 | 1.1022 | 1.1028 59 | 34 <br> 65 | 39 | 44 | 50 | ${ }^{55}$ | 60 | 65 |
    | 140 | 78 |  |  |  |  | 76 | 81 | 86 | 91 | 96 |
    | 134 | 1.1110 | 85 | 91 | 96 | 1.1102 | 1.1107 | 1.1112 | 1.1117 | 1.1122 | 1.1127 |
    | 131 | 1.1142 | 1.116 ${ }^{\text {4n}}$ | 1.1122 | 1.112 |  |  | 43 | 49 | 54 | 59 |
    | 128 | 73 | 79 | 84 | 90 |  | 1.1201 | 1.1206 | 1.1211 |  | 21 |
    | 125 | 1.1204 | 1.1210 | 1.1215 | 1.1221 | 1.1226 | - 32 | 1.120 | 1.121 | 1.12 | 52 |
    | 122 | 35 | 41 |  |  |  | 63 | 68 |  |  | 3 |
    | 119 | 66 | 72 | 78 | 83 |  | 94 |  | 1.1305 | 1.1310 | 1.1315 |
    | 116 | 98 | 1.1303 | 1.1309 | 1.1315 | 1.1320 | 1.1325 | 1.1331 | 1. 36 | 41 | 16 |
    | 113 | 1.1329 | 34 | 40 | 46 |  | 57 | 1. 62 | 67 | 72 | 77 |
    | 110 | 60 | 66 | 71 |  |  | 88 | 93 | 98 | 1.1403 | 1.1408 |
    | 107 | 91 | 97 | 1.1403 | 1.1408 | 1.1414 | 1.1419 | 1.1424 | 1.1429 | 34 | 39 |
    | 104 | 1.1422 | 1.1428 | 34 | 39 | 45 | - 50 | 1. 55 | $\begin{array}{r}1.140 \\ \hline\end{array}$ | 65 | 70 |
    | 101 |  |  |  |  |  |  | 86 | 92 | 97 | 1.1502 |
    | 98 |  | 90 |  | 1.1502 | $1.150 \hat{7}$ | 1.1512 | 1.1518 |  | 1.1528 | 1.33 |
    | 95 | 1.1516 | 1.1521 | 1.1527 | 33 |  |  | 49 | 1. 54 | 59 | 64 |
    | $92$ | $47$ |  | 58 |  |  |  | 80 |  |  | ${ }_{1}^{95}$ |
    | 88 | 1.1609 | 1.1615 | 1.1621 |  | 1.1600 | 1.1606 | 1.1611 | 1.1616 | 1.1621 | 1.1626 |
    | 83 | 1.1609 40 | 1.1615 46 | 1.1621 52 |  |  | 37 | 42 | 47 | 52 | 57 |
    | 80 | 71 | 77 | 83 | 88 | 94 | 99 | 1.1704 | 1.1710 | 1.1715 | 1.1720 |
    | 77 | 1.1702 | 11708 | 1.1714 | 1.1719 | 1.1725 | 1.1730 | 35 | 41 | 46 | 51 |
    | 74 | 34 | 39 | 45 | 51 | 56 | 61 | 67 | 72 | $7{ }^{4}$ | 82 |
    | 71 | 65 |  |  |  |  |  |  | 1.1803 | 1.1808 | 1.1813 |
    | 68 | 96 | $1180: 3$ | 1.1807 | 1.1813 | 1.1818 | 1.1824 | 1.1829 | - 34 | . 39 | . 44 |
    | 65 | 1.1827 | 33 |  |  |  | 55 | 60 | 65 | r0 | 75 |
    | 62 | 58 | 64 |  |  |  | 86 | 91 |  | 1.1901 | 1.1906 |
    | 59 | 89 | 95 | 1.1901 | 1.1906 | 1.1912 | 1.1917 | 1.1922 | 1.1927 | . 32 | 37 |
    | 56 | 1.1920 | 1.1926 | 32 | 37 | 43 | 48 | 53 | - 58 | 63 | 68 |
    | 53 | 51 | 57 | 63 |  |  | 79 |  |  | 94 | 99 |
    | 50 | 82 | 88 | 94 | 99 | 1.2005 | 1.2010 | 1.2015 | 1.2021 | 1.2026 | 1.2031 |
    | 47 | 1.2013 | 1.2019 | 1.2025 | 1.2030 | 36 | 41 | 46 | 52 | $5{ }^{5}$ | 62 |
    | 44 | $44$ |  | 56 |  |  |  |  |  |  | 93 |
    | 41 | ${ }^{76}$ |  | 87 | 93 |  | 1.2103 | 1.2109 | 1.2114 | 1.2119 | 1.2124 |
    | 38 | 1.2107 38 | 1.2112 | 1.2118 |  | $1.2129$ |  | 40 | 45 |  | 55 |
    | 35 <br> 32 | $\begin{array}{r} 38 \\ 69 \\ \hline \end{array}$ | $\begin{aligned} & 43 \\ & 75 \end{aligned}$ | 49 80 | 55 86 | 60 91 |  | $71$ | $r 6$ | $81$ | 86 |


    | Gange-pressures <br> Absolbs., $78+$ <br> Pressures, 93 | $80+$ | $82+$ | $84+$ | $86+$ | $88+$ | $90+$ | $92+$ | $94+$ | $96+$ | $98+$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 97 | 99 | 101 | 103 | 105 | 107 | 109 | 111 | 113 |  |  |

    Fed-water

    Temp.
    Factors of Evaporation

    | $21:$ | 1.0349 | 0353 | 588 | 1.0363 |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 209 | 80 |  | 1.90 |  |  | 1.0403 | 1.0408 | 1.0412 | 1.0416 |  |  |
    | 206 | 1.0411 | 1.0416 | $1.04 \div 1$ | 1.0426 | 1.0430 | 35 | 1-39 | 43 | 348 |  |  |
    | 203 | 43 | 48 | 5\% | 5 \% |  |  | 71 |  | . 9 |  |  |
    | 200 | r4 | \%9 | 84 | 89 | 93 | 98 | 1.0502 | 1.0506 | 61.0511 | 1.0515 | 1.051 |
    | 197 | 1.0506 | 1.0511 | 1.0515 | 1.0520 | 1.0525 | $1.05: 3$ |  | 38 |  |  |  |
    | 194 | 37 | 12 | 47 | 51 |  |  | 65 | 69 | 73 | 8 |  |
    | 191 | 68 | P | . | 83 | 8 |  | 96 | 1.0601 | 1.0605 | 1.0609 | 1.061 |
    | 188 | 1.0600 | 1.0605 | 1.0610 | 1.0614 | 1.0619 | 1.0623 | 1.0638 | 32 | 36 | 40 |  |
    | 185 | 31 | 36 | 41 | 46 |  | 55 | 59 | 63 | 368 | 2 |  |
    | 183 | 63 |  |  | 77 |  | 86 |  |  | 99 | $1.0 \% 03$ | , |
    | 179 | 94 | 99 | $1.0 \% 04$ | $1.0 \% 08$ | 1.0713 | 1.0717 | 1.0\% | 1.0726 | 1.0730 | 35 |  |
    | 176 | 1.0725 | 1.0730 | 1.05 | 40 | 14 | 49 | 53 | 1.07 | 62 | 66 |  |
    | 173 | 57 | 62 |  | 71 | 75 | 80 | 84 | 89 | 93 | 97 | 0801 |
    | 170 | 88 | 8 | 98 | 1.CO02 | $1.080 \%$ | 1.0811 | 1.0816 | 1.08:0 | 1.08:4 | 1.0829 | 13 |
    | 167 | 1.0819 | 1.0894 | 1.0829 | 34 |  | 3 | $4 \%$ |  | 6 | 60 |  |
    | 164 | 51 | 56 | 60 | 65 | 69 | 74 | ris | S3 | 87 | 91 |  |
    | 161 | 82 | 87 | $9:$ | 96 | 0901 | 1.0905 | 1.0910 | 1.0914 | 0918 | 2923 | 092 |
    | 158 | 1.0913 | 1.0918 | 1.0923 | 1.0927 | 32 | 37 | 41 | 1.095 | 50 | 54 | 1. 58 |
    | 155 | 45 | 49 | 54 | 59 | 63 | 68 | \% 1 |  | 81 | 85 |  |
    | 152 | 76 | 81 | 85 | 90 | 95 | 9 | 1.1004 | 1.1008 | 8.1012 | 1016 | 02 |
    | 149 | 1.1007 | 1.1012 | 1.1017 | 1.1021 | 1.1026 | 1.1030 | 35 | 39 | ${ }^{1.103}$ | 48 | 5 |
    | 146 | -38 | - 43 | 48 | 53 |  | 62 | 66 | r0 | 75 | 79 |  |
    | 143 | \% 0 | 74 | 79 | 84 | 88 | 93 | 97 | $1.110^{\circ}$ | 1.1106 | 1110 | 114 |
    | 140 | 1.1101 | 1.1106 | 1.1110 | 1.1115 | 1.1120 | 1.1124 | 1.1199 | 133 | 37 | 41 | 1 |
    | 137 | 32 | 37 |  | 46 |  | 5 |  | 64 | 68 | 3 |  |
    | 134 | 63 | 88 | 73 | 78 | 82 | 81 | 91 | 95 | 1.1200 | 204 | 208 |
    | 131 | 95 | 99 | 1.1204 | 1.1209 | 1.1213 | 1.1218 | 1.1222 | $1.122 \%$ | 31 | 35 | 39 |
    | 128 | 1.1226 | 1.1231 | 35 | 40 | 45 | 49 | 53 | 58 | $6 \cdot$ | 66 | r1 |
    | 125 | $5 \%$ | 62 | 6 | \%1 | \% 6 | 80 | 85 | 89 | 93 | 98 | 30 |
    | 122 | 88 |  | 98 | 1.1302 | $130 \%$ | 1.1311 | 1.1316 | 1.1320 | 1.1325 | 1329 | 33 |
    | 119 | 1.1320 | $1.13 \% 4$ | 1.13\%9 | 34 | 38 | 43 | 47 | 51 | 56 | 60 |  |
    | 116 | 51 | 55 | - 60 | 65 | 69 | 74 | 78 | 83 | 87 | 1 |  |
    | 113 | 82 | $8 i$ | 91 | 96 | 1.1401 | 1.1405 | 1.1409 | 1.1414 | 1.1418 | 1422 | 1426 |
    | 110 | 1.1413 | 1.1418 | 1.1422 | 1.142 | 32 | 36 | 41 | 45 | 49 | 53 | 5 |
    | 107 | 44 | 49 | 54 | 58 | 63 |  | $\%$ | 76 | 80 | 85 | 89 |
    | 104 | 75 | 80 | 8. | 89 | 94 | 99 | 1.1503 | 150 | 1.1512 | 1516 | 15:0 |
    | 101 | 1.1506 | 1.1511 | 1.1516 | 1.1521 | 1.1525 | 1.15.30 | 34 | 38 | 43. | 47 | 51 |
    | 98 | 38 | 42 | 47 | 52 | - 56 | 61 | 65 | 70 | 74 | 78 | 8 |
    | 95 | 69 | 74 | 78 | 83 | 87 | 92 | 96 | 1.1601 | 1.1605 | 1.1609 | 1.1613 |
    | 9 | 1.1600 | 1.1605 | 1.1609 | 1.1614 | 1.1619 | 1.1623 | 1.1698 | 32 | 36 | 40 | 45 |
    | 89 | 31 | 36 | 41 | 45 | 50 | 54 | 5 ? | 63 | 67 | \% 2 |  |
    | 8 | 62 | 67 | \% 2 | 76 | 81 | 85 | 90 | 94 | 98 | 1703 | $1 \% 0 \%$ |
    | 83 | 93 | 98 | $1.1 \% 03$ | $1.1 \% 0 \%$ | 1.1\%12 | $1.1 \% 1 \%$ | 1.1721 | 1.1725 | $1.1 \% 30$ | 34 | 38 |
    | 80 | (1.1724 | 1.1799 | 34 | 39 |  | 48 | 52 | 1.176 | 61 | 65 | 69 |
    | r |  |  |  | 70 |  | 79 | 83 | 88 | - 92 | 96 | 1800 |
    | 74 | 87 | 91 |  | 1.1801 | 1.1805 | 1.1810 | 1.1814 | 1.1819 | 1.1823 | 1.182 | 1 |
    | 71 | 1.1818 | 1.18\%3 | 1.189 ${ }^{3}$ | 32 | 36 | 41 | 1.45 | 1.1819 | -184 | 58 |  |
    | 68 | 49 | 54 | 58 | 63 | 68 | 72 | r7 | 81 | 8. | 89 | 94 |
    | 65 | 80 | 85 | 89 | 94 | 99 | 1.1903 | 1.1908 | 1.1912 | 1.1916 | 11920 | 1925 |
    | 62 | 1.1911 | 1.1916 | $1.19 \cdot 1$ | 1.1935 | 1.1930 | 34 | 39 | 43 | 47 | 52 | 56 |
    | 59 | 42 | 47 | $5 \cdot 3$ | 56 |  | 65 | 70 | r4 | \% 8 | 83 | 8 |
    | 56 | 73 | ; 8 | 83 | $8{ }^{\prime}$ | 92 | 96 | 1.2001 | 1.2005 | 1.2010 | 1.2014 | 1.2018 |
    | 53 |  | 1.2009 | 1.2014 | 1.2018 | 1.2038 | 1.2028 | 32 | 36 | 41 | 45 | 49 |
    | 50 | $35$ |  |  |  |  | 59 |  | $6 \%$ | 72 | 76 | 80 |
    | 47 |  | 71 | r'6 | 81 |  | 90 | 94 | 98 | 1.2103 | $1.210 \%$ | 1.2111 |
    | 44 |  | 1.210̇ | 1.210 | 1.2112 | 2116 | 1.2121 | 1.2125 | 1.2130 | 34 | 38 | 42 |
    | 41 | 1.2129 | 33 | 38 | 43 | 47 | 52 | 56 | 61 | 65 | 69 | 73 |
    | 38 | 60 | 64 | 69 | 74 | 78 | 83 | $8 \%$ | 92 |  | 1.2200 | 1.2204 |
    | 35 | 91 | 96 | 1.2900 | 1.2205 | 1.2209 | 1.2214 | 1.2:18 | 1.2223 | 1.2027 | 31 | 35 |
    | 32 | 1.2222 | 1.292\% | 311 | 36 | 41 | 45 | 49 | 54 | -58 | 62 |  |


    | Gauge-pressures <br> lbs. $100+$ | $105+$ | 110 + | $115+$ | $120+$ | $125+$ | $130+$ | $135+$ | $140+$ | $145+$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Absolute Press. lbs. 115. | 120 | 125 | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 |


    | Feed-water Temp. |  | Factors of Evaporation. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1.0397 | 1.0407 | 1.041 | . 04 | 1.0436 | 1.0445 | 0453 | 1.04 | , | 8 | , |
    | 209 | 1.0429 | 39 |  |  |  |  |  |  | 1.050 | . 0509 |  |
    | 206 |  |  | 80 | 89 |  | 1.0508 | 1.0516 | 1.0525 |  |  |  |
    | 203 | 92 | 1.0502 | 1.0511 | 1.0521 | 1.0530 |  |  |  |  |  |  |
    | 200 | 1.0523 |  |  |  |  |  |  |  |  | 1.0604 | 1.0611 |
    | 97 |  |  |  |  |  | 1.0602 | 1.0610 | 1.0619 | 1.0627 |  |  |
    | 194 |  |  | 1.0606 | 1.0615 | 1.0624 |  |  |  |  |  |  |
    | 191 | 1.0617 | 1.0627 |  |  |  |  |  |  |  |  | 1.0806 |
    | 188 | 49 |  |  |  |  |  | \%0 | 1.0713 | 1.0721 | 1.0729 |  |
    | 185 | 80 |  | 1.0700 | 1.0709 | 1.0719 | $1.072 \%$ |  |  |  |  |  |
    | 82 | 1.0712 | 1.0722 |  |  |  |  |  |  |  |  | 800 |
    |  |  |  |  |  |  |  |  | 0807 | 1.081 | 1.883 |  |
    | 176 | 74 |  |  | 1.0803 | 1.0813 | 1.0821 | 1.0830 |  |  |  |  |
    | 173 | 1.0806 | 1.0816 | 1.0825 |  | 44 |  |  |  |  | 86 |  |
    | 170 | 37 |  |  |  |  |  |  | 1.0901 | 1.0909 | $1.091{ }^{\circ}$ | 1.0925 |
    | 167 | 68 |  |  |  | 1.0907 | 1.0915 | 1.0924 |  |  |  |  |
    | 164 | 1.0900 | 1.0910 | 1.0919 | 1.0929 |  |  |  |  |  |  |  |
    | 161 | 31 |  |  |  |  |  |  |  | 1.1003 | 1.1011 | 1.1019 |
    |  |  |  |  |  | 1.1000 | 1.1009 | 1.1018 | 10:6 |  |  |  |
    | 155 |  | 1.1003 | 1.1013 | 1.1023 | 32 | 41 |  |  |  |  |  |
    | 152 | 1.1025 | 35 | 4 |  |  | 72. |  |  |  | 1.1105 | 1.1113 |
    |  |  |  |  |  |  | 1.1103 | 1.1112 | 1120 | 1128 |  |  |
    | 146 | 87 | 97 | 1.1107 | 1.1116 | 1.1126 | 34 |  |  |  |  |  |
    | 143 | 1.1118 | 1.1129 |  |  | 57 |  |  |  |  |  | 1.1207 |
    | 140 | 50 |  |  |  |  | 97 | 1.1206 | 1.1214 | 1.122:2 | 1.1230 |  |
    | 137 | 81 |  | 1.1201 | 1.1210 | 1.1219 | 1.1228 |  |  |  |  |  |
    |  | 1.1212 | 1.1222 |  |  | 51 |  |  |  |  |  | 1300 |
    | 131 | 43 |  |  |  |  |  |  | 1308 | 1.1316 | 1.1324 |  |
    | 128 | 75 |  |  | 1.1304 | 1.1313 | 1.1322 | 1.1331 |  |  | 55 |  |
    | 125 | 1.1306 | 1.1316 | 1.1326 |  | 44 | 53 |  |  |  |  |  |
    | 122 | 37 | 47 |  |  |  |  |  | 1401 | 409 | 417 | 1.1425 |
    | 119 |  |  |  |  | 1.1407 | 1.1415 | 424 |  |  |  |  |
    | 116 | 99 | 1.1409 | 1.1419 | 1.1429 |  |  |  |  |  |  |  |
    | 113 | 1.1431 | 41 |  |  |  |  |  |  | 1.1503 | 1.1511 | . 1519 |
    | 110 |  | \% |  |  | 1.1500 | 1.1509 | 1.1518 | 1.1526 |  |  |  |
    | 107 | 93 | 1.1503 | 1.1513 | 1.1522 |  |  |  |  |  |  |  |
    | 104 | 1.1524 | 34 |  |  |  |  |  |  |  | 1.1605 | 1.1612 |
    | 101 |  | 65 |  |  |  | 1.1602 | 1.1611 | 1.16:0 | 28 |  |  |
    |  | 86 |  | 1.1606 | 1.1616 | 1.1625 |  |  |  |  |  |  |
    | 95 | 11618 | 1.1628 |  |  |  |  |  |  |  |  | 706 |
    | 92 |  |  |  |  | 左 |  | 1.170 | 1713 | 1721 | 1729 |  |
    | 89 | 80 |  | 1.1700 | 1.1709 | 1.1718 | 1.1727 |  |  |  |  |  |
    | 86 | 1.1711 | 1.1721 | 31 |  |  | 58 |  |  |  |  | 99 |
    | 83 | 42 | 52 | 62 |  |  |  |  | 1.1806 | 1.1815 | 1.1823 | 1.1830 |
    | 80 | 73 | 83 | 析 | 1.1802 | 1.1812 | 1.1820 | 1.1829 | 3 | - 46 |  |  |
    | 77 | 1.1804 | 1.1814 | 1.1824 |  |  |  |  |  |  |  |  |
    | 74 | 35 | 45 | 55 |  |  |  |  | 1.1900 | 1.1908 | 1.1916 | 1.1924 |
    | 71 | 67 |  |  |  | 1.1905 | 1.1914 | 1.1922 | 31 |  | $4{ }^{4}$ |  |
    | 68 |  | 1.1908 | 1.1917 | 1927 |  |  |  |  |  | ro |  |
    | 65 | 1.1929 | 39 |  |  |  |  |  |  | 01 | 2009 | . 2017 |
    | 62 |  | 70 | 80 |  |  | 1.2007 | 1.2016 | 1.2024 |  |  |  |
    | 5 | 91 | 1.2001 | 1.2011 | 1.2020 | 1.2029 |  |  |  |  |  |  |
    | 56 | 1.2022 |  | 42 |  |  |  |  |  |  | 2102 | 1.2110 |
    | 53 | 53 | 63 |  |  |  | 1.21001 | 1.2109 | 1.2117 | 1.2126 |  |  |
    | 50 | 84 | 94 | 1.2104 | 1.2113 | 1.2123 |  |  |  |  |  |  |
    | 47 | 1.2115 | 1.2125 | 35 |  |  |  |  |  |  |  | 1.2203 |
    | 44 | 46 | 56 | 66 |  |  | 94 | 1.2202 | 1.2211 | 1.2219 | 1.2227 |  |
    | 41 | 77 | 87 |  |  | 1.2216 | 1.2225 |  | 42 |  |  |  |
    | 3 | 1.2008 | 1.2219 | 1.2228 |  |  |  |  |  |  |  |  |
    | 35 | 40 | 5 | 59 |  |  |  |  | 1.2304 | 1.2312 | 1.2320 | 1.2328 |
    | 32 | 71 | 81 |  | 1.2300 | 1.2309 | 1.23181 | 1.2326 | 351 | 431 |  |  |

    ## STRENGTH OF STEAMIBOHIERS. VARIOUS RULES FOR CONSTRUCTION.

    There is a great lack of uniformity in the rules prescribed by different writers and by legislation governing the construction of steam-boilers In the United States, boilers for merchant vessels must be constructed according to the rules and regulations prescribed by the Board of Supervising Inspectors of Steam Vessels; in the U. S. Navy, according to rules of the Navy Department, and in some cases according to special acts of Congress. On land, in some places, as in Philadelphia, the construction of boilers is governed by local laws; but generally there are no laws upon the subject, and boilers are constructed according to the idea of individual engineers and boiler-makers. In Europe the construction is generally regulated by stringent inspection laws. The rules of the U. S. Supervising Inspectors of Steam-vessels, the British Lloyd's and Board of Trade, the French Bureau Veritas, and the German Lloyd's are ably reviewed in a paper by Nelson Foley, M. Inst. Naval Architects, etc., read at the Chicago Engineering Congress, Division of Marine and Naval Engineering. From this paper the following notes are taken, chiefly with reference to the U.S. and British miles;
    (Abbreviations.-T. S., for tensile strength; El., elongation; Contr., contraction of area.)

    Hydranlic Tests.-Board of Trade, Lloyd's, and Bureau Veritas.Twice the working pressure.

    United States Statutes.-One and a half times the working pressure.
    Mr. Foley proposes that the proof pressure should be $11 / 2$ times the working pressure + one atmosphere.

    Established Nominal Factors of Safety.-Board of Trade.4.5 for a boiler of moderate length and of the best construction and workmanship.

    Lloyd's.- Not very apparent, but appears to lie between 4 and 5.
    United States Statutes.-Indefinite, because the strength of the joint is not considered, except by the broad distinction between single and double riveting.

    Bureau Veritas: 4.4.
    German Lloyd's: 5 to 4.65 , according to the thickness of the plates.
    Material tor Riveting.-Board of Trade.-Tensile strength of rivet bars between 26 and 30 tons, el. in $10^{\prime \prime}$ not less than $25 \%$, and contr. of area not less than $50 \%$.

    Lloyd's.-T. S., 26 to 30 tons; el. not less than $20 \%$ in $8^{\prime \prime}$. The material must stand bending to a curve, the inner radius of which is not greater than $11 / 2$ times the thickness of the plate, after having been uniformly heated ta a low cherry-red, and quenched in water at $82^{\circ} \mathrm{F}$.

    United States Statutes.-No special provision.
    Rules Connected with Riveting.-Board of Trade.-The shearing resistance of the rivet steel to be taken at 23 tons per square inch, 5 to be used for the factor of safety indepen lently of any addition to this factor for the plating. Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2 . The diameter must not be less than the thickness of the plate and the pitch never greater than $81 / 2^{\prime \prime}$. The thickness of double butt-straps (each) not to be less than $5 / 8$ the thickness of the plate; single butt-straps not less than 9/8.

    Distance from centre of rivet to edge of hole $=$ diameter of rivet $\times 112$.
    Distance between rows of rivets

    $$
    \begin{aligned}
    & =2 \times \text { diam. of rivet or }=[(\text { diam. } \times 4)+1]+2, \text { if chain, and } \\
    & =\frac{\sqrt{[(\text { pitch } \times 11)+(\text { diam. } \times 4)] \times(\text { pitch }+ \text { diam. } \times 4)}}{10} \text { if zigzag. }
    \end{aligned}
    $$

    Diagonal pitch $=($ pitch $\times 6+$ diam. $\times 4) \div 10$.
    Lloyd's.-Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2. The shearing strength of rivet steel to be taken at $85 \%$ of the T. S. of the material of shell plates. In any case where the strength of the longitudinal joint is satisfactorily shown by experiment to be greater than given by the formula, the actual strength may be taken in the calculation.

    ## United States Statutes.-No rmles.

    Material for Cyindrical Shells Subject to Internal Pres-
    sure.-Board of Trade--T. S. t etween 27 and 32 tons. In the normal condition, el, not less than $18 \%$ in $10^{\prime \prime}$, but should be about $25 \%$; if annealed, not
    less than $20 \%$. Strips $2^{\prime \prime}$ wide should stand bending until the sides are parallel at a distance from each other of not more than three times the plate's thickness.

    Lloyd's.-T. S. between the limits of 26 and 30 tons per square inch. EI. not less than $20 \%$ in $8^{\prime \prime}$. Test strips heated to a low cherry-red and plunged into water at $82^{\circ} \mathrm{F}$. must stand bending to a curve, the inner radius of which is not greater than $11 / 2$ times the plate's thickness.
    U. S. Statutes.-Plates of $16^{\prime \prime}$ thick and under shall show a contr. of not less than $50 \%$; when over $12^{\prime \prime}$ and up to $3 / 4^{\prime \prime}$, not less than $45 \%$; when over $34^{\prime \prime}$, not less than $40 \%$.

    Mr. Foley's comments : The Board of Trade rules seem to indicate a steel of too high T. S. when a lower and more ductile one can be got: the lower tensile limit should be reduced, and the bending test might with advantage be made after tempering, and made to a smaller radius. Lloyd's rule for quality seems more satisfactory, but the temper test is not severe. The United States Statutes are not sufficieutly stringent to insure an entirely satisfactory material.

    Mr. Foley suggests a material which would meet the following : 25 tons lower limit in tension ; $25 \%$ in $8^{\prime \prime}$ minimum elongation; radius for bending test after tempering $=$.the plate's thickness.
    Shell-plate Formulx.-Board of Trade : $P=\frac{T \times B \times t \times 2}{D \times F}$.
    $D=$ diameter of boiler in inches ;
    $P=$ working-pressure in lbs. per square inch ;
    $t=$ thickness in inches ;
    $B=$ percentage of strength of joint compared to solid plate;
    $T=$ tensile strength allowed for the material in lbs. per square inch;
    $F=$ a factor of safety, being 4.5 , with certain additions depending on method of construction.
    Lloyd's : $P=\frac{C \times(t-2) \times B}{D}$.
    $t=$ thickness of plate in sixteenths ; $B$ and $D$ as before; $C=$ a constant depending on the kind of joint.

    When longitudinal seans have double butt-straps, $C=20$. When longitudinal seams have double butt-straps of unequal width, only covering on one side the reduced section of plate at the outer line of rivets, $C=19.5$.

    When the longitudinal seams are lap-jointed, $C=18.5$.
    U. S. Statutes.-Using same notation as for Board of Trade,

    $$
    P=\frac{t \times 2 \times T}{D \times 6} \text { for single-riveting; add } 20 \% \text { for double-riveting ; }
    $$

    where $T$ is the lowest T. S. stamped on any plate.
    Mr. Foley criticises the rule of the United States Statutes as follows: The rule ignores the liveting, except that it distinguishes between single and double, giving the latter $20 \%$ atvantage; the circumferential riveting or class of seam is altogether ignored. The rule takes no account of worknanship or method adopted of constructing the joints. The factor, one sixth, simply covers the actual nominal factor of safety as well as the loss of strength at the joint, no matter what its percentage ; we may therefore dismiss it as unsatisfactory.

    Rules for Flat Plates.-Board of Trade ; $P=\frac{C(t+1)^{2}}{S-6}$.

    $$
    P=\text { working-pressure in lbs. per square inch; }
    $$

    $S=$ surface supported in square inches;
    $t=$ thickness in sixteenths of an inch;
    $C=$ a constant as per following table:
    $C=125$ for plates not exposed to heat or flame, the stays fitted with nuts and washers, the latter at least three times the diameter of the stay and $2 / 3$ the thickness of the plate;
    $C=187.5$ for the same condition, but the washers $2 / 8$ the pitch of stays in diameter, and thickness not less than plate;
    $C=200$ for the same condition, but doubling plates in place of washers, the width of which is $2 / 3$ the pitch and thickness the same as the plate;
    $C=112.5$ for the same condition, but the stays with nuts only;
    $\boldsymbol{C}=75$ when exposed to impact of lieat or flame and steam in contact with the plates, and the stays fitted with nuts and washers three times the diameter of the stay and $2 / 3$ the plate's thickness;
    $C=67.5$ for the same condition, but stays fitted with nuts only;
    $C=100$ when exposed to heat or fiame, and water in contact with the plates, and stays screwed into the plates and fitted with nuts;
    $C=66$ for the same condition, but stays with riveted heads.
    U. S. Statutes.-Using same notation as for Board of Trade. $P=\frac{C \times t^{2}}{p^{2}}$, where $p=$ greatest pitch in inches, $P$ and $t$ as above;
    $C^{\prime}=112$ for plates $7 / 16^{\prime \prime}$ thick and under, fitted with screw stay-bolts riveted over, screw stay-bolts and nuts, or plain bolt fitted with single nut and socket, or riveted head and socket;
    $C=120$ for plates above $7 / 16^{\prime \prime}$, under the same conditions;
    $C=140$ for flat surfaces where the stays are fitted with nuts inside and outside;
    $C=200$ for flat surfaces under the same condition, but with the addition of a washer riveted to the plate at least $1 / 2$ plate's thickness, and of a diameter equal to $\% / 8$ of the pitch of the stay-bolts.
    N.B.-Plates fitted with double angle-irons and riveted to plate, with leaf at least $2 / 3$ the thickness of plate and depth at least $1 / 4$ of pitch, would be allowed the same pressure as determined by formula for plate with washer riveted on.
    N.B.-No brace or stay-bolt used in marine boilers to have a greater pitch than $101 / 2^{\prime \prime}$ on fire-boxes and back connections.

    Certain experiments were carried out by the Board of Trade which showed that the resistance to bulging does not vary as the square of the plate's thickness. There seems also good reason to believe that it is not inversely as the square of the greatest pitch. Bearing in mind, says Mr. Foley, that mathematicians have signally failed to give us true theoretical foundations for calculating the resistance of bodies subject to the simplest forms of stresses we therefore cannot expect much from their assistance in the matter of flat plates.

    The Board of Trade rules for flat surfaces, being based on actual experiment, are especially worthy of respect; sound judgment appears also to have been used in framing them.

    Farnace Formulx.-Board of Trade.-Long Furnaces.-
    $P=\frac{C \times t^{2}}{(L+1) \times D}$, but not where $L$ is shorter than $(11.5 t-1)$, at which length the rule for short furnaces comes into play.
    $P=$ workins-pressure in pounds per square inch; $t=$ thickness in inches; $D=$ outside diameter in inches; $L=$ length of furnace in feet up to 10 ft .; $C=$ a constant, as per following table, for drilled holes:
    $C=99,000$ for welded or butt-jointed with single straps, doubleriveted;
    $C=88,000$ for butts with single straps, single-riveted;
    $C=99,000$ for butts with double straps, single-riveted.
    Provided always that the pressure so found does not exceed that given by the following formulæ, which apply also to short furnaces:
    $P=\frac{C \times t}{D}$ for all the patent furnaces named;
    $P=\frac{C \times t}{3 \times D}\left(5-\frac{L \times 12}{6 r .5 \times t}\right)$ when with Adamson rings.
    $C=8,800$ for plain furnaces;
    $C=14,000$ for Fox; minimum thickness $5 / 16^{\prime \prime}$, greatest $58^{\prime \prime}$; plain part not to exceed $6^{\prime \prime}$ in length;
    $C=13,500$ for Morison: minimum thickness $5 / 16^{\prime \prime}$, greatest $58^{\prime \prime}$; plain part not to exceed $6^{\prime \prime}$ in length:
    $C=14,000$ for Purves-Brown; limits of thickness $\tau / 16^{\prime \prime}$ and $5 / 8^{\prime \prime}$; plain part $9^{\prime \prime}$ in length;
    $C=8,800$ for Adamson rings; radius of fiange next fire $112^{\prime \prime}$.
    U. S. Statutes.-Long Furnaces.-Same notation.
    $P=\frac{89,600 \times t^{2}}{L \times D}$, but $L$ not to exceed 8 ft .
    P. B.--If rings of wrought iron are fitted and riveted on properly around sud to the due in such a manner that the tensile stress on the sivets shall
    not exceed 6000 lbs . per sq. in., the distance between the rings shall be taken as the length of the flue in the formulæ.
    Short F'urnaces, Plain and Patent. $-P$, as before, when not 8 ft .

    $$
    \begin{aligned}
    & \text { long }=\frac{89,600 \times t^{2}}{L \times D} ; \\
    & \qquad=\frac{t \times C}{D} \text { when } \\
    & C=14,000 \text { for Fox corrugations where } D=\text { mean diameter; } \\
    & C=14,000 \text { for Purves-Brown where } D=\text { diameter of flue; } \\
    & C=5677 \text { for plain flues over } 16^{\prime \prime} \text { diameter and less than } 40^{\prime \prime}, \text { when } \\
    & \text { not over } 3 \text { ft. lengths. }
    \end{aligned}
    $$

    Mr. Foley comments on the rules for long furnaces as follows: The Board of Trade general formula, where the length is a factor, has a very limited range indeed, viz., 10 ft . as the extreme length, and 135 thicknesses - $12^{\prime \prime}$, as the short limit. The original formula, $P=\frac{C \times t^{2}}{L \times D}$, is that of Sir W. Fairbairn, and was, I believe, never intended by him to apply to short fırnaces. On the very face of it, it is apparent, on the other hand, that if it is true for moderately long furnaces, it cannot be so for very long ones. We are therefore driven to the conclusion that any formula which includes simple $L$ as a factor must be founded on a wrong basis.

    With Mr. Traill's form of the formula, namely, substituting ( $L+1$ ) for $L$, the results appear sufficiently satisfactory for practical purposes, and indeed, as far as can be judged, tally with the results obtained from experiment as nearly as could be expected. The experiments to which I refer were six in number, and of great variety of length to diameter; the actual factors of safety ranged from 4.4 to 6.2 , the mean being $4 . \% 8$, or practically 5. It seems to me, therefore, that, within the limits prescribed, the Board of Trade formula may be accepted as suitable for our requirements.
    The United States Statutes give Fairbairn's rule pure and simple, except that the extreme limit of length to which it applies is fixed at 8 feet. As far as can be seen, no limit for the shortest length is prescribed, but the rules to me are by no means clear, flues and furnaces being mixed or not well distinguished.

    Material for Stays.--The qualities of material prescribed are as follows:

    Board of Trade.-The tensile strength to lie between the limits of 27 and $3: 3$ tons per square inch, and to have an elongation of not less than $20 \%$ in $10^{\prime \prime}$. Steel stays which have been welded or worked in the fire should not be used.

    Lloyd's. - 26 to 30 ton steel, with elongation not less than $20 \%$ in $8^{\prime \prime}$.
    U. S. Statutes.-The only condition is that the reduction of area must not be less than $40 \%$ if the test bal is over $3 / 4^{\prime \prime}$ diameter.

    Loads allowed on Stays.-Board of Trade. -9000 lbs. per square inch is allowed on the net section, provided the tensile strength ranges from $2 \pi$ to $3 \%$ tons. Steel stays are not to be welded or worked in the fire.

    Lloyd's.-For screwed and other stays, not exceeding $11 / 2^{\prime \prime}$ diameter effective, 8000 lbs. per square inch is allowed; for stays above $11 / 2^{\prime \prime}, 9000 \mathrm{lbs}$. No stays are to be welded.
    U. S. Statutes.-Braces and stays shall not be subjected to a greater stress than 6000 lbs. per square inch.
    [Rankine, S. E., p. 459, says: "The iron of the stays ought not to be exposed to a greater working tension than 3000 lbs . on the square inch, in order to provide against their being weakened by corrosion. This amounts to making the factor of safety for the working pressure about 20." It is evident, however, that an allowance in the factor of safety for corrosion may reasonably be decreased with increase of diameter. W. K.]
    Girders.-Board of Trade. $\quad P=\frac{C \times d^{2} \times t}{(W-p) D \times L} . \quad P=$ working pressure in lbs. per sq. in.; $W=$ width of flame-box in inches; $L=$ length of girder in inches; $p=$ pitch of bolts in inches; $D=$ distance between girders from centre to centre in inches; $d=$ depth of girder in inches; $t=$ thickness of sum of same in inches; $C=$ a constant $=6600$ for 1 bolt, 9900 for 2 or 3 bolts, and 11,220 for 4 bolts.

    Lloyd's. - The same formula and constants, except that $C=11,000$ for 4 or 5 bolts, 11,550 for 6 or ${ }^{7}$, and 11,880 for 8 or more.
    U. S. Statutes.-The matter appears to be left to the designers.

    Tube-Flates.-Board of Trade. $\quad P=\frac{t(D-d) \times 20,000}{W \times D} . \quad D=$ least horizontal distance between centres of tubes in inches; $d=$ inside diameter of ordinary tubes; $t=$ thickness of tube-plate in inches; $W=$ extreme width of combustion-box in inches from front tube-plate to back of firebox, or distance between combustion-box tube-plates when the boiler is double-ended and the box common to both ends.
    The crushing stress on tube-plates caused by the pressure on the flamebox top is to be limited to $10,000 \mathrm{lbs}$. per square inch.
    Material for Tubes.-Mr. Foley proposes the following: If iron, the quality to be such as to give at least 22 tons per square inch as the minimum tensile strength, with an elongation of not less than $15 \%$ in $8^{\prime \prime}$. If steel, the elongation to be not less than $26 \%$ in $8^{\prime \prime}$ for the material before being rolled into strips; and after tempering, the test bar to stand completely closing together. Provided the steel welds well, there does not seem to be any object in providing tensile limits.
    The ends should be annealed after manufacture, and stay-tube ends should be annealed betore screwing.
    Holding-power of Boiler-tubes.-Experiments made in Waslington Navy Yard show that win $21 / 2 \mathrm{in}$. brass tubes in no case was the holdingpower less, roughly speaking, than 6000 lbs , while the average was upwards of $20,000 \mathrm{lbs}$. It was further shown that with these tubes nuts were superfluous, quite as good results being obtained with tubes simply expanded into the tube-plate and fitted with a ferrule. When nuts were fitted it was sliown that they drew off without injuring the threads.
    In Messrs. Yarrow's experiments on iron and steel tubes of $2^{\prime \prime}$ to $21 / 4^{\prime \prime}$ diameter the first 5 tubes gave way on an average of $23,740 \mathrm{lbs}$., which would appear to be about $2 / 3$ the ultimate strength of the tubes themselves. In all these cases the hole through the tube-plate was parallel with a sharp edge to it, and a ferrule was driven into the tube.
    Tests of the next 5 tubes were made under the same conditions as the first 5, with the exception that in this case the ferrule was omitted, the tubes being simply expanded into the plates. The mean pull required was $15,2 \pi 0 \mathrm{lbs}$., or considerably less than half the ultimate strength of the tubes.

    Effect of beading the tubes, the holes through the plate being parallel and ferrules omitted. The mean of the first 3, which are tubes of the same kind, gives $26,876 \mathrm{lbs}$. as their holding-power, under these conditions. as compared with $23,740 \mathrm{lbs}$. for the tubes fitted with ferrules only. This high figure is, however, mainly due to an exceptional case where the holdingpower is greater than the average strength of the tubes themselves.
    It is disadvantageous to cone the hole through the tube-plate unlese its sharp edge is removed, as the results are much worse than those obtained with parallel holes, the mean pull being but $16,031 \mathrm{lbs}$., the experiments being made with tubes expanded and ferruled but not beaded over.
    In experiments on tubes expanded into tapered holes, beaded over and fitted with ferrules, the net result is that the holding-power is, for the size experimented on, about $3 / 4$ of the tensile strength of the tube, the mean pull being $28,797 \mathrm{lbs}$.
    With tubes expanded into tapered holes and simply beaded over, better results were obtained than with ferrules; in these cases, however, the sharp edge of the hole was rounded off, which appears in general to have a good effect.

    In one particular the experiments are incomplete, as it is impossible to reproduce on a machine the racking the tubes get by the expansion of a boiler as it is heated up and cooled down again, and it is quite possible, therefore, that the fastening giving the best results on the testing-machine may not prove so efficient in practice.
    N.B.-It should be noted that the experiments were all made under the cold condition, so that reference should be made with caution, the circumstances in practice being very different, especially when there is scale on the tube-plates, or when the tube-plates are thick and subject to intense heat.

    Iron versus Steel Boiler-tubes, (Foley.) - Mr. Blechynden prefers iron tubes to those of steel, but how far he would go in attributing the leaky-tube defect to the use of steel tubes we are not aware. It appears, however, that the results of his experiments would warrant him in going a considerable distance in this direction. The test consisted of heating and cooling two tubes, one of wronght iron and the other of steel. Both tubes were $23 / 4 \mathrm{in}$. in diameter and .16 in . thickness of metal. The tubes were
    put in the same furnace, made red-hot, and then dipped in water. The length was gauged at a temperature of $46^{\circ} \mathrm{F}$.
    This operation was twice repeated. with results as follows :

    |  | Steel. | Iron |
    | :---: | :---: | :---: |
    | Original length. | 55.495 in. | $55.49 \mathrm{sin}^{\circ} \mathrm{in}$. |
    | Heated to $186^{\circ} \mathrm{F}$ | . 052 | . 048 |
    | Coefficient of expansion per degree F | . 0000067 | . 0000062 |
    | Heated red-hot and dipped in water; decrease | . 007 in . | $033 \mathrm{in}$. |
    | Second heating and cooling, decrease. | . 031 in. | . 004 in . |
    | Third heating and cooling, decrease. | . 017 in in. | . 006 in . |
    | Total contraction | . 055 in . | . 013 in . |

    Mr. A. C. Kirk writes: That overheating of tube ends is the cause of the leakage of the tubes in boilers is proved by the fact that the ferrules atpresent used by the Admirally prevent it. These act by shielding the tube ends from the action of the flame, and consequently reducing evaporation, and so allowing free access of the water to keep them cool.
    Although many causes contribute, there seems no doubt that thick tubeplates must bear a slare of causing the mischief.

    ## Rules for Construction of Roilers in Miferchant Vessels int the United States.

    (Extracts from General Rules and Regulations of the Board of Supervising Inspectors of istcim-vessels (as amended 1895).)
    Tensile Strength of Plate。 (Section 3.)-To ascertain the tensile strength and other qualities of iron plate there shall be taken from each
     sheet to be used in shell or other parts of boiler which are subject to tensile strain a test piece prepared in form according to the following diagram, viz.: 10 inches in length, ${ }^{2}$ inches in width, cut out in the centre in the manner indicated.
    To ascertain the tensile strength and other qualities of steel plate, there shall be taken from each sheet to be used in shell or other parts of boiler which are subject to tensile strain a testpiece prepared in form according to the following diagram:

    The straight part in centre shall be 9 inclies in length and 1 inch in width, marked with light prickpunch marks at distances $\frac{1}{2}$ inch apart, as shown, spaced so as to give 8 inches in lengti.
    

    The sample must show when tested an elongation of at least $25 \%$ in a length of 2 in . for thickness up to $1 / 4 \mathrm{in}$, inclusive; in a lengih of 4 in . for over $1 / 4$ to $\tilde{6} / 16$, inclusive; in a length of 6 in ., for all plates over $7 / 16 \mathrm{in}$. and under $13 / 4 \mathrm{in}$. thickness.

    The rethetion of area shall lie the sane as called for by the rules of tho Board. No plate sliall contain more than $.0 \% \%$ of phosphorus and $.04 \%$ of sulphur.

    The samples shall also be capalle of being bent to a curve, of which the inner radius is not ${ }^{\text {greater than } 11 / 2 \text { times the thickness of the plates after }}$ having been heated uniformly to a low cherry-red and quenched in water of $82^{\circ} \mathrm{F}$.
    [Prior to 1894 the shape of test-piece for steel was the same as that for fron, viz., the grooved shape. This shape has been condemned by authorities on strength of materials for over twenty years. It always gives results which are too high, the error sometimes amounting to 25 per cent. See pages $24: \%$, 243, ante; also, Strength of Materials, W. Kent, Van N. Science Series No. 41, and Beardslee on Wrought-iron and Chain Cables.]

    Ductility. (Section 6.)-To ascertain the ductility and other lawful qualities, irom of $45,000 \mathrm{lbs}$. tensile strength shall show a contraction of area of 15 per cent, and each additional 1000 lbs. tensile strength shall show 1 per cent additional contraction of area, up to and including 55,000 tensile strength. Iron of 55.000 tensile strength and upwards, showing 25 per cent reduction of area, shall be deemed to have the lawful ductility. All steel plate of $1 / 2$ inch thickness and under shall show a contraction of area of not less than 50 per cent. Steel plate over $1 / 2$ inch in thickness, up to $3 / 4$ inch in
    thickness, shall show a reduction of not less than 45 per cent. All steel plate over $3 / 4$ inch thickness shall show a reduction of not less than 40 per cent.

    Bumped Heads of Boilers. (Section 17 as amended 1894.) Pressure Allowed on Bromped Heads.-Multiply the thickness of the plate by one sixth of the tensile strongth, and divide by six tenths of the radius to which head is bumped, which will give the pressure per square inch of steam allowed.

    Pressure Allowable for Concaved Heads of Boilers.-Multiply the pressure per square inch allowable for bumped heads attached to boilers or drums convexly, by the constant. 6 , and the product will give the pressure per square inclo allowable in concaved heads.

    The pressure on unstayed fat-ineads on stean-drums or shells of briters, when flanged and made of wrought iron or steel or of cast steel, shall be determined by the following rule:

    The thickness of plate in inches multiplied by one sixth of its tensile strength in pounds, which product divided by the area of the head in square inches multiplied by 0.9 will give pressure per square inch allowed. The material used in the construction of hat-heads when tensile strength has not been officially determined shall be deemed to have a tensile strength of $45,000 \mathrm{lbs}$.
    Table of Pressures allowabie on steam-boilers made of IRiveted $\mathrm{Ir}_{\mathrm{in}}$ or steel Plates.
    (Abstract from a table published in Rules and Regulations of the U.S. Board of Supervising Iuspectors of Stean-vessels.)
    Plates $1 / 4$ incl1 thick. For other thicknesses, multiply by the ratio of the thickness to $1 / 4$ inch.

    |  | 50,000 Tensile Strength. |  | 55.000 Tensile Strength. |  | 60,000 Tensile Strength. |  | 65,000 Tensile <br> Strength. |  | $\begin{aligned} & \tilde{\sim} 0,000 \text { Tensile } \\ & \text { Strength. } \end{aligned}$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{aligned} & \dot{0} \\ & \tilde{y} \\ & 0 \\ & 0 \\ & 0.2 \\ & 0 . \end{aligned}$ |  |  |  |  |  |  |  | ¢ |  |
    | 36 | 115.74 | 138.88 | 127.31 | 152 | 138.88 | 166. | 150 | 180.55 | 162. | 19 |
    | 38 | 109.64 | 131.56 | 120.61 | 144.73 | $131.5{ }^{\prime}$ | $15 \%$ | 142.54 | 171.04 | 153.5 | 184.20 |
    | 40 | 104.16 | 124.99 | 114.58 | 137.49 | 125 | 150 | 135.41 | 162.49 | 145.83 | 174.99 |
    | 42 | 99.2 | 119.04 | 109.12 | 130.94 | 119.04 | 14281 | 128.96 | 154.75 | 138.88 | 166.65 |
    | 44 | 94.69 | 113.62 | $10+16$ | $12+.99$ | 113.63 | 136.35 | 123.1 | 147.\%2 | 132.56 | 159.07 |
    | 46 | 90. ã | 108.68 | 99.63 | 119.55 | 108.69 | 130.42 | 117. 75 | 141.3 | 126.8 | 152.16 |
    | 48 | 86.8 | 104.16 | 95.48 | 114.57 | 104.16 | 124.99 | 112.84 | 135.4 | 121.52 | 145.82 |
    | 54 | Tr.16 | 93. 59 | $84.8{ }^{7}$ | 101.84 | 92.59 | 111.10 | 100.3 | 120.36 | 108.02 | 129.68 |
    | 60 | 69.44 | 83.32 | 76.38 | 91.65 | 88.33 | 99.99 | 90.24 | 108.32 | 97.22 | 116.66 |
    | 68 | 63.13 | 75.75 | 69.44 | 83.32 | 75.75 | 90.90 | 88.07 | 98.48 | 88.3 í | 106.04 |
    | 72 | 57.87 | 69.44 | 63.65 | 76.38 | 6944 | 83.32 | 75.22 | 90.26 | 81.01 | 97.21 |
    | 78 | 53.41 | 64.09 | 58. 76 | 70.5 | 64.4 | 76.92 | 69.44 | 83.32 | 74.78 | 89.73 |
    | 84 | 43.6 | 59.52 | 54.56 | 65.47 | 59.5 ? | 71.42 | 64.48 | 77.37 | 69.44 | 83.32 |
    | 90 | 46.29 | 55.44 | 50.92 | 61.1 | 55.55 | 66.66 | 60.18 | \%2.21 | 64.81 | \%. 71 |
    | 96 | 43.4 | 52. | 47.74 | 57.28 | 52.08 | 62.49 | 56.42 | 67.67 | 60.76 | 72.91 |

    The figures under the columns headed "pressure" are for single-riveted boilers. Those under the columns headed " $20 \%$ Additional" are for doubleriveted.

    ## U. S. Rule for Allowable Presstres.

    The pressure of any dimension of boilers not found in the table annexed to these rules must be ascertained by the following rule:

    Multiply one sixth of the lowest tensile strength found stamped on any plate in the cylindrical shell by the thickness (expressed in inches or parts of an inch) of the thinnest plate in the same cylindrical shell, and divido by the radius or half diameter (also expressed in inches), the quotient will be the pressure allowable per square inch of surface $\mathbf{f}$ or single-riveting, to ahich add twenty per centum for double-riveting when all the rivet-holes in the shell of such boiler have been "fairly drilled " and no part of such hole lias been punched.
    The author desires to express his condemnation of the above rule, and of the tables derived from it, as giving too low a factor of safety. (See also criticism by Mr. Foley, page r01, ante.)

    If $C_{b}=$ bursting-pressure, $t=$ thickness, $T=$ tensile strength, $c=$ coefficient of strength of riveted joint, that is, ratio of strength of the joint to that of the solid plate, $d=$ diameter, $P b=\frac{2 t T c}{d}$, or if $c$ be taken for doubleriveting at 0.7 , then $P_{b}=\frac{1.4 t T}{d}$.

    By the U. S. rule the allowable pressure $P_{a}=\frac{1 / 6 t T}{1 / 2 d} \times 1.20=\frac{0.4 t T}{d}$; whence $P b=3.5 P a$; that is, the factor of safety is only 3.5 , provided the "tensile strength found stamped in the plate" is the real tensile strength of the material. But in the case of iron plates, since the stamped T.S. is obtained from a grooved specimen, it may be greatly in excess of the real T.S., which would make the factor of safety still lower. According to the table, a boiler 40 in . diam., $1 / 4 \mathrm{in}$. thick, matie of iron stamped $60,000 \mathrm{~T} . \mathrm{S} .$, would be licensed to carry 150 lbs. pressure if double-riveted. If the real T.S. is only $50,000 \mathrm{lbs}$. the calculated bursting-strength would be

    $$
    P=\frac{2 t T c}{d}=\frac{2 \times 50,000 \times .25 \times .70}{40}=437.5 \mathrm{lbs}
    $$

    and the factor of safety only $437.5 \div 150=2.91$ !
    The author's formula for safe working-pressure of externally-fired boilers with longitudinal seams double-riveted, is $P=\frac{14000 t}{d} ; t=\frac{P d}{14000} ; P=$ gaugepressure in lbs. per sq. in.; $t=$ thickness and $d=$ diam. in inches.
    This is derived from the formula $P=\frac{2 t T c}{f d}$, taking $c$ at 0.7 and $f=5$ for steel of $50,000 \mathrm{lbs}$. T.S., or $6 \mathrm{fror} 60,000 \mathrm{lbs}$. T.S.; the factor of safety being increased in the ratio of the T.S., since with the higher T.S. there is greater danger of cracking at the rivet-holes from the effect of punching and riveting and of expansion and contraction caused by variations of temperature. For external shells of internally-fired boilers, these shells not being exposed to the fire, with rivet-holes drilled or reamed after punching, a lower factor of safety and steel of a higher T.S. may be allowable.
    If the T.S. is 60,000 , a working pressure $P=\frac{16000 t}{d}$ would give a factor of safety of 5.25 .
    The following table gives safe working pressures for different diameters of shell and thicknesses of plate calculated from the author's formula.

    ## Safe Working Pressures in Cylindrical Shells of Poilert, Tanks, Pipes, etc., in Pounds per Square Inch.

    Longitndinal seams double-riveted.
    (Calculated from formula $P=14,000 \times$ thickness $\div$ diameter.)

    | $\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Diameter in Inches. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 24 | 30 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 |
    | 1 | 36.5 | 29.2 | 24.3 | 23.0 | 21.9 | 20.8 | 19.9 | 19.0 | 18.2 | 17.5 | 16.8 |
    | 2 | 72.9 | 58.3 | 48.6 | 46.1 | 43.8 | 41.7 | 39.8 | 38.0 | 36.5 | 35.0 | 33.7 |
    | 3 | 109.4 | 87.5 | 72.9 | 69.1 | 65.6 | 62.5 | 59.7 | 57.1 | 54.7 | 52.5 | 50.5 |
    | 4 | 145.8 | 116.7 | 97.2 | 92.1 | 87.5 | 83.3 | 79.5 | 76.1 | 72.9 | 70.0 | 67.3 |
    | 5 | 182.3 | 145.8 | 121.5 | 115.1 | 109.4 | 104.2 | 99.4 | 95.1 | 91.1 | 87.5 | 84.1 |
    | 6 | 218.7 | 175.0 | 145.8 | 138.2 | 131.3 | 125.0 | 119.3 | 114.1 | 109.4 | 105.0 | 101.0 |
    | 7 | 255.2 | 204.1 | $1 \hat{10.1}$ | 161.2 | 153.1 | 145.9 | 139.2 | 13.3.2 | 127.6 | 122.5 | 117.8 |
    | 8 | 291.7 | 233.3 | 194.4 | 184.2 | 175.0 | 166.7 | 159.1 | 152.2 | 145.8 | 140.0 | 134.6 |
    | 9 | 398.1 | 262.5 | 218.8 | 207.2 | 196.9 | 187.5 | 179.0 | 171.2 | 164.1 | 157.5 | 151.4 |
    | 10 | 364.6 | 291.7 | 243.1 | 230.3 | 218.8 | 208.3 | 198.9 | 190.2 | 182. 3 | 175.0 | 168.3 |
    | 11 | 401.0 | 320.8 | 267.4 | 253.3 | 240.6 | 229.2 | 218.7 | 209.2 | 200.5 | 192.5 | 185.1 |
    | 12 | 437.5 | 350.0 | 291.7 | 276.3 | 262.5 | 250.0 | 238.6 | 228.3 | 218.7 | 210.0 | 201.9 |
    | 13 | 473.9 | 379.2 | 316.0 | 299.3 | 281.4 | 270.9 | 258.5 | 247.3 | 333.0 | 227.5 | 218.8 |
    | 14 | 410.4 | 408.3 | 340.3 | 322.4 | 306.3 | 291.7 | 278.4 | 266.3 | 255.2 | 245.0 | 235.6 |
    | 15 | 546.9 | 437.5 | 364.6 | 345.4 | 328.1 | 312.5 | 298.3 | 285.3 | 273.4 | 266.5 | 252.4 |
    | 16 | 583.3 | 466.7 | 388.9 | 368.4 | 350.0 | 333.3 | 318.2 | 304.4 | 291.7 | 280.0 | 269.2 |


    |  | Diameter in Inches. |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 토ํ. ${ }^{\text {g }}$ | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | 102 | 108 | 114 | 120 |
    | 1 | 16.2 | 14.6 | 13.3 | 12.2 | 11.2 | 10.4 | 9.7 | 9.1 | 8.6 | 8.1 | 7.1 | 7.3 |
    | 2 | 32.4 | 29.2 | 26.5 | 24.3 | 22.4 | 20.8 | 19.4 | 18.2 | 17.2 | 16.2 | 154 | 14.6 |
    | 3 | 48.6 | 43.7 | 39.8 | 36.5 | 33.7 | 31.3 | 29.2 | 27.3 | 25.7 | 24.3 | 23.0 | 21.9 |
    | 4 | 64.8 | 58.3 | 53.0 | 48.6 | 44.9 | 41.7 | 38.9 | 36.5 | 34.3 | 32.4 | 30.7 | 29.2 |
    | 5 | 81.0 | 72.9 | 66.3 | 60.8 | 56.1 | 52.1 | 48.6 | 45.6 | 42.9 | 40.5 | 38.4 | 36.5 |
    | 6 | 97.2 | 87.5 | 79.5 | 72.9 | 67.3 | 62.5 | 58.3 | 54.7 | 51.5 | 48.6 | 46.1 | 43.8 |
    | 7 | 113.4 | 102.1 | 92.8 | 85.1 | 78.5 | 72.9 | C8.1 | 63.8 | 60.0 | 56.7 | 53.7 | 51.0 |
    | 8 | 129.6 | 116.7 | 106.1 | 97.2 | 89.7 | 83.3 | 77.8 | 72.9 | 68.6 | 64.8 | 61.4 | 58.3 |
    | 9 | 145.8 | 131.2 | 119.3 | 109.4 | 101.0 | 93.8 | 87.5 | 82.0 | 77.2 | 72.9 | 69.1 | 65.6 |
    | 10 | 162.0 | 145.8 | 132.6 | 121.5 | 112.: | 104.2 | 97.2 | 91.1 | 85.8 | 81.0 | 76.8 | r2.9 |
    | 11 | 178.2 | 160.4 | 145.8 | 133.7 | 123.4 | 114.6 | 106.9 | 100.3 | 94.4 | 89.1 | 84.4 | 80.2 |
    | 12 | 194.4 | 175.0 | 159.1 | 145.8 | 134.6 | 125.0 | 116.7 | 109.4 | 102.9 | 97.2 | 92.1 | 87.5 |
    | 13 | 210.7 | 189.6 | 172.4 | .58.0 | 145.8 | 135.4 | 126.4 | 118.5 | 111.5 | 105.3 | 99.8 | 94.8 |
    | 14 | 226.9 | 204.2 | 185.6 | 170.1 | 157.1 | 15.8 | 136.1 | 127.6 | 120.1 | 1134 | 107.5 | 102.1 |
    | 15 | 243.1 | 218.7 | 198.9 | 182.3 | 168.3 | 156.3 | 145.8 | 136.7 | 128.7 | 121.5 | 115.1 | 109.4 |
    | 16 | 259.3 | 233.3 | 212.1 | 194.4 | 179.5 | 166.7 | 155.6 | 145.8 | 137.3 | 129.6 | 122.8 | 116.7 |

    ## Rules governing Enspection of Boilers in Philadelphia.

    In estimating the strength of the longitudinal seams in the cylindrical shells of boilers the inspector shall apply two formulæ, A and B :
    A, $\left\{\frac{\text { Pitch of rivets - diameter of holes punched to receive the rivets }}{\text { pitch of rivets }}=\right.$ percentage of strength of the sheet at the seam.
    $\mathrm{B},\left\{\begin{array}{l}\begin{array}{l}\text { Area of hole filled by rivet } \times \text { No. of rows of rivets in seam } \times \text { shear- } \\ \text { ing strength of rivet }\end{array} \\ \text { pitch of rivets } \times \text { thickness of sheet } \times \text { tensile strength of sheet }\end{array}=\right.$
    percentage of strength of the rivets in the seam,
    Take the lowest of the percentages as found by formulæ A and Band apply that percentage as the "strength of the seam" in the following formula $C$, which determines the strength of the longitudinal seams:
    C, $\left\{\begin{array}{l}\text { Thickness of sheet in parts of inch } \times \text { strength of seam as obtained } \\ \frac{\text { by formula } A \text { or } B \times \text { ultimate strength of iron stamped on plates }}{\text { internal radius of boiler in inches } \times 5 \text { as a factor of safety }}\end{array}=\right.$ safe working pressure.

    Table of Proportions and Safe Working Pressures with Formule a And C, @ 50,000 LbS., T.S.

    | Diameter of rivet. ...... | $5 / 8^{\prime \prime}$ | 11/16 | 3/4 | 13/16 | 7/8 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diameter of rivet-hole. . | 11/16" | 314 | 13/16 | 7/8 | 15/16 |
    | Pitch of rivets........... | $2^{\prime \prime}$ | $21 / 16$ | $21 / 8$ | $23 / 16$ | $21 / 4$ |
    | Strength of seam, \%...... | . 656 | . 636 | . 62 | . 60 | . 58 |
    | Thickness of plate. .... | $1 / 4^{\prime \prime}$ | 5/16 | 3/8 | 7/16 | 1/2 |
    | Diameter of boiler, in...Safe Working Pressure with Longitudinal Seams Single-riveted. |  |  |  |  |  |
    | 24 | 137 | 165 | 193 | 220 | 242 |
    | 30 | 109 | 132 | 154 | 176 | 194 |
    | 32 | 102 | 124 | 144 | 165 | 182 |
    | 34 | 96 | 117 | 136 | 155 | 171 |
    | 36 | 91 | 110 | 129 | 147 | 161 |
    | 38 | 86 | 104 | 122 | 139 | 153 |
    | 40 | 82 | 99 | 116 | 132 | 145 |
    | 44 | 74 | 91 | 105 | 120 | 132 |
    | 48 | 68 | 83 | 96 | 110 | 121 |
    | 54 | 60 | 73 | 86 | 98 | 107 |
    | 60 | 55 | 66 | 77 | 88 | 97 |


    | Diameter of rivet........ Diameter of rivet-liole.. Pitch of rivets......... Strength of seam, \%.... Thickness of plate.. ${ }^{\text {a }}$. | $\begin{gathered} 5 / 8^{\prime \prime} \\ 11 / 16^{\prime \prime} \\ 3^{\prime \prime} \\ .77 \\ 14^{\prime \prime} \\ \hline \end{gathered}$ | $\begin{gathered} 11 / 16 \\ 3 / 4 \\ 31 / 8 \\ .66 \\ 5 / 16 \end{gathered}$ | $\begin{gathered} 3 / 4 \\ 1316 \\ 314 \\ .75 \\ 3 / 8 \\ \hline \end{gathered}$ | $\begin{gathered} 13 / 16 \\ 7 / 8 \\ 33 / 8 \\ 774 \\ 7 / 16 \end{gathered}$ | $\begin{gathered} 7 / 8 \\ 15 / 16 \\ 31 / 2 \\ .73 \\ 1 / 2 \end{gathered}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diameter of boiler, in... | Safe Working Pressure with Longitudinal Seams, Double-riveted. |  |  |  |  |
    | 24 | 160 | 198 | 235 | 269 | 305 |
    | 30 | 127 | 158 | 188 | 215 | 243 |
    | 32 | 119 | 148 | 176 | 202 | 228 |
    | 34 | 112 | 140 | 166 | 190 | 215 |
    | 36 | 106 | 132 | 156 | 179 | 203 |
    | 38 | 101 | 125 | 148 | 170 | 192 |
    | 40 | 96 | 119 | 141 | 161 | 183 |
    | 44 | 87 | 108 | 128 | 147 | 166 |
    | 48 | 79 | 99 | 118 | 135 | 152 |
    | 54 | 70 | 88 | 104 | 120 | 135 |
    | 60 | 64 | 79 | 94 | 108 | 122 |

    Flues and Tubes for Steam-boilers.-(From Rules of U. S. Supervising Inspectors. Steam-pressures per square inch allowable on riveted and lap-welded flues made in sections. Extract from table in Rules of U. S. Supervising Inspectors.)
    $T=$ least thickness of inaterial allowable, $D=$ greatest diameter in inches, $P=$ allowable pressure. For thickness greater than $T$ with same dianeter $P$ is increased in the ratio of the thickness.
    

    For diameters not over 10 inches the greatest length of section allowable is 5 feet; for diameters 10 to 23 inches, 3 feet; for diameters 23 to 40 inches, 30 inches. If lengths of sections are greater than these lengths, the allowable pressure is reduced proportionately.
    The U. S. rule for corrugated flues, as amended in 1894, is as follows: Rule II, Section 14. The strength of all corrugated flues, when used for furnaces or steam chimneys (corrugation not less than $11 / 2$ inclies deep and notexceeding 8 inches from centres of corrugation), and provided that the plain parts at the ends do not exceed 6 inches in length, and the plates are not less than $5 / 16$ inch thick, when new, corrugated, and practically true circles, to be calculated from the following formula:

    $$
    \frac{14,000}{D} \times T=\text { pressure. }
    $$

    $T=$ thickness, in inches; $D=$ mean diameter in inches.
    Ribbed Flues.-The same formula is given for ribbed flues, with rib projections not less than $13 / 8$ inches deep and not more than 9 inches apart.

    Flat Stayed Surfaces in Steam-boilers.-Rulo II., Section 6, of the rules of the U. S. Supervising Inspectors provides as follows:
    No braces or stays hereafter employed in the construction of boilers shall be allowed a greater strain than 6000 lbs . per square inch of section.

    Clark, in his treatise on the Steam-engine, also in his Pocket-book, gives the following formula: $p=40 \% t s \div d$, in which $p$ is the internal pressure in pounds per square inch that will strain the plates to their elastic limit, $t$ is the thickness of the plate in inches, $d$ is the distance between two rows of stay-bolts in the clear, and $s$ is the tensile stress in the plate in tons of 2240 lbs . per square inch, at the elastic limit. Substituting values of $s$ for iron, steel, and copper, 12,14 , and 8 tons respectively, we have the following :

    Formulafe for Ultimate Elastic Strength of Flat Stayed Surfaces.

    |  | Iron. | Steel. | Copper. |
    | :---: | :---: | :---: | :---: |
    | Pressure | $p=5000 \frac{t}{d}$ | $p=5 r 00 \frac{t}{d}$ | $p=3300 \frac{t}{d}$ |
    | Thickness of plate. | $t=\frac{p \times d}{5000}$ | $t=\frac{p \times d}{5 \% 00}$ | $t=\frac{p \times d}{3300}$ |
    | Pitch of bolts | $d=\frac{5000 t}{p}$ | $d=\frac{5 \% 00 t}{p}$ | $d=\frac{3300 t}{p}$ | in which $d^{\prime}=$ diameter of screwed bolt at bottom of thread, $P=$ longitudinal and $P^{\prime}$ transverse pitch of stay-bolts between centres, $p=$ internal pressure in lbs. per sq. in. that will strain the plate to its elastic limit, $s=$ elastic strength of the stay-bolts in lbs. per sq. in. Taking $s=12,14$, and $\bar{\delta}$ tons, respectively for iron, steel, and copper, we have

    $$
    \begin{aligned}
    & \text { For iron, } \quad d^{\prime}=.00069 \sqrt{P P^{\prime} p}, \text { or if } P=P^{\prime}, d^{\prime}=.00069 P \sqrt{p} ; \\
    & \text { For steel, } \quad d^{\prime}=.00064 \sqrt{P P^{\prime} p}, \quad " \quad " \quad d^{\prime}=.00064 P \sqrt{p} ; \\
    & \text { For copper, } d^{\prime}=.00084 \sqrt{P P^{\prime} p}, \quad " \quad " \quad d^{\prime}=.00084 P \sqrt{p}
    \end{aligned}
    $$

    In using these formulæ a large factor of safety should be taken to allow for reduction of size by corrosion. Thurston's Mannal of Steam-boilers, p. 144, recommends that the factor be as large as 15 or 20. The Hartford Steam Boiler Insp. \& Ins. Co. recommends not less than 10.

    Strength of Stays.-A. F. Yarrow (Engr., March 20, 1891) gives the following results of experiments to ascertain the strength of water-space stays:

    Description.

    Hollow stays screwed into plates and hole expanded Solid stays screwed into plates and riveted over.

    | Length between Plates. | Diameter of Stay over Threads. | Ulti- mate <br> Stress. |
    | :---: | :---: | :---: |
    |  | 1in. hole $7 / 16$ |  |
    | 4.64 in . | 1 in . (hole $9 / 16 \mathrm{in}$. and ${ }^{\text {c/ } / 16 \mathrm{in} \text {. }}$ | 20,99 |
    | 4.80 in . | \%/8in. | 22,008 |
    | 4.80 in . | $7 / 8 \mathrm{in}$. | 22,070 |

    ## The above are taken as a fair average of numerous tests.

    ## Stay-bolts in Curved Surfaces, as in Water-legs of Vertical Boilers. - The rules of the U. S. Supervising Inspectors provide as

    follows: All vertical boiler-furnaces constructed of wrought iron or steel plates, and having a diameter of over 42 in . or a height of over 40 in . shall be stayed with bolts as provided by § 6 of Rule II, for flat surfaces; and the thickness of material required for the shells of such furnaces shall be determined by the distance between the centres of the stay-bolts in the furnace and not in the shell of the boiler; and the stean-pressure allowable shall be determined by the distance from centre of stay-bolts in the furnace and the diameter of such stay-bolts at the bottom of the thread.The Hartford Steam-boiler Insp. \& Ins. Co. approves the above rule ( 7 The Locomotive, Marcli, 1892) as far as it states that curved surfaces are to be computed the same as flat ones, but prefers Clark's formulæ for flat stayed surfaces to the rules of the U. S. Supervising Inspectors.

    Fusible-pluos.-Fusible-plugs should be put in that portion of the heating-surface which first becomes exposed from lack of water. The rules of the U. S. Supervising Inspectors specify Banca tin for the purpose. Its melting-point is about $445^{\circ} \mathrm{F}$. The rule says: All steamers shall have inserted in their boilers plugs of Banca tin, at least $1 / 2$ in. in diameter at the smallest end of the internal opening, in the following manner, to wit: Cylinder-boilers with flues shall have one plug inserted in one flue of each boiler; and also one plug inserted in the shell of each boiler from the inside, immediately before the fire line and not less than 4 ft . from the forward end of the boiler. All fire-box boilers shall have one plug inserted in the crown of the back connection, or in the highest fire-surface of the boiler.

    All upright tubular boilers used for marine purposes shail have a fusible plug inserted in one of the tubes at a point at least 2 in . below the lower gauge-cock, and said plug may be placed in the upper head sheet when deemed advisable by the local inspectors.

    Steam-domes. - Steam domes or drums were formerly almost universally used on horizontal boilers, but their use is now generally discontinued, as they are considered a useless appendage to a steam-boiler, and unless properly designed and constructed are an element of weakness.

    Height of Furnace.-Recent practice in the United States makes the height of furnace much greater than it was formerly. With large sizes of anthracite there is no serious objection to having the furnace as low as 12 to 18 in., measured from the surface of the grate to the nearest portion of the leating surface of the boiler, but with coal containing much volatile matter and moisture a much greater distance is desirable. With very volatile coals the distance may be as great as 4 or 5 ft . Rankine (S. E., p. 45\%) says: The clear height of the "crown " or roof of the furnace above the gratebars is seldom less than about 18 in ., and often considerably more. In the fire-boxes of locomotives it is on an average about 4 ft . The height of 18 in . is suitable where the crown of the furnace is a brick arch. Where the crown of the furnace, on the other hand, forms part of the heating-surface of the boiler, a greater height is desirable in every case in which it can be obtained; for the temperature of the boiler-plates, being much lower than that of the flame, tends to check the combustion of the inflammable gases which rise from the fuel. As a general principle a high furnace is favorable to complete combustion.

    ## LMPROVED METHODS OF FEEDING COAL,

    Mechanical Stokers. (William R. Roney, Trans. A. S. M. E., vol. xii.)-Mechanical stokers have been used in England to a limited extent since 1785. In that year one was patented by James Watt. It was a simple device to push the coal, after it was coked at the front end of the grate, back towards the bridge. It was worked intermittently by levers, and was designed primarily to prevent smoke from bituminous coal. (See D. K. Clark's Treatise on the Steam-engine.)

    After the year $184(0$ many styles of mechanical stokers were patented in England, but nearly all were variations and modifications of the two forms of stokers patented by John Jukes in 1841, and by E. Henderson in 1843.

    The Jukes stoker consisted of longitudinal fire-bars, comnected by links, so as to form an end less chain, similar to the familiar treadmill horse-power. The small coal was delivered from a hopper on the front of the boiler, on to the grate, which slowly moving from front to rear, gradually advanced the fuel into the furnace and discharged the ash and clinker at the back.

    The Henderson stoker consists primarily of two horizontal fans revolving on vertical spindles, which scatter the coal over the fire.

    Numerous faults in mechanical construction and in operation have limited the use of these and other mechanical stokers. The first Anerican stoker was the Murphy stoker, brought out in 18i8. It consists of two coal magazines placed in the side walls of the boiler furnace, and extending back from the boiler front 6 or 7 feet. In the bottom of these magazines are rectangular iron boxes, which are moved from side to side by means of a rack and pinion, and serve to push the coal upon the grates, which incline at an angle of about $35^{\circ}$ from the inner edge of the coal magazines, forming a V-shaped receptacle for the burning coal. The grates are composed of narrow parallel bars, so arranged that each alternate bar lifts about an inch at the lower end, while at the bottom of the V, aud filling the space between the ends of the grate-bars, is placed a cast-iron toothed bar, arranged to be turned by a crank. The purpose of this bar is to grind the clinker coming in contact with it. Over this V-shaped recepiacle is sprung a fire-brick arch.

    In the Roney mechanical stoker the fnel to be burned is dumped into a hopper on the boiler front. Set in the lower part of the hopper is a "pusher" to which is attached the "feed-plate" forming the bottom of the hopper. The "pusher," by a vibratory motion, carrying with it the "feed-plate," gradnally forces the fuel over the "dead-plate" and on the grate. The grate-bars, in their normal condition form a series of steps, to the top step of which coal is fed from the "dead-plate." Each bar rests in a concave seat in the bearer, and is capable of a rocking motion through an adjustable angle. All the grate-bars are coupled together by a "rocker-bar." A variable back-and-forth motion being given to the "rocker-bar," through a con-
    necting-rod, the grate-bars rock in unison, now forming a series of steps, and now approximating to an inclined plane, with the grates partly overlapping, like slingles on a roof. When the grate-bars rock forward the fire will tend to work down in a body. Bnt before the coal can niove too far the bars rock back to the stepped position, checking the downward motion, breaking up the cake over the whole surface, and admitting a free volnme of air throngh the fire. The rockiug motion is slow, being from 7 to 10 strokes per ininute, according to the kind of coal. This alternate starting and checking motion is continuous, and finally lands the cinder and ash on the dumping-grate below.
    Mr. Roney gives the following record of six tests to determine the comparative economy of the Roney mechanical stoker and hand-firing on return tubnlar boilers, 60 inches $\times 20$ feet, burning Cumberland coal with natural draught. Rating of boiler at 12.5 square feet, $105 \mathrm{H} . \mathrm{P}$.

    Three tests, hand-flring. Three tests, Stoker.
    Evaporation per pound, dry
    coal from and at $212^{\circ} \mathrm{lbs}$ bs $\} \quad \begin{array}{llll}10.36 & 10.44 & 11.00\end{array}$
    $\begin{array}{llllllll}\text { H.P. developed above rating, \% } & 5.8 & 13.5 & 68 & 54.6 & 66.7 & 84.3\end{array}$
    Results of comparative tests like the above should be used with caution in drawing generalizations. It by no means follows from these results that a stoker will always show such comparative excellence, for in this case the results of hand-firing are nuch below what may be obtained un ler favorable circumstances from hand-firing with good Cumberland coal.

    The Mawley bown-dranglet Furnace.-A foot or more above the ordinary grate there is carried a second grate composed of a series of water tubes, opening at both ends into steel drums or headers, through which water is circulated. The coal is fed on this upper grate, and as it is partially consumed falls through it upon the lower grate, where the combustion is completed in the ordinary manner. The draught through the coal on the upper grate is downward through the coal and the grate. The volatile gases are therefore carried down throngh the bed of coal, where they are thoroughly heated, and are burned in the space beneath, where they nieet the excess of hot air drawn through the fire on the lower grate. In tests in Chicago, from 30 to 45 lls . of coal were burned per square foot of grate upon this system, with good economical results. (See catalogue of the Hawley Down Drautht Furnace Co., Chicago.)

    Under-feed Stosers. - Results similar to those that may be obtained with downward draught are obtained by feeding the coal at the bottom of the hed, pushing upward the coal already on the bed which has had its volatile matser distilled from it. The volatile matter of the freshly fired coal then has to pass through a body of ignited coke, where it meers a supply of hot air. (See circular of The Anerican Stoker Co., New York, 1898.)

    ## SIIOKE PREUENTION.

    A committee of experts was appointed in St. Louis in 1891 to report on the smoke problem. A summary of its report is given in the Iron Age of A pril 7, 1892. It descrihes the different means that have been tried to mrevent smoke, such as gas-fuel, steain-jets, fire-brick arches and checker-work, hollow walls for preheating air, coking arches or chambers, double combustion furnaces, and automatic stokers. All of these means have been more ol less effective in diminishing smoke, their effectiveness depending largely upon the skill with which they are operated; but none is entirely satisfactory. Fuel-gas is objectionable chiefly on account of its expense. The average quality of fuel gas made from a trial run of several car-loads of Illimois coal, in a well-designed fuel-gas plant, slowed a calorific value of 243,391 heat-units per 1000 cnbic feet. This is equivalent to 5052.8 heat-units per 1b. of coal, whereas by direct calorimeter test an average sample of the coal gave 11,1 Tit heat-units. One lb. of the coal showed a theoretical evaporation of 11.56 lbs . water, while the gas from 1 lb . Showed a theoretical evaporation of $5.23 \mathrm{lbs} .48 .1 \% \mathrm{lbs}$. of coal were required to furuish 1000 culhic feet of the gas. In 39 tests the smoke-preventing furnaces showed only $7+\%$ of the capacity of the common furnaces, reduced the work of the boilers $28 \%$, and required about $2 \%$ more fuel to do the same work. In one case with steam-jets the fuel consumption was increased $12 \%$ for the same work.
    Prof. O. H. Landreth in a report to the State Board
    Prof. O. H. Landreth, in a report to the State Board of Health of Tennessee (Engineering News, June 8, 1S93), writes as follows on the subject of
    smoke prevention:

    As pertains to steam-boilers, the object must be attained by one or more of the following agencies :

    1. Proper design and setting of the boiler-plant. This implies proper grate area, sufficient draught, the necessary air-space between grate-bars and through furnace, and ample combustion-roon under boilers.
    2. That system of firing that is best adapted to each particular furnace to secure the perfect combustion of bituminous coal. This nay be either: (a) "coke-firing," or charging all coal into the front of the furnace until partially coked, then pushing back and spreading; or (b) "alternate side-firing "; or (c)" "spreading," by which the coal is'spread over the whole grate area in thin, uniform layers at each charging.
    3. The admission of air through the furnace-door, bridge-wall, or side walls.
    4. Steam-jets and other artificial means for thoroughly mixingithe air and combustible gases.
    5. Preventing the cooling of the furuace and boilers by the inrush of cold air when the furnace-doors are opened for charging coal and handling the fire.
    6. Establishing a gradation of the several steps of combustion so that the coal nay be charged, dried, and warmed at the coolest part of the furnace, \&nd then moved by successive steps to the hottest place, where the final combustion of the coked coal is completed, and compelling the distilled combustible gases to pass through this hottest part of the fire.
    7. Preventing the cooling by radiation of the unburned combustible gases until perfect mixing and combustion bave been accomplished.
    8. Varying the supply of air to suit the periodic variation in demand.
    9. The substitution of a continuous uniform feeding of coal instead of intermittent charging.
    10. Down-draught burning or causing the air to enter above the grate and pass down through the coal, carrying the distilled products down to the high temperature plane at the bottom of the fire.

    The number of smoke-prevention devices which have been invented is legion. A brief classification is :
    (a) Mechanical stokers. They effect a material saving in the labor of firing, and are efficient smoke-preventers when not pushed above their capacity, and when the coal does not cake badly. They are rarely susceptible to the sudden changes in the rate of firing frequently demanded in service.
    (b) Air-flues in side walls, bridge-wall, and grate-bars, through which air when passing is heated. The results are always beneficial, but the flues are difficult to keep clean and in order.
    (c) Coking arches, or spaces in front of the furnace arched over, in which the fresh coal is coked, both to prevent cooling of the distilled gases, and te force them to pass through the hottest part of the furnace just beyond the arch. The results are good for normal conditions, but ineffective when the fires are forced. The arches also are easily burned out and injured by working the fire.
    (d) Dead-plates, or a portion of the grate next the furnace-doors, reserved for warming and coking the coal before it is spread over the grate. These give good results when the furnace is not forced above its normal capacity. This embodies the method of "coke-firing" mentioned before.
    (e) Down-draught furnaces, or furnaces in which the air is supplied to the coal above the grate, and the products of combustion are taken away from beneath the grate, thus causing a downward draught through the coal, carrying the distilled gases down to the highly heated incandescent coal at the bottom of the layer of coal on the grate. This is the most perfect manner of producing combustion, and is absolutely smokeless.
    ( $f$ ) Steam-jets to draw air in or inject air into the furnace above the grate, and also to mix the air and the combustible gases together. A very efficient smoke-preventer, but one liable to be wasteful of fuel by inducing too rapid a draught.
    (g) Baffle-plates placed in the furnace above the fire to aid in mixing the combustible gases with the air.
    ( $h$ ) Double furnaces, of which there are two different styles; the first of which places the second grate below the first grate; the coal is coked on the first grate, during which process the distilled gases are made to pass over the second grate, where they are ignited and burned; the coke from the first grate is dropped onto the second grate: a very efficient and economical smoke-preventer, but rather complicated to construct and maintain. In the second form the products of combustion from the first furnace pass through
    the grate and fire of the second, each furnace being charged with fresh fuel when needed, the latter generally with a smokeless coal or coke: an irra. tional and unpromising method.
    Mr. C. F. White, Consulting Engineer to the Chicago Society for the Prevention of Smoke, writes under date of May 4, 1893:
    The experience had in Chicago has shown plainly that it is perfectly easy to equip steam-boilers with furnaces which shall burn ordinary soft coal in such a manner that the making of smoke dense enough to obstruct the vision shall be confined to one or two intervals of perhaps a couple of minutes' duration in the ordinary day of 10 hours.

    Gas-fired Steam-boilers.-Converting coal into gas in a separate producer, before burning it under the steam-boiler, is an ideal method of smoke-prevention, but its expense has hitherto prevented its general introduction. A series of articles on the subject, iliustrating a great number of devices, by F. J. Rowan, is published in the Colliery Engineer, 1889-90. Se also Clark on the Steam-engine.

    ## FORCLD COMBUSTION IN STEATI-BOILERS.

    For the purpose of increasing the amount of steam that can be generated by a boiler of a given size, forced draught is of great importance. It is universally used in the locomotive, the draught being obtained by a steamjet in the smoke-stack. It is now largely used in ocean steamers, especially in ships of war, and to a small extent in stationary boilers. Economy of fuel is generally not attained by its use, its advantages being confiued to the securing of increased capacity from a boiler of a given bulk, weight, or cost. The subject of forced draught is well treated in a paper by James Howden, entitled, "Forced Combustion in Steam-boilers" (Section G, Engineering Congress at Chicago, in 1893), from which we abstract the following:
    Edwin A. Stevens at Bordentown, N. J., in $18 \neq \tilde{i}$, in the steamer "North America," fitted the boilers with closed ash-pits, into which the air of combustion was forced by a fan. In 1828 Ericsson fitted in a similar manner the steamer "Victory," commanded by Sir John Ross.
    Messis. E. A. and R. L. Stevens continued the use of forced draught for a considerable period, during which they tried three different modes of using the fan for promoting combustion: 1 , blowing direct into a closed ash-pit: 2, exhausting the base of the fumnel by the suction of the fan: 3, forcing air into an air-tight boiler-room or stoke-hold. Each of these three methods was attended with serious difficulties.
    In the use of the closed asli-pit the blast-pressure would frequently force the gases of combustion, in the shape of a serrated flame, from the joint around the furnace doors in so great a quantity as to affect both the efficiency and health of the firemen.
    The chief defect of the second plan was the great size of the fan required to produce the necessary exhaustion. The size of fan required grows in a rapidly increasitg ratio as the combustion increases, both on account of the greater air-supply and the higher exit temperature enlarging the volume of the waste gases.
    The third method, that of forcing cold air by the fan into an air-tight boiler-rooin-the present closed stoke-hold system-though it overcanie the difficulties in working belonging to the two forms first tried, has serious defects of its own, as it cannot be worked, even with modern high-class boiler-construction, much, if at all, above the power of a good chimney draught, in most boilers, without damaging them.
    In 1875 John I. Thornyeroft $\&$ Co., of London, began the construction of torpedo-boats with boilers of the locomotive type, in which a high rate of combustion was attained by means of the air-tight boiler-room, into which air was forced by means of a fan.

    In 1882 H.B.M. ships "Satellite" and "Conqueror" were fitted with this system, the former being a small ship of 1500 I.H.P., and the latter an ironclad of $4500 \mathrm{I} . \mathrm{H} . \mathrm{P}$. On the trials with forced draught, which lasted from two to three hours each, the highest rates of combustion gave 16.9 I.H.P. per square foot of fire-grate in the "Satellite," and 13.41 I.H.P. in the "Conqueror."

    None of the short trials at these rates of combustion were made without injury to the seans and tubes of the boilers, but the system was adopted, and it has been continued in the British Navy to this day (1893).
    In Mr. Howden's opinion 110 advantage arising from increased combustion over natural-draught rates is derived from using forced draught in a closed ash-pit sufficient to compeusate the disadrantages arising from difficulties
    ir. working, there being either excessive smoke from bituminous coal or reduced evaporative economy.

    In 1880 Mr . Howden designed an arrangement intended to overcome the defects of both the closed ash-pit and closed stoke-hold systemis.

    An air-tight reservoir or chamber is placed on the front end of the boiler and surronnding the firnaces. This reservoir, which projects from 8 to 10 inches from the end of the boiler, receives the air under pressure, which is passed by the valves into the ash-pits and over the fires in proportions suited to the kind of fuel used and the rate of combustion required. The air nsed above the fires is admitted to a space between the outer and inner furnace-doors, the inner having perforations and an air-distributing box throngh which the air passes under pressure.

    By means of the balance of air-pressure above and below the fires all tendency for the fire to blow out at the furnace-door is removed.
    By regulating the admission of the air by the valves above and below the fires, the highest rate of combustion possible by the air-pressure used can be effected, and in same manner the rate of combustion can be reduced to far below that of natural draught, while complete and economical combustion at all rates is secured.

    A feature of the system is the combination of the heating of the air of combustion by the waste gases with the controlled and regulated admission of air to the furnaces. This arrangement is effected most conveniently by passing the hot fire-gases after they leave the boiler through stacks of vertical tubes enclosed in the uptake, their lower ends being immediately above the smoke-box doors.

    Installations on Howden's system have hitherto been arranged for a rate of combustion to give at full sea-power an average of from 18 to 22 I.H.P. per square foot of fire-grate with fire-bars from $5^{\prime} 0^{\prime \prime}$ to $5^{\prime} 6^{\prime \prime}$ in length.
    It is believed that with suitable arrangement of proportions even 50 I.H.P. per square foot can be obtained.

    For an account of recent uses of exhaust-fans for increasing draught, see paper by W. R. Roney, Trans. A. S. M. E., vol. xv.

    ## FUEL CCONOMIZERS.

    Green's Fuel Economizer.-Clark gives the following average results of comparative trials of three boilers at Wigan used with and without economizers :

    Without With
    Economizers. Economizers.
    
    21.6
    21.4
    r9.32
    9.60
    10.56

    Showing that in burning equal quantities of coal per hour the rapidity of evaporation is increased $9.3 \%$ and the efficiency of evaporation $10 \%$ by the addition of the economizer.
    The average temperatures of the gases and of the feed-water before and after passing the economizer were as follows:

    |  | With 6 -ft. grate. | With 4-ft. grate. |  |
    | :---: | :---: | :---: | :---: |
    |  | Before. After. | Before. After. |  |
    | Average temperature of |  |  |  |
    | Average temperature of |  |  |  |
    | fases....... | 649 | 340 | 501 |
    | fed-water. | 47 | 157 | 41 |

    Taking averages of the two grates, to raise the temperature of the feedwater $100^{\circ}$ the gases were cooled down $250^{\circ}$.
    Performance of a Green Ecomomizer with a Smoky Coal. -The action of Green's Economizer was tested by M. W. Grosseteste for a period of three weeks. The apparatus consists of four ranges of vertical pipas, $61 / 2$ feet high, $33 / 4$ inches in diameter outside, nine pipes in each range, connected at top and bottom by horizontal pipes. The water enters all the tubes from below, and leaves them from above. The system of pipes is enveloped in a brick casing, into which the gaseous products of combustion are introduced from above, and which they leave from below. The pipes are cleared of soot externally by automatic scrapers. The capacity for water is 24 cubic feet, and the total external heating-surface is 290 square feet. The apparatus is placed in connection with a boiler having 355 square feet of surface.
    This apparatus had been at work for seven weeks continuously without having been cleaned, and had accumulated a $1 / \frac{1}{3}$-inch coating of soot and
    ash, when its performance, in the same condition, was observed for one week. During the second week it was cleaned twice every day; but dining the third week, after having been cleaned on Monday morning, it was worked continuously without further cleaning. A smoke-making coal was used. The consumption was maintained sensibly constant from day to day.
    Green's Economizer.-Results of Experiments on its Efficiency as affected by the State of the Surface. (W. Grosseteste.)

    | Time <br> (February and March). | Temperature of Feedwater. |  |  | Temperature of Gaseous Products. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Entering Feedheater. |  | Difference. |  |  | Difference. |
    | 1st Week | Fahr: <br> $73.5^{\circ}$ | Fahr. | Fahr. | Fahr. | Fahr. | Fahr. |
    | 2d Week............ | \%7.0 | ${ }_{230} 160$ | 153.0 | 849 882 88 | ${ }^{261{ }^{\circ}}$ |  |
    | 3d Weck-Monday | 73.4 | 196.0 | 122.6 | 831 | $\stackrel{2}{24}$ | 547 |
    | Tuesday | 73.4 | 1814 | 108.0 | 871 | 309 | 562 |
    | Thursday | 79.0 80.6 | 178.0 170.6 | 99.0 90.0 |  |  |  |
    | Frılay.. | 80.6 80.6 | 16.6 1690 | 90.0 88.4 | 952 889 | 3.9 338 38 | 623 551 |
    | Saturday....... | 79.0 | 172.4 | 83.4 | 901 | ${ }_{351}^{3.35}$ | 550 |

    Coal consumed per hour.
    1st Week. 2d Week. 3d Week. Water evaporated from $3 \geqslant 0 \ldots \ldots \ldots . . .$.
    Water per pound of coal 1525 1428
    It is apparent that there is a great advantage in cleaning the pipes dailv -the elevation of temperature having been increased by it from $88^{\circ}$ to $153^{\circ}$. In the third week, without cleaning, the elevation of temperature relapsed in three days to the level of the first week; even on the first day it was quickly reduced by as much as half the extent of relapse. By cleaning the pipes daily an increased elevation of temperature of $65^{\circ} \mathrm{F}$., was obtained, whilst a gain of $6 \%$ was effected in the evaporative efficiency.

    ## INCRUSTATHON AND CORROSION.

    Encrustation and Scale.-Incrustation (as distinguished from mere sediments due to dirty water, which are easily blown out, or gathered up, by means of sediment-collectors) is due to the presence of salts in the feed-water (carbonates and sulplates of lime and magnesia for the n, ist part), which are precipitated when the water is heated, and form hard deposits upon the boiler-plates. (See Impurities in Water, p. 551, ante.)

    Where the quantity of these salts is not very large (12 grains per gallon, say) scale preventives may be found effective. The chemical preventivess either form with the salts other salts soluble in hot water; or precipitate them in the form of soft mud, which does not adhere to the plater, and can be washed out from time to time. The selection of the chemicai must depend upon the composition of the water, and it should be introduced regularly with the feed.
    EXamples.-Sulphate-of-lime scale prevented by carbonate of soda: The sulphate of soda produced is soluble in water; and the carbonate of lime falls down in grains, does not adhere to the plates, and may therefore be blown out or gathered into sediment-collectors. The chemical reaction is: Sulphate of lime + Carbonate of soda $=$ Sulphate of soda + Carbonate of lime $\mathrm{CaSO}_{4}$
    $\mathrm{Na}_{2} \mathrm{CO}_{3}$
    $\mathrm{Na}_{2} \mathrm{SO}_{4}$
    $\mathrm{CaCO}_{3}$
    Sodium phosphate will decompose the sulphates of lime and magnesia: Sulphate of lime $+\underset{C_{0}}{\text { Codium phosphate }}=$ Calcimm phos. + Sulphate of soda. $\mathrm{CaSO}_{4} \mathrm{Na}_{2} \mathrm{HPO}_{4} \quad \mathrm{CaHPO}_{4} \xrightarrow[\mathrm{Na}_{2} \mathrm{SO}_{4}]{ }$
    
    $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
    $\mathrm{MgHPO}_{4}$
    $\mathrm{Na}_{3} \mathrm{SO}_{4}$

    Where the quantity of salts is large, scale rreventives are not of much use. Some other sonrce of supply must be sorvht, or the bad water purified before it is allowed to enter the boilers. The damage done to boilers by unsnitable water is enormous.
    Pure water may be obtained by collecting rain, or condensing steam by means of surface condensers. The water thus obtained should be mixed with a little bad water, or treated with a little alkali, as undiluted, pure water corrodes iron; or, after each periodic cleaning, the bad may be used for a day or two to put a skin upon the plates.
    Carbonate of lime and magnesia may be precipitated either by heating the water or by mixing milk of lime (Porter Clark process) with it, the water being then filtered.
    Corrosion may be produced by the use of pure water, or by the presence of acids in the water, caused perhaps in the engine-cylinder by the action of high. pressure steam upon the grease, resulting in the production of fatty acids. Acid water may be neutralized by the addition of lime.
    Amount of Sediment which may collect in a $100-\mathrm{H} . \mathrm{P}^{\prime}$ : steam-boiler, evaporating 3000 lbs . of water per hour, the water containing differend antounts of impurity in solution, provided that no water is blown off:
    Grains of solid impurities per U. S. gallon:
    

    If a $100-\mathrm{H} . \mathrm{P}$. boiler has 1200 sq. ft. heating-surface, one week's running without blowing off, with water containing 100 grains of solid matter per gallon in solution, would make a scale nearly 02 in. thick, if evenly deposited all over the heating-surface, assuming the scale to have a sp. gl: of $2.5=156 \mathrm{lbs}$. per cu. ft. $; .02 \times 1200 \times 156 \times 1 / 12=312 \mathrm{lbs}$.

    Boller-scalo Componinds.-The Bavarian Steam-boiler Inspection Assn. in 1885 repord as follows:

    Generally the unusual substances in water can be retained in soluble form or precipitated as mud by adding caustic soda or lime. This is especially desirable when the boilers have small interior spaces.
    It is necessary to have a chemical analysis of the water in order to fully determine the kind and quantity of the preparation to we used for the above purpose.

    All secret compounds for removing boiler-scale should be avoided. (A list of 27 such compounds manufactured and sold by Gernian firms is then given which have been analyzed by the association.)
    Such secret preparations are either nonsensical or fraudnlent, or contain either oue of the two substances recommended by the association for removing scale, generally soda, which is colored to conceal its presence, and sometimes adilterated with useless or even injurious matter.
    These additions as well as giving the compound some strange, fanciful mame, are meant simply to deceive the boiler owner and conceal from him the fact that he is buying colored soda or similar substances, for which he is paying an exorbitant price.

    The Chicago, Milwaukee \& St. P. R. R. uses for the prevention of scale in locomotive-boilers an alkaline compound consisting of $3 i 50$ gals. of water, 2600 lbs . of $70 \%$ caustic soda, and 1600 lbs . of $58 \%$ soda-ash (Eng. News, Dec. 5, 1891).

    Mr. H. E. Smith, chemist of the Ry. Co., writes May, 1902, that this compound was abandoned several jears ago and commercial soda-ash, known as " $58^{\circ}$ soda," containing about $9 \% \%$ pure carbouate of soda, substituted in the water in the locomotive tender tanks, where it dissolves and passes to the boiler. Its action is to precipitate a portion of the scale forming solids in a flocculent form so that they are kept loose and free from the metal until they can be blown or washed ont.

    The amounts used vary according to the character of the water and are based on the following rules: For calcium and magnesium sulphates and
    chlorides, use soda-ash equal to the chemical equivalent of those compounds present. For calcium and magnesium carbonates, the amount of soda-ash to be used varies firom nothing when sulphates or chlorides are high, up to about one fifth the equivalent of the carbonates, when sulphates and chlorides are low or absent. A few waters contain carbonate of soda originally, and for these less soda-ash or none at all is necessary. It may also be necessary to make some reduction in the dose of soda-ash when large amounts of other alkali salts are present. In any case it is not desirable to use more than 2 lbs . of soda-ash per 1000 gallons of water, or more than 10 lbs . per 100 miles of locomotive run, on account of the foaming produced. The above rule assumes that the boilers are fairly clean and are kept fairly free from sludge by blowing and washing out. On the C., M. \& St. P. Ry. boilers are usually washed once in 500 to 2000 miles run, according to the character of the waters used.
    In the upper Mississippi valley the majority of the waters are below 20 or 25 grains of incrusting solids per gallon, and the greater portion of this is carbonates. For these the above treatment is very successful. From 25 to 50 grains, increasing difficulty is encountered on account of foaming produced by the large amouuts of sludge and alkali, and above 50 grains, sodaash alone fails to keep the boilers clean in practical service.

    Kerosene and other Petroleum oils; Foaming.-Kerosene has recently been highly recommended as a scale preventive. see paper by L. F. Lyne(Trans. A. S. M.E., ix. 247). The Am. Mach., May 22, 1890, says: Kcrosene used in moderate quantities will not make the boiler foann; it is recommended and used for loosening the scale and for preventing the formation of scale. The presence of oil in combination with other impurities increases the tendency of many boilers to foam, as the oil with the inpurities impedes the free escape of steam from the water surface. The use of cominon oil not only terds to cause foaming, but is dangerous otherwise. The grease appears to combine with the impurities of the water, and when the boiler is at rest this compound sinks to the plates and clings to them in a loose, spongy mass, preventing the water from coming in contact with the plates, and thereby producing orerheating, which inay lead to an explosion. Foaming may also be caused by forcing the fire, or by taking the steam from a point over the furnace or where the ebullition is violent; the greasy and dirty state of new boilers is another good cause for foaming. Kerosene should be used at first in small quantities, the effect carefully noted, and the quantity increased if necessary for obtaining the desired results.
    R. C. Carpenter (Trans. A. S. M. E., vol. xi.) says: The boilers of the State Agricultural College at Lansing, Mich., were badly incrusted with a hard scale. It was fully three eighths of an inch thick in many places. The first application of the oil was made while the boilers were being but little used, by inserting a gallon of oil, filling with water, heating to the boiling-point and allowing the water to stand in the boiler two or three weeks before removal. By this method fully one half the scale was removed during the warm season and before the boilers were needed for heavy firing. The oil was then added in small quantities when the boiler was in actual use. For boilers 4 ft . in diam. and 12 ft . long the best resnlts were obtained by the use of 2 qts. for each boiler per week, and for each boiler 5 ft . in diam. 3 qts. per week. The water used in the boilers has the following analysis: $\mathrm{CaCO}_{3}$, 206 parts in a million; $\mathrm{MgCO}_{3}, 78$ parts; $\mathrm{Fe}_{2} \mathrm{CO}_{3}, 2 \cdot 2$ parts; traces of sulphates and chlorides of potash and soda. Total solids, 325 parts in $1,000,000$.

    Tannate of Soda Compound.-T. T. Parker wites to Am. Mach.: Should you filld kerosene not doing any good, try this recipe: 50 lbs . Sal-soda, $35 \mathrm{lbs} . j a p o n i c a ; ~ p u t ~ t h e ~ i n g r e d i e n t s ~ i n ~ a ~ 50-g a l . ~ b a r r e l, ~ f i l l ~ h a l f ~ f u l l ~ o f ~ w a t e r, ~$ and run a steam hose into it until it dissolves and boils. Remove the hose, fill up with water, and allow to settle. Use one quart per day of ten hours for a 40 -H.P. boiler, and, if possible, introduce it as you do cylinder-oil to your engine. Barr recommends tannate of soda as a remedy for scale composed of sulphate and carbonate of lime. As the japonica yields the tannic acid, I think the resultant equivalent to the tannate of soda.

    Petroleum Oiis heavier than kerosene have been used with good results. Crude oil should never be used. The more volatile oils it containg make explosive gases, and its tarry constituents are apt to form a spongy incrustation.
    Removal of Hard Scale. - When boilers are coated with a hard scale difficult to remove the addition of $1 / 4 \mathrm{lb}$. caustic soda per horse-power, and steaming for some hours, according to the thickness of the scale, just before cleaning, will greatly facilitate that operation, rendering the scale
    soft and loose. This should be done, if possible, when the boilers are not otherwise in use. (Steam.)

    Corrosion in Marine Boilers. (Proc. Inst. M. E., Aug. 1884).-The investigations of the Committee on Boilers served to show that the internal corrosion of boilers is greatly due to the combined action of air and seawater when under steam, and when not under steam to the combined action of air and moisture upon the unprotected surfaces of the metal. There are other deleterious influences at work, such as the corrosive action of fatty acids, the galvanic action of copper and brass, and the inequalities of temperature; these latter, however, are considered to be of minor importance.

    Of the several methods recommended for protecting the internal surfaces of boilers, the three found most effectual are: First, the formation of a thin layer of hard scale, deposited by working the boiler with sea-water; second, the coating of the surfaces with a thin wash of Portland cement. particularly wherever there are signs of decay; third, the use of zinc slabs suspended in the water and steam spaces.

    As to general treatment for the preservation of boilers in store or when laid up in the reserve, either of the two following methods is adopted, as may be found most suitable in particular cases. First, the boilers are dried as much as possible by airing-stoves, after which 2 to 3 cwt. of quicklime, according to the size of the boiler, is placed on suitable trays at the bottom of the boiler and on the tubes. The boiler is then closed and made as air-tight as possible. Periodical inspection is made every six months, when if the lime be found slacked it is renewed. Second, the other method is to fill the boilers up with sea or fresh water, having added soda to it in the proportion of 1 lb . of soda to every 100 or 120 lbs . of water. The sufficiency of the saturation can be tested hy introducing a piece of clean new iron and leaving it in the boiler for ten or twelve hours; if it shows signs of rusting, more soda should be added. It is essential that the boilers be entirely filled, to the complete exclusion of air.
    Great care is taken to prevent sudden changes of temperature in boilers. Directions are given that steam shall not be raised rapidly, and that care shall be taken to prevent a rush of cold air through the tubes by too suddenly opening the sinoke-box doors. The practice of emptying boilers by blowing out is also prohibited, except in cases of extreme urgency. As a rule the water is allowed to remain until it becones cool before the boilers are emptied.
    Mineral oil has for many years been exclusively used for internal lubrication of engines, with the view of a voiding the effects of fatty acid, as this oil does not readily decompose and possesses no acid properties.

    Of all the preservative methods adopted in the British service, the use of zinc properly distributed and fixed has been found the most effectual in saving the iron and steel surfaces from corrosion, and also in neutralizing by its own deterioration the hurtful influences met with in water as ordinarily supplied to boilers. The zinc slabs now used in the navy boilers are 12 in. long, 6 in . wide, and $1 / 2$ inch thick; this size being found convenient for general application. The amount of zinc used in new boilers at present is one slab of the above size for every 20 I.H.P., or about one square foot of zinc surface to two square feet of grate surface. Rolled zinc is found the most suitable for the purpose. To make the zinc properly efficient as a protector especial care must be taken to insure perfect metallic contact between the slabs and the stays or plates to which they are attached. The slabs should be placell in such positions that all the surfaces in the boiler shall be protected. Each slab should be periodically examined to see that its connection remains perfect, and to renew any that may have decayed; this examination is usually made at intervals not exceeding three months. Under ordinary circumstances of working these zinc slabs may be expected to last in fit condition from sixty to ninety dars, immersed in hot sea-water: but in new boilers they at first decay more rapidly. The slabs are generally secured by means of iron straps 2 in. wide and $3 / 8$ inch thick, and long enough to reach the nearest stay, to which the strap is firmly attached by screw-bolts.

    To promote the proper care of boilers when not in use the following order has been issued to the French Navy by the Government: On board all ships in the reserve, as well as those which are laid up, the boilers will be completely filled with fresh water. In the case of large boilers with large tubes there will be added to the water a certain amounts of milk of lime, or a solution of soda may be used instead. In the case of tubulous boilers with small tubes milk of lime or soda may be added, but the solution will not be
    so strong as in the case of the larger tube, so as to avoid any danger of contracting the effective area by deposit from the solution; but the st rength of the solution will be just sufficient to neutralize any acidity of the water. (Iron Age, Nov. 2, 1893.)

    Use of Zinc.-Zinc is often used in boilers to prevent the corrosive action of water on the metal. The action appears to be antelectrical one, the iron being one pole of the battery and the zinc being the other. The hydrogen goes to the iron shell and escapes as a gas into the steam. The oxygen goes to the zinc.

    On account of this action it is generally believed that zinc will always prevent corrosion, and that it cannot be harmful to the boiler or tank. Some experiences go to disprove this belief, and in numerous cases zinc has not only been of no use, but has even been harmful. In one case a tubular boiler had been troubled with a deposit of scale consisting chiefly of organic matter and lime, and zinc was tried as a preventive. The beneficial action of the zinc was so obvious that its continued use was advised, with frequent opening of the boiler and cleaning out of detached scale until all the old scale should be removed and the boiler become clean. Eight or ten months later the water-supply was changed, it being now obtained from another stream supposed to be free from lime and to contain only organic matter. Two or three monthis after its introduction the tubes and shell were found to be coated with an obstinate adhesive scale, and composed of zinc oxide and the organic matter or sediment of the water used. The deposit had become so heavy in places as to cause overleating and bulging of the plates over the fire. (The Locomotive.)

    Effect of Deposit on Flues. (Rankine.)-An external crust of a carbonaceous kind is often deposited from the flame and smoke of the furnaces in the tlues and tubes, and if allowed to accumulate seriously impairs the economy of fuel. It is removed from time to time by means of scrapers and wire brushes. The accumulation of this crust is the probable cause of the fact that in some steamships the consumption of coal per indicated horse-power per hour goes on gradually increasing until it reaches one and a half times its original amount, and sometimes more.

    Dangerous Steambobilers discovered by Inspection.The Hartford Steam-boiler Inspection and Insurance Co. reports that its inspectors during 1893 examined 163,328 boilers, inspected 66,698 boilers, both internally and externally, subjected $\tau 861$ to hydrostatic pressure, and found 597 unsafe for further use. The whole number of defects reported was 123,893 , of which 12,390 were considered dangerous. A summary is given below. (The Locomotive, Feb. 1894.)

    Summary, by Defects, for the Year 1893.

    | efects. | Whole | Nature of Defects. Whole |  |
    | :---: | :---: | :---: | :---: |
    | , | 548 |  | 2, |
    | crustation and | 8,369 865 | Leakage at seams.. . . . 5,424 | 482 |
    | Internal grooving | 1,249 148 | Water-gauges defective. 3,670 | 660 |
    | Internal corrosio | 6,252 397 | Blow onts defective...... 1,620 | 425 |
    | xternal corrosio | 8,600 536 | Deficiency of water .... 20 | 107 |
    | ef'tive braces a | S 1,966 485 | Safety-valves overloa | 203 |
    | Settings defective | 3,094 352 | Safety-valves defective.. 942 | 00 |
    | Furnaces out of sha | 4,575 254 | Pressure-gauges def'tive 5,953 |  |
    | Fractured plates | 3,532 640 | Boilers without pressure- |  |
    | Burned plates | 2,762 325 | gauges.... .. . ..... 115 | 115 |
    | Blistered plates | 3,331 164 | Unlassified defects... 115 |  |
    | Defective rivets | 17,415 1,569 |  |  |
    | efective heads. | 1,35\% 350 | 「otal |  |

    The above-named company publishes amually a classified list of boilerexplosions, compiled chiefly from newspaper reports, showing that from 200 to 300 explosions take place in the United States every year, killing from 200 to 300 persons, and injuring from 300 to 450 . The lists are not pretended to be complete, and may iuclude only a fraction of the actual number of explosions.

    Steam-boilers as Magazines of Explosive Energy.-Prof. R. H. Thurston (Trans. A. S. M. E., vol. vi.), in a paper with the above title, presents calculations showing the stored energy in the hot water and steam of various boilers. Concerning the plain tubular boiler of the form and dimensions adopted as a standard by the Hartford Steam-boiler

    Insurance Co., he says: It is 60 inches in diameter, containing 66 3-inch tubes, and is 15 feet long. It has 850 feet of heating and 30 feet of grate surface; is rated at 60 horse-power, but is oftener driven up to 75 ; weighs 9500 pounds, and contains nearly its own weight of water, but only 21 pounds of steam when under a pressure of 75 pounds per square inch, which is below its safe allowance. It stores $52,000,000$ foot-pounds of energy, of which but 4 per cent is in the steam, and this is enough to drive the boiler just about one mile into the air, with an initial velocity of nearly 600 feet per second.

    ## SAFETY-VALVES.

    ## Calculation of Weight, etc., for Lever Safety-valves.

    Let $W=$ weight of ball at end of lever, in pounds;
    $w=$ weight of lever itself, in pounds;
    $V=$ weight of valve and spindle, in pounds;
    $L=$ distance between fulcrum and centre of ball, in inches;
    $l=\quad$ " $\quad$ " $\quad$ " " " $\quad$ " $\quad$ " $\quad$ " valve, in inches;
    $A=$ area of valve, in square inches;
    $P=$ pressure of steam, in lbs. per sq. in., at which valve will open.

    $$
    \text { Then } \begin{aligned}
    P A \times l & =W \times L+w \times g+V \times l ; \\
    \text { whence } P & =\frac{W L+w g+V l}{A l} ; \\
    W & =\frac{P A l-w g-V l}{L} ; \\
    L & =\frac{P A l-w g-V l}{W}
    \end{aligned}
    $$

    Example.-Diameter of valve, $4^{\prime \prime}$; distance from fulcrum to centre of ball, $36^{\prime \prime}$; to centre of valve, $4^{\prime \prime}$; to centre of gravity of lever, $151 / 2^{\prime \prime}$; weight of valve and spindle, 3 lbs .; weight of lever, $7 \mathrm{lbs} . ;$ required the weight of ball to make the blowing-off pressure 80 lbs . per sq. in.; area of $4^{\prime \prime}$ valve $=12.566$ sq. in. Then

    $$
    W=\frac{P A l-w g-V l}{L}=\frac{80 \times 12.566 \times 4-7 \times 151 / 2-3 \times 4}{36}=108.4 \mathrm{lbs} .
    $$

    The following rules governing the proportions of lever-valves are given by the U.S. Supervisors. The distance from the fulcrum to the valve-stem must in no case be less than the diameter of the valve-opening; the length of the lever must not be more than ten times the distance from the fulcrum to the valve-stem; the width of the bearings of the fulcrum must not be less than three quarters of an inch; the length of the fulcrum-link nust not be less than four inches; the lever and fulcrum-link must be made of wrought iron or steel, and the knife-edged fulcrum points and the bearings for these points must be made of steel and hardened; the valve must be guided by its spindle, botl above and below the ground seat and above the lever, through supports either made of composition (gun-metal) or bushed with it; and the spindle must fit loosely in the bearings or supports.

    ## Rules for Area of Safety-valves.

    (Rule of U. S. Supervising Inspectors of Steam-vessels (as amended 1891).)
    Lever safety-valves to be attached to marine boilers shall have an area of not less than 1 sq . in. to 2 sq . ft. of the grate surface in the boiler, and the seats of all such safety-valves shall have an angle of inclination of $45^{\circ}$ to the centre line of their axes.

    Spring-loaded safety-valves shall be required to have an area of not less than 1 sq . in. to 3 sq . ft. of grate surface of the boiler, except as hereinafter otherwise provided for water-tube or coil and sectional boilers, and each spring-loaded valve shall be supplied with a lever that will raise the valve from its seat a distance of not less than that equal to one eighth the diameter of the valve-opening, and the seats of all such safety-valves shall have an angle of inclination to the centre line of their axes of $45^{\circ}$. All springloaded safety-valves for water-tube or coil and sectional boilers required to
    carry a steam-pressure exceeding $1 \% \mathrm{lbs}$. per square inch shall be required to have an area of not less than 1 sq . in. to 6 sq . ft . of the grate surface of the boiler. Nothing herein shall be construed so as to prohibit the use of two safely -valves on one water-tube or coil and sectional boiler, provided the combined area of such valves is equal to that required by rule for one surh valve.

    Rule in Philadelphia Ordinances: Bureau of Steamengine and iboiler Inspection.-Every boiler when fired sepalately, and every set or series of boiler's when placed over one fire, shall have attached thereto, without the interposition of any other valve, two or more safety-valves, the aggregate area of which shall have snch relations to the area of the grate and the pressure within the boiler as is expressed in schedule A.

    Schedule A.-Least aggregate area of safety-valve (being the least sectional area for the discharge of steanl) to be placed upon all stationary boilers with natural or chimney draught [see note a].

    $$
    A=\frac{22.5 G}{P+8.62},
    $$

    in which $A$ is area of combined safety-valves in inches; $G$ is area of grate in square feet; $P$ is pressure of steam in pounds per square inch to be carried in the boiler above the atmosphere.
    The following table gives the results of the formula for one square foot of grate, as applied to boilers used at different pressures:
    Pressures per square inch:

    | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Area corresponding to one square foot of grate: |  |  |  |  |  |  |  |  |  |  |  |
    | 1.21 | 0.79 | 0.58 | 0.46 | 0.38 | 0.33 | 0.29 | 0.25 | 0.23 | 0.21 | 0.19 | 0.17 |

    [Note a.] Where boilers have a forced or artificial draught, the inspector must estimate the area of grate at the rate of one square foot of grate-surface for each 16 lbs . of fnel hurned on the average per hour.
    Comparison of Various Rules for Area of Lever Safetyvalves. (From an article by the author in American Machinist, May i4, 1894, with some alterations and additions.)-Assume the case of a boiler rated at 100 horse-power; 40 sq . ft. grate; 1200 sq . ft. heating-surface; using 400 lbs , of coal per hour, or 10 lbs . per sq. ft. of grate per hour, and evaporating 3600 lbs . of water, or 3 lbs . per sq. ft. of heating-surface per hour; steam-pressure by gange, 100 lbs . What size of safety-valve, of the lever type, should be required?

    A compilation of various rules for finding the area of the safety-valve disk, from The Locomotive of Jnly, 1892, is given in abridged form below, together with the area calculated by each rule for the above example.
    U. S. Supervisors, heating-surface in sq. ft $\div 25^{*} \quad$ Disk Area in sq. in.

    Euglish Board of Trade, grate-surface in sq. ft. $-2 \ldots . .$.
    Molesworth, four fifths of grate-surface in sq. ft ...................................... 20
    Thurston, 4 times coal burned per hour $\times$ (gange pressure +10 )........ 32.5
    
    Rankine, $.006 \times$ water evaporated per hour
    21.6

    Committee of U. S. Supervisors, $.00 \bar{x} \times$ water evaporated per hour...... is
    Suppose that, other data remaining the same, the draught were increased so as to burn $131 / 3 \mathrm{lbs}$. coal per square foot of glate per hour, and the gratesurface cut down to 30 sq . ft . to correspond, making the coal burned per hour $40 \theta \mathrm{lbs}$. and the water evaporated 3600 lbs ., the same as before; then the English Board of Trade pule and Molesworth's rule would give an area of disk of only 15 and 24 sq. in., respectively, showing the absurdity of making the area of grate the basis of the calculation of disk area.

    Another rule by Prof. Thurston is given in American Machinist, Dec. 18\%r, viz.:

    $$
    \text { Disk area }=\frac{1 / 2 \text { max. wt. of water evap. per hour }}{\text { gauge pressure }+10} .
    $$

    This gives for the example considered 16.4 sq . in.

    * The edition of 1893 of the Rules of the Supervisors does not contain this
    rule, but gives the rule grate surface $\div 2$.

    One rule by Rankine is $1 / 150$ to $1 / 180$ of the number of pounds of water evaporated per hour, equals for the above case $2 \boldsymbol{2}$ to 20 sq . in. A communition in Power, July, 1890, gives two other rules:

    1st. 1 sq. in. disk area for 3 sq. ft. grate, which would give 13.3 sq . in.
    $2 \mathrm{~d} .3 / 4 \mathrm{sq}$. in. disk area for 1 sq . ft. grate, which would give 30 sq . in.; but if the grate-surface were reduced to 30 sq . ft . on account of iucreased draught, these rules would make the disk area only 10 and 22.5 sq . in., respectively.

    The Philadelphia rule for 100 lbs . gauge pressure gives a disk area of 0.21 sq. in. for each sq. ft. of grate area, which would give an area of 8.4 sq . in. for 40 sq . ft. grate, and only 6.3 sq . in. if the grate is reduced to 30 sq . ft.

    According to the rule this aggregate area would have to be divided between two valves. But if the boiler was driven by forced draught, then the inspector "must estimate the area of grate at 1 sq . ft . for each 16 lbs . of fuel burned per hour."

    Uuder this condition the actual grate-surface might be cut down to $400 \div$ $16=25 \mathrm{sq}$. ft., and by the mote the combined area of the two safety-valves would be only $25 \times 0.21=5.25 \mathrm{sq}$. in.

    Nystrom's Pocket-book, edition of 1891, gives $3 / 4$ sq. in. for 1 sq. ft. grate: also quoting from Weisbach, vol. ii, $1 / 3000$ of the heating-surface. This in the case considered is $1200 / 3000=.4$ sq. ft. or 57.6 sq . in.

    We thus have rules which give for the area of safety-valve of the same 100 . horse-power boiler results ranging all the way from 5.25 to 57.6 sq . in.

    All of the rules above quoted give the area of the disk of the valve as the thing to be ascertained, and it is this area which is supposed to bear some direct ratio to the grate-surface, to the heating-surface, to the water evaporated, etc. It is difficult to see why this area has been considered even approximately proportional to these quantities, for with small lifts the area of actual opening bears a direct ratio, not to the area of disk, but to the circuinference.

    Thus for various diameters of valve:
    

    The apertures, therefore, are therefore directly proportional to the diameter or to the circumference, but their relation to the area is a varying one.

    If the lift $=1 / 4$ dianeter, then the opening would be equal to the area of the disk, for circumference $\times 1 / 4$ diameter $=$ area, but such a lift is far beyond the actual lift of an ordinary safety-valve.

    A correct rule for size of safetv-valves should make the product of the diameter and the lift proportional to the weight of stean to be discharged.

    A "logical" method for calculating the size of safety-valve is given in The Locomotive, July, 1892, hased on the assumption that the actual opening should be sufficient to discharge all the steam generated by the boiler. Napier's rule for flow of steam is takev, viz., flow through aperture of one sq in. in lbs. per second $=$ absolute pressure $\div \tilde{0}$, or in lbs. per hour $=51.43$ $\chi$ absolute pressure.

    If the angle of the seat is $45^{\circ}$, as specified in the rules of the U . S . Supervisors, the area of opening in sq. in. = circumference of the disk $\times$ the lift $\chi .71,71$ being the cosine of $45^{\circ}$; or diameter of disk $\times$ lift $\times 2.23$.
    A. G. Brown in his book on The Indicator and its Practical Working (London, 1894) gives the following as the lift of the ordinary lever safety. valve for 100 lbs . gauge-pressure:
     Rise of valve.... . 0583 . 0523 . 0507 . 0492 . 0478 . 0462 . 0446 . 0430 inch .
    The lift decreases with increase of steam-pressure; thus for a 4-inch valve: Abs. pressure, lbs. $\begin{array}{lllllllllll}45 & 65 & 85 & 105 & 115 & 135 & 155 & 175 & 195 & 215\end{array}$ $\begin{array}{lllllllllll}\text { Gauge-press., lbs.. } & 30 & 50 & 70 & 90 & 100 & 120 & 140 & 160 & 180 & 200\end{array}$ Rise, inch.......... . 1034 . $0 \% 75$. $06: 30$. $051 \%$. $04 \% 8$. 0413 . 0365 . $032 \%$. 0296 . $02 \% 10$

    The effective area of opening Mr. Brown takes at $\% 0 \%$ of the rise multiplied by the circumference.

    An approximate formula corresponding to Mr. Brown's figures for diameters between $21 / 2$ and 6 in . and gauge-pressures between $\% 0$ and 200 lbs . is

    Lift $=(.0603-0031 d) \times \frac{115}{\text { abs. pressure }}$, ill which $d=$ diam. off valve in in.

    If we combine this formula with the formule
    Flow in lbs. per hour $=$ area of opening in sq. in. $\times 51.43 \times$ abs. pressure, and Area $=$ diameter of valve $\times$ lift $\times 2.2: 3$, we obtain the following, which the author suggests as probably a more correct formula for the discharging capacity of the ordinary lever safety-valve than either of those above given. F'low in lbs. per hour $=d(.0603-.0031 d) \times 115 \times 2.23 \times 51.43=d(795-41 d)$. From which we obtain:

    | Diameter, inches.... | 1 | $11 / 3$ | 2 | $21 / 6$ | 3 | $31 / 2$ | 4 | 5 | 6 | 7 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Flow, lbs. per liour.. | 754 | 1100 | 1426 | 1733 | 2016 | 2288 | 2524 | 2950 | 3294 | 3556 |
    | Horse-power........ | 25 | 37 | 47 | 58 | 67 | 76 | 84 | 98 | 110 | 119 | the horse-power being taken as an evaporation of 30 lbs . of water per hour.

    If we solve the example, above given, of the boiler evaporating 3600 lbs . ot water per hour by this table, we find it requires one $\boldsymbol{T}$-inch valve, or a $21 / 2$. and a 3 -inch valve combined. The 7 -inch valve has an area of 38.5 sq . in., and the two smaller valves taken together have an area of only 12 sq. in.; another evidence of the absurdity of considering the area of disk as the factor which determined the capacity of the valve.
    It is customary in practice not to use safety-valves of greater diameter than 4 in. If a greater diameter is called for by the rule that is adopted, then two or more valves are used instead of one.
    Spring-loaded Safety-valves.-Instead of weights, springs are sometimes empluly do hold down safety-valves. The calculations are similar to those for lever safety-valves, the tension of the spring correspond. ing to a given rise being first found by experiment (see Springs, page 347).
    The rules of the U. S. Supervisors allow an area of 1 sq . in. of the valve to 3 sq . ft . of grate, in the case of spring.loaded valves, except in water-tube, coil, or sectional boilers, in which 1 sq . in. to 6 sq . ft . of grate is allowed.
    Spring-loaded safety-valves are usually of the reactionary or "pop" type, in which the escape of the steam is opposed by a lip above the valve-seat, against which the escaping steam reacts, causing the valve to lift higher than the ordinary valve.
    A. G. Brown gives the following for the rise, effective area, and quantity of steam discharged per hour by valves of the "pop" or Richardson type. The effective is taken at only $50 \%$ of the actual area due to the rise, on account of the obstruction which the lip of the valve offers to the escape of steam.

    | Dia.valve, in. | 1 | $11 / 2$ | 2 | $21 / 2$ | 3 | $31 / 2$ | 4 | $41 / 2$ | 5 | 6 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lift, inches. | .125 | .150 | .175 | .200 | .225 | .25 | .275 | .300 | .325 | .375 |
    | Area, sq. in. | .196 | .354 | .550 | .785 | 1.061 | 1.375 | 1.728 | 2.121 | 2.553 | 3.535 |
    | Gauge-pres., |  |  |  |  |  |  |  |  |  |  |

    Gauge-pres.,
    Steam discharged per hour, lbs.

    | 30 lb | 474 | 856 | 1330 | 189\% | 25 | 3325 | 4178 | 5128 | 73 | 8 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 50 | 669 | 1209 | 1878 | 2680 | 3620 | 4695 | 5901 | 7242 | ,18 | $120{ }^{80}$ |
    | 70 | 861 | 1556 | 2417 | 3450 | 4660 | 6144 | 7596 | 9324 | 11220 | 15535 |
    | 90 | 1050 | 189\% | 2947 | 420\% | 5680 | -370 | 9260 | 11365 | 13685 | 18945 |
    | 100 | 1144 | 2065 | 3208 | 4580 | 618.5 | 8322 | 10080 | 12375 | 14895 | 20625 |
    | 120 | 18.32 | 2405 | 3736 | 5332 | 7202 | 9342 | 11735 | 14410 | 17340 | 24015 |
    | 140 | 1516 | 2738 | 4254 | $60 \sim 0$ | 8:00 | 10635 | 13365 | 16405 | 19745 | 27310 |
    | 160 | 1696 | 3064 | 4760 | 6794 | $91 \%$ | 11900 | 14955 | 18355 | 22095 | 30595 |
    | 180 200 | 1883 2062 | 3400 3724 | 5283 | 7540 | 10180 | 13250 | 16595 | 20370 | 24520 | 33950 |
    | 200 | 206 | 3724 | 5786 | 82 | 11150 | 14465 | 18175 | 22310 | 268 | 37185 |

    If we take 30 lbs . of steam per hour, at 100 Ibs . gavge-pressure $=1 \mathrm{H} . \mathrm{P}$., we have from the above table:
    $\begin{array}{llllllllll}\text { Diameter, inches... } & 1 & 11 / 2 & 2 & 21 / 2 & 3 & 31 / 2 & 4 & 41 / 2 & 5 \\ H & 6\end{array}$ $\begin{array}{lllllllllll}\text { Horse-power....... } & 38 & 69 & 107 & 153 & 206 & 27 \% & 4 & 41 \\ 2766 & 512 & 5 & 6 \\ 496 & 687\end{array}$
    A safety-valve should be capable of discharging a much greater quantity of steam than that corresponding to the rated horse-power of a boiler, since a boiler having ample grate surface and strong draught may generate more than double the quantity of steam its rating calls for.
    The Consolidated Safety-valve Co.s circular gives the following rated capacity of its nickel-seat "pop" safety-valves:

    | Size, in | 1 | 114 | 11/2 | $\stackrel{1}{2}$ | 21/2 | 3 | $31 / 2$ | 4 |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Boiler f from | 8 | 10 | 20 | 35 | 60 | 75 | 100 | 125 | 0 | 175 |  |
    | H.P. $\}$ to | 10 | 15 | 30 | 50 | \% 5 | 100 | 125 | 150 | 175 | 200 | 275 |

    The figures in the lower line from 2 inch to 5 inch, inclusive, correspond to the formula H.P. $=50$ (diameter -1 inch $)$.

    ## THE INJECTOR. Equation of the Injector。

    Let $S$ be the number of pounds of steam used;
    $W$ the number of pounds of water lifted and forced into the boiler;
    $\pi$ the height in feet of a colmmn of water, equivalent to the absolute pressure in the boiler;
    $h_{0}$ the height in feet the water is lifted to the injector;
    $t_{1}$ the temperature of the water before it enters the injector;
    $t_{2}$ the temperature of the water after leaving the injector;
    $H$ the total heat above $32^{\circ} \mathrm{F}$. in one pound of steam in the boiler, in heat-units;
    $L$ the lost work in friction and the equivalent lost work due to radiation and lost heat;
    $7 \% 8$ the mechanical equivalent of heat.
    Then

    $$
    S\left[H-\left(t_{2}-32^{\circ}\right)\right]=W\left(t_{\iota_{2}}-t_{1}\right)+\frac{(W+S) h+W h_{0}+L}{\pi \tau 8}
    $$

    An equivalent formula, neglecting $W h_{0}+L$ as small, is

    $$
    \begin{aligned}
    S & =\left[W\left(t_{2}-t_{1}\right)+\frac{W+S}{d} \cdot p \cdot \frac{144}{778}\right] \frac{1}{H-\left(t_{2}-32^{\circ}\right)}, \\
    \text { or } S & =\frac{W\left[\left(t_{2}-t_{1}\right) d+.1851 p\right]}{\left[H-\left(t_{2}-3::^{\circ}\right)\right] d-.1851 p},
    \end{aligned}
    $$

    in which $d=$ weight of 1 cu . ft . of water at temperature $t_{2} ; p=$ absolute pressure of steam, lbs. per sq. in:

    The rule for finding the proper sectional area for the narrowest part of the nozzles is given as follows by Rankine, S. E. p. 47\%:

    $$
    \text { Area in square inches }=\frac{\text { cubic feet per hour gross feed-water }}{800 \sqrt{\text { pressure in atmospheres }}} .
    $$

    An important condition which must be fulfilled in order that the injector will work is that the supply of water must be sufficient to condense the steain. As the temperature of the supply or feed-water is higher, the amount of water required for condensing purposes will be greater.

    The table below gives the calculated value of the maximum ratio of water to the steam, and the values obtained on actual trial, also the highest adnuissible temperature of the feed-water as shown by theory and the highest actually found by trial with several injectors.

    | Gauge-pressure, pounds per sq. in. | Maximum Ratio Water to Steam. |  |  |  | Gauge pressure, pounds per sq.in. | Maximum Temperature of Feed-Water. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | CalculatedfromTheory. | Actual Experiment. |  |  |  | Theoretical. |  | Experi'tal Results. |  |  |  |
    |  |  |  |  |  |  |  | H. | P. | M. | S. |
    |  |  | H. | P. | M. |  |  |  |  |  |  |
    | 10 | 36.5 | 30.9 |  |  | 10 |  |  |  |  |  | $132^{\circ}$ |
    | 20 | 25.6 | 22.5 | 19.9 | 21.5 | 20 | $142^{\circ}$ | 1730 | $1350^{\circ}$ | $120{ }^{\circ}$ | $130^{\circ}$ | 134 |
    | 30 | 20.9 | 19.0 | 17.2 | 19.0 | 30 | 132 | 162 |  |  |  | 134 |
    | 40 | 17.87 | 15.8 | 15.0 | 15.86 | 40 | 126 | 156 | 140 | 113 | 125 | 132 |
    | 50 | 16.2 | 13.3 | 14.0 | 13.3 | 50 | 120 | 150 |  |  |  | 131 |
    | 60 | 14.7 | 11.2 | 11.2 | 12.6 | 60 | 114 | 143 |  | 115 | 123 | 130 |
    | \%0 | 13.7 | 12.3 | $11 . \%$ | 12.9 | r0 | 109 | 139 | 141* |  | 123 | 130 |
    | 80 | 12.9 | 11.4 | 11.2 |  | 80 | 105 | 134 | 141* | 118 | 122 | 131 |
    | 90 | 12.1 |  |  |  | 90 | 99 | 129 |  |  |  | 13\%* |
    | 100 | 11.5 |  |  |  | 100 | 9.5 | 125 |  | .... |  | 132* |
    |  |  |  |  |  | 120 | 87 | 117 |  |  | $\ldots$ | 134* |
    |  |  |  |  |  | 150 | 77 | 107 |  |  |  | 121* |

    H, Hancock inspirator; P, Park injector; M, Metronolitan injector; S, Sellers 1876 injector.

    Efficiency of the Injector.-Experiments at Cornell University, described by Prof. R. C. Carpenter, in Cassier's Magazine, Feb. 1892, show that the injector, wherr considered merely as a pump, has an exceedingly low efficiency, the duty ranging from 161,000 to $2,552,000$ under different circumstances of steam and delivery pressure. Small direct-actiug pumps, such as are used for feeding boilers, show a duty of from 4 to 8 million lbs, and the best pumping-engines from 100 to 140 million. When used for feeding water into a boiler, however, the injector has a thermal efficiency of $100 \%$, less the trifing loss due to radiation, since all the heat rejected passes into the water which is carried into the boiler.

    The loss of work in the injector due to friction reappears as heat which is carried into the boiler, and the heat which is converted into useful work in the injector appears in the boiler as stored-up energy.
    Although the injector thus has a perfect efficiency as a boiler-feeder, it is nevertheless not the most economical means for feeding a boiler, since it can draw only cold or moderately warm water, while a pump can feed water which has been heated by exhaust steam which would otherwise be wasted.

    Performance of Linjectors. - In Am. Mach., April 13, 1893, are a nimber of letters from different manufacturers of injectors in reply to the question: "What is the best performance of the injector in raising or lifting water to any height ?" Some of the replies are tabulated below.
    W. Sellers \& Co.-25.51 lbs. water delivered to boiler per lb. of steam; temperature of water, $64^{\circ}$; steam pressure, 65 lbs .
    Schaeffer \& Budenberg-1 gal. water delivered to boile* for 0.4 to 0.8 lb . steam.
    Injector will lift by suction water of
    $140^{\circ} \mathrm{F}$. $136^{\circ}$ to $133^{\circ} 122^{\circ}$ to $118^{\circ} \quad 113^{\circ}$ to $10^{\circ} \circ$ If boiler pressure is. 30 to 60 lbs . 60 to 90 lbs .90 to 120 lbs . 120 to 150 lbs .
    If the water is not over $80^{\circ} \mathrm{F}$., the injector will force against a pressure $\%$ lbs. higher than that of the steam.

    | Hancock Inspirator Co.: |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Lift in feet | 22 | 22 | 22 |  |
    | Boiler pressure, absolute, lbs. | 75.8 | 54.1 | 95.5 | 75.4 |
    | Temperature of snctio | $34.9{ }^{\circ}$ | $35.4^{\circ}$ | $47.3^{\circ}$ | 53.20 |
    | Temperatnre of delivery | $134^{\circ}$ | $117.4^{\circ}$ | $173 . \%^{\circ}$ | 131. |
    | Water fed per lb. of steam, lb | 11.02 | 13.67 | 8.18 | 13.3 |

    The theory of the injector is discussed in Wood's, Peabody's, and Rontgen's treatises on Thermodynanics. See also "Theory and Practice of the Injector," by Strickland L. Kıeass, New York, 1895.
    Boiler-feeding Pumps. - Since the direct-acting pump, commonly used for feeding boilers, has a very low efficiency, or less than one tenth that of a good engine, it is generally better to use a pump driven by belt from the main engine or driving shaft. The mechanical work needed to feed a boiler may be estimated as follows: If the combination of boiler and engine is such that half a cubic foot, say 32 lbs . of water, is needed per horsepower, and the boiler-pressure is 100 lbs . per sq. in., then the work of feeding the quantity of water is $100 \mathrm{lbs} . \times 144 \mathrm{sq}$. in. $\times 1 / \mathrm{ft} .-\mathrm{lbs}$. per hour $=120$ $\mathrm{ft} .-\mathrm{lbs}$. per $\mathrm{min} .=120 / 33,000=.0036 \mathrm{H} . \mathrm{P}$. , or less than $4 / 10$ of $1 \%$ of the power exerted by the engine. If a direct-acting pump, which discharges its exhaust steam into the atmosphere, is used for feeding, and it has only $1 / 10$ the efficiency of the main engine, then the steam used by the pump will be equal to nearly $4 \%$ of that generated by the boiler.

    The following table by Prof. D. S. Jacobus gives the relative efficiency of steam and power pumps and injector, with and without heater, as used upon a boiler with 80 lbs. gauge-pressure, the pump having a duty of $10,000,000 \mathrm{ft}$.-lbs. per 100 lbs . of coal when no heater is used; the injector heating the water from $60^{\circ}$ to $150^{\circ} \mathrm{F}$.
    Direct-acting pump feeding water at $60^{\circ}$, without a heater............. 1.000
    Injector feeding water at $150^{\circ}$, without a heater......................... 1.000
    Injector feeding water through a heater in which it is heated from
    $150^{\circ}$ to $200^{\circ}$...........................
    Direct-acting pump feeding water through a heater, in which it in
    heated from $60^{\circ}$ to $200^{\circ} \ldots$. .......................................
    Geared pump, run from the engine, feeding water through a heater,
    in which it is heated from $60^{\circ}$ to $200^{\circ} \ldots . . . . . . . . . . . . . . . .$.

    ## HEEDDEATECR HEATERS. Percentace of Savino for Each Deoree of Increase in Teme perature of Feed-water Heated by Waste Steam.

    | Initial Temp. of Feed. | Pressure of Steam in Boiler, lbs. per sq. in. above Atmosphere. |  |  |  |  |  |  |  |  |  |  | Initial Temp. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |  |
    | $32^{\circ}$ | . 0872 | . 0861 | . 0855 | . 0851 | . 0847 | . 0844 | . 0841 | . 0839 | . 0837 | 35 | 3 | 32 |
    | 40 | . 0878 | . 0867 | . 0861 | . 0856 | . 0853 | . 0850 | . 0847 | . 0845 | . 0843 | . 0841 | . 0839 | 40 |
    | 50 | . 0886 | . 0875 | . 0868 | . 0864 | . 0860 | . 0857 | . 0854 | . 085. | . 0850 | . 0848 | . 0846 | 50 |
    | 60 | . 0894 | . 0883 | . 0876 | . 0872 | . 0867 | . 0864 | .0862 | . 0559 | . 0856 | . 0855 | . 0853 | 60 |
    | 70 80 | .0902 | . 0890 | . 0884 | . 0879 | . 0875 | . 0872 | . 0869 | . 0867 | . 0864 | .0862 | . 0860 | 70 |
    | 80 90 | . 0910 | . 0898 | . 0891 | . 0887 | . 0883 | . 0879 | .08\%7 | .0874 | . 0872 | . $08 \%$ | . 0868 | 80 |
    | 90 100 | . 09919 | . 0907 | . 0900 | . 0895 | . 0888 | . 0887 | . 0884 | . 0883 | . 0879 | . 0877 | . 0875 | 90 |
    | 110 | . 0993 | . 0915 | . 0908 | . 0903 | . 0899 | . 0895 | . 0892 | . 0890 | .0887 | . 0885 | . 0883 | 100 |
    | 120 | . 0945 | . 09232 | . 0916 | . 0911 | . 0907 | . 0903 | . 0900 | . 0898 | . 0895 | . 0893 | . 0891 | 110 |
    | 130 | . 0954 | . 0941 | . 0934 | .0928 | . 0915 | . 09911 | . 0908 | . 0906 | . 0903 | . 0901 | . 0899 | 120 |
    | 140 | . 0963 | . 0950 | . 0943 | .0937 | .0932 | . 0929 | . 0917 | . 0914 | . 0912 | . 0909 | 0907 | 130 |
    | 150 | . 0973 | . 0959 | . 0951 | . 0946 | . 0941 | . 0937 | .0938 | .0923 | .0920 | . 0918 | . 0924 | 140 |
    | 160 | . 0982 | . 0968 | . 0961 | . 0955 | . 0950 | . 0946 | . 0943 | . 0943 | . 0938 | . 09235 | .0924 | 150 |
    | 170 | . 0992 | . 0978 | . 0970 | . 0964 | . 0959 | . 0955 | . 0958 | . 0949 | . 0946 | . 0944 | .0941 | 170 |
    | 180 | . 1002 | . 0988 | . 0981 | . 0973 | . 0969 | . 0965 | . 0961 | . 0958 | . 0955 | . 0953 | . 0951 | 180 |
    | 190 | .1012 | . 0998 | . 0989 | . 0983 | . 0978 | . 0974 | . 0971 | . 0968 | . 0964 | . 0962 | . 0960 | 190 |
    | 200 | . 1022 | . 1008 | . 0999 | . 0993 | . 0988 | . 0984 | . 0980 | . 0978 | . 097 '4 | .0972 | . 0969 | 200 |
    | 210 | . 1033 | . 1018 | . 1009 | . 1003 | . 0998 | . 0994 | . 0990 | . 0987 | . 0984 | . 0981 | . 0979 | 210 |
    | 220 |  | . 1029 | . 1019 | . 1013 | . 1008 | . 1004 | . 1000 | . 0997 | . 0994 | . 0991 | . 0989 | 220 |
    | 230 |  | . 1039 | . 1031 | . 1024 | . 1018 | . 1012 | . 1010 | . 1007 | . 1003 | . 1001 | . 0999 | 230 |
    | 240 |  | . 1050 | . 1041 | . 1034 | . 1029 | .1024 | . 1020 | . 1017 | . 1014 | . 1011 | . 1009 | 240 |
    | 250 |  | . 1062 | . 1052 | . 1045 | . 1040 | . 1035 | . 1031 | . 1027 | . 1025 | . 1022 | . 1019 | 250 |

    An approximate rule for the conditions of ordinary practice is a saving of $1 \%$ is made by each increase of $11^{\circ}$ in the temperature of the feed-water. This corresponds to $.0903 \%$ per degree.
    The calculation of saving is made as follows: Boiler-pressure, 100 lbs . gauge; total heat in steam above $32^{\circ}=1155$ B.T.U. Feed-water, original temperature $60^{\circ}$, final temperature $209^{\circ} \mathrm{F}$. Increase in heat-units, 150 . Heat-units above $32^{\circ}$ in feed-water of original temperature $=28$. Heatunits in steam above that in cold feed-water, $1185-28=1157$. Saving by the feed-water heater $=150 / 1157=12.96 \%$. The same result is obtained by the use of the table. Increase in temperature $150^{\circ} \times$ tabular figure $.0564=$ $10.96 \%$. Let total heat of 1 lb . of steam at the boiler-pressure $=H$; total lieat of 1 lb . of feed-water before entering the heater $=h_{1}$, and after passing through the heater $=h_{2}$; then the saving made by the heater is $\frac{h_{2}-h_{1}}{H-h_{1}}$.
    Strains Caused by Cold Feed-water.-A calculation is made in The Locomotive of March, 1893, of the possible strains caused in the section of the shell of a boiler by cooling it by the injection of cold feed-water. Assuming the plate to be cooled $200^{\circ} \mathrm{F}$., and the coefficient of expansion of steel to be .0000067 per degree, a strip 10 in . long would contract . 013 in., if it were free to contract. To resist this contraction, assuming that the strip is firmly held at the ends and that the modulus of elasticity is $29,000,000$, would require a force of $37,700 \mathrm{lbs}$. per sq. in. Of comrse this amount of strain cannot actually take place, since the strip is not firmly held at the ends, but is allowed to contract to some extent by the elasticity of the surrounding metal. But, says The Locomotive, we may feel pretty confident that in the case considered a longitudinal strain of somewhere in the neighborliood of
    8000 or $10,000 \mathrm{lbs}$. per sq. in, may be produced by 8000 or $10,000 \mathrm{lbs}$. per sq. in. may be produced by the feed-water striking directly upon the plates; and this, in addition to the normal strain produced by the steani-pressure, is quite enough to tax the girth-seams beyond their elastic limit, if the feed-pipe discharges anywhere near them. Hence it is not surprising that the girth-seams develop leaks and cracks in 98 cases out of every 100 in which the feed discharges directly upon the fire-
    sheets.

    ## STEARI SEPARATORS.

    If moist steam flowing at a high velocity in a pipe has its direction suddenly changed, the particles of water are by their momentum projected in their original direction against the bend in the pipe or wall of the chamber in which the change of direction takes place. By making proper provision for drawing off the water thus separated the steant may be dried to a greater or less extent.
    For long steam-pipes a large drum should wo provided near the engine for trapping the water condensed in the pipe. A drum 3 feet diameter, 15 feet high, has given good results in separating the water of condensation of a steam-pipe 10 inches diameter and 800 feet long.
    Eficiency of Steam Separators.-Prof. R. C. Carpenter, in 1891, made a series of tests of six steam separators, furnishing them with steam containing different percentages of moisture, and testing the quality of stean before entering and after passing the separator. A condensed table of the priucipal results is given below.

    |  | Test with Steam of about $10 \%$ of Moisture. |  |  | Tests with Varying Moisture. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Quality of Steam before. | Quality of Steant after. | Efficiency <br> per cent. | $\begin{gathered} \text { Quality of } \\ \text { Steam } \\ \text { before. } \end{gathered}$ | Quality of steam after. | $\begin{aligned} & \text { Av'ge } \\ & \text { Effi- } \\ & \text { ciency. } \end{aligned}$ |
    | B | 87.0\% | 98.8\% | 90.8 | 66.1 to $97.5 \%$ | 97.8 to $99 \%$ | $8 \pi .6$ |
    | A | 30.1 | 95.0 | 80.0 | 51.9 " 98 | 97.9 " 99.1 | 76.4 |
    | D | 89.6 | 95.8 | 59.6 | \%2.2 " 96.1 | 95.5 " 98.2 | 71.7 |
    | C | 90.6 | 93. | 33.0 | 67.1 " 96.8 | 93.7 " 98.4 | 63.4 |
    | E | 88.4 | 90.2 | 15.5 | 68.6 " 38.1 | 79.3 " 98.5 | 36.9 |
    | - F | 88.9 | 92.1 | 28.8 | \%0.4 " $97 . \%$ | 81.1 " 97.9 | 28.4 |

    Conclusions from the tests were: 1. That no relation existed between the volume of the several separators and their efficiency.
    2. No marked decrease in pressure was shown by any of the separators, the most being $1 . .^{\prime} \mathrm{lbs}$. in E .
    3. Although changed direction, reduced velocity, and pernaps centrifugal force are necessary for good separation, still some means must be provided to lead the water out of the current of the steam.
    The high efficiency obtained from B and A was largely due to this feature. In B the interior surfaces are corrugated and thus catch the water thrown out of the steam and readily lead it to the bottom.
    In A, as soon as the water falls or is precipitated from the steam, it comes in contact with the perforated diaphragin through which it runs into the space below, where it is not subjected to the action of the steam.
    Experiments made by Prof. Carpenter on a "Stratton" separator in 1894 showed that the moisture in the steam leaving the separator was less than $1 \%$ when that in the steam supplied ranged from $6 \%$ to $21 \%$.

    ## DETELRMEINATEON OF THEE MIOESTURE IN STEAM一 STHEAME CALOREMEETEIES。

    In all boiler-tests it is important to ascertain the quality of the steam, i.e., 1st, whether the steam is "saturated" or contains the quantity of heat due to the pressure according to standard experiments; 2d, whether the quantity of heat is deficient, so that the steam is wet; and 3d, whether the lieat is in excess and the steam superheated. The best method of ascertaining the quality of the steam is undoubtedly that employed by a committee which tested the boilers at the American Institute Exhibition of $1871-2$, of which Prof. Thurston was chairman, i.e., condensing all the water evaporated by the boiler by means of a surface condenser, weighing the condensing water, at daking its temperature as it enters and as it leaves the condenser; but this plan camot always be adopted.

    A substitute for this method is the barrel calorimeter, which with careful operation and fairly accurate instruments may generally be relied on to give results within two per cellt of accuracy (that is, a sample of steam which gives the apparent result of $9 \%$ of moisture may contain anywhere be tween 0 and $4 \%$. This calorimeter is described as follows: A sample of the steam is taken by inserting a perforated $1 / 2$-inch pipe into and through the main pipe near the boiler, and led by a hose, thoronghty felted, to a barrel, holding preferably 400 lbs . of water, which is set upon a platform scale and
    provided with a cock or valve for allowing the water to flow to waste, and with a small propeller for stirring the water.

    To operate the calorimeter the barrel is filled with water, the weight and temperature ascertained, steam blown through the hose outside the barrel until the pipe is thoroughly warmed, when the hose is suddenly thrust into the water, and the propeller operated until the temperature of the water is increased to the desired point, say about $110^{\circ}$ usually. The hose is then withdrawn quickly, the temperature noted, and the weight again taken.
    An error of $1 / 10$ of a pound in weighing the condensed steam, or an error of $1 / 2$ degree in the temperature, will canse an error of over $1 \%$ in the calculated percentage of moisture. See Trans. A. S. M. E. vi. 293.

    The calculation of the percentage of moisture is made as below:

    $$
    Q=\frac{1}{H-T}\left[\frac{W}{w}\left(h_{1}-h\right)-\left(T-h_{1}\right)\right] .
    $$

    $Q=$ quality of the steam, dry saturated steam being unity.
    $H=$ total heat of 1 lb . of stean at the observed pressure.
    $T=$ " " " " " water at the temperature of steam of the ob-
    $h=$ " $\quad$ " $\quad$ " $\quad$ " $\quad$ served pressure. condensing water, original.
    $h_{1}=$ weight of condensing water, corrected for water-equivalent of the apparatus.
    $v=$ weight of the steam condensed.
    Percentage of moisture $=1-Q$.
    If $Q$ is greater than unity, the steam is superheated, and the degrees of cuperheating $=0.0833(H-T)(Q-1)$.

    Dificulty of Obtaining a Correct Saniple.-Recent experiments by Prof. D. S. Jacobus, Trans. A. S. M. E., xvi, 1017 , show that it is practically impossible to obtain a true average sample of the steam flowing in a pipe. For accurate determinations all the steam made by the boiler should be passed through a separator, the water separated should be weighed, and a calorimeter test made of the steam just after it has passed the separator.

    Coil Calorimeters.-Instead of the open barrel in which the steam is condensed, a coil acting as a surface-condenser may be used, which is placed in the barrel, the water in coil and barrel being weighed separately. For description of an apparatus of this kind designed by the author, which he has found to give results with a probable error not exceeding $1 / 2$ per cent of moisture, see Trans. A. S. M. E., vi. 294. This calorimeter may be used continuously, if desired, instead of intermittently. In this case a continuous flow of condensing water into and out of the barrel must be established, and the temperature of inflow and outflow and of the condensed steam read at short intervals of time.

    Throttling Calorimeter.-For percentages of moisture not exceeding 3 per cent the throttling calorimeter is most useful and convenient and remarkably accurate. In this instrument the steam which reaches it in a $1 / 2$-inch pipe is throttled by an orifice $1 / 16$ inch diameter, opening into a chamber which has an outlet to the atmosphere. The steam in this chamber has its pressure reduced nearly or quite to the pressure of the atmosphere, but the totel heat in the steam before throttling causes the steam in the chamber to be superheated more or less according to whether the steam before throttling was dry or contained moisture. The only observations required are those of the temperature and pressure of the steam on
    each side of the orifice each side of the orifice.

    The author's formula for reducing the observations of the throttling calorimeter is as follows (Experiments on Throttling Calorimeters, Ani. Mach., Aug. 4, 1892) : $w=100 \times \frac{H-h-K(T-t)}{L}$, in which $w=$ percent age of moisture in the steam; $H=$ total heat, and $L=$ latent heat of steam in the main pipe; $h=$ total heat due the pressure in the discharge side of the calorimeter, $=1146.6$ at atmospheric pressure; $K=$ specific lieat of superheated steam; $T=$ temperature of the throttled and superheated steam in the calorimeter; $t=$ temperature due the pressure in the calorimeter, $=212^{\circ}$ at atmospheric pressure .
    Taking $K$ at 0.48 and the pressure in the discharge side of the calorimeter as atmospheric pressure, the formula becomes

    $$
    v=100 \times \frac{H-1146.6-0.48\left(T-812^{\circ}\right)}{L}
    $$

    From this formula the following table is calculated:

    Moisture in Steam-Determinations by Throttling Calorimeter.

    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
    \hline \multirow[t]{3}{*}{$$
    \begin{gathered}
    \text { Degree of Super- } \\
    \text { heating } \\
    T-21 \mathfrak{N}^{\circ} .
    \end{gathered}
    $$} \& \multicolumn{12}{|c|}{Gauge-pressures.} <br>
    \hline \& 5 \& 10 \& 20 \& 30 \& 40 \& 50 \& 60 \& 70 \& 75 \& 80 \& 85 \& 90 <br>
    \hline \& \multicolumn{12}{|c|}{Per Cent of Moisture in Steam.} <br>
    \hline $0^{\circ}$ \& 0.51 \& 0.90 \& 1.54 \& 2.06 \& 2.50 \& 2.90 \& 3.24 \& 3.56 \& 3.71 \& 3.86 \& 3.99 \& 4.13 <br>
    \hline $10^{\circ}$ \& 0.01 \& 0.39 \& 1.02 \& 1.54 \& 1.97 \& 2.36 \& 2.71 \& 3.02 \& 3.17 \& 3.32 \& 3.45 \& 3.58 <br>
    \hline $20^{\circ}$ \& \& \& . 51 \& 1.02 \& 1.45 \& 1.83 \& $\stackrel{2}{2} 17$ \& 2.48 \& 2.63 \& 2. $\mathfrak{\sim}$ \& 2.90 \& ${ }_{3.03}$ <br>
    \hline $30^{\circ}$ \& \& \& . 00 \& . 50 \& . 92 \& 1.30 \& 1.64 \& 1.94 \& 2.09 \& 2.23 \& 2.35 \& 2.49 <br>
    \hline $40^{\circ}$ \& \& \& \& \& \& . 7 \& 1.10 \& 1.40 \& 1.55 \& 1.69 \& 1.80 \& 1.91 <br>
    \hline $60^{\circ}$ \& \& \& \& \& ... \& \& . 57 \& . 87 \& 1.01
    .47 \& 1.15
    .60 \& 1.26 \& 1.40 <br>
    \hline $70^{\circ}$ \& \& \& \& \& \& \& \& . 3 \& . 4 \& . 06 \& . 17 \& . 81 <br>
    \hline Dif.p.deg \& 0503 \& . 0507 \& . 0515 \& . 0521 \& . 0526 \& . 0531 \& . 0535 \& 0533 \& 0541 \& . 0.542 \& . 0544 \& . 0546 <br>
    \hline \multirow[t]{3}{*}{} \& \multicolumn{12}{|c|}{Gauge-pressures.} <br>
    \hline \& 100 \& 110 \& 120 \& 130 \& 140 \& 150 \& 160 \& 170 \& 180 \& 190 \& 200 \& 250 <br>
    \hline \& \multicolumn{12}{|c|}{Per Cent of Moisture in Steam.} <br>
    \hline $0^{\circ}$ \& 4.39 \& 4.63 \& 4.85 \& 5.08 \& 5.29 \& 5.49 \& 5.68 \& 5.87 \& 6.05 \& 6.20 \& \& <br>
    \hline $10^{\circ}$ \& 3.84 \& 4.08 \& 4.29 \& 4.52 \& 4.73 \& 4.93 \& 5.12 \& 5.30 \& 5.48 \& 5.65 \& 5.82 \& 6.58 <br>
    \hline $20^{\circ}$ \& 3.29 \& 3.5 \& 3.74 \& 3.96 \& $4.1 \tau$ \& 4.3 \& 4.56 \& 4.14 \& 4.91 \& 5.08 \& 5.25 \& 6.00 <br>
    \hline $30^{\circ}$ \& 2.74 \& 2.97 \& 3.18 \& 3.41 \& 3.61 \& 3.80 \& 3.99 \& 4.17 \& 4.34 \& 4.51 \& 4.67 \& 5.41 <br>
    \hline $40^{\circ}$ \& 2.19 \& 2.42 \& 2.63 \& 2.85 \& 3.05 \& 3.24 \& 3.43 \& 3.61 \& 3.78 \& 3.94 \& 4.10 \& 4.83 <br>
    \hline $50^{\circ}$ \& 1.64 \& 1.87 \& 2.08 \& 2.29 \& 2.49 \& 2.68 \& $2.8{ }^{2}$ \& 3.04 \& 3.21 \& 3.37 \& 3.53 \& 4.25 <br>
    \hline $60^{\circ}$ \& 1.09 \& 1.32 \& 1.52 \& 1.74 \& 1.93 \& 2.12 \& 2.30 \& 3.48 \& 2.64 \& 2.80 \& $\stackrel{3}{2.96}$ \& 3.6i <br>
    \hline $70^{\circ}$ \& . 55 \& . 77 \& . 97 \& 1.18 \& 1.38 \& 1.56 \& 1.74 \& 1.91 \& 2.07 \& 2.23 \& 2.38 \& 3.09 <br>
    \hline $$
    \begin{aligned}
    & 80^{\circ} \\
    & 90^{\circ}
    \end{aligned}
    $$ \& . 00 \& . 22 \& . 42 \& . 63 \& . 82 \& 1.00 \& 1.18 \& 1.34 \& 1.50 \& 1.66 \& 1.81 \& 2.51 <br>
    \hline 90
    100

    10 \& \& \& \& . 07 \& . 26 \& . 44 \& . 61 \& . 78 \& . 94 \& 1.09 \& 1.24 \& 1.93 <br>
    \hline $110^{\circ}$ \& \& \& \& \& \& \& . 0 \& . 21 \& . 34 \& . 52 \& . 6 10 \& 1.34 <br>
    \hline Dif.p.deg \& . 0549 \& . 0551 \& . 0554 \& . 0556 \& . 0559 \& . 0561 \& . 0564 \& . 0566 \& . 0568 \& . $05 \%$ \& .05i: \& 0.581 <br>
    \hline
    \end{tabular}

    Separating Calorimeters. - For percentages of moisture beyond the range of the throttling calorimeter the separating calorimeter is used, which is simply a steam separator on a small scale. An improved form of this calorimeter is described by Prof. Carpenter in Power, Feb. 1893.

    For fuller information on various kinds of calorimeters, see papers by Prof. Peabody, Prof. Carpenter, and Mr. Barrus in Trans. A. S. M. E., vols. x, xi, xii, 1889 to 1891; Appendix to Report of Com. on Boiler Tests, A. S. M. E., vol. vi, 1884; Circular of Schaeffer \& Budenberg, N. Y., "Calurimeters, Throttling and Separating." 1894.
    Identification of Dry Steam by Appearance of a Jet. Prof. Denton ('Trans. A. S. M. E., vol. x.) found that jets of steam show unmistakable change of appearance to the eye when stean varies less than 1\% from the condition of saturation either in the direction of wetness or superheating.
    If a jet of steam flow from a boiler into the atmosphere under circumstances such that very little loss of heat occurs through radiation, etc., and the jet be transparent close to the orifice, or he evell a grayish-white color, the stean may be assumed to be so nearly dry that no portable condensing calorimeter will be capable of measuring the amount of water in the steann. If the jet be strongly white, the amomit of water may be roughly judged up to about $2 \%$, but beyoud this a calorimeter only can determine the exaot amount of moisture.

    A common brass pet-cock may be used as an orifice, but it should, if possible, be set into the steam-drum of the boiler and never be placed further a way from the latter than 4 feet, and then only when the intermediate reservoir or pipe is well covered.

    - Usial Amount of THoisture in Steam Escaping from a Boiler.-In the common forms of horizontal tubular land boilers and water-tube boilers with ample horizontal drums, and supplied with water free from substances likely to cause foaming, the moisture in the steam does not generally exceed $2 \%$ unless the boiler is overdriven or the waterlevel is carried too high.


    ## CHIMNEYS.

    Chimney Draught Theory.-The commonly accepted theory of chimney draught, based on Peclet's and Rankine's hypotheses (see Rankine, S. E.) is discussed by Prof. De Volson Wood in Trans. A. S. M. E., vol. xi.

    Peclet represented the law of draught by the formula

    $$
    h=\frac{u^{2}}{2 g}\left(1+G+\frac{f l}{m}\right),
    $$

    in which $h$ is the "head," defined as such a height of hot gases as, if added to the column of gases in the chimney, would produce the same pressure at the furnace as a column of outside air, of the same area of base, and a height equal to that of the chimney; $u$ is the required velocity of gases in the chimney;
    $G$ a constant to represent the resistance to the passage of air through the coal;
    $l$ the length of the flues and climney;
    $m$ the mean hydraulic depth or the area of a cross-section divided by the perimeter;
    $f$ a constant depending upon the nature of the surfaces over which the gases pass, whether smooth, or sooty and rough.
    Rankine's formula (Steam Engine, p. 288), derived by giving certain values to the constants (so-called) in Peclet's formula, is

    $$
    h=\frac{\frac{\tau_{0}}{\tau_{2}}(0.080 \%)}{\frac{\tau_{0}}{\tau_{1}}(0.084)} H-H=\left(0.96 \frac{\tau_{1}}{\tau_{2}}-1\right) H
    $$

    in which $H=$ the height of the chimney in feet;

    $$
    \begin{aligned}
    & \tau_{0}=493^{\circ} \mathrm{F} \text {., absolute (temperatury of melting ice); } \\
    & \tau_{1}=\text { absolute temperature of the gases in the chimney; } \\
    & \tau_{2}=\text { absolute temperature of the external air. }
    \end{aligned}
    $$

    Prof. Wood derives from this a still more complex formula which gives the height of chimney required for burning a given quantity of coal per second, and from it he calculates the following table, showing the height of chimney required to burn respectively 24,20 , and 16 lbs. of coal per square foot of grate per hour, for the several temperatures of the chimney gases given.

    | Outside Air. $\tau_{2}$ | Chimney Gas. |  | Coal per sq. ft . of grate per hour, lbs. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1 | Temp. | 24 | 20 | 16 |
    |  |  |  | Height $H$, feet. |  |  |
    | $520^{\circ}$ | 700 | 239 | 250.9 | 157.6 | 67.8 |
    | absolute or | 800 | 339 | 172.4 | 115.8 | 55.7 |
    | $59^{\circ} \mathrm{F}$. | 1000 | 539 | 149.1 | 100.0 | 48.7 |
    |  | 1100 | 639 | 148.8 | 98.9 | 48.2 |
    |  | 1200 | \%39 | 152.0 | 100.9 | 49.1 |
    |  | 1400 | 939 | 159.9 | $105 . \%$ | 51.2 |
    |  | 1600 | 1139 | 168.8 | 111.0 | 53.5 |
    |  | 2000 | 1539 | 206.5 | 132.2 | 63.0 |

    Rankine's formula gires a maximum draught when $\tau=21 / 12 \tau_{2}$, or $699^{\circ} \mathrm{F}$., when the outside temperature is $60^{\circ}$. Prof. Wood says: "This result is not a fixed value, but departures from theory in practice do not affect the result largely. There is, then, in a properly constructed chimney, properly working, a temperature giving a maximum draught,* and that temperature is not far from the value given by Rankine, although in special cases it may be $50^{\circ}$ or $75^{\circ}$ more or less."

    All attempts to base a practical formula for chimneys upon the theoretical formula of Peclet and Rankine have failed on account of the impossibility of assigning correct values to the so-called "constants " $G$ and $f$. (See Trans. A. S. M. E., xi. 984.)

    Force or intensity of Dranght.-The force of the draught is equal to the difference between the weight of the column of hot gases inside of the chimney and the weight of a column of the external air of the same height. It is measured by a draught-gauge, usually a U-tube partly filled with water, one leg connected by a pipe to the interior of the flue, and the other open to the external air.

    If $D$ is the density of the air outside, $d$ the density of the hot gas inside, in lbs. per cubic foot, $h$ the height of the chimney in feet, and . 192 the factor for converting pressure in lbs. per sq. ft. into inches of water column, then the formula for the force of draught expressed in inches of water is,

    $$
    F=.192 h(D-d)
    $$

    The density varies with the absolute temperature (see Rankine).

    $$
    d=\frac{\tau_{0}}{\tau_{1}} 0.084 ; \quad D=0.0807 \frac{\tau_{0}}{\tau_{2}},
    $$

    where $\tau_{0}$ is the absolute temperature at $32^{\circ} \mathrm{F}_{.0}=493 ., \tau_{1}$ the absolute temperature of the chimney gases and $\tau_{2}$ that of the external air. Substituting these values the formula for force of draught becomes

    $$
    F=.192 h\left(\frac{39.79}{\tau_{2}}-\frac{41.41}{\tau_{1}}\right)=h\left(\frac{\tau .64}{\tau_{2}}-\frac{7.95}{\tau_{1}}\right)
    $$

    To find the maximum intensity of draught for any given chimmey, the heated column being $600^{\circ} \mathrm{F}$., and the external air $60^{\circ}$, multiply the leight above grate in feet by $.00 \%$, and the prodnct is the draught in inches of water.
    Height of Water Column Due to Unbalanced Pressure in Chimmey 100 Feet High. (The Locomotive, 1884.)

    | $\equiv \dot{\otimes}$ | Temperature of the External Air-Barometer, 14.7 lbs. per sq. in. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | E | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ | $100^{\circ}$ |
    | 200 |  | . 4 | . 3 |  |  | . 2 |  |  |  |  |  |
    | 220 | . 488 | . 453 | . 419 | . 388 | . 355 | . 326 | . 298 | 269 | . 244 | . 217 | . 192 |
    | 240 | . $5: 0$ | . 488 | . 451 | . 421 | . 388 | . 359 | . 330 | . 301 | . 276 | . 250 | . 225 |
    | 260 | . 555 | .58 | . 484 | . 453 | . 420 | . 393 | . 363 | . 331 | . 309 | . 288 | . 257 |
    | 280 | . 584 | . 549 | . 515 | . 482 | . 451 | . 422 | . 394 | . 365 | . 340 | . 313 | . 288 |
    | 300 | . 611 | . 576 | . 541 | . 511 | . $4 \div 8$ | . 449 | . 420 | . 392 | . 367 | . 340 | . 315 |
    | 320 | . 637 | . 603 | . 568 | . 538 | . 505 | . 476 | . $44 \sim$ | . 419 | . 394 | . 367 | . 342 |
    | 340 | . 662 | . 638 | . 593 | . 563 | . 530 | . 501 | . 4 \% | . 443 | . 419 | . 392 | . 367 |
    | 360 | . 687 | . 653 | . 618 | . 588 | . 555 | . $5: 6$ | . $49 \%$ | . 468 | . 444 | . 417 | . 397 |
    | 380 | . 710 | . $67{ }^{6}$ | . 611 | . 611 | . 578 | . 549 | . 590 | . 492 | . 467 | . 440 | . 415 |
    | 400 | . 732 | . 697 | . 662 | .639 | . 599 | . 570 | . 541 | . 513 | . 488 | . 461 | . 436 |
    | 420 | . 753 | . 71.8 | . 684 | . 653 | . 620 | . 591 | . 563 | . 534 | . 509 | . 482 | . 457 |
    | 440 | . 774 | . 739 | . 705 | . 674 | . 641 | . 612 | . 584 | . 555 | . 530 | . 503 | . 478 |
    | 460 | . 793 | . 758 | . $7 \% 4$ | . 694 | . 660 | .63: | . 603 | . 574 | . 549 | . $5 \times 2$ | . 497 |
    | 480 | . 810 | .776 | . 741 | . 710 | . 678 | . 649 | . 620 | . 591 | . 566 | . 540 | . 515 |
    | 500 | . 829 | . 791 | . 760 | . 730 | . 69 \% | . 669 | . $6: 39$ | . 610 | . 586 | . 559 | . 534 |

    For any other height of chimney than 100 ft . the height of water column is found by simple proportion, the height of water column being directly proportioned to the height of chimney.

    The calculations have been made for a chimney 100 ft . high, with various temperatures outside and inside of the flue, and on the supposition that the temperature of the chimney is uniform from top to bottom. This is the basis on which all calculations respecting the draught-power of chimneys have been made by Rankine and otler writers, but it is very far from the tuth in most cases. The difference will be shown by comparing the reading of the draught-gauge with the table given. In one case a chimney $1: 2 \mathrm{ft}$. high showed a temperature at the base of $3: 0^{\circ}$, and at the top of $230^{\circ}$.

    Box, in his "Treatise on Heat," gives the following table:
    Draught Powers of Chimneys, etc., with the Internal Air at $552^{\circ}$, and the External Air at $62^{\circ}$, and with the Damper nearly Closed.

    |  |  | Theoretical Velocity in feet per second. |  |  |  | Theoretical Velocity in feet per second. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Cold Air Entering. | Hot Air at Exit. |  |  | Cold Air Entering. | Hot Air at Exit. |
    | 10 | . 073 | 17.8 | 35.6 | 80 | . 585 | 50.6 | 101.2 |
    | 20 | . 146 | 25.3 | 50.6 | 90 | . 657 | 53.7 | 107.4 |
    | 30 | . 219 | 31.0 | 62.0 | 100 | . 730 | 56.5 | 113.0 |
    | 40 | . 292 | 35.7 | 71.4 | 120 | . $8 \% 6$ | 62.0 | 124.0 |
    | 50 | . 365 | 40.0 | 80.0 | 150 | 1.095 | 69.3 | 138.6 |
    | 60 | . 438 | 43.8 | 87.6 | 175 | $1.2 \% 7$ | 74.3 | 149.6 |
    | \%0 | . 511 | 47.3 | 94.6 | 200 | 1.460 | 80.0 | 160.0 |

    Rate of Combustion Due to Height of Chimney.-
    Trowbridge's "'Heat and Heat Engines "gives the following table showing the heights of chimney for producing certain rates of combustion per sq. ft . of section of the chimmey. It may be approximately true for anthracite in moderate and large sizes, but greater heights than are given in the table are needed to secure the given rates of combustion with small sizes of anthracite, and for bituminous coal smaller heights will suffice if the coal is reasonably free from ash- $5 \%$ or less.

    | $\begin{gathered} \text { Heights } \\ \text { in } \\ \text { feet. } \end{gathered}$ | Lbs. of Coal Burned per Hour per Sq. Ft. of Section of Chimney. | Lbs. of Coal Burned per Sq. Ft. of Grate, the Ratio of Grate to Section of Chimney being 8 to 1 . | $\begin{aligned} & \text { Heights } \\ & \text { ill } \\ & \text { feet. } \end{aligned}$ | Lbs. of Coal Burned per Hour per Sq. Ft. of Section of Chimney. | Lbs. of Coal Burned per. Sq. Ft. of Grate, the Ratio of Grate to Section of Chimney being 8 to 1. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 20 | 60 | 7.5 | 70 | 126 | 15.8 |
    | 25 | 68 | 8.5 | 75 | 131 | 16.4 |
    | 30 | 76 | 9.5 | 80 | 135 | 16.9 |
    | 35 | 84 | 10.5 | 85 | 139 | 17.4 |
    | 40 | 93 | 11.6 | 90 | 144 | 18.0 |
    | 45 | 99 | 12.4 | 95 | 148 | 18.5 |
    | 50 | 105 | 13.1 | 100 | 152 | 19.0 |
    | 55 | 111 | 13.8 | 105 | 156 | 19.5 |
    | 60 | 116 | 14.5 | 110 | 160 | 200 |
    | 65 | 121 | 15.1 |  |  |  |

    Thurston's rule for rate of combustion effected by a given neight of chimney (Trans. A. S. M. E., xi. 991) is: Subtract 1 from twice the square root of the height, and the result is the rate of combustion in pounds per square foot of grate per hour, for anthracite. Or rate $=2 \sqrt{h}-1$, in which $h$ is the height in feet. This rule gives the following:

    $$
    \begin{array}{cccccccccccc}
    h & =50 & 60 & 70 & 80 & 90 & 100 & 110 & 125 & 150 & 175 & 200 \\
    2 \sqrt{h}-1 & =13.14 & 14.49 & 15.73 & 16.89 & 17.97 & 19 & 19.97 & 21.26 & 23.49 & 25.45 & 27.28
    \end{array}
    $$

    The results agree closely with Trowbridge's table given above. In prac-
    tice the high rates of combustion for high chimneys given by the formula are not generally obtained, for the reason that with high chimneys there are usually long horizontal flues, serving many boilers, and the friction and the interference of currents from the several boilers are apt to cause the intensity of draught in the branch flues leading to each boiler to be much less than that at the base of the chimney. The draught of each boiler is also usually restricted by a damper and by bends in the gas-passages. In a battery of several boilers connected to a chimney 150 ft . liigh, the author found a draught of $3 / 4$-inch water-column at the boiler nearest the chimney, and only $1 / 4$-inch at the boiler farthest away. The first boiler was wasting fuel from too high temperature of the chimney-gases, $960^{\circ}$, having too large a grate-surface for the drauglit, and the last boiler was working below its rated capacity and with poor economy, on account of insufficient draught.

    The effect of changing the length of the flue leading into a chimney 60 ft . high and 2 ft .9 in . square is given in the following table, from Box on "Heat":

    | Length of Flue in <br> feet. | Horse-power. | Length of Flue in <br> feet. | Horse-power. |
    | :---: | :---: | :---: | :---: |
    | 50 | 107.6 | 800 | 56.1 |
    | 100 | 100.0 | 1,000 | 51.4 |
    | 200 | 85.3 | 1,500 | 43.3 |
    | 400 | 00.8 | 2,000 | 38.2 |
    | 600 | 62.5 | 3,000 | 31.7 |

    The temperature of the gases in this chimney was assumed to be $552^{\circ} \mathrm{F}$., and that of the atmosphere $6:{ }^{\circ}$.

    High Chimneys not Necessary.-Chimneys above 150 ft . in height are very costly, and their increased cost is rarely justified by increased ef, ficiency. In recent practice it has become somewhat common to build two or more smaller chimneys instead of one large one. A notable example is the Spreckels Sugar Refinery in Philadelphia, where three separate chimneys are used for one boiler-plant of 7500 H.P. The three chimneys are said to have cost several thousand dollars less than a single chimney of their combined capacity would have cost. Very tall chimmeys have been characterized by one writer as " monuments to the folly of their builders."

    Heights of Chimmey required for Difrerent Fuels.-The minimum height necessary varies with the fnel, wood reqniring the least, then good bituminous coal, and fine sizes o: inthracite the greatest. It also varies with the character of the boiler-the smaller and more circuitous the gas-passages the higher the stack required; also with tlie number of boilers, a single boiler requiring less height than several that discharge into a horizontal flue. No general rule can be given.

    ## SERE OF CHIMNEYS.

    The formula given below, and the table calculated therefrom for chimneys up to 96 in . diameter and 200 ft . high, were first published by the author in 1884 (Trans. A. S. M. E. vi., 81). They have met with much approval since that date by engineers who have used them, and have been frequently pnblished in boiler-makers' catalogues and elsewhere. The table is now extended to cover chimneys up to 12 ft . dianneter and 300 ft . high. The sizes corresponding to the given commercial horse-powers are believed to be anıple for all cases in which the draught areas through the boiler-flues and connections are sufficient, say not less than $20 \%$ greater than the area of the chimney, and in which the draught between the boilers and chimney is not checked by long horizontal passages and right-angled bends.
    Note that the figures in the table correspond to a coal consumption of 5 lbs . of coal per horse-pover per hour. This liberal allowance is made to cover the contingencies of poor coal being used, and of the boilers being driven beyond their rated capacity. In large plants, with economical boilers and engines, good fuel and other favorable conditions, which will reduce the maximum rate of coal consumption at any one time to less than 5 lbs. per H. P. per hour, the figures in the table may be multiplied by the ratio of 5 to the maximum expected coal cousumption per H.P. per hour. Thus, with conditions which make the maximmm coal consumption only 2.5 lbs . per hour, the chimney 300 ft . high $\times 12 \mathrm{ft}$. diameter should be sufficient for 6155 $X Z=12,310$ horse-power. The formula is based on the following data:
    Size of Chimneys for Steam-boilers.
    Formula, H.P. $=3.33(A-0.6 \sqrt{A}) \sqrt{H} . \quad$ (Assuming $1 \mathrm{H} . \mathrm{P} .=5 \mathrm{lbs}$. of coal burned per hour.)
    

    1. The draught power of the chimney varies as the square root of the height.
    2. The retarding of the ascending gases by friction may be considered as equivalent to a diminution of the area of the chimney, or to a lining of the chimney by a layer of gas which has no velocity. The thickness of this lining is assumed to be 2 inches for all chimneys, or the diminution of area equal to the perimeter $\times 2$ inches (neglecting the overlapping of the corners of the lining). Let $D=$ diameter in feet, $A=$ area, and $E=$ effective area in square feet.

    $$
    \begin{aligned}
    & \text { For square chimneys, } E=D^{2}-\frac{8 D}{12}=A-\frac{2}{3} \sqrt{A} . \\
    & \text { For round chimeys, } E=\frac{\pi}{4}\left(D^{2}-\frac{8 D}{12}\right)=A-0.591 \sqrt{A} .
    \end{aligned}
    $$

    For simplifying calculations, the coefficient of $\sqrt{A}$ may be taken as 0.6 for both square and round chimneys, and the formula becomes

    $$
    E=A-0.6 \sqrt{A} .
    $$

    3. The power varies directly as this effective area $E$.
    4. A chimney should be proportioned so as to be capable of giving sufficient drauglit to cause the boiler to develop much more than its rated power, in case of emergencies, or to cause the combustion of 5 lbs . of fuel per rated horse-power of boiler per hour.
    5. The power of the chimney varying directly as the effective area, $E$, and as the square root of the height, $H$, the formula for horse-power of boiler for a given size of climney will take the form H.P. $=C E \sqrt{\bar{H}}$, in which $C$ is a constant, the average value of which, obtained by plotting the results obtained from numerous examples in practice, the author finds to be 3.33 .
    The formula for horse-power then is

    $$
    \text { Н.P. }=3.33 E \sqrt{H}, \text { or Н.Р. }=3.33(A-.6 \sqrt{A}) \sqrt{H} .
    $$

    If the horse-power of boiler is given, to find the size of climney, the height being assunied,

    $$
    E=0.3 \text { H.P. } \div \sqrt{H} . ;=A-0.6 \sqrt{A} .
    $$

    For round chimneys, diameter of chimney $=$ diam. of $E+4^{\prime \prime}$.
    For square chimneys, side of chimmey $=\sqrt{E}_{E}+4^{\prime \prime}$.
    If effective area $E$ is taken in square feet, the diameter in inches is $d=$ $13.54 \sqrt{E}+4^{\prime \prime}$, and the side of a square chimney in inches is $s=12 \sqrt{E}+4^{\prime \prime}$.
    If horse-power is given and area assumed, the height $H=\left(\frac{0.3 \mathrm{H} . \mathrm{P} .}{E}\right)^{2}$.
    In proportioning chimners the height is generally first assumed, with due consideration to the heights of surrounding buildings or hills near to the proposed chimney, the length of horizontal flues, the character of coal to be insed, etc., and then the diameter required for the assumed height and horse-power is calculated by the tormula or taken from the table.
    An approximate formula for chimneys above 1000 H.P. is H.P. $=$ $21 / D^{2} \sqrt{ } H$. This gives the H.P. somewhat greater than the figures in the table.

    ## The Protection of Tant Chimney-shafts from Lightning. - C. Molyneux and J. M. Wood (Inctustries, March 28, 1890) recomnnend for

    tall climueys the use of a coronal or lieary band at the top of the chimney, with copper points 1 ft . in leight at intervals of 2 ft . throughout the circuinference. The points should be gilded to prevent oxidation. The most approved form of conductor is a copper tape about $3 / 4 \mathrm{in}$. by $1 / 8 \mathrm{in}$, thick,weighing 6 ozs. per ft . If iron is used it should weigh not les the weighing 6 ozs. per ft . If iroll is used it should weigh not less than $21 / 4 \mathrm{lbs}$. per ft. There must be no insulation, and the copper tape should be fastened to the chimney with holdfasts of the same material, to prevent voltaic
    action. An allowance for expansion and contraction slonld be nade, say action. An allowance for expansion and contraction shonld be made, say 1 in. in 40 ft . Slight bends in the tape, not too abrupt, answer the purpose. For an earth terminal a plate of metal at least 3 ft . sq. and $1 / 16 \mathrm{in}$ thick
    should be buried as deep as possible in a damp spot. The plate should be of should be buried as deep as possible in a damp spot. The plate should be of the same metal as the conductor, to which it should be soldered. The best
    eartl terminal is water, and whenl a deep well or other larce body earth terminal is water, and when a deep well or other large body of water is at hand, the conductor should be carried down into it. Right-angled
    bends in the conductor should be avoided. No bend in it should bends in the conductor should be avoided. No bend in it should be over $30^{\circ}$.

    Some Tall Erick Chimneys.

    |  | $\begin{aligned} & \stackrel{y}{7} \\ & \text { B0 } \\ & 00 \\ & \text { D } \end{aligned}$ |  | Outside Diameter. |  | Capacity by the Author's Formula. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | $\begin{gathered} \dot{0} \\ \underset{\sim}{\infty} \\ \ldots \end{gathered}$ | $\begin{gathered} \dot{\dot{Q}_{1}} \\ \stackrel{y}{n} \end{gathered}$ | H. P. | $\begin{gathered} \text { Pounds } \\ \text { Coal } \\ \text { per } \\ \text { hour. } \end{gathered}$ |
    | 1. Hallsbrückner Hütte, Sax. | 460 | $15.7^{\prime \prime}$ | $33^{\prime}$ | $16^{\prime}$ | 13,221 | 66,105 |
    | 2. Townsend's, Glasgow.. . . | 454 |  | 32 |  |  | 6,105 |
    | 3. Tennant's, Glasgo w ........ | 435 | $13^{\prime} 6^{\prime \prime}$ | 40 |  | 9,795 | 48,975 |
    | 4. Dobson \& Barlow, Bolton, Eng | $3671 / 2$ | $13^{\prime} 2^{\prime \prime}$ | $33^{\prime} 10^{\prime \prime}$ |  | 8,245 | 41,225 |
    | 5. Fall Rivel Iron Co., Boston | 350 | 11 | 30 | 21 | 5,558 | 27,790 |
    | 6. Clark Thread Co., Newark, N. J | 335 | 11 | $28^{\prime} 6^{\prime \prime}$ | 14 | 5,435 | 27,175 |
    | 7. Merrimac Mills, Low'l, Mass | 289'9' | 12 |  |  | 5,980 | 29,900 |
    | 8. Washington Mills, Lawrence, Mass. | 250 | 10 |  |  | 3,839 | 19,195 |
    | 9. Amoskeag Mills, Manchester, N. H. | 250 | 10 |  |  | 3,839 | 19,195 |
    | 10. Narragansett E. L. Co., Providence, R. I. | 238 | 14 |  |  | 77.515 | 37,575 |
    | 11. Lower Pacific Mills, Lawrence, Mass. | 214 | 8 |  |  | 2,248 | 11,240 |
    | 12. Passaic Print Works, Passaic, N. J | 200 | 9 |  |  | 2,1771 | $13,855$ |
    | 13. Edison Sta, B'klyn, 'Two e'ch | 150 | $50^{\prime \prime} \times 120^{\prime \prime}$ |  | each | 1,541 | $\begin{aligned} & 7,705 \\ & 7,700 \end{aligned}$ |

    Notes on the Above Chimneys.-1. This chimney is situated near Freiberg, on the right bank of the Mulde, at an elevation of 219 feet above that of the foundry works, so that its total height above the sea will be $7113 / 4$ feet. The works are situated on the bank of the river, and the furnacegases are conveyed across the river to the chimney on a bridge, through a pipe 3227 feet in length. It is built throughout of brick, and will cost about \$40,000.-Mfr. and Bldr.
    2. Owing to the fact that it was struck by lightning, and somewhat damaged, as a precautionary measure a copper extension subsequently was added to it, making its entire height 488 feet.
    1, 2, 3, and 4 were built of these great heights to remove deleterious gases from the neighborhood, as well as for draught for boilers.
    5. The structure rests on a solid granite foundation, $55 \times 30$ feet, and 16 feet deep. In its construction there were used $1,600,000$ bricks, 2000 tons of stone, 2000 barrels of mortar, 1000 loads of sand, 1000 barrels of Portland cement, and the estimated cost is $\$ 40,000$. It is arranged for two flues, 9 feet 6 inches by 6 feet, connecting with 40 boilers, which are to be run in connection with four triple-expansion engines of 1350 horse-power each.
    6. It has a uniform batter of 2.85 inches to every 10 feet. Designed for 21 boilers of 200 H . P. each. It is surmounted by a cast-iron coping which weighs six tons, and is composed of thirty-two sections, which are bolted together by inside flanges, so as to present a smooth exterior. The foundation is in concrete, composed of crushed limestone 6 parts, sand 3 parts, and Portland cement 1 part. It is 40 feet square and 5 feet deep. Two qualities of brick were used; the outer portions were of the first quality North River, and the backing up was of good quality New Jersey brick. Every twenty feet in vertical measurement an iron ring, 4 inches wide and $3 / 4$ to $1 / 2$ inch thick, placed edgewise, was built into the walls about 8 inches from the outer circle. As the chimney starts from the base it is double. The onter wall is 5 feet 2 inches in thickness, and inside of this is a second wall 20 inches thick and spaced off about 20 inches from main wall. From the interior surface of the main wall eight buttresses are carried, nearly touching this inner or main flue wall in order to keep it in line should it tend to sag. The interior wall, starting with the thickness described, is gradually reduced until a height of about 90 feet is reached, when it is diminished to 8 inches. A.t 165 feet it ceases,
    and the rest of the chimney is without lining. The total weight of the chimney and foundation is 5000 tons. It was completed in September, 1888.
    7. Connected to 12 boilers, with 1200 square feet of grate-surface. Draughtgauge $19 / 16$ inches.
    8. Connected to 8 boilers, $6^{\prime} 8^{\prime \prime}$ diameter $\times 18$ feet. Grate-surface 448 square feet.
    9. Connected to 64 Manning vertical boilers, total grate surface 1810 sq. ft. Designed to burn $18,000 \mathrm{lbs}$. anthracite per hour.
    10. Designed for $12,000 \mathrm{H} . \mathrm{P}$. of engines; (compound condensing).
    11. Grate-surface 434 square feet; H. P. of boilers (Galloway) about 2500
    13. Eight boilers (water-tube) each 450 H.P.; 12 engines, each 300 H.P. Plant designed for 36,000 incandescent lights. For the first 60 feet the exterior wall is 28 inches thick, then 24 inches for 20 feet, 20 inches for 30 feet, 16 inches for 20 feet, and 12 inches for 20 feet. The interior wall is 9 inches thick of fire-brick for 50 feet, and then 8 inches thick of red brick for the next 30 feet. Illustrated in Iron Age, January 2, 1890.
    A number of the above chimneys are illustrated in Power, Dec., 1890.
    Chimney at Knoxville, Tenn., illustrated in Eng'g News, Nov. 2, 1893.
    6 feet diameter, 120 feet high, double wall:

    $$
    \begin{aligned}
    & \text { Exterior wall, height } 20 \text { feet, } 30 \text { feet, } 30 \text { feet. } 40 \text { feet; }
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \text { thickness } 131 / 2 \text { in., } 81 / 2 \text { in., } 4 \text { in., } 0 .
    \end{aligned}
    $$

    Exterior diameter, $15^{\prime} 6^{\prime \prime}$ at bottom; batter, $7 / 16$ inch in 12 inches from bottom to 8 feet from top. Interior diameter of inside wall, 6 feet uniform to top of interior wall. Space between walls, 16 inches at bottom, diminishing to 0 at top of interior wall. The interior wall is of red brick except a lining of 4 inches of fire-brick for 20 feet from bottom.

    Stability of Chimneys.-Chimneys must be designed to resist the maximum force of the wind in the locality in which they are built, (see Weak Chimneys, below). A general rule for diameter of base, of brick chimneys, approved by many years of practice in England and the United States, is to make the diameter of the base one tenth of the height. If the chimney is square or rectangular, make the diameter of the inscribed circle of the base one tenth of the height. The "batter" or taper of a chimney should be from $1 / 16$ to $1 / 4$ inch to the foot on each side. The brickwork should be one brick ( 8 or 9 inches) thick for the first 25 feet from the top, increasing $1 / 2$ brick ( 4 or $41 / 2$ inches) for each 25 feet from the top downwards. If the inside diameter exceed 5 feet, the top length should be $11 / 2$ bricks; and if under 3 feet, it may be $1 / 6$ brick for ten feet.
    (From The Locomotive, 1884 and 1886.) For chimneys of four feet in diam. eter and one hundred feet high, and upwards, the best form is circular, with a straight batter on the outside. A circular chimney of this size, in addition to being cheaper than any other form, is lighter, stronger, and looks much better and more shapely.

    Chimneys of any considerable height are not built up of uniform thickness from top to bottom, nor with a uniformly varying thickness of wall, but the wall, heaviest of course at the base, is reduced by a series of steps.

    Where practicable the load on a chimney foundation should not exceed two tons per square foot in compact sand, gravel, or loam. Where a solid rockbottom is available for foundation, the load may be greatly increased. If the rock is sloping, all unsound portions should be removed, and the face dressed to a series of horizontal steps, so that there shall be no tendency to slide after the structure is finished.

    All boiler-chimneys of any considerable size should consist of an outer stack of sufficient strength to give stability to the structure, and an inner stack or core independent of the outer one. This core is by many engineers extended up to a height of but 50 or 60 feet from the base of the chimney, but the better practice is to run it up the whole height of the chinney; it may be stopped off, say, a couple feet below the top, and the outer shellcontracted to the area of the core, but the better way is to run it up to about 8 or 12 inches of the top and not contract the outer shell. But under no circumstances should the core at its upper end be built into or convected with the outer stack. This has been done in several instances by bricklayers, and the result has been the expansion of the inner core which lifted the top of the outer stack squarely up and crecked the brickwork.

    For a height of 100 feet we would make the outer shell in three steps, the first 20 feet high, 16 inches thick, the second 30 feet high, 12 inches thick, the
    third 50 feet high and 8 inches thick. These are the minimum thicknesses admissible for chimneys of this height, and the batter should be not less than 1 in 36 to give stability. The core should also be built in three steps, each of which may be about one-third the height of the chimney, the lowest 12 inches, the middle 8 inches, and the upper step 4 inches thick. This will insure a good sound core. The top of a chimney may be protected by a cast-iron cap; or perhaps a cheaper and equally good plan is to lay the ornamental part in some good cement, and plaster the top with the same material.

    Weak Chimneys.-James B. Francis, in a report to the Lawrence Mfg. Co. in 18 ins $^{(E n g ' g ~ N e w s, ~ A u g . ~ 28, ~ 1880), ~ g i v e s ~ s o m e ~ c a l c u l a t i o n s ~ c o n-~}$ cerning the probable effects of wind on that company's chimney as then constructed. Its outer shell is octagonal. The inner shell is cylindrical, with an air-space between it and the outer shell; the two shells not being bonded together, except at the openings at the base, but with projections in the brickwork, at intervals of about 20 ft . in height, to afford lateral support by contact of the two shells. The principal dimensions of the chimney are as follows :
    

    One tenth of the height for the diameter of the base is the rule commonly adopted. The diameter of the inscribed circle of the base of the Lawrence Manufacturing Company's chimney being 15 ft ., it is evidently much less than is usual in a chimney of that height.

    Soon after the chimney was built, and before the mortar had hardened, it was found that the top had swayed over about 29 in . toward the east. This was evidently due to a strong westerly wind which occurred at that time. It was soon brought back to the perpendicular by sawing into solle of the joints, and other means.

    The stability of the chimney to resist the force of the wind depends mainly on the weight of its outer shell, and the width of its base. The cohesion of the mortar may add considerably to its strength; but it is too uncertain to be relied upon. The inner shell will add a little to the stability, but it may be cracked by the heat, and its beneficial effect, if any, is too uncertain to be taken into account.

    The effect of the joint action of the vertical pressure due to the weight of the chimney, and the horizontal pressure due to the force of the wind is to shift the centre of pressure at the base of the chimney, from the axis toward one side, the extent of the shifting depending on the relative magnitude of the two forces. If the centre of pressure is brought too near the side of the chimney, it will crush the brickwork on that side, and the chinney will fall. A line drawn through the centre of pressure, perpendicular to the direction of the wind, must leave an area of brickwork between it and the side of the chimney, sufficient to support half the weight of the chimney; the other half of the weight being supported by the brickwork on the windward side of the line.

    Different experimenters on the strength of brickwork give very different results. Kirkaldy found the weights which caused several kinds of bricks, laid in hydranlic lime mortar and in Roman and Portland cements, to fail slightly, to vary from 19 to 60 tons (of 2000 lbs .) per sq. ft. If we take in this case 25 tons per sq.ft., as the weight that would cause it to begin to fail, we shall not err greatly. To support half the weight of the outer shell of the chimney, or 322 tons, at this rate, requires an area of 12.88 sq. ft . of brickwork. From these data and the drawings of the chimney, Mr. Francis calculates that the area of 12.88 sq . ft . is contained in a portion of the chimney extending 2.428 ft . from one of its octagonal sides, and that the limit to which the centre of pressure may be shifted is therefore 5.072 ft . from the axis. If shifted beyond this. he says, on the assumption of the strength of the brickwork, it will crush and the chimney will fall.
    Calculating that the wind-pressure can affect only the upper 141 ft . of the chimney, the lower 70 ft . being protected by buildings, he calculates that a wind-pressure of 44.02 lbs . per sq. ft. would blow the chimney down.
    Rankine, in a paper printed in the transactions of the Institution of Engi-
    neers, in Scotlan", for 1867-68, says: "It had previously been ascertained by observation of the success and failure of actual chimneys, and especially of those which respertively stood and fell during the violent storms of 1856 , that, in nrder that a ruind chimney may be sufficiently stable, its weight should be such that a pressure of wind, of about 55 lbs . per sq. ft. of a plane surface, directly facing the wind, or $2 \pi 1 / 2 \mathrm{lbs}$. per sq. ft. of the plane projection of a cylindrical surface, . . shall not cause the resultant pressure at any bed-joint to deviate from the axis of the chimney by more than one quarter of the outside diameter at that joint,"

    According to Rankine's rule, the Lawrence Mfg. Co.'s chimney is adapted to a maximum pressure of wind on a plane acting on the whole lieight of 18.80 lbs . per sq. ft., or of a pressure of $21 . \% 0 \mathrm{lbs}$. per sq. ft. acting on the uppermost 141 ft . of the chimney.

    Stecl Chimneys are largely coming into use, especially for tall chimneys of iron-works, from 150 to 300 feet in height. The advantages claimed are : greater strength and safety; snraller space required; smaller cost, by 30 to 50 per cent, as compared with brick chimneys; avoidance of infiltra. tion of air and consequent checking of the draught, common in brick chimneys. They are usually made cylindrical in shape, with a wide curved flare for 10 to 25 feet at the bottom. A heavy cast-iron base-plate is provided, to which the chimney is riveted, and the plate is secured to a massive foundation by holding-down bolts. No guys are used. F. W. Gordon, of the Phila. Engineering Works, gives the following method of calculating their resistance to wind pressure (Power, Oct. 1893):

    In tests by Sir William Fairbairn we find four experiments to determine the strength of thin hollow tubes. In the table will be found their elements, with their breaking strain. These tubes were placed upon hollow blocks, and the weights suspended at the centre from a block fitted to the inside of the tube.

    |  | Clear Span, ft. in. | $\begin{gathered} \text { Thick- } \\ \text { ness Iron, } \end{gathered}$ in. | Outside <br> Diameter, in. | $\begin{aligned} & \text { Sectional } \\ & \text { Area, } \\ & \text { in. } \end{aligned}$ | $\begin{aligned} & \text { Breaking } \\ & \text { Weight, } \\ & \text { lbs. } \end{aligned}$ | Breaking W't, lbs., by Clarke' Formula, Constant 1.2 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | I. | 17 | . 037 | 12 | 1.3901 | 2,704 | 2,627 |
    |  |  | . 113 | 12.4 | 4.3669 | 11,440 | 9,184 |
    | JII. | 235 | . 0631 | 17.68 | 3.487 | 6,400 | 8,302 |
    | IV. | 235 | . 119 | 18.18 | 6.\%4 | 14,240 | 13,910 |

    Edwin Clarke has formulated a rule from experiments conducted by him during his investigations into the use of iron and steel for hollow tube bridges, which is as follows :
    Center break. $\}=$ Area of material in sq.in. $\times$ Mean depth in in. $\times$ Constant Ing load, in tons. $\}=$ Clear span in feet.

    When the constant used is 1.2 , the calculation for the tubes experimented upon by Mr. Fairbairn are given in the last column of the table. D. K. Clark's "Rules, Tables, and Data," page 513, gives a rule for hollow tubes as follows : $W=3.14 D^{2} T S \div L$. $W=$ breaking weight in pounds in centre; $D=$ extreme diameter in inches; $T=$ thickness in inches; $L=$ length bé tween supports in inches; $S=$ ultimate tensile strength in pounds per sq. in.

    Taking $S$, the strength of a square inch of a riveted joint, at $35,000 \mathrm{lbs}$. per. sq. in., this rule figures as follows for the different examples experimented upon by Mr. Fairbairn : I, 2880; II, 10,190; III, 700 ; IV, 15,320.
    This shows a close approximation to the breaking weight obtained by experiments and that derived from Edwin Clarke's and D. K. Clark's rules. We therefore assume that this system of calculation is practically correct. and that it is eminently safe when a large factor of safety is provided, and from the fact that a chimney may be standing for many years without receiving anything like the strain taken as the basis of the calculation, viz., fifty pounds per square foot. Wind pressure at fifty pounds ner square foot may be assumed to be travelling in a horizontal direction, "and be of the same velocity from the top to the bottom of the stack. This is the extreme assumption. If, however, the chimney is round, its effective area would be only half of its diameter plane. We assume that the entire force may be concentrated in the centre of the height of the section of the chimney
    under ronsideration.

    Taking as an example a 125 -foot iron chimney at Poughkeepsie, N. Y., the arerage diameter of which is 90 inches, the effective surface in square feet upon which the force of the wind may play will therefore be $71 / 2$ times 125 divided by 2 , which multiplied by 50 gives a total wind force of 23,437 pounds. The resistance of the chimney to breaking across the top of the foundation would be $3.14 \times 168^{2}$ (that is, diameter of base) $\times .25 \times 35,000 \rightarrow$ $(750 \times 4)=258,486$, or 10.6 times the entire force of the wind. We multiply the half height above the joint in inches, 750 , by 4 , because the chimney is considered a fixed beam with a load suspended on one end. In calculating its strength half way up, we have a beam of the same character. It is a fixed beam at a line half way up the chimney, where it is 90 inches in diameter and .187 inch thick. Taking the diametrical section above this line, and the force as concentrated in the centre of it, or lialf way up from the point under consideration, its breaking strength is: $3.14 \times 90^{2} \times .187 \times 35,000$ $\div(381 \times 4)=109,220$; and the force of the wind tc tear it apart through its cross-section, $71 / 4 \times 621 / 2 \times 50 \div 2=11,352$, or a little more than one tenth of the strength of the stack.

    The Babcock \& Wilcox Co.'s book "Steam" illustrates a steel chimney at the works of the Maryland Steel Co., Sparrow's Point, Md. It is $22.5 \mathrm{ft}^{2}$ in height above the base, with internal brick lining $13^{\prime} 9^{\prime \prime}$ uviforin inside diameter. The shell is 25 ft . diam. at the base, tapering in a curve to 17 ft . 25 ft . above the base, thence tapering almost imperceptibly to $14^{\prime} 8^{\prime \prime}$ at the top. The upper 40 feet is of $1 / 4$-inch plates, the next four sections of 40 ft . each are respectively $9 / 32,5 / 16,11 / 32$, and $3 / 8$ inch.

    ## Sizes of Foundations for Steel Chimneys.

    (Selected from circular of Phila. Engineering Works.)
    Half-Lined Chimneys.

    | Diameter, clea | 3 | 4 | 5 | 6 | 7 | 9 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Height, feet. . | 100 | 100 | 150 | 150 | 150 | 150 |  |
    | Least diameter foun | $15^{\prime} 9^{\prime \prime}$ | $16^{\prime} 4^{\prime \prime}$ | $20^{\prime} 4^{\prime \prime}$ | $21^{\prime} 10^{\prime \prime}$ | $22^{\prime \prime \prime}$ | $23^{\prime} 8^{\prime \prime}$ | $24^{\prime} 8^{\prime \prime}$ |
    | Least depth foundatio | $6^{\prime}$ | $6^{\prime \prime}$ | $9{ }^{\prime}$ | 8 |  | $10^{\prime}$ | $10^{\prime}$ |
    | Height, fe |  | 125 | 200 | 200 | 250 | 275 | 300 |
    | Least diameter foundati |  | 18'5' | $2398^{\prime \prime}$ | $25^{\prime}$ | $29^{\prime \prime} 8^{\prime \prime}$ | ${ }^{33} 2^{\prime \prime} 6^{\prime \prime}$ | 36' |
    | Least depth foundation |  | 7 | $10^{\prime}$ | 10 | 12 | 12 |  |

    Weight of Sheet-iron Smoke-stacks per Foot.
    (Porter Mfg. Co.)

    | Diam., Inches | Thickness W. G | Weight perf. | Diam., inches. | Thickness W. G. | Weight per ft. | Diam. inches. | Thickness | Weight perf. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 10 | No. 16 | 7.20 | 26 | No. 16 | 17.50 | 20 | No. 14 | 18.33 |
    | 12 | $\mathrm{NO}_{\text {is }}$ | 8.66 | 28 | . 10 | 18.75 | 22 |  | 20.00 |
    | 14 | ${ }^{6}$ | 9.58 | 30 | ${ }^{6}$ | 20.00 | 24 | " 6 | 21.66 |
    | 16 | $\cdots$ | 11.68 | 10 | No. 14 | 9.40 | 26 | 6 | 23.33 |
    | 20 | $\ldots$ | 13.75 | 12 | 6 | 11.11 | 28 | 6 | ${ }_{26} 2.00$ |
    | 22 | $\sim$ | 15.00 | 14 | 4 | 13.69 | 30 | 6 | 26.66 |
    | 24 | * | 16.25 | 16 | c | 15.00 |  |  |  |

    Sheet-iron Chimneys. (Columbus Machine Co.)

    | Diameter <br> Chimney, inches. | $\begin{gathered} \text { Length } \\ \text { Chimney, } \\ \text { feet. } \end{gathered}$ | $\left\|\begin{array}{c} \text { Thick- } \\ \text { ness } \\ \text { Iron, } \\ \text { B. W. G. } \end{array}\right\|$ | Weight los. | Diameter Chimney, inches. | Length Chimney, feet. | $\begin{gathered} \text { Thick- } \\ \text { ness } \\ \text { Iron, } \\ \text { B. W. G. } \end{gathered}$ | Weight lbs. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 10 | 20 | No. 16 | 160 | 39 | 40 | No. 15 | 960 |
    | 15 | 20 | \%6. 16 | 240 | 32 | 40 | \% 15 | 1,020 |
    | 20 | 20 | " 16 | 320 | 34 | 40 | ${ }^{6} 1614$ | 1,170 |
    | 22 | 20 | " 16 | 350 | 36 | 40 | " 614 | 1,240 |
    | 24 | 40 | " 16 | 760 | 38 | 40 | " 612 | 1,800 |
    | 26 | 40 | -16 | 886 | 40 | 40 | '612 | 1,890 |
    | 28 | 40 | -6 15 | 900 |  |  |  |  |

    ## THE STEAM-ENGINE.

    Expansion of Steam. Isothermal and Adiabatic.-According to Mariotte's law, the volume of a perfect gas, the temperature being kept constant, varies incersely as its pressure, or $p \propto \frac{1}{v} ; p v=$ a constant. The curve constructed from this formula is called the isothermal curve, or curve of equal temperatures, and is a common or rectangular hyperbola. The relation of the pressure and volume of saturated steam, as deduced from Reguault's experiments, and as given in Steam tables, is approximately, according to Rankine (S. E., p. 403), for pressures not exceeding 1之0 lbs., $p \propto \frac{1}{v^{\frac{17}{1}}}$, or $p \propto v^{-\frac{17}{16}}$, or $p v^{\frac{17}{16}}=p v^{1.0625}=a$ constant. Zeuner has found that the exponent 1.0646 gives a closer approximation.

    When steam expands in a closed cylinder, as in an engine, according to Rankine (S. E., p. 385), the approximate law of the expansion is $p \propto \frac{1}{v^{10}}$, or $p \propto v^{-\frac{10}{8}}$ or $p v^{1.111}=$ a constant. The curve constructed from this for mula is called the adiabatic curve, or curve of no transmission of heat.

    Peabody 'Therm., p. 11\%) says:'"It is probable that this equation was obtained by comparing the expansion lines on a large number of indicatordiagrams. . . . There does not appear to be any good reason for using an exponential equation in this comection, ... and the action of a lagged steamengine cylinder is far from being adiabatic. ... For general purposes the hyperbola is the best curve for comparison with the expansion curve of an iudicator-card. . . "" Wolff and Denton, Trans. A. S. M. E., ii. 175, say: "From a number of cards examined from a variety of steam-engines in cmrrent use, we find that the actual expansion line varies between the 10/9 adiabatic curve and the Mariotte curve."
    lrof. Thurston (A. S. M. E., ii. 203), says he doubts if the exponent ever becomes the same in any two engines, or even in the same engines at different times of the day and under varying conditions of the day.

    Expansion of Steam according to Mrariotte's Laty and to the Adiabatic Law. (Trans. A. S. M. E., ii. 156.)-Mariotte's law $p v=p_{1} v_{1}$; values calculated from formula $\frac{P m}{p_{1}}=\frac{1}{R}(1+\operatorname{hyp} \log R)$, in which $R=v_{2} \div v_{1}, p_{1}=$ absolute initial pressure, $P m=$ absolute mean pressure, $v_{1}=$ initial volume of steam in cylinder at pressure $p_{1}, v_{2}=$ final volume of steam at final pressure. Adiabatic law: $p v^{\frac{19}{9}}=p_{1} v_{1}{ }^{\frac{10}{3}}$; values calculated from formula $\frac{P m}{p_{1}}=10 R^{-1}-9 R^{-\frac{10}{\theta} .}$

    | Ratio of Expan$\operatorname{sion} R$. | Ratio of Mean to Initial Pressure. |  | Ratío of Expansion $R$. | Ratio of Mean to Initial Pressure. |  | $\begin{gathered} \text { Ratio } \\ \text { of } \\ \text { Expan- } \\ \text { sion } R . \end{gathered}$ | Ratio of Mean to Initial Pressure. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Mar. | Adiab. |  | Mar. | Adiab. |  | Mar. | Adiab. |
    | 1.00 | 1.000 | 1.000 | 3.7 | . 624 | 600 | 6. | . 465 | . 438 |
    | 1.25 | . 978 | . 976 | 38 | 614 | . 590 | 6.25 | . 453 | . 425 |
    | 1.50 | . 937 | . 931 | 3.9 | . 605 | . 580 | 6.5 | . 442 | . 413 |
    | 1.75 | . 891 | . 881 | 4. | . 597 | . $5 \% 1$ | 6.75 | . 431 | . 403 |
    | ${ }_{2}{ }_{2}$ | . 847 | . 834 | 4.1 | . 588 | . 562 | ${ }_{7}^{7}$. | 421 | . 393 |
    | 2.2 2.4 | . 813 | . 798 | 4.2 | . 580 | . 554 | $\underset{\sim}{7} 25$ | . 411 | -383 |
    | 2.5 | . 766 | . .78 | 4.3 | . 564 | . 5438 | ${ }_{7}^{7.5}$ | . 402 | . 374 |
    | 2.6 | . 752 | . 733 | 4.5 | . 556 | . 538 | 8.6 | . 393 | . 365 |
    | 2.8 | . 725 | . 704 | 4.6 | . 549 | . 523 | 8.25 | . 377 | . 349 |
    | 3. | . 200 | . $6 \hat{8}$ | 4.7 | . 542 | . 516 | 8.5 | . 369 | . 342 |
    | 3.1 | . 688 | . 666 | 4.8 | . 535 | . 509 | 8.75 | . 362 | . 335 |
    | 3.2 | . 676 | . 654 | 4.9 | . 528 | . 502 | 9. | . 355 | . 328 |
    | 8.3 | . 665 | . 642 | 5.0 | .522 | . 495 | 9.25 | . 349 | 321 |
    | 3.4 | . 654 | . 630 | 525 | . 506 | . 479 | 9.5 | . 342 | . 315 |
    | 3.5 3.6 | . 644 | . 630 |  | . $49 \%$ | . 464 | 9.75 | . 3336 | . 309 |
    | 3.6 | . 634 | . 610 | 5.75 | 478 | . 450 | 10. | 330 | . 303 |

    Mean Pressure of Expanded Steam.-For calculations of engines it is generally assumed that steam expands according to Mariotte's law, the curve of the expansion line being a hyperbola. The mean pressure measured above vacuum, is then obtained from the formula

    $$
    P_{m}=p_{1} \frac{1+\mathrm{hyp} \log R}{R}, \text { or } P m=P t(1+\text { hyp } \log R)
    $$

    in which $P_{m}$ is the absolute mean pressure, $p_{1}$ the absolute initial pressure taken as uniform up to the point of cut-off, $P t$ the terminal pressure, and $R$ the ratio of expansion. If $l=$ length of stroke to the cut-off, $L=$ total stroke.

    $$
    P_{m}=\frac{p_{1} l+p_{1} l \operatorname{hyp} \log \frac{L}{l}}{L} ; \quad \text { and if } R=\frac{L}{l}, \quad P_{m}=p_{1} \frac{1+\mathrm{hyp} \log R}{R}
    $$

    Mean and Terminal Absolute Pressures.-Mariotte' Law.-The values in the following table are based on Mariothe's law, except those in tbe last column, which give themean pressure of superheated steam, which, according to Rankine, expands in a cylinder according to the law $p \propto v^{-\frac{17}{1} 6}$. These latter values are calculated from the formula $\frac{P_{m}}{p_{1}}=\frac{17-16 R-\frac{1}{16}}{R} \cdot R^{-\frac{1}{16}}$ may be found by extracting the square root of $\frac{1}{R}$ $p_{1}{ }_{\text {four times. }}$ From the mean absolute pressures given deduct the mean back pressure (absolute) to obtain the mean effective pressure.

    | Rate of Expan- sion. | $\begin{aligned} & \text { Cut- } \\ & \text { off. } \end{aligned}$ | Ratio of Mean to Initial Pressure | Ratio of Mean to Terminal Pressure. | Ratio of Ternoinal to Mean Pressure. | Patio of Initial to Mean Pressure. | Ratio of Mean to Initial Dry Steam. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 30 | 0.033 | 0.1467 | 4.40 | 0.227 | 6.82 | 0.136 |
    | 28 | 0:036 | 0.1547 | 4.33 | 0.231 | 6.46 |  |
    | 26 | 0.038 | 0.1638 | 4.26 | 0.235 | 6.11 |  |
    | 24 | 0.042 | 0.1741 | 4.18 | 0.239 | 5.75 |  |
    | 22 | 0.045 | 0.1860 | 4.09 | 0.244 | 5.38 |  |
    | 20 | 0.050 | 0.1998 | 4.00 | 0.250 | 5.00 | 0.186 |
    | 18 | 0.055 | 0.2161 | 3.89 | 0.256 | 4.63 |  |
    | 16 | 0.062 | 0.2358 | 3.77 | 0.265 | 4.24 |  |
    | 15 | 0.066 | $0.24 \% 2$ | 3.71 | 0.269 | 4.05 |  |
    | 14 | 0.071 | 0.2599 | 3.64 | 0.275 | 3.85 |  |
    | 13.33 | 0.075 | 0.2690 | 3.59 | 0.279 | 3.72 | 0.254 |
    | 13 | 0.077 | 0.2742 | 3.56 | 0.280 | 3.65 |  |
    | 12 | 0.083 | 0.2904 | 3.48 | 0.287 | 3.44 |  |
    | 11 | 0.091 | 0.3089 | 3.40 | 0.294 | 3.24 |  |
    | 10 | 0.100 | 0.3303 | 3.30 | 0.303 | 3.03 | 0.314 |
    | 9 | 0.111 | 0.3552 | 3.20 | 0.312 | 2.81 |  |
    | 8 | 0.125 | 0.3849 | 3.08 | 0.321 | 2.60 | $0.3 \% 0$ |
    | $\stackrel{7}{7}$ | 0.143 | 0.4210 | 2.95 | 0.339 | 2.37 |  |
    | 6.66 | 0.150 | 0.4347 | 2.90 | 0.345 | 2.20 | 0.417 |
    | 6.00 | 0.166 | 0.4653 | 2.79 | 0.360 | 2.15 |  |
    | 5.71 | 0.175 | 0.4807 | 2.74 | 0.364 | 2.08 |  |
    | 5.00 | 0.200 | 0.5218 | 2.61 | 0.383 | 1.92 | 0.506 |
    | 4.44 | 0.225 | 0.5608 | 2.50 | 0.400 | 1.78 |  |
    | 4.00 | 0.250 | 0.5965 | 2.39 | 0.419 | 1.68 | 0.588 |
    | 8.63 | 0.275 | 0.6308 | 2.29 | 0.437 | 1.58 |  |
    | 3.33 | 0.300 | 0.6615 | 2.20 | 0.454 | 1.51 | 0.648 |
    | 3.00 | 0.333 | 0.6995 | 2.10 | 0.476 | 1.43 | 0.707 |
    | 2.86 | 0.350 | 0.7171 | 2.05 | 0.488 | 1.39 | 0.707 |
    | 2.66 | 0.375 | 0.7440 | 1.98 | 0.505 | 1.34 |  |
    | 2.50 | 0.400 | 0.7664 | 1.91 | $0.5 \pm 3$ | 1.31 | 0.756 |
    | 2.22 | 0.450 | 0.8095 | 1.80 | 0.556 | 1.24 | 0.800 |
    | 2.00 | 0.500 | 0.8465 | 1.69 | 0.591 | 1.18 | 0.840 |
    | 1.82 | 0.550 | 0.8786 | 1.60 | 0.626 | 1.14 | 8.874 |
    | 1.66 | 0600 | 0.9066 | 1.51 | 0.662 | 1.10 | 0.900 |
    | 1.60 | 0.625 | 0.9187 | 1.47 | 0.680 | 1.09 |  |
    | 1.54 | 0.650 | 0.9292 | 1.43 | 0.699 | 1.0 \% | 0.926 |
    | 1.48 | 0.675 | 0.9405 | 1.39 | 0.718 | 1.06 | ............ |

    Calculation of Mean Effective Pressure, Clearance and Compression Considered.- In the above tables no account is taken
    

    Fig. 137.
    of clearance, which in actual steam-engines modifies the ratio of expansion and the mean pressure; nor of compression and back-pressure, which diminish the mean effective pressure. In the following calculation these elements are considered.
    $L=$ leugth of stroke, $l=$ length before cut-off, $x=$ length of compression part of stroke, $c=$ clearance, $p_{1}=$ initial pressure, $p_{b}=$ back pressure, $p_{c}=$ pressure of clearance steam at end of compression. All pressures are absolute, that is, measured from a perfect vacuum.

    $$
    \begin{aligned}
    & \text { Area of } \begin{aligned}
    & \mathrm{ABCD}=p_{1}(l+c)\left(1+\operatorname{hyp} \log \frac{L+c}{l+c}\right) \\
    & \mathrm{B}=p_{b}(L-x) ; \\
    & \mathrm{C}=p_{c}\left(1+\operatorname{hyp} \log \frac{x+c}{c}\right)=p_{b}(x+c)\left(1+\operatorname{hyp} \log \frac{x+c}{c}\right) ; \\
    & \mathrm{D}=\left(p_{1}-p_{c}\right) c=p_{1} c-p_{b}(x+c) \\
    & \text { Area of } \mathrm{A}= \mathrm{ABCD}-(\mathrm{B}+\mathrm{C}+\mathrm{D}) \\
    &=p_{1}(l+c)\left(1+\text { hyp } \log \frac{L+c}{l+c}\right) \\
    &-\left[p_{b}(L-x)+p_{b}(x+c)\left(1+\text { hyp } \log \frac{x+c}{c}\right)+p_{2} c-p_{b}(x+c)\right] \\
    &=p_{2}(l+c)\left(1+\text { hyp } \log \frac{L+c}{l+c}\right) \\
    &-p_{b}\left[(L-x)+(x+c) \operatorname{hyp} \log \frac{x+c}{c}\right]-p_{1} c
    \end{aligned}
    \end{aligned}
    $$

    Mean effective pressure $=\frac{\text { area of } A}{L}$.
    Example.-Let $L=1, l=0.25, x=0.25, c=0.1, p_{1}=60 \mathrm{lbs} ., p_{b}=2 \mathrm{lbs}$.

    $$
    \begin{aligned}
    \text { Area } A=60(.25+.1) & \left(1+\operatorname{hyp} \log \frac{1.1}{.35}\right) \\
    & -2\left[(1-.25)+.35 \operatorname{hyp} \log \frac{.85}{.1}\right]-60 \times .1
    \end{aligned}
    $$

    $$
    =21(1+1.145)-2[.75+35 \times 1.253]-6
    $$

    $$
    =45.045-2.36-6=36.66 S=\text { mean effective pressure }
    $$

    the actual indicator-diagram generally shows a mean pressure considerably less than that due to the initial pressure and the rate of expansion. The causes of loss of pressure are: 1. Friction in the stop-valves and steam. pipes. 2. Friction or wire-drawing of the steam during admission and cutoff, due chiefly to defective valve-gear and contracted steam-passages. 3. Liquefaction during expansion. 4. Exhausting before the engine has completed its stroke. 5. Compression due to early closure of exhaust. 6. Friction in the exhanst-ports, passages, and pipes.

    Re-evaporation during expansion of the steam condensed during admission, and valve-leakage after cut-off, tend to elevate the expausion line of the diagram and increase the mean pressure.
    If the theoretical mean pressure be calculated from the initial pressure and the rate of expansion on the supposition that the expansion curve fol-
    lows Mariotte's law, $p v=$ a constant, and the necessary corrections are made for clearance and compression, the expected mean pressure in practice may be found by multiplying the calculated results by the factor in the following table, according to Seaton.

    > Particulars of Engine. Factor.

    Expansive engine, special valve-gear, or with a separate cut-off valve, cylinder jacketed............................
    Expansive engine having large ports, etc., and good ordinary valves, cylinders jacketed.............................
    Expansive engines with the ordinary valves and gear as
    in general practice, and unjacketed
    0.94
    0.9 to 0.92

    Compound engines, with expansion valve to h.p. cylinder; cylinders jacketed, and with large ports, etc.......
    Compound engines, with ordinary slide-valves, cylinders jacketed, and good ports, etc.................................
    Compound engines as in general practice in the merchant service, with early cut-off in both cylinders, without jackets and expansion-valves
    0.8 to 0.85

    Fast-running engines of the type and design usually fitted in war-ships.
    0.9 to 0.92
    0.8 to 0.85
    0.7 tg 0.8
    0.6 to 0.8

    If no correction be made for clearance and compression, and the engine is in accordance with general nodern practice, the theoretical mean pressure may be multiplied by 0.96 , and the product by the proper factor in the table, to obtain the expected mean pressure.

    Given the Tmitial Pressure and the Average Pressure, to Find the Ratio of Expansion and the Period of Admis= sion.

    $$
    \begin{align*}
    P & =\text { initial absolute pressure in lbs. per sq. in.; } \\
    p & =\text { average total pressure during stroke in lbs. per sq. in.; } \\
    \mathcal{L} & =\text { length of stroke in inches; } \\
    c & =\text { period of admission measured from beginning of stroke: } \\
    R & =\text { actual ratio of expansion }=\frac{L+c}{T+c} \\
    p & =\frac{P(1+\operatorname{hyp} \log R)}{R} \tag{1}
    \end{align*}
    $$

    To find average pressure $p$, taking account of clearance,

    $$
    \begin{equation*}
    p=\frac{P(l+c)+P(l+c) \operatorname{lyp} \log R-P c}{L} \tag{2}
    \end{equation*}
    $$

    whence

    $$
    p L+P c=P(l+c)(1+\operatorname{hyp} \log R) ;
    $$

    $$
    \begin{equation*}
    \text { hyp } \log R=\frac{p L+P c}{P l+P c}-1=\frac{\frac{p}{P} L+c}{l+c}-1 \tag{3}
    \end{equation*}
    $$

    Given $p$ and $P$, to find $R$ and $l$ (by trial and error). -There being two unknown quantities $R$ and $l$, assume one of them, viz., the period of admissior $l$, substitute it in equation (3) and solve for $R$. Substitute this value of $R$ in the formula (1), or $l=\frac{L+c}{R}-c$, obtained from formula (1), and find $l$. If the result is greated than the assumed value of $l$, then the assumed value of the period of admission is too long; if less, the assumed value is too short. Assume a new value of $l$, substitute it in formula (3) as before, and continue by this method of trial and error till the required values of $R$ and $l$ are obtained.

    ExAMPLE.- $P=70, p=42.78, L=60^{\prime \prime}, c=3^{\prime \prime}$, to find . Assume $l=21 \mathrm{in}$.
    $\operatorname{hyp} \log R=\frac{\frac{p}{P} L+c}{2+c}-1=\frac{\frac{42.78}{70} \times 60+3}{21+3}-1=2.653-1=.653 ;$
    hyp $\log R=.653$, whence $R=1.92$.

    $$
    l=\frac{L+c}{R}-c=\frac{63}{192}-3=29.8,
    $$

    which is greater than the assumed value, 21 inches.
    Now assume $l=15$ inches :

    $$
    \begin{aligned}
    \operatorname{byp} \log R= & \frac{\frac{42.78}{70} \times 60+3}{15+3}-1=1.204, \text { whence } R=3.5 \\
    l= & \frac{L+c}{R}-c=\frac{63}{3.5}-3=18-3=15 \text { inches, the value assumed. }
    \end{aligned}
    $$

    Therefore $R=3.5$, and $l=15$ inches.
    Period of Admission Required for a Given Actual Ratio of Expansion:

    $$
    \begin{equation*}
    l=\frac{L+c}{R}-c, \text { in inches } . \tag{4}
    \end{equation*}
    $$

    In percentage of stroke, $l=\frac{100+\text { p.ct. clearance }}{R}-p . c t$. clea:ance. .
    Terminal pressure $=\frac{P(l+c)}{L+c}=\frac{P}{R}$.
    Pressure at any other ${ }_{e}^{\text {PPoint }}$ of the Expansion.-Let $L_{\mathbf{2}}=$ length of stroke up to the given point.
    Pressure at the given point $=\frac{P(l+c)}{L_{1}+c}$.

    ## WORE OF STEAIILN A SINGLE CYLINDER.

    To facilitate calculations of steam expanded in cylinders the table on the next page is abridged from Clark on the Steam-engine. The actual ratios of expansion, column 1, range from 1.0 to 8.0 , for which the hyperbolic logarithms are given in column 2. The 3 d column contains the periods of admission relative to the actual ratios of expansion, as percentages of the stroke, calculated by formula (5) above. The 4 th column gives the values of the mean pressures relative to the initial pressures, the latter being taken as 1. calculated by formula (2). In the calculation of columns 3 and 4, clearance is taken into account, and its amount is assumed at $7 \%$ of the stroke. The final pressures, in the 5th column, are such as would be arrived at by the continued expansion of the whole of the steam to the end of the stroke, the initial pressure being equal to 1. They are the reciprocals of the ratios of expansion, column 1. The 6 th column contains the relative total performances of equal weights of steam worked with the several actual ratios of expansion; the total performance, when steam is admitted for the whole of the stroke, without expansion, being equal to 1. They are obtained by dividing the figures in column 4 by those in column 5.

    The pressures have been calculated on the supposition that the pressure of steam, during its admission into the cylinder, is uniform up to the point of cutting off, and that the expansion is continued regularly to the end of the stroke. The relative performances have been calculated without any allowance for the effect of compressive action.

    The calculations have been made for periods of admission ranging from $100 \%$, or the whole of the stroke, to $6.4 \%$, or $1 / 16$ of the stroke. And though, nominally, the expansion is 16 times in the last instance, it is actually ouly 8 times, as given in the first column. The great difference between the nominal and the actual ratios of expansion is caused by the elearance, which is equal to \%\% of the stroke, and causes the nominal volume of yteam admitted, namely, $6.4 \%$, to be augmented to $6.4+\tau=13.4 \%$ of the stroke, or say, double, for expansion. When the steam is cut off at $1 / 9$, the actual expansion is only 6 times; wher cut off at $1 / 5$, the expansion is 4 tinues; when cut off at $1 / 3$, the expansion is $22 / 3$ times; and to effect an actual exponsion to twice the initial volume, the steam is cut off at $461 / 2 \%$ of the stroke, not at half-stroke.

    ## Expansive Working of Steam-Actual Ratios of Espansion, with the Relative Periods of Admission, Pressures, and Performance.

    Steam-pressure 100 lbs absolute. Clearance atjeach end of the cylinder $7 \%$ nf the stroke.
    (Single Cylinder.)
    

    Though a uniform clearance of $7 \%$ at each end of the stroke has been assumed as an average proportion for the purpose of compiling the table, the clearance of cylinders with ordinary slides varies considerably-say from $5 \%$ to $10 \%$. (With Corliss engines it is sometimes as low as 2\%.) With the clearance, $\% \%$, that has been assumed, the table gives approximate results sufficient for most practical purposes, and more trustworthy than results deduced by calculations based on simple tables of hyperbolic logarithms, where clearance is neglected.

    Weight of steam of 100 lbs total initial pressure admitted for one stroke, per cubic foot of net capacity of the cylinder, in decimals of a pound = reciprocal of figures in column 9.
    Total actual work done by steam of 100 lbs . total initial pressure in one stroke per cubic foot of net capacity of cylinder, in foot-pounds = figures in column $7 \div$ figures in column 9 .
    Rule 1: To find the net capacity of cylinder for a given weight of steam admitted for one stroke, and a given actual ratio of expansion. (Column 9 of table.) - Multiply the volume of 1 lb . of steam of the given pressure by the given weight in pounds, and by the actual ratio of expansion. Multiply the product by 100 , and divide by 100 plus the percentage of clearance. The quotient is the net capacity of the cylinder.
    Rule 2: To find the net capacity of cylinder for the performance of a given amount of total actual work in one stroke, with a given initial pressure and actual ratio of expansion.-Divide the given work by the total actual work done by 1 lb . of steam of the same pressure, and with the same actual ratio of expansion; the quotient is the weight of steam necessary to do the given work, for which the net capacity is found by Rule 1 preceding.

    Note.-1. Conversely, the weight of steam admitted per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per pound of steam, as obtained by Rule 1.
    2. The total actual work done per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per foot-pound of work done, as obtained by Rule 2.
    3. The total actual work done per square inch of piston per foot of the stroke is $1 / 144$ th part of the work done per cubic foot.
    4. The resistance of back pressure of exhaust and of compression are to be added to the net work required to be done, to find the total actual work.

    ## Appendix to above Table-Multipliers for Net Cylinder-capacity, and Total actual Work done.

    (For steam of other pressures than 100 lbs . per square inch.)

    | Total Pres. sures per square inch. | Multipliers. |  | Total Pres. sures per square inch. | Multipliers. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | For Col. 7. Total Work by 1 lb . of Steam. | For Col. 9. Capacity of Cylinder. |  | For Col. 7. Total Work by 1 lb . of Steam. | For Col. 9. Capacity of Cylinder. |
    | ${ }^{165} 6$ | . 975 | 1.50 | 10. | 1.000 | 1.00 |
    | 70 | . 981 | 1.40 | 110 | 1.009 | 1.917 |
    | 75 | . 988 | 1.31 | 120 | 1.011 | . 843 |
    | 80 | . 988 | 1.24 | 130 | 1.015 | . 81 |
    | 85 | . 991 | 1.17 | 140 | 1.022 | . 730 |
    | 90 | . 995 | 1.11 | 150 | 1.025 | . 683 |
    | 95 | . 998 | 1.05 | 160 | 1.031 | . 644 |

    The figures in the second column of this table are derived by multiplying the total pressure per square foot of any given steam by the volume in cubic feet of 1 lb . of such steam, and dividing the product by 62,352 , which is the product in foot-pounds for steam of 100 lbs . pressure. The quotient is the multiplier for the given pressure.

    The figures in the third column are the quotients of the figures in the second column divided by the ratio of the pressure of the given steam to 100 lbs.

    Measures for Comparing the Duty of Engines.-Capacity is measured in horse-powers, expressed by the initials, H.P.: $1 \mathrm{H} . \mathrm{P} .=33,00$ ? ft.-lbs. per ininute, $=550$ ft.-1bs. per second, $=1,980,000 \mathrm{ft} .-\mathrm{lbs}$. per hour
    $1 \mathrm{ft} .-\mathrm{lb} .=$ a pressure of 1 lb . exerted through a space of 1 ft . Economy is measured, 1 , in pounds of coal per horse-power per hour; 2 , in pounds of steam per horse-power per hour. The second of these measures is the more accurate and scientific, since the engine uses steam and not coal, and it is indepndent of the economy of the boiler.

    In gas-engine tests the common measure is the number of cubic feet of gas (measured at atmospheric pressure) per horse-power, but as all gas is not of the same quality, it is necessary for comparison of tests to give the analysis of the gas. When the gas for one engine is made in one gas-producer, then the number of pominds of coal used in the producer per hour per horse-power of the engine is the proper measure of economy.

    Economy, or duty of an engine, is also measured in the number of footpounds of work done per pound of fuel. As 1 horse-power is equal to 1,980,$000 \mathrm{ft} .-\mathrm{lbs}$. of worlk in an hour, a duty of 1 lb . of coal per H.P. per hour would be equal to $1,980,000 \mathrm{ft} .-1 \mathrm{bs}$. per lb . of fuel; 2 lbs . per H.P. per hour equals $990,000 \mathrm{ft} .-\mathrm{lbs}$. per lb . of fuel, etc.

    The duty of pumping-engines is commonly expressed by the number of foot-pounds of work done per 100 lbs of coal.

    When the duty of a pumping-engine is thus given, the equivalent number of pounds of fuel consumed per horse-power per hour is found by dividing 198 by the number of millions of foot-pounds of duty. Thus a pumpingengine giving a duty of 99 millions is equivalent to $198 / 99=2 \mathrm{lbs}$. of fuel per horse-power per hour.
    Efficiency Measured in Thermal Units per Minute. Some writers expmess the efficiency of an engine in terms of the number of thermal units used by the engine per minute for each indicated horse-power, instead of by the number of pounds of steam used per hour.
    The heat chargeable to an engine per pound of steam is the difference between the total heat in a pound of steam at the boiler-pressure and that in a pound of the feed-water entering the boiler. In the case of condensing engines, suppose we have a temperature in the hot-well of $101^{\circ} \mathrm{F}$., corresponding to a vacuum of 28 in . of mercury, or an absolute pressure of 1 lb . per sq. in. above a perfect vacuum: we may feed the water into the boiler at that temperature. In the case of a non-condensing-engine, by using a portion of the exliaust steam in a good feed-water heater, at a pressure a trifle above the atmosphere (due to the resistance of the exhaust passages through the heater), we may obtain feed-water at $212^{\circ}$. One pound of steam used by the engine then would be equivalent to thermal units as follows:
    Pressure of steam by gauge :
    $50 \begin{array}{llllll} & 75 & 100 & 125 & 150 & 175\end{array}$
    Total heat in steam above $32^{\circ}$ :
    $\begin{array}{lllllll}11 \% \text { 家. } 8 & 11 \% 9.6 & 1185.0 & 1189.5 & 1193.5 & 1197.0 & 1200.2\end{array}$
    Subtracting 69.1 and 180.9 heat-units, respectively, the heat above $32^{\circ}$ in feed-water of $101^{\circ}$ and $212^{\circ}$ F.,.we have-
    Heat given by boiler :

    | Feed at $101^{\circ} \ldots \ldots$ | 1103.7 | 1110.5 | 1115.9 | 1120.4 | 1124.4 | 1127.9 | 1131.1 |
    | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | Feed at $212^{\circ} \ldots \ldots$. | 991.9 | 998.7 | 1004.1 | 1008.6 | 1012.6 | 1016.1 | 1019.3 |

    Thermal units per minute used by an engine for each pound of steam used per indicated horse-power per hour :

    | Feed at $1010 \ldots \ldots$. | 18.40 | 18.51 | 18.60 | 18.67 | 18.74 | 18.80 | 18.85 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Feed at $2122^{\circ} \ldots \ldots$ | 16.53 | 16.65 | 16.74 | 16.81 | 16.88 | 16.94 | 16.99 |

    Examples.-A triple-expansion engine, condensing, with steam at 175 lbs ., gauge and vacuum 28 in ., uses 13 lbs . of water per I.H.P. per hour, and a high-speed non-condensing engine, with steam at 100 lbs . gange, uses 30 lbs. How many thermal units per minute does each consume?
    Ans. $-13 \times 18.80=244.4$, and $30 \times 16.64=50 \because .2$ thermal units per minute.
    A perfect engine converting all the heat-energy of the steam into work would require $33,000 \mathrm{ft}$. $-1 \mathrm{bs} . \div 778=42.4164$ thermal units per minute per indicated horse-power. This figure, $4 . .4161$, therefore, divided by the number of thermal units per minute per I.H.P. consumed by an engine, gives its efficiency as compared with an ideally perfect engine. In the examples above, 42.4164 divided by 244.4 and by 503.2 gives $17.35 \%$ and $8.45 \%$ efficiency, respectively.
    Total Work Done by One Pound of Steam Expanded in a Single Cylinder. (Culumn $\gamma$ of table.)-If 1 pound of water be converted into steam of atmospheric pressure $=2116.8 \mathrm{ibs}$. per sq. ft., it. occu. pies a volume equal to 26.36 cu , ft. The work done is equal to 216.8 lbs .
    $\times 26.36 \mathrm{ft} .=55,788 \mathrm{ft} .1 \mathrm{lbs}$. The heat equivalent of this work is $(55,788 \div 718$ $\Rightarrow 71.7$ units. This is the work of 1 lb . of steam of one atmosphere acting on a piston without expansion.

    The gross work thus done on a piston by 1 lb . of steam generated at total pressures varying from 15 lbs . to 100 lbs . per sq . in. varies in round numbers from 56,000 to $62,000 \mathrm{ft}$.- 1 bs ., equivalent to from 7 c to 80 units of heat.
    This work of 1 lb . of steam without expansion is reduced by clearance according to the proportion it bears to the net capacity of the cylinder. If the clearance be $\% \%$ of the stroke, the work of a given weight of steam without expansion, admitted for the whole of the stroke, is reduced in the ratio of $10 \%$ to 100 .

    Having determined by this ratio the quantity of work of 1 lb . of steam without expansion, as reduced by clearance, the work of the same weight of steam for various ratios of expansion may be found by multiplying it by the relative performance of equal weights of steam, given in the 6th column of the table.
    Quantity of Steam Consumed per Horse-power of Totaj Work per Hour. (Column 8 of table.) -The measure of a horse-power is the performance of $33,000 \mathrm{ft}$.- 1 lbs . per minute, or $1,980,000 \mathrm{ft} .-1 \mathrm{bs}$. per hour. This work, divided by the work of 1 lb . of steam, gives the weight of steam required per horse-power per hour. For example, the total actual worlk done in the cylinder by 1 lb . of 100 lbs . steam, without expansion and with $7 \%$ of clearance, is $58,273 \mathrm{ft}$. -lbs . ; and $\frac{1,980,000}{58,273}=34 \mathrm{lbs}$. of steam, is the weight of steam consumed for the total work done in the cylinder per horse-power per hour. For any shorter period of admission with expansion the weight of steam per horse-power is less, as the total work of 1 lb . of steam is more, and may be found by dividing $1,980,000 \mathrm{ft}$.-1bs. by the respective total worls done; or by dividing 34 lbs by the ratio of performance, column 6 in the table.

    ## ACTUAL EXPANSIONS.

    ## With Different Clearances and Cut-offs.

    Computed by A. F. Nagle.

    | $\begin{aligned} & \text { Cut- } \\ & \text { off. } \end{aligned}$ | Per Cent of Clearance. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
    | . 01 | 100.00 | 50.5 | 34.0 | 25.75 | 20.8 | 17.5 | 15.14 | 13.38 | 12.00 | 10.9 | 10 |
    | .02 | 50.00 | 33.67 | 25.50 | 20.60 | 17.53 | 15.00 | 13.25 | 11.89 | 10.80 | 9.91 | 9.17 |
    | . 03 | 33.33 | 25.25 | 20.40 | 17.16 | 14.86 | 13.12 | 11.78 | 10.70 | 9.8: | 9.08 | 8.46 |
    | . 04 | 25.00 | 20.20 | 17.00 | 14.71 | 13.00 | 11.66 | 10.60 | 9.73 | 9.00 | 8.39 | 7.86 |
    | . 05 | 20.00 | 16.83 | 14.57 | 12.87 | 11.55 | 10.50 | 9.64 | 8.92 | 8.31 | 7.79 | 7.33 |
    | . 06 | 16.67 | 14.43 | 12.75 | 11.44 | 10.40 | 9.55 | 8.83 | 8.23 | 7.71 | 7.27 | 6.88 |
    | . 07 | 14.28 | 12.6: | 11.33 | 10.30 | 9.46 | 8.75 | 8.15 | 7.64 | 7.20 | 6.81 | 6.41 |
    | . 08 | 12.50 | 11.22 | 10.2 | 9.36 | 8.67 | 8.08 | ${ }^{7.5} 5$ | 7.13 | 6.75 | 6.41 | 6.11 |
    | . 09 | 11.11 | 10.10 | 9.27 | 8.58 | 8.00 | 7.50 | 7.07 | 6.69 | 6.35 | 6.06 | 5.79 |
    | . 10 | 10.00 | 9.18 | 8.50 | 7.92 | 7.48 | 7.00 | 6.62 | 6.30 | 6.00 | 5.74 | 5.50 |
    | . 11 | 9.09 | 8.42 | 7.84 | 7.36 | 6.93 | 6.56 | 6.24 | 5.94 | 5.68 | 5.45 | 5.24 |
    | . 12 | 8.33 | 7.78 | 7.29 | 6.86 | 6.50 | 6.18 | 5.89 | 5.63 | 5.40 | 5.19 | 5.00 |
    | . 14 | 7.14 | 6.73 | 6.37 | 6.06 | 5.78 | 5.53 | 5.30 | 5.10 | 4.91 | 4.74 | 4.58 |
    | . 16 | 6.25 | 5.94 | 5.67 | 5.42 | 5.20 | 5.00 | 4.82 | 4.65 | 4.50 | 4.36 | 4.23 |
    | . 20 | 5.00 | 4.81 | 4.64 | 4.48 | 4.33 | 4.20 | 4.48 | 3.96 | 3.86 | 3.76 | 3. 67 |
    | . 25 | 4.00 | 3.88 | 3. 17 | 3.68 | 3.58 | 3.50 | 3.42 | 3.34 | 3.27 | 3.21 | 3.14 |
    | . 30 | 3.33 | 3.26 | 3.19 | 3.12 | 3.06 | 3.00 | 2.94 | 2.90 | $\stackrel{3}{2.84}$ | 2.80 | $\underset{2.75}{ }$ |
    | . 40 | 2.50 | 2.46 | 2.43 |  | 2.36 | $\stackrel{2}{2.33}$ | 2.30 | 2.28 | 2.85 | 2. 22 | 2. 20 |
    | . 50 | 2.00 | 1.98 | 1.96 | 1.94 | 1.92 | 1.90 | 1.89 | 1.88 | 1.86 | 1.85 | 1.83 |
    | . 60 | 1.67 | 1.66 | 1.65 | 1.64 | 1.63 | 1.615 | 1.606 | 1.597 | 1.588 | 1.580 | $1.5 \% 1$ |
    | . 80 | 1.43 | 1.42 | 1.42 | 1.41 | 1.41 | 1.400 | 1.395 | 1.390 | 1.385 | 1.380 | 1.375 |
    | . 80 | 1.111 | 1.25 | 1.244 | 1.241 | 1.238 | 1.235 | 1.233 | 1.230 | 1.227 | 1.224 | 1.222 |
    | 1.00 | 1.00 |  | 1.000 | 1.000 |  |  | 1.104 | 1.103 | 1.102 | 1.101 | 1.100 |
    |  | 1.0 |  |  |  |  |  |  |  |  |  | 1.000 |

    ## Relative Effciency of 1 lb . of Steam with and without Clearance; back pressure and compression not considered.

    $$
    \text { Mean total pressure }=p=\frac{P(l+c)+P(l+c) \text { hyp. log. } R-P c}{L}
    $$

    Let $P=1 ; L=100 ; l=25 ; c=7$.

    $$
    p=\frac{32+32 \text { hyp. } \log \cdot \frac{107}{32}-7}{100}=\frac{32+32 \times 1.209-7}{100}=: 637 .
    $$

    If the clearance be added to the stroke, so that clearance becomes zero, the same quantity of steam being used, admission $l$ being then $=l+c=$ 32, and stroke $L+c=107$.

    $$
    p_{1}=\frac{32+32 \text { hyp. } \log \cdot \frac{107}{32}-0}{107}=\frac{32+32 \times 1.209}{107}=.70 \%
    $$

    That is, if the clearance be reduced to 0 , the amount of the clearance 7 being added to both the admission and the stroke, the same quantity of stean will do more work than when the clearance is 7 in the ratio $707: 637$, or $11 \%$ more.
    Hack Pressure Considered. - If back pressure $=10$ of $P$, this amount has to be subtracted from $p$ and $p_{1}$ giving $p=.537, p_{1}=.607$, the work of a given quantity of stean used without clearance being greater than when clearance is 7 per cent in the ratio of $607: 537$, or $13 \%$ more.
    Effect of Compression.-By early closure of the exhaust, so that a portion of the exhaust-steam is compressed into the clearance-space, much of the loss due to clearance may be avoided. If expansion is continued down to the back pressure, if the back pressure is uniform throughout the exhaust-stroke, and if compression begins at such point that the exhauststeam remaining in the cylinder is compressed to the initial pressure at the end of the back stroke, then the work of compression of the exhaust-steam equals the work done during expansion by the clearance-steam. The clear-ance-space being filled by the exhaust-steam thus compressed, no new steam is required to fill the clearance-space for the next forward stroke, and the work and efficiency of the steam used in the cylinder are just the same as if there were no clearance and no compression. When, however, there is a drop in pressure from the final pressure of the expansion, or the terminal pressure, to the exhaust or back pressure (the usual case), the work of compression to the initial pressure is greater than the work done by the expansion of the clearance-steam, so that a loss of efficiency results. In this case a greater efficiency can be attained by inclosing for compression a less quantity of steam than that needed to fill the clearance-space with steam of the initial pressure. (See Clark, S. E., p. 399 , et seq.; also F. H. Ball, Trans. A. S. M. E., xiv. 1067.) It is shown by Clark that a somewhat greater efficiency is thus attained whether or not the pressure of the stean be carried down by expansion to the back exhaust-pressure. As a result of calculations to determine the most efficient periods of compression for various percentages of back pressure, and for various periods of admission, he gives the table on the next page :
    Clearance in Low- and High-speed Engines. (Harris Tabor, Am. Mach., Sept. 17, 1891.)-The construction of the ligh-speed ongine is such, with its relatively short stroke, that the clearance must be much larger than in the releasing-valve type. The short-stroke engine is, of necessity, an engine with large clearance, which is aggravated when a variable compression is a feature. Conversely, the releasing-valve gear is, from necessity, an engine of slow rotative speed, where great power is obtainable from long stroke, and small clearance is a feature in its construction. In one case the clearance will vary from $8 \%$ to $1 \% \%$ of the piston-displacement, and in the other from $2 \%$ to $3 \%$. In the case of an eugius with a clearance equalling $10 \%$ of the piston-displacement the waste room becomes enormous when considered in connection with an early cut-off. The system of compounding reduces the waste due to clearance in proportion as the steam is expanded to a lower pressure. The farther expansion is carried through a train of cylinders the greater will be the reduction of waste due to clearance. This is shown from the fact that the high-speed engine, expanding
    steam much less than the Corliss, will show a greater gain when changed from simple to compound than its rival under similar conditions.

    Compression of Steam in the Cylinder.
    Best Periods of Compression; Clearance r per cent.

    | Cut-off in Percentages of the Stroke. | Total Back Pressure, in percentages of the total initial pressure |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 21/3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
    |  | Periods of Compression, in parts of the stroke. |  |  |  |  |  |  |  |
    | 10\% | 65\% |  |  |  |  |  |  |  |
    | 15 | 58 | 52 | 40 | $\stackrel{39}{ }{ }^{29}$ | 23\% |  |  |  |
    | 20 | 52 | 47 | 37 | 27 | 22 | ir |  |  |
    | 25 30 | 47 | 42 39 | 34 32 32 | 26 20 20 | 21 20 | $16 \%$ |  |  |
    | 35 | 39 | 35 | 29 | $\stackrel{20}{23}$ | 19 | 16 | $14 \%$ | 112 |
    | 40 | 36 | 32 | 27 | 21 | 18 | 14 | 13 | 11 |
    | 45 | 33 | 30 | 25 | 20 | 17 | 14 | 12 | 10 |
    | 50 | 30 | 27 | 23 | 18 | 16 | 13 | 12 | 10 |
    | 55 60 | $\stackrel{27}{24}$ | 24 | 21 | 17 | 15 | 13 | 11 | 9 |
    | 60 65 | 24 22 | $\stackrel{22}{20}$ | 19 | 15 | 14 | 12 | 11 | 9 |
    | 70 | 19 | 17 | 16 | 14 | 14 | 12 | 10 | 8 |
    | 75 | 17 | 16 | 14 | 13 | 12 | 11 | 9 | 8 |

    Notes to Table.-1. For periods of admission, or percentages of back pressure, other than those given, the periods of compression may be readily found by interpolation.
    2. For any other clearance, the values of the tabulated periods of compression are to be altered in the ratio of 7 to the given percentage of clearance.
    Cylinder-condensation may have considerable effect upon the best point of compression, but it has not yet (1893) been determined by experiment.
    (Trans. A. S. M. E., xir. 1078.)
    Cylinder-condensation.-Rankine, S. E., p. 421, says: Conduction of heat to and from the metal of the cylinder, or to and from liquid water contained in the cylinder, has the effect of lowering the pressure at the begimning and raising it at the end of the stroke, the lowering effect being on the whole greater than the raising effect. In some experiments the quantity of steam wasted through alternate liquefaction and evaporation in the cylinder has been found to be greater than the quantity which performed the work.

    Percentage of Loss by Cylinder-condensation, taken at Cut-off. (From circular of the Ashcroft Mfg. Co. on the Tabor Indicator, 1889.)

    | $\begin{aligned} & \text { శ్ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Percent. of Feed-water accounted for by the Indicator diagram. |  |  | Percent. of Feed-water Consumption due to Cylinder-condensat'n. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{gathered} 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ | Simple Engines. | Compound Engines, h.p. cyl. | Triple-expansion Engines, h.p. cyl. | Simple Engines. | Compound Engines, h.p. cyl. | Triple-expansion Engines, h.p. cyl. |
    | 5 10 | 58 |  |  | 42 |  |  |
    | 15 | ${ }_{71}^{66}$ | 74 76 |  | 34 29 |  |  |
    | 20 | 74 | r8 | 80 | $\stackrel{29}{26}$ | 22 | $\begin{aligned} & 22 \\ & 20 \end{aligned}$ |
    | 30 | r8 | 82 | 84 | $\stackrel{2}{2}$ | 18 | 16 |
    | 40 | 82 | 85 | 87 | 18 | 15 | 13 |
    | 50 | 86 | 88 | 90 | 14 | 12 | 10 |

    Theoretical Compared with Actual Water-consumption, Single-cylinder Automatic Cut-off Engines. (From the catalogue of the Buckeye Engine Co.)-The following table has been prepared on the basis of the pressures that result in practice with a constant boiler-pressure of 80 lbs . and different points of cut-off, with Buckeye engines and others with similar clearance. Fractions are omitted, except in the percentage colnmn, as the degree of accuracy their use would seem to imply is not attained or aimed at.

    | Cut-off Part of Stroke. | Mean Effective Pressure | TotalTerminalPressure. | Indicated Rate, lbs. Water, per I.H.P. per hour. | Assumed. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Act'l Rate. | Per ct. Loss. |
    | . 10 | 18 | 11 | 20 | 32 | 58 |
    | . 15 | ${ }_{35}^{27}$ | ${ }_{20}^{15}$ | 19 | ${ }_{25}^{27}$ | ${ }_{31}^{41.5}$ |
    | . 25 | 42 | ${ }_{25}$ | ${ }_{20}^{19}$ | $\stackrel{25}{25}$ | ${ }_{25}^{31.5}$ |
    | . 30 | 48 | 30 | ${ }_{2} 0$ | 24 | 21.8 |
    | . 35 | 53 | 35 | 21 | 25 |  |
    | . 40 | 57 | 38 | 22 | 26 | 16.7 |
    | . 45 | 61 | 43 | 23 | 27 |  |
    | . 50 | 64 | 48 | 24 | 27 | 13.6 |

    It will be seen that while the best indicated economy is when the cut-off is about at .15 or . 20 of the stroke, giving about 30 lbs . M.E.P., and a terminal 3 or 4 lbs. above atmospliere, when we come to add the percentages due to e constant amount of unindicated loss, as per sixth column, the most economical point of cut-off is found to be about . 30 of the stroke, giving 48 lbs . M.E.P. and 30 lbs . terminal pressure. This showing agrees substantially with modern experience under automatic cut-off regulation.
    Experiments on Cylinder-condensation.-Experiments by Major Thos. English (Eng'g, Oct. 7, 1887, p. 386) with all engine $10 \times 14$ in., jacketed in the sides but not on the ends, indicate that the net initial condensation (or excess of condensation over re-evaporation) by the clearance surface varies directly as the initial density of the steam, and inversely as the square root of the number of revolutions per unit of time. The mean results gave for the net initial condensation by clearance-space per sq. ft. of surface at one rev. per second 6.06 thermal units in the engine when run non-condensing and 5.75 units when condensing.
    G. R. Bodmer ( $E n g^{\prime} g$, Marcl1 4, 1892, p. 299) says : Within the ordinary limits of expansiou desirable in one cylinder the expansion ratio has practically no influence on the amount of condensation per stroke, which for simple engines can be expressed by the following formula for the weiglit of water condensed [per minute, probably; the original does not state]: $W=C \frac{S(T-t)}{L \sqrt[3]{N^{2}}}$, where $T$ denotes the mean admission temperature, $t$ the mean exliaust temperature, $S$ clearance-surface (square feet), $N$ the number of revolutions per second, $L$ latent heat of stean at the mean admission temperature, and $C$ a constant for any given type of engine.

    Mr. Bodmer found from experimental data that for high-pressure nonjacketed engines $C=$ about 0.11 , for condensing non-jacketed engines 0.085 to 0.11 , for condensing jacketed engines 0.085 to 0.053 . The figures for jacketed engines apply to those jacketed in the usual way, and not at the ends.
    $C$ varies for different engines of the same class, but is practically constant for any given engine. For simple high-pressure non-jacketed engines it was found to range from 0.1 to 0.112 .

    Applying Mr. Bodmer's formula to the case of a Corliss non-jacketed non. condensing engine, 4 -ft. stroke, 24 in . diam, 60 revs. per min., initial pressure 90 lbs . gauge, exhaust pressure 2 lbs., we have $T-t=112^{\circ}, N=1$, $L=880, S=7$ sq. ft.; and, taking $C=.112$ and $W=1 \mathrm{bs}$. water condensed per minute, $W=\frac{.112 \times 112 \times 7}{1 \times 880}=.09 \mathrm{lb}$. per minute, or 5.4 lbs . per hour. If the steam used per I.H.P. per hour according to the diagram is 20 lbs , the actual water consumption is 25.4 lbs ., corresponding to a cylinder condensation of $2 \% \%$.

    ## INDICATOR-DIAGRAM OF A SINGLE-CYLINDER LNGINE.

    Definitions. - The Atmospheric Line, $A B$, is a line drawn by the pencil of the indicator when the connections with the engine are closed and both sides of the piston are open to the atmosphere.
    

    Fig. 138.
    The Vacuum Line, $O X$, is a reference line usually drawn about $14 \% / 10$ pounds by scale below the atmospheric line.
    The Clearance Line, $O Y$, is a reference line drawn at a distance from the end of the diagram equal to the same per ceni of its length as the clearance and waste room is of the piston-displacement.
    The Line of Boiler-pressure, $J K$, is drawn parallel to the atmospheric line, and at a distance from it by scale equal to the boiler-pressure shown by the gauge.

    The Admission Line, $C D$, shows the rise of pressure due to the admission of steam to the cylinder by opening the stean-valve.

    The Steam Line, $D E$, is drawn when the steam-valve is open and steam is being admitted to the cyliuder.

    The Point of Cut-off, $E$, is the point where the admission of steam is stopped by the closing of the valve. It is often difficult to determine the exact point at which the cut-off takes place. It is usually located where the ontline of the diagram changes its curvature from convex to concave.

    The Expansion Curve, EH, shows the fall in pressure as the steam in the cylinder expands doing work.

    The Point of Release, $F$, shows when the exhaust-valve opens.
    The Exhanst Line, FG, represents the change in pressure that takes place when the exhaust-valve opens.

    The Back-pressure Line, $G H$, shows the pressure against which the piston acts during its return stroke.

    The Point of Exhaust Closure, $H$, is the point where the exhanst-valve closes. It cammot be located definitely, as the change in pressure is at first due to the gradual closing of the valve.

    The Compression Curve, $H C$, shows the rise in pressure due to the compression of the steam remaining in the cylinder after the exhaust-valve has closed.

    The Mean Height of the Diagram equals its area divided by its length.
    The Mean Effective Pressure is the mean net pressnre urging the piston forward $=$ the mean height $\times$ the scale of the indicator-spring.

    To find the Mean Effective Pressure from the Diayram.-Divide the length, $L B$, into a number, say 10 , equal parts, setting off half a part at $L$, half a part at $B$, and nine other parts between; erect ordinates perpendicnlar to the atmospheric line at the points of division of $L B$, cutting the diagram; add together the lengths of these ordinates intercepted between the upper and lower lines of the diagram and divide by their number. This
    gives the mean height, which multiplied by the scale of the indicator-spring gives the M.E.P. Or fiud the area by a planimeter, or other means (see Mensuration, p. 55), and divide by the length $L B$ to obtain the mean height.

    The Initial Pressure is the pressure acting on the piston at the beginning of the stroke.

    The Terminal Pressure is the pressure above the line of perfect vacuum that would exist at the end of the stroke if the steam had not been released earlier. It is found by continuing the expansion-curve to the end of the diagram.

    ## INDICATED HORSE-POWER OF ENGINES, SINGLECYLINDER.

    $$
    \text { Indicated Horse-power I.H.P. }=\frac{P L a n}{33,000}
    $$

    In which $P=$ mean effective pressure in lbs. per sq. in.; $L=$ length of stroke in feet; $a=$ area of pistoll in square inches. For accuracy, one half of the sectional area of the piston-rod must be subtracted from the area of the piston if the rod passes through one head, or the whole area of the rod if it passes through both heads; $n=$ No. of single strokes per min. $=2 \times$ No. of revolutions.

    $$
    \text { I.H.Y. }=\frac{P a . S}{33,000}, \text { in which } S=\text { piston speed in feet per minute. }
    $$

    $$
    \text { I.H.P. }=\frac{F L d^{2} n}{42,01 \bar{F}^{\prime}}=\frac{P d^{2} S}{42,017}=.0000238 P L d^{2} n=.0000238 P d^{2} S
    $$

    In which $d=$ diam. of cyl. in inches. (The figures 238 are exact, since $7854 \div 33=23.8$ exactly.) If product of piston-speed $\times$ mean effective pressure $=42,01 \%$, then the horse-power would equal the square of the diameter in inches.
    Handy Rule for Estimating the Horsempower of a Single-cylinder Engine.-Square the diameter and divide by 2. This is correct whenever the product of the mean effective pressure and the pistonspeed $=1 / 2$ of 42,017 , or, say, 21,000 , viz., when M.E.P. $=30$ and $S=700$; when M.E.P. $=35$ and $S=600 ;$ when M.E.P. $=38.2$ and $S=550$; and when M.E.P. $=42$ and $S=500$. These conditions correspond to those of ordinary practice with both Corliss engines and shaft-governor high-speed engines.
    Given Horse-power, Mean Effective Pressure, and Pistoin-speed, to find Size of Cylinder.-

    $$
    \text { Area }=\frac{33,000 \times \text { I.H.P. }}{P L n} . \quad \text { Diameter }=205 \sqrt{\frac{\overline{\text { I.H.P. }}}{P S}} . \quad \text { (Exact.) }
    $$

    Brake Forse-power is the actual horse-power of the engine as measured at the Hy-wheel by a friction-brake or dynamometer. It is the indicared horse-power minus the friction of the engine.
    Table for Roughiy Approximating the Horse power of a Compound Engime from the Diameter of its Lowpressure Cylinder. - The indicated horse-power of an engine being $\frac{P s d^{2}}{42,017}$, in which $P=$ mean effective pressure per sq. in., $s=$ piston-speed in ft . per min., and $d=$ diam. of cylinder in inches; if $s=600 \mathrm{ft}$. per min., which is approximately the speed of modern stationary engines, and $P=35$ lbs., which is an approximately average figure for the M.E.P. of singlecylinder engines, and of compound engines referred to the low-pressure cylinder, then I.H.P. $=1 / 2 d^{2}$; hence the rough-and-ready rule for horse-power given above: Square the diameter in inches and divide by 2 . This applies to triple and quadruple expansion engines as well as to single cylinder and compound. For most economical loading, the M.E.P. referred to the lowpressure cylinder of compound engines is usually not greater than that of simple engines; for the greater economy is obtained by a greater number of expansions of steam of higher pressures, and the greater the number of expansions for a given initial pressure the lower the mean effective pressure. The following tablo gives approximately the figures of mean total and effec-
    tive pressures for the different types of engines, together with the factor by which the square of the diameter 'is to be multiplied to obtain the horsepower at most economical loading, for a piston-speed of 600 ft . per minute.

    Type of Engine.

    |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

    Non-condensing.

    | Single Cylinder. | 100 | 5. | 20 | .522 | 52.2 | 15.5 | 36.7 | 600 | .524 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Compound ........ | 120 | 7.5 | 16 | .402 | 48.2 | 15.5 | 32.7 | 6 | .467 |
    | Triple.......... | 100 | 10. | 16 | .330 | 52.8 | 15.5 | 37.3 | 6 | .533 |
    | Quadruple...... | 200 | 12.5 | 16 | .282 | 56.4 | 15.5 | 40.9 | 6 | .584 |

    Condensing Engines.

    | Single Cylinder. | 100 | 10. | 10 | .330 | 33.0 | 2 | 31.0 | 600 | .443 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Compound..... | 120 | 15. | 8 | .247 | 29.6 | 2 | $2 \pi .6$ | 6 | .390 |
    | Triple......... | 160 | 20. | 8 | .200 | 32.0 | 2 | 30.0 | 6 | .429 |
    | Quadruple...... | 200 | 25. | 8 | .169 | 33.8 | 2 | 31.8 | $י$ | .454 |

    For any other piston-speed than 600 ft . per min., multiply the figures in the last column by the ratio of the piston-speed to 600 ft .

    Nominal Horse-power. -The term " nominal horse-power" originated in the time of Watt, and was used to express approximately the power of an engine as calculated from its diameter, estimating the mean pressure in the cylinder at 7 lbs. above the atmosphere. It has long been obsolete in America, and is nearly ohsolete in England.

    Horse-power Constant of a given Engine for a Fixed Speed = product of its area of piston iu square inches, length of stroke in feet, and number of single strokes per minute divided by 33,000 or $\frac{L a n}{33,000}$ $=C$. The product of the mean effective pressure as found by the diagram and this constant is the indicated horse-power.

    Horse-power Constant of a given Engine for Varying Speeds = product of its area of piston and length of stroke divided by $3: 3,000$. This multiplied by the mean effective pressure and by the number of single strokes per minute is the indicated horse-power.

    ## Horsepower Constant of any Engime of a given Diamm

    eter of Cylinder, whatever the length of stroke $=$ area of piston $+33,000$ $=$ square of the dianteter of piston in inches $\times .0000238$. A table of constants derived from thls formula is given below.The constant multiplied by the piston-speed in feet per minute and by the M.E.P. gives the I.H.P.

    Errors of Indicators. - The most common error is that of the spring, which may vary from its normal rating; the error may be determined by proper testing apparatus and allowed for. But after making this correction, even with the best work, the results are liable to variable errors which may amount to 2 or 3 per cent. See Barrus, Trans. A. S. M. E., v. 310; Denton, A. S. M. E., xi. 329; David Smith, U. S. N., Proc. Eng`g Congress, 1893, Marine Division.

    Indicator "Rigs," or Reducing-motions; Interpretation of Diagrams for Errors of Steam-distribution, etc. For these see circulars of manufacturers of Indicators; also works on the Indicator:

    Table of Engine Constants for Use in Figuring Horsepower. - "Horse-power constant" for cylinders from 1 inch to 60 inches in diameter, advancing hy 8ths, for one foot of piston-speed per minute and one pound of M.E.P. Find the diameter of the cylinder in the column at the side. If the diameter contains 110 fraction the constant will be found in the colnmn headed Even Inches. If the diameter is not in even inches, follow the line horizontally to the column corresponding to the required fraction.

    The constants imultiplied by the piston-speed and by the M.E.P. give the horse-power.

    | Diameter of Cylinder. | Even Inches. | $\begin{gathered} +1 / 8 \\ \text { or } \\ .125 . \end{gathered}$ | $\begin{aligned} & +1 / 4 \\ & \text { or } \\ & .25 . \end{aligned}$ | $\begin{gathered} +3 / 8 \\ o r \\ .3 \% 5 . \end{gathered}$ | $\begin{aligned} & +1 / 2 \\ & \text { or } \\ & .5 . \end{aligned}$ | $\begin{aligned} & +5 / 8 \\ & \text { or } \\ & .625 . \end{aligned}$ | $\begin{aligned} & +3 / 4 \\ & \text { or } \\ & .75 . \end{aligned}$ | $\begin{aligned} & +7 / 8 \\ & \text { or } \\ & .875 . \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | . 0000 | 0000301 | 0000 | 0000450 | . 0000535 | 0000628 | . 0000729 | 0000837 |
    | 2 | . 0000952 | $00010 \pi 4$ | 0001205 | . 0001342 | . 0001487 | 0001640 | 0001800 | 0001967 |
    | 3 | . 0002142 | 0002324 | . 0002514 | .000:2711 | .0002915 | 000312 T | 0003347 | 0003574 |
    | 4 | . 0003808 | 0004050 | . 0004299 | . 0004554 | . 0004819 | 0005091 | 0005370 | . 0005656 |
    | 5 | . 0005950 | . 0006251 | 0006560 | . 0006876 | 0007199 | 0007530 | 0007869 | . 0008815 |
    | 6 | . 0008568 | . 0008929 | . 0009297 | .00096\%2 | 0010055 | 0010145 | . $00108+4$ | . 0011249 |
    | 8 | . 001166 | . 0012082 | . 0012510 | . 0012944 | . 001338 i | 0013837 | . 0014295 | . 0014759 |
    | 8 | . 0015232 | . 0015711 | . 0016198 | . 0016693 | . 0017195 | 0017705 | . 0018222 | . 0018746 |
    | 9 | . 0019278 | . 0019817 | 0020363 | . 0020916 | .00:1479 | 0022048 | . 0022625 | .00》3209 |
    | 10 | 0023800 | . 0024398 | .0025004 | . 0025618 | .0026239 | 0026867 | . 002 2502 | . 0028147 |
    | 11 | . $0028 \% 98$ | . 0029456 | 0030121 | .0030794 | . 0031475 | 003:163 | .0032859 | 0033561 |
    | 12 | .0034272 | . 0034990 | 0035714 | 0036447 | .008718i | 0037934 | . 0038690 | 0039452 |
    | 13 | . 0040222 | . 0040999 | . 0041783 | 0042576 | . 0043375 | 0044182 | 0044997 | . 0045819 |
    | 14 | . 0046648 | . 0047484 | . 0048328 | 0049181 | . 0050039 | . 0050906 | $0051 \% 80$ | . 0052661 |
    | 15 | . 0053550 | . 0054446 | 0055349 | 0056261 | . 0057179 | . 0058105 | 0059039 | . 0059979 |
    | 16 | .0060928 | . 0061884 | 006:2847 | 0063817 | . 0064795 | . 0065780 | .0066774 | 00677\%4 |
    | 17 | . 0068782 | . 0069797 | 0070819 | 00ir1850 | .007288í | . 0073932 | . 0074985 | . 0076044 |
    | 18 | . 0077112 | . 0078187 | 0079268 | 0080360 | .0081452 | .0082560 | 0083672 | . 0084191 |
    | 19 | . 0085918 | . 0087052 | 0088193 | 0089343 | . 0090499 | . 0091663 | . 0092835 | . 0094013 |
    | 20 | . 0095200 | . 009639.3 | . 0097594 | . 0098803 | .0100019 | . 0101243 | . 0102474 | .0103112 |
    | 21 | . 0104958 | . 0106211 | . 0107472 | 0108739 | . 0110015 | . 0111299 | . 0112589 | . 0113886 |
    | 22 | . 0115192 | . 0116505 | 0117825 | 0119152 | . 0120487 | . 0121830 | . 0123179 | .0124537 |
    | 23 | .01:5902 | .0127274 | . 0128654 | 0130040 | . 0131435 | 013283a | . 0134247 | 0135664 |
    | 24 | . 0137088 | . 0138519 | . 0139959 | 0141405 | . 0142859 | . 0144331 | . 0145789 | 0147266 |
    | 25 | . $0148 \% 50$ | . 0150241 | . 0151739 | 0153246 | . 0154759 | . 0156280 | 0157809 | . 0159345 |
    | 26 | . 0160888 | . 0162439 | 0163997 | . 0165563 | . 016713 | . 0168716 | . 0170304 | . 0171899 |
    | 27 | . 0173502 | . 0175112 | 01767\%9 | . 0178355 | . 0179988 | 0181627 | .0183275 | 0184929 |
    | 28 | . 0186592 | . 0188262 | 0189939 | 0191624 | . 0193316 | . 0195015 | . 0196722 | . 0198436 |
    | 29 | . 0200158 | .0201887 | 0:03624 | 0205368 | . 207119 | 0:08879 | . 0210645 | . 0212418 |
    | 30 | . 0214200 | . 0215988 | .0217785 | . 0219588 | . 0221399 | . 0223318 | . 0225044 | . 0236877 |
    | 31 | .0228718 | . 0230566 | . 0232422 | . 0234285 | . 0236155 | . $0: 338033$ | . 0239919 | . 0241812 |
    | 32. | . 0243712 | . 0245619 | 0247535 | . 0249457 | . 0251387 | .0253325 | . 0255269 | . 0257222 |
    | 33 | .0259182 | . 0261149 | 0263124 | 0265106 | . 0267095 | 0269092 | 0271097 | . 0273109 |
    | 34 | . 0275128 | . 0277155 | 0279189 | 0281231 | .02832 29 | 0285336 | . 0287399 | 0289471 |
    | 35 | . 0291550 | . 0293636 | 0295729 | 0297831 | .0299939 | . 0302056 | 0304179 | . 0306309 |
    | 36 | . 0308448 | . 0310594 | 0312747 | . 0314908 | . 0317075 | . 0319251 | 0:321434 | . 0323624 |
    | 37 | .0325822 | .03220227 | . 0330239 | 0332460 | . 0334687 | . 0336922 | . 0339165 | . 0341415 |
    | 38 | . 0343672 | . 0345937 | . 0348209 | 0350489 | . 0352775 | 0355070 | . 0357372 | . 0359681 |
    | 39 | . 0361998 | . 0364322 | . 0366654 | .0368993 | .0371339 | 0373694 | 0376055 | . 0378424 |
    | 40 | . 0380800 | . 0383184 | . 0385575 | .0387973 | .03903 9 | .039:793 | . 0395214 | .0397642 |
    | 41 | . 0400078 | . $04025 \cdot 21$ | 0404972 | 0407430 | . 0409895 | . 0412368 | . 0414849 | . 0417337 |
    | 42 | . 0419832 | .0422335 | . 0424845 | . 0127362 | .0429887 | . 0432420 | 0434959 | . 0437507 |
    | 43 | 0440062 | 0442624 | . 0445194 | . 0447771 | 0450355 | 0452947 | 045554 | . 0458154 |
    | 44 | .0460768 | . 0463389 | . 0466019 | 0468655 | . 0471299 | . 0473951 | . 0476609 | .04792\%6 |
    | 45 | . 0481950 | . 0484631 | . $04873 \geqslant 0$ | . 0490016 | .049:719 | .0495430 | . 0498149 | 0500875 |
    | 46 | . 0503608 | . 0506349 | . 0509097 | . 0511853 | . 0514615 | . 0517386 | 0520164 | . 5222949 |
    | 47 | .0525742 | 0528542 | . 0531349 | . 0534165 | . 0536988 | . 0539818 | . 0542655 | . 0545499 |
    | 48 | . 0548352 | 0551212 | 0554079 | . 0556953 | . 0559835 | . 0562725 | . 0565652 | 0568526 |
    | 49 | . 0571438 | 0574357 | . 0517284 | . 0580218 | . 0583159 | . 0586109 | . 0589065 | . 0592029 |
    | 50 | . 0595000 | 0597979 | . 0600965 | . 0603959 | . 0606959 | . 0609969 | . 0612984 | . 0616007 |
    | 51 | . 0619038 | .0622076 | . 0625122 | . 0628175 | .0632:35 | 0634304 | . 0637379 | . 0640462 |
    | 52 | . 0643552 | 0646649 | 0619753 | .0652867 | . 0655987 | . 0659115 | 0662250 | . 0665392 |
    | 53 | . 0668542 | 0671699 | . 0674864 | . 0678036 | . 0681215 | . 0681402 | .0687597 | 0690799 |
    | 54 | . 0694008 | 0697225 | 0\%00449 | . 0703681 | . 0 ¢05 293 | . 0710166 | . 0713419 | 0716681 |
    | 55 | . 0719950 | . $07242 \div 6$ | . 0 26510 | 0 O29801 | O\%33099 | 0 ã36106 | 0739719 | 0743039 |
    | 56 | .0746:368 | . 0749704 | . 0753047 | 0756398 | 0759755 | 0763120 | 0766494 | . 0769874 |
    | 57 | . 0773262 | . 0776657 | . 0780060 | 0783476 | 0ヶ86887 | . 790312 | 0793745 | $0 ¢ 97185$ |
    | 58 | .0800632 | .0804087 | . 0807549 | 0811019 | . 0814495 | . 0817980 | $08214{ }^{2}$ | . 0824971 |
    | 59 | .0828478 | . 0831992 | . 0835514 | 0839043 | . 0842579 | 0846123 | 0849675 | 0853234 |
    | 60 | . 085680 | 08603 | . 0863955 | 08675 | .0871 | 087 | .0878354 | . 0881973 |

    Horse-power per Pound Mean Effective Pressure.
    Formula, Area in sq. in. $\times$ piston-speed.
    33,000

    | Diam. of | Speed of Piston in feet per minute. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | inches. | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
    | 4 | . $038 \times 1$ | 0 | .112 | .1523 | . 1904 | -2285 | . 2666 | . 3046 | . 3427 |
    | 4 | . 0482 | 0964 | . 1446 | . 1928 | . 2410 | . 2892 | - 3 3í4 | . 3856 | . $4: 338$ |
    |  | . 0595 | .1190 | . 1185 | . 2380 | . 2975 | . 3550 | . 4165 | 4760 | . 5355 |
    | 51 | . 0720 | . 1440 | . 2160 | . 2880 | . 3600 | . 4320 | - 5040 | 5160 | . 6480 |
    |  | .0857 | . 1114 | .2050 | . 3427 | . 4284 | . 5141 | 1 . 5998 | . 6854 | 4. ${ }^{\text {¢ }} 111$ |
    | 6 | . 1006 | . 2011 | . 3017 | . 4022 | . 5028 | . 6033 | - 7039 | . 8044 | . 9050 |
    |  | . 1166 | .23332 | . 3499 | . 4665 | . 5831 | . 6997 | 7.8163 | . 9330 | 1.0496 |
    | 7 | . 1339 | . 2678 | .4016 | . 5355 | . 6694 | . 8033 | . 9371 | 1.0 ¢10 | 1.2049 |
    |  | . $15 \% 3$ | . 3046 | . 4570 | . 6093 | . 7616 | . 9139 | $1.066 \%$ | 1.2186 | 8 1.3709 |
    | 81 | . 1720 | . 3439 | . 5159 | . 6878 | . 8598 | 1.031\% | \% 1.2037 | 1.3756 | (1.5176 |
    |  | . 1928 | . 3856 | . 5783 | . 7711 | 1.9639 | 1.156 | 1.3495 | 1.5422 | 1.7350 |
    | 91 | . 2148 | . 4296 | . 6444 | . 8592 | 1.0740 | 1.2888 | - 15036 | 1.7184 | 1 1.953\% |
    | 10 | . 2380 | . 4760 | . 7140 | . 9520 | 1.1900 | 1.4280 | -.6660 | 1.9040 | 2.1420 |
    | 11 | . 2880 | . 5760 | . 8639 | 1.1519 | 1.4399 | $31.72 \% 9$ | 2.0159 | 2.3038 | 2.5818 |
    | 12 | . 3427 | . 6854 | 1.0282 | 1.3609 | 1.7136 | 2.05683 | 2.3990 | 2. 7118 | 3.0845 |
    | 13 | .4022 | . 8044 | 1.2067 | 1.6089 | - 2.0111 | 2.4133 | 2.8155 | 3.2178 | 36200 |
    | 14 | . 4665 | . 93330 | 1.3994 | 1.8659 | - 2.3324 | 2.6989 | 3.2654 | 3.7318 | $4.19 \times 3$ |
    | 15 | . 5355 | 1.0710 | 1.6065 | 2.1420 | 2.675 | 3.2130 | 3.7485 | 42840 | 4.8195 |
    | 16 | . 6093 | 1.2188 | 1.8278 | 2.4371 | 3.0464 | 3.655 | 4.2650 | 4.8i4: | 5. 48.85 |
    | 17 | . $68 \% 8$ | 1.256 | 1.9635 | 2.6513 | 3.3391 | 4.0269 | 4.6147 | 5.40~6 | 6.1904 |
    | 18 | . 7711 | 1.542 y | 2.3134 | 3.0815 | 38556 | 4.6266 | 5.3978 | 6.1690 | 6.9401 |
    | 19 | . 8592 | 1.7184 | 2.5755 | 3.436ã | 4.2959 | 5.1551 | 6. 0143 | 6.8734 | \%.1326 |
    | 20 | . 9520 | 1.9040 | 2.8560 | 3.8080 | 4.7600 | 5.7120 | 6.6640 | \%. 6160 | 8.5680 |
    | 21 | 1.0496 | $\stackrel{\text { 2. }}{ }$ | 3.1488 | 4.1988 | 5.2479 | 6.2975 | 7.3471 | 8.3966 | 9.4462 |
    | 22 | 1.1519 | 2.3038 | 3.4558 | $4.60 \% 7$ | 5.7596 | 6.9115 | 8.0634 | 9.2154 | $10.36{ }^{2}$ |
    | 23 | 1.2590 | 2.5180 | 3. 771 | 5.0361 | 6.2951 | \%. 5541 | 8.8131 | 0.072 | 11.331 |
    | 24 | 1.3 \%09 | 2.7418 | 4.1120 | 5.4835 | 6.8544 | 8.2253 | 9.5962 | 10.967 | 12.338 |
    | 25 | $1.48 \% 5$ | 2.9750 | 4.4625 | 5.9500 | $7.43 \% 5$ | 89250 | 10.413 | 11.900 | 13.388 |
    | 26 | 1.6089 | $3.21 \% 8$ | 4.8266 | 6.4335 | 8.0444 | 9.6:34 | 11.262 | 12.871 | 14.480 |
    | 27 | 1.7350 | 3.4700 | 5.2051 | 6.9101 | 8.6751 | 10410 | \|12.145 | 13880 | 15.615 |
    | 28 | 1.8659 | 3.7318 | 5.5918 | 7.4637 | $9.3: 96$ | ,11.196 | 13.061 | 14.92\% | 16.793 |
    | 29 | 2.0016 | 4.0032 | 6.0047 | 8.0063 | , 10.008 | 12009 | 14.011 | 16.013 | 18.014 |
    | 30 | 2.1420 | 4.2840 | 6.4260 | 8.5680 | 10.710 | 12.852 | 14.994 | 17.136 | $19.2{ }^{218}$ |
    | 31 | 2.2872 | 4.5744 | 6.8615 | 9.1487 | 11.436 | 13.723 | 16.010 | 18.29\% | 20.585 |
    | 32 | 2.4371 | $4.84^{4} 2$ | 7.3114 | 9.7485 | 12186 | 14.623 | 17.060 | 14.497 | 21.934 |
    | 33 | 2.5918 | 5.1836 | 7.7755 | 10.367 | 12.959 | 15.551 | 18.143 | 20.735 | 23.226 |
    | 34 | 2.7513 | 5.5026 | 8.2538 | 11.005 | 13.756 | 16.508 | 19.259 | 22.010 | 24.762 |
    | 35 | 2.9155 | 5.8310 | 8.7465 | 11.662 | $14.5 \cdot 8$ | 17.493 | 20.409 | 23.324 | 26.240 |
    | 36 | 3.0845 | 6.1690 | 9.2534 | 12.838 | 15.4:2 | 18.507 | 21.591 | $24.6 \% 6$ | 27. 260 |
    | 37 | 3.2582 | 6.5164 | 9.7\% ${ }^{\text {c }}$ \% | 13.033 | 16. 291 | 19.549 | 22.808 | 26.066 | 29.324 |
    | 38 | $3.436 \hat{1}$ | 6.8734 | 10.310 | 13.747 | 17.184 | 20.620 | 24.057 | 27.494 | 30.930 |
    | 39 | 3. 6:00 | ${ }^{7} .2400$ | 10.860 | 14480 | 18.100 | 21.720 | 25.340 | 28.960 | 33.580 |
    | 40 | 3.8080 | 7. 6160 | 11.424 | $15 \quad 232$ | 19.040 | 22848 | 26.656 | 30.464 | 34.272 |
    | 41 | 4.0008 | 8.0016 | 12.002 | 16.003 | 20.004 | 24.005 | 28.005 | 32.006 | 36.007 |
    | 42 | 4.1983 | 8.3566 | 12.585 | 16.783 | 20.982 | 25.180 | 29.378 | 33.5 ${ }^{2}$ | 37.7\%5 |
    | 43 | 4.4006 | 8.8012 | 13.202 | 17.602 | 22.003 | 26.404 | 30.804 | 35.205 | 39.606 |
    | 44 | $4.60 \pi 7$ | 9.2154 | 13.823 | 18.431 | 23.038 | 27. 646 | 32.254 | 36.861 | 41.469 |
    | 45 | 4.8195 | 9.6390 | 14.459 | 19.238 | 24.098 | 28.917 | 33.73\% | 38.556 | 43.376 |
    | 46 | ¢.0361 | 10.072 | 15.108 | 20.144 | 25.180 | 30.216 | 35.253 | 40.289 | 45.325 |
    | 40 | 5.2574 | 10.515 | 15.772 | 21.030 | 20.287 | 31.545 | 36.802 | 42.059 | 47.317 |
    | 48 | 5.4835 | 10.967 | 16.451 | 21.934 | 27.418 | 32.901 | 38.385 | 43.868 | 49.352 |
    | 49 | 5.7144 | 11.429 | 17.143 | 22.858 | 28.5\% | 34.286 | 40.001 | 45.715 | 51.429 |
    | 50 | 5.9500 | 11.900 | 17.850 | 23.800 | 29.750 | 35.700 | 41.650 | 47.600 | 53.550 |
    | 51 | 6.1904 | 12.381 | 18.571 | 24.662 | 30.952 | 37.142 | 43.333 | 49.523 | 55.713 |
    | 52 | 6.4355 | $12.8 \pi 1$ | $19.30 \sim$ | 2. 2.742 | 32.178 | 38.613 | 45.049 | 51.484 | 57.920 |
    | 53 | 6.6854 | 13.371 | 20.056 | 26.742 | 33.42r | 40.113 | 46.798 | 53.483 | 60.169 |
    | 54 | 6.9401 | 13.880 | 20.830 | 27.760 | 34. 700 | 41.640 | 48.581 | 55.521 | 62.461 |
    | 55 | 7.1995 | 14.399 | 21.599 | 28.798 | 35. 998 | $43.19 \%$ | 50.39 i | 57.596 | 64.796 |
    | 56 | 7.4637 | 14.92\% | 2ソ.391 | 29.855 | .37. 318 | 44.782 | 52.246 | 59.709 | 67.173 |
    | 57 | 7.7326 | 15.465 | 23.198 | 30.930 | 38.663 | 46.396 | 54.128 | 61.861 | 69.594 |
    | 58 | 8.0063 | 16.013 | 24.019 | 32.025 | 40.032 | $48 \quad 0.38$ | 56.044 | 64.051 | 72.057 |
    | 59 | 8.2849 | 16.570 | 24.854 | 133.139 | 41.424 | 49. 709 | 57.993 | 66.278 | 74.563 |
    | 60 | 18.568 | 17.136 | 25.704 | 34.2\%2 | 42. 810 | 51.408 | \|59.976 | 68.544 | 177.112 |

    To draw the Clearance-line on the Indicator-diagram, the actual clearance not being known.-The clearance-line may be obtained approximately by drawing a straight line, cbad, across the compression curve, first having drawn $O X$ parallel to the atmospheric line and 14.7 lbs . below. Measure from $a$ the distance ad, equal to $c b$, and draw YO perpendicular to $O X$ through $d$; then will $I^{\prime} B$ divided by $A T$ be the percentage of
    

    Fig. 139.
    clearance. The clearance may also be found from the expansion-line by constructing a rectangle eflog, and drawing a diagonal $g f$ to intersect the line $X O$. Tlris will give the point $O$, and by erecting a perpendicular to $X O$ we obtain a clearance-line $O Y$.
    Both these methods for finding the clearance require that the expansion and compression curves be hyperbolas. Prof. Carpenter (Power; Sept., 1893) says that with good diagrams the methods are usually very accurate, and give results which check substantially.
    The Buckeye Engine Co., however, say that, as the results obtained are seldom correct, being sometimes too little, but more frequently too much, and as the indications from the two curves, seldom agree, the operation has little practical value, though when a clearly defined and apparently undistorted compression curve exists of sufficient extent to admit of the application of the process, it may be relied on to give much more correct results than the expansion curve.

    ## To draw the Hyperbolic Curve on the Indicator-dia-

    gram.-Select any point $I$ in the actual curve, and from this point draw a line perpendicular to the line $J B$, meeting the latter in the point $J$. The line $J B$ may be the line of boiler-pressure, but this is not material; it may be drawn at any convenient height near the top of diagram and parallel to the atmospheric line. From $J$ draw a diagonal to $K$, the latter point being the intersection of the vacuum and clearance lines; from $I$ draw IL parallel with the atmospheric line. From $L$, the point of intersection of the diagonal $J K$ and the horizontal line $I L$, draw the vertical line $L M$. The

    Fig. 140. point $M$ is the theoretical point of cut-off, and $L M$ the cut-off line. Fix upon any number of points $1,2,3$, etc., on the line $J B$, and from these points draw diagonals to $K$. From the intersection of these diagonals with LM draw horizontal lines, and from $1,: 3,3$, etc., vertical lines. Where these lines meet will be points in the hyperbolic curve.

    Pondulum Indicator Ríg.-Power (Feb. 1893) gives a graphical representation of the errors in indicator-diagrams, caused by the use of in-
    correct form of the pendulum rigging. It is shown that the "brumbo" pulley on the pendulum, to which the cord is attached, does not gener-
    

    Fig. 141. ally give as good a reduction as a simple pin attachment. When the end of the pendulum is slotted, working in a pin on the crosshead, the error is apt to be considerable at both ends of the card. With a vertical slot in a plate fixed to the crosshead, and a pin on the pendulum working in this slot, the reduction is perfect, when the cord is attached to a pin on the pendulum, a slight error being introduced if the brumbo pu!ley is used. With the connection between the pendulum and the crosshead made by means of a horizontal link, the reduction is nearly perfect, if the construction is such that the connecting link vibrates equally above and below the horizontal, and the cord is attached by a pin. If the link is horizontal at mid-stroke a seriouss error is introduced, which is magnified if a brumbo pulley also is used. The adjoining figures show the two forms recommended.
    Theoretical Water-consumption calculated from the Indicator-card.-The following method is given by Prof. Carpenter(Power, Sept. 1893): $p=$ mean effective pressure, $l=$ length of stroke in feet, $a=$ area of piston in square inches, $a \div 144=$ area in square feet, $c=$ percentage of clearance to the stroke, $b=$ percentage of stroke at point where water rate is to be computed. $n=$ number of strokes per minute, $60 n=$ number per hour, $w=$ weight of a cubic foot of steam having a pres. sure as shown by the diagram corresponding to that at the point where water rate is required, $w^{\prime}=$ that corresponding to pressure at end of com." pression.
    Number of cubic feet per stroke $=l\left(\frac{b+c}{100}\right) \frac{a}{144}$.
    Corresponding weight of steam per stroke in lbs. $=l\left(\frac{b+c}{100}\right) \frac{a}{144} w$.
    Volume of clearance $=\frac{l c a}{14,400}$.
    Weight of steam in clearance $=\frac{l c a w^{\prime}}{14,400}$.
    $\underset{\text { Team per stroke }}{\text { Total wht }}\}=l\left(\frac{b+c}{100}\right) \frac{w a}{144}-\frac{l c a w w^{\prime}}{14,400}=\frac{l a}{14,400}\left[(b+c) w-c w^{\prime}\right]$.
    Total weight of steam $\}=\frac{60 n l a}{14,400}\left[(b+c) w-c v^{\prime}\right]$.
    The indicated horse-power is $p l a n \div 33,000$. Hence the steam-consump tion per hour per indicated horse-power is

    $$
    =\frac{\frac{60 n l a}{14,400}\left[(b+c) w-c w^{\prime}\right]}{\frac{p l a n}{33,000}}=\frac{137.50}{p}\left[(b+c) w-c w w^{\prime}\right]
    $$

    Changing the formula to a rule, we have: To find the water rate from the indicator diagram at any point in the stroke.

    Rule.-To the percentage of the entire stroke which has been completed by the piston at the point under consideration add the percentage of clear... auce. Multiply this result by the weight of a cubic foot of stean, having a pressure of that at the required point. Subtract from this the product of percentage of clearance niultiplied by weight of a cubic foot of steam having a pressure equal to that at the end of the compression. Multiply this result by 137.50 divided by the mean effective pressure.*

    Note.-This method only applies to points in the expansion curve or between cut-off and release.

    The beneficial effect of compression in reducing the water-consumption of an engine is clearly shown by the formula. If the compression is carried to such a point that it produces a pressure equal to that at the point under cousideration, the weight of steam per cubic foot is equal, and $w=w^{\prime}$. In this case the effect of clearance entirely disappears, and the formula becomes $\frac{137.5}{p}(b w)$.
    In case of no compression, $w^{\prime}$ becomes zero, and the water-rate $=$

    $$
    \frac{137.5}{p}-[(b+c) w] .
    $$

    Prof. Denton (Trans. A. S. M. E., xiv. 1363) gives the following table of theoretical water-consumption for a perfect Mariotte expansion with steam at 150 lbs . above atmosphere, and 2 lbs. absolute back pressure:

    | Ratio of Expansion, $r$. | M.E.P., lbs. per sq.in. | Lbs. of Water per hour <br> per horse-power, $W$. |
    | :---: | :---: | :---: |
    |  | 10 | 52.4 |
    | 15 | 38.7 | 9.68 |
    | 20 | 30.9 | 8.74 |
    | 25 | 25.9 | 8.20 |
    | 30 | 22.2 | 7.84 |
    | 35 | 19.5 | 7.63 |

    The difference between the theoretical water-consumption found by the formula and the actual consumption as found by test represents "water not accounted for by the indicator," due to cylinder condensation, leakage through ports, radiation, etc.

    Leakage of Steam.-Leakage of steam, except in rare instances, has so little effect upon the lines of the diagram that it can scarcely be detected. The only satisfactory way to determine the tightness of an engine is to take it whell not in motion, apply a full boiler-pressure to the valve, placed in a closed position, and to the piston as well, which is blocked for the purpose at some point away from the end of the stroke, and see by the eye whether leakage occurs. The indicator-cocks provide means for bringing into view steam which leaks through the steam-valves, and in most cases that which leaks by the piston, and an opening made in the exhaust-pipe or observations at the atmospheric escape-pipe, are generally sufficient to determine the fact with regard to the exhaust-valves.
    The steam accounted for by the indicator should be computed for both the cut-off and the release points of the diagram. If the expansion-line departs much from the hyperbolic curve a very different result is shown at one point from that shown at the other. In such cases the extent of the loss occasioned by cylinder condensation and leakage is indicated in a much more truthful manner at the cut-off than at the release. (Tabor Indicator Circular.)

    ## COMPOUND ENGENES.

    Compound, Triple- and Quadrupleexpansion Engines. - A compound engine is one having two or more cylinders, and in which the steam after doing work in the first or high-pressure cylinder completes its expansion in the other cylinder or cylinders.

    The term "compound" is commonly restricted; however, to engines in which the expansion takes place in two stages only-high and low pressure, the terms triple-expansion and quadruple-expansion engines being used when the expansion takes place respectively in three and four stages. The number of cylinders may be greater than the number of stages of expansion, for constructive reasons; thus in the compound ol two-stage expansion engine the low-pressure stage may be effected in two cylinders so as to obtain the advantages of nearly equal sizes of cylinders and of three cranks at angles of $120^{\circ}$. In triple-expansion engines there are frequently two low-pressure cylinders, one of them being placed tandem with the high-pressure, and the other with the intermediate cylinder, as in mill engines with two cranks at $90^{\circ}$. In the triple-expansion engines of the steamers Campania and Lucania
    with three cranks at $120^{\circ}$, there are five cylinders, two high, one intermediate. and two low, the high-pressure cylinders being tandem with the low.
    Advantages of Compounding.-The advantages secured by dividing the expansion into two or more stages are twofold: 1 . Reduction of wastes of steam by cylinder-condensation, clearance, and leakage; \%. Dividing the pressures on the cranks, shafts, etc., in large engines so as to avoid excessive pressures and consequent friction. The diminished loss by cylinder-condensation is effected by decreasing the range of temperature of the metal surfaces of the cylinders, or the difference of temperature of the steam at admission and exhaust. When high-pressure steam is admitted into a singlecylinder engine a large portion is condensed by the coniparatively cold metal surfaces; at the end of the stroke and during the exhaust the water is re-evaporated, but the steam so formed escapes into the atmosphere or into the condenser, doing no work: while if it is taken into a second cylinder, as in a compound engine, it does work. The steam lost in the first cylinder by leakage and clearance also does work in the second cylinder. Also, if there is a second cylinder, the temperature of the steam exhausted from the first cylinder is higher than if there is ouly one cylinder, and the metal surfaces therefore are not cooled to the same degree. The difference In temperatures and in pressures corresponding to the work of steam of 150 lbs . gauge-pressure expanded 20 times, in one, two, and three cylinders. is shown in the following table, by W. H. Weightman, Am. Mach., July 28, 1892:

    |  | Single Cylinder | Compound Cylinders. |  | Triple-expansionCylinders. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diameter of cylinders, in.. | 60 | ${ }^{33}$ |  | 28 | 46 |  |
    | Area ratios. |  | 1 | 3.416 |  | . 70 | 4.748 |
    | Expansiols | 20 | 5 |  | 2.714 | 2.714 | 2.714 |
    | Initial steam - pressures- absolute-pounds ..... |  |  |  |  |  |  |
    | Mean pressures, pounds. . | 32.96 | 86.11 | ${ }_{19.68}$ | 121.44 | 44.45 | 16.49 |
    | Mean effective pressures, pounds. | 28.96 | 53.11 | 15.68 | 60.64 | ${ }^{29} 35$ | 12.49 |
    | Steam temperatures into |  |  | 15.68 | 60.64 | 2.35 | 12.4 |
    | cylinders.......... | $366^{\circ}$ | $366^{\circ}$ | $259^{\circ} .9$ | $366^{\circ}$ | $293^{\circ} .5$ | $234^{\circ} .1$ |
    | the cylinders.. |  |  |  |  |  |  |
    | Difference in temperatures | 181.8 | 106.1 |  | ${ }_{72.5}$ | ${ }_{59} 59$ | 189.9 |
    | Horse-power developed... | 800 302 | 399 | ${ }_{203}^{403}$ |  |  |  |
    | Speed of piston........... | 322 | 290 | 290 | 238 | 238 | 238 |
    | pistons, pounds....... | 455.218 | 112.900 | 84,552 | 64.162 | 63.817 | 53,773 |

    ${ }^{66}$ Woolf, and Receiver Types of Compound Engines.-
    The compound steam-engine, consisting of two cylinders, is reducible to two forms, 1 , in which the stean from the li.p. cylinder is exhausted direct into the 1. p. cylinder, as in the Woolf engine; and 2 , in which the steam from the h. p. cylinder is exhausted into an intermediate reservoir, whence the steam is supplied to, and expanded in, the 1.p.cylinder, as in the "receiver-
    If the steam be cut off in the first cylinder before the end of the stroke, the total ratio of expansion is the product of the ratio of expansion in the first cylinder, into the ratio of the volume of the second to that of the first cylinder: that is, the product of the two ratios of expansion.
    Thus, let the areas of the first and second cy linders be as 1 to $31 / 2$, the strokes being equal, and let the stean be cutoff in the first at $1 / 2$ stroke; then
    
    Woolf Engine, without Clearance-Ideal Diagrams.-
    The diagrams of presinre of an ideal Woolf engine are shown in Fig. 142, as they would be described by the indicator, according to the arrows. In these diagrams $p q$ is the atmospheric line, mn the vacuum line, $c d$ the admissiop
    line, $d g$ the hyperbolic curve of expansion in the first cylinder, and $g h$ the consecutive expansion-line of back pressure for the return-stroke of the first piston, and of positive pressure for the steam stroke of the second piston. At the point $h$, at the end of the stroke of the second piston, the steam is exhausted into the condenser, and the pressure falls to the level of perfect vacuum, mu.
    The diagram of the second cylinder, below $g h$, is characterized, by the absence of any specific period of admission; the whole of the steam-line $g h$ being expansional, generated by the expansion of the initial body of steam contained in the first cylinder into the second. When the return-stroke is completed, the whole of the steam transferred from the first is shut into the second cylinder. The final pressure and volume of the steam in the second cylinder are the
    

    Fig. 142.-Woolf Engine-Ideal Indicator-diagrams. same as if the whole of the initial steam had been admitted at once into the second cylinder, and then expanded to the end of the stroke in the manner of a single-cylinder engine.
    The net work of the steam is also the same, according to both distributions.
    Receiver-engime, without Clearance-Ideal Riagrams.In the ideal receiver-engine the pistons of the two cylinders are connected to cranks at right angles to each other on the same shaft. The receiver takes the steam exhausted from the first cylinder and supplies it to the second, in which the steam is cut off and then expanded to the end of the stroke. On the assumption that the initial pressure in the second cylinder is equal to the final pressure in the first, and of course equal to the pressure in the receiver, the volume cut off in the second cylinder must be equal to the volume of the first cylinder, for the second cylinder must admit as much steam at each stroke as is discharged from the first cylinder.
    In Fig. 143 cd is the line of admission and hg the exhaust-line for the first
    

    Fig. 143.-Receiver-engine, Ideal Indicator-diagrams.
    

    Fig. 144.-Receiver Engine, Ideal Diagrams reduced and combined.
    cylinder; and $d g$ is the expansion-curve and $p q$ the atmospheric line. In the region below the exhaust-line of the first cylinder, between it and the line of perfect vacuum, ol, the diagram of the second cylinder is formed; $h i$, the second line of admission, coincides with the exhaust-line $h g$ of the first cylinder, showing in the ideal diagram no intermediate fall of pressure, and $i k$ is the expansion-curve. The arrows indicate the order in which the diagrams are formed.

    In the action of the receiver-engine, the expansive working of the steam, though clearly divided into two consecutive stages, is, as in the Woolf engine, essentially continuous from the point of cut-off in the first cylinder to the end of the stroke of the second cylinder, where it is delivered to the condenser; and the first and second diagrams may be placed together and
    cGinbined to form a continuous diagram. For this purpose take the second diagram as the basis of the combined diagram, namely, hiklo, Fig. 144. The period of admission, hi, is one third of the stroke, and as the ratios of the cylinders are as 1 to $3, h i$ is also the proportional length of the first diagram as applied to the second. Produce oh upwards, and set off oc equal to the total height of the first diagram above the vacuum-line; and, upon the shortened base hi, and the height hc, complete the first diagram with the steam-line $c d$, and the expansion-line $d i$.

    It is shown by Clark (S. E., p. 432, et seq.) in a series of arithmetical calculations, that the receiver-engine is an elastic system of compound engine, in which considerable latitude is afforded for adapting the pressure in the receiver to the demands of the second cylinder, without considerably diminishing the effective work of the engine. In the Woolf engine, on the contrary, it is of much importance that the intermediate volume of space between the first and second cylinders, which is the cause of an intermediate fall of pressure, should be reduced to the lowest practicable amount.

    Supposing that there is no loss of steam in passing through the engine, by cooling and condensation, it is obvious that whatever steam passes through the first cylinder must also find its way through the second cylinder. By varying, therefore, in the receiver-engine, the period of admission in the second cylinder, and thus also the volnme of steam admitted for each stroke, the steam will be measured into it at a higher pressure and of a less bulk, or at a lower pressure and of a greater bullr; the pressure and density naturally adjusting themselves to the volume that the steam from the receiver is permitted to occupy in the second cylinder. With a sufficiently restricted admission, the pressure in the receiver may be maintained at the pressure of the steam as exhausted from the first cylinder. On the contrary, with a wider admission, the pressure in the receiver may fall or "drop" to three fourths or even one half, of the pressure of the exhauststeam from the first cylinder.
    (For a more complete discussion of the action of steam in the Woolf and receiver engines, see Clark on the Stean-engine.)

    Combined Dlagrams of Compound Engines. - The only way of making a correct combined diagram from the indicator-diagrams of the several cylinders in a compound evgine is to set off all the diagrams on the same horizontal scale of volunes, adding the clearances to the cylinder ca-
    
    pacities proper. When this is attended to, the successive diagrams fall exactly into their right places relatively to one another, and would compare properly with any theoretical expansion-curve. (Prof. A. B. W. Kennedy, Proc. Inst. M. E., Oct. 1886.)

    This method of combining diagrams is commonly adopted, but there are objections to its accuracy, since the whole quantity of steam consumed in the first cylinder at the end of the stroke is not carried forward to the second, but a part of it is retained in the first cylinder for compression. For a method of combining diagrams in which compression is taken account of, see discussions by Thomas Mudd and others, in Proc. Inst. M. E., Feb., 188\%, p. 48. The usual method of combining diagrams is also criticised by Frank H. Ball as inaccurate and misleading (Am. Mach., April 12, 1894; Trans. A. S. M. E., xiv. 1405, and Xv. 403).
    Figure 145 shows a combined diagram of a quadruple-expansion engine, drawn according to the usual method, that is, the diagrams are first reduced in length to relative scales that correspond with the relative piston-displacement of the three cylinders. Then the diagrams are placed at such distances from the clearance-line of the proposed combined diagram as to correctly represent the clearance in each cylinder.
    Calculated Expansions and Pressures in Two-cylinder Compound Engines. (James Tribe, Am. Mach., Sept. \& Oct. 1891.)

    ## Two-cylinder Compound Non-Condensing.

    Back pressure $1 / 2 \mathrm{lb}$. above atmosphere.

    | Initial gaugepressure. | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 175 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Initial absolute |  |  |  |  |  | 165 |  |  |  |
    | pressure....... | 115 7.39 | ${ }_{7.84}^{125}$ | $\stackrel{135}{8.41}$ | 145 | ${ }_{9.61}^{155}$ | 10.24 | 10.89 | 11.56 | 11.9 |
    | Total expansion. | 7.39 | 7.84 |  |  |  |  |  |  |  |
    | Expansions in each cylinder.. | 2.7 | 2.8 | 2.9 | 3 | 3.10 | 3.2 | 3. | 3.4 | 3.45 |
    | Hyp. log. plus 1. | 1.993 | 2.029 | 2.064 | 2.098 | 2.131 | 2.163 | 2.193 | 2.223 | 2.238 |
    | Forward \{ High. | 84.8 | 90.5 | 96 | 101.4 | 106.5 | 111.5 | 116.3 | 120.9 | 123.2 |
    | pressures Low.. | 31.3 | 32.3 | 33.1 | 33.7 | 34.3 | 34.8 | 35.2 | 35.6 | 35 |
    | Back \{ High. | 42.5 | 44.6 | 46.5 | 48.3 | 50 | 51.5 | 53 | 54.4 | 55. |
    | pressures \{ Low.. | 15.5 | 5.5 | 15.5 | 15.5 | 15. | 15.5 | 15. | 15 | 15. |
    | Mean $\{$ High. | 42.3 | 45.9 | 49.5 | 53.1 | 56.5 | 60 | 63.3 | 66.5 | 68.2 |
    | $\left.\begin{array}{l} \text { effective } \\ \text { pressures } \end{array}\right\} \text { Low.. }$ | 15.8 | 16.8 | 17.6 | 18.2 | 18.8 | 19.3 | 19.7 | 20.1 | 20.2 |
    | Ratiocylinder areas $\qquad$ | 2.67 | 2.73 | 2.81 | 2.91 | 3 | 3.11 | 3.21 | 3.31 | 3.37 |

    Two-cylinder Compound Condensing.
    Back pressure, 6.5 lbs . above vacuum .

    | Initial gauge-pressu | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Initial absolute pressur | 105 | 115 | 125 | 135 | 145 | 155 | 165 |
    | Probable per cent of los | 2.6 | 2.9 | 3.3 | 3.6 | 3.8 | 4.0 | 4.3 |
    | Total expansions. | 15.7 | 17 | 18.5 | O) | 21.5 | 22.7 | 24.2 |
    | Exps. in each cyl | 3.96 | 4.13 | 4.3 | 4.47 | 4.64 | 4.77 | 4.92 |
    | Hyp. log. plus $1 \ldots \ldots$ | ${ }_{62.376}$ | ${ }_{6}^{2.418}$ | $\xrightarrow{2.458}$ | ${ }_{75.4}{ }^{2.47}$ | ${ }_{79.3}^{2.54}$ | 2.562 83.2 | ${ }_{87}^{2.593}$ |
    | Mean forward $\left\{\begin{array}{l}\text { High } \\ \text { pressures } \\ \text { Low }\end{array}\right.$ | 62.9 15.25 | 67.3 15.55 | 71.4 15.9 | 75.4 16.2 | 79.3 16.5 | 83.2 16.75 | $\left\lvert\, \begin{aligned} & 87 \\ & 1^{\prime \prime} .05 \end{aligned}\right.$ |
    | Mean back \{ High | 26.5 | $2 \% .8$ | 29 | 30.2 | 31.4 | 32.4 | 33.5 |
    | pressures \{ Low | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 |
    | Mean \{ High | 36.4 | 39.5 | 42.4 | 45.2 | 47.9 | 50.8 | 53.5 |
    | fective $\{$ Low | 10.95 | 11.25 | 11.6 | 11.9 | 12.2 | 12.45 | 12.75 |
    | Terminal (High | 26.5 | 27.8 | 29.0 | 30.2 | 31.4 | 32.4 | 33.5 |
    | pressures $\{$ Low. | 6.4 | 6.45 | 6.45 | 6.5 | 6.55 | 6.55 | 6.6 |
    | Initial pressure in l. p. cy | 25.3 | 26.6 | 27.8 | 29 | 30.2 | 31.4 | 32.4 |
    | Ratio of cylinder areas. | 3.32 | 3.51 | 3.66 | 3.8 | 3.92 | 4.08 | 4.19 |

    The probable percentage of loss, line 3 , is thus explained: There is always a loss of heat due to condensation, and which increases with the pressure of steam. The exact percentage cannot be predetermined, as it depends largely upon the quality of the non-conducting covering used on the cylinder, receiver. and pipes, etc., but will probably be abont, as shown.

    Proportions of Cylinders in Componind Engimes.-Authorities differ as to the proportions by volnme of the high and low pressure cylinders $v$ and $V$. Thus Grashof gives $V \div v=0.85 \sqrt{r} ;$ Hrahak, $0.90 \sqrt{r}$;

    Werner, $\sqrt{r}$; and Rankine, $\sqrt[8]{r^{2}}, r$ being the ratio of expansion. Busley makes the ratio dependent on the boiler-pressure thus:
    (See Seaton's Manual, p. 95, etc., for analytical method; Sennett, p. 496 etc.; Clark's Steam-engine, p. 445, etc; Clark, Rules, Tables, Data, p. 849, etc.)
    Mr. J. McFarlane Gray states that he finds the mean effective pressure in the compound engine reduced to the low-pressure cylinder to be approximately the square root of 6 times the boiler-pressure.

    Approximate Horse-power of a Hodern Compound Marine-engine. (Seaton.)-The following rule will give approximately the horse-power developed by a compound engine made in accordance with modern marine practice. Estimated H.P. $=\frac{D^{2} \times \sqrt{p} \times R \times S}{8500}$.
    $D=$ diameter of l.p. cylinder; $p=$ boiler-pressure by gauge;
    $R=$ revs. per min.; $S=$ stroke of piston in feet.
    Ratio of Cylinder Capacity in Compound Marine Ene gines. (Seaton.)-The low-pressure cylinder is the measure of the power of a compound engine, for so long as the initial steam-pressure and rate of expansion are the same, it signifies very little, so far as total power only is concerned, whether the ratio between the low and higlı-pressure cylinders. is 3 or 4; but as the power developed should be nearly equally divided between the two cylinders, in order to get a good and steady working engine, there is a necessity for exercising a considerable amount of discretion in fixing on the ratio.

    In choosing a particular ratio the objects are to divide the power evenly and to avoid as much as possible "drop" and high initial strain.

    If increased economy is to be obtained by increased boiler-pressures, the rate of expansion should vary with the initial pressure, so that the pressure at which the steam enters the condenser should remain constant. In this case, with the ratio of cylinders constant, the cut-off in the ligh-pressure cylinder will vary inversely as the initial pressure.

    Let $R$ be the ratio of the cylinders; $r$, the rate of expansion; $p_{1}$ the initial pressure: then cut-off in high-pressure cylinder $=R \div r ; r$ varies with $p_{1}$, so that the terminal pressure $p_{n}$ is constant, and consequently $r=p_{1} \div p_{n}$; therefore, cut-off in high-pressure cylinder $=R \times p_{n} \div p_{1}$.
    Ratios of Cylinders as Found in Marine Practice.-The rate of expansion may be taken at one tenth of the boiler-pressure (or about one twelfth the absolute pressure), to work economically at full speed. Therefore, when the diameter of the low-pressure cylinder does not exceed 100 inches, and the boiler-pressure 70 lbs ., the ratio of the low-pressure to the high-pressure cylinder should be 3.5; for a boiler-pressure of $80 \mathrm{lbs} ., 3.75$; for $90 \mathrm{lbs} ., 4.0$; for $100 \mathrm{lbs} ., 4.5$. If these proportions are adhered to, there will be no need of an expansion-valve to either cylinder. If, however, to avoid "drop," the ratio be reduced, an expansion-valve should be fitted to the high-pressure cylinder.
    Where economy of steam is not of first importance, but rather a large power, the ratio of cylinder capacities may with advantage be decreased, so that with a boiler-pressure of 100 lbs . it may be 3.75 to 4 .
    In tandem engines there is no necessity to divide the work equally. The ratio is generally 4 , but when the steam-pressure exceeds 90 lbs . absolute 4.5 is better, and for 100 lbs . 5.0 .
    When the power requires that the 1. p. cylinder shall be more than 100 in . diameter, it should be divided in two cylinders. In this case the ratio of the combined capacity of the two l. p. cylinders to that of the h. p. may be 3.0 for 85 lbs . absolute, 3.4 for $95 \mathrm{lbs} ., 3.7$ for 105 lbs ., and 4.0 for 115 lbs .
    Receiver Space in Compound Engines should be from 1 to 1.5 times the capacity of the high-pressure cylinder, when the cranks are at an angle of from $90^{\circ}$ to $120^{\circ}$. When the cranks are at $180^{\circ}$ or nearly this, the space may be very much reduced. In the case of triple-compound engines, with cranks at $120^{\circ}$, and the internediate cylinder leading the highpressure, a very small receiver will do. The pressure in the receiver should never exceed half the boiler-pressure. (Seaton.)

    ## Pormula for Calculating the Expansion and the Work of Steam in Compound Engines.

    (Condensed from Clark on the "Steam-engine.")
    $a=$ area of the first cylinder in square inches;
    $\boldsymbol{a}^{\prime}=$ area of the second cylinder in square inches;
    $\mathbf{r}=$ ratio of the capacity of the second cylinder to that of the first;
    $L=$ length of stroke in feet, supposed to be the same for both cylinders;
    $\boldsymbol{l}=$ period of admission to the first cylinder in feet, excluding clearance:
    $c=$ clearance at each end of the cylinders, in parts of the stroke, in feet;
    $L^{\prime}=$ length of the stroke plus the clearance, in feet;
    $\boldsymbol{l}^{\prime}=$ period of admission plus the clearance, in feet;
    $\underset{P}{s}=$ length of a given part of the stroke of the second cylinder, in feet;
    $P=$ total initial pressure in the first cylinder, in lbs. per square inch, supposed to be uniform during admission;
    $P^{\prime \prime}=$ total pressure at the end of the given part of the stroke s;
    $p=$ average total pressure for the whole stroke;
    $R=$ nominal ratio of expansion in the first cylinder, or $L+l_{;}$
    $R^{\prime}=$ actual ratio of expansion in the first cylinder, or $L^{\prime}+l^{\prime}$;
    $R^{\prime \prime}=$ actual combined ratio of expansion, in the first and second cylinders together;
    $n=$ ratio of the final pressure in the first cylinder to any intermediate fall of pressure between the first and second cylinders;
    $N=$ ratio of the volume of the intermediate space in the Woolf engine, reckoned up to, and including the clearance of, the second piston, to the capacity of the first cylinder plus its clearance. The value of $N$ is correctly expressed by the actual ratio of the volumes as stated, on the assumption that the intermediate space is a vacuum when it receives the exhaust-steam from the first cylinder. In point of fact, there is a residuum of unexhausted steam in the interme. diate space, at low pressure, and the value of $N$ is thereby practically reduced below the ratio here stated. $N=\frac{n}{n-1}-1$.
    $w=$ whole net work in one stroke, in foot-pounds.
    Ratio of expansion in the second cylinder:

    $$
    \begin{aligned}
    & \text { In the Woolf engine, } \frac{\left(r \frac{L}{L^{\prime}}\right)+N}{1+N} \\
    & \text { In the receiver.engine, } \frac{(n-1) r}{n}
    \end{aligned}
    $$

    Total actual ratio of expansion = product of the ratios of the three consecutive expansions, in the first cylinder, in the intermediate space, and in the second cylinder,

    $$
    \begin{aligned}
    & \text { In the woolf engine, } R^{\prime}\left(r \frac{L}{L^{\prime}}+N\right): \\
    & \text { In the receiver-engine, } r \frac{L^{\prime}}{l^{\prime}} \text {, or } r R^{\prime} \text {. }
    \end{aligned}
    $$

    Combined ratio of expansion behind the pistons $=\frac{n-1}{n} r R^{\prime}=R^{\prime \prime}$.
    Work done in the two cylinders for one stroke, with a given cut-ofi and \& given combined actual ratio of expansion:

    $$
    \text { Woolf engine, } w=a P\left[l^{\prime}\left(1+\text { hyp } \log R^{\prime \prime}\right)-c\right] ;
    $$

    Receiver engine, $w=a P\left[l^{\prime}\left(1+\right.\right.$ hyp $\left.\left.\log R^{\prime \prime}\right)-c\left(1+\frac{r-1}{R^{\prime}}\right)\right]$.
    when there is no intermediate fall of pressure.
    When there is an intermediate fall, when the pressure falls to $3 / 4,2 / 3,1 / 2$ of the final pressure in the 1 st cylinder, the reduction of work is $0.2 \%, 1.0 \%, 4.6 \%$ of that when there is no fall.

    Totai work in the two cylinders of a receiver-engine, for one stroke for any intermediate fall of pressure,

    $$
    w=a P\left[l^{\prime}\left(\frac{n+1}{n}+\text { hyp } \log R^{\prime \prime}\right)-c\left(1+\frac{(n-1)(r-1)}{n R^{\prime}}\right)\right] .
    $$

    Example.-Let $a=1 \mathrm{sq}$. in., $P=63 \mathrm{lbs} ., l^{\prime}=2.42 \mathrm{ft} ., n=4, R^{\prime \prime}=5.969$, $c=.42 \mathrm{ft}$., $r=3, R^{\prime}=2.653$;
    $w=1 \times 63\left[2.42(5 / 4\right.$ hyp $\left.\log 5.969)-.42\left(1 \div \frac{3 \times 2}{4 \times 2.653}\right)\right]=421.55 \mathrm{ft} .-\mathrm{lbs}$.
    Calculation of Diameters ot Cylinders of a compound condeusing engine of $2000 \mathrm{H} . \mathrm{P}$. at a speed of "U0 feet per minute, with 100 lbs . boiler-pressure.

    100 lbs. gauge-pressure $=115$ absolute, less drop of 5 lbs . between boiler and cylinder $=110 \mathrm{lbs}$. initial absolute pressure. Assuming terminal pressure in l. p. cylinder $=6 \mathrm{lbs}$., the total expansion of steam in both cylinders $=110 \div 6=18.33$. Hyp $\log 18.33=2.909$. Back pressure in l. p. cylinder, 3 lbs. absolute.

    The following formulæ are used in the calculation of each cylinder :
    (1) Area of cylinder $=\frac{\text { H.P. } \times 3: 3,000}{\text { M.E.P. } \times \text { piston-speed }}$.
    (2) Mean effective pressure $=$ mean total pressure - back pressure.
    (3) Mean total pressure $=$ terminal pressure $\times(1+$ hyp $\log R)$.
    (4) Absolute initial pressure $=$ absolute terminal pressure $\times$ ratio of expansion.
    First calculate the area of the low-pressure cylinder as if all the work were done in that cylinder.
    From (3), mean total pressure $=6 \times(1+\operatorname{lyp} \log 18.33)=23.454 \mathrm{lbs}$.
    From ( 2 ), mear effective pressure $=23.454-3=20.45 \ddagger \mathrm{lbs}$.
    From (1), area of cyliuder $=\frac{2000 \times 33,000}{20.454 \times \tau 00}=4610$ sq. ins. $=76.6 \mathrm{ins}$. diam.
    If half the work, or 1000 H.P., is done in the l. p. cylinder the M.E.P. will be half that found above, or 10.227 lbs ., and the mean total pressure $10.22 \%+$ $3=13.227$ lbs.
    From (3), $1+$ hyp $\log R=13.22 \% \div 6=2.2045$.
    Hyp $\log R=1.2045$, whence $R$ in l. p. cyl. $=3.335$.
    From (4), $3.335 \times 0=20.01 \mathrm{lbs}$. initial pressure in 1. p. cyl. and terminal pressure in h. p. c $\int$ l., assuming no drop between cylinders.
    $110 \div 20.01=18.33 \div 3.335=5.49 \pi, R$ in h. p. cyl.
    From (3), mean total pres, in h. p.cyl $=20.01 \times(1+\operatorname{lyp} \log 5.49 \%)=54.11$. From (2), $54.11-20.01=34.10$, M.E. ${ }^{2}$. in li. p. cyl.
    From (1), area of h.p.cyl. $=\frac{1000 \times 33,000}{\% 00 \times 24.1}=1382$ sq. ins. $=42$ ins. diam.
    Cyliuder ratio $=4610 \div 1382=3.336$.
    The area of the h. p. cylinder may be found more directly hy dividing the area of the l. p. cyl. by the ratio of expansion in that cylnder. $4610 \div$ $3.335=138: 3$ sq. ins.

    In the above calculation no account is taken of clearance, of compression, of drop between cylinders, nor of area of pistou-rods. It also assumes that the diarran in each cylinder is the full theoretical diagram, with a horizontal stean-line and a hyperbolic expansion line, with no allowance for rounding of the corners. To make allowance for these, the mean effective pressure in each cylinder must be multiplied by a diagram factor, or the ratio of the area of an actual diagran of the ciass of engine considered, with the given initial and terminal pressures, to the area of the theoretical diagram. Such diagram factors will range from 0.6 to 0.94 , as in the table on p .745.

    Hest Ratios of Cylinders.-The question what is the best ratio of areas of the two cylinders of a compound engine is still (1901), a disputed one, but there appears to be an increasing tendency in favor of large ratios, eveu as great as 7 or 8 to 1 , with considerable terminal drop in the highpressure cylinder. A discussion of the subject, together with a description of a new method of drawing theoretical diagrams of multiple-expansion engines, taking into consideration drop, clearance, and compression, will be found in a paper by Bert C, Ball, ia Trans. A. S, M. E., xxi. 100\%,

    ## TRIPLE-EXPANSEON ENGINES.

    Proportions of Cylinders.-H. H. Suplee, Mechanics, Nov. 1887, gives the following method of proportioning cylinders of triple-expansion engines:

    As in the case of compound engines the diameter of the low-pressure cylinder is first determined, being made large enough to furnish the entire power required at the mean pressure due to the initial pressure and expansion ratio given; and then this cylinder is only given pressure enough to perform one third of the work, and the other cylinders are proportioned so as to divide the other two thirds between them.
    Let us suppose that an initial pressure of 150 lbs . is used and that $900 \mathrm{H} . P$. is to be developed at a piston-speed of 800 ft . per min., atd that, an expansion ratio of 16 is to be reached with an absolute back pressure of 2 lbs .
    The theoretical M.E.P. with an absolute initial pressure of $150+14.7=$ 164.7 lbs. initial at 16 expansions is

    $$
    \frac{P(1+\text { hyp } \log 16)}{16}=164.7 \times \frac{3.7 \pi 26}{16}=38.83,
    $$

    less 2 lbs. back pressure $=38.83-2=36.83$.
    In practice only about 0.7 of this pressure is actually attained, so that $36.83 \times 0.7=25.781 \mathrm{lbs}$. is the M.E.P. upon which the engine is to be proportioned.
    To obtain 900 H.P. we must have $33,000 \times 900=29,700,000$ foot-pounds, and this divided by the mean pressure ( 25.78 ) and by the speed in feet (800) will give 1440 sq . in. for the area of the 1. p. cylinder, about equivalent to 43 in . diam.

    Now as one third of the work is to be done in the l. p. cylinder, the M.E.P. in it will be $25.78 \div 3=8.59 \mathrm{lbs}$.
    The cut-off in the high-pressure cylinder is generally arranged to cut off at 0.6 of the stroke, and so the ratio of the h . p . to the $1 . \mathrm{p}$. cylinder is equal to $16 \times 0.6=9.6$, and the h. p. cylinder will be $1440 \div 9.6=150 \mathrm{sq}$. in. area, or about 14 in . diameter, and the M.E.P. in the h . p. cylinder is equal to $9.6 \times 8.59=82.46 \mathrm{lbs}$.
    If the intermediate cylinder is made a mean size between the other two, its size would be determined oy dividing the area of the l.p. cylinder by the square root of the ratio between the low and the high; but in practice this is found to give a result too large to equalize the stresses, so that instcad the area of the int. cylinder is found 1 y dividing the area of the 1 . $p$. piston by 1.1 times the square root of the ratio of l. p. to h. p. cylinder, which in this case is $1440 \div(1.1 \sqrt{9.6})=42 \cdot .5 \mathrm{sq}$. in., or a little more than 23 in diam.
    The choice of expansion ratio is governed by the initial pressure, and is generally chosen so that the terminal pressure in the l. p. cylinder shall be about 10 lbs . absolute.

    Formula for Proportioning Cylinder Areas of TripleExpansion Engimes.- The following formulæ are based on the method of first finding the cylinder areas that would be required if an ideal hyperbolic diagram were obtainable from each cylinder, with no clearance, compression, wire-drawing, drop by free expansion in receivers, or loss by cylinder condensation, assuming equal work to be done in each cylinder, and then dividing the areas thus found by a suitable diagram factor, such as those given on page rit5, expressing the ratio which the area of an actual diagram, obtained in practice from an engine of the type under consideration, bears to the ideal or theoretical diagram. It will vary in different classes of engine and in different cylinders of the same engine, usual values ranging from 0.6 to 0.9 . When any one of the three stages of expansion takes place in two cylinders, the combined area of these cylinders equals the area found by the formulæ.

    ## NOTATION.

    $p_{1}=$ initial pressure in the high pressure cylinder.
    $p_{t}=$ terminal ${ }^{6} \quad$ " $\quad$ " low pressure
    $p_{b}=$ back
    $p_{2}=$ term. press. in h. p. cyl. and initial press. in intermediate cyl.
    ${ }_{R_{1}}^{p_{3}} \overline{\bar{R}}_{2}, R_{3}$, ratio of exp. in h. p. int. and l. p. cyls.
    $R=$ total ratio of exp. $=R_{1} \times R_{2} \times R_{3}$.
    $P=$ mean effec. press. of the combined ideal diagram, referred to the
    I. p. cyl.
    $P_{4}, P_{2}, P_{3}=m$. e. p. in the h. p., int., and l. p, cyls.
    $H P=$ horse-power of the eugine $=P L A_{3} N \div 33,000$.
    $L=$ length of stroke in feet; $N=$ number of single strokes per min. $\mathcal{A}_{1}, A_{2}, \mathcal{A}_{3}$, areas (sq ins.) of h. p. int. and l. p. cyls. (ideal).
    $\mathfrak{W}=$ work done in one cylinder per foot of stroke.
    $r_{2}=$ ratio of $A_{2}$ to $A_{1} ; r_{3}=$ ratio of $A_{3}$ to $A_{1}$.
    $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}^{\prime}$, diagram factors of h . p. int, and $\mathrm{l}_{6}$ p, cyl.
    $a_{1}, a_{2}, a_{3}$, areas (actual) of

    ## Fovmulae.

    (1) $R=p_{i} \div p t$.
    (Z) $P=p t(1+$ hyp. log. $R)-p b$.
    (3) $P_{3}=1 / 3 P$.
    (4) Hyp. $\log . R_{3}=\left(P_{3}-v_{t}+p b\right) \div v_{t}$.
    (5) $R_{1} R_{2}=R \div R_{3} ; \quad R_{1}=R_{2}=v \overline{R_{1} R_{2}}$.
    (6) $p_{3}=\rho t \times R_{3}$.
    (7) $p_{2}=p_{3} \times R_{2}$.
    (8) $p_{1}=\mu^{\prime 2} \times R_{1}$.
    (9) $\mu_{2}=l_{3}$ (byp. lng. $R_{2}$ ) $=P_{3} R_{3}$.
    (10) $P_{1}=\mu_{2}\left(\right.$ нyp $\left.\log \cdot R_{1}\right)=P_{2} R_{2}$.
    (11) $W=11,000 H P+L N$.
    (1i2) $A_{1}=W \div P_{2} ; \quad A_{2}=W \div P_{2} ; \quad A_{3}=W+P_{3}$.
    (13) $r_{2}=A_{2}+A_{1}=P_{1} \div P_{2}=R_{3}$ or $\mu_{2} ; r_{3}=A_{3} \div A_{1}=P_{1} \div P_{3}$.
    (14) $a_{1}=A_{1} \div F_{3} ; \quad u_{2}=A_{2} \div F_{2} ; \quad u_{3}=A_{3} \div F_{3}$.

    From these formulæ the figures in the following tables bave been calculated:

    THLORETICAL MEAN EFFECTIVE PRESSURES, CYLINDER RATIOS, ETC., OF TRIPLE EXPANSION ENGINES.
    Back pressure, 3 lbs. Terminal pressure, 8 lbs. (absolute).

    | $p_{1}$. | $R$. | $P$. | $P_{3}$. | $R_{3}$. | $\begin{array}{cc}R_{1}, & R_{2} . \\ \text { or } & r_{2} .\end{array}$ | $p_{3}$. | $p_{2}$. | $P_{2}$ | $P_{1}$. | $r_{3}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 120 | 15 | 26.66 | 8.89 | 1.626 | 3.037 | 13.01 | 39.51 | 14.45 | 43.89 | 4.939 |
    | 140 | 17.5 | 27.90 | 9.30 | 1.712 | 3.197 | 13.70 | 43.79 | 15.92 | 50.89 | 5.4\%2 |
    | 160 | 20 | 28.97 | 9.66 | 1.790 | 3.343 | 14.3:3 | 47.86 | 17. 29 | 57.76 | 5.980 |
    | 180 | 20.5 | 29.91 | 9.9 ~ | 1.861 | $3.4 \%$ | 14.89 | 51.77 | 18.55 | 64.52 | 6.471 |
    | 200 | 25 | 30.65 | 10.25 | $1.9 \pm 8$ | 3.601 | 15.4\% | 55.54 | 19.76 | 71. 16 | 6.942 |
    | 220 | 2~.5 | 31.51 | i0.50 | 1.990 | 3.718 | 15.91 | 59.16 | 20.90 | 77.69 | 7.397 |
    | 240 | 30 | 3.2.21 | 10.74 | 2.049 | 3.826 | 16.39 | 62.72 | 22.00 | 84.16 | 7.839 |

    Back pressure, 3 lbs. Terminal pressure, 10 lbs. (absolute).

    | $1_{1}$ | $R$. | $P$. | $P_{3}$. | $R_{3}$. | $\begin{array}{cc} R_{1}, & R_{2} \\ \text { O1: } & r_{2} \end{array}$ | $p_{3}$. | $p_{2}$. | $P_{2}$ | $P_{1}$. | $r_{3}$. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 120 | 12 | 31.85 | 10.62 | 1.436 | 2.890 | 14.36 | 41.50 | 15.24 | 44.04 | 4.148 |
    | 140 | 14 | 33.39 | 11.13 | 1.511 | 3.044 | 15.11 | 45.99 | 16.8: | 51.20 | 4.600 |
    | 160 | 16 | 34.73 | 11.58 | 1.580 | $3.18:$ | 15.80 | 50.28 | 18.29 | 58.20 | 5.0\% |
    | 180 | 18 | 35.90 | 11.97 | 1.643 | 3.310 | 16.43 | 54.38 | 19.66 | 65.09 | 5.439 |
    | 200 | 20 | 36.96 | 12.32 | 1.702 | 3.498 | 17.02 | 58.34 | 20.97 | 71.88 | 5.834 |
    | 220 | 2 L | 37.91 | 12.64 | 1.757 | 3.538 | 17.57 | 62.15 | 22. 20 | 78.54 | 6.215 |
    | 240 | 24 | 38.78 | 12.93 | 1.809 | 3.642 | 18.09 | 65.88 | 23.38 | 85.15 | 6.587 |

    Given the required H.P. of an engine, its speed and length of stroke, and the assumed diagram factors $F_{1}, F_{2}, F_{3}$ for the three cylinders, the areas of the cylinders may be found by using formulæ (11), (12), and (14), and the values of $P_{1}, P_{2}$, and $P_{3}$ in the above table.

    A Common Rule for Proportioning the Cylinders of mu'-tiple-expansion engines is: for two-cylinder compound engines, the cylinder ratio is the square root of the number of expansions, and for triple-expansion engines the ratios of the high to the intermediate and of the intermediate to the low are each equal to the cube root of the number of expansions, the ratio of the high to the low being the product of the two ratios, that is, the square of the cube root of the mumber of expansions. Applying this rule to the pressures above given, assuming a terminal pressure (absolute) of 10 lbs . and 8 lbs . respectively, we have, for triple-expausion engines:

    | Boilerpressure(Absolute) | Terminal Pressure, 10 lbs. |  | Terminal Pressure, 8 lbs . |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | No. of Expansions. | Cylinder Ratios, areas. | No. of Expansions. | Cylinder Ratios, areas. |
    | 130. | 13 | 1 to 2.35 to 5.53 |  | 1 to 2.53 to 6.42 |
    | 140 150 | 14 | 1 to 2.41 to 5.81 | 171/2 | 1 to 2.60 to 6.74 |
    | 150 160 | 15 16 | 1 to 2.47 to 6.08 1 to 2.52 to 6.35 | 1834 | 1 to 2.66 to 7.06 |
    | 100 | 16 | 1 to 2.52 to 6.35 | 20 | 1 to 2.71 to $7.3 \%$ |

    The ratio of the diameters is the square root of the ratios of the areas, and the ratio of the diameters of the first and third cylinders is the same as the ratio of the areas of first and second.
    Seaton, in his Marine Engineering, says: When the pressure of steam entHoyed exceeds 115 lbs. absolute, it is advisable to employ three cylinders, through each of which the steam expands in turn. The ratio of the lowpressure to high-pressure cylinder in this system should be 5 , when the steam-pressure is 125 lbs. absolute; when 135 lbs . absolute, 5.4 ; when 145 lbs. absolute, 5.8 ; when 155 lbs. absolute, 6.2 ; when 165 lbs. absolute, 6.6 . The ratio of low-pressure to intermediate cylinder should be about one half that between low-pressure and high-pressure, as given above. That is, if the ratio of $1 . p$. to $h$. p. is 6 , that of 1 . p. to int. should be about 3 , and consequently that of int. to h. p. about 2. In practice the ratio of int. to h. p, is nearly 2.25, so that the diameter of the int. cylinder is 1.5 that of the h. p. The introduction of the triple-compound engine has admitted of ships being propelled at higher rates of speed than formerly obtained without exceeding the consumption of fuel of similar ships fitted with ordinary compound engines; in such cases the higher power to obtain the speed has been developed by decreasing the rate of expansion, the low-pressure cylinder being only 6 times the capacity of the high-pressure, with a working pressure of 170 lbs . absolute. It is now a very general practice to make the diameter of the low pressure cylinder equal to the sum of the diameters of the h. p. and int. cylinders; hence,

    > Diameter of int. cylinder $=1.5$ diameter of h. p. cylinder; Diameter of $1 . p . c y l i n d e r=2.5$ diameter of h.p. cylinder.

    In this case the ratio of $1 . \mathrm{p}$. to h. p. is 6.25; the ratio of int. to h. p. is 2.25: and ratio of l. p. to int. is 2.78 .

    Ratios of Cylinders for Different Classes of Lingines. (Proc. Inst. M. E., Feb. 188\%, p. 36.)-As to the best ratios for the cylinders in a triple engine there seems to be great difference of opinion. Considerable latitude, however, is due to the requirements of the case, inasmuch as it would not be expected that the same ratio would be suitable for an economical land engine, where the space occupied and the weight were of minor importance, as in a war-ship, where the conditions were reversed. In the land engine, for example, a theoretical terminal pressure of about 7 lbs. above absolute vacuum would probably be aimed at, which would give a ratio of capacity of high pressure to low pressure of 1 to $81 / 2$ or 1 to 9 ; whilst in a war-ship a terminal pressure would be required of 12 to 13 lbs. which would need a ratio of capacity of 1 to 5 ; yet in both these instances the cylinders were correctly proportioned and suitable to the requirements of the case. It is obviously unwise, therefore, to introduce any hard-andfast rule.
    Types of Threestage Expansion Engines. -1 . Three cranks at 120 deg. 2. Two cranks with 1 st and $2 d$ cylinders tandem. 3. Two cranks with 1 st and 3 cylinders tandem. The most common type is the first, with cylinders arranged in the sequence high, intermediate, low.

    Sequence of Cranks.-Mr. Wyllie (Proc. Inst. M. E., 188\%) favors the sequence ligh, low, intermediare, while Mr. Mudd favors high, intermediate, low. The former sequence. high, low, intermediate, gave an approximately horizontal exhaust-line, and thus minimizes the range of temperature and the initial load; the latter sequence, high, intermediate, low, increased the range and also the load.

    Mr. Morrison, in discussing the question of sequence of cranks, presented a diagram howing that with the cranks arranged in the sequence high, low, intermediate, the mein compression into the receiver was $191 / 2$ per cent of the stroke; with the sequence high, intermediate, low, it was 5 i per cent,
    In the former case the compression was just what was required to keep the receiver-pressure practically niform; in the latter case the compression cansed a variation in the receiver-pressure to the extent sometimes of $201 / \mathrm{lbs}$.

    Velocity of Steam through Rassages in Compound
     of the cylmder multiplied by the piston-speed in feet per second and dividing by the area of the port the velocity of the initial steam through the high-pressure cylinder port would be about 100 feet per second; the exhaust would be about 90 . In the intermediate cylinder the initial steam had a velucity of about 180, and the exhaust of 120. In the low-pressure cylinder the initial steam entered through the port with a velocity of 250 , and in the exhaust-port the velocity was about-140 feet per second.

    ## QUADRUPLE-EXPANSION LENGINES.

    H. H. Suplee (Trans. A. S. M. E., x. 583) states that a study of 14 different quadruple-expansion engines, nearly all intended to be operated at a pres. sure of 180 lins. persq. in., gave average cylinder ratios of 1 to 2 , to 3.78 , to 7.70, or nearly in the proportions $1,2,4,8$.

    If we take the ratio of areas of any two adjoining cylinders as the fonrth root of the number of expansions, the ratio of the 1st to the 4 th will be the crbe of the fourth root. On this basis the ratios of areas for different pressures and rates of expansion will be as follows:

    | Gaugepressures. | Absolute Pressures. | Terminal <br> Pressures. | Ratio of Expansion. | Ratios of Areas of Cylinders. |
    | :---: | :---: | :---: | :---: | :---: |
    | 160 | 175 | $\{12$ | 14.6 | 1:1.95:3.81: 7.44 |
    |  |  | $\left\{\begin{array}{r}10 \\ 8\end{array}\right.$ | 17.5 21.9 | $1: 2.05: 4.18: 8.55$ |
    | 180 | 195 | 12 | 16.2 | $1: 2.16: 4.68: 10.12$ $1: 2.01: 4.0: ~$ 1 |
    |  |  | $\{10$ | 19.5 | $1: 2.10: 4.42: 9.28$ |
    |  |  | $\{8$ | 24.4 | $1: 2.2 \%: 4.94: 10.98$ |
    | 200 | 215 | 12 | 17.9 | $1: 2.06: 4.23: 8.70$ |
    |  |  | $\{10$ | 21.5 | 1:2.15:4.64: 9.98 |
    |  |  | (8) | 26.9 | 1: $2.28: 5.19: 11.81$ |
    | 220 | 235 | $\{12$ | 19.6 | 1: $2.10: 4.43: 9.31$ |
    |  |  | $\{10$ | 23.5 | 1: $2.20: 4.85: 10.67$ |
    |  |  | ( 8 | 29.4 | 1:2.33:5.42: 12.62 |

    Seaton says: When the pressure of steam employed exceeds 190 lbs absolute, four cylinders should be employed, with the stean expanding through each snccessively; and the ratio of $1 . p$ to h. p. shonld be at least $\% .5$, and if economy of fuel is of prime consideration it should be 8 ; then the ratio of first intermediate to h. p. should be 1.5, that of second intermediate to first int. 2, and that of l. p. to second int. ㄹ.2.

    In a paper read before the North East Coast Institution of Engineers and Shipbuilders. 1890, William Russell Cummins advocates the use of a fourcylinder engine with fom cranks as beng more suitable for high speeds than the three-cylinder three-crank engine. The cylinder ratios, he claims, should be designed so as to obtain equal initial loads in each cylinder. The ratios determined ior the triple engine are $1,204,6.54$, and for the quadruple, 1, 2.08, 4.46, 10.47. He advocates long stroke, high piston-speed, 100 revolutions per minnte, and diso lbs. boiler-pressure, unjacketed cylinders, and
    separate steam and exhaust valves. separato steam and exhaust valves.

    ## Diameters of Cylinders of Recent Tripleeexpansioń Enoines, Chiefly FIarine.

    Compiled from several sources, 1590-1893.
    Diam. in inches: $H=$ high pressure, $I=$ intermediate, $L=$ low pressure.

    | $H$ | I | $L$ | $H$ | I | $L$ | H | $I$ | $L$ | $H$ | $I$ | $L$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 3 | 5 | 8 | 16 | 25.6 |  | 22 | 36 | $\left\{\begin{array}{l}40 \\ 40\end{array}\right.$ | 36 <br> 38 <br> 8 | $\begin{aligned} & 58 \\ & 61.5 \end{aligned}$ | 94 100 |
    | 43/4 | 7.5 | 13 | 161/4 | 237/8 | 38.5 | 3 | 38 | $\left\{\begin{array}{l}40 \\ 61\end{array}\right.$ | 38 | 61.5 |  |
    | 5 | 8 | 12 | 16.5 | 24.5 | $\left\{\begin{array}{l}31 \\ 31\end{array}\right.$ | 23 | 38 | 61 | $\stackrel{28}{28}\}$ | 56 | 86 |
    | 6.5 | 10.5 | 12.5 | 17 | 27 | (31 | 24 | 37 | 56 | 39 | 61 | 97 |
    | 7.1 | 11.8 | 18.9 | 17 | 26.5 | 42 | 25 | 40 | 64 | 40 | 59 | 88 |
    | 7.5 | 12 | 19 | 17 | 28 | 45 | 26 | 42 | 69 | 40 | 67 | 106 |
    | 8 | 11.5 | 16 | 18 | 27 | 40 | 26 | 42.5 | T0 | 40 | 66 | 100 |
    | 9 | 14.5 | 22.5 | 18 | 29 | 48 | 28 | 44 | \% | 41 | 66 | 101 |
    | 9.8 | 15.7 | 25.6 | 18 | 30.5 | 51 | 293/8 | 44 | \% 0 | 413/8 | 67 | 1063/4 |
    | 10 | 16 | 25 | 18.7 | 29.5 | 433 | 29.5 | 48 | 78 | 42 | 59 | 92 |
    | 11 | 16 | 24 | 183/4. | 23.6 | 3 5 .4 | 30 | 48 | 7 | 43 | 66 | $9: 3$ |
    | 11 | 18 | 25 | 19.7 | 29.6 | 47.3 | 32 | 46 | 70 | 43 | 68 | 110 |
    | 11 | 18 | 30 | 20 | 30 | 45 | 32 | 51 | 82 | 433/8 | $6 \hat{1}$ | 1061/4 |
    | 11.5 | 18 | 28.5 | 20 | 3.5 | $\{36$ | 32 | 54 | 82 | 4.5 | \%1 |  |
    | 11.5 | 17.5 | 30.5 | 20 | 3 | $\{36$ | 33. | 58 | 88 | P3, 5 \} | 68 | $\left\{\begin{array}{l}85.7 \\ 8.7\end{array}\right.$ |
    | 12 | 19.2 | 30.5 | 20 | 33 | $5:$ | 33.9 | 55.1 | 84.6 | $2.5\}$ |  |  |
    | 13 | 22. | 33.5 | 21 | 32 | 48 |  | 54 |  | 47 | 75 | $\left\{\begin{array}{l}81.5 \\ 815\end{array}\right.$ |
    | 14 | 20.4 | 36 | 21 | 36 | 51. | 34 | 50 | 90 |  |  | $\left\{\begin{array}{l}81.5 \\ 98\end{array}\right.$ |
    | 14.5 | 24 | 39 39 | 21.7 | 33.5 | 49.2 | 34.5 | 51 57 |  | $\left.\begin{array}{l}37 \\ 37\end{array}\right\}$ | \%9 | $\left\{\begin{array}{l}98 \\ 98\end{array}\right.$ |
    | 15 15 | ${ }_{24}^{24}$ | 39 38 | 21.9 | 34 34 | 51 | 34.5 | 57 |  | 3 |  | 198 |

    Where the figures are bracketed there are two cylinders of a kind. Two $28^{\prime \prime}=$ one $39.6^{\prime \prime}$, two $31^{\prime \prime}=$ one $43.8^{\prime \prime}$, two $32.5^{\prime \prime}=$ one $46.0^{\prime \prime}$, two $36^{\prime \prime}=$ one $50.9^{\prime \prime}$, two $3 \pi^{\prime \prime}=$ une $52.3^{\prime \prime}$, two $40^{\prime \prime}=$ one $56.6^{\prime \prime}$, two $81.5^{\prime \prime}=$ one $115^{\prime \prime}$, two $85.7^{\prime \prime}=$ one $121^{\prime \prime}$, two $98^{\prime \prime}=$ one $140^{\prime \prime}$. The average ratio of diameters of cylinders of all the engines in the above table is nearly 1 to 1.60 to 2.56 and the ratio of areas nearly 1 to 2.56 to 6.55 .
    The Progress in Steam-engines between $18 \% 6$ and 1893 is shown in the following comparison of the Corliss engine at the Centennial Exhibition in $18 \pi 6$ and the Allis-Corliss quadruple-expansion engine at the Chicago Exhibition.

    Engine
    $\left.\begin{array}{cc}\begin{array}{c}1893 . \\ \left\{\begin{array}{c}\text { Quadruple- } \\ \text { expansion. }\end{array}\right\}\end{array} & \begin{array}{c}18 \% 6 . \\ 4\end{array} \\ \text { Simple }\end{array}\right\}$

    The crank-shaft body or wheel-seat of the Allis engine has a diameter of 21 inches, journals 19 inch + s, and crank bearings 18 inches, with a total length of 18 feet. The crank-disks are of cast iron ond are 8 feet in diameter. The crank-pins are 9 inches in diameter by 9 inches long.

    A Donblewamuevan riple-expansion whyine, buit by Watts, Campbell \& Co., Newark, N. J., i.s described in Am. Mach., April 26, 1894. It is two three-cylinder tandem engines coupled to one shaft, cranks at $90^{\circ}$, cylinders 21,32 and 48 by 60 in . stroke, 65 revolutions per minute, rated H.P'. 2000; fly-wheel 28 feet diameter, 12 ft . face, weight $174,000 \mathrm{lbs}$; main shaft 22 in. diameter at the swell; main journals $19 \times 38$ in.; crank-pins $91 / 2 \times 10$ in.; distance between centre lines of two engines 24 ft . $71 / 2 \mathrm{in}$.; Corliss valves, with separate eccentrics for the exhaust-valves of the l.p, cylinder.
    Principai Lnoines in the Power－Plant at the Vorld＇s Columbian Exposition， 1893 ．

    | Name of Engine and where Built． | Type of Engine． |  | Cylinders， ins． <br> Diameters and Stroke． |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | E．P．Allis Co．，Milwaukee． | Quad．exp．condensing．． | H． | 24，40，60， $70 \times 72$ | 2，000 | 3，000 |  |  |  |  |  |
    | McIntosh－Seymour，Auburn，${ }^{\text {N}}$ ． | 4－cyl．trip．exp．cond．．．． |  | 20，34，2－34 × 60 | 1，000 | 1，250 | $336 \times 68$ 3368 | ${ }_{64} 18$ | 10 | 22 | 650,000 |
    | Buckeye Engine Co．，Salem， 0 | 4 －cyl．trip．exp．cond | ＂ | 18， $32 \times 36$ double | 1，000 | 1，500 | $192 \times 78$ | 112 | 7 | 14 | 260,000 250,000 |
    | Atlas，Indianapolis，Ind |  | ＂ | $20,30,2-36 \times 48$ | 1，000 | 1，300 | $240 \times 75$ | 85 | 8 | 12 | 120，000 |
    | WWestinghouse，Pittsburg | Comp．cond．， 6 engin | V． | 14，24 $211-20$ | 1，000 | 1，300 | $144 \times 75$ | 150 | 5 | 8 | 114，000 |
    | Russell，Massillon，O | ＂${ }^{\text {che }} 2$＂6．．． | ， | 211－2， $37 \times 22$ | 1,000 350 |  | $132 \times 14$ $96 \times 26$ | 200 | 10 | 14 | 195，000＊ |
    | Atlas，Indianapolis， | Tandem tand．comp．cond．． | H． | $15,24 \times 24$ | 506 | 897 | $120 \times 60$ | 125 | 8 | 10 |  |
    | ＇Bass，Ft．Wayne，Ind．．． | Cross compound cond．．．． | ＂ | 14， $24 \times 30$ | 500 | 650 | $144 \times 36$ | 150 | 5 | 8 | 83,298 57,000 |
    | ［Lane \＆Bodley，Cincinnati， | ＂＊compound cond．．．．． | ، | 16， $30 \times 42$ | 224 | 440 | $192 \times 43$ | 70 | 5 | 10 | 51,000 61 |
    |  | Tandem comp．cond | ＂ | 16， $30 \times 42$ | 300 | 350 | $192 \times 4$ | 70 | 5 | 10 | 80，000 |
    | Buckeye．Salem， | Double tand．comp．cond．． | ＂ | 16， $916 \times 14$ | 250 | 350 | $216 \times 36$ $60 \times 12$ | －80 | ${ }^{5} 1$ 1－2 | 10 | 75，000 |
    | Ball \＆Wood，Elizabeth，${ }^{\text {N }}$ | Cross compound con | ＂ | $14,28 \times 24$ | 300 | 360 | $120 \times 33$ | 50 | 4－2 | 10 | $\stackrel{21,200}{33}$ |
    | N．Y．Safety Steam－Power | Simple．．． | ＂ | 14， $22 \times 12$ | 200 | 250 | ${ }^{66}$ | 280 | 5 | 8 | 33，000 |
    | Schichau，Germany | Triple exp．condensin | V． | 15，1－2 $\times 16$ | 150 | 200 | $72 \times 12$ | 250 | 4 1－2 | 6 |  |
    | Stearns Mfg．Co．，Erie，Pa． | Tandem comp．cond．．．．．． | H． | $23,37,57 \times 27$ <br> $19,31 \times 24$ | 1,000 600 |  |  | 100 |  |  |  |
    | Phonix Iron Works Co．，Meadville， P | 4－cyl．trip．exp．cond．．．．．．． | ＂، | $19,31 \times 24$ $15,24,2-26 \times 18$ | 600 500 | 800 | $\left\{\begin{array}{r} 102 \times 31 \\ 2-108 \times 26 \\ 1-108 \times 38 \end{array}\right\}$ | 165 | 7 | 12 | 75，000 |
    | A．L．Ide \＆Son，Springfield，Ill．．．．．．． | Tandem compound cond．． | ＂ | $13,24 \times 18$ | 250 |  | 108 $\times 26$ | 200 | 5 | 9 |  |
    | Allis，Milwaukee，Wis．．．．． |  | ، | 1．3，22 216 | 225 | 250 | $72 \times 161-2$ | 245 | 6 | 8 |  |
    | General Electric Co．，N．Y．．．．．．．．．．．． | Triple exp．condensing．．．． | V． | 19， $36 \times 48$ | 500 1,000 | 800 | 192 | 90 | 8 | 12 | 85，000 |
    | Armill Engine \＆So．，Erie，Pa．．．．．．．．．．．．．．． | Simple．． | H． | $18 \times 21$ | 1，000 |  | $84 \times 25$ | 225 | 8 | 18 |  |
    | McEwen，Ridgway．Pa．．． | Cross compo | ＂ 6 | 18， $36 \times 18$ | 480 | 570 | 86 | 225 | 7 | 18 | 65，000 |
    | Sioux City，Sioux City，Ia | Simple | ＂ | 14， $23 \times 20$ | 220 | 325 | $84 \times 29$ | 200 | 5 | 10 | 64，000 |
    | Gold St．Min．Iron Wks．，San Fran＇co， | Tandem | ＂ | ${ }^{24 \times 48}$ | 350 | 425 | $192 \times 44$ |  | 8 | 9 | 49，000 |
    | Bates Machine Co．，Joliet，Ill．． | Simple．．．．．．． | ＂ | $12,22 \times 30$ $20 \times 48$ | 200 | 270 346 | $132 \times 25$ | 115 | 4 | 7 1－2 | 35，000 |
    | Harrisburg，Harrisburg，Pa．．．．．．．．．． | Tandem coimp | ＂ | 17， $20 \times 48$ | 297 300 | 346 | $192 \times 27$ | 60 | 6 | 7 | 43，000 |
    | Providence Steam－Enginc Works， | ＂${ }^{\text {a }}$ | ＂ | 12， $20 \times 42$ | ${ }_{225}$ | 370 300 | $102 \times 31$ | 176 | ${ }_{5}^{6}$ | 11 | 50,000 |
    | Galloway，England．．．．．．．． | Simple．．．．．．．．．．．．．．．．．．．．．． | ＂ | $18 \times 22$ | 300 | 390 | $84 \times 241-2$ | 160 | 6 | 8 | 49,600 18,000 |
    | Willans \＆Robinson，Engl | Comp．condensing．．．．．．．．． | V | 17， $30 \times 45$ | 350 |  | 282 | 70 | 6 | 7 | 18，000 |
    | Schichau，Germany．．．．．．． | Triple exp．condensing．．．．． | ＂ | 3－14， $20 \times 8$ $12,19,291-2 \times 14$ |  | 360 | $58 \times 40$ | 350 | 4 | 5 |  |

    ## ECONOMIC PEREORIANCE OF STEADI-ENGINES. Economy of Expansive Working under Various Conditions, Single Cylinder.

    (Abridged from Clark on the Steam Engine.)

    1. Single Cylinders with Superheated Steam, Noncondensing.-Inside cylinder locomotive, cylinders and steam-pipes enveloped by the hot gases in the smoke-box. Net boiler pressure 100 lbs ; net maximum pressure in cylinders 80 lbs. per sq. in.
    $\begin{array}{llllllllll}\text { Cut-off, per cent....... . } & 20 & 25 & 30 & 35 & 40 & 50 & 60 & 70 & 80\end{array}$ Actual ratio of expansion $3.91 \quad 3.31 \quad 2.87 \quad 2.53 \quad 2.26$ Water per I.H.P. per hour,
    lbs.................... 18.5 19.4 $20 \quad 21.2 \quad 22.2 \quad 24.5 \quad 27 \quad 30 \quad 33$
    2. Single Cylinders with Superheated Steam, Condensing.-The best results obtained by Hirn, with a cylinder $233 / 4 \times 67 \mathrm{in}$. and steam superheated $150^{\circ} \mathrm{F}$., expansion ratio $33 / 4$ to $41 / 2$, total maximum pressure in cylinder 63 to 69 lbs . were 15.63 and 15.69 lbs . of water per I.H.P. per hour.
    3. Single Cylinders of Small Size, 8 or 9 in. Diam., Jacketed, Non-CONDENSING.-The best results are obtained at a cut-off of 20 per cent, with $\% 5 \mathrm{lbs}$. maximum pressure in the cylinder; about 25 lbs . of water per I.H.P. per hour.
    4. Single Cylinders, not Steam-Jacketed, Condensing.-Best results.

    | Engine. | $\begin{gathered} \text { Cylinder, } \\ \text { Diam. } \\ \text { and } \\ \text { Stroke. } \end{gathered}$ | Cut-off. | Actual ExpanRatio. | Total Maximum Pressure in Cylinder per sq. in. | Water as Steam per I.H.P. per hour. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Corliss and Wheelock... | $\stackrel{\text { ins. }}{18 \times 48}$ | per cent. 12.5 | ratio. <br> 6.95 | lbs. 104.4 | lbs. <br> 19.58 |
    | Hirn, No. 6............... | $2334 \times 60$ | 16.3 | 5.84 | 61.5 | 19.93 |
    | Mair, M.... | $32 \times 66$ | 24.6 | 3.84 | 54.5 | 26.46 |
    | Bache. | $25 \times 24$ | 15.5 | 5.32 | 87.7 | 26.25 |
    | Dexter. | $26 \times 36$ | 18.3 | 4.46 | 80.4 | 23.86 |
    | Dallas. | $36 \times 30$ | 13.3 | $5.0 \%$ | 46.9 | 26.69 |
    | Gallatin............. | $30.1 \times 30$ | 15.0 | 4.94 | 81.7 | 21.89 |

    Same Engines, Average Results.

    | Long Stroke. | Inches. | Cut-off, Per cent. | Lbs. | Lbs. |
    | :---: | :---: | :---: | :---: | :---: |
    | Corliss and Wheelock... | $18 \times 48$ | 12.5 | 104.4 | 19.58 |
    | Hirn ............... .... | $2334 \times 67$ | 16.3 | 61.5 | 19.93 |
    | Short Stroke. |  |  |  |  |
    | Bache | $25 \times 24$ | 15.5 | 87.7 | 26.25 |
    | Dexter, Nos. $20,21,22,23$ | $26 \times 36$ | $\left\{\begin{array}{l}18.3 \text { to } 33.3 \\ \text { average } 25\end{array}\right\}$ | 79.0 | 24.05 |
    | Dallas, Nos. $27,28,29 \ldots$ | $36 \times 30$ | $\{13.3$ to 26.4 | 46.8 | 26.86 |
    | $\begin{array}{r} \text { Gallatin, Nos, } 24,25,22, \\ 26 \ldots . . . . . . . . . . . . . . . . . . . . . . ~ \end{array}$ | $30.1 \times 30$ | $\left\{\begin{array}{c} \text { average } 19.8 \\ 12.3 \text { to } 18.5 \\ \text { average } 15.8 \end{array}\right\}$ | 78.2 | 23.50 |

    Feed-water Consumption of Different Types of Engines.
    -The following tables are taken from the circular of the Tabor Indicator (Ashcroft Mfg. Co., 1889). In the first of the two columns under Feed-water required, in the tables for simple engines, the figures are obtained by computation from nearly perfect indicator diagrams, with allowance for cylinder condensation according to the table on page 752 , but without allowance for leakage, with back-pressure in the non-condensing table taken at 16 lbs. above zero, and in the condensing table at 3 lbs . above zero. The compression curve is supposed to be hyperbolic, and cominences at 0.91 of the return-stroke, with a clearance of $3 \%$ of the piston-displacement.

    Table No. 2 gives the feed-water consumption for jacketed compound-con-
    densing engines of the best class．The water condensed in the jackets is included in the quantities given．The ratio of areas of the two cylinders are as 1 to 4 for 120 lbs ．pressure；the clearance of each cylinder is $3 \%$ ；and the cut off in the two cylinders occurs at the same point of stroke．The initial pressure in the 1. p．cylinder is 1 lb ．per sq．in．below the back－pressure of the h．p．cylinder．The average back pressure of the whole stroke in the l．p． cylinder is 4.5 lbs ．for $10 \%$ cut－off； 4.75 lbs ．for $20 \%$ cut－off；and 5 lbs ．for $30 \%$ cut－off．The steam accounted for by the indicator at cut－off in the $h . p$ ． cylinder（allowing a small amount for leakage）is .74 at $10 \%$ cut－off，． 78 at $20 \%$ ，and ． 82 at $30 \%$ cut－off．The loss by condensation between the cylinders is such that the steam accounted for at cut－off in the 1．p．cylinder，ex－ pressed in proportion of that shown at release in the h．p．cylinder，is ． 85 at $10 \%$ cut－off， .87 at $20 \%$ cut－off，and .89 at $30 \%$ cut－off．
    The data upon which table No． 3 is calculated are not given，but the feed－ water consumption is somewhat lower than has yet been reached（1894），the lowest steam consumption of a triple－exp．engine yet recorded being $11 . \% \mathrm{lbs}$ ． TABLE No． 1.
    Feed－water Consumption，Simple Engines．
    Non－condensing Engines．
    Condensing Engines．

    \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
    \hline \&  \&  \& Feed－ quired per \& ter Re－ I．H．P． Hour． \& \& $$
    \begin{aligned}
    & \dot{\text { in }} \\
    & \dot{g}
    \end{aligned}
    $$ \& 豎 \& Feed－
    quired
    per \& ter Re－ I．H．P． our． <br>
    \hline \& $\pm$ \& F \& \& む \& \& $$
    \varnothing
    $$ \& 号 \& \& <br>
    \hline \& － \& $\pm$ \& OH \& 4．Wivis \& \& \％ \& － \& O－1 \& 4．E B <br>
    \hline \％ \& $\stackrel{\square}{\square}$ \& $$
    15
    $$ \& ${ }_{-0} 0_{0}$ \&  \& \&  \& E \& －0 \& $\bigcirc$ <br>
    \hline 5 \& － \& ¢ \& 可亏 \& 当 \& \& $0_{8}$ \& ¢ \& 80 \& ．ax efl <br>
    \hline 0 \& 920 \& 出 \& 家家 \&  \& \&  \& 涛 \& 宫云 \& － <br>
    \hline ＋ \& Fis \& \& ㅇ．6 \&  \& \& H \& \& \％ \& \％\％ <br>
    \hline 0 \& ． \& व్ \& \& 边20 \& \& ※ \& 7 \& प区 ${ }_{\text {¢ }}$ \&  <br>
    \hline $\stackrel{\square}{6}$ \& 号边 \& \& －${ }_{0}$ \&  \& \& E\％ \& － \&  \&  <br>
    \hline \& \& \& \& \& \& E \& ${ }^{\text {a }}$ \& \& <br>
    \hline \& 60 \& 8.70 \& 31.26 \& 40．9．5 \& \& 60 \& 14．42 \& 18.22 \& 20.00 <br>
    \hline 10 \& 70 \& 12.39 \& 30.99 \& 33.68 \& \& 70 \& 16.96 \& 17.96 \& 19.69 <br>
    \hline 10 \& 80
    90 \& 16.07
    19.6 \& 27.61 \& 29.88 \& 5 2 \& 80 \& 19.50 \& 17.76 \& 19.47 <br>
    \hline \& 100 \& 19.76
    23.45 \& 25.43 \& 27．43 \& \& 90 \& 22.04 \& 17.57 \& 19.27 <br>
    \hline \& 100 \& 23.45 \& 23.90 \& 25.73 \& \& 100 \& 24.58 \& 17.41 \& 19.07 <br>
    \hline \& 60

    7 \& $\stackrel{\sim}{21.12}$ \& 27.55 \& 29.43 \& \& 60 \& 22.34 \& 17.68 \& 19.34 <br>
    \hline 20 \& 70
    80 \& 26.57 \& 25.44 \& 27.04 \& \& 70 \& 26.03 \& 17.47 \& 19.09 <br>
    \hline \& 90 \& － 37.47 \& 21.04 \& 25.68 \& 10 \& 80 \& 29.72 \& 17.30 \& 18.89 <br>
    \hline \& 100 \& 42.92 \& 23.25 \& 24.51 \& \& 90
    100 \& ${ }_{3}^{33.41}$ \& 17.15 \& 18.70 <br>
    \hline \& 60 \& 30.47 \& 27.24 \& \& \& \& \& \& 18.56 <br>
    \hline \& 70 \& 37.21 \& 25.76 \& 22.10 \& \& 60 \& 29.00 \& 17.93 \& 19.51 <br>
    \hline 30.2 \& 30 \& 43.97 \& 24.71 \& 26.49 \& 15 \& 80 \& 33.65
    38.28 \& 17.75 \& 19.27 <br>
    \hline \& 90 \& 50.73 \& 23.91 \& 25.38 \& 15 \& 90 \& 43 ， 92 \& 17.45 \& 19.09 <br>
    \hline ， \& 100 \& 57.49 \& 23.27 \& 24.68 \& \& 100 \& $4 \% .5 \hat{6}$ \& $1 \% .3 \%$ \& 18.74 <br>
    \hline \& 60 \& 37.75 \& 27.92 \& 29.63 \& \& 60 \& 34.73 \& 18.58 \& 20.09 <br>
    \hline \& rio \& 45.50 \& 26.66 \& 28.18 \& \& 70 \& 40.18 \& 18.40 \& 19.85 <br>
    \hline 401 \& 80
    90 \& 53.25 \& 25.76 \& 27.17 \& 20 \& 80 \& 45.6 .3 \& 18.27 \& 19.69 <br>
    \hline \& \& 61.01 \& 25.03 \& 26.35 \& \& 90 \& 51.08 \& 18.14 \& 19.51 <br>
    \hline \& 100 \& 68．76 \& 24.47 \& 25.73 \& \& 100 \& 56.53 \& 18.02 \& 19.36 <br>
    \hline \& 60 \& 43.42 \& 28.94 \& 30.66 \& \& 60 \& 44.06 \& 20.19 \& <br>
    \hline \& 70 \& 51.94 \& 27． 79 \& 29.31 \& \& 70 \& 50.81 \& 20.04 \& 21.41 <br>
    \hline 50 \& 80 \& 60.44 \& 26.99 \& 28.38 \& 30 \& 80 \& $57.5 \%$ \& 19.91 \& 21.25 <br>
    \hline \& \& 68.96 \& 26.3 \& $2 \pi .62$ \& \& 90 \& 64.32 \& 19.78 \& 21.06 <br>
    \hline \& 100 \& \& 25.78 \& 26.99 \& \& 100 \& 71.08 \& 19.67 \& 20.93 <br>
    \hline \& \& \& \& \& \& 60 \& 51.35 \& 21.63 \& 22.95 <br>
    \hline \& \& \& \& \& 10 \& 70 \& 59.10 \& 21.49 \& 22.74 <br>
    \hline \& \& \& \& \& 402 \& 80 \& 66.85 \& 21.36 \& 22.56 <br>
    \hline \& \& \& \& \& \& 90
    100 \& 74.60 \& 21.24 \& 22.41 <br>
    \hline \& \& \& \& \& 1 \& 100 \& 82.36 \& 21.13 \& 22.24 <br>
    \hline
    \end{tabular}

    TABLE No. 2.
    Feed-water Consumption for Compound Condensing Engines.

    | Cut-off, per cent. | Initial Pressure above Atmosphere. |  | Mean Effective PressAtmosphere. |  | Feed-water Required per T.H.P. per Hour, Lbs. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{aligned} & \text { H.P. Cyl., } \\ & \text { lbs. } \end{aligned}$ | L.P. Cyl.. lbs. | $\begin{aligned} & \text { H.P. Cyl., } \\ & \text { lbs. } \end{aligned}$ | L.P. Cyl., lbs. |  |
    | $10 \%$, | 80 100 120 | 4.0 7.3 11.0 | 11.67 15.33 18.54 | 2.65 3.87 5.23 | $\begin{aligned} & 16.92 \\ & 15.00 \\ & 13.86 \end{aligned}$ |
    | $20 . \quad\{$ | 80 100 120 | 4.3 8.1 12.1 | 26.73 33.13 39.29 | 5.48 7.56 9.74 | $\begin{aligned} & 14.60 \\ & 13.67 \\ & 13.09 \end{aligned}$ |
    | $30 \quad\{$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ | 4.6 8.5 11.7 | 37.61 46.41 56.00 | $\begin{array}{r} 7.48 \\ 10.10 \\ 12.26 \end{array}$ | $\begin{aligned} & 14.99 \\ & 14.21 \\ & 13.8 \end{aligned}$ |

    TABLE No. 3.
    Feed-water Consumption for Triple-expansion Condensing Engines.

    | Cut-off, per cent. | Initial Pressure above Atmosphere. |  |  | Mean Effective Pressure。 |  |  | Feed-water Required per I.H.P. per Hour, lbs. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\left\lvert\, \begin{aligned} & \text { H.P. Cyl., } \\ & \text { libs. } \end{aligned}\right.$ | I. Cyl., | L.P. Cyl., lbs. | H.P. Cyl., | I. Cyl., lbs. | L.P. Cyl., |  |
    | 30 | 120 140 160 | 37.8 4.3 .8 49.3 | 1.3 2.8 3.8 | 38.5 46.5 55.0 | 17.1 18.6 20.0 | 6.5 7.1 8.0 | $\begin{aligned} & 12.05 \\ & 11.4 \\ & 10.75 \end{aligned}$ |
    | $40\{$ | 120 140 160 | 38.8 45.8 51.3 | 2.8 3.9 5.3 | 51.5 59.5 60.0 | 22.8 23.7 25.5 | 8.6 9.1 10.0 | $\begin{aligned} & 11.65 \\ & 11.4 \\ & 10.85 \end{aligned}$ |
    | $50\{$ | $\begin{aligned} & 120 \\ & 140 \\ & 160 \end{aligned}$ | 39.8 46.8 52.8 | 3.7 4.8 6.3 | 60.5 70.5 82.5 | 26.7 28.0 30.0 | 10.1 10.8 11.8 | $\begin{aligned} & 12.2 \\ & 11.6 \\ & 11.15 \end{aligned}$ |

    ## MIost Economical Point of Cut-of in Steameengines.

    (See paper by Wolif and Denton, Trans. A. S. M. E., vol, ii. p. 147-281; also, Ratio of Expansion at Maximum Efficiency, R. H. Thurston, vol. ii. p. 128.) -The problem of the best ratio of expansion is not one of economy of consumption of fuel and economy of cost of boiler alone. The question of interest on cost of engine, depreciation of value of engine, repairs of engine, etc., enters as well; for as we increase the rate of expansion, and thus, within certain limits fixed by the back-pressure and condensation of steam, decrease the amount of fuel required and cost of boiler per unit of work, we have to increase the dimensions of the cylinder and the size of the ellgine, to attain the required power. We thus increase the cost of the engine, etc, as we increase the rate of expansion, while at the same time we decrease the fuel consumption, the cost of boiler, etc. So that there is in every engine some point of cut-off, determinable by calculation and graphical construction, which will secure the greatest efficiency for a given expenditure of money, taking into consideration the cost of fuel, wages of engineer and firemen, interest on cost, depreciation of value, repairs to and insurance of boiler and engine, and oil, waste, etc., used for engine. In case of freightcarrying vessels, the value of the room occupied by fuel should be considered in estimating the cost of fuel.
    Sizes anif dalculated Performances of Vertical Highw speed Lingines.-The following tables are taken from a circular of the Field Engineering Co., New York, describing the engiues made by the Lake Erie Engineering Works, Buffalo, N. Y. The engines are fair representatives of the type now coming largely into use for driving dynamos directly without belts. The tables were calculated by E. F. Williams, designer of the engines. They are here somewhat abridged to save space:

    Simple Engines-Non-condensing.
    

    ## Compound Engines-Non-condensing-High-pressure Cylinder and Receiver Jacketed.

    

    Compound-engines-Condensing-S team-jacketed.

    | Diam Cylinder, Inches. |  |  |  | H.P.when cutting off at $1 / 4$ Stroke in h.p. Cylinder. |  |  | $\left\lvert\, \begin{aligned} & \text { H.P. whencutting } \\ & \text { of at at } 1 / 3 \text { Stroke } \\ & \text { in h.p. Cylinder. } \end{aligned}\right.$ |  |  |  | H.P.when cutting off at $1 / 2$ Stroke in h.p. Cylinder. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{gathered} \text { Cyl. } \\ \text { Ratio, } \\ 31 / 3: 1 . \end{gathered}$ |  | $\begin{aligned} & \text { Cyl. } \\ & \text { Ratio, } \\ & 4: 1 . \end{aligned}$ |  | $\begin{gathered} \text { Cyl. } \\ \text { Ratio, } \\ 31 / 3: 1 . \end{gathered}$ |  | Cyl. <br> Ratio, <br> 4:1. |  | Cyl. Ratio, 31/3: 1. |  | $\begin{aligned} & \text { Cyl. } \\ & \text { Ratio, } \\ & 4: 1 . \end{aligned}$ |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  | . 1 bs . |  |  |
    |  |  |  | 3.8 |  |  |  |  |  |  |  |  |  |  |  |  |
    |  | 2 | 12 | 318 | 56.76 | d |  |  |  |  | 95 | 59 |  |  | 120 |  |
    |  |  | 14 | 27 | 112 | 100 | 11 | 10 | 183 | 129 | 141 |  |  |  |  |  |
    |  | $1{ }^{1 / 2} 19$ | 16 |  | 109 | 131 | 15 | ${ }_{195}^{136}$ | 174 |  |  |  |  |  |  |  |
    | 121/2 | 1322 | 20 | 185 | 192 | 231 | 269 | 241 | 308 | 298 | 3 |  |  |  | 14 |  |
    |  |  | 24 | 158 | 258348 | 310 | 361 | 3, | 413 | 400 | 439 | 413 |  |  |  |  |
    |  | 181 | 28 | 138 | 346467 | 415 | 484 | 433 | 55 | 53 |  |  |  |  |  |  |
    | 19 | $201 / 38$ | 2 | 120 | 446602 | 535 | 84 | 5 | 研 | 691 | 758 | 714 |  |  |  |  |
    | 21 | 221433 | 34 | 112 | 572 <br> 838 <br> 81181 | ${ }_{1006}^{686}$ |  | 715 | 915 |  |  | 15 |  |  |  |  |
    |  |  | 42 48 |  | 83881131 1096 1480 |  |  |  |  |  |  |  |  |  |  |  |
    |  | 160 |  | 80 | 1096 |  |  |  |  |  |  |  |  |  |  |  |
    | Mean effec. press..lbs. Ratio of Expansion... |  |  |  | $20 \quad 27$ | 24 | 28 | 25 | 32 | 31 | 34 |  |  |  |  |  |
    |  |  |  |  | 131/2 |  | 614 |  | 10 |  | 2/4 |  |  |  |  |  |
    | Cyl. condensation, \%. St. per I.H.P. p. hr.lbs. |  |  |  |  | $\begin{array}{\|c\|c} \hline 20 \\ \hline 16.6 \mid 15.2 \\ \hline \end{array}$ |  | $\begin{array}{\|c\|c\|c} \hline 15 & 15 \\ 2 & \\ \hline 17.0 \mid 16.4 \end{array}$ |  | $\begin{array}{\|c\|c\|} \hline 18 \mid 18 \\ 4 & 18.3 \mid 15.8 \end{array}$ |  | $\begin{array}{\|c\|c\|} \hline 1.2 \\ 817.5 \mid 17.0 \end{array}$ |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

    The oripinal table contains figures for 95 lbs ., cylinder ratio $31 / 3$ to 1 ; and 120 lbs , ratio 4 to 1.

    ## Triple-expansion Engines, Non-condensing.-Receiver only Jacketed.

    | Diameter Cylinders, inches. |  |  |  |  | Horse-power when Cutting off at 42 per cent of Stroke in First Cylinder. |  | Horse-power when Cutting off at 50 per cent of Stroke in First Cylinder. |  | Horse-power when Cutting off at 67 per cent of Stroke in First Cylinder. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | H. P. | I. P. | . P. |  |  | 180 lbs . | 200 lbs . | 180 lbs . | 200 lbs . | 180 lbs. | 200 lbs |
    | $43 / 4$ |  |  | 10 | 370 | 55 | 64 | 70 | 84 | 95 | 108 |
    | $51 / 2$ | 81/2 | 131/2 | 12 | 318 | 70 | 81 | 90 | 106 | 120 | 137 |
    | $61 / 3$ | 101/2 | 161/2 | 14 | 277 | 104 | 121 | 133 | 158 | 179 | 204 |
    | $71 / 2$ | 12 | 19 | 16 | 246 | 136 | 158 | 174 | $20 \sim$ | 234 | 267 |
    | 9 | 141/2 | 221/2 | 18 | 222 | 195 | 226 | 250 | 296 | 335 | 382 |
    | 10 | 16 | 25 | 20 | 185 | 241 | 279 | 308 | 366 | 414 | 471 |
    | 111/2 | 18 | 281/2 | 24 | 158 | 323 | 374 | 413 | 490 | 555 | 638 |
    | 13 | 22 | 331/2 | 28 | 138 | 433 | 502 | 554 | 657 | 744 | 848 |
    | 15 | 241/2 | 38 | 33 | 120 | 558 | 647 | 714 | 847 | 959 | 1093 |
    | 17 | 27 | 43 | 34 | 112 | 715 | $8: 9$ | 915 | 1089 | 1230 | 1401 |
    | 20 | 33 | 52 | 42 | 93 | 1048 | 1215 | 1341 | 1592 | 1801 | 2053 |
    | 231\% | 38 | 60 | 48 | 80 | $13 \% 0$ | 1589 | 1754 | 2082 | 2356 | 2685 |
    | Mean effective press., lbs. <br> No. of expansions.. <br> Per cent cyl. condens.... |  |  |  |  | 25 | 29 | 32 | 38 | 43 | 49 |
    |  |  |  |  |  |  |  |  |  | 10 |  |
    |  |  |  |  |  | 14 |  | 12 |  |  |  |
    | Per cent cyl. condens.... Steam p. I.H.P. p.hr., Ibs. |  |  |  |  | 20.76 | 19.36 | 19.25 | 17.00 | 17.89 | 17.20 |
    | Lbs. | al at | lb. eva | ap. | lbs. | 2.59 | 2.39 | 2.40 | 2.12 | 2.23 | 2.15 |

    ## Tripleaexpansion Engines-Condensing-Steame Jacketed.

    

    ## Type of Engine to be used where Exhaust-steam is

    needed for Heating.-In many factories more or less of the steam exhausted from the engines is utilized for boiling, drying, heating, etc. Where all the exhaust-steam is so used the question of economical use of steam in the engine itself is eliminated, and the ligh-pressure simple engine is entirely suitable. Where only part of the exhaust-steam is used, and the quantity so used varies at different times, the question of adopting a simple, a condensing, or a compound engine becomes more complex. This problem is treated by C. T. Main in Trans. A. S. M. E., vol. x. p. 48 . He shows that the ratios of the volumes of the cylinders in compound engines should vary according to the amount of exliaust-steam that can be used for heating. A case is given in which three different pressures of stean are required or could be used, as in a worsted dye-house: the high or boiler pressmre for the engine, an intermediate pressure for crabbing, and low-pressure for boiling, drying, etc. If it did not make too much complication of parts in the engine, the boiler-pressure might be used in the high-pressure cylinder, exhausting into a receiver from which steam could be taken for running small engines and crabbing, the steam remaining in the receiver passing into the intermediate cylinder and expanded there to from 5 to 10 lbs . above the atmosphere and exhausted into a second receiver. From this receiver is drawn the low-pressure steam needed for drying, boiling, warming mills, etc., the steam remaining in receiver passing into the condensing cylinder.
    ## Comparison of the Economy of Compound and Singlecylinder Corliss Condensing Engines, each expanding about Sixteen Times. (D. S. Jacobus, Trans. A. S. M. E., xii. 943.)

    The engines used in obtaining comparative results are located at Stations I. and II. of the Pawtucket Water Co.

    The tests show that the compound engine is about $30 \%$ more economical than the single-cylinder engine. The dimensions of the two engines are as follows: Single $20^{\prime \prime} \times 48^{\prime \prime}$; compound $15^{\prime \prime}$ and $3018^{\prime \prime} \times 30^{\prime \prime}$. The steam used per horse-power per hour was: single 20.35 lbs ., compound 13.73 lbs .
    Both of the engines are steam-jacketed, practically on the barrels only, with steam at full boiler-pressure, viz. single 106.3 lbs ., compound 127.5 lbs .

    The steam-pressure in the case of the compound engine is 127 lbs ., or 21 lbs. higher than for the single engine. If the steam-pressure be raised this amount in the case of the single engine, and the indicator-cards be increased accordingly, the consumption for the single-cylinder engine would be 19.97 lbs, per hour per horse-power.
     A Wheelock triple-expansion engine, built for the Merrick Thread Co, Holyoke, Mass., is constructed so that the intermediate cylinder may be cut ont of the circuit and the high-pressure and low-pressure cylinders run as a two-cylin'er compound, using the same conditions of initial steam-pressure and load. The diameters of the cylinders are 12,16 , and $24 \frac{13}{3} \frac{3}{2}$ inches, the stroke of the first two being 36 in . and that of the low-pressure cylinder 48 in. The results of a test reported by S. M. Green and G. I. Rockwond, Trans. A. S. M. E., vol. xiii. 64i, are as follows: In Ibs. of dry steam used per I.H.P. per hour, 12 and $24 \frac{13}{3} \mathrm{in}$. cylinder's only used, two tests 13.06 and 12.76 lbs ., average 12.91. All three cylinders used, two tests 12.6 and 12.90 lbs., average 12.79. The difference is only $1 \%$, and would indicate that more than two cylinders are unnecessary in a compound engine, but it is pointed ont by Prof. Jacobus, that the conditions of the test were especialiy favorable for the two-cylinder engine, and not relatively so favorable for the three cylinders. The steam-pressure was 142 lbs and the number of expansions about 25 . (See also discussion on the Rockwood type of engine, Trans. A.S. M. E., vol. $x$ vi.)

    Effect of Water contained in Steam on the Toficiency of the Steam-engine. (From a lecture by Walter C. Kerr, before the Franklin Institute, 1891.)-Standard writers make little mention of the effect of entrained moisture on the expansive properties of steam, but by common consent rather than any demonstration they seem to agree that moisture produces an ill effect simply to the percentage amount of its presence. That is, $5 \%$ moisture will increase the water rate of an engine $5 \%$.

    Experiments reported in 1893 by R. C. Carpenter and L. S. Marks, Trans. A. S. M. E., xv., in which water in varying quantity was introdnced into the steam-pipe, causing the quality of the stean to range from $99 \%$ to $58 \%$ dry, showed that throughout the range of qualities used the consumption of dry steanr per indicated horse-power per hour remains practically constant, and indlcated that the water was an inert quantity, doing neither good nor harm.

    Relative Commercial Leomomy of Best Prodern Types of Compound and Triple-expansion Lingines. (J. L. Venton, American Machinist, Dec. 17, 1891.)-The followng table and deductions show the relative commercial economy of the compound and triple type for the best stationary practice in steam plants of 500 indicated horse-power. The table is based on the tests of Prof. Schröter, of Munich, of engines built at Augsburg, and those of Geo. H. Barrus on the best planis of America, and of detailed estimates of cost obtained from several first-class builders.

    Trip motion, or Corliss engines of the twin-compound-receiver condensing type, expanding 16 times. Boiler pressure 120 lbs .
    Trip motion, or Corliss engines of the triple-expansion fom-cylin-der-receiver condeusing type, expanding 22 times. Boiler pressure, 150 lbs .

    | $\left\{\begin{array}{c}\text { Lbs. water per hour per } \\ \text { H.P., by measurement. }\end{array}\right.$ | 13.6 | 14.0 |
    | :---: | :---: | :---: |
    | Lhis. coal per hour per |  |  |
    | H.P., assuming 8.5 lbs . | 1.60 | 1.6 |
    | actual evaporation. |  |  |
    | Lbs. Water per hour per H.P., by measurement. | 12.56 | 12.80 |
    | Lbs. coal per hour pe |  |  |
    | H.P., assunning 8.5 lbs | 48 | 50 |
    | actual evaporation. |  |  |

    The figures in the first column represent the best recorded performance (1891), and those in the second column the probable reliable perforniance.

    The table on the next page shows the total annual cost of operation, with coal at $\$ 4.00$ per ton, the plant ruming 300 days in the year, for 10 hours and for 24 hours per day.
    Increased cost of triple-expansion plant per horse-power, including boilers, chimney, heaters, foundations, piping and erection.
    Taking the total cost of the plants at $\$ 33.50, \$ 36.50$ and $\$ 41$ per horsepower respectively, the figures in the table imply that the total annual saving is as follows for coal at $\$ 4$ per ton:

    1. A compound 500 horse-power plant costs $\$ 18,250$, and saves about $\$ 1630$ for 10 hours' service, and $\$ 4885$ for '24 hou's' service, per year over a single plant costing $\$ 16,750$. That is, the compound saves its extra cost in 10 -hour service in about one year, or in 24 -hour service in four months.
    2. A triple 500 horse-power plant costs $\$ 20,00$, and saves about $\$ 114$ per year in 10 -hour service, or $\$ 826$ in 24 -hour service, over a compound plant, thereby saving its extra cost in 10 -hour service in about 1934 years, or in 24 -hour service in about $23 / 4$ years.

    | Hours running per day. | 10 | 24 |
    | :---: | :---: | :---: |
    | Expense for coal. Compound plant.......... | $\underset{\$ 9.90}{\operatorname{Per}} \mathbf{H} .$ | $\underset{\$ 28.50}{\text { Per }}$ |
    | Expense for coal. Triple plant... ${ }^{\text {a }}$. ${ }^{\text {a }}$. ..... | 9.00 | ${ }^{25.92}$ |
    | Annual saving of triple plant in fuel.......... | 0.90 | 2.60 |
    | Annual interest at 5\% on \$4.50. | \$0.23 | \$0.23 |
    | Annual depreciation at $5 \%$ on $\$ 4.50 \ldots \ldots \ldots$ | 0.23 | 0.23 |
    | day, at $\$ 0.50$, or $15 \%$ of extra fuel cost | 0.15 | 0.36 |
    | 24 hours....................................... | 0.06 | 0.14 |
    |  | \$0.67 | \$0.96 |
    | Annual saving per H.P........................ | \$0.23 | \$1.64 |

    Highest Economy of Pumping Engines, 1900. (Eng. News, Sept. :27, 1900.)

    | Name of Builder. | E. P. Allis Co. |  | Nordberg Mfg. Co. |
    | :---: | :---: | :---: | :---: |
    | Location..................... , | ChestnutHill, Boston. | St. Louis (No. 10). | Wildwood, Pa. |
    | Expansions.. | Triple. | Triple. | Quadruple. |
    | Cyls. diam. and stroke, in. | 30, 56, $87 \times 66$ | 34, 62, 92 $\times 72$ | 191, 29\}, $497,5 \% \times 42$ |
    | Plungers, diam., in. | 42 | ${ }^{291} 16.43$ | ${ }^{143}$ |
    | Steam pressure, ibs. per sq.in. | $18 \% .4$ | 130.2 | 199.9 |
    | Vacuum, lbs. per sq. in........ | 13.8 | 14.04 | 13.11 |
    | Ind. horse-power.. | 801.6 | 801.6 | 712 |
    | Capacity, million gals | 30 | 15 | 6 |
    | Total head, ft.... ... | 140.35 | 292.11 | 504.06 |
    | Duty per million B.T.U....... | 157,052,500* | 158,077,324 | 162,948,824 |
    | Dry steam per I.H.P. hour, lbs. | 196.335* | 10.676 | 12.26 |
    | Thermal efficiency, per cent... | 191.63* | 21.003 | 185.96 22.81 |
    | Friction, per cent. ......... ... | 6.71 | 3.16 | 6.12 |
    | Ratio of expansion, about..... | 42 | 23.4 | 24 |

    * These figures do not include the heat saved by the economizer; including this they are $163,912,300 ; 187.8 ; 22.58$. The Nordberg engine had a series of feed-water heaters taking stean respectively from the exhaust, from the low-pressure cylinder, and from the third, second, and first receivers. The feed-water was thereby treated successively to $105^{\circ}, 136^{\circ}, 193^{\circ}, 260^{\circ}$, and $311^{\circ} \mathrm{F}$. The coal consumption of the Chestnut Hill engine was 1.062 lbs . per I.H.P. per hour, including the coal used by the fan, stoker, and economizer engines. This is the lowest figure yet recorded.


    ## Steam Consumption of Sulzer Compound and Tripleexpansion Engines with Superheated Steam.

    The figures on the next page were furnished to the author (Aug., 1902) by Sulzer Bros. Winterthur, Switzerland. They are the results of official tests by Prof. Schröter of Munich, Prof. Weber of Zurich, and other eminent engineers.

    Notes.- $A, B, C, D$, tandenı engines at electrical stations $A$, Frankfort a/M.; $B$, Zurich; $C$. Mannheim; $D$, Mayence. $E, F$. tandem engine with intermediate superheater: $E$, Metallwarenfabrik, Geislingen, Wiirtemberg; $F$, Neue Baumwoll-Spinnerei. Hof, Bavaria. $G, H$, engines at electrical stations, Berlin • $G$, Moabit station, horizontal 4-cyl.; II, Louisenstrasse, 4 -cyl. vertical.

    COMPOUND ENGINES.
    

    TRIPLE-EXPANSION ENGINES.

    |  |  | Dimensions of Cylinders, Inches. |  |  |  | cien | $\xrightarrow{4}$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $G$ | 3000 | 32 年, 47 | 85 | $\begin{aligned} & 188 \\ & 190 \end{aligned}$ | $\begin{aligned} & 606 \\ & 397 \end{aligned}$ | ${ }_{27^{\frac{1}{4}}}^{28}$ | $\begin{aligned} & 2860 \\ & 2880 \end{aligned}$ | $\begin{array}{r} 8.97 \\ 11.28 \end{array}$ |
    | H | 3000 | $34,49.61 \times 51$ | $83 \frac{1}{2}$ | 189 196 | $\begin{aligned} & 613 \\ & 381 \end{aligned}$ | ${ }_{26 \frac{1}{2}}^{27}$ | $\begin{aligned} & 2908 \\ & 3040 \end{aligned}$ | $\begin{array}{r} 9.41 \\ 11.57 \end{array}$ |

    Relative Economy of Compound Non-condensing Engines under Variable Loadis.-F. M. Rites, in a paper on the steam Distribution in a Form of Single-acting Engine (Trans. A. S. M. E., xiii. 537). discusses an engine designed to meet the following problem: Given an extreme range of conditions as to load or stean-pressure, either or both, to fluctuate together or apart, violently or with casy gradations, to construct an engine whose economical performance should be as good as though the engine were specially designed for a momentary condition-the adjustment to be complete and automatic. In the ordinary non-condensing compound engine with light loads the high-pressure cylinder is frequently forced to supply all the power and in additiou drag along with it the low-pressure piston, whose cylinder indicates negative work. Mr. Rites shows the peculiar value of a receiver of predeternined volume which acts as a clearance chamber for compression in the high-pressure cylinder. The Westinghouse compound single-acting engine is designed upon this principle. The following results of tests of one of these engines rated at $175 \mathrm{H} . \mathrm{P}$. for most economical load are given :

    Water Rates under Varying Loads, lbs. per H.P. per hour.

    | Ho | 210 | 170 | 140 | 115 | 100 | 80 | 50 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Non-condensing | 22.6 | 21.9 | 22.2 | 22.2 | 22.4 | 24.6 | 28.8 |
    | Condensing .... | 18.4 | 18.1 | 18.2 | 18.2 | 18.3 | 18.3 | 20. |

    Efficiency of Non-condensing Compound Engines. (W. Lee Church, Am. Mach., Nov. 19, 1891.)-The compound engine, non-condensing, at its best performance will exhaust from the low-pressure cylinder at a pressure 2 to 6 pounds above atmosphere. Such an engine will be limited in its economy to a very short range of power, for the reason that its valve-motion will not permit of any great increase beyond its rated power, and any material decrease below its rated power at once brings the expansion curve in the low pressure cylinder below atmosphere. In other words, decrease of load tells upon the compound engine somewhat sooner, and much more severely, than upon the non-compound engine. The loss commences the moment the expansion line crosses a line parallel to the atmospheric line, and at a distance above it representing the mean effective pressure necessary to carry the frictional load of the engine. When expansion falls to this point the low-pressure cylinder becomes an air-pump over more or less of its stroke, the power to drive which must come from the high pressure cylinder alone. Under the light loads common in many industries the low-pressure cylinder is thus a positive resistance for the greater portion of its stroke. A careful study of this problem revealed the functions of a fixed intermediate cearance, always in conmmnication with the high-pressure cylinder, and having a volnme bearing the same ratio to that of the high-pressure cylinder that the high-pressure cylinder bears to the low-pressure. Lngine:; laid down on these lines have fully contimed the judgment of the designers.

    The effect of this constant clearance is to supply sufficient steam to the low-pressure cylinder under light loads to hold its expansion curve up to atmosphere, and at the same time leave a sufficient clearance volume in the high-pressure cylinder to permit of governing the engine on its compression under light loads.

    Economy of Engines under Varying Loads. (From Prof. W. C. Unwin's lecture before the Society of Arts, London, 1892.)-The general result of numerous trials with large engines was that with a constant load an indicated horse-power should be obtained with a consumption of 112 pounds of coal per indicated horse-power for a condensing engine, and 134 pounds for a non-condensing engine, fignres which correspond to about 134 pounds to $21 / 8$ pounds of coal per effective hor:e-power. It was much more difficult to ascertain the consumption of coal in ordinary every-day work, but such facts as were known showed it was more than on trial.

    In electric-lighting stations the engines work under a very fluctuating load, and the results are far more unfavorable. An excellent willans noncondensing engine, which on full-load trials worked with under 2 pounds per effective horse-power hour, in the ordinary dails working of the station used $71 / 2$ pounds per effective H.P. hour in 1886 , which was reduced to 4.3 pounds in 1890 and 3.8 pounds in 1891. Probably in very few cases were the engines at electric-light stations working under a consumption of $41 / 2$ pounds per effective H.P. hour. In the case of small isolated motors working with a Huctuating load, still more extravagant results were obtained.

    ## Engines in Electric Central Stations.

    | ar | 1886. 1890. 1892 |
    | :---: | :---: |
    | al used per hour per eft | 8.45 .64 .9 |
    | indicated | $6.54 .35 \quad 3.8$ |

    At electric-lighting stations the load factor, viz., the ratio of the average load to the maximum, is extremely small, and the engines worked under very unfavorable conditions, which largely accounted for the excessive fuel consumption at these stations.

    In steam-engines the fuel consumption has generally been reckoned on the indicated horse-power. At full-power trials this was satisfactory enough, as the internal friction is then usually a small fraction of the total.
    Experiment has, however, shown that the internal friction is nearly constant, and hence, when the engine is lightly loaded, its mechanical efficiency is greatly reduced. At full load small engines have a mechanical efficiency of 0.8 to 0.85 , and large engines might reach at least 0.9 , but if the internal friction remained constant this efficiency would be much reduced at low powers. Thus, if an engine working at 100 indicated horse-power had an efficiency of 0.85 , then when the indicated horse-power fell to 50 the effective horse-power would be 33 horse-power and the efficiency only 0.7 . Similarly, at 25 horse-power the effective horse-power would be 10 and the efficiency 0.4 .

    Experiments on a Corliss engine at Creusot gave the following results : $\begin{array}{lllllll}\text { Effective power at full load. ............ } & 1.0 & 0.75 & 0.50 & 0.25 & 0.125\end{array}$ $\begin{array}{llllllll}\text { Condensing, mechanical efficiency...... } & 0.82 & 0.79 & 0.54 & 0.63 & 0.48\end{array}$
    

    At light loads the economy of gas and liquid fuel engines fell off even more rapidly than in steam-engines. The engine friction was large and nearly constant, and in some cases the combustion was also less perfect at light loads. At the Dresden Central Station the gas-engines were kept working at nearly their full power by the use of storage-batteries. The results of some experinients are given below:

    | Brake-load,per <br> cent of full <br> Power. | Gas-engine, cu. ft. <br> of Gas per Brake | Petroleum Eng., <br> Lbs.of Oil per | Petroleum Eng., <br> Lbs. of Oil per |
    | :---: | :---: | :---: | :---: |
    | 100 | H.P. per hour. | B.H.P. per hr. | B.H.P. per hr. |
    | 75 | 22.2 | 0.96 | 0.88 |
    | 59 | 23.8 | 1.11 | 0.99 |
    | 20 | 28.0 | 1.44 | 1.20 |
    | $121 / 2$ | 40.8 | 2.38 | 1.82 |
    |  | 66.3 | 4.25 | 3.07 |

    Steam Consumption of Engines of Various Sizes.-W. C. Unwin (Cassier's Magazine, 1894) gives a table showing results of 49 tests of engines of different types. In non-condensing simple engines, the steam consumption ranged from 65 lbs . per hour in a 5 -horse-power engine to 22 lbs. in a 134-H.P. Harris-Corliss engine. In non-condensing compound engines, the only type tested was the Willans, which ranged from 27 lbs . in a $10 \mathrm{H} . \mathrm{P}$. Slow-speed engine, 122 ft . per minute, with steam-pressure of 84 lbs . to 19.2 lbs . in a $40-\mathrm{H} . \mathrm{P}$. engine, 401 ft . per minute, with steam-pressure 165 lbs. A Willans triple-expansion non-condensing engine, 39 H.P., 172 lbs. pressure, and 400 ft . piston speed per minute, gave a consumption of 18.5 lbs . In condensing engines, nine tests of simple engines gave results ranging only from 18.4 to 22 lbs., and, leaving out a beam pumping-engine running at slow speed ( 240 ft . per minute) and low steam-pressure ( 45 lbs .), the range is only from 18.4 to 19.8 lbs . In compound-condensing engines over 100 H.P., in 13 tests the range is from 13.9 to 20 lbs . In three triple-expansion engines the figures are $11.7,12.2$, and 12.45 lbs ., the lowest being a Sulzer engine of 360 H.P. In marine compound engines, the Fusiyama and Colchester, tested by Prof. Kennedy, gave steam consumption of 21.2 and 21.7 lbs ; and the Meteor and Tartar triple-expansion engines gave 15.0 and 19.8 lbs.
    Taking the most favorable results which can be regarded as not exceptional, it appears that in test trials, with constant and full load, the expenditure of steam and coal is about as follows:

    Per Indicated Horsepower Hour.
    Kind of Engine.
    Kind of Engine.
    Non-condensing.................
    Condensing.......................

    | Coal, | Steam, |
    | :--- | :---: |
    | lbs. | lbs. |
    | 1.80 | 16.5 |
    | 1.50 | 13.5 |

    ## Per Effectire Horse power Hour.

    | Coal, | Steam, |
    | :--- | :---: |
    | lbs. | lbs. |
    | 2.00 | 18.0 |
    | 1.75 | 15.8 |

    These may be regarded as minimum values, rarely surpassed by the most efficient machinery, and only reached with very good machinery in the favorable conditions of a test trial.

    Small Lingines and Lngines with Fluctuating Loads are usnally very wasteful of fuel. The following figures, illustrating their low economy, are given by Prof. Unwin, Cassier's Magazine, 1894.

    Coal Consumption per Indicated Horse-power in Small Engines.

    ## In Workshops in Birmingham, Eng.

    $\begin{array}{lllllllll}\text { Probable I.H.P. at full load... } & 12 & 45 & 60 & 45 & 75 & 60 & 60\end{array}$
    Average I.H.P. during obser-
    $\begin{array}{llllllllll}\text { vation. } \ldots \ldots \ldots \ldots \ldots & 2.96 & 7.37 & 8.2 & 8.6 & 23.64 & 19.08 & 20.08\end{array}$
    Coal per I.H.P. per hour dur-
    ing observation, lbs......... $36.0 \quad 21.25 \quad 22.61 \quad 18.13 \quad 11.68 \quad 9.53 \quad 8.50$
    It is largely to replace such engines as the above that power will be distributed from central stations.

    ## Steam Consumption in Small Engines.

    Tests at Royal Agricultural Society's show at Plymouth, Eng. Engineering, June 2\%, 1890.
    

    Steam-consumption of Engines at Various Speeds. (Profs. Denton and Jacobus, Trans. A.S. M. E., x. $\mathfrak{r 2}$ ) $-1 \% \times 30$ in. engine, non-condensing, fixed cut-off, Meyer valve.

    Steam-consumption, lbs. per I.H.P. per Hour.
    Figures taken from plotted diagram of results.

    | Revs. per min | 8 | 12 | 16 | 20 | 24 | 32 | 40 | 48 | 56 | \% | 88 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $1 / 8$ cut-off, lis | 39 | 35 | 32 | 30 | 29.3 | 29 | 28.7 | 28.5 | 283 | 28 | . 7 |
    | 1/4 | 39 | 34 | 31 | 29.5 | 29 | 28.4 | 28 | $2{ }^{2} .5$ | 27.1 | 26.3 | . 6 |
    | 1/3 | 39 | 36 | 34 | 33 | 3: | 30.8 | 29.8 | 29.2 | 28.8 | 28.7 |  |

    Steam-Consumption of Same Engine; Fixed Speed, 60 Revs. per Min.
    Varying cut-off compared with throttling-engine for same horse-power and boiler-pressures:
    Cut-off, fraction of stroke $\begin{array}{llllllllll}0.1 & 0.15 & 0.2 & 0.25 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8\end{array}$
    
    
    Throttling-engine, $7 / 8$ Cut-off, for Corresponding Horse-powers.
    Boiler-pressure, $90 \mathrm{lbs} . . . \quad 42 \quad 37 \quad 33.8 \quad 31.5 \quad 29.8$
    $60 \mathrm{lbs} . . . \quad . .$.
    Some of the principal conclusions from this series of tests are as follows :

    1. There is a distinct gain in economy of steam as the speed increases for $1 / 2,1 / 8$, and $1 / 4$ cut-off at 90 lbs . pressure. The loss in economy for about $1 / 4$ cut-off is at the rate of $1 / 1 \% \mathrm{lb}$. of water per H.P. for each decrease of a revolution per minute from 86 to 26 revolutions, and at the rate of $5 / 8 \mathrm{lb}$. of water below 26 revolutions. Also, at all speeds the $1 / 4$ cut-off is more economical than either the $1 / 2$ or $1 / 8$ cut-off.
    2. At 90 lbs . boiler-pressure and above $1 / 3$ cut-off, to produce a given H.P. requires about $20 \%$ less steam than to cut off at $\% / 8$ stroke and regulate by the throttle.
    3. For the same conditions with 60 lbs. boiler-pressure, to obtain, by throttling, the same mean effective pressure at $\overline{\%} / 8$ cut-off that is obtained by
    cutting off about $1 / 3$, requires about $30 \%$ more steam than for the latter condition.

    High Piston-speed in Engines. (Proc. Inst. M. E., July, 1883, p. 321 ). - The torpedo boat is an excellent example of the advance towards ligh speeds, and shows what can be accomplished by studying lightness and strength in combination. In running at 221/2 knots an hour, an engine with cylinders of 16 in . stroke will make 480 revolutions per minute, which gives 1280 ft . per minute for piston-speed; and it is remarked that engines running at that high rate work much more smoothly than at lower speeds, and that the difficulty of lubrication diminishes as the speed increases.

    A High-speed Corliss Engine.-A Corliss engine, $20 \times 42 \mathrm{in}$., has been running a wire-rod mill at the Trenton Iron Co.'s works since 18r7, at 160 revolutions or 1120 ft . piston-speed per minute (Trans. A. S. M. E., ii. $72)$. A piston-speed of 1200 ft . per min. has been realized in locomotive practice.

    The Limitation of Engine-speed. (Chas. T. Porter, in a paper on the Limitation of Engine-speed, Trans. A. S. M. E., xiv. 806.)-The practical limitation to high rotative speed in stationary reciprocating steamengines is not found in the danger of heating or of excessive wear, nor, as is generally believed, in the centrifugal force of the fly-wheel, nor in the tendency to knock in the centres, nor in vibration. He gives two objections to very high speeds: First, that "engines ought not to be run as fast as they can be;" second, the large amount of waste room in the port, which is required for proper steam distribution. In the important respect of economy of steam, the high-speed engine has thus far proved a failure. Large gain was looked for from high speed, because the loss by condensation on a given surface would be divided into a greater weight of steam, but this expectation has not been realized. For this unsatisfactory result we have to lay the blame chiefly on the excessive amount of waste room. The ordinary method of expressing the amount of waste room in the percentage added by it to the total piston displacement, is a misleading one. It shonld be expressed as the percentage which it adds to the length of steam admission. For example, if the steam is cut off at $1 / 5$ of the stroke, $8 \%$ added by the waste room to the total piston displacement means $40 \%$ added to the volume of steam admitted. Engines of four, five and six feet stroke may properly be run at from 700 to 800 ft . of piston travel per minute, but for ordinary sizes, says Mr. Porter, 600 ft . pel minute should be the linit.

    Infuence of the Steam-jacket.-Tests of numerous engines with and without steam-jackets show an exceeding diversity of results, ranging all the way from $30 \%$ saving down to zero, or even in some cases showing an actual loss. The opinions of engineers at this date (1894) is also as diverse as the results, but there is a tendency towards a general belief that the jacket is not as valuable an appendage to an engine as was formerly supposed. An extensive résumé of facts and opinions on the steam-jacket is given by Prof. Thurston, in Trans. A. S. M. E., xiv. 462. See also Trans. A. S. M. E., xiv. 873 and 1340; xiii. 176; xii. 426 and 1340; and Jour. F. I., April, 1891, p. 276. The following are a few statements selected from these papers.

    The results of tests reported by the research committee on steam-jackets appointed by the British Institution of Mechanical Engineers in 1886, indicate an increased efficiency due to the use of the steann-jacket of from $1 \%$ to over $30 \%$, according to varying circumstances.

    Senuett asserts that "it has been abundantly proved that steamjackets are not only advisable but absolutely necessary, in order that high rates of expansion may be efficiently carried out and the greatest possible economy of heat attained."

    Isherwood finds the gain by its use. under the conditions of ordinary practice, as a general average, to be about $20 \%$ oll small and $8 \%$ or $9 \%$ on large engines, varying through intermediate values with intermediate sizes, it being understood that the jacket has an effective circulation, and that both heads and sides are jacketed.

    Professor Unwin considers that "in all cases and on all cylinders the jacket is useful; provided, of course, ordinary, not superheated, steam is used; but the advantages may diminish to an amount not worth tlie interest on extra cost."

    Professor Cotterill says: Experience shows that a steam-jacket is advantageous, but the amount to be gained will vary according to circumstances. In many cases it may be that the advantage is small. Great caution is necessary in drawing conclusions from any special set of experiments on the influence of jacketing.

    Mr. E. D. Leavitt has expressed the opinion that, in his practice, steamjackets produce an increase of efficiency of from $15 \%$ to $20 \%$.

    In the Pawtucket pumping engine, 15 and $301 / 8 \times 30$ in., 50 revs. per min., steam-pressure 125 lbs . gatuge, cut-off $1 / 4$ in h.p. and $1 / 3$ in l.p. cylinder, the barrels only jacketed, the saving by the jackets was from $1 \%$ to $4 \%$.
    The superintendent of the Holly Mfg. Co. (compound pumping-engines) says: "In regard to the benefits derived from steam-jackets on our steamcylinders, I am somewhat of a skeptic. From data, taken on our own engines and tests made I am yet to be convinced that there is any practical value in the steam-jacket." . . . "You might practically say that there is no difference."

    Professor Schröter from lis work on the triple-expansion engines at Augsburg, and from the results of his tests of the jacket efficiency on a suall engine of the Sulzer type in his own laboratory, concludes: (1) The value of the jacket may vary within very wide limits, or even become negative. (2) The shorter the cut-off the greater the gain by the use of a jacket. (3) The use of higher pressure in the jacket than in the cylinder produces an advantage. The greater this difference the better. (4) The high-pressure cylinder may be left unjacketed without great loss, but the other's should always be jacketed.

    The test of the Laketon triple-expansion pumping-engine showed a gain of $8.3 \%$ by the use of the jackets, but Prof. Denton points out (Trans. A. .S M. E., xiv. 1412) that all but $1.9 \%$ of the gain was ascribable to the greater range of exransion used with the jackets.

    Test of a Compound Condensing Engine with and witho out Jackets at different Loads. (R. C. Carpenter, Trans. A. s. M. E., xiv. $4 \% \%$.) - Cylinders 9 and 16 in. $\times 14$ in. stroke; 112 lbs. boiler-pressure; rated capacity 100 H.P.; 265 revs. per min. Vacuum, 23 in . Frons the results of several tests curves are plotted, from which the following principal figures are taken.

    | Indicated H.P........ | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 125 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Stean per I.H.P. per hour: |  |  |  |  |  |  |  |  |  |  |  |
    | With jackets, lbs.... | 22.6 | 21.4 | 20.3 | 19.6 | 19 | 18.7 | 18.6 | 18.9 | 19.5 | 20.4 | 21.0 |
    | Without jackets, 1 bs... | $\ldots$. | $\ldots$. | $\ldots$. | 22.0 | 20.5 | 19.6 | 19.2 | 19.1 | 19.3 | 20.1 | $\ldots$ |
    | Saving by jacket, p. c. | $\ldots .$. | $\ldots .$. | $\ldots$. | 10.9 | 7.3 | 4.6 | 3.1 | 1.0 | -1.0 | -1.5 | $\ldots$. |

    This table gives a clue to the great variation in the apparent saving due to the steam-jacket as reported by different experimenters. With this particnlar engine it appears that when running at its most economical rate of 100 H.P., without jackets, very little saving is made by nse of the jackets. When running light the jacket makes a considerable saving, but when overloaded it is a detriment.

    At the load which corresponds to the most economical rate, with no steam in jackets, or 100 H.P., the use of the jacket makes a saving of only $1 \%$; but at a load of 60 H.P. the saving by use of the jacket is about $11 \%$, and the shape of the curve indicates that the relative advantage of the jacket would be still greater at lighter loads than 60 H.P.

    Comnterbalancing Engines.-Prof. Unwin gives the formula for counterbalancing vertical engines:

    $$
    \begin{equation*}
    W_{1}=W_{2} \frac{r}{p} \tag{i}
    \end{equation*}
    $$

    in which $W_{1}$ denotes the weight of the balance weight and $p$ the radius to its centre of gravity, $W_{2}$ the weight of the crank-pin and half the weight of the connecting-rod, and $r$ the length of the crank. For horizontal engines:

    $$
    W_{1}=2 / 3\left(W_{2}+W_{3}\right) \frac{r}{p} \text { to } \frac{3}{4}\left(W_{2}+W_{3}\right) \frac{r}{p}
    $$

    in which $W_{3}$ denotes the weight of the piston, piston-rod, cross-head, and the other half of the weight of the connecting-rod.
    The American Machinist, commenting on these formulæ, says: For horizontal engines formnla (2) is often used; formula (1) will give a counterbalance too light for vertical engines. We should use formula (i) for computing the counterbalance for both horizontal and vertical engines, excepting locomotives, in which the counterbalance should be heavier.

    Preventing Vibrations of Tingines.-Many suggestions have been made for remedying the vibration and noise attendant on the working of the big engines which are employed to run dynamos. A plan which has given great satisfaction is to build hair-felt into the folndations of the engine. An electric company has had a 90 -horse-power engine removed from its foundations, which were then taken up to the depth of 4 feet. A layer of felt 5 inches thick was then placed on the foundations and run up 2 feet on all sides, and on the top of this the brickwork was built up. -Safety Valve.

    Steam-engine Foundations Embedded in Air. - In the sugar. refinery of Claus Spreckels, at Philadelphia, Р'a., the engines are distributed practically all over the buildings, a large proportion of them being on upper floors. Some are bolted to iron beams or girders, and are consequently innocent of all foundation. Some of these engines ran noiselessly and satisfactorily, while others produced more or less vibration and rattle. To correct the latter the engineers suspended foundations from the bottoms of the engines, so that, in looking at them from the lower floors, they were literally hanging in the air.-Iron Age, Mar. 13. 1890.

    Cost of Coal for Steammpower.-The following table shows the amount and the cost of coal per day and per year for various horse-powers, from 1 to 1000, based on the assumption of 4 libs, of coal being used per hour per horse-power. It is useful, among other things, in estimating the saving that may be made in fuel by substituting more economical boilers and engines for those already in use. Thus with coal at $\$ 3.00$ per ton, a saving of $\$ 9000$ per year in fuel may be made by replacing a steam plant of 1000 H.P., requiring 4 lbs. of coal per hour per horse-power, with one requiring only 2 lbs.

    | $\begin{aligned} & \dot{8} \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Coal Consumption, at 4 lbs. per H.P. per hour; 10 hours a day ; 300 days in a Year. |  |  |  |  | \$1.50. |  | \$2.00. |  | \$3.00. |  | \$4.00. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Lbs. | Long Tons. |  | Short Tons. |  | Per <br> Shor't Ton. |  | Per <br> Short Ton. |  | Per <br> Short Ton. |  | $\begin{gathered} \text { Per } \\ \text { Short Ton. } \end{gathered}$ |  |
    |  | Per | $\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$ | PerYear. | $\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$ | $\begin{gathered} \text { Per } \\ \text { Year } \end{gathered}$ | Cost in Dollars. |  | Cost in Dollars. |  | Cost in Dollars. |  | Cost in Dollars. |  |
    |  |  |  |  |  |  | $\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$ | $\begin{aligned} & \text { Per } \\ & \text { Year } \end{aligned}$ | $\begin{gathered} \text { Per } \\ \text { Day. } \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Per } \\ \text { Year. } \end{gathered}\right.$ | $\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$ | Per | $\begin{aligned} & \text { Per } \\ & \text { Day. } \end{aligned}$ | $\begin{aligned} & \text { Per } \\ & \text { Year } \end{aligned}$ |
    |  | 40 400 |  |  |  |  |  |  | 40 | 20 |  | 180 |  | 24 |
    |  | 1,000 | ${ }^{.4464}$ | 133. | .no | 150 | .75 | 225 | 1.00 | 300 | 1.50 | 450 | 2.00 | 600 |
    |  | 2,000 |  | 267.85 | 1.00 | 300 | 1.50 | 450 | 2.00 | 600 | 3.00 | 900 | 4.00 | 1,200 |
    |  | 3,000 | 1.3793 | 401.78 | 1.50 | 450 |  | ${ }^{675}$ |  |  | ${ }^{4.50}$ |  |  | ${ }_{1}^{1,800}$ |
    | 100 | 4,00 | ${ }^{1.7857}$ | 535.71 | 2.00 | ${ }_{600}^{60}$ | ${ }^{3.00}$ | $\begin{array}{r}\text { r } \\ 1 \\ 1,300 \\ \hline\end{array}$ | 4.00 6.00 | 1,200 | 6.00 9.00 | $\stackrel{1}{1,800}$ | ${ }^{8.00}$ | 2,400 3,600 |
    |  | 6,000 8,000 | ${ }_{3.5714}$ | 1,071.42 | 3.00 |  | 6.00 | 1, 800 | 8.00 | 2 2,400 | 12.00 | 3,600 | 16.00 | 4,800 |
    | 250 | 10,000 | 4.4642 | 1,339.27 | 5.00 | 1,500 | 7.50 | 2,250 | 10.00 | 3,000 | 15.00 | 4,500 | 20.00 | 6,000 |
    | 300 | 12,000 | 5.3571 | 1,607.13 | 6.00 | 1,800 | ${ }_{10}^{9.00}$ | 2,700 | ${ }_{14}^{12.00}$ | 3,600 | 18.00 | 5, | 24.00 |  |
    |  | 14,000 | 7.1428 | 2,1+2.84 | 8.00 | 2,400 | 12.00 | 3,600 | 16.00 | 4,800 4,80 | 21.00 | 7,200 | 32.00 | 9,600 |
    |  | 18,000 | 8.0356 | 2, 410.69 | 9.00 | 2,700 | 13.50 | 4,050 | 1800 | 5,400 | 27.00 | 8,100 | 36 | 10,800 |
    | 500 | 20,000 | 8.9285 | 2,678.55 | 10.00 | 3,000 | 15. | 4,5 | 20.00 |  | 30.00 36.00 | 9,0 |  |  |
    |  | 24,000 | 10.7142 | 3,214.26 | 12.00 | 3,6 | 18.00 | ${ }_{6}, 4$ | 24.00 |  | 36, | 10, |  |  |
    | 700 800 |  | 12.4999 | $3,749.97$ $4,285.68$ |  |  |  |  |  | ${ }_{9} 9,600$ | 4.00 | 12,400 | 64.00 | 19,200 |
    |  | 36,000 | 16.0713 | 4,321.39 |  | 5,400 | 27.00 | 8,100 | 36.00 | 10,8 | 54.00 | 14,200 |  | 21,6 |
    | ,000 | 40,000 | 17.8570 | 5,357. | 20.0 | 6,000 | 30.00 | 9,00 | 40.0 | 12, | 60.00 | 18,000 | 80.00 | 24, |

    Storing Steam Heat.-There is no satisfactory method for equalizing the load on the engines and boilers in electric-light stations. Storage-batteries have been used, but they are expensive in first cost, repairs, and attention. Mr. Halpin, of London, proposes to store heat during the day in specially constructed reservoirs. As the water in the boilers is raised to 250 lbs . pressure, it is conducted to cylindrical reservoirs resembling English horizontal boilers, and stored there for use when wanted. In this way a comparatively small boiler-plant can be used for heating the water to 250 lbs . pressure ail through the twenty-four hours of the day, and the stored water may be drawn on at any time, according to the maguitude of the demand The
    steam-engines are to be worked by the steam generated by the release of pressure from this water, and the valves are to be arranged in such a way that the steam shall work at 130 lbs . pressure. A reservoir 8 ft . in diameter and 30 ft . long, containing $84,000 \mathrm{lbs}$. of heated water at 250 lbs . pressure, would supply 5250 lbs . of steam at 130 lbs . pressure. As the steam consumpthon of a condensing electric-light engine is about 18 lbs . per horse-power hour, such a reservoir would supply 286 effective horse-power hours. In 1878, in France, this method of storing steam was used on a tramway. M. Francq, the engineer, designed a smokeless locomotive to work by steampower supplied by a reservoir containing 400 gallons of water at 220 lbs . pressure. The reservoir was charged with steam from a stationary boiler at one end of the tramway

    Cost of Steam-power. (Chas. T. Main, A. S. M. E., x. 48.)-Estimated costs in New Lngland in 1888, per horse-power, based on engines of 1000 H.P.

    |  | Compound Engine. | Condensing Engine. | Non-con. densing Engine. |
    | :---: | :---: | :---: | :---: |
    | 1. Cost engine and piping, complete. | \$25.00 | \$20.00 | \$17.50 |
    | 2. Engine-house. | 8.00 | 7.50 | r.50 |
    | 3. Engine foundations | 7.00 | 5.50 | 4.50 |
    | 4. Total engine plant. | 40.00 | 33.00 | 29.50 |
    | 5. Depreciation, $4 \%$ on total cost. | 1.60 | 1.32 | 1.18 |
    | 6. Repairs, $2 \%$ " ". | 0.80 | 0.66 | 0.59 |
    | 7. Interest, 5\% 6 6 6 | 2.00 | 1.65 | 1.45 |
    | 8. Taxation, $1.5 \%$ on $3 / 4$ cost. | 0.45 | 0.371 | 0.332 |
    | 9. Insurance on engine and house. | 0.165 | 0.138 | 0.125 |
    | 10. Total of lines $5,6,7,8,9$. | 5.015 | 4.139 | 3.702 |
    | 11. Cost boilers, feed-pumps, etc. | 9.33 | 13.33 | 16.00 |
    | 12. Boiler-house | 2.92 | 4.17 | 5.00 |
    | 13. Chimney and flues... ....................... | . 6.11. | 7.30 | 8.00 |
    | 14. Total boiler-plant. | 18.36 | 24.80 | 29.00 |
    | 15. Depreciation, 5\% on total cost | 0.918 | 1.240 | 1.450 |
    | 16. Repairs, $2 \%$ " "، " | . 367 | . 496 | . 580 |
    | 17. Interest, $5 \%$ " ${ }^{\text {\% }}$ | . 918 | 1.240 | 1.450 |
    | 18. Taxation, $1.5 \%$ on $3 / 4$ cost. | . 207 | .279 | . 326 |
    | 19. Insurance, $0.5 \%$ on total cost................ | . 092 | . 124 | . 145 |
    | 20. Total of lines 15 to 19............. | 2.502 | 3.3\%9 | 3.951 |
    | 21. Coal used per I.H.P. per hour, lbs. | 1.75 | 2.50 | 3.00 |
    | 22. Cost of coal pe: I H.P. per day of $101 / 4$ hours at $\$ 5.00$ per ton of $2: 40 \mathrm{lbs}$. | $\begin{array}{ll} 1 / 4 & \text { cts. } \\ \cdots & 4.00 \end{array}$ | cts. <br> 5.72 | cts. |
    | ${ }_{24}^{23 .}$ Attendance of congino per day | 0.60 | 0.40 | 0.35 |
    | ${ }_{2}{ }^{2} 5$. Oil, waste, "and supplies, p | 0.53 0.25 | 0.75 0.22 | 0.90 0.90 |
    | 26. Total daily expense. | 5.38 | 7.09 | 8.31 |
    | 27. Yearly running expense, 308 days, per <br> I.H.P. |  |  |  |
    | 28. Total yearly expense, lines 10,20 , and 27. | .. 24.087 | \$9.355 | \$3.248 |
    | 29. Total yearly expense per I.H.P. for power if $50 \%$ of exhaust-steam is used for heat- |  |  |  |
    |  | . 12.597 | 14.907 | 16.663 |
    | 80. Total if all ex.-steam is used for heating... | . 8.624 | 7.916 | 7.800 |

    When exhaust-steam or a part of the receiver-steam is used for heating, or if part of the steam in a condensing engine is diverted from the condenser, and used for other purposes than power, the value of such steam should be deducted from the cost of the total amount of steam generated in order to arrive at the cost properly chargeable to power. The figures in lines 29
    and 30 are based on an assumption made by Mr. Main of losses of heai amounting to $25 \%$ between the boiler and the exhaust-pipe, an allowance which is probably too large.
    See also two papers by Chas. E. Emery on "Cost of Steam Power," Trans. A. S. C. E., vol. xii, Nov. 1883, and Trans. A. I. E. E., vol. x, Mar. 1893.

    ## ROTARY STEAM-ENGINES.

    Steam Turbines.-The steam turbine is a small turbine wheel which runs with steam as the ordinary turbine does with water, (For description of the Parsons and the Dow steam turbines see Modern Mechanism, p. 298 , etc.) The Parsons turbine is a series of parallel-flow turbines mounted side by side on a sliaft; the Dow turbine is a series of radial outward-flow tur. bines, placed like a series of concentric rings in a single plane, a stationary guide-ring being between each pair of movable rings. The speeds of the steam turbines enormously exceed those of any form of engine with recip. rocating piston, or even of the so-called rotary engines. The three-and fourcylinder engines of the Brotherhood type, in which the several cylinders are usually grouped radially about a common crank and shaft, often exceed 1000 revolutions per minute, and have been driven, experimentally, above 2000; but the steam turbine of Parsons makes 10,000 and even 20,000 revolutions, and the Dow turbine is reputed to have attained 25,000 . (See Trans. A. S. M. E., vol. X. p. 680, and xii. p. 888; Trans. Assoc. of Eng'g Societies, vol. viii. p. 583; Eng'g, Jan. 13, 1888, and Jan. 8, 1892; Eng'g News, Feb. 2Ț, 1892.) A Dow turbine, exhibited in 1889 , weighed 68 ibs . and developed 10 H.P., with a consumption of 47 lbs . of steam per H.P. per hour, the steam pressure being 70 lbs. The Dow turbine is used to spin the fly-wheel of the Howell torpedo. The dimensions of the wheel are 13.8 in . diam.. 6.5 in . width, radius of gyration 5.57 in . The energy stored in it at 10,000 revs.
    per min. is $500,000 \mathrm{ft}-\mathrm{lbs}$. per min. is $500,000 \mathrm{ft}$.-lbs.

    The De Laval Steam Turbine, shown at the Chicago exhibition, 1893, is a reaction wheel somewhat similar to the Pelton water-wheel. The steam jet is directed by a nozzle against the plane of the turbine at quite a small angle and tangentially against the circumference of the medium periphery of the blades. The angle of the blades is the same at the side of admission and discliarge. The width of the blade is constant along the entire thickness of the turbine.
    The steam is expanded to the pressure of the surroundings before arriving at the blades. This expansion takes place in the nozzle, and is caused simply by making its sides diverging. As the steam passes through this channel its specific volume is increased in a greater proportion than the cross section of the channel, and for this reason its velocity is increased. and also its momentum, till the end of the expansion at the last sectional area of the nozzle. The greater the expansion in the nozzle the greater its velocity at this point. A pressure of 75 lbs. and expansion to an absolute pressure of one atmosphere give a final velocity of about 2625 ft . per second.

    Expansion is carried further in this steam thrbine than in ordinary steamengines. This is on account of the steam expanding completely during its work to the pressure of the surroundings.

    For obtaining the greatest possible effect the admission to the blades must be free from blows and the velocity of discharge as low as póssible. These conditions would require in the steam turbine an enormous velocity of periphery-as high as 1300 to 1650 ft . per second. The centrifugal force, nevertheless, puts a limit to the use of very high velncities. In the 5 horsepower turbine the velocity of periphery is 544 ft . per second, and the num. ber of revolutions 30,000 per minute.

    However carefully the turbine may be manufactured it is impossible, on account of unevenuess of the material, to get its centre of gravity to correspond exactly to its geometrical axle of revolution; and however small this difference may be, it becomes very noticeable at such high velocities. De Laval has succeeded in solving the problem by providing the turbine with a flexible shaft. This yielding shaft allows the turbine at the high rate of speed to adjust itself and revolve around its true centre of gravity, the centre line of the shaft meanwhile describing a surface of revolution.

    In the gearing-box the speed is reduced from 30,000 revolutions to 3000 by means of a driver on the turbine shafts, which sets in motion a cogwheel of 10 times its own diameter. These gearings are provided with spiral cogs placed at an angle of about $45^{\circ}$.

    For descriptions of the most recent forms of steam turbines, see circulars of the Westinghouse Machine Co., Pittsburg, Pa., and the De Laval Steam

    Turbine Co.. Trenton, N. J.; also paper by Dr. R. H. Thurston in Trans. A. S. M. E., vol. xxii., p. 170.

    Hotary sitcam-engines, other than steam turbines, have been invented by the thousands, but not one has attained a commercial success, as regards economy of steam. The possible advantages, such as saving of space, to be gained by a rotary engine are overbalanced by its waste of steam. Rotary engines are in use, however, for special purposes, such as steam fire-engines and steam feeds for sawmills, in which steam economy is not a matter of importance.

    ## DIMENSIONS OF PABTS OF ENGINES.

    The treatment of this subject by the leading authorities on the steam-engine is very unsatisfactory, being a confused mass of rules and formule based partly upon theory and partly upon practice. The practice of builders shows an exceeding diversity of opinion as to correct dimensions. The treatment given below is chiefly the result of a study of the works of Rankine, Seaton, Unwin, Thurston, Marks, and Whitham, and is largely a condensation of a series of articles by the author published in the American Ma= chinist, in 1894, with many alterations and much additional matter. In order to make a comparison of many of the formulæ they have been applied to the assumed cases of six engines of different sizes, and in some cases this comparison has led to the construction of new formulæ.

    Cylinder. (Whitham.)-Length of bore $=$ stroke + breadth of pistonring $-1 / 8$ to $1 / 3$ in; length between heads $=$ stroke + thickness of piston + sum of clearances at both ends; thickness of piston $=$ breadth of ring $f$ thickness of flange on one side to carry the ring + thickness of followerplate.

    Thickness of flange or follower.... $3 / 8$ to $1 / 2 \mathrm{in}$. $3 / 4 \mathrm{in}$. 1 in. For cylinder of diameter............ 8 to 10 in. $36 \mathrm{in} . \quad 60$ to 100 in .

    Clearance of Pistom. (Seaton.)-The clearance allowed varies with the size of the engine from $1 / 8$ to $3 / 8 \mathrm{in}$. for roughness of castings and $1 / 16$ to $1 / 8 \mathrm{in}$. for each working joint. Naval and other very fast-running engines have a larger allowance. In a vertical direct-acting engine the parts which wear so as to bring the piston nearer the bottom are three, viz., the shaft joumals, the crank-pin brasses. and piston-rod gudgeon-brasses.
    Thickmess of Cyinder. (Thurston.)-For engines of the older types and under moderate steam-pressures, some builders have for many jears restricted the stress to about 2550 lbs . per sq. in.

    $$
    \begin{equation*}
    t=a p_{1} D+b \tag{1}
    \end{equation*}
    $$

    Is a common proportion: $t, D$, and $b$ being thickness, diam. and a constant added quantity varying from 0 to $\frac{1}{2} \mathrm{in}$, all in inches; $p_{1}$ is the initial unbalanced steam-pressure per sq. in. In this expression $b$ is made larger for horizontal than for vertical cylinders, as, for example, in large engines 0.5 in the one case and 0.2 in the other, the one requiring re-boring more than the other. The constant $\alpha$ is from 0.0004 to 0.0005 : the first value for vertical cylinders, ol short strokes; the secomd for horizontal engines, or for long strokes.
    Thickness of Cylinder and its Connections for Marine Cngines. (Seaton). $-D=$ the diam. of the cylinder in inches $; p=$ load on the safety-valves in lbs. per sq. in.; $f$, a constant multiplier $=$ thickness of barlel + . 25 in.

    Thickiness of metal of cylinder barrel or liner, not to be less than $p \times D+$ 8000 when of cast iron.*

    $$
    \begin{equation*}
    \text { Thickness of cylinder-barrel }=\frac{p \times D}{5000}+0.6 \mathrm{in} \tag{2}
    \end{equation*}
    $$

    " $\quad$ " liner $=1.1 \times f$.
    Thickness of liner when of steel $p \times D \div 6000+0.5$

    $$
    \begin{align*}
    & \text { "6 } \quad \text { metal of stean-ports }  \tag{4}\\
    & \text { valve-box sides }=0.6 \times \times . \\
    &=0.65 \times f .
    \end{align*}
    $$

    Thickness of metal of valve-box covers $=0.7 \times f$
    

    Whitham gives the following from wifferent authorities:

    $$
    \begin{aligned}
    & \operatorname{Van} \text { Buren: }\left\{\begin{array}{l}
    t=0.0001 D p+0.15 \sqrt{D} ; \ldots . . . .(5) \\
    t=0.03 \sqrt{D p} .
    \end{array}\right. \\
    & \text { Tredgold: } \quad t=\frac{(D+2.5) p}{1900} \text {. } \\
    & \text { Weisbach: } t=0.8+0.00033 p D \text {. . . . . . . . (8) } \\
    & \text { Seaton: } t=0.5+0.0004 p D \text {. . . . . . . (9) } \\
    & \text { Haswell: }\{t=0.0004 p D+1 / 8 \text { (vertical); ....(10) } \\
    & 1 t=0.0005 p D+1 / 8 \text { (horizontal). : : (11) }
    \end{aligned}
    $$

    Whitham recommends (6) where provision is made for the reboring, and where ample strength and rigidity are secured, for horizontal or vertical sylinders of large or small diameter; (9) for large cylinders using steam under 100 lbs . gauge-pressure, and

    $$
    \begin{aligned}
    t & =0.003 D \sqrt{p} \text { for small cylinders. } \cdot \bullet: . .(12) \\
    \text { Marks gives } t & =0.00028 p D .
    \end{aligned}
    $$

    This is a smaller valne than is given by the other formulæ quoted; but Marks says that it is not advisable to make a steam-cylinder less than 0.75 in. thick under any circumstances.
    The following table gives the calculated thickness of cylinders of engines of 10,30 , and 50 in . diam., assuming $p$ the maximum unbalanced pressure on the piston $=100 \mathrm{lbS}$. per sq. in. As the same engines will be used for calculation of other dimensions, other particulars concerning them are here given for reference.

    Dimensions, etc., of Engines.

    | Engine No... | 1 and 2. | 3 and 4. | 5 and 6. |
    | :---: | :---: | :---: | :---: |
    | Indicated horse-power......I.H.P. | 50 | 450 | 1250 |
    | Diam. of cyl., in .... ............. ${ }^{\text {D }}$ | 10 | 30 | 50 |
    | Stroke, feet........................ $L$ | 1 .... | $21 / 2 . . .5$ | 4 .... 8 |
    | Revs. per min..................... $r$ | \%i0 | $130 \quad \ldots 65$ | $90 \quad \underset{\sim 0}{ }{ }^{-15}$ |
    | Piston speed, ft. per min......... ${ }^{\text {a }}$ S | $\stackrel{500}{78.54}$ | 650 706.86 | 700 1963.5 |
    | Mean effective pressure ....ĭ.E.P. | 42 | 33.3 | 130 |
    | Max. total unbalanced press.....P | 7854 | r0,686 | 196,350 |
    | Max. total per sq. in. ..............pp | 100 | 100 | 100 |


    | Thickness of Cylinder by Formula. | 1 and 2. | 3 and 4. | 5 and 6. |
    | :---: | :---: | :---: | :---: |
    | (1) $.0004 p D+0.5$, short stroke. | . 90 | 1.70 | 2.50 |
    | (1) $.0005 p D+0.5$, long stroke... | 1.00 | 2.00 | 3.00 |
    | (2) . 000333 D D $\ldots . .$. .... . ....... | . 33 | . 99 | $16 \pi$ |
    | (3) $.0002 p D+0.6 \ldots$ | . 80 | 1.40 | 1.66 |
    | (5) . $0001 p D+.15 \sqrt{D} \ldots . . . . . . .$. | . 57 | 1.12 | 1.56 |
    | (6) $.03 \sqrt{D} \bar{p}_{\ldots} \ldots \ldots \ldots \ldots$ | . 95 | 1.64 | 2.12 |
    | (\%) $\frac{(D+2.5)}{1900} p$. | . 66 | 1.71 | 2.76 |
    | (8) $.00033 \mathrm{p} D+0.8$ | 1.13 | 1.79 | 2.45 |
    | (9) $.0004 p D+0.5 \ldots \ldots .$. | . 90 | 1.70 | 2.50 |
    | (10) $.0004 p D+1 / 8$ (vertical) | . 53 | 1.33 | 2.13 |
    | (11) $.0005 p D+1 / 8$ (horizontal). | . 63 | 1.63 | 2.63 |
    | (12). $003 D \sqrt{p}$ (small engines)... <br> (13) . $04028 p \mathrm{D}$ | $\begin{aligned} & .30(?) \\ & .28(?) \end{aligned}$ | .84(?) | 1.40(?) |
    | Average of first eleven. ........ | . 76 | 1.48 | 2.26 |

    The average corresponds nearly to the formula $t=.0003^{\circ} \mathrm{Dp}+0.4 \mathrm{in}$. A convenient approximation is $t=.000+D p+0$.号 in., which gives for

    | Diameters............ | 10 | 20 | 30 | 40 | 50 | 60 in. |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Thickıesses........... | .60 | 1.10 | 1.50 | 1.90 | 2.30 | 2.80 inl |

    The last formula corresponds to a tensile strength of cast iron of 12,500 lbs. with a factor of safety of 10 and an allowance of 0.3 in. for reboring.

    Cylinder-heads. -Thurston says: Cylinder-heads may be given a thickness, at the edges and in the flanges, exceeding somewhat that of tho cylinder. An excess of not less than $25 \%$ is usual. It may be thinner in the middle. Where made, as is nsual in large engines, of two disks with intermediate radiating, connecting ribs or webs, that section which is safe against shearin! is probably ample. An examination of the designs of experienced builders, by Professor Thurston, gave

    $$
    \begin{equation*}
    t=\frac{D p}{3000}+1 / 4 \mathrm{inch}, \tag{i}
    \end{equation*}
    $$

    $D$ being the diameter of that circle in which the thickness is taken.
    Thurston also gives
    $t=.005 D 4 \bar{p}+0.85$.
    Marks gives
    $t=0.003 D \perp \bar{p}$.

    He also says a good practical rule for pressures under 100 lhs. per sq. in. is to make the thickness of the cylinder-heads $11 / 4$ times that of the walls; and applying this factor to his formula for thickness of wall., or $.000 \approx S p D$, we have

    $$
    \begin{equation*}
    t=.00035 \mathrm{p} D . \tag{4}
    \end{equation*}
    $$

    Whitham quotes from Seaton,

    $$
    \begin{equation*}
    t=\frac{p D+500}{2000}, \text { which is equal to } .0005 p D+.25 \text { incn. } \tag{5}
    \end{equation*}
    $$

    Seaton's formula for cylinder bottoms, quoted above, is

    $$
    \begin{equation*}
    t=1.1 f, \text { in which } f=.0002 p D+.85 \text { inch, or } t=.00022 p D+.93 \tag{6}
    \end{equation*}
    $$

    Applying the above formulæ to the engines of 10,30 . and 50 inches diameter, with maximum unbalanced steam-pressure of 100 lbs . per sq. in., we have

    | C |  | 10 | 30 | 50 |
    | :---: | :---: | :---: | :---: | :---: |
    | (1) $t=.00033 \mathrm{Dp}+.25$ | $=$ | . 53 | 1.25 | 1.5 |
    | (2) $t=.005 D \backslash \bar{p}+.25$ | $=$ | \%5 | 1.75 | . 7 |
    | (3) $t=.0 \cap 3 D \sqrt{p}$ | = | . 30 | 90 | 1. |
    | (4) $t=.000355 p$ | = | . 35 | 1.05 | 1.7 |
    | (5) $t=.0005 D p+.25$ | = | \% 5 | 1.75 | . 7 |
    | (6) $t=.0002 \leq D p+.93$ | = | i. 15 | 1.59 |  |
    | Average of 6 |  | . 65 | 1.38 |  |

    Whe average is expressed by the formula $t=.00036 D p+.81 \mathrm{nch}$.
    Meyer's "Modern Locomotive Construction," p. 24, gives for locomotive cylinder-heads for pressures up to 120 lbs.:

    | For diameters, in........ | 19 to 22 | 16 to 18 | 14 to 15 | 11 to 13 | 9 to 10 |
    | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | Thickness, in........... | $11 / 4$ | 1 | 1 | $3 / 8$ | $3 / 4$ |

    Taking the pressure at 120 lbs . per sq. in., the thicknesses 184 in . and $3 / 4 \mathrm{in}$. for cylinders 22 and 10 in . diam., respectively, correspond to the formula $t=.00035 D p+.33$ inch.

    Web-stifioned Oylinaler-covers,-Seaton objects to webs for stiffening cast-iron cylinder-covers as a source of danger. The strain on the web is one of tension, and if there should be a nick or defect in the outer edge of the web the sudden application of strain is apt to start a crack. He recommends that high-pressure cylinders over 24 in . and lowpressure cylinders over 40 in . diam. Should have their covers cast hollow, with two thicknesses of metal. The depth of the cover at the middle should be about $1 / 4$ the diam. of the piston for pressures of 80 lbs . and upwards, and that of the low-pressure cylinder-cover of a compound engine equal to that of the high-pressure cylinder. Another rule is to make the depth at the middle not less than 1.3 times the diameter of the piston-rod. In the British Navy the cylinder-covers are made of steel castings, $3 / 4$ to $11 / 4 \mathrm{in}$. thick, generally cast without webs, stiffness baing obtained by their form, which is often a series of corrugations.

    Cylinder-head Bolts.-Diameter of bolt-circle for cylinder-head $\approx$ diameter of cylinder $+2 \times$ thickness of cylinder $+2 \times$ diameter of bolts. The bolts should not be more than 6 inches apart (Whitham).
    Marks gives for number of bolts $b=\frac{.4854 D^{2} p}{5000 c}=.0001571 \frac{D^{2} p}{c}$, in which $c=$ area of a single bolt, $p=$ boiler-pressure in lbs. per sq. in.; 5000 lbs . is taken as the safe strain per sq. in. on the nominal area of the bolt.

    Seaton says: Cylinder-cover studs and bolts, when made of steel, should be of such a size that the strain in them does not exceed 5000 lbs . per sq. in. When of less than $7 / 8$ inch diameter it should not exceed 4500 lbs . per sq. in. When of iron the strain should be $20 \%$ less.

    Thurston says : Cylinder flanges are made a little thicker than the cylinder, and usually of equal thickness with the flanges of the heads. Cylinderbolts should be so closely spaced as not to allow springing of the flanges and leakage, say, 4 to 5 times the thickness of the flanges. Their diameter should be proportioned for a maximum stress of not over 4000 to 5000 lbs. per square inch.
    If $D=$ diameter of cylinder, $p=$ maximum steam-pressure, $b=$ number of bolts, $s=$ size or diameter of each bolt, and 5000 lbs. be allowed per sq. in. of nominal area of the bolt, $.8854 D^{2} p=392 \% s^{2}$; whence $b s^{2}=.0002 D^{2} p$; $b=.0002 \frac{D^{2} p}{s^{2}} ; s=.01414 D \sqrt{\frac{p}{b}}$. For the three engines we have:

    | Diameter of cylinder, inches........ | 10 | 80 | 50 |  |
    | :--- | :--- | :---: | :---: | :---: |
    | Diameter of bolt-circle, approx | 13 | 35 | 57.5 |  |
    | Circumference of circle, approx | 13 | 40.8 | 110 | 180 |
    | Minimum No. of bolts, circ. $+6 \ldots$. | 7 | 18 | 30 |  |
    | Diam. of bolts, $s=.01414 \mathrm{D}$ | $\bar{p} \ldots \ldots$. | $8 / 4 \mathrm{in}$ | 1.00 | 1.29 |

    The diameter of bolt for the 10 -inch cylinder is $\mathbf{u} .54 \mathrm{fn}$. by the formula, but $3 / 4$ inch is as small as should be taken, on account of possible overstrain by the wrench in screwing up the nut.
    The Pinton. Details of Construction of Ordinary Pise tons. (Seaton.)-Let $D$ be the dianneter of the piston in inches, $p$ the effective pressure persquare luch on it, $x$ a coustant multiplier, found as follows:

    $$
    x=\frac{D}{50} \times \sqrt{p}+1
    $$

    

    Marks gives the approximate rule: Thickness of piston-head $=\sqrt[4]{l d}$, in which $l=$ length of stroke, and $d=$ diameter of cylinder in inches. Whitham says in a horizontal engine the rings support the piston, or at least a part of it, under ordinary conditions. The pressure due to the weight of the piston upon an area equal to 0.7 the diameter of the cylinder $x$ breadth of ring-face should never exceed 200 lbs . per sq. in. He also gives a formula much used in this country: Breadth of ring-face $=0.15 \times$ dian. eter of cylinder.
    For our engives we have diameter $=$
    10
    30
    50
    Thickness of piston-head.
    

    Diameter of Piston Packing-xings. - These are generally turned, before they are cut, about $1 / 4$ incli diameter larger than the cylinder, for cylinders up to 20 inches diameter, and then enough is cut out of the ring to spring them to the diameter of the cylinder. For larger cylinders the rings are turned proportionately larger. Seaton recommends an excess of $1 \%$ of the diameter of the cylinder.
    Crossesection of the rings. - The thickness is commonly made $1 / 30$ th of the dian. of cyl. $+1 / 8$ inch, and the width $=$ thickness $+1 / 8$ inch. For an eccentric ring the mean thickness may be the same as for a ring of uniform thickness, and the minimum thickness $=2 / 3$ the maximum.
    A circular issued by J. H. Dunbar, manufacturer of packing rings, Youngstown, O., says: Unless otherwise ordered, the thickness of rings will be made equal to $.03 \times$ tleir diameter. This thickness has been found to be satisfactory in practice. It admits of the ring being made abcut $3 / 16^{\prime \prime}$ to the foot larger than the cylinder, and has, when new, a tension of about two pounds per inch of circumference, which is ample to prevent leakage, if the surface of the ring and cylinder are smooth.

    As regards the width of rings, authorities "scatter " from very narrow to very wide, the latter being fully ten times the former. For instance, Unwin gives $W=d .014+.08$. Whithan's formula is $W=d .15$. In both formulæ $W$ is the width of the ring in inches, and $d$ the diameter of the cylinder in inches. Unwin's formula makes the width of a $20^{\prime \prime}$ ring $W=20 \times .014$ $+.08=.36^{\prime \prime}$, while Whitham's is $20 \times .15=3^{\prime \prime}$ for the same diameter of ring. There is much less difference in the practice of engine-builders in this respect, but there is still room for a standard width of ring. It is believed that for cylinders over $16^{\prime \prime}$ diameter $34^{\prime \prime}$ is a popular and practical width, and $1 / 2^{\prime \prime}$ for cylinders of that size and under.

    Fit of Piston-rod into Piston. (Seaton.)-The most convenient and reliable practice is to turn the piston-rod end with a shoulder of $1 / 16$ inch for small engines, and $1 / 8$ inch for large ones, make the taper 8 in . to
    the foot until the section of the rod is taree fourths of that of the body, then turn the remaining fart parallel; the rod should then fit into the piston so as to leave $1 / 8$ iuch bet ween it and the shoulder for large pistons, and $1 / 16$ in. for small. The shoulder prevents the rod from splitting the piston, and allows of the rod being turned true after long wear without encroaching on the taper.
    The piston is secured to the rod by a nut, and the size of the rod should be such that the strain on the section at the bottom of the thread does not exceed 5500 lbs . per sq . in. for iron, 7000 lbs . for steel. The depth of this nut need not exceed the diameter which would be found by allowing these strains. The nut should be locked to prevent its working loose.
    Diameter of Piston-rods.-Unwin gives

    $$
    \begin{equation*}
    d^{\prime \prime}=b D \sqrt{n} \tag{1}
    \end{equation*}
    $$

    In which $D$ is the cylinder diameter in inches, $p$ is the maximum unbalanced pressure in lbs. per sq. in., and the constant $b=0.016 \%$ for iron, and $b=$ 0.0144 for steel. Thurston, from an examination of a considerable number of rods in use, gives

    $$
    \begin{equation*}
    d^{\prime \prime}=\sqrt[4]{\frac{D}{D^{2} p L^{2}}}{ }^{a}+\frac{D}{80^{\prime}}, \text { nearly } \tag{2}
    \end{equation*}
    $$

    ( $L$ in feet, $D$ and $d$ in inches), in which $a=10,000$ and upward in the various types of engines, the marine screw engilles or ordinary fast, engines on shore given the lowest values, while "low-speed engines" being less liable to accident from shock give $a=15,000$, often.
    Connections of the piston-rod to the piston and to the crosshead should have a factor of safety of at least 8 or 10. Marks gives

    $$
    \begin{align*}
    & d^{\prime \prime}=0.0179 D \sqrt{p}, \text { for iron; for steel } d^{\prime \prime} \quad=0.0105 D \sqrt{p} ; .  \tag{3}\\
    & \text { and } d^{\prime \prime}=0.03901 \sqrt[4]{D^{2} l^{2} p}, \text { for iron; for steel } d^{\prime \prime}  \tag{4}\\
    &=0.03525 \sqrt[6]{D^{2} l^{2} p},
    \end{align*}
    $$

    in which $l$ is the length of stroke, all dimensions in inches. Deduce the diameter of piston-rod by (3), and if this diameter is less than $1 / 12 l$, then use (4).

    $$
    \text { Seaton gives: Diameter of piston-rod }=\frac{\text { Diameter of cylinder }}{F} \sqrt{p} \text {. }
    $$

    The following are the values of $F$ :

    $$
    \begin{aligned}
    & \text { Naval engines, direct-acting ......................... } \\
    & \text { N }
    \end{aligned}
    $$

    Note.-Long and very long, as compared with the stroke usual for the power of engine or size of cylinder.
    In considering an expansive engine $p$, the effective pressure should be taken as the absolute working pressure, or 15 lbs . above that to whicl the boiler safety-valve is loaded; for a compound engine the value of $p$ for the high-pressure piston should be taken as the absolute pressure, less 15 lhs., or the same as the load on the safety-valve; for the medium-pressure the load may be taken as that due to half the absolute boiler-pressure; and for the low-pressure cylinder the pressure to which the escape-valve is loaded +15 lbs ., or the maximum absolute pressure, which can be got in the receiver, or about 25 lbs . It is an advantage to make all the rods of a compound engine alike, and this is now the rule.
    Applying the above formulæ to the engines of 10,30 , and 50 in . diameter, both short and long stroke, we have:

    ## Diameter of Piston-rods.

    | Diameter of Cylinder, | 10 |  | 30 |  | 50 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Stroke, inches | 12 | 24 | 30 | 60 | 48 | 95 |
    | Unwin, iron, .016\% D $\sqrt{p}$ | 1.67 | 1.67 | 5.01 | 5.01 | 8.35 | 8.35 |
    | Unwin, steel, . $0144 D \sqrt{p}$ | 1.44 | 1.44 | 4.32 | 4.32 | 7.20 | \%.20 |
    | Thurstou $\sqrt[4]{\frac{D^{2} \overline{p L^{2}}}{10,000}}+\frac{D}{80}$ ( $L$ in feet). | 1.13 |  | 3.12 |  | 5.10 |  |
    | Thurston, saine with $a=15,000$ |  | 1.40 |  | 3.88 |  | 6.35 |
    | Marks, iron, ${ }^{.01 \% 9 D ~} 1 / \bar{p}$. | 1.79 |  | 5.3 | 5.37 | 8.9 | 8.95 |
    | Marks, iron, .03901 $\sqrt[4]{D^{2} l^{2} D}$ | 1.35 |  | 3.70 | 5.13 | 6.05 | 8.95 |
    | Marks, steel, . $0105 D \sqrt{p}$. | (1.05) | 1.91 | 3.70 (3.15) | 5.13 | 6.04 (5.25) | 8.54 |
    | Marks, steel, .03525 $\sqrt[4]{D^{2} l^{2} p}$ | 1.22 | 1.73 | 3.34 | 4.\% | (5.25) | 7.\%2 |
    | Seaton, naval engines, $\frac{D}{60} \sqrt{p} \ldots \ldots \ldots$ | 1.67 |  | 5.01 | 4.12 | 8.35 | \%. |
    | Seaton, land engine, $\frac{D}{45}$ |  | 2.22 | - | 6.67 |  | 11.11 |
    | rage of four for | 1.49 | 1.8: | 4.30 | 5.26 | 7.11 | 8.74 |

    The figures in brackets opposite Marks' third formula would be rejected since they are less than $1 / 8$ of the stroke, and the figures derived by his fourth formula would be taken instead. The figure 1.19 opposite his first formula would be rejected for the eugine of 24 -inch stroke.

    An empirical formula which gives results approximating the above averages is $d^{\prime \prime}=.013 \sqrt{D l p}$.
    The calculated results from this formula, for the six engines, are, respectively, 1.42, 1.88, 3.90, 5.61, 6.37, 9.01.

    Piston-rod Guides. - The thrust on the guide, when the connecting. rod is at its maximum angle with the line of the pistou-rod, is found from the formula: Thrust $=$ total load on piston $\times$ tangent of maximum angle of connecting-rod $=p \tan \theta$. This angle, $\theta$, is the angle whose sine $=$ half stroke of piston $\div$ length of connecting-roa.

    | io of len | 2 | 21 | 3 |
    | :---: | :---: | :---: | :---: |
    | Maximum angle of comuecting-rod with line of piston-rod............................... |  |  |  |
    | piston-rod. | $14^{\circ} 29 \times$ | $11^{\circ} 33^{\prime}$ | $9^{\circ} 36^{\prime}$ |
    | T'angent of the angl | . 258 | . 204 | . 169 |
    | Secant of the angle | 1.0327 | 1.0:06 | . 01 |

    Seaton says: The area of the guide-block or slipper surface on which the thrust is taken should in no case be less than will admit of a pressure of 400 lbs. ou the square inch; and for good working those surfaces which take the thrust when going ahead should be sufficiently large to prevent the maximum pressure exceeding 100 lbs . per sq. in. When the surfaces are kept well lubricated this allowance may be exceeded.
    Thurston says: The lubbing surfaces of guides are so proportioned that if $V$ be their relative velocity in feet per minute, and $p$ be the intensity of pressui'e on the guide in lbs. per sq. in., $p V<60,000$ and $p V>40,000$.
    The lower is the safer limit; but for marine and stationary engines it is allowable to take $p=60,000 \div V$. According to Rankine, for locomotives, $p=\frac{44800}{V+20}$, where $p$ is the pressure in lbs. per sq. in. and $V$ the velocity of rubbing in feet per minute. This iucludes the sum of all pressures forcing the two rubbing surfaces together.

    Some British builders of portable engines restrict the pressure between the guides and cross-heads to less than 40, sometimes 35 lbs . per square inch.
    For a mean velocity of 600 feet per minute, Prof. Thurston's formulas give, $p<100, p>66.7$; Rankine's gives $y=72.2 \mathrm{lbs}$. per sq. in.

    Whitham gives,

    $$
    A=\text { area of slides in square inches }=\frac{P}{p_{0} \sqrt{n^{2}-1}}=\frac{.7854 d^{2} p_{1}}{p_{0} \sqrt{n^{2}-1}}
    $$

    in which $P=$ total unbalanced pressure, $p_{1}=$ pressure per square inch on piston, $d=$ diameter of cylinder, $p_{0}=$ pressure allowable per square inch on slides, and $n=$ length of connecting-rod $\div$ length of crank. This is equivalent to the formula, $A=P$ tan $\theta \div p_{0}$. For $n=5, p_{1}=100$ and $p_{0}$ $=80, A=.2004 d^{2}$. For the three engines 10,30 and 50 in . cliam., this would give for area of slides, $A=20,180$ and 500 sq.in., respectively. Whitham says: The normal pressure on the slide may be as high as 500 lbs. per sq. in., but this is when there is good lubrication and freedom from dust. Stationary and marine engines are usually designed to carry 100 lbs . per sq. in., ard the area in this case is reduced from $50 \%$ to $60 \%$ by grooves. In locomotive engines the pressure langes from 40 to 50 lbs . per sq. in. of slide, on account of the inaccessibility of the slide, dirt, cinder, etc.

    There is perfect agreement anong the authorities as to the formula for area of the slides, $A=P \tan \theta \div p_{0}$; but the value given to $p_{0}$, the allowable pressure per square inch, ranges all the way from 35 lbs . to 500 lbs .

    The Connecting-rod. Ratio of length of connecting-rod to length of stroke.-Experience has led generally to the ratio of 2 or $2 \%$ to 1 , the latter giving a long and easy-working rod, the former a rather short, but yet a nianageable one (Thurston). Whitham gives the ratio of from 2 to $41 / 2$, and Marks from 2 to 4.

    Dimensions of the Connecting-rod.-The calculation of the diameter of a connecting-rod on a theoretical basis, considering it as a strut subject to both compressive and bending stresses, and also to stress due to its inertia, in high-speed engines, is quite complicated. See Whitham, Steam-engine Design, p. 217 ; Thurston, Manual of S. E., p. 100. Empirical formulas are as follows: For circular rods, largest at the middle, $D=$ diam. of cylinder, $l=$ length of connecting-rod in inclies, $p=$ maxinum steam-pressure per sq. in.
    (1) Whitham, diam. at middle, $d^{\prime \prime}=0.02 \sim 2 \sqrt{D l y p}$
    (2) Whitham, diam. at necks, $d^{\prime \prime}=1.0$ to $1.1 \times$ diam. of piston-rod.
    (3) Sennett, cliam. at middle, $c^{\prime \prime}=\frac{D}{55} \sqrt{p}$.
    (4) Sennett, diam. at necks, $d^{\prime \prime}=\frac{D}{60} \sqrt{p}$.
    (5) Marks, diam., $d^{\prime \prime}=0.0179 D ~ \sqrt{p}$. if diam. is greater than $1 / 24$ length.
    (6) Marks, diam., $d^{\prime \prime}=0.0255 S \sqrt{ }$ Dl $\sqrt{p}$ if diam. found by (5) is less than 1/24 length.
    (\%) Thurston, diam. at middle, $d^{\prime \prime}=a \sqrt{D L 1^{\prime} \bar{p}}+C, D$ in inches, $L$ in feet. $a=0.15$ and $C=1 / 2$ inch for fast engines, $a=0.08$ and $C=3 / 4$ tich for moderate speed.
    (8) Seaton says: The rod may be considered as a strut free at both ends, and, calculating its diameter accordingly,

    $$
    \text { diameter at middle }=\frac{\sqrt{R\left(1+4 a r^{2}\right)}}{48.5}
    $$

    where $R=$ the total load on piston $P$ multiplied by the secant of the maximum angle of obliquity of the connecting-rod.

    For wrought iron and mild steel $\alpha$ is taken at $1 / 3000$. The following are the values of $r$ in practice:
    
    (9) The following empirical formula is given by Seaton as agreeing cloely with good modern practice:
    Dianleter of connecting-rod at middle $=\sqrt{\bar{l} \bar{K}} \div 4, l=$ length of rod in inches, and $K=0.03 \sqrt{\text { effective load on pistou in pounds. }}$

    The diam. at the ends may be 0.875 of the diam. at the mitdle.
    Seaton's empirical formula when translated into terms of $D$ and $p$ is the same as the second one by Marks, viz., $d^{\prime \prime}=0.02 r 58 \sqrt{D l \sqrt{p}}$ Whitham's (1) is also practically the same.
    (10) Taking Seaton's more complex formula, with length of connecting. rod $=2.5 \times$ length of stroke, and $r=12$ and 16 , respectively, it reduces to: Diam. at middle $=.02291 \sqrt{P}$ and $.02411 \sqrt{P}$ for short and long stroke engines, respectively.
    Applying the above formulas to the engines of our list, we have
    Diameter of Connecting-rods.

    | Diameter of Cylinder, inclies. | 10 |  | 30 |  | 50 |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Stroke, inches..... | 12 | 24 | 30 | 60 | 48 | 96 |
    | Length of connecting-rod | 30 | 60 | 75 | 150 | 120 | 240 |
    | (3) $d^{\prime \prime}=\frac{D}{55} \sqrt{p}=.0182 D \sqrt{p}$. | 1.82 | 1.82 | 5.46 | 5.46 | 9.09 | 9.09 |
    | (5) $d^{\prime \prime}=.0179 D \sqrt{p}$ | 1.79 |  | 5.37 |  | 8.95 |  |
    | (6) $d^{\prime \prime}=.02758 \sqrt{D l \sqrt{p}}$ |  | 2.14 |  | 5.85 |  | 9.51 |
    | (7) $d^{\prime \prime}=0.15 \sqrt{D L 1 / p}+1$ | 2.87 |  | 7.00 |  | 11.11 |  |
    | (i) $d^{\prime \prime}=0.08 \sqrt{D L \sqrt{p}}+3 / 4$. |  | 2.54 |  | 5.65 |  | 8.75 |
    | (9) $d^{\prime \prime}=.03 \sqrt{P}$. | 2.64 | 2.67 | 7.97 | 7.97 | 13.20 | 13.20 |
    | (10) $d^{\prime \prime}=.02294 \sqrt{P} ; .02411 / \sqrt{ }$ | 2.03 | 2.14 | 6.09 | 6.41 | 10.16 | 10.68 |
    | Average.. | 2.24 | 2.26 | 6.38 | 6.27 | 10.52 | 10.26 |

    Formulæ 5 and 6 (Marks), and also formula 10 (Seaton), give the larger diameters for the long-stroke engine; formulæ 7 give the larger diameters for the short-stroke engines. The average figures show but little difference in diameter between long- and slort-stroke engines; this is what might be expected, for while the connecting-rod, considered simply as a column, would require an increase of dianeter for an increase of length, the load remaining the same, yet in an engine generally the shorter the connectingrod the greater the number of revolutions, and consequently the greater the strains due to inertia. The influences tending to increase the diameter therefore tend to balance each other, and to render the diameter to some extent independent of the lengtl. The average fignres correspond nearly to the simple formula $d^{\prime \prime}=.001 D 1^{\prime} p$. The diameters of rod for the three diameters of engine by this formula are, respectively, 2.10, 6.30, and 10.50 in . Since the total pressure on the piston $P=. \tilde{8} 54 D^{2} p$, the formula is equiva. lent to $d^{\prime}=.0237 \sqrt{P}$.

    Connectingerod Ends.-For a connecting-rod end of the marine type, where the end is secured with two bolts, each bolt should be proportioned for a safe tensile strengtl equa! to two thirds the maximum pull or thrust in the connecting rod.

    The cap is to be proportioned as a beam loaded with the maximum pull of the connecting-rod, and supported at both ends. The calculation should be made for rigidity as well as strength, allowing a maximum deflection of $1 / 100$ inch. For a strap-and-key connecting rod end the strap is designed for tensile strength, considering that two thirds of the pull on the connectingrod may come on one arm. At the point where the metal is slotted for the key and gib, the straps must he thickened to make the cross-section equal to that of the remainder of the strap. Between the end of the strap and the slot the strap is liable to fail in double shear, and sufficient metal must be provided at the end to prevent such failure.

    The breadth of the key is generally one fourth of the width of the strap, and the length, parallel to the strap, should be such that the cross-section will have a shearing strength equal to the tensile strength of the section of the strap. The taper of the key is generally about $5 / 8$ inch to the foct.

    Tapered Connectingorods.-In modern high-speed engines it is customary to make the connecting-rods of rectangular instead of circular section, the sides being parallel, and the depth increasing regularly from the crosshead end to the crank-pin end. According to Grashof, the bending. action on the rod due to its inertia is greatest at $6 / 10$ the length from the crosshead end, and, according to this theory, that is the point at which the section should be greatest, althougll in practice the section is made greatest at the crank-pin end.
    Professor Thurston furnishes the author with the following rule for tapered connecting-rod of rectangular section: Take the section as computed by the formula $d^{\prime \prime}=0.1 \sqrt{D L \sqrt{p}}+3 / 4$ for a circular section, and for a rod $4 / 3$ the actual length, placing the computed section at $2 / 3$ the length from the small eud, and carrying the taper straight through this fixed section to the large end. This brings the computed section at the surge point and makes it heavier than the rod for which a tapered form is not required.
    Taking the above formula, multiplying $L$ by $4 / 3$, and changing it to $l$ in inches, it becomes $d=1 / 30 \sqrt{D l} \sqrt{\prime} p+3 / 4^{\prime \prime}$. Taking a rectangular section of the same area as the round section whose diameter is $d$, and making the depth of the section $h=$ twice the thicki ess $t$, we have $. \% 854 d^{2}=h t=2 t^{2}$, whence $t=.62 \pi d=.0209 \sqrt{D l} \sqrt{p}+.47^{\prime \prime \prime}$, which is the formula for the thick. ness or distance between the parallel sides of the rod. Making the deptli at the crosshead end $=1.5 t$, and at $2 / 3$ the length $=2 t$, the equivalent depth at the crank end is 2.25t. Applying the formula to the short-strolse engines of our examples, we have
    

    The thicknesses $t$, found by the formula $t=.0203 \sqrt{D l \sqrt{p}}+.47$, agree closely with the more simple formula $t=.01 D \sqrt{p}+.60^{\prime \prime}$, the thicknesses calculated by this formula being respectively $1.6,3.6$, and 5.6 inches.

    The Crankepin.-A crank-pin should be designed (1) to avoid heating, (2) for strength, (3) for rigidity. The heating of a crank-pin depends on the pressure on its rubbing-surface, and on the coefficient of friction, which latter varies greatly according to the effectiveness of the lubrication. It also depends upon the facility with which the heat produced may be carried away: thus it appears that locomotive crank-pins may be prevented to some degree from overbeating by the cooling action of the air through which they pass at a higlı speed.

    $$
    \begin{align*}
    \text { Marks gives } l & =.0000247 \mathrm{fp} N D^{2}=1.038 f \frac{(\text { I.H.P. })}{L}  \tag{1}\\
    \text { Whitham gives } l & =0.0075 f \frac{(\text { I.H.P. })}{L}, \ldots \tag{2}
    \end{align*}
    $$

    In which $l=$ length of crank-pin journal in inches, $f=$ coefficient of friction, which may be taken at .03 to 05 for perfect lubrication, and .08 to .10 for im perfect; $p=$ mean pressure in the cylinder in pounds per square inch; $D$ $=$ diameter of cylinder in inches; $N=$ number of single strokes per minute; I.H.P. $=$ indicated horse-power; $L=$ length of stroke in feet. These formulæ are independent of the diameter of the pin, and Marks states as a general law, within reasonable limits as to pressure and speed of rubbing, the longer a bearing is made, for a given pressure and number of revolutions, the cooler it will work; and its diameter las no effect upon its heating. Both of the above formulæ are deduced empirically from dimensions of crank-pins of existing marine engines. Marks says that about one-fourth the length required for crank-pins of propeller engines will serve for the pius of side-wheel engines, and one tenth for locomotive engines, making the
    formula for locomotive crank-pins $l=.00000347 f p N D^{2}$, or if $p=950,1$ $=.06$, and $N=600, l=.013 D^{3}$.
    Whitham recommends for pressure per square inch of projected area, for naval engines 500 pounds, for merchant engines 400 pounds, for paddle-wheel engines 800 to 900 pounds.
    Thurston says the pressure should, in the steam-engine, never exceed 500 or 600 pounds per square inch for wrought-iron pins, or about twice that figure for steel. He gives the formula for length of a steel pin, in inches,

    $$
    \begin{equation*}
    l=P R+600,000, \tag{}
    \end{equation*}
    $$ in which $P$ and $R$ are the mean total load on the pin in pounds, and the number of revolutions per minute. For locomotives. the divisor may be taken as 500,000 . Where iron is used this figure should be reduced to 300,000 and 250,000 for the two cases taken. Pins so proportioned, if well made and well lubricated, may aluways be depended upon to run cool; if not well formed, perfectly cylindrical, well finished. and kept well oiled, no crank-pin can be relied upon. It is assumed above that good bronze or white-metal bearings are used.

    Thurston also says: The size of crank-pins required to prevent heating of the journals may be determined with a fair degree of precision by either of the formulæ given below :

    $$
    \begin{align*}
    & i=\frac{P(V+20)}{44,800 d} \text { (Rankine, 1865); . . . . . . . (4) }  \tag{4}\\
    & i=\frac{P V}{60,000 d}(\text { Thurston, 1862); . . . . . . . (5) }  \tag{5}\\
    & i=\frac{P N}{350,000}(\text { Van Buren, 1866). . . . . . . . (6) } \tag{6}
    \end{align*}
    $$

    The first two formulæ give what are considered by their authors fair working proportions, and the last gives minimum length for iron pins. ( $V=$ velocity of rubbing-surface in feet per minute.)
    Formula (1) was obtained by observing locomotive practice in which great liability exists of annoyance by dust, and great risk occurs from inaccessibility while running, and (2) by observation of crank-pins of naval screwengines. The first formula is therefore not well suited for marine practice. Steel can usually be worked at nearly double the pressure admissible with iron running at similar speed.
    Since the length of the crank-pin will be directly as the power expended upon it and inversely as the pressure, we may take it as

    $$
    \begin{equation*}
    l=a \frac{\text { I.H.P. }}{L}, . \tag{7}
    \end{equation*}
    $$

    in which $\alpha$ Is a constant, and $L$ the stroke of piston, in feet. The values of the constant, as obtained by Mr. Skeel, are about as follows: $a=0.04$ where water can be constantly used; $a=0.045$ where water is not generally used; $a=0.05$ where water is seldom used; $a=0.06$ where water is never needed.
    Unwin gives

    $$
    \begin{equation*}
    \imath=a \frac{\mathrm{I} . \mathrm{H} . \mathrm{P} .}{r}, . \tag{8}
    \end{equation*}
    $$

    in which $r=$ crank radius in inches, $a=0.3$ to $a=0.4$ for iron and for marine engines, and $a=0.066$ to $a=0.1$ for the case of the best steel and for locomotive work, where it is often necessary to shorten up outside pins as much as possible.
    J. B. Stanwood (Eng'g, June 12, 1891), in a table of dimensions of parts of American Corliss engines from 10 to 30 inches diameter of cylinder, gives sizes of crank-pins which approximate closely to the formula

    $$
    \begin{equation*}
    l=.275 D^{\prime \prime}+.5 \mathrm{in} . ; \quad a=.25 D^{\prime \prime} . . \tag{9}
    \end{equation*}
    $$

    By calculating lengths of iron crank-pins for the engines 10,30 , and 50 inches diameter, long and short stroke, by the several formulæ above given, it is found that there is a great difference in the results, so that one formula in certain cases gives a length three times as great as another. Nos. (4). (F) and (6) give lengths much greater than the others. Marks (1), Whitham (2), Thurston (r), $l=.06$ I.H.P. $\div L$, and Unwin (8), $l=0.4$ I.H.P. $\div r$, give re sults which agree more closely.

    The calculated lengths of iron crank-pins for the several cases by formulæ (1), (2), (7), and (8) are as follows:

    ## Lengtle of Crank-pins.

    | Diameter of cylinder................ $D$ | 10 | 10 | 30 | 30 | 50 | 50 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Stroke...... . ................... $L$ (ft.) | 1 | 2 | 21/2 | 5 | 4 | 8 |
    | Revolutions per minute.............. $R$ | 250 | 125 | 130 | 65 | 90 | 45 |
    | Horse-power........ . ..... ....I.H.P. | 50 | 50 | 450 | 450 | 1,250 | 1,250 |
    | Maximum pressure................lbs. | 7,854 | 7,854 | 70,686 | 70,686 | 196,350 | 196.350 |
    | Mean pressure per cent of max | 42 | 42 | 32.3 | 32.3 | 30 | 30 |
    | Mean pressure...... .................P. | 3,299 | 3,299 | 22,832 | 22,832 | 58,905 | 58,905 |
    | Length of crank-pin.....0. ${ }_{\text {(1) }}$ Whitham, $l=90 \% 5 \times .05$. |  |  |  |  |  |  |
    | (1) Whitham, $l=.9075 \times .05$ I.H.P. $+L$. | 2.18 | 1.09 | 8.17 | 4.08 | 14.18 | 7.09 |
    | (2) Marks, $l=1.038 \times .05$ I.H.P. $\div L$. | 2.59 | 1.30 | 9.34 | 4.67 | 16.22 | 8.11 |
    | (7) Thurston, $l=.06$ I.H.P. $\div L$ | 3.00 | 1.50 | 10.80 | 5.40 | 18.75 | 9.38 |
    | (8) Unwin, l=. 4 I.H.P. $\div r$ | 3.33 | 1.67 | 12.0 | 6.0 | 20.83 | 10.42 |
    | (8) ..." $\quad i=.3$ I.H.P. | 2.50 | 1.25 | 9.0 | 4.5 | 15.62 | 7.81 |
    | Average. | 2.72 | 1.36 | 9.86 | 4.93 | 17.12 | 8.56 |
    | (8) Unwin, best steel, $l=.1 \frac{\text { I.H.P. }}{r}$ | . 83 | . 42 | 3.0 | 1.5 | 5.21 | 2.61 |
    | (3) Thurston, steel, $l=\frac{P R}{600,000} \ldots \ldots$. | 1.37 | . 69 | 4.95 | 2.47 | 8.84 | 4.42 |

    The calculated lengths for the long-stroke engines are too low to prevent excessive pressures. See "Pressures on the Crank-pins," below.

    The Strength of the Crank-pin is determined substantially as is that of the crank. In overhung cranks the load is usually assumed as carried at its extremity, and, equating its moment with that of the resistance of the pin,

    $$
    3 / 2 P l=1 / 32 t \pi d^{3}, \text { and } d=\sqrt[3]{\frac{5.1 P l}{t}}
    $$

    in which $d=$ diameter of pin in inches, $P=$ maximum load on the piston, $t=$ the maximum allowable stress on a square inch of the metal. For iron it may be taken at 9000 lbs . For steel the diameters found by this formula may be reduced $10 \%$. (Tliurston.)

    Unwin gives the same formula in another form, viz.:

    $$
    d=\sqrt[3]{\frac{5.1}{t}} \sqrt[3]{P l}=\sqrt{\frac{5.1}{t} \sqrt{P \frac{l}{d}}}
    $$

    the last form to be used when the ratio of length to diameter is assumed.
    For wrought iron, $t=6000$ to 9000 lbs . per sq. in.,

    $$
    \sqrt[3]{\frac{5.1}{t}}=.0947 \text { to } .0827 ; \quad \sqrt{\frac{5.1}{\bar{t}}}=.0291 \text { to } .0238
    $$

    For steel, $t=9000$ to $13,000 \mathrm{lbs}$. per sq. In.,

    $$
    \sqrt[3]{\frac{5.1}{t}}=.0827 \text { to } .0723 ; \quad \sqrt{\frac{5.1}{t}}=.0238 \text { to } .0194
    $$

    Whitham gives $d=0.082 \% \sqrt[3]{P l}=2.1058 \sqrt[3]{\frac{\overline{l \times I . H . P .}}{L R}}$ for strength, and $d=0.0405 \sqrt[{\sqrt[a]{P P^{3}}}]{ }$ for rigidity, and recommends that the diameter be calculated by both formulæ, and the largest result taken. The first is the same as Unwin's formula, with $t$ taken at 9000 lbs . per sq. in. The second is based upon an arbitrary assumption of a defiection of 1-300 in, at the centre of pressure (one third of the length from the free end).

    Marks, calculating the diameter for rigidity, gives

    $$
    a=0.066 \sqrt[4]{p l^{3} D^{2}}=0.945 \sqrt[4]{\frac{(\text { H.P. }) l^{3}}{L N}}
    $$

    $p=$ maximum steam-pressure in pounds per square inch, $D=$ diameter of cylinder in inches, $L=$ length of stroke in feet, $N=$ number of single strokes per minute. He says there is no need of an investigation of the strength of a crank-pin, as the condition of rigidity gives a great exzess of strength.

    Marks's formula is based upon the assumption that the whole load may be concentrated at the outer end, and cause a deflection of .01 inch at that point.

    It is serviceable, he says, for steel and for wrought iron alike.
    Using the average lengths of the crank-pins already found, we have the following for our six engines :

    ## Diameter of Crank-pins.

    | Diameter of cylinder. | 10 | 10 | 30 | 30 | 50 | 50 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Stroke, ft....... | 1 | 2 | 21/2 | 5 | 4 | 8 |
    | Length of crank-pin | 2.72 | 1.36 | 9.86 | 4.93 | 17.12 | 8.56 |
    | $\text { Unwin, } d=\sqrt[3]{\frac{5.1 P l}{t}}$ | 2.23 | 1.52 | 7.34 | 5.82 | 12.40 | 9.84 |
    | Marks, $d=.066 \sqrt[4]{p l^{3} D^{2}}$. | 1.39 | . 85 | 6.44 | 3.78 | 12.41 | 7.39 |

    Pressures on the Crank-pins. - If we take the mean pressure upon the crank-pin = mean pressure on piston, neglecting the effect of the vary. ing angle of the connecting-rod, we have the following, using the average lengths already found, and the diameters according to Unwin and Marks:

    | Engine No. | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diameter of cylinder, | 10 | 10 | 30 | 30 | 50 | 50 |
    | Stroke, feet....... | 1 | 2 | 21/6 | 5 | 4 | 8 |
    | Mean pressure on pin, po | 3,299 | 3,299 | 22,63: | 22,832 | 58,905 | 58,905 |
    | Projected area of pin, Un | 6.23 3.78 | ${ }^{2} 236$ | 72.4 63.5 | 28.7 | 21.3 | 84.2 |
    | Pressure per square inch, | 3.i8 | 1.16 1,398 | 63.5 315 | 18.6 796 | 212.5 | 63.3 $\sim$ 0 |
    | "6 "6 "6, M1 | ${ }^{573}$ | 2,815 | 315 360 | 1,208 | 27 277 | 700 930 |

    The results show that the application of the formulæ for length and diam. eter of cranls-pins give quite low pressures per square inch of projected area for the short-stroke high-speed engines of the larger sizes, but too high pressures for all the other engines. It is therefore evident that after calculating the dimensions of a crank-pin according to the formulæ given that the results should be modified, if necessary, to bring the pressure per square inch down to a reasonable figure.
    In order to bring the pressures down to 500 pounds per square inch, we divide the mean pressures by 500 to obtain the projected area, or product of length by diameter. Making $l=1.5 d$ for engines Nos. $1,2,4$ and 6 , the revised table for the six engines is ar follows:

    Crosshead-pin or Wrist-pin. - Whithan says the bearing surface for the wrist-pin is found by the formula for crank-pin design. Seaton says the diameter at the middle must, of course, be sufficient 10 withstand the bending action, and generally from this cause ample surface is provided for good working; but in any case the area, calculated hy multiplying the diameter of the journal by its length, should be such that the pressure does not exceed 1200 lbs . per sq. in., taking the maximum load on the piston as the total pressure on it.
    For small engines with the gudgeon shrunk into the jaws of the connect-
    ing-rod, and working in brasses fitted into a recess in the piston-rod end and secured by a wrought-iron cap and two bolts, Seaton gives:

    ## Diameter of gudgeon $=1.25 \times$ diam, of piston-rod . <br> Length of gudgeon $=1.4 \times$ diam. of piston-rod.

    If the pressure on the section, as calculated by multiplying length by diameter, exceeds 1200 lbs . per sq. in., this length should be increased.
    J. B. Stanwood, in his "Ready Reference" book, gives for length or crosshead-pin 0.25 to 0.3 diam. of piston, and diam. $=0.18$ to 0.2 diam. of piston. Since he gives for diam, of pistom-rod 0.14 to 0.17 diam. of piston, his dimensions for diameter and length of crosshead-pin are about 1.25 and 1.8 diam. of piston-rod respectively. Taking the maximum allowable pressure at 1200 lbs. per sq. in. and making the length of the crosshead-pin $=$ $4 / 3$ of its diameter, we have $d=\sqrt{P}+40, l=\sqrt{P} \div 30$, in which $P=\max -$ imum total load on piston in lbs., $d=$ diam. and $l=$ length of pin in inches. For the engines of our example we haves

    | Diameter of piston, inclies. | 10 | 30 | 50 |
    | :---: | :---: | :---: | :---: |
    | Maximum load on piston, lis | 7854 | 70,686 | 196,350 |
    | Diameter of crosshead-pin, inc | 2.22 | 6.65 | 11.08 |
    | Length of crosshead-pin, inches | 2.96 | 8.86 | 14.16 |
    | Stanwood's rule gives diameter, in | 1.8 to 2 | 5.4 to 6 |  |
    | Stanwood's rule gives length, inches.. | 2.5 to 3 | 7.5 to 9 | 12.5 to 10 |
    | Stanwood's largest dimensions give pressure per sq. in., lbs | 1309 | 1329 | 1309 |

    The Crank-arim. -The crank-arm is to be treated as a lever, so that if $a$ is the thickness in direction paralyel to the shaft-axis and $b$ its breadth at a section $x$ inches from the crank-pin centre, then, bending moment $M$ at that section $=P x, P$ being the thrust of the connecting-rod, and $f$ the safe strain per square inch,

    $$
    P_{x}=\frac{f a b^{2}}{6} \text { and } \frac{a \times b^{2}}{6}=\frac{T}{f} \quad \text { or } a=\frac{6 T}{b^{2} \times f} ; b=\sqrt{\frac{6 T}{f a}} .
    $$

    If a crank-arm were constructed so that $b$ varied as $\sqrt{x}$ (as given by the above rule) it would be of such a curved form as to beinconvenient to manufacture, and consequently it is customary in practice to find the maximum value of $b$ and draw tangent lines to the curve at the points; these lines are generally, for the same reason, tangential to the boss of the crankarm at the shaft.
    The shearing strain is the sarne throughout the crank-arm; and, conse. quently, is large compared with the bending strain close to the crank-pin ; and so it is not sufficient to provide there only for bending strains. The section at this point should be such that, in addition to what is given by the calculation from the bending moment, there is an extra square inch for every 8000 lbs. of thrust on the connecting rod (Seaton).
    The length of the boss $h$ into which the shaft is fitted is from 0.75 to 1.0 of the diameter of the shaft $D$, and its thickness $e$ must be calculated from the twisting strain PL. ( $L=$ length of crank.)
    For different values of length of boss $h$, the following values of thickness of boss $e$ are given by Seaton:

    $$
    \begin{aligned}
    \text { When } h & =D, \text { then } e=0.35 D \text {; if steel, } 0.3 . \\
    h & =0.9 D \text {, then } e=0.38 D \text {, if steel, }, 3.32 \\
    h & =0.8 D \text {, then } e=0.40 D \text {, if steel, } 0.33 . \\
    h & =0.7 D . \text { then } e=0.41 D \text {, if steel, } 0.34 .
    \end{aligned}
    $$

    The crank-eye or boss into which the pin is fitted should bear the same relation to the pin that the boss does to the shaft.

    The diameter of the shaft-end onto which the crank is fitted should be $1.1 \times$ diameter of sliaft.
    Thurston says: The empirical proportions adopted by builders will commonly be found to fall well within the calculated safe margin. These proportions are, from the practice of successful designers, about as follows:
    For the wrought-iron crank. the hub is 1.75 to 1.8 times the least diameter of that part of the shaft carrying full load; the eye is 2.0 to 2.25 the diameter of the inserted portion of the pin, and their depths are, for the lub, 1.0 to 1.2 the diameter of shaft, and for the eye, 1.25 to 1.5 the diameter of pin.

    The web is made 0.7 to 0.75 the width of adjacent hub or eye, and is given a depth of 0.5 to 0.6 that of adjacent hub or eye.
    For the cast-iron crank the hub and eye are a little larger, ranging in diameter respectively from 1.8 to 2 and from 2 to 2.2 times the diameters of shaft and pin. The flanges are made at either end of nearly the full depth of hub or eye. Cast-iron has, however, fallen very generally into disuse.
    The crank-shaft is usually enlarged at the seat of the crank to about 1.1 its diameter at the journal. The size should be nicely adjusted to allow for the slrinkage or forcing on of the craulk. A difference of diameter of one fifth of $1 \%$, will usually suffice; and a common rule of practice gives an allowance of but one half of this, or . 001 .
    The formulæ given by different writers for crank-arms practically agree. since they all consider the crank as a bean loaded at one end and fixed at the other. The relation of breadth to thickness may vary according to the taste of the designer. Calculated dimensions for our six engines are as fol lows :

    Dimensions of Crank-arms.

    | Diam. of cylinder, ins.. | 10 | 10 | 30 | 30 | 50 | 50 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Stroke S, ins.......... | 12 | 24 | 30 | 60 | 48 | 96 |
    | Max. pressure on pin $P$, (approx.) lbs | 7854 | 7854 | 70,686 | r0,686 | 196,350 | 196,350 |
    | Diam. crank-pin $\frac{d . \ldots . .}{2}$ | 2.10 | 2.10 | 7.34 | 5.58 | 12.40 | $8.8 \pi$ |
    | Diam.shaft, $a \sqrt[2]{\frac{\overline{\text { I.H.P. }}}{R}} D$ ( $a=4.69,5.09$ and 5.22 ) | 2.74 | 3.46 | 7.70 | 9.70 | 12.55 | 15.82 |
    | Length of boss, .8D.... | 2.19 | 2.77 | 6.16 | 7.76 | 10.04 | 12.65 |
    | Thickness of boss, . $4 D$. | 1.10 | 1.39 | 3.08 | 3.88 | 5.02 | 6.32 |
    | Diam. of boss, $1.8 \mathrm{D} \ldots . .$. | 4.93 | 6.23 | 13.86 | 17.46 | 22.59 | 28.47 |
    | Length crank-pineye, 88 Thickness of crank-pin eye, $4 d$ | 1.76 88 | 1.76 | 5.87 | 4.46 | 9.92 | 7.10 |
    | Maxe, mom. Tat distance | . 88 | . 88 | 2.94 | 2.23 | 4.46 | 3.55 |
    | $1 / 2 S-1 / 2 D$ from centre of pin, inch-lbs Thickness of crank-arm | 37, 149 | 80,661 | 788,149 | 1,848,439 | 3,479,322 | 7,871,671 |
    | $\begin{gathered} a=.75 \mathrm{D} \ldots \ldots . . \\ \text { Greatest breadth, } \end{gathered}$ | 2.05 | 2.60 | 5.78 | 7.28 | 9.41 | 11.87 |
    | $b=\sqrt{\frac{6 T}{9000 a}}$ | 3.48 | 4.55 | 9.54 | 13.0 | 15.7 | 21.0 |
    | Min.mom. $T_{0}$ at distance $d$ from centre of pin $=P^{\prime} d$ Least breadth, | 16,493 | 16,493 | 528,835 | 394,428 | 2,434,740 | 1,741,625 |
    | $b_{1}=\sqrt{\frac{6 T_{0}}{9000 a}}$ | 2.32 | 2.06 | 7.81 | 6.01 | 13.13 | 9.89 |

    The Shaft.-Twisting Resistance.-From the general formula for torsion, we have: $T=\frac{\pi}{16} d^{3} S=.19635 d^{3} S$, whence $d=\sqrt[3]{\frac{5.1 T}{S}}$, in which $T=$ torsional moment in inch-pounds, $d=$ diameter in inches, and $S=$ the shearing resistance of the material in pounds per square inch,
    If a constant force $P$ were applied to the crank-pin tangentially to its path,
    the work done per minute would be

    $$
    P \times L \times \frac{2 \pi}{12} \times R=33,000 \times \text { I.H.P., }
    $$

    in which $L=$ length of c.ank in inches, and $R=$ revs. per min., and the mean twisting moment $T=\frac{\text { I.H.P. }}{R} \times 63,025$. Therefore

    $$
    d=\sqrt[3]{\frac{5.1 T}{S}}=\sqrt[3]{\frac{321,427 \mathrm{I.H.P}}{R S}}
    $$

    This may take the form

    $$
    d=\sqrt[3]{\frac{\text { I.H.P. }}{R} \times F}, \text { or } d=a \sqrt[3]{\frac{\text { I.H.P. }}{R}}
    $$

    in which $F$ and $a$ are factors that depend on the strength of the material and on the factor of safety. Taking $S$ at 45,000 pounds per square inch for wrought iron, and at 60,000 for steel, we have, for simple $t$ wisting by a uniform tangential force,

    $$
    \begin{array}{rcccccccc}
    \text { Factor of safety } & =5 & 6 & 8 & 10 & 5 & 6 & 8 & 10 \\
    \text { Iron...... } & F=35.8 & 42.8 & 57.1 & 71.4 & a=3.3 & 3.5 & 3.85 & 4.15 \\
    \text { Steel..... } & F=26.8 & 32.1 & 42.8 & 53.5 & a=3.0 & 3.18 & 3.5 & 3.77
    \end{array}
    $$

    Unwin, taking for safe working strength of wrought iron $9000 \mathrm{lbs} .$, steel 13,500 lbs., and cast iron 4500 lbs ., gives $a=3.294$ for wrought iron, $2.87 \%$ for steel, and 4.15 for cast iron. Thurston, for crank-axles of wrought iron, gives $\alpha=4.15$ or more.

    Seaton says: For wrought iron, $f$, the safe strain per square inch, should not exceed 9000 lbs , and when the shafts are more than 10 inches diameter, 8000 lbs . Steel, when made from the ingot and of good materials, will admit of a stress of $12,000 \mathrm{lbs}$. for small shafts, and $10,000 \mathrm{lbs}$. for those above 10 inches diameter.

    The difference in the allowance between large and small shafts is to compensate for the defective material observable in the heart of large shafting, owing to the hammering failing to affect it.
    The formula $d=a \sqrt[3]{\frac{\text { I.H.P. }}{R}}$ assumes the tangential force to be uniform and that it is the only acting force. For engines, in which the tangential force varies with the angle between the crank and the conneoting-rod, and with the variation in steam-pressure in the cylinder, and also is influenced by the inertia of the reciprocating parts, and in which also the shaft may be subjected to bending as well as torsion, the factor $\alpha$ must be increased, to provide for the maximum tangential force and for bending.

    Seaton gives the following table showing the relation between the maximum and mean twisting moments of engines working under various conditions, the momentum of the moving parts being neglected, which is allowable:

    | Description of Engine. | Steam Cut-off at |  | Cube <br> Root of the <br> Ratio |
    | :---: | :---: | :---: | :---: |
    | Single-crank expansive. | 0.2 | 2.6252.125 | 1.38 |
    |  |  |  |  |
    | 6 | 0.6 | 1.835 | 1.22 |
    | Two-cylinder expansive, cranks at........... | 0.8 | 1.6981.616 | 1.20 |
    |  |  |  | 1.171.12 |
    | Iwo-cylinder expansive, cranks at $90 . .$. | 0.3 | 1.616 1.415 |  |
    | * 6 6 | 0.5 | 1.256 | 1.08 |
    | " 6 | 0.6 | 1.270 | $\begin{aligned} & 1.08 \\ & 1.10 \end{aligned}$ |
    | " 6 " | 0.7 | 1.329 |  |
    | " " | 0.8 | 1.357 | 1.111.12 |
    | Three-cylinder compound, cranks $120^{\circ} \ldots$.... <br> 1.p. cranks | h.p.0.5, 1.p. 0.66 | 1.40 |  |
    |  | 66 6 | 1.26 | 1.08 |

    Seaton also gives the following rules for ordinary practice for ordinary two-cylinder marine engines:

    Diameter of the tunnel-shafts $=\sqrt[3]{\frac{\text { I.H.P }}{R} \times F,}$ or $a \sqrt[3]{\frac{\text { I.H.P. }}{R}}$,

    Compound engines, cranks at right angles:
    Boiler pressure $\% \mathrm{lbs}$., rate of expansion C to $7, F=\% 0, a=4.12$.
    Boiler pressure 80 lbs ., rate of expansion 7 to $8, F=72, a=4.16$.
    Boiler pressure 90 lbs ., rate of expansion 8 to $9, F=75, a=4.22$.
    Triple compound, three cranks at 120 degrees:
    Boiler pressure 150 lbs , rate of expansion 10 to $12, F=62, a=3.96$.
    Boiler pressure 160 lbs ., rate of expansion 11 to $13, F=64, a=4$.
    Boiler pressure 170 lbs ,, rate of expansion 12 to $15, F=67, a=4.06$.
    Expansive engines, cranks at right angles, and the rate of expansion 5 , boiler-pressure 60 lbs., $F=90, a=4.48$.
    Single-crank compound engines, pressure $80 \mathrm{lbs}, \quad F=96, a=4.58$.
    For the engines we are considering it will be a very liberal allowance for ratio of maximum to mean twisting moment if we take it as equal to the ratio of the maximum to the mean pressure on the piston. The factor $a$, then, in the formula for diameter of the shaft will be multiplied by the cube root of this ratio, or $\sqrt[3]{\frac{100}{42}}=1.34, \sqrt[3]{\frac{100}{32.3}}=1.45$, and $\sqrt[3]{\frac{100}{30}}=1.49$ for the 10,30 , and 50 -in. engines, respectively. Taking $a=3.5$, which corresponds to a shearing strength of 60,000 and a factor of safety of 8 for steel, or to 45,000 and a factor of 6 for iron, we have for the new coefficient $a_{3}$ in the formula $d_{1}=a_{1} \sqrt[3]{\frac{\text { I.H.P. }}{R}}$, the values $4.69,5.08$, and 5.22 , from which we obtain the diameters of shafts of the six engines as follows:

    | Engine No | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diam. of cyl | 10 | 10 | 30 | 30 | 50 | 50 |
    | Horse-power, I.H.P | 50 | 50 | 450 | 450 | 1250 | 1250 |
    | Revs. per min., R.. | 250 | 125 | 130 | 65 | 90 | 45 |
    | iam. of shaft $d=\alpha_{1} \sqrt[8]{\frac{\text { I.H.P. }}{R}}$ | 2.74 | 3.46 | 7.67 | 9.70 | 12.55 | 15.82 |

    These diameters are calculated for twisting only. When the shaft is also subjected to bending strain the calculation must be modified as below :

    Resistance to Bending. -The strength of a circular-section shaft to resist bending is one half of that to resist twisting. If $B$ is the bending moment in inch-lbs., and $d$ the diameter of the shaft in inches,

    $$
    B=\frac{\pi d^{3}}{32} \times f ; \text { and } d=\sqrt[3]{\frac{B}{f} \times 10.2}
    $$

    $f$ is the safe strain per square inch of the material of which the shaft is composed, and its value may be taken as given above for twisting (Seaton).

    Equivalent Revisting Moment.-When a slaft is subject to both twisting and bending sinultaneously, the combined strain on any section of it may be measured by calculating what is called the equivalent twisting moment; that is, the two strains are so combined as to be treated as a twisting strain only of the same magnitude and the size of shaft calculated accordingly. Rankine gave the following solution of the combined action of the two strains.

    If $T=$ the twisting moment, and $B=$ the bending moment on a section of a shaft, then the equivalent twisting moment $T_{1}=B+\sqrt{B^{2}+T^{2}}$.

    Seaton says: Crank-shafts are subject always to twisting, bending, and shearing strains; the latter are so small compared with the former that they are usually neglected directly, but allowed for indirectly by means of the factor $f$.

    The two principal strains vary throughout the revolution, and the maximum equivalert twisting moment can only be obtained accurately by a series of calculations of bending and twisting moments taken at fixed intervals, and from them constructing a curve of strains.

    Considering the engines of our examples to have overhung cranks, the maximum bending moment resulting from the thrust of the connecting-rod on the crank-pin will take place when the engine is passing its centres (neglecting the effect of the inertia of the reciprocating parts), and it will be the product of the total pressure on the piston by the distance between
    two parallel lines passing through the centres of the crank-pin and of the कhaft bearing, at right angles to their axes; which distance is equal to $3 / 2$ length of crank-pin bearing + length of hub $+1 / 2$ length of shaft-bearing + any clearance that may be allowed between the crank and the two bearings. For our six engines we may take this distance as equal to $1 / 2$ length of crank-pin + thickness of crank-arm $+1.5 \times$ the diameter of the shaft as already found by the calculation for twisting. The calculation of diameter is then as below:

    | Engine No. | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diam, of cyl., in. | 10 | 10 | 30 | 30 | 50 | 50 |
    | Horse-power....... | 50 | 50 | 450 | 450 | 1250 | 125 |
    | Revs per min.. . ${ }^{\text {d }}$ | 250 | 125 | 130 | 65 | 90 | 45 |
    | Max.press. on pis, $P$ | 7,854 | 7854 | 70,686 | 70,686 | 196,350 | 196,350 |
    | Leverage,* Lin.... | 6.32 | 7.94 | 22.20 | 26.00 | 36.80 | 4.2. 25 |
    | Bd .mo. $\mathrm{PL}=B \mathrm{in} .-\mathrm{lb}$ | 49,637 | 62,361 | 1,563,222 | 1,837, 836 | $\uparrow$ T225,680 | 8,295,788 |
    | Twist. nom. I'..... | 47,124 | 94,248 | 1,060,290 | 2,120,580 | 4, 112,400 | 9,424,800 |
    | Equiv.Twist. mom. |  |  |  |  |  |  |
    | $\begin{aligned} & T_{1}=B+\sqrt{B^{2}+T^{2}} \\ & \text { (approx.) } \ldots \ldots \ldots . \end{aligned}$ | 118,000 | 175,000 | 3,463,000 | 4,647.000 | 15,840,000 | 20,850,000 |

    By plotting these results, using the diameters of the cylinders for abscissas and diameters of the shafts for ordinates, we find that for the long-stroke engines the results lie almost in a straight line expressed by the formula, diameter of shaft $=.43 \times$ diameter of cylinder; for the short-stroke engines the line is slightly curved, but does not diverge far from a straight line whose equation is, diameter of shaft $=.4$ diameter of cylinder. Using these two formulas, the diameter's of the shafts will be 4.0, 4.3, 12.0, 12.9, 20.0, 21.5.
    J. B. Stanwood, in Engineering, June 12, 1891, gives dimensions of shafts of Corliss engines in American practice for cylinders 10 to 30 in . diameter. The diameters range from $415 / 16$ to $1415 / 16$, following precisely the equation, diameter of shaft, $=1 / 2$ diameter of cylinder $-1 / 16$ inch.
    Fly-wheel Shafts.-Thus far we have considered the shaft as resisting the force of torsion and the bending moment produced by the pressure on the crank-pin. In the case of fly-wheel engines the shaft on the opposite side of the bearing from the crank pin has to be designed with reference to the bending moment caused by the weight of the fly wheel, the weight of the shaft itself, and the strain of the belt. For engines in which there is an ontboard bearing, the weight of fly-wheel and shaft being supported by two bearings, the point of the shaft at which the bending moment is a maximum may be taken as the point midway between the two bearings or at the middle of the fly-wheel hub, and the amount of the moment is the product of the weight supported by one of the bearings into the distance from the centre of that bearing to the middle point of the shaft. The shaft is thus to be treated as a beam supported at the ends and loaded in the middle. In the case of an overhung fly-wheel, the shaft having only one bearing, the point of maximum nioment should be taken as the middle of the bearing. and its amount is very nearly the product of half the weight of the fly-wheel and the shaft into the distance from the middle of its hub from the middle of the bearing. The bending moment should be calculated and combined with the twisting moment as above shown, to obtain the equivalent twisting moment, and the diameter necessary at the point of maximum moment calculated therefrom.
    In the case of our six engines we assume that the weights of the flywheels, together with the snaft, are double the weight of fly-wheel rim obtained from the formula. ${ }^{\circ} W=785,4 \mathrm{~m}^{n} \frac{d^{2} s}{p^{2} F_{\AA}^{2}}$ (given under Fly-wheels);
    that the shaft is supported by an outboard bearing, the distance between the two bearings being $21 / 2,5$, and 10 feet for the $10 \cdot \mathrm{in}$., $30-\mathrm{in}$, and $50-\mathrm{in}$. engines, respectively. The diameters of the fly-wheels are taken such that their rim velocity.will be a little less than 6000 feet per minute.
    

    As these are very much less than the bending moments calculated from the pressures on the crank-pin, the diameters already found are sufficient for the diameter of the shaft at the fly - wheel hub.

    In the case of engines with heary band fly-wheels and with long fly-wheel shafts it is of the utmost importance to calculate the diameter of the shaft with reference to the bending moment due to the weight of the fly-wheel and the shaft.
    B. H. Coffey (Power, October, 1892) gives the formula for combined bending and twisting resistance, $T_{1}=.196 d^{3} S$, in which $T_{1}=B+\sqrt{B^{2}+T^{2}} ; T$ being the maximum, not the mean twisting moment; and finds empirical working values for $.196 S$ as below. He says: Four points should be considered in determining this value: First, the nature of the material; second, the manner of applying the loads, with shock or otherwise; third, the ratio of the bending moment to the torsional moment-the bending moment in a revolving shaft produces reversed strains in the material, which teud to rupture it; fourth, the size of the section. Inch for inch. large sections are weaker than small ones. He puts tine dividing line between large and small sections at 10 in . diameter, and gives the following safe values of $S \times .196$ for steel, wrought iron, and cast iron, for these conditions.

    Value of $S \times .196$.

    | Ratio. | Heavy Shafts with Shock. |  |  | Light shafts with Shock. Heavy Sliafts No Slıock. |  |  | Light Shafts No Shock. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $B$ to $T$. | Steel. | Wro't Iron. | Cast <br> Iron. | Steel. | Wro't Iron. | Cast Iron. | Steel. | Wro't Iron. | Cast <br> Iron. |
    | 3 to 10 or less. | 1045 | 880 | 440 | 1566 | 1320 | 660 | 2090 | 1760 | 880 |
    | 3 to 5 or less | 941 | 785 | 393 | 1410 | $11 \% 9$ | 589 | 1882 | 15 10 | ז85 |
    | 1 to 1 or less...... | 855 | 715 | 358 | 1281 | $10 \sim 4$ | 537 | 1710 | 1430 | 715 |
    | $B$ greater than T.. | \%84 | 655 | $3 \because 8$ | 1176 | 984 | 492 | 1568 | 1310 | 655 |

    Mr. Coffey gives as an example of improper dimensions the fly-wheel sliaft of a 1500 H.P. engine at Willimantic, Conn., which broke while the engine was running at $425 \mathrm{H} . \mathrm{P}$. The shaft was 17 ft .5 in . long between centres of bearings, 18 in . dian. for 8 ft . in the middle, and 15 in . diam. for the remainder, including the bearings. It broke at the base of the fillet connecting the two large diameters, or $56 \frac{1}{2}$ in. from the centre of the bearing. He calculates the mean torsional moment to be $446,65 \pm$ inch-pounds, and the maximum at twice the mean; and the total weight on one bearing at 87,530 lbs., which, multiplied by $561 / 2 \mathrm{in}$., gives $4,945,445 \mathrm{in} .-1 \mathrm{bs}$. bendiug moment at the fillet. Applying the formula $T_{1}=B+\sqrt{B^{2}+T^{2}}$, gives for equivalent twisting monent $9,9 \pi 1,045 \mathrm{in} .-\mathrm{lbs}$. Substituting this value in the formula $T_{1}=.196, S d^{3}$ gives for $S$ the shearing strain $15,0 \% \mathrm{l}^{\circ} \mathrm{lbs}$. per sq. in., or if the metal had a shearing strength of $45,000 \mathrm{lbs}$., a factor of safety of only 3. Mr. Coffey considers that 6000 lbs . is all that should be allowed for $S$ under these circumstances. This would give $d=20.35 \mathrm{in}$. If we take from Mr. Coffey's table a value of $.196 S=1100$, we obtain $d^{3}=9000$ nearly, or $d=20.8$ in.. instead of 15 in , the actual diameter.

    Length of Shaft-bearings. - There is as great a difference of opinion among writers, and as great a variation in practice concerning length of journal-bearings, as there is concerning crank-pins. The length of a
    journal being determined from considerations of its heating, the onserva. tions concerning heating of crank-pins apply also to shaft-bearings, and the formulæ for sength of crank-pins to avoid heating may also be used, using for the total load upon the bearing the resultant of all the pressures brought upon it, by the pressure on the crank, by the weight of the fly-wheel, and by the pull of the belt. After determining this pressure, however, we must resort to empirical values for the so-called constants of the formulæ, really variables, which depend on the power of the bearing to carry away heat, and upon the quantity of heat generated, which latter depends on the pressure, on the number of square feet of rubbing surface passed over in a minute, and upon the coefficient of friction. This coefficient is an exceedingly variable quantity, ranging from .01 or less with perfectly polished jonnnals, having end-play, and lubricated by a pad or oil-bath, to . 10 or more with ordinary oil-cup lubrication.

    For shafts resisting torsion only, Marks gives for length of bearing $l=$ $.0000247 f \mathrm{f} N D^{2}$, in which $f$ is the coefficient of friction, $p$ the mean pressure in pounds per square inch on the piston, $N$ the number of single strokes per minute, and $D$ the diameter of the piston. For shafts under the combined stress due to pressure on the crank-pin, weight of fly-wheel, etc., he gives the following: Let $Q=$ reaction at bearing due to weight, $S=$ stress due steam pressure on piston, and $R_{1}=$ the resultant force; for horizontal engines, $R_{1}=\sqrt{Q^{2}+S^{2}}$, for vertical engines $R_{1}=Q+S$, when the pressure on the crank is in the same direction as the pressure of the shaft on its bearings, and $R_{1}=Q-S$ when the steam pressure tends to lift the shaft from its bearings. Using empirical values for the work of friction per square inch of projected area, taken from dimensions of crank-pins in marine vessels, he finds the formula for length of shaft-journals $l=.0000325 f R_{1} N$, and recommends that to cover the defects of workmanship, neglect of oiling, and the introduction of dust, $f$ be taken at .16 or even greater. He says that 500 lbs . per sq. in. of projected area may be allowed for steel or wroughtgron shafts in brass bearings with good results if a less pressure is not attainable without inconvenience. Marks says that the use of empirical rules that do not take account of the number of turns per minute has resulted in bearings much too long for slow-speed engines and too short for high-speed engines.

    Whitham gives the same formula, with the coefficient .00003575 .
    Thurston says that the maximum allowable mean intensity of pressure may be, for all cases, computed by his formula for journals, $l=\frac{P V}{60,000 d}$, or by Rankine's, $l=\frac{P(V+20)}{44,800 d}$, in which $P$ is the mean total pressure in pounds, the shaft in inches. It must be borne in mind, he says, that the friction work on the main bearing next the crank is the sum of that due the action of the piston on the pin, and that due that portion of the weight of wheel and shaft and of pull of the belt which is carried there. The outboard bearing carries practically only the latter two parts of the total. The crank-shaft journals will be made longer on one side, and perhaps shorter on the other, than that of the crank-pin, in proportion to the work falling upon each, i.e., to their respective products of mean total pressure, speed of rubbing surfaces, and coefficients of friction.
    Unwin says: Journals running at 150 revolutions per minute are often only one diameter long. Fan shafts running 150 revolutions per minute have journals six or eight diameters long. The ordinary empirical mode of proportioning the length of journals is to make the length proportional to the diameter, and to make the ratio of length to diameter increase with the speed. For wrought-iron journals:

    $$
    \begin{aligned}
    & \text { Revs. per min. }=\begin{array}{rrrrrrrr}
    50 & 100 & 150 & 200 & 250 & 500 & 1000 & \frac{l}{d}=.004 R+1
    \end{array} \\
    & \text { Length } \div \text { diam. }=1.2 \\
    & 1.4 \\
    & 1.6 \\
    & 1.8 \\
    & 2.0 \\
    & 3.0 \\
    & 5.0
    \end{aligned}
    $$

    Cast-iron journals may have $l \div d=9 / 10$, and steel journals $l \div d=11 / 4$, of the above values.
    Unwin gives the following, calculated from the formula $l=\frac{0.4}{r}$.P. in which $r$ is the crank radius in inches, and H.P. the horse-power transmitted to the crank-pin.

    Taeoretical Journal Levgth in Inches.

    | Load on Journal in pounds. | Revolutions of Journal per minute. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 50 | 100 | 200 | 300 | 500 | 1000 |
    | 1,000 | . 2 | . 4 | . 8 | 1.2 | 2. | 4. |
    | 2,000 | . 4 | . 8 | 1.6 | 2.4 | 4. | 8. |
    | 4,000 | . 8 | 1.6 | 3.2 | 4.8 | 8. | 16. |
    | 5,000 | 1.0 | 2. | 4. | 6. | 10. | 20. |
    | 10,003 | 2. | 4. | 8. | 12. | 20. | 40. |
    | 15,000 | 3. | ${ }_{8}^{6}$ | 12. | 18. | 30. | .... |
    | 20,000 30,000 | 4. | 8. | 16. | 24. | 40. | - |
    | 30,000 40,000 | 8. | 12. | $\stackrel{24}{32}$ | 36. | .... | .. . |
    | 50,000 | 10. | $\stackrel{16 .}{ }$ | 32. | .... |  | .... |

    Applying these different formlure to our six engines, we have:

    | Engine No | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diam. cyl. | 10 | 10 | 30 | 30 | 50 |  |
    | Horse -power | 50 | 50 | 450 | 450 | 1,250 | 1,250 |
    | Revs. per min | 250 | 125 | 130 | 65 |  |  |
    | Mean pressure on crank-pin $=S$ | 3,299 | 3,299 | 23,185 | 23,185 | 58,905 | 58,905 |
    | Half wt. of fly-wheel and shaft $=Q .$. Resultant press. on bearing | 268 | 536 | 5,968 | 11,936 | 26,4\%0 | 52,940 |
    | $\sqrt{Q^{2}+S^{2}}=R_{1}$. | 3,310 | 3.335 | 23,924 | 26,194 | 64,580 | \%9,200 |
    | Diam. of shaft journal... | 3.84 | 4.39 | 11.35 | 12.99 | 20.58 | 21.52 |
    | Length of shaft journal: <br> Marks, $\quad l=.00003: 5 f$ | 5.38 | 2. 51 | 11.35 | 11.0 | 37.58 | 21.52 |
    | Whitham, $l=.0000515 \rho R_{3} R(f=10)$. | 5.38 4.27 | 2.71 2.15 | 20.87 | 11.07 | 37.78 29.95 | 23.17 |
    | Thurston, $l=\frac{P V}{60,000 d}$ | 3.61 | 1.82 | 16.53 14.00 | 8.76 7.43 | 29.95 25.36 | 18.35 15.55 |
    | $\text { Rankine, } l=P(V+20)$ |  |  |  |  |  |  |
    | Rankine, $l=\frac{P(4,800 d}{44} \ldots \ldots \ldots$. | 5.22 | 2.78 | 21.70 | 10.85 | 35.16 | 22.47 |
    | Unwin, $\quad l=(.004 R+1) d \ldots \ldots .$. | \%.68 | 6.59 | 17.25 | 16.36 | 27.99 | 25.39 |
    | Unwin, $\quad l=\frac{0.4 \mathrm{H} . \mathrm{P} .}{r} \ldots \ldots \ldots \ldots$ | 3.33 | 1.60 | 12.00 | 6.00 | 20.83 | 10.42 |
    | Average....... | 4.92 | 2.99 | 17.05 | 10.00 | 29.54 | 19.22 |

    If we divide the mean resultant pressure on the bearing by the projected area, that is, by the product of the diameter and length of the journal, using the greatest and smallest length out of the seven lengths for each jomnal given above, we obtain the pressure per square inch upon the bearing, as follows:

    | Engine No | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Pressure per sq. in., shortest journal. | 259 | 455 | 176 | 336 | 151 | 353 |
    | Longest journal. | 112 | 115 | 97 | 123 | 83 | 145 |
    | Average journal. | 175 | 254 | 124 | 202 | 106 | 191 |
    | Journal of length = diam |  | 173 |  | 155 |  | 1'5 |

    Many of the formulæ give for the long-stroke engines a length of journal less than the diameter, but such short journals are rarely used in plactice. The last line in the above table has been calculated on tlie supposition that
    the journals of the long-strom engines are made of a length equal to the diameter.
    In the dimensions of Corliss engines given by J. B. Stanwood (Eng., June 12. 1891), the lengths of the journals for engines of diam. of cyl. 10 to 20 in . are the same as the diam. of the cylinder, and a little more than twice the diam. of the journal. For engines above 20 in . diam. of cyl. the ratio of length to diam. is decreased so that an engine of 30 in . diam. has a journal 26 in. long, its diameter being $14 \frac{1}{1} \frac{5}{6}$ in. These lengths of journal are greater than those given by any of the formulæ above quoted.
    There thus appears to be a hopeless confusion in the various formulæ for ength of shaft journals, but this is no more than is to be expected from the variation in the coefficient of friction, and in the heat-conducting power of journals in actual use, the coefficient varying from . 10 (or even. 16 as given by Marks) down to .01 , according to the condition of the bearing surfaces and the efficiency of lubrication. Thurston's formula, $l=\frac{P V}{60,000 d}$, reduces to the form $l=.000004363 P R$, in which $P=$ mean total load on journal, and $R=$ revolutions per minute. This is of the same form as Marks' and Whitham's formulæ, in which, if $f$ the coefficient of friction be taken at .10 , the coefficients of $P R$ are, respectively, .0000065 and .00000515 . Taking the mean of these three formulæ, we have $l=.0000053 P R$, if $f=.10$ or $l=$ $.000053 f P R$ for any other value of $f$. The author belteves this to be as safe a formula as any for length of journals, with the limitation that if it brings a result of length of journal less than the diameter, then the length should be made equal to the diameter. Whenever with $f=.10$ it gives a length which is inconvenient or impossible of construction on account of limited space, then provision should be made to reduce the valne of the coefficient of friction below . 10 by means of forced lubrication, end play, etc., and to carry away the heat, as by water-cooled journal-boxes. The value of $P$ should be taken as the resultant of the mean pressure on the crank, and the load brought on the bearing by the weight of the shaft, fly-wheel, etc., as calculated by the formula already given, viz., $R_{1}=\sqrt{Q^{2}}+S^{2}$ for horizontal engines, and $R_{1}=Q+S$ for vertical engines.
    For our six engines the formula $l=.0000053 P R$ gives, with the limitation for the long-stroke engines that the length shall not be less than the diameter, the following:

    | Engine No. | 1 | 2 | 3 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Length of joun | 4.39 | 4.39 | 16.48 | 12.99 | 30.80 | 21.52 |
    | Pressure per square inch on journal. | 196 | 173 | 128 | 155 | 102 | 171 |

    Crank-ghafts with Centre-crank and Double=crank
    Arms:- In centre-crank engines, one of the crank-arms, and its adjoining journal, called the after journal, usually transmit the power of the engine to the work to be done, and the journal resists both twisting and bending moments, while the other journal is subjected to bending moment only. For the after crank-journal the diameter should be calculated the same as for au overhung crank, using the formula for combined bending and twisting moment, $T_{1}=B+\sqrt{B^{2}+T^{2}}$, in which $T_{1}$ is the equivalent twisting moment, $B$ the bending moment, and $T$ the twisting moment. This value of $T_{1}$ is to be used in the formula diameter $=\sqrt[3]{\frac{5.1 T}{S}}$. The bending mo. ment is taken as the maximum load on piston multiplied by one fourth of the length of the crank-shaft between middle points of the two journal bearings, if the centre crank is midway between the bearings, or by one lialf the distance measured parallel to the shaft from the middle of the crank-pin to the middle of the after bearing. This supposes the crankshaft to be a beam loaded at its middle and supported at the endis, but Whitham would make the bending moment only one half of this, considering the shaft to be a beam secured or fixed at the ends, with a point of contraflexure one fourth of the length from the end. The first supposition is the safer, but since the bending moment will in any case be much less than the twisting moment, the resulting diameter will be but little greater than if Whitham's supposition is used. For the forward journal, which is subjected to bending moment only, diameter of shaft $=\sqrt[3]{\frac{10.2 B}{S}}$, in which $B$
    is the maximum bending moment and $S$ the safe shearing strength of the metal per square inch.
    For our six engines, assuming them to be centre-crank engines, and considering the crank-shaft to be a beam supported at the ends and loaded in the middle, and assuming lengths between centres of shaft bearings as given below, we have:

    | Engine No. | 1 | 2 | 8 | 4 | 5 | 6 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Length of shaft, assumed, inches, $\qquad$ | 20 | 24 | 48 | 60 |  |  |
    | Max. press. on crank-pin, $P$ | 7,854 | 7,854 | 70,686 | -0,686 | 196,350 | $196,350$ |
    | Max. bending moment, $B=1 / 4 P L$, inch-lbs |  |  | 848,232 |  |  |  |
    | Twisting moment, T...... | 47,124 | 94,248 | 1,060,290 | 2,120,580 | 4,712,400 | 9,424, 800 |
    | Equiv. twisting moment, $B+\sqrt{B^{2}+T^{2}}$ | 101,000 | 156,000 | 2,208,000 | 3,430,000 | 9,740,000 | 15,240,000 |
    | $d=\sqrt[3]{\frac{5.1 T_{1}}{8000}} \ldots \ldots \ldots \ldots$ | 3.98 | 4.60 | 11.15 | 13.00 | 18.25 | 21.20 |
    | Diam. of forward journal, |  |  |  |  |  |  |
    | $d_{1}=\sqrt[3]{\frac{10.2 B}{8000}} \ldots \ldots \ldots$ | 3.68 | 3.99 | 10.28 | 11.16 | 16.82 | 18.18 |

    The lengths of the journals would be calculated in the same manner as in the case of overhung cranks, by the formula $l=.000053 f P R$, in which $P$ is the resultant of the mean pressure due to pressure of steam on the piston, and the load of the fly-wheel, shaft, etc., on each of the two bearings. Unless the pressures are equally divided between the two bearings, the calculated lengths of the two will be different; but it is usually customary to make them both of the same length, and in no case to make the length less than the diameter. The diameters also are usually made alike for the two journals, using the largest diameter found by calculation.
    The crank-pin for a centre crank should be of the same length as for an overhung crank, since the length is determined from considerations of heating, and not of strength. The diameter also will usually be the same, since it is made great enough to make the pressure per square inch on the projected area (product of length by diameter) small enough to allow of free lubrication, and the diameter so calculated will be greater than is required for strength.

    Crank-shaft with Two Cranks coupled at $90^{\circ}$. - If the whole power of the engine is transmitted through the after journal of the after crank-shaft, the greatest twisting moment is equal to 1.414 times the maximum twisting moment due to the pressure on one of the crank-pins. If $T=$ the maximum twisting moment produced by the steam-pressure on one of the pistons, then $T_{1}$ the maximun twisting moment on the after part of the crank-shaft, and on the line-shaft, produced when each crank makes an angle of $45^{\circ}$ with the centre line of the engine, is $1.414 T$. Substituting this value in the formula for diameter to resist. simple torsion, viz., $d=$ $\sqrt[3]{\frac{5.1 T}{S}}$, we have $d=\sqrt[3]{\frac{5.1 \times 1.414 T}{S}}$, or $d=1.932 \sqrt[3]{\frac{T}{S}}$, in which $T$ is the maximmm twisting moment produced by one of the pistons, $d=$ diam. eter in inches, and $S=$ safe working shearing strengtl of the material. For the forward journal of the after crank, and the after journal of the forward crank, the torsional moment is that due to the pressure of steam on the forward piston only, and for the forward journal of the forward crank, if none of the power of the engine is transmitted through it, the torsional moment is zero, and its diameter is to be calculated for bending moment only.

    For Combined Torsion and Flexure. - Let $B_{1}=$ bending moment on either journal of the forward crank due to maximum pressure on
    forward piston, $B_{2}=$ bending moment on either journal of the after crank due to maximum pressure on after piston, $T_{1}=$ maximum twisting moment on after journal of forward crank, and $T_{2}=$ maximum twisting moment on after journal of after crank due to pressure on the after piston.

    Then equivalent twisting moment on after journal of forward crank $=B_{3}$ $+\sqrt{B_{1}{ }^{2}+T_{1}{ }^{2}}$

    On forward journal of after crank $=B_{2}+\sqrt{B_{2}^{2}+T_{1}^{2}}$.
    On after journal of after crank $=B_{2}+\sqrt{B_{2}^{2}+\left(T_{1}+T_{2}\right)^{2}}$.
    These values of equivalent twisting moment are to be used in the formula for diameter of journals $d=\sqrt[3]{\frac{5.1 T}{S}}$. For the forward journal of the forward crank-shaft $d=\sqrt[3]{\frac{10.2 B_{2}}{S}}$.

    It is customary to make the two journals of the forward crank of one diameter, viz., that calculated for the after journal.

    For a Three-cylinder Engine with cranks at $120^{\circ}$, the greatest twisting moment on the after part of the shaft, if the maximum pressures on the three pistons are equal, is equal to twice the maximum pressure on any one piston, and it takes place when two of the cranks make angles of $30^{\circ}$ with the centre line, the third crank being at right angles to it. (For demonstration, see Whitham's "Steam-engine Design," p. 252.) For combined torsion and flexure the same method as above given for two crank engines is adopted for the first two cranks; and for the third, or after crank, if all the power of the three cylinders is transmitted through it, we have the equivalent twisting moment on the forward journal $=B_{3}+\sqrt{B_{3}{ }^{2}+\left(T_{1}+T_{2}\right)^{2}}$, and on the after journal $=B_{3}+1 \overline{B_{3}^{2}+\left(T_{1}+T_{2}+T_{3}\right)^{2}}, B_{3}$ and $T_{3}$ being respectively the bending and twisting moments due to the pressure on the third piston.

    Crank - shafts for Tripleexpansion Marine Engines, according to an article in The Engineer, April 25, 1890, should be made larger than the formulæ would call for, in order to provide for the stresses due to the racing of the propeller in a sea-way, which can scarcely be calculated. A kind of unwritten law has sprung up for fixing the size of a crank-shaft, according to which the diameter of the shaft is made about $0.45 D$, where $D$ is the diameter of the high-pressure cylinder. This is for solid shafts. When the speeds are high, as in war-ships, and the stroke short, the formula becomes $04 D$, even for hollow shafts.

    The Valve-stem or Valve-rod. - The valve-rod should be designed to move the valve under the most unfavorable conditions, which are when the stem acts by thrusting, as a long column, when the valve is unbalanced (a balanced valve may become unbalanced by the joint leaking) and when it is imperfectly lubricated. The load on the valve is the product of the aroa into the greatest unbalanced pressure upon it per square inch, and the coefficient of friction may be as high as $20 \%$. The product of this coefficient and the load is the force necessary to move the valve, which equals the maximum thrust on the valve-rod. From this force the diameter of the valve-rod may be calculated by Hodgkinson's formula for columns. An empirical formula given by Seaton is: Diam. of $\operatorname{rod}=d=\sqrt{\frac{l b p}{F}}$, in which $l=$ length and $b=$ breadth of valve, in inches; $p=$ maximum absolute pressure on the valve in lbs. per sq in., and $F$ a coefficient whose values are, for iron: long rod 10,000, short 12,000; for steel: long rod 12,000, short 14,500,

    Whitham gives the short empirical rule: Diam. of valve-rod $=1 / 30$ diam. of cyl. $=1 / 3$ diam. of piston-rod.

    Size of Slot-link. (Seaton.)-Let $D$ be the diam. of the valve rod

    $$
    D=\sqrt{\frac{l b p}{12,000}}
    $$

    then Diameter of block-pin when overhung
    

    | Breadth of link |  |
    | ---: | :--- |
    | Length of block | $=0.8$ to $0.9 \times \mathrm{D}$. |
    |  | $=1.8$ to $1.6 \times \mathrm{D}$. |

    If a single suspension rod of round section, its diameter $=0.7 \times D$.
    If two suspension rods of round section, their diameter $=0.55 \times D$.
    Size of Double-bar Links. - When the distance between centres of eccentric pins $=6$ to 8 times throw of eccentries (throw $=$ eccentricity $=$ half-travel of valve at full gear) $D$ as before :

    $$
    \begin{array}{ll}
    \text { Depth of bars } & =1.25 \times D+3 / 4 \mathrm{in} . \\
    \text { Thickness of bars } & =0.5 \times D+1 / \mathrm{in} . \\
    \text { Length of sliding-block } & =2.5 \text { to } 3 \times D . \\
    \text { Diameter of eccentric-rod pins } & =0.8 \times D+1 / 4 \mathrm{in.} \\
    \text { centre of sliding-block } & =1.3 \times D .
    \end{array}
    $$

    When the distance between eccentric-rod pins $=5$ to $51 / 2$ times throw of eccentrics:

    $$
    \begin{array}{ll}
    \text { Depth of bars } & =1.25 \times D+1.2 \mathrm{in} . \\
    \text { Thickness of bars } & =0.5 \times D+1 / 4 \mathrm{in} . \\
    \text { Length of sliding-block } & =2.5 \text { to } 3 \times D . \\
    \text { Diameter of eccentric-rod pins } & =0.75 \times D .
    \end{array}
    $$

    Diameter of eccentric bolts (top end) at bottom of thread $=0.42 \times D$ when )f iron, and $0.38 \times D$ when of steel.
    The Eccentric.-Diam. of eccentric-sheave $=2.4 \times$ throw of eccentric $+1.2 \times$ diam. of shaft. $D$ as before
    Breadth of the sheave at the shaft.................... $=1.15 \times D+0.65$ inch Breadth of the sheave at the strap..................... $=D+0.6$ inch.
    Thickness of metal around the shaft .................. $=0.7 \times D+0.5$ inch.
    Thickness of metal at circumference .................. $=0.6 \times D+0.4$ inch.
    Breadth of key.................................................. $=0 . \tilde{r} \times D+0.5$ inch.
    Thickness of key..................................... $=0.25 \times D+0.5$ inch.
    Diameter of bolts connecting parts of strap........ $=0.6 \times D+0.1$ inch.

    ## Thickness of Eccentric-strap.

    When of bronze or malleable cast iron:
    Thickness of eccentric-strap at the middle......... $=0.4 \times D+0.6$ inch.
    When of wrought iron or cast steel:
    Thickness of eccentric-strap at the middle.......... $=0.4 \times D+0.5$ inch.

    $$
    \text { sides.......... }=0.27 \times \hat{x} D+0.4 \text { inch }
    $$

    The Eccentric-rod.- The diameter of the eccentric-rod in the body and at the eccentric end may be calculated in the same way as that of the connecting-rod, the length being taken from centre of strap to centre of pin. Diameter at the link end $=0.8 \mathrm{D}+0.2$ inch.
    This is for wrought-iron; no reduction in size should be made for steel.
    Ecentric-rods are often made of rectangular section.
    Reversing-gear should be so designed as to have more than sufficient strength to withstand the strain of both the valves and their gear at the same time under the most unfavorable circumstances; it will then have the stiffness requisite for good working.
    Assuming the work done in reversing the link-motion, $W$, to be only that due to overcoming the friction of the valves themselves through their whole travel, therr, if $T$ be the travel of valves in inches; for a compound engine

    $$
    W=\frac{T}{12}\left(\frac{l \times b \times p}{5}\right)+\frac{T}{12}\left(\frac{l^{1} \times b^{1} \times p^{2}}{5}\right) ;
    $$

    $l^{1}, b^{1}$ and $p^{1}$ being length, breadth and maximum steam-pressurs on valvo of the second cylinder; and for an expansive engine

    $$
    W=2 \times \frac{T}{12}\left(\frac{l \times b \times p}{5}\right) ; \text { or } \quad \frac{T}{30}(l \times b \times p)
    $$

    To provide for the friction of link-motion, eccentrics and other gear, and for abnormal conditions of the same, take the work at one and a half times the above amount.

    To find the strain at any part of the gear having motion when reversing, divide the work so found by the space moved through by that part in feet; the quotient is the strain in pounds; and the size may be found from the ordinary rules of construction for any of the parts of the gear. (Seaton.)

    Engine-frames or Bed-plates.-No definite rules for the design of engine-frames liave been given by authors of works on the steam-engine. The proportions are left to the designer who nses "rule of thumb," or copies from existing engines. F. A. Halsey (Am. Mach., Feb. 14, 1895) has made a comparison of proportions of the frames of horizontal Corliss engines of several builders. The method of comparison is to compute from the measurements the number of square inches in the sinallest cross-section of the frame, that is, immediately behind the pillow-block, also to compute the total maximum pressure upon the piston, and to divide the latter quantity by the former. The result gives the number of pounds pressure upon the piston allowed for each square inch of metal in the frame. He finds that the number of pounds per square inch of smallest section of frame ranges from 217 for a $10 \times 30-\mathrm{in}$. engine up to 575 for a $28 \times 48$-inch. A $30 \times 60$-inch engine shows 350 lbs ., and a 32 -inch engine which has been rumning for many years shows 66 ribs. Generally the strains increase with the size of the engine, and more cross-section of metal is allowed with relatively long strokes than with short ones.

    From the above Mr. Halsey formulates the general rule that in engines of moderate speed, and having strokes up to one and one-half times the diameter of the cylinder, the load per square inch of smallest section should be for a 10 -inch engine 300 pounds, which figure should be increased for larger bores up to 500 pounds for a 30 -inch cylinder of same relative stroke. For high speeds or for longer strokes the load per square inch should be reduced.

    ## FLYMWMEELS.

    The function of a fly-wheel is to store up and to restore the periodical fluctuations of energy given to or taken from an engine or machine, and thus to keep approximately coustant the velocity of rotation. Rankine calls the quantity $\frac{\Delta E}{2 E_{0}}$ the coefficient of fluctuation of speed or of unsteadiness, in which $E_{0}$ is the mean actual energy, and $\Delta E$ the excess of energy received or of work performed, above the mean, during a given interval. The ratio of the periodical excess or deficiency of energy $\Delta E$ to the whole energy exerted in one period or revolution General Morin found to be from $1 / 6$ to $1 / 4$ for single-cylinder engines using expansion; the shorter the cut-off the higher the value. For a pair of engines with cranks coupled at $90^{\circ}$ the value of the ratio is about $1 / 4$, and for three engines with cranks at $120^{\circ}, 1 / 12$ of its value for single-cylinder engines. For tools working at intervals, such as punching, slotting and plate-cutting machipes, coining-presses, etc., $\Delta E$ is nearly equal to the whole work performed at each operation.

    A fly-wheel reduces the coefficient $\frac{\Delta E}{2 E_{0}}$ to a certain fixed amount, being about $1 / 32$ for ordinary machinery, and $1 / 50$ or $1 / 60$ for machinery for fine purposes.

    If $m$ be the reciprocal of the intended value of the coefficient of fluctuation of speed, $\Delta E$ the fluctuation or energy, $I$ the moment of inertia of the fly-wheel alone, and $\alpha_{0}$ its mean angular velocity, $I=\frac{m g \Delta E .}{a_{0}{ }^{2}}$. As the rim of a fly-wheel is usually heavy in comparison with the arms, I may be taken to equal $W r^{2}$, in which $W=$ weight of rim in pounds, and $r$ the radius of the wheel; then $W=\frac{m g \Delta E}{\alpha_{0}^{2} r^{2}}=\frac{m g \Delta E}{v^{2}}$, if $v$ be the velocity of the rim in feet per second. The usual mean radius of the fly-wheel in steam-engines is from three to five times the length of the crank. The ordinary values of the prod uct $m g$, the unit of time being the second, lie between 1000 and 2000 feet. (Abridged from Rankine, S E., p. 62.)

    Thurston gives for engines with automatic valve-gear $W=250,001$ $\frac{A S p}{R^{2} D^{2}}$, in which $A=$ area of piston in square inches, $S=$ stroke in feet, $p=$ mean steam-pressure in lbs. per sq. in., $R=$ revolutions per minute, $D=$ out. side diameter of wheel in feet. Thurston also gives for ordinary forms of
    non condensing engine with a ratio of expansion between 3 and $5, W=$ $\frac{a A S}{R^{2} D^{2}}$, in which $\alpha$ ranges from $10,000,000$ to $15,000,000$, averaging $12,000,000$. For gas-engines, in which the charge is fired with every revolution, the American Muchinist gives this latter formula, with a doubled, or $24,000,000$. Presumably, if the charge is fired every other revolution, a should be again doubled.

    Rankine ("Useful Rules and Tables," p. 24") gives $W=475,000 \frac{A S p}{V D^{2} R^{2}}$, in which $V$ is the variation of speed per cent. of the mean speed. Thurston's first rule above given corresponds with this if we take $V$ at 1.9 per cent.

    Hartnell (Proc. Inst., M. E. 1882, 427) says: The value of $V$, or the variation permissible in portable engines, should not exceed 3 per cent. with an ordinary load, and 4 per cent when heavily loaded. In fixed engines, for ordinary purposes, $V=21 / 2$ to 3 per cent. For good governing or special purposes, such as cotton-spinning, the variation should not exceed $11 / 2$ to 2 per cent.
    F. M. Rites (Trans. A. S. M. E., xiv. 100) develops a new formula for weight of rim, viz. $W=\frac{C \times \text { I.H.P. }}{R^{3} D^{2}}$, and weight of rim per horse-power $=\frac{C}{R^{3} D^{2}}$, in which $C$ varies from $10,000,000,000$ to $20,000,000,000$; also using the latter value of $C$, he obtains for the energy of the fly-wheel $\frac{M v^{2}}{2}=\frac{W}{64.4} \frac{3.14^{2} D^{2} R^{2}}{3600}=$
    

    The limit of variation of speed with such a weight of wheel from excess of power per fraction of revolution is less than $.002 \%$.

    The value of the constant $C$ given by Mr. Rites was derived from practice of the Westinghouse single-acting engines used for electric-lighting. For double-acting engines in ordinary service a value of $C=5,000,000,000$ would probably be ample.

    From these formulæ it appears that the weight of the fly-wheel for a given horse-power should vary inversely with the cube of the revolutions and the square of the diameter.
    J. B. Stanwood (Eng'g, June 12, 1891) says: Whenever 480 feet is the lowest piston-speed probable for an engine of a certain size, the fly-wheel weight for that speed approximates closely to the formula

    $$
    W=700,000 \frac{d^{2} s}{D^{2} R^{2}}
    $$

    $W=$ weight in pounds, $d=$ diameter of cylinder in inches, $s=$ stroke in inches, $D=$ diameter of wheel in feet, $R=$ revolutions per minute, corre sponding to 480 feet piston-speed.

    In a Ready Reference Book published by Mr. Stanwood, Cincinnati, 1892, he gives the same formula, with coefficients as follows: For slide-valve engines, ordinary duty, 350,000 ; same, electric-lighting, 700,000 ; for automatic high-speed evgines, $1,000,000$; for Corliss engines, ordinary duty 700,000, electric-lighting 1,000,000.
    Thurston's formula above given, $W=\frac{a A S}{R^{2} D^{2}}$, with $a=12,000,000$, when reduced to terms of $d$ and $s$ in inches, becomes $W=r 85,400 \frac{d^{2} s}{R^{2} D^{2}}$.
    If we reduce it to terms of horse-power, we have I.H.P. $=\frac{2 A S P R}{33,000}$, in which $P=$ mean effective pressure. Taking this at 40 lbs ., we obtain $W=5,000,000,000 \frac{\mathrm{I} \cdot \mathrm{H} . \mathrm{P} .}{R^{3} D^{2}}$. If mean effective pressure $=30 \mathrm{lbs}$., then $W=$ $6,666,000,000 \frac{\text { I.H.P. }}{R^{3} D^{2}}$.

    Emil Theiss (Am. Mach., Sept. $\boldsymbol{f}$ and 14, 1893) gives the following values or $d$, the coefficient of steadiness, which is the reciprocal of what Rankine calls the coefficient of fluctuation:

    For engines operating-

    > Hammering and crushing machinery.
    > Pumping and shearing machinery
    > $d=20$ to 20
    > Weaving and paper-making machinery.
    > $d=40$
    > Milling machinery.
    > $d=50$
    > Spinning machinery.................................................. $=50$ to 100
    > Ordinary driving-engines (mounted on bed-plate), belt transmission.
    > $d=35$
    > Gear-wheel transmission
    > $d=50$

    Mr. Theiss's formula for weight of fly-wheel in pounds is $W=i \times \frac{d \times I . H . P}{V^{2} \times n}$; where $d$ is the coefficient of steadiness, $V$ the mean velocity of the Hywheel rim in feet per second, $n$ the number of revolutions per minute, $i=$ a coefficient obtained by graphical solution, the values of which for different conditions are given in the following table. In the lines under "cutoff," $p$ means "compression to initial pressure," and $O$ " no compression ":

    Values of i. Single-cylinder Non-condensing Engines.

    |  |  | Cut-off, 1/6. |  | Cut-off, $1 / 4$. |  | Cut-off, $1 / 3$. |  |  |  | Cut-off, 3 . |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Comp. $p$ | 0 | Comp. <br> n | 0 |  | $\mathrm{mp}_{0} 1$ |  |  | $\underset{p}{\text { Comp. }}$ | 0 |
    | 200 400 600 800 |  | $\begin{aligned} & 272,690 \\ & 240,810 \\ & 194,670 \\ & 158,200 \end{aligned}$ | 218,580 187,430 145,400 108,690 | 242.010 208,200 168,590 162,070 |  <br> 209,17 <br> 179,46 <br> 136,46 <br> 135,26 |  |  |  | 1,920 | 193,340 <br> 174,630 | 182,840 167,860 |
    | Single-cylinder Condensing Engines. |  |  |  |  |  |  |  |  |  |  |  |
    |  | Cut-off, 1/8. |  | Cut-off, 1/6. |  | Cut-off, 1/4. |  | Cut-off, 1/3. |  |  | Cut-off, 1/2. |  |
    |  | $\underset{p}{\mathrm{Comp}}$ | p. 0 | $\begin{gathered} \text { Comp. } \\ p \end{gathered}$ | 0 | Comp. | 0 | $\underset{p}{\text { Comp. }}$ |  | 0 | Comp. | I 0 |
    | $\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$ | $\begin{aligned} & 265,560 \\ & 194,550 \\ & 148,780 \end{aligned}$ | $\begin{array}{l\|l\|} 60 \\ 50 & 117,560 \\ 50 & 11,870 \\ 80 & 140,090 \end{array}$ | $\underline{284,160}$ | $\overline{173,660}$ | 164,210 | 167,140 | 189,6 |  | 161,830 | 0 172,690 | 156,990 |

    Two-cylinder Engines, Cranks at $90^{\circ}$.

    |  | Cut-off, 1/6. |  | Cut-off, 3 \% |  | Cut-off, $1 / 3$. |  | Cut-off, 36. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Comp. <br> $p$ | 0 | Comp. <br> $p$ | 0 | Comp. <br> $p$ | 0 | Comp. $p$ | 0 |
    | 200 400 | 71,980 70,160 |  |  |  |  |  |  |  |
    | 400 600 | 71,160 70,040 | Mean | 57,000 57,480 | Mear | 49,272 | Mean | 37, $9 \cdot 0$ | Mean |
    | 800 | 70,040 | -60,140 | 60,480 | 54,340 | 49,220 | \} 50,000 | 35,500 | $\int 36,950$ |

    Three-cylinder Engines, Cranks at $120^{\circ}$.

    |  | Cut-off, 1/6. |  | Cut-off, $1 / 4$. |  | Cut-off, $1 / 3$. |  | Cut-off, 1/2. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\underset{p}{\text { Comp. }}$ | 0 | Comp. <br> $p$ | 0 | Comp. <br> $p$ | 0 | $\underset{p}{\text { Comp. }}$ | 0 |
    | 200 | $\begin{aligned} & 33,810 \\ & 30,190 \end{aligned}$ | 32,240 31,570 | 33,810 35,140 | 35,500 33,810 | 34,540 36,470 | 33,450 | 35,260 | 32,370 32,370 |

    As a mean value of $i$ for these engines we may use 33,810 .

    Centrifugal Force in Fly-wheels.-Let $W=$ weight of rim in pounds; $R=$ mean radus of rim in feel; $r=$ revolutions per minute, $g=$ 32.16; $v=$ velocity of rim in feet per second $=2 \pi R r \div 60$.

    Centrifugal force of whole rim $=\bar{F}=\frac{W i^{2}}{g R}=\frac{4 W \pi^{2} R r^{2}}{3600 g}=.000341 W R r^{2}$.
    The resultant, acting at right angles to a diameter of half of this force, tends to disrupt one half of the wheel from the other half, and is resisted by the section of the rim at each end of the diameter. The resultant of half the radial forces taken at right angles to the diameter is $1 \div 1 / 2 \pi=\frac{2}{\pi}$ of the sum of these forces; hence the total force $F$ is to be divided by $2 \times 2 \times 1.5 \% 08$ $=0.2832$ to obtain the tensile strain on the cross-section of the rim, or, total strain on the cross-section $=S=.0000542 \% W R r^{2}$. The weight $W_{1}$ of a rim of cast iron 1 inch square in section is $2 \pi R \times 3.125=19.635 R$ pounds, whence strain per square inch of sectional area of rim $=s_{1}=.0010656 R^{2} \gamma^{2}$ $=.0002664 D^{2} r^{2}=.00002 \% V^{2}$, in which $D=$ diameter of wheel in feet, and $V$ is velocity of rim in feet per minute. $S_{1}=.09 \% 2 v^{2}$, if $v$ is taken in feet per second.
    
    The specific gravity of the wood being taken at $0.6=37.5 \mathrm{lbs}$. per cu. ft ., or $1 / 12$ the weight of cast iron.
    Example.-Required the strain per square inch in the rim of a cast-iron wheel 30 ft . diameter, 60 revolutions per minute.

    $$
    \text { Answer. } 15^{2} \times 60^{2} \times .0010656=863.1 \mathrm{lbs}
    $$

    Required the strain per square incli in a cast-iron wheel-rim running a mile a minute. Answer. $000027 \times 5280^{2}=752.7 \mathrm{lbs}$.
    In cast-iron fly-wheel rims, on account of their thickness, there is difficulty in securing soundness, and a tensile strength of $10,000 \mathrm{lbs}$. per sq. in. is as much as can be assumed with safety. Using a factor of safety of 10 gives a maximum allowable strain in the lim of 1000 lbs . per sq. in., which corresponds to a rim velocity of 6085 ft . per minute.

    For any given material, as cast iron, the strength to resist centrifugal force depends only on the velocity of the rim, and not upon its bulk or weight.
    Chas. E. Emery (Cass. Mag., 1892) says: By calculation half the strength of the arms is a vailable to strengthen the tim, or a trifle more if the flywheel centres are relatively large. The arms, however, are subject to transverse strains, from belts and from changes of speed, and there is, moreover, no certainty that the arms and rim will be adjusted so as to pull exactly together in resisting disruption, so the plan of considering the rim by itself and making it strong enough to resist disruption by centrifugal force within safe limits, as is assumed in the calculations above, is the safer way.

    It does not appear that fly-wheels of customary construction shonld be unsafe at the comparatively low speeds now in common use if proper materials are used in construction. The cause of rupture of fly-wheels that have failed is usually either the "running away" of the engine, such as may be caused by the breaking or slackness of a governor-belt, or incorrect design or defective materials of the fly-wheel.

    Chas. T. Porter (Trans. A. S. M. E., Xiv. 808) states that no case of the bursting of a fly-wheel with a solid rim in a high-speed engine is known. He attributes the bursting of wheels built in segments to insufficient strength of the flanges and bolts by which the segments are held together. (See also Thurston, "Mannal of the Steam-engine" Part II, page 413, etc.)

    Armas of Tlywheels and Pulleys. - Professor Torrey ( Am . Mach., July 30, 1891) gives the following fummla for arms of elliptical crosssection of cast-iron wheels:
    $W=$ load in pounds acting on one arm; $S=$ strain on belt in pounds per inch of width, taken at 56 for single and 112 for double belts; $v=$ width of belt in inches; $n=$ number of arms; $L=$ length of arm in feet; $b=$ breadth of arm at hub; $d=$ depth of arm at hub, both in inches: $W=\frac{\Delta v}{n}$; $b=\frac{W L}{30 d^{2}}$. The breadth of the arm is its least dimension $=$ minor axis of the ellipse, and the deotlı the major axis. This formula is based on a factor of safety of 10 .

    In using the formula, first assume some depth for the arm, and calculate the required breadth to go with it. If it gives too round an arm, assume tue devih a Jittle greater, and repeat the calcnlation. A second trial will almost always give a gond section.
    The size of the arms at the hnb having been calculated, they may be somewhat reduced at the rim end. The actual amount cannot be calculated, as there are too many unknown quantities. However, the depth and breadth can be reduced about one third at the rim without danger, and this will give a well-shaped arm.

    Pulleys are of ten cast in halves, and bolted together. When this is done the greatest care should be taken to provide sufficient metal in the bolts. This is apt to be the very weakest point in such pulleys. The combined area of the bolts at each joint shonld be about $28 / 100$ the cross-section of the pul ley at that point. (Torrey.)

    Unwin gives

    $$
    \begin{aligned}
    & d=0.6337 \sqrt[3]{\frac{B D}{n}} \text { for single belts; } \\
    & d=0.798 \sqrt[3]{\frac{B D}{n}} \text { for double belts; }
    \end{aligned}
    $$

    $D$ being the diameter of the pulley, and $B$ the breadth of the rim, beth in inches. These formulæ are based on an elliptical section of arm in which $b=0.4 d$ or $d=2.5 b$ on a width of belt $=4 / 5$ the width of the pulley rim, a maximum driving force transmitted by the belt of 56 lbs . per inch of width for a single belt and 112 lbs . for a double belt, and a safe working stress of cast iron of 2250 lbs . per square inch.
    If in Torrey's formula we make $b=0.4 d$, it rednces to

    $$
    b=\sqrt[3]{\frac{\bar{W}}{187.5}} ; \quad a=\sqrt[3]{\frac{\overline{W L}}{1 i}}
    $$

    Example. -Given a pulley 10 feet diameter; 8 arms, each 4 feet long; face, 36 inches wide; belt, 30 inches: required the breath and depth of the arm at the hub. According to Unwin,

    $$
    \begin{aligned}
    & d=0.6337 \sqrt[3]{\frac{B D}{n}}=0.633 \sqrt[3]{\frac{36 \times 120}{8}}=5.16 \text { for single belt, } b=2.06 \\
    & d=0.798 \sqrt[3]{\frac{B D}{n}}=0.798 \sqrt[3]{\frac{36 \times 120}{8}}=6.50 \text { for double belt, } b=2.60
    \end{aligned}
    $$

    According to Torrey, if we take the formula $b=\frac{W L}{30 d^{2}}$ and assume $d=5$ and 6.5 inches, respectively, for single and double belts, we obtain $b=1.08$ and 1.33 , respectively, or practically only one half of the breadth according to Unwin. and, since transverse strength is proportional to breadth, an arnt only one half as strong.

    Torrey's formula is said to be based on a. factor of safety of 10 , but this factor can be only apparent and not real, since the assumption that the strain on each arm is equal to the strain on the belt divided by the number of arms, is, to say the least, inaccurate. It would be more nearly correct to say that the strain of the belt is divided among half the number of arms. Unwin makes the same assumption in developing his formula, but says it is only in a rough sense true, and that a large factor of safety must be allowed. He therefore takes the low figure of 2950 lbs . per square inch for the safe working strength of cast iron. Unwin says that his equations agree well with practice.

    Diameterg of $\operatorname{miy}$-wlieols for Various Speeds.-If 6000 feet per minute be the maximum velocity of rim allowable, then $6000=\pi R D$, in which $R=$ revolutions per minute, and $D=$ diameter of wheel in feet, whence $D=\frac{6000}{\pi R}=\frac{1910}{R}$.

    Maximum Diameter of Fly-wheel Adiowable for Different Numbers of Revolutions.

    | Revolutions per minute. | Assuming Maximum Speed of 5000 feet per minute. |  | Assuming Maximum Speed of 6000 feet per minute. |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | Circum. ft. | Diam. ft . | Circum. ft. | Diam. ft . |
    | 40 | 125 | 39.8 | 150. | 47.7 |
    | 50 | 100 | 31.8 | 120. | 38.2 |
    | 60 | 83.3 | 26.5 | 100. | 31.8 |
    | \% 0 | 71.4 | 22.5 | $85 . \% 2$ | 27.3 |
    | 80 | 62.5 | 19.9 | \%5.00 | 23.9 |
    | 90 | 55.5 | 17.7 | 66.66 | 21.2 |
    | 100 | 50. | 15.9 | 60.00 | 19.1 |
    | 120 | 41.67 | 13.3 | 50.00 | 15.9 |
    | 140 | 35.71 | 11.4 | 42. 86 | 13.6 |
    | 160 | 31.25 | 9.9 | 34.5 | 11.9 |
    | 180 | 27. 77 | 8.8 | 33.33 | 10.6 |
    | 200 | 25.00 | 8.0 | 30.00 | 9.6 |
    | 220 | 22.63 | 7.2 | 27.27 | 8.7 |
    | 240 | 20.83 | 6.6 | 25.00 | 8.0 |
    | 260 | 19.23 | 6.1 | 23.08 | 7.3 |
    | 280 | $1 \% .86$ | $5 . \%$ | 21.43 | 6.8 |
    | 300 | 16.66 | 5.3 | 20.00 | 6.4 |
    | 350 | 14.29 | 4.5 | 17.14 | 5.5 |
    | 400 | 12.5 | 4.0 | 15.00 | 4.8 |
    | 450 | 11.11 | 3.5 | 13.38 | 4.2 |
    | 500 | 10.00 | 3.2 | 12.00 | 3.8 |

    Strains in the Fims of Fly-band Whee?s Produced by Centrifugal Force. (James B. Stanwood, Trans. A. S. M. E., xiv. :2. -Mr. Stanwood mentions one case of a fly-band wheel where the periphery velocity ou a $17^{\prime} 9^{\prime \prime}$ wheel is over $\% 500 \mathrm{ft}$. per minute.

    In band saw-mills the blade of the saw is operated successfully over wheels 8 and 9 ft . in diameter, at a periphery velocity of 9000 to $10,000 \mathrm{ft}$. per minute. These wheels are of cast iron throughout, of heavy thickness, with a large number of arms.

    In shingle-machines and chipping-machines where cast-iron disks from 2 to 5 ft . in diameter are employed, with knives inserted radially, the speed is frequently 10,000 to $11,000 \mathrm{ft}$. per minute at the periphery.

    If the rim of a fly-wheel alone be considered, the tensile strain in pounds per square inch of the rim section is $T=\frac{V^{2}}{10}$ nearly, in which $V=$ velocity in feet per second; but this strain is modified by the resistance of the arms, which prevent the uniform circumferential expansion of the rim, and induce a bending as well as a tensile strain. Mr. Stanwood diseusses the strains in band-wheels due to transverse bending of a section of the rim between a pair of arms.

    When the arms are few in number, and of large cross-section, the ring will be strained transversely to a greater degree than with a greater number of lighter arms. To illustrate the necessary rim thicknesses for various rim velocities, pulley diameters, number of arms, etc., the following table is given, based upon the formula

    $$
    t=\frac{.475 d}{N^{2}\left(\frac{F}{V^{2}}-\frac{1}{10}\right)}
    $$

    in which $t=$ thickness of rim in inches, $d=$ diameter of pulley in inches, $N=$ number of arms, $V=$ velocity of rim in feet per second, and $F=$ the greatest strain in pounds per square inch to which any fibre is subjected. The value of $F$ is taken at 6000 lbs . wer sa. in.

    Thickness of Rims in Solid Wheels.

    | Diameter of <br> Pulley in <br> inches. | Velocity of <br> Rim in fєet per <br> second. | Velocity of <br> Rim in feet per <br> minute. | No. of <br> Arms. | Thickness in <br> inches. |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 50 | 3,000 | 6 | $2 / 10$ |
    | 24 | 88 | 5,280 | 6 | $15 / 32$ |
    | 48 | 88 | 5,280 | 6 | $15 / 16$ |
    | 108 | 184 | 11,040 | 16 | $21 / 2$ |
    | 108 | 184 | 11,040 | 36 | $1 / 2$ |

    If the limit of rim velocity for all wheels be assumed to be 88 ft . per second, equal to 1 mile per minute, $F=6000 \mathrm{lbs}$., the formula becomes

    $$
    t=\frac{.475 d}{.67 N^{2}}=0.7 \frac{d}{N^{2}}
    $$

    When wheels are made in halves or in sections, the bending strain may be such as to make $t$ greater than that given above. Thus, when the joint comes half way between the arms, the bending action is similar to a beam supported simply at the ends, uniformly loaded, and $t$ is $50 \%$ greater. Then the fcrmula becomes

    $$
    t=\frac{.712 d}{N^{2}\left(\frac{F}{V^{2}}-\frac{1}{10}\right)}
    $$

    or for a fixed maximum rim velocity of 88 ft . per second and $F=6000 \mathrm{lbs}$., $t=\frac{1.05 \cdot l}{N^{2}}$. In segmental wheels it is preferable to have the joints opposite the arms. Wheels in halves, if very thin rims are to be employed, should have double arms along the line of separation,

    Attention should be given to the proportions of large receiving and tightening pulleys. The thickness of rim for a $48-\mathrm{in}$. wheel (shown in table) with a rim velocity of 88 ft per second, is $15 / 16 \mathrm{in}$. Many wrecks have been caused by the failure of receiving or tightening pulleys whose rims have beer too thin. Fly-wheels calculated for a given coefficient of steadiness are frequently lighter than the minimum safe weight. This is true especially of large wheels. A rough guide to the minimum weight of wheels can be deduced from our formulæ. The arms, hub, lugs, etc., usually form from one quarter to one third the eutire weight of the wheed. If $b$ represents the of a wheel in inches. the weight of the rim (considered as a simple aunular ring) will be $w=.8: d t b$ lbs. If the limit of speed is 88 ft . per second, then for solid wheels $t=0.7 d \div N^{2}$. For sectional wheels (joint hetween arms) $t=1.05 d \div N^{2}$. Weight of rim for solid wheels, $w=.57 d^{2} b \div N^{2}$ in pounds. Weight of rim in sectional wheels with joints between arms, $w=.86 d^{2} b \div$ $N^{2}$ in pounds. Total weight of wheel: for solid wheel, $W=.76 d^{2} b \div N^{2}$ to $.86 d^{2} b \div N^{2}$, in pounds. For segmental wheels with joint between arms, $W=1.05 d^{2} b \div N^{2}$ to $1.3 d^{2} b \div N^{2}$, in pounds.
    (This subject is further discussed by Mr. Stanwood, in vol. xv., and by Prof. Gaetano Lanza, in vol. xvi., Trans. A. S. M. E.)
    A. Wooden Rim TIy-wheel, built in 1891 for a pair of Corliss engines at the Amoskeag Mfs. Co.'s mill, Manchester, N. H., is described by C. H. Manning in'Trans. A.S. M. E., xiii. 618. It is 30 ft . dam. and 108 in . face. The rim is 12 inches thick, and is built up of 44 courses of ash plank, 2,3, and 4 inches thick, reduced about $1 / 2$ inch in dressing, set edgewise, so as to break joints, and glued and bolted together. There are two hubs and two sets of arms, 12 in each, all of cast iron. The weights are as follows:
    Weight (calculated) of ash rim

    | $31,855 \quad \mathrm{lbs}$. |
    | :---: |
    | 40,349 |
    | 31,394 |
    | 664 |
    | $104,262 \pm$ |

    The wheel was tested at 76 revs. per min., being a surface speed of nearly 7200 feet per minute.

    Mr. Manning discusses the relative safety of cast iron and of wooden wheels as follows: As for safety, the speeds being the same in both cases, the hoop tension in the rim per unit of cross-section would be directly as the weight per cubic unit; and its capacity to stand the strain directly as the tensile strength per square unit; therefore the tensile strangths divided by the weights will give relative values of different materials. Cast iron weighing 450 lbs . per cubic foot and with a tensile strength of $1,440,000 \mathrm{lbs}$. per square foot would give a valne of $1,440,000 \div 450=3200$, whilst ash, of which the rim was made, weghing 34 lbs . per cubic foot, and with $1,152,000$ lbs. tensile strength per square foot, gives a resnlt $1,152,000 \div 34=33,882$, and $33,882 \div 3200=10.58$, or the wood-rimmed pulley is ten times safer than the cast-iron when the castings are good. This would allow the woodrimmed pulley to increase its speed to $\sqrt{10.58}=3.25$ times that of a sound cast-iron one with equal safety.

    Wooden Fly-wheel of the Willimantic Linen Co. (Ilustrated in Power, March, 1893.)-Rim 28 ft . diam., 110 in . face. The rim is carried upon three sets of arms, one under the centre of each belt, with 1: arms in each set.
    The material of the rim is ordinary whitewood, $7 / 8$ in. in thickness, cut into segments not exceeding 4 feet in length, and either 5 or 8 inches in width. These were assembled by building a complete circle 13 inches in width, first with the 8 inch inside and the 5 -inch outside, and then beside it another circle with the widths reversed, so as to break joints. Each piece as it was added was brushed over with glue and nailed with three-inch wire nails to the pieces already in position. The nails pass through three and into the fourth thickness. At the end of each arm four 14 -inch bolts secure the rim, the ends being covered by wooden plugs glued and driven into the face of the wheel.

    Wire-wound Fly-wheels for Extreme Speeds. (Eng'g News, August 2, 1890.)-The power required to produce the Mannesmann tubes is very large, varying from 2000 to $10,000 \mathrm{H} . \mathrm{P}$., according to the dimensions of the tube. Since this power is only needed for a short time (it takes only 30 to 45 seconds to convert a bar 10 to 12 ft . long and 4 in , in diameter into a tube), and then some time elapses before the next bar is ready, an engine of 1200 H.P. provided with a large fly-wheel for storing the onergy will supply power enough for one set of rolls. These fly-wheels are so large and run at Such great speeds that the ordinary method of constructing them cannot be followed. A wheel at the Mannesmann Works, made in Komotau, Hungary, in the usual manner, broke at a tangential velocity of $125 \mathrm{ft}^{\text {p }}$ per second. The fly-wheels designed to hold at more than double this speed consist of a cast-iron hub to which two steel disks, 20 ft . in diameter, are bolted; aronnd the circumference of the wheel thus formed 70 tons of No. 5 wire are wound under a tension of 50 lbs . In the Mannesmann Works at Landore, Wales, such a wheel makes 240 revolntions a minute, corresponding to a tangential velocity of $15,080 \mathrm{ft}$. or 2.85 miles per minute.

    ## THELSLIDE-VALVE.

    Definitions. - Travel $=$ total distance moved by the valve.
    Throw of the Eccentric = eccentricity of the eccentric = distance from the centre of the shaft to the centre of the eccentric disk $=1 / 2$ the travel of the valve. (Some writers use the term "throw" to mean the whole travel of the valve.)
    Lap of the volve, also called outside lan or steam-lap = distance the outer or steam edge of the valve extends beyond or laps over the steam edge of the port when the valve is in its central position.
    Inside lap, or exhaust-lap $=$ distance the inner or exhaust edge of the valve extends beyond or laps over the exhaust edge of the port when the valve is in its central position. The inside lap is sometimes made zero, or even negative, in which latter case the distance between the edge of the valve and the edge of the port is sometimes called exhaust clearance, or inside clearance.

    Lead of the valve = the distance the steam-port is opened when the engine is on its centre and the piston is at the beginning of the stroke.

    Lead-angle $=$ the angle between the position of the crank when the valve begins to be opened and its position when the piston is at the beginning of the stroke.

    The valve is said to have lead when the steam-port opens before the pirton
    begins its stroke. If the piston begins its stroke before the admission of steam begins the valve is said to have negative lead, and its amount is the lap of the edge of the valve over the edge of the port at the instant when the piston stroke begins.

    Lap-angle $=$ the angle throngh which the eccentric must be rotated to cause the steam edge to travel from its central position the distance of the lap.

    Angular arlvance of the eccentric = lap-angle + lead angle .
    Limar ciavance $=$ lap + leal .
    Effect of Roap, Lead, etc.apon the Steam Distribution.Given valve-travel $23 / 4$ in., lap $3 / 4$ in., lead $1 / 16$ in., exhaust-lap $1 / 8$ in., required crank position for admission, cut-off, release and compression, and greatest port-opening. (Halsey on Slide-valve Gears.) Dr'aw a circle of diameter $f h=$ travel of valve. From $O$ the centre set off $O u=$ lap and $a b$ $=$ lead, erect perpendiculars $O e, a c, b d$; then $e c$ is the lap-angle and $c \dot{d}$ the lead-angle, measured as arcs. Set off $f g=c d$, the lead-angle, then $O g$ is the position of the crank for steam admission. Set off $2 e c+c d$ from $h$ to $i$; then $O i$ is the crank-angle for cut-off, and $f k \div-f h$ is the fraction of stroke completed at cut-off. Set off $O l=$ exhaust-lap and draw 1 m ; em is the exhaust-lap angle. Set off $h n=e c+c \neq e m$, and $O n$ is the position of crank at release. Set off $f p=e c+c a+e m$, and $O p$ is the position of crank for compression, $f 0 \div f h$ is the fraction of stroke completed at release, and $h q+h f$ is the fraction of the return stroke completed when compression begins; Oh, the throw of the eccentric, minus Oa the lap, equals ah the maximum port-opening.

    If a valve has neither lap nor lead, the line joining the centre of the eccen-
    

    Fig. 146.
    tric disk and the centre of the shaft being at right angles to the line of the crank, the engine would follow full stroke, admission of steam beginning at the beginning of the stroke and ending at the end of the stroke.

    Adding lap to the valve enables us to cut off steam before the end of the stroke; the eccentric being advanced on the shaft an amount equal to the lap-angle enables steam to be admitted at the beginning of the stroke, as
    before lap was added and advancing it a further amount equal to the lead angle causes steain to be admitted before the beginning of the stroke.
    Having given lap to the valve, and having advanced the eccentric on the shaft from its central position at right angles to the crank, through the angular advance = lap-angle and lead-angle, the four events, admission, cut-off, release or exhaust-opening, and compression or exla aust-closure, take place as follows: Admission, when the crank lacks the lead-angle of having reached the centre; cut-off, when the craik lacks two lap-angles and one lead-angle of having reached the centre. During the admission of steam the crank turns through a senicircle less twice the lap-angle. The greatest port-opening is equal to half the travel of the valve less the lap. Therefore for a given port-opening the travel of the valve must be increased if the lap is increased. When exhaust-lap is added to the valve it delays the opening of the exhaust and hastens its closing by an angle of rotation equal to the exhaust-lap angle, which is the angle through which the eccentric rotates from its middle position while the exhaust edge of the valve uncovers its lap. Release then takes place when the crank lacks one lap-angle and one lead-angle minus one exhaust-lap angle of having reached the centre, and compression when the crank lacks lap-angle + lead-angle + exhaust-lap angle of having reached the centre.
    The above discussion of the relative position of the crank, piston, and valve for the different points of the stroke is accurate only with a connect-ing-rod of infinite length.

    For actual connecting-rods the angular position of the rod causes a distortion of the position of the valve, causing the events to take place too late in the forward stroke and too early in the return. The correction of this distortion may be accomplished to some extent by setting the valve so as to give equal lead on both forward and return stroke, and by altering the exhaust-lap on one end so as to equalize the release and compression. F. A. Halsey, in his Slide-valve Gears, describes a method of equalizing the cut-off without at the same time affecting the equality of the lead. In designing slide-valves the effect of angularity of the connecting-rod should be studied on the drawing-board, and preferably by the use of a model.
    Sweet's Valve-diagram. -To find outside and inside lap of valve for differeut cut-offs and compressions (see Fig. 147): Draw a circle whose
    

    Frg. 147.-Sweet's Valve-diagram.
    diameter equals travel of valve. Draw diameter $B A$ and continue to $A^{1}$, so that the length $A A^{1}$ bear's the same ratio to $X A$ as the length of con-necting-rod does to length of engine-crank. Draw small circle $K$ with a radius equal to lead. Lay off $A C$ so that ratio of $A C$ to $A B=$ cut-off in parts of the stroke. Erect perpendicular $C D$. Draw $D L$ tangent to $K$; draw $X S$ perpendicular to $D L ; X S$ is then outside lap of valve.

    To find release and compression: If there is no inside lap, draw $F E$ through $X$ parallel to $D L$. $F$ and $E$ will be position of crank for release and compression. If there is an inside lap, draw a circle about $X$, in which radius $X Y$ eqnals inside lap. Draw $H G$ tangent to this circle and parallel to $D L$; then $H$ and $G$ are crank position for release and compression. Draw $H N$ and $M G$, then $A N$ is piston position at release and $A M$ piston position at compression, $A B$ being considered stroke of engine.

    To make compression alike on each stroke it is necessary to increase the inside lap on crank end of valve, and to decrease by the same amount the
    inside lap on back end of valve. To determine this amount, through $M$ with a radius $M M^{1}=A A^{1}$, draw arc $M P$, from $P$ draw $P T$ perpendicular to $A B$, then $T M$ is the amount to be added to inside lap on crank end, and to be deducted from inside lap on back end of valve, inside lap being $X Y$.

    For the Bilgram Valve Diagram, see Halsey on Slide-valve Gears.
    The Zeuncr Galve-diagram is given in most of the works on the steam-engine, and in treatises on valve-gears, as Zeuner's, Peabody's, and
    

    Fig. 148.-Zeuner's Valve-diagram.
    Spangler's. The following is condensed from Holmes on the Steam-engine: Describe a circle, with radius $O A$ equal to the half travel of the valve. From $O$ neasure off $O B$ equal to the outside lap, and $B C$ equal to the lead. When the crank-pin occupies the dead centre $A$, the valve has already moved to the right of its central position by the space $O B+B C$. From $C$ erect the perpendicular $C E$ and join $O E$. Then will $O E$ be the position occupied by the line joining the centre of the eccentric with the centre of the crank-shaft at the commencement of the stroke. On the line $O E$ as diameter describe the circle $O C E$; then any chords, as $O e, O E$, $O e^{\prime}$, will represent the spaces travelled by the valve from its central position when the crank-pin occupies respectively the positions opposite to $D, E$, and $F$. Before the port is opened at all the valve must have moved from its central position by an amount equal to the lap $O B$. Hence, to obtain the space by which the port is opened, subtract from each of the ares $O e, O E$, etc., a length equal to $O B$. This is represented graphically by describing from centre $O$ a circle with radius equal to the lap $O B$; then the spaces $\int e, g E$, etc., intercepted between the circumferences of the lap-circle $B f e^{\prime}$ and the valve-circle $O C E$, will give the extent to which the steam-port is opened.

    At the point $k$, at which the chor $1 O k$ is conmon to both valve and lap circles, it is evident that the valve has moved to the right by the amount of the lap, and is consequently just on the point of opening the steam-port. Hence the steam is admitted before the commencement of the stroke, when the crank occupies the position $O H$, and while the portion $H A$ of the revo-
    lution still remains to be accomplished. When the crank-pin reaches the position $A$, that is to say, at the wmmencement of the stroke, the port is already opened by the space $O C-O B=B C$, called the lead. From this point forward till the crank occupies the position $O E$ the port continues to open, but when the crank is at $O E$ the valve has reached the furthest limit of its travel to the right, and then commences to return, till when in the position $O F^{\prime}$ the edge of the valve just covers the steam-port, as is shown by the chord $O e^{\prime}$, being again common to both lap and valve circles. Hence when the crank occupies the position $O F$ the cut-off takes place and the steam commences to expand, and continues to do so till the exhaust opens. For the return stroke the steam-port opens again at $H^{\prime}$ and closes at $\bar{F}^{\prime \prime}$.

    There remains the exhaust to be considered. When the line joining the centres of the eccentric and crank-shaft occupies the position opposite to $O G$ at right angles to the line of dead centres, the crank is in the line $O P$ at right angles to $O E$; and as $O P$ does not intersect either valve-circle the valve occupies its central position, and consequently closes the port by the amount of the inside lap. The crank must therefore move through such an angular distance that its line of direction $O Q$ must intercept a chord on the valve-circle $O K$ equal in length to the inside lap before the port can be opened to the exhaust. This point is ascertained precisely in the sane manner as for the outside lap, namely, by drawing a circle from centre $O$, with a radius equal to the inside lap; this is the small inner circle in the figure. Where this circle intersects the two valve-circles we get four points which show the positions of the crank when the exliaust opens and closes during each revolution. Thus at $Q$ the valve opens the exhaust on the side of the piston which we have been considering, while at $R$ the exhaust closes and compression commences and continues till the fresh steam is readmitted at $H$.
    Thus the diagram enables us to ascertain the exact position of the crank when each critical operation of the valve takes place. Making a résume of these operations of one side of the piston, we have: Steam admitted before the commencement of the stroke at $H$. At the dead centre $A$ the valve is already opened by the anount $B C$. At $E$ the port is fully opened, and valve has reached one end of its travel. At $F$ steam is cut off, consequently admission lasted from $H$ to $F$. At $P$ valve occupies central position, and ports are closed both to steam and exhaust. At $Q$ exhaust opened, consequently expansion lasted from $F$ to $Q$. At $K$ exhaust opened to maximum extent, and valve reached the end of its travel to the left. At $R$ exhaust closed, and compression begins and continues till the fresh steam is admitted at $H$.
    Problem.-The simplest problem which occurs is the following: Given the length of throw, the angle of advance of the eccentric, and the laps of the valve, find the angles of the crank at which the steam is admitted and cut off and the exhaust opened and closed. Draw the line $O E$, representing the half-travel of the valve or the throw of the eccentric at the given angle of advance with the perpendicular $O G$. Produce $O E$ to $K$. On $O E$ and $O K$ as diameters describe the two valve-circles. With centre and radii equal to the given laps describe the outside and inside lap-circles. Then the intersection of these circles with the two valve-circles give points through which the lines $O H, O F, O Q$, and $O R$ can be drawn. These lines give the required positions of the crank.

    Numerous other problems will be found in Holmes on the Steam-engine, including problems in valve-setting and the application of the Zeuner diagram to link motion and to the Meyer valve-gear.

    Port Opeming.-The area of portopening should be such that the velocity of the steam in passing through it should not exceed 6000 ft . per min. The ratio of port area to piston area will then vary with the piston-speed as follows:
    For speed of piston, \}

    > ft. per min.

    Port area $=$ piston
    area $\times$
    $\begin{array}{lllllllllll}100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 & 1000 & 1200\end{array}$

    For a velocity of 6000 ft . per min.,

    $$
    \text { Port area }=\frac{\text { sq. of diam. of cyl. } \times \text { piston speed }}{639}
    $$

    The length of the port opening inav be equal to or something less than the diameter of the cylinder, and the width $=$ area of port opening $\div$ its length.

    The bridge between steam and exhaust ports should be widc enough to prevent a leak of steam into the exhaust due to overtravel of the valve.

    Auchincloss gives: Width of exhaust port $=$ width of steam port + $1 / 2$ travel of valve - width of bridge.

    Lead. (From Peabody's Valve-gears.)-The lead, or the amount that the valve is open when the engine is on a dead point, varies, with the type and size of the engine, from a very small amount, or even nothing, up to $3 / 8$ of an inch or more. Stationary-engines running at slow speed may have from $1 / 64$ to $1 / 16$ inch lead. The effect of compression is to fill the waste space at the end of the cylinder with steam; consequently, engines having much compression need less lead. Locomotive-engines having the valves controlled by the ordinary form of Stephenson link-motion may have a small lead when running slowly and with a long cut-off, but when at speed with a short cut-off the lead is at least $1 / 4$ inch; and locomotives that have valve-gear which gives constant lead conmmonly have $1 / 4$ inch lead. The lead-angle is the angle the crank makes with the line of dead points at admission. It may vary from $0^{\circ}$ to $8^{\circ}$.

    Inside Eead.-Weisbach (vol. ii. p. 296) says: Experiment shows that the earlier opening of the exhaust ports is especially of advantage, and in the best engines the lead of the valve upon the side of the exhaust, or the inside lead; is $1 / 25$ to $1 / 15$; i.e., the slide-valve at the lowest or highest position of the piston has made an opening whose height is $1 / 25$ to $1 / 15$ of the whole throw of the slide-valve. The outside lead of the slide-valve or the lead on the steam side, on the other hand, is much smaller, and is orlen only $1 / 100$ of the whole throw of the valve.

    ## Effect of Changing Outside Lap, Inside Lap, Travel and Angular Advance. (Thurston.)

    |  | Admission | Expansion | Exhaust | Compression |
    | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & \text { Incr. } \\ & \text { O.L. } \end{aligned}$ | is |  | d |  |
    | $\begin{aligned} & \text { Incr. } \\ & \text { I.L. } \end{aligned}$ | unchanged | begins as before, continues longer | occurs later, ceases earlier | begins sooner continues long |
    | $\begin{gathered} \text { Incr. } \\ \mathrm{T} . \end{gathered}$ | begins sooner, continues longer | begins later, ceases sooner | begins later, ceases later | begins later, ends sooner |
    | $\begin{aligned} & \text { Incr. } \\ & \text { A.A. } \end{aligned}$ | begins earlier, period unaltered | begins sooner, pel. the same | begins earlier, per. unchanged | begins earlier, prr. the same |

    Zeuner gives the following relations (Weisbach-Dubois, vol. ii. p. 30\%):
    If $\mathcal{S}=$ travel of valve, $p=$ maximum port opening;
    $\tilde{L}=$ steam-lap, $l=$ exhaust-lap;
    $R=$ ratio of steam-lap to half travel $=\frac{L}{.5 S}, \quad L=\frac{R}{2} \times S ;$
    $r=$ ratio of exhaust lap to half travel $=\frac{l}{.5 S}, \quad l=\frac{r}{2} \times S ;$
    $S=2 p+2 L=2 p+R \times S ; S=\frac{2 p}{1-R}$.
    If $\alpha=$ angle $H O F$ between positions of crank at admission and at cut-off, and $\beta=$ angle $Q O R$ between positions of crank at release and at compression, then $R=1 / 2 \frac{\sin \left(180^{\circ}-a\right)}{\sin 1 / 2^{\alpha}} ; r=1 / 2 \frac{\sin \left(180^{\circ}-\beta\right.}{\sin 1 / 2 \beta}$.
    Ratio of Lap and of Portwopening to Valvemtrawel. -The table on page 831, giving the ratio of lap to travel of valve and ratio of travel to port opening, is abridged from one given by Buel in Weisbach-Dubois, vol. ii. It is calculated from the above formulæ. Intermediate values may be found by the formulæ, or with sufficient accuracy by interpolation from the figures in the table. By the table on page 830 the crank-angle may be found, that is, the angle between its position when the engine is on the centre and its position at cut-off, release, or compression, when these are known in fractions of the stroke. To illustrate the use of the tables the following example is given by Buel: width of port $=2.2 \mathrm{in}$; ; width of port opening $=$ width of port $+0.3 \mathrm{in} . ;$ overtravel $=2.5 \mathrm{in}$.; length of commect-ing-rod $=21 / 2$ times stroke $;$ cut-off $=0.75$ of stroke; release $=0.95$ of stroke ; lead-angle, $10^{\circ}$. From the first table we find crank-angle $=114.6$.
    add lead-angle, making 124.6. ${ }^{\circ}$ From the second table, for angle between admission and cut-off, $125^{\circ}$, we have ratio of travel to port-opening $=3.72$, or for $124.6^{\circ}=3 . \pi 4$, which, multiplied by port-opening 2.5 , gives 9.45 in travel. The ratio of lap to travel, by the table, is . 2324 , or $9.45 \times .2324=2.2$ in. lap. For exhaust-lap we have, for release at 95 , crank-angle $=151.3$; add lead-angle $10^{\circ}=161.3^{\circ}$. From the second table, by interpolation, ratio of lap to travel $=.0811$, and $.0811 \times 9.45=0 . \% 7 \mathrm{in}$., the exhaust-lap.
    Lap-angle $=1 / 2\left(180^{\circ}-\right.$ lead-angle - crank-angle at cut-off $) ;$

    $$
    =1 / 2\left(180^{\circ}-10-114.6\right)=27.7^{\circ} .
    $$

    Angular advance $=$ lap-angle + lead-angle $=27 . \%+10=37.7^{\circ}$.
    Exhaust lap-angle = crank-angle at release + lap-angle + lead-angle $-180^{\circ}$;

    $$
    =151.3+27.7+10-180^{\circ}=9^{\circ} .
    $$

    Crank-angle at com-
    $\left.\begin{array}{l}\text { pression measured } \\ \text { on return stroke }\end{array}\right\}=180^{\circ}$.. lap-angle - lead-angle - exhaust lap-angle; on return stroke $=180-27.7-10-9=133.3^{\circ}$; corresponding, by table, to a piston position of .81 of the return stroke; or
    Crank-angle at compression $=180^{\circ}-$ (angle at release - angle at cut-oft) + lead-angle;
    $=180-(151.3-114.6)+10=13{ }^{2} .3^{\circ}$.
    The positions determined above for cut-off and release are for the forward stroke of the piston. On the return stroke the cut-off will take place at the same angle, $114.6^{\circ}$, corresponding by table to $66.6 \%$ of the return stroke, instead of $75 \%$. By a slight adjustment of the angular advance and the length of the eccentric rod the cut-off can be equalized. The width of the bridge sliould be at least $2.5+0.25-2.2=0.55 \mathrm{in}$.

    ## Crank Angles for Connecting-rods of Different Length.

    Forward and Return Strokes.

    |  | Ratio of Length of Connecting-rod to Length of Stroke. |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 2 |  | 21/3 |  | 3 |  | 31/2 |  | 4 |  |  |  |  |
    |  | For. | Ret. | F | Ret. | For. | Ret. | For. | R |  | Ret. |  |  | For. or Ret. |
    | . 01 | 10 |  |  |  |  |  | 10 |  |  |  |  |  |  |
    | . 03 | 14 | 18.7 22 | 14.9 | 18. | 15.1 | 17.8 | 15.2 | 17.5 | 15.3 |  |  |  |  |
    | . 04 |  | 26.5 |  |  | 8,5 | 21.8 25.2 | 18 | 21.5 24.9 | 21 |  |  | 21.0 | 9 |
    | . 05 | 23.2 | 29.6 | 23.6 | 28.7 | 24.0 | 28.2 | 24.2 | 27.8 | 24.4 |  | 24.7 |  |  |
    | . 10 | 33.1 | 41.9 | 33.8 | 40.8 | 34.3 | 40.1 | 34.6 | 39.6 | 34.9 | 39. | 35.2 |  |  |
    | . 15 | 41 | 51.5 | 41.9 | 50.2 | 42.4 | 49.3 | 42.9 | 48. ${ }^{\text {r }}$ | 43. | 48. | 43.6 |  |  |
    | . 20 | 48 | 59.6 | 48.9 | 58. | 49.6 | 57.3 | 50.1 | 56.6 | 50 | 56. | 50.9 | 55.5 | 53 |
    | . 25 | 54.3 | 66.9 | 55.4 | 65 | 56.1 | 64.4 | 56.6 | 63.7 | 57.0 | 63 | ${ }_{57}{ }^{\text {c }}$. |  | 60 |
    | . 30 | 60.3 | 73.5 | 61.5 | 72. | 62.2 | 71.0 | 62.8 | 70 | 63.3 | 69 | 63 |  | - |
    | . 35 |  | 798 | 67.3 | 78.3 | 68.1 | 77.3 | 68.8 | 76 | 69 | 76.1 | 69.9 | 25 |  |
    | . 40 | 71.7 | 85.8 915 | 73.0 | ${ }_{90}^{84}$ | , | S3 | T4. 5 |  | 75 | 82. | ${ }^{75} 5$ | 81 | \% |
    | . 50 | $\begin{array}{r} 87 \\ 82 \end{array}$ | 97.5 | 78.6 84.3 |  |  |  |  |  |  |  |  | $8{ }^{87} .1$ |  |
    | . 55 | 88 | 102 | 89.9 | 101 | 90 | 10 | 91 |  |  |  |  |  |  |
    | . 60 |  | 108.3 |  |  |  | 106 | 97 | 105 | 98 | 105.0 | 98.7 | 104.3 |  |
    | . 65 | 100.2 | 113.9 | 101.7 | 112. | 02.7 | 111 | 103 | 111 | 03. | 110.8 | 104.7 | 104.3 | 107.5 |
    | . 7 | 106.5 | 119.7 | 108.0 | 118.5 | 109.0 | 117.8 | 109 | 117 | 110. | 116. | 110. |  |  |
    | . 75 | 113.1 | 125.7 | 114.6 | 124.6 | 15.6 | 123.9 | 116.3 | 123.4 | 116.7 | 123.0 | 117.4 | 122.4 |  |
    | 85 | 120.4 | 132 | 121.8 | 131 | 122. 7 | 130.4 | 123.4 | 129.9 | 123.8 | 129.6 | 124.5 | 129.1 | 126.9 |
    | . 85 | 128.5 | 139 | 129.8 | 18.1 | $13 .$. |  | 131.3 | 137.1 | 131.7 | 136.8 | 132.3 | 136.4 | 134.4 |
    | . 90 | 138.1 | 146.9 | 139.2 | 146.2 | 139.9 | 145.7 | 140.4 | 145.4 | 140.8 | 145.1 | 141.3 | 144.8 | 143.1 |
    | . 95 | 150 | 156.8 | 151.3 | 156.4 | 151.8 | 156.0 | 152.2 | 155.8 | 152.5 | 155.6 | 152.8 | 155.3 | 154.2 |
    | . 96 | 153 | 159.3 | 154.3 | 158.9 | 154.8 | 158.6 | 155.1 | 158.4 | 155.4 | 158.2 | 155.7 | 158.0 | 156.9 |
    | . 98 | 157 | $162.1$ | $157.8$ | 161.8 | 158.2 | 161.5 | 158.5 | 161.3 | 158.7 | 161.2 | 159.0 | 161.0 | 160.1 |
    | . 98 | $161.2$ | 169.4 | 161.9 | 165.1 | 162.2 | 164.9 | 162.5 | 164.8 | 162.6 | 164.7 | 162.9 | 164.5 | 163.7 |
    | . 00 | $\begin{aligned} & 166 . \\ & 180 \end{aligned}$ |  |  |  | 167.4 | 169.4 | $\left.\right\|_{180} ^{167.6}$ | 169.3 | 167.7 | 169.2 | 167.9 | 169.1 | 168.5 |
    | . 00 | $180$ | $180$ | 1 | 180 | $180$ | $180$ | $180$ | 180 | 180 | 180 |  | 180.) |  |

    Relative Motions of Cross-head and Crank. -If $\Sigma=$ length of connecting-rod, $R=$ length of crank, $\theta=$ angle of crank with centre line of engine, $D=$ displacement of cross-head from the beginning of its stroke,

    $$
    פ=R(1-\cos \theta)+L-\sqrt{L^{2}-R^{2} \sin ^{2} \theta} .
    $$

    ## Lap and Travel of Valve.

    |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $30^{\circ}$ | . 483 | 58 | $85^{\circ}$ | 36 | 7.61 | $135^{\circ}$ | . 1913 | 3.24 |
    | 35 | . 4769 | 43.22 | 90 | . 3536 | 6.83 | 140 | . $1 \sim 10$ | 3.04 |
    | 40 | . 4699 | 33.17 | 95 | . 3378 | 6.17 | 145 | . 1504 | 2.86 |
    | 45 | . 4619 | 26.27 | 100 | . 3214 | 5.60 | 150 | . 1294 | 2.70 |
    | 50 | . 4532 | 21.34 | 105 | . 3044 | 5.11 | 155 | . 1082 | 2.55 |
    | 55 | . 4435 | 17.70 | 110 | . 2868 | 4.69 | 160 | . 0868 | 2.42 |
    | 60 | . 4330 | 14.93 | 115 | . 2687 | 4.32 | 165 | . 0653 | 2.30 |
    | 65 | . 4217 | 12.77 | 120 | . 2500 | 4.00 | 1.0 | . 0436 | 2.19 |
    | \% 0 | . 4096 | 11.06 | 125 | . 2309 | 3.72 | 175 | . 0318 | 2.09 |
    | 75 80 | .3967 .3830 | 9.68 8.55 | 130 | . 2113 | 3.46 | 180 | . 0000 | 2.00 |

    ## PERIODS OF ADIISSION, ORE CUTTOEF, FOR VARIOUS

    LAPS AND TRAVELS OF SLITE-VALVEN.The two following tables are from Clark on the Steam-engine. In the first table are given the periods of admission corresponding to travels of valve of from 12 in . to 2 in ., and laps of from 2 in . to $3 / 8 \mathrm{in}$., with $1 / 4 \mathrm{in}$. and $1 / 8 \mathrm{in}$. of lead. With greater leads than those tabulated, the steam would be cut off earlier than as shown in the table.
    The influence of a lead of $5 / 16 \mathrm{in}$. for travels of from $15 / 8 \mathrm{in}$. to 6 in ., and laps of from $1 / 2$ in. to $11 / 2$ in., as calculated for in the second table, is exhibited by comparison of the periods of admission in the table, for the same lap and travel. The greater lead shortens the period of admission, and increases the range for expansive working.
    Periods of Admission, or Points of Cuteoff, for Given

    |  | ت゙ઁ | Periods of Admission, or Points of Cut off, for the following Laps of Valves in inches. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 2 | 13/4 | 11/2 | 11/4 | 1 | 7/8 | $3 / 4$ | 5/8 | 1/2 | $3 / 8$ |
    | $\mathrm{in}_{12}$ | in. | \% 8 | $\%$ 90 | $\%$ 93 | $\%$ 95 | $\stackrel{\%}{\% 6}$ | $\%$ 97 | \% | $\%$ 98 | \% | $\%$ 99 |
    | 10 | 14 | 82 | 87 | 89 | 92 | 95 | 96 | 97 | 98 | 98 | 99 |
    | 8 | $1 / 4$ | 72 | 78 | 84 | 88 | 92 | 94 | 95 | 96 | 98 | 98 |
    | 6 | 1 | 50 | 62 | 71 | 79 | 86 | 89 | 91 | 94 | 96 | 97 |
    | $51 / 2$ | $1 / 8$ | 43 | 56 | 68 | 77 | 85 | 88 | 91 | 94 | 96 | 97 |
    | 5 | 18 | 32 | 47 | 61 | 72 | 82 | 86 | 89 | 92 | 95 | ${ }_{9 \%}$ |
    | 41\% | $1 / 8$ | 14 | 35 | 51 | 66 | 78 | 83 | 87 | 90 | 94 | 96 |
    | 4 | 18 |  | 17 | 39 | 57 | 72 | 78 | 83 | 88 | 92 | 95 |
    | $31 / 2$ | 18 |  |  | 20 | 44 | 63 | 71 | 79 | 84 | 90 | 94 |
    | 3 | $1 / 8$ |  |  |  | 23 | 50 | 61 | 71 | 79 | 86 | 91 |
    | 21/2 | 18 |  |  |  |  | 27 | 43 | 57 | 70 | 80 | 88 |
    | 2 | $1 / 8$ |  |  |  |  |  |  | 33 | 52 | 70 | 81 |

    Periods of Admission, or Points of Cut-off, for given Travels and Laps of Slide-valves.

    Constant lead, 5/16.

    | Travel. | Lap. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Inches. | 1/2 | 5/8 | 34 | 7/8 | 1 | 11/8 | 114 | 13/8 | 11/2 |
    | 15/8 | 19 39 |  |  |  |  |  |  |  |  |
    | $1 \% 8$ | 47 | 17 |  |  |  |  |  |  |  |
    | 2 | 55 | 34 |  |  |  |  |  |  |  |
    | $21 / 8$ | 61 | 42 | 14 |  |  |  |  |  |  |
    | ${ }_{2} 21 / 4$ | 65 | 50 | 30 |  |  |  |  |  |  |
    | $21 \%$ | 71 | 55 | 38 | ${ }_{27}^{13}$ |  |  |  |  |  |
    | $25 \%$ | 74 | 63 | 49 | $\stackrel{3}{36}$ | 12 |  |  |  |  |
    | $23 / 4$ | 76 | 67 | 56 | 43 | 26 |  |  |  |  |
    | $27 / 8$ | 78 | $\% 0$ | 59 | 47 | 32 | 11 |  |  |  |
    | 3 | 80 | 73 | 62 | 50 | 38 | 23 |  |  |  |
    | $31 / 8$ | 81 | 74 | 65 | 55 | 44 | 30 | 10 |  |  |
    | 314 | 83 | 76 | 68 | 59 | 48 | 34 | 22 |  |  |
    | 33/8 | 84 | 78 | 71 | 62 | 51 | 40 | 29 | 9 |  |
    | $31 / 2$ | 85 | 80 | 73 | 64 | 53 | 45 | 34 | 20 |  |
    | 35\% | 86 | 81 | 75 | 66 | 57 | 49 | 38 | $\stackrel{2}{2}$ | 9 |
    | $33 / 4$ | 87 | 82 | 76 | 68 | 60 | 52 | 42 | 32 | 19 |
    | $3 \% / 8$ | 87 | 88 | 78 | 70 | 63 | 55 | 46 | 36 | 25 |
    | $41 / 4$ | 88 89 | 84 | 79 81 | \% | 66 | 58 | 49 | 40 | 29 |
    | $41 / 2$ | 90 | 87 | 83 | 79 | $\underset{73}{ }$ | 63 67 | 56 61 | 47 | 82 |
    | 434 | 92 | 89 | 85 | 81 | $\stackrel{1}{7}$ | 67 70 | 61 | 54 58 58 | 45 |
    | 5 | 93 | 90 | 87 | 83 | 78 | ${ }_{7} 7$ | 67 | 68 | 51 56 |
    | $51 / 2$ | 94 | 92 | 89 | 86 | 82 | \%8 | 78 | 68 | 63 |
    | 6 | 95 | 93 | 91 | 88 | 85 | 82 | \%8 | 74 | 69 |

    Diagram for Portwopening, Cutwoff, and Eap.-The diagram on the opposite page was published in Power, Aug., 1893. It shows at a glance the relations existing between the outside lap, steam port opening, and cut-off in slide valve engines.

    In order to use the diagram to find the lap, having given the cut-off and maximum port-opening, follow the ordinate representing the latter, taken on the horizontal scale, until it meets the oblique line representing the given cut-off. Then read off this height on the vertical lap scale. Thus, with a port-opening of $11 / 4$ inch and a cut-off of .50 , the intersection of the two lines occurs on the horizontal 3. The required lap is therefore 3 in .
    If the cut off and lap are given, follow the horizontal representing the latter until it meets the oblique line representing the cut-off. Then vertically below this read the correspouding port-opening on the horizontal scale.

    If the lap and port-opening are given, the resulting cut-off may be ascertained by finding the point of intersection of the ordinate representing the port-opening with the horizontal representing the lap. The oblique line passing through the point of intersection will give the cut-off.

    If it is desired to take lead into account, multiply the lead in inches by the numbers in the following table corresponding to the cut-off, and deduct the result from the lap as obtained from the diagram:

    | Cut-off. | Multiplier. | Cut-off. | Multiplier. |
    | :---: | :---: | :---: | :---: |
    | .20 | 4.717 | .60 | 1.358 |
    | .25 | 3.731 | .625 | 1.288 |
    | .30 | 3.048 | .65 | 1.222 |
    | .33 | 2.717 | .70 | 1.103 |
    | .375 | 2.381 | .85 | 1.000 |
    | .40 | 2.171 | .80 | 0.904 |
    | .45 | .50 | .875 | 0.815 |
    | . .55 | 1.706 | .90 | 0.772 |

    

    Fig. 149.

    Piston-valve. -The piston-valve is a modified form of the slide-valva The lap, lead, etc., are calculated in the same manner as for the common slide-valve. The diameter of valve and amount of port-opening are calculated on the basis that the most contracted portion of the steam-passngu between the valve and the cylinder should have an area such that the velocity of stean through it will not exceed 6000 ft . per minute. The area of the opening around the circumference of the valve should be about double the area of the steam-passage, since that portion of the opening that is opnosite from the steam-passage is of little effect.
    Setting the Vaives or an Enginc. -The principles discussed Above are applicable not only to the designing of valves. but also to adjustment of valves that have been improperly set; but the final adjustment of the eccentric and of the length of the rod depend upon the amount of lost motion, temperature, etc., and can be effected only after trial. After the valve has been set as accurately as possible when cold. the lead and lap for the forward and return strokes being equalized, indicator diagrams should be taken and the length of the eccentric-rod adjusted, if necessary, to correct slicht irregularities.
    To Eut an Engine on its Centre.-Place the engine in a position where the piston will hare nearly completed its outward stroke, and opposite some point on the cross-head, such as a corner, make a mark upon the guide. Against the rim of the pulley or crank-disl place a pointer and mark a line with it on the pulley. Then turn the engine over the centre until the cross-head is again in the same position on its inward stroke. This will bring the crank as much below the centre as it was above it before. With the pointer in the same position as hefore make a second mark on the pulleyrim. Divide the distance bet ween the marks in two and mark the middito point. Turn the engine until the pointer is opposite this middle point, and it will then be on is centre. To avoid the error that may arise from the looseness of crank-pin and wrist-pin bearings, the engine should be turned a little above the centre and thien be brought up to it, so that the crank-pin will press against the same brass that it does when the first two marks are made.
    Link-motion.-Link-motions, of which the Stephenson link is the most conmonly used, are designed for two purposes: first, for reversing the motion of the engine, and second, for varying the point of cut-off by varyil:g the travel of the valve. The Stephenson link-motion is a combination of two eccentrics, called forward and back eccentrics, with a link connecting the extremities of the eccentric-fods; so that by varying the positiou of the link the valve-rod may be put in direct connection with either eccentric, or may be given a movenent controlled in part by one and in part by the other eccentric. When the link is moved by the reversing lever into a position such that the block to which the valve-rod is attached is at either end of the link, the valve rectives its maxinum travel, and when the link is in mid-gear the travel is the least and cut-off takes place early in the stroke.
    In the ordinary shifting-link with open rods, that is, not crossed, the lead of the valve increases as the link is moved from full to mid-gear, that is, as the period of steam admission is sloortened. The variation of lead is equalized for the front and back strokes by curving the link to the radius of the eccentric-rods concavely to the axles. With crossed eccentric-rods the lead decreases as the liuk is moved from full to mid-gear. In a valve-motion with stationary link the lead is constant. (For illustration see Clark's Steanengine, vol. ii. p. 23.)
    The linear advance of each eccentric is equal to that of the valve in full gear, that is, to lap + lead of the valve, when the eccentric-rods are attached to the link in such position as to cause the half-travel of the valve to equal the eccentricity of the eccentric.
    The angle between the two eccentric radii, that is, between lines drawn from the centre of the eccentric disks to the centre of the shaft equals $180^{\circ}$ less twice the angular advance.
    Buel, in Appleton's Cyclopedia of Mechanics. vol. ii. p. 316, discusses the Stephenson link as follows: "The Stephensou link does not give a perfectly correct distribution of steam; the lead yaries for different points of cut-off. The period of alluission and the begiuning of exhaust are not alike for both ends of the cylinder, and the forward motion varies from the barkward.
    "The correctness of the distribution of steann by Stephenson's link-motion depends upon conditions whichi, is much as the circumstances will permit, ought to be fulfilled, namely: 1. The link should be curved in the arc of a circle whose radius is equal to the length of the eccentric-rod. 2. The
    eccentric-rods ought to be long; the longer they are in proportion to the eccentricity the more symmetrical will the travel of the valve be on both sides of the centre of motion. 3. The link ought to be short. Each of its points deecribes a curve in a vertical plane, whose ordinates grow larger the frarther the considered point is from the centre of the link; and as the horizontal motion only is transmitted to the valve, vertical oscillation will cause ir regularities, 4, The link-hanger ought to be long. The longer it is the nearer will be the arc in which the link swings to a straight line, and thus the less its vertical oscillation. If the link is suspended in its centre, the curves that are described by points equidistant on both sides from the centre are not alike, and hence results the variation between the forward and backward gear. If the link is suspended at its lower end, its lower half will have less vertical oscillation and the upper half more. 5. The centre from which the link-hanger swings changes its position as the link is lowered or raised, and also causes irregularities. To reduce them to the smallest amount the arm of the lifting-shaft should be made as long as the eccentric-rod, and the centre of the lifting-shaft should be placed at the height corresponding to the central position of the centre on which the link-hanger swings."

    All these conditions can never be fulfilled in practice, and the variations in the lead and the period of admission can be somewhat regulated in an artificial way, but for one gear only. This is accomplished by giving different lead to the two eccentrics, which difference will be smatler tbe longer the eccentric-rods are and the shorter the link, and by suspending the link not exactly on its centre line but at a certain distance from it, giving what is called " the offset."

    For application of the Zeuner diagram to link-motion, see Holmes on the Steam-engine, p. 290. See also Clark's Railway Machinery (1855), Clark's Steam-engine, Zeuner's and Anchincloss's Treatises on Slide-valve Gears, and Halsey's Locomotive Link Motion. (See page $\$ 59 a$. )

    The following rules are given by the American Machinist for laying out a link for an upright slide-valve engine. By the term radius of link is meant the radius of the link-are $a b$, Fig. 150, drawn through the centre of the sloti
    

    Fig. 150.
    this radius is generally made equal to the distance from the centre of shaft to centre of the link-block pin $P$ when the latter stands midway of its travel. The distance between the centres of the eccentric-rod pins $e_{1} e_{2}$ should not be less than $21 / 2$ times, and, when space will permit, three times the throw of the eccentric. By the throw we mean twice the eccentricity of the eccentric. The slot link is generally sispended from the end next to the forward eccentric at a point in the link-arc prolonged. This will give comparatively a small amount of slip to the link-block when the link is in forward gear; but this slip will be increased when the link is in backward gear. This increase
    of slip is, however, considered of little importance, because marine englnes, as a rule, work but very little in the backward gear. When it is necessary that the motion shall be as efficient in backward gear as in forward gear, then the liuk should be suspended from a point midway betireen the two eccentric-rod pins; in marine engine practice this point is generally located on the link-arc; for equal cut-offs it is better to move the point of suspension a small amount towards the eccentrics.
    For obtaining the dimensions of the link in inches: Let $L$ denote the length of the valve, $B$ the breadth, $p$ the absolute steam-pressure per sq. in., and $R$ a factor of computation used as below; then $R=.01 \sqrt{\overline{L \times B} \times p}$.
    

    The length of the link, that is, the distance from $a$ to $b$, measured on a straight line joining the ends of the link-arc in the slot, should be such as to allow the centre of the link-block pin $P$ to be placed in a line with the eccen-tric-rod pins, leaving sufficient room for the slip of the block. Another type of link frequently used in mariue engines is the double-bar link, and this type is again divided into two classes: one class embraces those links which have the eccentric-rod ends as well as the valve-spindle end between the bars, as shown at $B$ (with these links the travel of the valve is less than the throw of the eccentric); the other class embraces those links, shown at $\boldsymbol{C}$, for which the eccentric-rods are made with fork-ends, so as to connect to studs on the outside of the bars, allowing the block to slide to the end of the link, so that the centres of the eccentric-rod ends and the block-pin are in line when in full gear, making the travel of the valve equal to the throw of the eccentric. The dimensions of these links when the distance between the eccentric-rod pins is $21 / 2$ to $23 / 4$ times the throw of eccentrics can be found as follows:

    $$
    \begin{aligned}
    & \text { Depth of bars..................................... }=(R \times 1.25)+1 / 2^{\prime \prime} \\
    & \text { Thickness of bars............................. } \left.=\left(R \times{ }_{R} \times 1\right)^{5}\right)^{1} 4^{\prime \prime} \\
    & \text { Diameter of centre of sliding-block } . . . . . . . . . . . .={ }_{R} \times 1.3
    \end{aligned}
    $$

    When the distance between the eccentric-rod pins is equal to 3 or 4 times the throw of the eccentrics, then

    $$
    \begin{aligned}
    & \text { Depth of bars } \\
    & \text { Thickness of bars }
    \end{aligned}
    $$

    All the other dimensions may be found by the first table. These are empirical rules, and the results may have to be slightly changed to suit given conditions. In marine engines the eccentric-rod ends for all classes of links have adjustable brasses. In locomotives the slot-liuk is msually employed, and in these the pin-holes have case-hardened bushes driven into the pinholes, and have no adjustable brasses in the ends of the eccentric-rods. The link in $B$ is generally suspended by one of the eccentric-rod pins; and the link in $C$ is suspended by one of the pins in the end of the link, or by one of the eccentric-rod pins. (See nute on Locomotive Link Motion in Appendix. p. 1077.)

    Other Forms of Valve-Gear, as the Joy, Marshall, Hackworth, Brenme. Waischaert, Corliss, ec., are described in Clark's Steam-engine, vol. ii. The design of the Reynolds-Corliss valve-gear is discussed by A. H. Eldridge in Poner, Sep. 1893. See also Henthorn on the Corliss engine. Rules for laying down the centre lines of the Joy valve-gear are given ii American Machinist, Nov. 13, 1890. For Joy's "Fluid-pressure Reversingvalve," see Eng'g, May 25, 1894.

    ## GOVERNORS.

    Pendulum or Fly-ball Governor.- The inclination of the arms of a revolving pendulum to a vertical axis is such that the height of the point of suspension $h$ above the horizontal plane in which the centre of gravity of the balls revolve (assuming the weight of the rods to be small
    compared with the weight of the balls) bears to the radius $r$ of the circle described by the centres of the balls the ratio

    $$
    \frac{\hbar}{r}=\frac{\text { weight }}{\text { centrifugal force }}=\frac{w}{\frac{w v^{2}}{g r}}=\frac{g r}{v^{2}}
    $$

    which ratio is independent of the weight of the balls, $v$ being the velocity of the centres of the balls in feet per second.
    If $T=$ number of revolutions of the balls in 1 second, $v=2 \pi r T=\alpha r$, in which $a=$ the angular velocity, or $2 \pi T$, and

    $$
    h=\frac{g r^{2}}{v^{2}}=\frac{g}{4 \pi^{2} I^{\prime 2}}, \quad \text { or } \quad h=\frac{0.8146}{T^{2}} \text { feet }=\frac{9.7 \pi 5}{T^{2}} \text { inches, }
    $$

    $g$ being taken at 32.16. If $N=$ number of revs. per minute, $h=\frac{35190}{N^{2}}$ inches

    | For revolutions per minute......... | ${ }^{40}$ | ${ }^{45}$ | 50 | 60 | 75 |
    | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
    | The height in inches will be......... | 21.99 | 17.38 | 14.08 | 9.775 | 6.256 |

    Number of turns per minute required to cause the arms to take a given angle with the vertical axis: Let $l=$ length of the arm in inches from the centre of suspension to the centre of gyration, and a the required angle; then

    $$
    N=\sqrt{\frac{35190}{l \cos \alpha}}=18 \% .6 \sqrt{\frac{1}{l \cos \alpha}}=18 \% .6 \sqrt{\frac{1}{h}}
    $$

    The simple governor is not isochronous; that is, it does not revolve at a uniform speed in all positions, the speed changing as the angle of the arms changes. To remedy this defect loaded governois, such as Porter's, are used. From the balis of a common governor whose collective weight is $A$ let there be hung by a pair of links of lengths equal to the pendulum arms a load $B$ capable of sliding on the spindle, having its centre of gravity in the axis of rotation. Then the centrifugal force is that due to $A$ alone, and the effect of gravity is that due to $A+2 B$; consequently the altitude for a given speed is increased in the ratio $(A+2 B): A$, as compared with that of a simple revolving pendulum, and a given absolute variation in altitude produces a smaller proportionate variation in speed than in the common governor. (Rankine, S. E., p. 551.)
    For the weighted governor let $l=$ the length of the arm from the point of suspension to the centre of gravity of the ball, and let the length of the sus-pending-link, $l_{1}=$ the length of the portion of the arm from the point of suspension of the arm to the point of attachment of the link; $G=$ the weight of one ball, $Q=$ half the weight of the shiding weight, $h=$ the height of the governor from the point of snspension to the plane of revolution of the bails, $a=$ the angular velocity $=2 \pi T$, $T$ being the mmber of revolutions per second; then $a=\sqrt{\frac{32.16}{h}\left(1+\frac{2 l_{1}}{l} \frac{Q}{G}\right)} ; ~ h=\frac{32.16}{a^{2}}\left(1+\frac{2 l_{1}}{l} \frac{Q}{G}\right)$ in feet, or $h=\frac{35190}{N^{2}}\left(1+\frac{2 l_{1}}{l} \frac{Q}{G}\right)$ in inches, $N$ being the number of revolutions per minute.
    For various forms of governor see App. Cycl. Mech., vol, ii. 61, and Clark's

    ## Steam-engine, vol, ii. p. 65 . <br> To Change the Speed of an Engine Having a Fly-ball

    Governor.-A slight difference in the speed of a governor changes the position of its weights from that required for fnll load to that required for no load. It is evident therefore that, whatever the speed of the engine, the normal speed of the governor must be that for which the governor was designed; i.e., the speed of the governor must be kept the same. Tochange the speed of the engine the problem is to so adjust the pulleys which drive the governor that the engine at its new speed shall drive it just as fast as it was driven at its original speed. In order to increase the engine-speed we must decrease the pulley upon the shaft of the engine, i.e., the driver, or increase that on the governor, i.e., the driven, in the propurtion that the speed of the engine is to be increased.Fly-wheel or Shaft Governors. - At the Centennial Fxhibition in 1806 there were shown a few steam-engines in which the governors were contained in the fly-wheel or band-wheel, the fly-balls or weights revolving aromnd the shaft in a vertical plane with the wheel and shifting the eccentric so as antomatically to vary the travel of the valve and the point of cutoff. This form of governor has since come into extensive use, especially for high-speed engines. In its usual form two weights are carried on arms the ends of which are pivoted to two points on the pulley near its circumference, $180^{\circ}$ apart. Links connect these arms to the eccentric. The eccentric is not rigidly keyed to the shaft but is free to move transversely across it for a certain distance, having an oblong hole which allows of this movement. Centrifugal force causes the weights to fly towards the circumference of the wheel and to pull the eccentric into a position of minimum eccentricity. This force is resisted by a spring attached to each arm whicli tends to pull the weights towards the shaft and shift the eccentric to the position of maximum eccentricity. The travel of the valve is thus varied, so that it tends to cut off earlier in the stroke as the engine increases its speed. Many modifications of this general form are in use. For discussions of this form of governor see Hartnell, Proc. Inst. M1. E., 1882, p. 408; Trans. A. S. M. E., ix. 300; xi. 1081 ; xiv. 9:; xv. 929; Modern Mechanism, p. 399; Whitham's Constructive Steam Engineering; J. Begtrup, Am. Mach., Oct. 19 and Dec. 14, 1893. Jan. 18 and March 1, 1894.

    Calculation of Springs for Shaftegovernors. (Wilson Ha:tnell, Proc. Inst. M. E., Aug. 1882.)-The springs for shaft-governors may be conveniently calculated as follows, dimensions being in inches:
    Let $W=$ weight of the balls or weights, in pounds;
    $r_{1}$ and $r_{2}=$ the maximum and ninimum radial distances of the centre of the balls or of the centre of gravity of the weights;
    $l_{1}$ and $l_{2}=$ the leverages, i.e., the perpendicular distances from the centre of the weight-pin to a line in the direction of the centrifugal force drawn through the centre of gravity of the weights or balls at radii $r_{1}$ and $r_{2}$;
    $m_{1}$ and $m_{2}=$ the corresponding leverages of the springs;
    $\boldsymbol{C}_{2}$ and $C_{2}=$ the centrifugal forces, for 100 revolutions per minute, at ladii $r_{1}$ and $r_{2}$;
    $P_{1}$ and $P_{2}=$ the corresponding pressures on the spring;
    (It is convenient to calculate these and note them down for reference.)
    $C_{3}$ and $C_{4}=$ maximum and minimum centrifugal forces;
    $S=$ mean speed (revolutions per minute);
    $S_{1}$ and $S_{2}=$ the maximum and minimum number of revolutions per minute:
    $P_{8}$ and $P_{4}=$ the pressures on the spring at the limiting number of revo.
    $P_{4}-P_{3}=D=$ the difference of the maximum and minimum pressures on the springs;
    $V=$ the percentage of variation from the mean speed, or the sensitiveness;
    $t=$ the travel of the spring;
    $u=$ the initial extension of the spring;
    $v=$ the stiffuess in pounds per inch;
    $w=$ the maximum extension $=u+t$.
    The mean speed and sensitiveness desired are supposed to be given. Then

    $$
    \begin{array}{rlrl}
    S_{1} & =S-\frac{S V}{100} ; & S_{2} & =S+\frac{S V}{100} ; \\
    C_{1} & =0.28 \times r_{1} \times W ; & C_{2} & =0.28 \times r_{2} \times W \\
    P_{1} & =C_{1} \times \frac{l_{1}}{m_{1}} ; & P_{2} & =C_{2} \times \frac{l_{2}}{m_{2}} ; \\
    P_{3} & =P_{1} \times\left(\frac{s_{1}}{100}\right)^{2} ; & P_{4} & =P_{2} \times\left(\frac{S_{2}}{100}\right)^{2} ; \\
    v=\frac{D}{t}, u=\frac{P_{3}}{v}, w & =\frac{P_{4}}{v}
    \end{array}
    $$

    It is usual to give the spring-maker the values of $P_{4}$ and of $v$ or $w$. To ensure proper space being provided, the dimensions of the spring should be
    calculated by the formulæ for stringth and extension of springs, and the least length of the spring as compressed be determined.

    $$
    \text { The governor-power }=\frac{P_{3}+P_{4}}{2} \times \frac{t}{12} .
    $$

    With a straight centripetal line, the governor-power

    $$
    =\frac{C_{3}+C_{4}}{2} \times\left(\frac{r_{2}-r_{1}}{12}\right) .
    $$

    For a preliminary determination of the governor-power it may be taken as equal to this in all cases, although it is evident that with a curved centripetal line it will be slightly less. The difference $D$ must be constant for the same spring, however great or little its initial compression. Let the spring be screwed up until its minimum pressure is $P_{5}^{\prime}$. Then to find the speed $P_{6}=P_{5}+D$,

    $$
    S_{\mathrm{s}}=100 \sqrt{\frac{\bar{P}_{5}}{\bar{P}_{1}} ; \quad S_{6}=100 \sqrt{\frac{\bar{P}_{A}}{\bar{P}_{3}}} . . . ~}
    $$

    The speed at which the governor would be isochronous would bo

    $$
    100 \sqrt{\frac{D}{P_{2}-P_{1}}}
    $$

    Suppose the pressure on the spring with a speed of 100 revolutions, at the maximum and minimum radii, was 200 lbs . and 100 lbs ., respectively, then the pressure of the spring to suit a variation from 95 to 105 revolutions will be $100 \times\left(\frac{95}{100}\right)^{2}=90.2$ and $200 \times\left(\frac{105}{100}\right)^{2}=220.5$. That is, the increase of resistance from the mininum to the maximum radius must be $220-90=$ 130 lbs.
    The extreme speeds due to such a spring, screwed up to different pressures, are shown in the following table:

    | Revolutions per minute, | 80 | 90 | 95 | 100 | 110 | 120 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Pressure on springs, balls shut | 64 | 81 | 90 | 100 | 121 | 14 |
    | Increase of pressure when balls open fully | 130 | 130 | 130 | 130 | 130 | 13 |
    | Pressure on springs, balls open fully. | 194 | 211 | 220 | 230 | 251 | 27 |
    | Revolutions per minute, balls open fully | 98 10 | 102 | 105 | 107 3 | 112 | 117 |

    The speed at which the governor would become isochronous is 114.
    Any spring will give the right variation at some speed; hence in experimenting with a governor the correct spring may be fourid from any wrong one by a very simple calculation. Thus, if a governor with a spring whose stiffness is 50 los. per inch acts best when the engine runs at 95,90 being its proper speed, then $50 \times\left(\frac{90}{95}\right)^{2}=45 \mathrm{lbs}$. is the stiffness of spring required.

    To determine the speed at which the governor acts best, the springs may be screwed up until it begins to "hunt ", and then slackened until the governor is as sensitive as is compatible with steadiness.

    ## CONDENSERS, AIR-PUPIPS CLRCULATING-

    The Jet Condenser. (Chiefly abridged from Seaton's Marine Engi-neering.)-The jet condenser is now uncommon in marine practice, being generally supplanted by the surface condenser. It is commonly used where fresh water is available for boiler feed. With the jet condenser a vacuum of 24 in. was considered fairly good, and 25 in . as much as was possible with most condensers; the temperature corresponding to 24 in . vacuum, or 3 lbs . pressure absolute is $140^{\circ}$. In practice the temperature in the hot-well varies from $110^{\circ}$ to $120^{\circ}$, and occasionally as much as $130^{\circ}$ is maintained. To find the quantity of injection-water per pound of steam to be condensed: Let $T_{1}=$ temperature of steam at the exhaust pressure; $I_{0}=$ temperature of the cooling.

    Water: $T_{2}=$ temperature of the water after condensation, or of the hot-well; $Q=$ pounds of the cooling-water per lb. of steam condensed; then

    $$
    Q=\frac{1114^{\circ}+0.3 T_{1}-T_{2}}{T_{2}-T_{0}^{\prime}}
    $$

    Another formula is: $Q=\frac{W H}{R}$, in which $W$ is the weight of steam condensed, $H$ the units of heat given up by 1 lb . of steam in condensing, and $R$ the rise in temperature of the cooling-water.

    This is applicable both to jet and to surface condensers. The ailowance made for the injection-water of engines working in the temperate zone is usually $2 \%$ to 30 times the weight of steam, and for the tropics 30 to 35 times; 30 times is sufficient for ships which are occasionally in the tropics, and this is what was usual to allow for general traders.
    Area of injection orifice $=$ weight of injection-water in lbs. per min. $\div 650$ to 780 .

    A rough rule sometimes used is: Allow one fifteenth of a square inch for every cuhic foot of water condensed per hour.
    Another rule: A rea of injection orifice $=$ area of piston $\div 250$.
    The volume of the jet condenser is from one fourth to one half of that of the cylinder. It need not be more than one third, except for very quick. running engines.

    Ejector Condensers. - For ejector or injector condensers (Bulkles's, Schutte's, etc.) the calculations for quantity of condensing-water is the same as for jet condensers.
    The Surface Condenser-Cooling Surface.-Peclet found that with cooling water of an initial temperature of $\epsilon 8^{\circ}$ to $\gamma^{\circ}$. one sq. ft . of cor per plate condensed 21.5 lbs . of steam per hour, while Joule states that 100 lbs. per hour can be condensed. In practice, with the compound engine, brass condenser-tubes, $18 \mathrm{~B} . \mathrm{W} . \mathrm{G} \cdot$ thick, 13 lbs . of steam per sq. ft. per hour, with the cooling-water at an initial temperature of $00^{\circ}$, is considered very fair work when the temperature of the feed-water is to be maintained at $120^{\circ}$. It has been found that the surface in the condenser may be half the heating surface of the boiler, and under some circumstances considerably less than this. In general practice the following holds good when the temperature of sea-water is about $60^{\circ}$ :
    $\begin{array}{lccccccc}\text { Terminal pres., lbs., abs.... } & 30 & 20 & 15 & 121 / 2 & 10 & 8 & 6 \\ \text { Sq. ft. per I.H.P............. } & 3 & 2.50 & 2.25 & 2.00 & 1.80 & 1.60 & 1.50\end{array}$
    For ships whose station is in the tropies the allowance should be increased by $20 \%$. and for ships which occasionally visit the tropics $10 \%$ increase will give satisfactory results. If a ship is constantly employed in cold climates $10 \%$ less suffices

    Whitham (Steam-engine Design, p. 283, also Trans. A. S. M. E., ix. 431) gives the following: $S=\frac{W L}{\operatorname{clv}\left(T_{1}-t\right)}$, in which $S=$ condensing-surface in sq. ft ; $T_{1}=$ temperature Fahr. of steam of the pressure indicated by the vachum-gauge; $t=$ mean temperature of the circulating water, or the arithmetical mean of the initial and final temperatures; $L=$ latent heat of saturated steam at temperature $T_{1} ; k=$ perfect conductivity of $1 \mathrm{sq} . \mathrm{ft}$. of the metal used for the condensing-surface for a range of $1^{\circ}$ F. (or $55 \%$ B.T.U. per hour for brass, according to Isher'wood's experiments); $c=$ fraction denoting the efficiency of the condensing surface; $W=$ pounds of steam condensed per hour. .From experiments by Loring and Emery, on U.S.S. Dallas. $c$ is found to be 0.323 , and $c k=180$; making the equation $S=\frac{W L}{180\left(T_{1}-t\right)}$.
    Whitham recommends this formula for designing engines having independent circulating-pumps. When the pump is worked by the main engine the value of $S$ should be increased about $10 \%$.

    Taking $T_{1}$ at $135^{\circ} \mathrm{F}$., and $L=1020$, corresponding to 25 in . vacuum, and $t$ for summer temperatures at $75^{\circ}$, we have: $S=\frac{1020 \mathrm{~W}}{180(135-75)}=\frac{17 \mathrm{~W}}{180}$.

    For a mathematical discussion of the efficiency of surface condensers see a paper hy T. E. Stanton in Proc. Inst. C. E., cxxxvi, June 1899, p. 321.

    Condenser Tribes are generally made of solid-drawn brass tubes, and tested both by hydranlic pressure and steam. They are usually made of a composition of $68 \%$ of best selected copper and $3 \% \%$ of best Silesian spelter.

    The Admiralty, however, always specify the tubes to be made of $70 \%$ of best selected copper and to have $1 \dot{\%}$ of tin in the composition, and test the tubes to a pressure of 300 lbs . per sq. in. (Seaton.)
    The diameter of the condenser tubes varies from $1 / 2$ inch in small condensers, when they are very short, to 1 inch in very large condensers and long tubes. In the mercantile marine the tubes are, as a rule, 34 inch diameter externally, and 18 B.W.G. thick ( 0.049 inch); and 16 B.W.G. ( 0.065 ), under some exceptional circumstances. In the British Navy the tubes are also, as a rule, $3 / 4$ inch diameter, and 18 to 19 B.W.G. thick, tinned on both sides; when the condenser is made of brass the Admiralty do not require the tubes to be tinned. Some of the smaller engines have tubes $5 / 8$ inch diameter, and 19 B.W.G. thick. The smaller the tubes, the larger is the surface which can be got in a certain space.
    In the merchant service the almost universal practice is to circulate the water through the tubes.
    Whitham says the velocity of flow through the tubes should not be less than 400 nor more than 700 ft . per min.
    Tube-plates are usually made of brass. Rolled-brass tube-plates should be from 1.1 to 1.5 times the diameter of tubes in thickness, depending on the method of packing. When the packings go completely through the plates the latter, but when only partly throngh the former, is sufficient. Hence, for $3 / 4$-inch tubes the plates are usually $\% / 8$ to 1 inch thick with glands and tape-packings, and 1 to $11 / 4$ inch thick with wooden ferrules.
    The tube-plates should be secured to their seatings by brass studs and nuts, or brass screw-bolts; in fact there must be no wrought iron of any kind inside a condenser. When the tube plates are of large area it is advisable to stay them by brass-rods, to prevent them from collapsing.
    Spacing of Tubes, etc. - The holes for ferrules, glands, or indiarubber are usually $1 / 4$ inch larger in diameter than the tubes; but when absolutely necessary the wood ferrules may be only $3 / 3$ inch thick.
    The pitch of tubes when packed with wood ferrules is usually $1 / 4 \mathrm{inch}$ more than the diameter of the ferrule-hole. For example, the tubes are generally arranged zigzag, and the number which may be fitted into a square foot of plate is as follows:

    | Pitch of <br> Tubes. | No. in a <br> sq. ft. | Pitch of <br> Tubes. | No. in a <br> sq. ft. | Pitch of <br> Tubes. | No. in a <br> sq. ft. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 172 | $15 / 32^{\prime \prime}$ | 128 | $114^{\prime \prime}$ | 110 <br> $11 / 16^{\prime \prime}$ <br> $11 / 8^{\prime \prime}$ |

    Quantity of Cooling Water.-The quantity depends chiefly upon its initial tenperature, which in Atlantic practice may vary from $40^{\circ}$ in the winter of temperate zone to $80^{\circ}$ in subtropical seas. To raise the temperature to $100^{\circ}$ in the condenser will require three times as many thermal units in the former case as in the latter, and therefore only one third as much cooling-water will be required in the former case as in the latter.

    | $T_{1}=$ temperature of steam entering the condenser; |  |
    | :---: | :---: |
    | $T_{0}=$ | " circulating-water entering the condenser; |
    | $T_{2}=$ " | " 6، "6 leaving the condenser; |
    | $T_{3}=$ | " water condensed from the steam: |
    | $\begin{aligned} = & \text { pounds of } \mathrm{ci} \\ & 1114+0.3 T_{1} \end{aligned}$ | culating water per lb. of steam condensed $-T_{3}$ |
    | $T_{2}-T$ |  |

    It is usual to provide pumping power sufficient to supply 40 times the weight of steam for general traders, and as much as 50 times for ships stationed in subtropical seas, when the engines are componnd. If the circulat-ing-pmop is double-acting, its capacity may be $1 / 53$ in the former and $1 / 42$ in the latter case of the capacity of the low-pressure cylinder.
    Air-pump.-The air-pump in all condensers abstracts the water condensed and the air originally contained in the water when it entered the boiler. In the case of jet-condensers it also pumps out the water of condensation and the air which it contained. The size of the pump is calculated from these conditions, making allowance for efficiency of the pump.

    Ordinary sea-water contains, mechanically mixed with it, $1 / 20$ of its volume of air when under the atmospheric pressure. Suppose the pressure in the condenser to be 2 lbs and the atmospheric pressure 15 lbs , neglecting the effect of temperature, the air on entering the condenser will be expanded to $15 / 2$ times its original volume; so that a cubic foot of sea-water, when it has ertered the condenser, is represented by $19 / 20$ of a cubic foot of water and $15 / 40$ of a cubic foot of air.

    Let $q$ be the volume of water condensed per minute, and $Q$ the volume of sea-water required to coodense it; and let $T_{2}$ be the temperature of the condenser, and $T_{1}$ that of the sea-water.
    Then $19 / 20(q+Q)$ will be the volume of water to be pumped from the condenser per minute,

    $$
    \text { and } \frac{15}{40}(q+Q) \times \frac{T_{2}+461^{\circ}}{T_{1}+461^{\circ}} \text { the quantity of air. }
    $$

    If the temperature of the condenser be taken at $120^{\circ}$, and that of seawater at $60^{\circ}$, the quantity of air will then be $418(q+Q)$, so that the total volume to be abstracted will be

    $$
    .95(q+Q)+.418(q+Q)=1.68(q+Q) .
    $$

    If the average quantity of injection-water be taken at 26 times that con. densed, $q+Q$ will equal $27 q$. Therefore, volume to be pumped from the condenser per minute $=3$ urq, nearly.
    In surface condensation allowance must be made for the water occasionally admitted to the boilers to make up for waste, and the air contained in it, also for slight leak in the joints and glands, so that the air-pump is made about half as large as for jet-condensation.
    The efficiency of a single-acting air-pump is generally taken at 0.5 , and that of a double-acting pump at 0.35 . When the temperat ur of the sea is $60^{\circ}$, and that of the (jet) condenser is $1: 0^{\circ}, Q$ being the volume of the cooling water and $q$ the volume of the condensed water in cubic feet, and $n$ the number of strokes per minute,
    The volume of the single-acting pump $=2.74\left(\frac{Q+q}{n}\right)$.
    The volume of the double-acting pump $=4\left(\frac{Q+q}{n}\right)$.
    The following table gires the ratio of capacity of crlinder or cslinders to that of the air-punp; in the case of the compound engine, the low-pressurio
    cylinder capacity ouly is taken.

    | Description of Pump. | Description of Engine. |  | Ratio. |
    | :---: | :---: | :---: | :---: |
    | Single-acting vertical. | Jet-conde | expansion $11 /$ to |  |
    |  | Sul | $\begin{array}{ll} \because & \frac{11}{3} \text { to to } 2 . \\ & \text { to } \end{array}$ | 8 to 10 10 to 12 |
    | "، " | Surface " | " ${ }^{3}$ to 5 | 12 to 15 |
    | Double-acting horizontal.. | Surface " | compound. | 15 to 18 |
    |  | Jutface "، |  | 10 to 13 13 to 16 |
    | " | Jet ${ }^{\text {Surface "، }}$ | " ${ }^{3}$ to 5 | 16 to 19 |
    | " ${ }^{\text {a }}$ ". | Surface Surface | compound ${ }^{3}$ to 5 | ${ }_{24}^{19}$ to ${ }^{24} 28$ |

    The Area through Valvesseats and past the valves should not be less than will admit the full quantity of water for condensation at a velocity not exceeding 400 ft . per minute. In practice the area is generally in excess of this.

    Area through foot-valves $=D^{2} \times S \div 1000$ square inches.
    Area through head-valves $=D^{2} \times S \div 800$ square inches.
    Diameter of discharge-pipe $=D \times \sqrt{S}+35$ inches.
    $D=$ diam. of air-pump in inches, $S=$ its speed in ft. per min.
    James Tribe (Am. Much., Oct. 8, 1891) gives the following rule for air-
    pumps used with jet-condensers: Volume of single-acting air-pump driven vy main engine = volume of low- pressure cylinder in cubic feet, multiplied by 3.5 and divided by the number of cubic feet contained in one pound of exhaust-steam of the given density. For a double-acting air-pump the same rule will apply, but the volume of steam for each stroke of the pump will be but one half. Should the pump be driven independently of the engine, then the relative speed must be considered. Volume of jet-coninser $=$ volurne of air-pump $\times 4$. Area of injection valve $=$ vol. of airir?mp in cubic inches $\div 5 \geqslant 0$.
    Circulating-pump.-Let $Q$ be the quantity of cooling water in cubic eat, $n$ the number of strokes per minute, and $S$ the length of stroke in feet.

    Capacity of circulating-pump $=Q+n$ cubic feet.

    $$
    \text { Diameter " } \quad \quad * \quad=13.55 \sqrt{\frac{Q}{n \times S}} \text { inches. }
    $$

    The following table gives the ratio of capacity of steam-cylinder or cylin cers to that of the circulating pump:

    | Description of Pump. | Description of Engine. | Ratio. |
    | :---: | :---: | :---: |
    | Single-acting. | Expansive 11/2 to 2 times. | 13 to 16 |
    |  | * 3 to 5 | 20 to 25 |
    | 6 | Compound. | 25 to 38 |
    | Double " | Expansive $11 / 2$ to 2 times. | 25 to 30 |
    | ${ }_{6}^{6}$ | ${ }^{3}$ to 5 | 36 to 46 |
    | 6 | Compound. | 46 to 56 |

    The cıear area through the valve-seats and past the valves should be such that the mean velocity of flow does not exceed 450 feet per minute. The flow through the pipes should not exceed 500 ft . per min. in small pipes and 600 in large pipes.

    For Centrifugal Circulating-pumps, the velocity of flow in the inlet and outlet pipes should not exceed 400 ft . per min. The diameter of the fan-wheel is from $21 / 2$ to 3 times the diam. of the pipe, and the speed at its periphery 450 to 500 ft . per min. If $W=$ quantity of water per minute, in American gallons, $d=$ diameter of pipes in inclies, $R=$ revolutions of wheel per min., $d=\sqrt{\frac{W}{16.44}} ;$ diam. of fan-wheel $=$ not less than $\frac{1 \% 00}{R}$. Breadth of blade at $\operatorname{tip}=\frac{W}{36 \dot{d}} . \quad$ Diam. of cylinder for driving the fan $=$ about $2.8 \sqrt{ } \sqrt{\text { diam. of pipe }}$, and its stroke $=0.28 \times$ diain. of fan.

    Eeed-pumps for Marine Engines.-With surface-condensing engines the amount of water to be fed by the pump is the amount condensed from the main engine plus what may be needed to supply auxiliary engines and to supply leakage and waste. Since an accident may happen to the surface-condenser, requiring the use of jet-condensation, the pumps of cngines fitted with surface-condensers must be sufficiently large to do duty under such circumstances. With jet-condensess and boilers using salt water the dense salt water in the boiler must be blown off at intervals to keep the density so low that deposits of salt will not be formed. Sea-water contains about $1 / 32$ of its weight of solid matter in solution. The boiler of a surfacecondensing engine may be worked with safety when the quantity of salt is four times that in sea-water. If $Q=$ net quantity of feed-water required in a given time to make up for what is used as steam, $n=$ number of times the saltness of the water in the boiler is to that of sea-water, then the gross feedwater $=\frac{n}{n-1} Q$. In order to be capable of filling the boiler rapidly each feed-pump is made of a capacity equal to twice the gross feed-water. Two feed-pumps should be supplied, so that one may be kept in reserve to be used while the other is out of repair. If $Q$ be the quantity of net feed-water in cubic feet, $l$ the length of stroke of feed-pump in feet, and $n$ the num. bei of strokes per minute,

    Diameter of each feed-pump plunger in inches $=\sqrt{\frac{550 \times Q}{n \times 8}}$.

    If $W$ be the $n$ deed-water in pounds,
    Diameter of each feed-pump plunger in inches $=\sqrt{\frac{8.9^{*} \times W}{n \times l}}$.
    An Evaporative Surface Condenser built at the Virginia Agricultural College is described by James H. Fitts (Trans. A. S. M. E., xiv. 650). It consists of two rectangular end chambers connected by a series of horizontal rows of tubes, each row of tubes immersed in a pan of water. Through the spaces between the surface of the water in each pan and the bottom of the pan above air is drawn by means of an exbaust-fan. At the top of one of the end-chambers is an inlet for steam, and a horizontal diaphragm about midway causes the steam to traverse the upper half of the tubes and back through the lower. An outlet at the bottom leads to the airpump. The condenser, exclusive of connection to the exhaust-fan, occupies a floor space of $5^{\prime} 412^{\prime \prime} \times 1^{\prime} 934^{\prime \prime}$, and $4^{\prime} 11 / 2^{\prime \prime}$ high. There are 27 rows of tubes, 8 in some and 7 in others; 210 tubes in all. The tubes are of brass, No. 20 B .W. G., $3 /^{\prime \prime}$ external diameter and $4^{\prime} 91^{\prime \prime}$ ' in length. The cooling surface (internal) is 176.5 sq . ft . There are 27 cooling pans, each $4^{\prime} 91 / 2^{\prime \prime} \times 1^{\prime} 93 /^{\prime \prime}$, and $1 \tau / 16^{\prime \prime}$ deep. These pans have galvanized iron bottoms which slide into horizontal grooves $1 / 4^{\prime \prime}$ wide and $1 / 4^{\prime \prime}$ deep, planed into the tube-sheets. The total evaporating surface is 234.8 sq . ft . W ater is fed to every third pan through small cocks, and overflow-pipes feed the rest. A wood casing connects one side with a $30^{\prime \prime}$ Buffalo Forge Co.'s disk-wheel. This wheel is belted to a $3^{\prime \prime} \times 4^{\prime \prime}$ vertical engine. The air-pump is $53 / 4^{\prime \prime}$ diameter with a $6^{\prime \prime}$ stroke, is vertical and single-acting.
    The action of this condenser is as follows: The passage of air over the water surfaces removes the vapor as it rises and thus bastens evaporation. The heat necessary to produce evaporation is obtained from the steam in the tubes, causing the stearm to condense. It was designed to condense 800 lbs . steam per hour and give a vacuum of 22 in ., with a terminal pressure in the cylinder of 20 lbs . absolute.

    Results of tests show that the cooling-water required is practically equal in amount to the steam used by the engine. And since consumption of steara is reduced by the application of a condenser, its use will actually reduce the total quantity of water required. From a curve showing the rate of evaporation per square foot of surface in still air, and also one show ng the rate when a current of air of about 2300 ft . per min. velocity is passed over its surface, the following approximate figures are taken:

    | $\underset{\mathbf{F} .}{\text { Temp. }}$ | Evaporation, lbs. per sq. ft. per hour. |  | Temp. F. | Evaporation, ltos. per sq. ft. per hour. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Still Air. | Current. |  | Still Air. | Current. |
    | $100^{\circ}$ | 0.2 | 1.1 | $140^{\circ}$ | 0.8 | 5.0 |
    | 110 | 0.25 | 1.6 | 150 | 1.1 | 6.7 |
    | 120 | 0.4 | 2.5 | 160 | 1.5 | 9.5 |
    | 130 | 0.6 | 3.5 | $1 \% 0$ | 2.0 |  |

    The Continuous Use of Condensing-water is described in a series of articles in Power, Aug.-Dec., 189\%. It finds its application in sitnations where water for ondensing purposes is expensive or difficult to obtain.
    In San Francisco J. . H. Stut cools the water after it has left the botwell by means of a system of pans upon the roof. These pans are shallow troughs of galvanized iron arranged in tiers, on a slight incline, so that the water flows back and forth for 1500 or 2000 ft ., cooling by evaporation and radiation as it flows. The pans are about 5 ft . in width, and the water as it flows has a depth of about half an inch, the temperature being reduced from about $140^{\circ}$ to $90^{\circ}$. The water from the hot-well is pumped up to the highest point of the cooling system and allowed to flow as above described, discharging finally into the main tank or reservoir, whence it again flows to the condenser as required. As the water in the reservoir lowers from evaporation, an auxiliary feed from the city mains to the condenser is operated, thereby keeping the amount of water in circulation practically constant. An accumulation of oil from the engines, with dust from the surrounding streets, makes a cleaning necessary about once in six weeks or two months. It is found by comparative trials, running condensing and non-condensing, that
    about $50 \%$ less water is taken from the city mains when the whole apparatus is in use than when the engine is run non-condensing. 22 to 23 in . of vacuum are maintained. A better vacuum is obtained on a warm day with a brisk breeze blowing than on a cold day with but a slight movement of the air.

    In another plant the water from the hot-well is sprayed from a number of fountains, and also from a pipe extending around its border, into a large pond, the exposure cooling it sufficiently for the obtaining of a good vacuum by its continuous use.

    In the system patented by Messis. See, of Lille, France, the water is discharged from a pipe laid in the form of a rectangle and elevated above a pond through a series of special nozzles. by which it is projected into a fine spray. On coming into contact with the air in this state of extreme division the water is cooled $40^{\circ}$ to $50^{\circ}$, with a loss by evaporation of only one tenth of its mass, and produces an excellent vacuum. A $3000-\mathrm{H} . \mathrm{P}$. cooler upon this system has keen erected at Lannoy, one of $2500 \mathrm{H} . \mathrm{P}$. at Madrid, and one of 1200 H.P. at Liege, as well as others at Roubaix and Tourcoing. The system could be used upon a roof if ground space were limited.

    In the " self-cooling" system of H. R. Worthington the injection-water is taken from a tank, and after having passed through the condenser is discharged in a heated condition to the top of a cooling tower, where it is scattered by means of distributing-pipes and trickles down through a cellular structure made of 6 -in. terra-cotta pipes, 2 ft . long, stood on end. The water is cooled by a blast of air furnished by a disk fan at the bottom of tho tower and the absorption of heat caused by a portion of the water being raporized, and is led to the tank to be again started on its circuit. (Eny'g News, Mareh 5, 1896.)

    In the evaporative condenser of T. Ledward \& Co. of Brockley, London, the water trickles over the pipes of the large condenser or radiator, and by evaporation carries away the heat necessafy to be abstracted to condense the steam inside. The condensing pipes are fitted with corrugations mounted with circular ribs, whereby the radiating or cooling surface is largely increased. The pipes, which are cast in sections about 76 in . long by $31 / 2 \mathrm{in}$. bore, have a cooling surface of 26 sq . ft., which is found sufficient under favorable conditions to permit of the condensation of 20 to 30 lbs. of stcam per hour when producing a vacuum of 13 lbs . per sq. in, In a condenser of this type at Rixdorf, near Berlin, a vacuum ranging from 24 to 26 in . of mercurv was constantly maintained during the hottest weather of Augast. The initial termerature of the cooling-water used in the apparatus under notice ranged from $80^{\circ}$ to $85^{\circ} \mathrm{F}$., and the temperature in the sun, to which the condenser was exposed, varied each day from $100^{\circ}$ to $115^{\circ} \mathrm{F}$. During the experiments it was found that it was possible to run one engine under a load of 100 horse-power and maintain the full vacuum without the use of any cooling. water at all on the pipes, radiation afforded by the pipes alone sufficing to condense the steam for this power.

    In Klein's condensing water-cooler, the hot water coming from the condenser enters at the top of a wooden structure about twenty feet in height, and is conveyed into a series of parallel narrow metal tanks. The water overtlowing from these tanks is spread as a thin film over a series of wooden partitions suspended vertically about $31 / 2$ inches apart within the tower. The upper set of partitions, corresponding to the number of metal tanks, reaches half-way down the tower. From there down to the well is suspended a second set of partitions placed at right angles to the first set. This impedes the rapidity of the downflow of the water, and also thoroughly mixes the water, thus affording a better cooling. A fan-blower at the base of the tower drives a strong current of air witl a velocity of about twenty feet per second against the thin film of water ruming down over the partitions. It is estimated that for an effectual cooling two thousand times nore air than water must be forced through the apparatus. With such a velocity the air absorbs about two per cent of aqueous vapor. The action of the strong air-current is twofold: first, it absorbs heat from the hot water by being itself warmed by radiation; and, secondly, it increases the evaporation, which process alisorbs a great amount of leat. These two cooling effects are different during the different seasons of the year. During the winter months the direct cooling effect of the cold air is greater, while during summer the heat absorption by evaporation is the more important factor. Taking all the year round, the effect remains very much the same. The evaporation is never so great that the deficiency of water would not be supplied by the additional amount of water resnlting from the condensed steam, while in very cold winter months it may be necessary to occasioually rid the cistern of surplus water. It was fond that the vacuum obtained by
    this continual use of the same condensing-water varied during the year between 27.5 and 28.7 inches. The great saving of space is evident from the fact that only the five-hundredth part of the floor-space is required as if cooling tanks or ponds were used. For a 100 -horse-power engine the floor-space required is about four square yards by a height of twenty feet. For one horse-power 3.6 square yards cooling-surface is necessary. The vertical suspension of the partitions is very essential. With a ventilator 50 inches in diameter and a tower 6 by $i$ feet and 20 feet high, 10,500 gallons of water per hour were cooled from $104^{\circ} \mathrm{F}$. to $68^{\circ} \mathrm{F}$. The following record was made at Mannheim, Germany: Vacuum in condenser, 28.1 inches; temperature of condensing-water entering at top of tower, $104^{\circ}$ to $108^{\circ} \mathrm{F}$.; temperature of water leaving thee cooler, $66.2^{\circ}$ to $71.6^{\circ} \mathrm{F}$. The engine was of the Sulzer compound type, of 120 horse-power. The amount of power necessary for the arrangement amounts to about three per cent of the total horse-power of the engine for the ventilator, and from one and one half to three per cent for the lifting of the water to the top of the cooler, the total being four and one half to six per cent.

    A novel form of condenser has been used with considerable success in Germany and other parts of the Continent. The exhaust-steam from the engine passes through a series of brass pipes immersed in water, to which it gives up its heat. Between each section of tubes a number of galvanized disks are caused to rotate. These disks are cooled by a current of air supplied by a fan and pass down into the water, cooling it by abstracting the heat given out by the exhaust-steam and carrying it up where it is driven off by the air-current. The disks serve also to agitate the water and thus aid it in abstracting the heat from the steam. With 85 per cent vacuum the temperature of the cooling water was about $130^{\circ} \mathrm{F}$., and a consumption of water for condensing is guaranteed to be less than a pound for each pound of steam condensed. For an engine $40 \mathrm{in} . \times 50 \mathrm{in}$., ĩ revolutions per minute, 90 lbs . pressure, there is about 1150 sq . ft . of condensingsurface. Another condenser, 1600 sq . ft . of condensing-surface, is used for three engines, $32 \mathrm{in} . \times 48 \mathrm{in}$, $27 \mathrm{in} . \times 40 \mathrm{in}$, and 30 in . $\times 40 \mathrm{in}$., respectively. -The Steamship.

    The Increase of Power that may be obtained by adding a condenser. giving a vacuum of :'6 inches of mercury to a non-condensing engine nay be approximated by cousidering it to be equivalent to a net gain of 12 pounds mean effective pressure per square inch of piston area. If $A=$ area of piston in square inches, $S=$ piston-speed in ft. per minute, then $\frac{12 A S}{33,000}=\frac{A S}{2 \tilde{5} 5}=$ H.P. made available by the vacuum. If the vacuum $=13.2 \mathrm{lbs}$. per $\mathrm{sq} . \mathrm{in} .=27.9$ in. of mercury, then H.P. $=A S \div 2500$.

    The saving of steam for a given horse-power will be represented approximately by the shortening of the cut-off when the engine is run with the condenser. Clearance should be included in the calculation. To the mean effective pressure non-condensing, with a given actual cut-off, clearance cousidered, add 3 lbs . to obtain the approximate mean total pressure, condensing. From tables of expansion of steam find what actual cut-off will give this mean total pressure. The difference between this and the original actual cut-off, divided by the latter and by 100 , will give the percentage of saving.
    The following diagram (from catalogue of H. R. Worthington) shows the percentage of power that may be gained by attaching a condenser to a noncondensing engine, assuming that the vacuum is 12 lbs . per sq. in. The diagram also shows the mean pressure in the cylinder for a given initial pressure and cut-off, clearance and compression not considered.

    The pressures given in the diagram are absolute pressures above a vacuum.
    To find the mean effective pressure produced in an engine-cylinder with 90 lbs. gauge ( $=105 \mathrm{lbs}$. absolute) pressure, cut-off at $1 / 4$ stroke: find 105 in the left-hand or initial-pressure column, follow the horizontal line to the right until it intersects the oblique line that corresponds to the $1 / 4$ cut-off, and read the mean total pressure from the row of figures directly above the point of intersection, which in this case is 63 lbs . From this subtract the mean absolute back pressure (say 3 lbs . for a condensing engine and 15 lbs . for a noncondensing engine exhausting into the atmosphere) to obtain the mean effective pressure, which in this case, for a noll-condensing engine, gives 48 los. To find the gain of power by the use of a condenser with this engine, read on the lower scale the figures that correspond in position to 48 lbs . in the upper row, in this case $25 \%$. As the diagrain does not take into consideration clearance or compression. the results are only approximate.
    

    Fig. 151.
    Evaporators and Distillers are used with marine engines for the purpose of providing fresh water for the boilers or for drinking purposes. Weir's Evaporator consists of a small horizontal boiler, contrived so as to be easily taken to pieces and cleaned. The water in it is evaporated by the steam from the main boilet's passing through a set of tubes placed in its bottom. The steam generated in this boiler is admitted to the lowpressure valve-box, so that there is no loss of energy, and the water condensed in it is returned to the main boilers.

    In Weir's Feed-heater the feed-water before entering the boiler is heated up very nearly to boiling-point by means of the waste water and steam from the low-pressure valve-box of a compound engine.

    ## GAS, PETROLEUM, AND HOT-AIR ENGINES.

    Gas-engines.-For theory of the gas-engine, see paper by Dugald Clerk, Proc. lnst. C. E. 1882, vol. lxix.; and Van Nostrand's Science Series, No. 62. See also Wood's Thermodynamics. Three standard works on gasengines are "A Practical Treatise on the 'Otto' Cycle Gas-engine," by Wm. Norris: "A Text-book on Gas, Air, and Oil Engines." by Bryan Donkin; and "The Gas and Oil Engine," by Dugald Clerk (6th edition, 1896).
    In the ordinary type of single-cylinder gas-engine (for example the Otto) known as a four-cycle engine one ignition of gas takes place in one end of the cylinder every two revolutions of the fly-wheel, or every two double strokes. The following sequence of operations takes place during four consecutive strokes: (a) inspiration during all entire stroke; (b) compression during the second (return) stroke; (c) ignition at the dead-point, and expansion during the third stroke; $(d)$ expulsion of the burnt gas during the fourth
    
    four conditions necessary to realize the best resnlts from the elastic force of gas: (1) The cylinders should have the greatest capacity with the smallest circumferential surface; (2) the speed should be as high as possitle; (3) the cut-off should be as early as possible; (4) the initial pressure should be as high as possible. In modern engines it is customary for ignition to take place, not at the dead point, as proposed by Bean de Rochas, but somewhat later, when the piston has already made part of its forward stroke. At first sight it might be supposed that this would entail a loss of power. but experience shows that though the area of the diagran is diminished, the power registered by the friction-brake is greater. starting is also made easier by this method of working. (The Simplex Engine, Proc. Inst. M. E. 1889.)
    In the Otto engine the mixture of gas and air is compressed to about 3 atnospheres. When explosion takes place the temperature suddenly rises to somewhere about $2900^{\circ} \mathrm{F}$. (Robinsou.)
    The two great sources of waste in gas-engines are: 1. The high temperature of the rejected products of combustion; 2. Loss of heat through the cylinder walls to the water-jacket. As the temperature of the water-jacket is increased the efficiency of the engine beconmes higher.
    With ordinary coal-gas the consumption may be taken at $20 \mathrm{~cm} . \mathrm{ft}$. per hour per I.H.P., or 24 cu . ft . per brake H.P. The consumption will vary with the quality of the gas. When burning Dowson producer-gas the consumption of antlracite (Welsh) coal is about 1.3 lbs. per I.H.P. per hour for ordinary working. With large twin engines, 100 II.P., the consumption is reduced to about 1.1 lb . The mechanical efficiency or B.H.P. + I.H.P. in ordinary engines is about $85 \%$; the friction loss is less in larger engines.
    Efficiency of the Gas-engine。 (Thurston on Heat as a Form of Energy.)

    Heat transferred into useful work..................................... $\quad 52$
    "t the jacket-water...........
    "
    " lost in the exhanst-gas................................. 16
    " "b by conduction and radiation 15
    $17 \%$

    83\%
    This represents fairly the distribution of hear in the best forms of gasengine. The consumption of gas in the best engines ranges from a minimum of 18 to 20 cu . ft. per I.H.P. per hour to a maximum exceeding in the smaller engines $25 \mathrm{cu} . \mathrm{ft}$. or 30 cu . ft. In emall engines the consumption per brake horse-power is one third greater than these figures.

    The report of a test of a 170-H.P. Crossley. (Otto) gas-engine in England, $189:$, using producer-gas, shows a consumption of but .85 lb . of coal per H.P. hour, or an absolute combined efficiency of $21.3 \%$ for the engine and producer. The efticiency of the engine alune is in the neighborhood of $25 \%$.

    The Taylor gas-producer is used in connection with the Otto gas-engine at the Otto Gas-engine Works in Philadelphia. The only loss is due to radiation through the walls of the producer and a small amount of heat carried off in the water from the scrubber. Experiments on a $100-$ H.P. ellgine show a consumption of $97 / 100 \mathrm{lb}$. of carbon per I.H.P. per hour. This result is superior to any ever obtained on a steam-engine. (Iron Age, 1893.)

    Tests of the Simplex Giasmengine. (Proc. Inst. M. E. 1889.) Cylinder $\tau / 8 \times 153 / 4 \mathrm{in}$., speed 160 revs. per min. Trials were made with town gas of a heating value of $60 \%$ heat-units per cubic foot, and with Dowson gas, rich in CO, of about 150 heat-units per cubic foot.

    |  | Town Gas. |  |  | Dowson Gas. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1. | 2. | 3. |  | 2. |  |
    | Effective H.P. | 6.\%0 | 8.67 | 9.38 | \%.12 | 3.61 | 5.26 |
    | Gas per H.P. per hour, cu. ft.. | 21.55 | 20.12 | 20.73 | 88.03 | 114.85 | 97.88 |
    | Water per H.P. per hour, lbs. | 54.7 | 44.4 | 43.8 | 58.3 |  |  |
    | Temp. water entering, F... | $51^{\circ}$ | $51^{\circ}$ | $51^{\circ}$ | $48^{\circ}$ |  |  |
    | " effluent | $135^{\circ}$ | $144^{\circ}$ | 1720 | $144{ }^{\circ}$ |  |  |

    The gas volume is reduced to $32^{\circ} \mathrm{F}$. and 30 in barometer. A $50-\mathrm{H} . \mathrm{P}$. engine working 35 to 40 effective H.P. with Dowson generator consumed 51 lbs. English anthracite per hour, equal to 1.48 to 1.3 lbs . per effective H.P. A 16 H.P. engine working 12 H.P. used 19.4 cm . ft. of gas per effective H.P.

    A 320-1H. Fr $^{\text {P }}$. Gaserengine. - The flour-mills of M. Leblanc, at Pantin, France, have been provided with a 320 -horse-power fuel-gas engine of the Simplex type. With coal-gas the machine gives 450 horse-power. There is one cylinder, 34.8 in . dianl.; the piston-stroke is 40 in ; and the speed 100 revs.
    per min. Special arrangements have been devised in order to keep the different parts of the machine at appropriate temperatures. The coal used is $0.81: 1 \mathrm{~b}$. per indicated or 1.03 lb . per brake horse-power. The water used is $83 / 4$ gallons per brake horse-power per hour.
    Test of an otto Tasengine. (Jour. Fr. I., Feb. 1890, p. 115.)-Engine 7 H.P. nominal; working capacity of cylinder 2594 cu. ft.; clearance space . $1796 \mathrm{cu} . \mathrm{ft}$.

    |  | Heat-units. <br> Transferred into work Taken by jacket-water. |  |
    | :---: | :---: | :---: |
    | Pressure of gas, in. of water... 3.06 | Composition of the gas: |  |
    | Revolution per inin., av'ge.... 161.6 | By Volume. | By Weight. |
    | Explosions missed per min., average $\qquad$ | $\mathrm{CO}_{2} \ldots \ldots . . . .{ }^{\text {a }}$. $0.50 \%$ | 1.920\% |
    | Mean effective pressure, libs. | $\mathrm{C}_{2} \mathrm{H}_{4} \ldots \ldots \ldots \ldots .{ }^{\text {a }}$. 3.2 | 10.520 |
    | per sq. in. ... ............. 59. | O............. 1.00 | 2.79\% |
    | Horse-power, indicated....... 4.94 |  | 15.419 |
    | Work per explosion, foot- | $\mathrm{CH}_{4} \ldots \ldots . . . .{ }^{27.18}$ | 38.042 |
    | pounds ......... . ...... ......2204. |  | 9.0 2.1 |
    | Explosions per minute........ 74. | 9.06 | 23.273 |
    | a | 99.96 | 99.995 |

    Gest of the Clerk Gas-engine. (Proc. Inst. C. E. 188?, vol. Ixix.)-
    Cylinder $6 \times 12 \mathrm{in}$., 150 revs. per inm.; mean available pressure, $70.1 \mathrm{lbs} ., 9$ I.H.P.; maximum pressure, 220 lbs. per sq. in. above atmosphere; pressure before ignition, 41 lbs . above atm.; temperature before compression, $60^{\circ} \mathrm{F}$., after compression, $313^{\circ} \mathrm{F}$.; temperature after ignition culculated from pressure, $2800^{\circ} \mathrm{F}$.; gas required per I.H.P. per hour, 22 cu . ft.

    More Recent Tests of gas-engines, 1898, have given higher economical results than those above quoted. The gas-consumption (city gas) has been as low as 15 cu. ft. per I.H.P. per hour, and the efficiency as high as $2 \% \%$ of the heating value of the gas. The principal improvement in practice has been the use of much higher compression of the working charge.

    Combustion of the das in the ©two wnoine.-John Imray, in discussiou of Mr. Clerk's paper on Theory of the Gas-engine, says: The change which Mr. Otto introduced, and which rendered the engine a success, was that, instead of burning iu the cylinder an explosive mixture of gas and air, he burned it in company with, and arranged in a certain way in respect of, a large volume of incombustible gas which was heated by it, and which diminished the speed of cumbustion. W. R. Bonsfield, in the same discussion, says: In the Oito engine the charge varied from a charge which was an explosive mixture at the point of ignition to a charge which was merely an inert fluid near the piston. When ignition took place there was n explosion close to the point of ignition that was gradually communicated throughout the mass of the cylinder. As the ignition got fartler a way from the primary point of ignition the rate of transmission became slower, and if the engine were not worked too fast the ignition should gracually catch up to the piston during its travel, all the combustible gas being thus consumed. This theory of slow combustion is, however, disputed by Mr. Clerk, who holds that the whole quantity of combustible gas is ignited in an instant.
    Tenperatures and Pressures developed in a Gasangine. (Clerk on the Gas-engine.)-Mixtures of ain' and Oluham coal-gas. 'Memper-
    ature before explosion, $15^{\circ} \mathrm{C}$.

    | Mixture. |  | Max. Press above Atmos., Ibs. per sq. in. | Temp. of Explo sion calculated from observed Pressure. | Temp. of Explosion if all Heat were evolved. |
    | :---: | :---: | :---: | :---: | :---: |
    | Gas. | Air. |  |  |  |
    | 1 vol. | 14 vols. | 40. |  |  |
    | 1 " | 13 " | 51.5 | $1033{ }^{\text {c. }}$ | $1786^{\circ} \mathrm{C}$. |
    | 1 ، 6 | 12 " | 60. | 1202 | 2058 |
    | 1 " |  | 61. | 1220 | 2228 |
    | 1 ، | 9 7 | ${ }^{78} 8$. | 1557 | 2670 |
    | 1 " | 6 ، | ${ }_{90}{ }^{\circ}$ | 1733 | 3334 |
    | 1 " | 5 ، | 91. | 1812 | 3808 |
    | " | 4 " | 80. | 1595 |  |
    | Use | Car | ted Air in | Gasmencimime | ir |

    gasoline or volatile petroleum spirit of low sp. gr. 0.65 to $0 . \%$, liberates some of the gasoline, and the air thus satmrated with vapor is equal in heatjug or lighting power to ordinary coal-gas. It may therefore be used as a fuel for gas-engines. Since the vapor is given off at ordinary temperatures gasoline is very explosive and dangerous, and shonld be kept in an underground tank ont of doors. A defect in the use of carburetted air for gasengines is that the more volatile products are given off first, leaving an oily residue which is often useless. Some of the substances in the oil that are taken up by the air are apt to form troublesome deposits and incrustations when bumed in the engine cylinder.

    The otto Gasolinemengino. (Engig News, May 4, 1893.)-It is clained that where but a small gasoline-engine is used and the gasoline longht at retail the liquid fuel will be on a par with a steam-engine using 6 lbs. of coal per horse-power per hour, and coal at $\$: 3.50$ per ton, and will besides save all the handling of the solid fuel and ashes, as well as the attendance for the boilers. As very few small steam-engines consume less than 6 lbs. of coal per hour, this is an exceptional showing for economy. At 8 cts. per gallon for gasoline aud $1 / 10$ gal. required per H.P. per hour, the ioust per H.P. per hour will be 0.8 cent.

    Gasoline-engines are coming into extensive use (1808). In these engines the gasoline is pumped from an nnderground tank, located at some distance outside the engine-room, and led through carefully soldered pipes to the working cylinder. In the combustion chamber the gasoline is sprayed into a current of air, by which it is vaporized. The mixtme is then compressed a!d ignited by an electric spark. At no time does the gasoline come in con." tact with the air outside of the engine, nor is there any flame or burning gases outside of the cylinder.
    -Naphthamenuines are in use to some extent in small yachts and launches. The naphtla is vaporized in a boiler, and the vapor is used expansively in the engine-cylinder, as steam is used; it is then condensed and returned to the boiler. A portion of the naphtha vapor is used for fuel under the boiler. According to the circular of the builders, the Gas Engine and Power Co. of New York, a $2-H . P$. engine requiles from 3 to 4 quarts of naphtha per hour, and a 4-H.P. engine from 4 to 6 quarts. The chief advantages of the naphtla-engine and boiler for launches are the saving of weight and the quickness of operation. A 2 -H.P. engine weiglis 200 lbs., a $4-H . P .300$ lbs. It takes only about two minutes to get under headway. (Moder'u Meclianism, p. 2\%0.)

    Hotmarir (or Caloric) Engines.-Hot-air engines are used to some extent, but their bulk is enormous compared with their effective power. For an account of the largest hot-air engine ever built (a total failure) see Church's Life of Eriesson. For theoletical investigaton, see Rankine's Steam-engine and Rontgen's 'Thermodynamics. For description of constructions, see Appleton's Cyc. of Meclianics and Modern Mechanism, and Babcock on Substitntes for Steam, Trans. A. S. M. E., vii., p. 693.

    Test of a Fiotwair Engine (Robinson).-A vertical double-cylinder (Caloric Ingine Co.'s) 12 nominal H.P. engine gave 20.19 I. H.P. in the working cylinder and 11.38 I.H.P. in the pump, leaving 8.81 net I.H.P.; while the effective brake H.P. was 5.9, giving a mechanical etticiency of $67 \%$. Consumption of coke, 3.7 lbs. per brake H.P. per hour. Mean pressure on pistons 15.37 lbs. per square incl, and in pumps 15.9 lbs , the area of working cylinders being twice that of the pumps. The hot air supplied was about $1160^{\circ} \mathrm{F}$. and that rejected at end of stroke about $890^{\circ} \mathrm{F}$.
    rilie Priestman Petwoleuminerngine. (Jour. Frank. Inst., Feb. 1893) - The following is a description of the operation of the engine: Any ordinary higl-test (usnally $150^{\circ}$ test) oil is forced under air-pressure to an atomizer, where the oil is met by a current of air and broken up into atoms and sprayed into a mixer, where it is mixed with the proper proportion of supplementary air and sufficiently heated by the exhaust fion the cylinder passing around this chamber. The mixture is then drawn by suction into the cylinder, where it is compressed by the piston and ignited by an electric sparlk, a governor controlling the supply of oil and air proportionately to the work performed. The burnt products are discharged through an ex-haust-valve which is actuated by a cam. Part of the air supports the combustion of the oil, and the heat generated by the combustion of the oil expands the air that remains and the prodncts resulting from the explosion, and thms develops its power from air that it takes in while running. In other words, the engine exerts its power by inhaling air, heating that air, and expelling the products of combustion when doue with. In the largest engines only the $1 / 250$ part of a pint of oil is used at any one time, and in
    the smallest sizes the fuel is prepared in correct quantities varying from $1 / 7000$ of a pint upward, according to whether the engine is rmming on light or full duty. The cycle of operations is the same as that of the Otto gasengine.

    Trials of a $\mathbf{5}$-H.P. Priestman Petroleum-engine. (Prof. W. C. Unwin, Proc. Inst. C.E. 1892.)-Cylinder, $81 / 2 \times 12$ in., making normally 200 revs. per min. Two oils were used, Russian and American. The more important results were given in the following table:

    |  | Trial V. <br> Full <br> Power. | Trial I. <br> Full <br> Power. | Trial IV. Full Power. | Trial II. Half Power. | Trial III. Light. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Oil used.............. . $\{$ | Daylight. | Russolene. | Russoleue. | Russolene. | Russolene. |
    | Brake H.P |  | 6.765 | 6.882 | 3.62 |  |
    | I.H.P.................. | 9.369 | 7.408 | 8.332 | 4.70 | 0.889 |
    |  | 0.824 | 0.91 | $0.8 \% 6$ | 0.769 |  |
    | hour, 1b................ | 0.842 | 0.946 | 0.288 | 1.381 |  |
    | Oil used per indicated |  |  |  |  |  |
    | H.P. hour, lb............ | 0.691 | ${ }_{31} 0.864$ | 0.810 | 1.063 | 5. 334 |
    | Lb. of air per lb. of oil.. | 33.4 | 31.7 | 43.2 | 21.7 | 10.1 |
    | Mean explosion pressure, lbs. per sq. in........... | 151.4 | 134.3 | 128.5 | 48.5 | 9.6 |
    | Mean compression pressure, lbs. per sq. in .. | 35.0 | 27.6 | 26.0 | 14.8 | 6.0 |
    | Mean terminal pressure, lbs. per sq. in........... | 35.4 | 23.7 | 25.5 | 15.6 |  |

    To compare the fuel consumption with that of a steam-engine, 1 lb . of oil inight be taken as equivalent to 11/2 lbs. of coal. Then the consumption in the oil-engine was equivalent, in Trials I., IV., and V., to $1.42 \mathrm{lbs} ., 1.48 \mathrm{lbs}$., and 1.26 lbs . of coal per brake horse-power per hour. From Trial IV. the following values of the expenditure of heat were obtained:

    Per cent.

    | Useful work at brake. | Per cent |
    | :---: | :---: |
    | Engine friction........ | 2.81 |
    | Heat shown on indicator-diagram. | 16.12 |
    | Rejected in jacket-water | 47.54 |
    | Radiation and unaccounted for. | 26.72 |
    |  |  |
    | Total... |  |

    ## LOCOMOTIVES.

    Resistance of Trains. - Resistance due to Speed.-Various formulæ and tables for the resistance of trains at different speeds on a straight level track have been given by different writers. Among these are the following: By George R. Henderson (Proc. Engrs. Club of Phila., 1886):

    $$
    R=0.0015\left(1+v^{2} \div 650\right)
    $$

    in which $R=$ resistance in lbs. per ton of 2940 lbs . and $v=$ speed in miles per hour.

    Speed in miles per hour:
    $\begin{array}{llllllllllll}5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60\end{array}$
    Resistance in pounds per ton of $20 c 0$ lbs.:
    $\begin{array}{llllllllllll}3.1 & 3.4 & 4 . & 4.8 & 5.8 & \ddots .1 & 8.6 & 10.2 & 12.1 & 14.3 & 16.8 & 19.2\end{array}$
    By D. L Barnes (Eug. Mag.), June, 1894:

    | Speed, miles per hnur | $\because . . .$. | 50 | 60 | 60 | 80 | 90 | 100 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | Resstance, pounds per gross ton.. | 12 | 12.4 | 13.5 | 15 | 17 | 20 |  |

    By Enginecring News, March 8. 1594 :
    Resistance in lbs. per ton of 2000 lbs. $=1 / 4 v+4$.

    | Speed | $\ldots$ | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | 70 | 80 | 30 | 100 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllll}\text { Resistance.. } & 31 / 4 & 4.5 & 53 / 4 & 7 & 81 / 4 & 9.5 & 103 / 4 & 12 & 131 / 4 & 14.5 & 17 & 19.5 & 29 & 24.5 & 27\end{array}$

    By Baldwin Lıocomotive Works:
    Resistance in lbs. per ton of $8000 \mathrm{lbs}=3+v \div 6$.
    Speed....... $5.510 \begin{array}{lllllllllllllll} & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 & 70 & 80 & 90 & 100\end{array}$ $\begin{array}{llllllllllllllllllllll}\text { Re-istance. } & 3.8 & 4.7 & 5.5 & 6.3 & 7.2 & 8 & 8.8 & 9.7 & 10.5 & 11.3 & 12.2 & 13 & 14.7 & 16.3 & 18 & 19.7\end{array}$

    The resistance due to speed varies with the condition of the track, the number of cars in a train, and other conditions.

    For tables slowing that the resistance varies with the area exposed to the resistrmce and friction of the ail per ton of loads, see Dashiell, 'Trans: A. S. M E , vol. xiii. p. 3íl.
    P. H Dudley (Bulletin International Ry. Congress, 1900, p. 1~34) shows that the coudition of the track is an important factor of train resistance which has not hitherto been taken account of. The resistance of heavy trains on the N. Y. Central R. R. at $: 0$ milea an hour is only about $31 / \mathrm{lbs}$ per ton on smooth $80-\mathrm{lb} .51 / 8$-in. rails. The resistance of an 80 -car freight train, 60.000 lbs per car, as given by indicator cards, at speeds between 15 and 25 miles per bour is represented by the formula $R=1+1 / 8 V$, in which $R=$ resistance in lbs. per ton and $V=$ miles per hour.

    Resistrance due to Grade..-The resistance due to a grade of 1 ft . par mile is, per ton of $2000 \mathrm{lbs}, 2000 \times \frac{1}{6250}=0.3 \% 88 \mathrm{lb}$. per ton, or if $\mathrm{Rg}=$ resistance in lbs. per ton due to grade and $G=f t$. per mile. $R_{g}=0.3: 88 G$.

    If the grade is expressed as a percentage of the length, the resistance is 20 los per ton for each per cent of grade.

    Resistance due to Curves.-Mr. Henderson gives the resistance due to curvature as 0.5 lb . per ton of 2000 lbs. per degree of the curve. (For definition of degrees of a railroad curve see p. 5.3. )

    If $c$ is the number of degrees, Re the resistance in lbs. per ton $=0.5 r$. The Baldwin Locomotive Works take the approximate resistance due to each degree of curvature as that due to a straight grade of $11 / 2 \mathrm{ft}$. per inile. This correspouds to $R c=0.568: c$.

    Rcsistunce due to Acceleration. -This may be calculated by means of the ordinary formulæ for acceleration, as follows :

    Let $V_{1}=$ velocity in ft. per second at the beginning of a mile run.
    $V_{2}=$ velocity at the end of the mile.
    $1 / 2\left(V_{2}-V_{1}\right)=$ average velocity during the mile.
    $T^{\prime}=5: 50 \div 1 \%\left(V_{2}-V_{1}\right)=$ time in seconds required to run the mile.
    $w=$ weight oŕr the train in lbs. $W=$ weight in tons.
    $f=$ resistance in lbs. due to acceleration $=\frac{w}{g} \frac{\left(V_{2}-V_{1}\right)}{T}$

    $$
    =-\frac{w}{3.2 .2} \times \frac{\left(V_{2}-V_{1}\right)^{2}}{10,560}=.005883 \mathrm{H}^{\top}\left(\mathrm{J}_{2}-V_{1}\right)^{2}
    $$

    $S=$ increase of speed in miles per hour ; $\left(\Gamma_{2}-V_{1}\right)^{2}=S^{2} \times(22 / 15)^{2}$.
    $R a=$ resistance in lbs. pel toll $=.01065 \mathrm{~S}^{2}$.
    Totrl Resistance.-The total resistance in lbs. per ton of 2000 lbs . due to speed, to grade, to curves, and to acceleration is the sum of the resistances calculated above. Taking the Baldwin Locomotive Works' rules for speed and curvature, we have

    $$
    R_{t}=\left(3+\frac{v}{6}\right)+0.3788 G+0.5682 c+.01265 S^{2}
    $$

    in which $R t$ is the resistance in lbs per ton of $2000 \mathrm{lbs} ., v=$ speed in miles per hour, $G=$ grade in $f t$. per mile $\because=$ degrees of curvature, $S=$ rate of increase of speed in miles per hour in a run of one mile.

    Resistance due to Frietion.-In the above formula no account has been taken of the resistance to the fliction of the working parts of the engine, nor to the friction of the engine and tender on curves due to the rigid wheel bases. No satisfactory formula can be given for these resistances Mr. Henderson takes them as being proportional to the tractive power, so that, if the total tractive power be $P$, the effective tractive is $u P$,
    and the resistance $(1-u) P$, the value of the coefficient $u$ being probably about 0.8.
    The Baldwin Locomotive Works in their "Locomotive Data" take the total resistance on a straight level track at slow speeds at from 6 to 10 lbs. per ton and in a communication printed in the fourth edition (1898) of this Pocket-book, p. 10ヶ6, say: "We know that in some cases, for instance in mine construction, the frictional resistance has been shown to be as much as 60 lbs . per ton at slow speed. The resistance should be approximated to suit the conditions of each iudividual case, and the increased resistance due to speed added thereto."
    Holmes on the Steam-engine, p. 142, says: "The frictional resistance to uniform motion of the whole train, including the engine and tender, is usually expressed by giving the direct pull in pounds necessary in order to propel each ton's weight of the train along a level line at slow speed. The pull varies with the condition of the line, the state of the surface of the rails, the state of the rolling stock, and the speed. If $M$ be the speed in miles per hour, and $T^{\prime}$ the weight of the train in tons [2240 lbs.] exclusive of engine and tender, the resistance to uniform motion may be expressed by the formula

    $$
    R=[6+0.3(M-10) T] .
    $$

    If $T_{1}$ be the weight of the engine and tender, the corresponding resistance is

    $$
    R_{1}=\left[12+0.3(M-10) T_{1}\right],
    $$

    which expression includes the friction of the mechanism of the engine.
    Holmes also says that a strong side wind by pressing the tires of the wheels against the rails may increase the frictional resistance of the train by as much as 20 per cent.

    Hauling Capacity due to Adhesion.- The limit of the hauling capacity of a locomotive is the adhesion due to the weight on the driving wheels. Holmes gives the adhesion, in English practice, as equal to 0.15 of the load on the driving wheels in ordinary dry weather, but only $0.0 \hat{i}^{\prime \prime}$ in damp weather or when the rails are greasy. In American practice it is generally taken as from $1 / 4$ to $1 / 5$ of the load on the drivers. The hauling capacity at slow speed on a track of different grades may be calculated by the following formula:
    Let $T=$ tons of 2000 lhs , locomotive and train, per 1000 lbs . load on drivers, $a=$ the reciprocal of the coefficient of adhesion, $g=$ the per cent of grade, $R=$ the frictional resistance in lbs, per ton. Then $T=\frac{1000 \div a}{R+20 g}$.

    From this formula the following table has been calculated:
    $\begin{array}{lllllllllllll}\text { Grade Per Cent, } & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 5 & 6 & 7\end{array}$
    Tons Hauling Capacity per 1000 lbs . Weight on Drivers.
    

    Tractive Power of a Locomotive.-Single Expansion.
    Let $P=$ tractive power in lbs.
    $p=$ average effective pressure in cylinder in lbs. per sq. in.
    $S=$ stroke of piston in inches.
    $d=$ diameter of cylinders in inches.
    $D=$ diameter of driving-wheels in inches. Then

    $$
    P=\frac{4 \pi d^{2} p S}{4 \pi D}=\frac{d^{2} p S}{D}
    $$

    The average effective pressure can be ohtained from an indicator-diagram, or by calculation, when the initial prescure and ratio of expansion are known, together with the other properties of the valve-motion. The sub joined table from "Auchincloss" gives the proportion of mean effective pressure to boiler-pressure above atmosphere for various proportions of cut-off.

    | Stroke, Cut off at- | $\begin{aligned} & \text { M.E P. } \\ & \text { (Boiler- } \\ & \text { pres. }=1 \text { ) } \end{aligned}$ | Stroke, Cut of at | $\begin{gathered} \text { M.E.P. } \\ \begin{array}{c} \text { Boiler } \\ \text { pres. }=1 \end{array} \end{gathered}$ | Stroke <br> Cut off at- | $\begin{aligned} & \text { M.E.P. } \\ & \text { (Boiler- } \\ & \text { pres. }=1 \text { ). } \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & .1 \\ & .125=1 / 6 \\ & .15 \\ & .2 \\ & .25=1 / 4 \\ & .3 \end{aligned}$ | $\begin{aligned} & .15 \\ & .2 \\ & .24 \\ & .28 \\ & .32 \\ & .46 \\ & .46 \end{aligned}$ | $.333=1 / 3$ $.375=3 / 8$ .45 .55 .55 | $\begin{aligned} & .5=1 / 2 \\ & .55 \\ & .57 \\ & .6 \cdot \\ & .67 \\ & .72 \end{aligned}$ | $.685=5 / 8$ $.666=3 / 3$ .7 $.75=3 / 4$ $.8 \%$ .80 | $\begin{aligned} & .79 \\ & .82 \\ & .85 \\ & .89 \\ & .93 \\ & .98 \end{aligned}$ |

    These values were deduced from experiments with an English locomotive by Mr. Gooch. As diagrams vary so much fron different causes. this table will only fairly represent practical cases. It is evident that the cut-off must be such that the boiler will be capable of supplying sufficient steam at the given speed.

    Compound Locomotives.-The Baldwin Locomotive Works give the following formulæ for compound engimes of the Vauclain four-cylinder type:

    $$
    \begin{aligned}
    & T=\frac{C^{2} S \times \ddot{3} P}{D}+\frac{c^{2} S \times 1 / 4 P}{D} \\
    & T=\text { tractive power in lbs. } \\
    & C=\text { diam. of high-pressure cylinder in ins. } \\
    & c=\text { low } \\
    & P=\text { boiler pressure in lbs. } \\
    & S=\text { stroke of pistion in ins. } \\
    & D=\text { diam. of driving-wheels in ins. }
    \end{aligned}
    $$

    For a two-cylinder or cross-compound engine it is only necessary to consider the high pressure cylinder, allowing a sufficient decrease in boiler pressure to compensate for the necessary back-pressure. The formula is

    $$
    T=\frac{C^{2} S \times 2 / 3 P}{D} .
    $$

    Efficiency of the Mechanism of a Locomotive.-Frank C. Wagner (Proc. A. A. A. S., 1900, p. 140) gives an account of some dy namometer tests which indicate that in ordinary freight service the power used to drive the locomotive and tender and to overcome the friction of the mechanism is from $10 \%$ t? $35 \%$ of the total power developed in the steam-cylinder. In one test the weight of the locomotive and tender was $16 \%$ of the total weight of the train, while the power consumed in the locomotive and tender was from $30 \%$ to $33 \%$ of the indicared horse power.
    The Size of Locomotive Cylinders is usually taken to be such that the engine will just overcome the adhesion of its wheels to the rails under favorable circumstances.
    The adhesion is taken by a committee of the Am. Ry. Master Mechanics' Assn. as 0.25 of the weight on the drivers for passenger engines, 0.24 for freight, and 0.22 for switching engines : and the mean effectire pressure in the cylinder, when exerting the maximum tractive force, is taken at 0.85 of the boiler-pressure.
    Let $W=$ weight on drivers in lbs. $; P=$ tractive force in lbs., $=$ say 0.25 W ; $p_{1}=$ boiler-pressure in lbs. per sq. in. $; p=$ mean effective pressure, $=085 p_{1} ;$ $a=$ diam. of cylinder, $S=$ length of stroke, and $D=$ diam. of drivingwheels, all in inches. Then

    Whence

    $$
    \begin{aligned}
    & W=4 P=\frac{4 d^{2} p S}{D}=\frac{4 d^{2} \times 0.85 p_{1} S}{D} \\
    & d=0.5 \sqrt{\frac{D W}{p S}}=0.542 \sqrt{\frac{D W}{p_{2} S}}
    \end{aligned}
    $$

    Von Borries's rule for the diameter of the low-pressure cylinder of a compound locomotive is $d^{2}=\frac{2 Z D}{p h}$,
    where $d=$ diameter of 1 p. cylinder in inches;
    $D=$ diameter of driving-wheel in inches;
    $p=$ mean effective pressure per sq. in., after deductir, internal machine friction;
    $h=$ stroke of piston in inches;
    $Z=$ tractive force required, usually 0.14 to 0.16 of the adhesion.
    The value of $p$ depends on the relative volume of the two cylinders, and from indicator experiments may be taken as follows:
    Class of Engine.
    Ratio of Cylinder Volumes.
    Large-tender eng's $1: 2$ or $1: 2.05$
    Tank-engines......
    1:2 or 1:2.2
    $p$ in percentage of Boiler-pressure.

    42
    40
    $p$ for Boiler-press ure of 176 lbs . 74 71

    Horse-power of a Locomotive. - For each cylinder the horsepower is H.P. $=p L a N \div 33,000$, in which $p=$ mean effective pressure, $L$ $=$ stroke in feet, $c=$ area of cylinder $=1 / 4 \pi d^{2}, N=$ number of single strokes per minute, $L N=$ piston speed, ft . per min. Let $M=$ speed of train in miles per hour, $S=$ length of stroke in inches, and $D=$ diameter of driving-wheel in inches. Then $L N=M \times 88 \times 2 S \div \pi D$. Whence for the two cylinders

    $$
    \frac{2 \times p \times 1 / 4 \pi d^{2} \times 1 \pi 6 S \times M}{\pi D \times 33,000}=\frac{p d^{2} S M}{375 D}
    $$

    The Size of Locomotive Boilers. (Forney's Catechism of the Locomotive.)-They should be proportioned to the amount of adhesive weight and to the speed at which the locomotive is intended to work. Thus a locomotive with a great deal of weight on the driving-wheels could pull a heavier load, would have a greater cylinder capacity than one with little adhesive weight, would consume more steam, and therefore should have a larger boiler.

    The weight and dimensions of locomotive boilers are in nearly all cases determined by the limits of weight and space to which they are necessarily confined. It may be stated generally that within these limits a locomotive boiler canuot be made too large. In other words, boilers for locomotives should always be made as large as is possible under the conditions that determine the weight and dimensions of the locomotives. (See also Holmes on the Steam-engine, pp. 371 to 377 and 383 to 389, and the Report of the Am. RJ. M. M. Assn. for 189 , pp. 218 to $23:$.)

    Holmes gives the following from English practice :
    Evaporation, 9 to 12 lbs. of water from and at $212^{\circ}$.
    Ordinary rate of combustion, 65 lbs . per sq. ft. of grate per hour.
    Ratio of grate to heating surface, $1: 60$ to 90 .
    Heating surface per 1 lb . of coal burnt per hour, 0.9 to 1.5 sq . ft.
    Qualities Lssential for a Free-steaming Liocomotive. (From a paper by A. E. Mitchell, read before the N. Y. Railroad Club; Eng'g News, Jan. 24, 1891.)-Square feet of boiler-heating surface for bituminous coal should not he less than 4 times the square of the diameter in inches of a cylinder 1 inch larger than the cylinder to be used. One tenth of this should be in the fire-box. On anthracite locomotives more heatingsurface is required in the fire-box, on account of the larger grate-area required, but the heating-surface of the flues should not be materially decreased.

    Wootten's Locomotive. (Clark's Steam-engine; see also Jour. Frank. Inst. 1891, and Modern Mechanism, p. 485.)-J. E. Wootten designed and constructed a locomotive boiler for the combustion of anthracite and lignite, though specially for the utilization as fuel of the waste produced in the mining and preparation of anthracite. The special feature of the engine is the fire-box, which is made of great length and breadth, extending clear over the wheels, giving a grate-area of from 64 to 85 sq . ft. The draught diffused over these large areas is so gentle as not to lift the fine particles of the fuel. A number of express-engines having this type of boiler are engaged on the fast trains between Philadelphia and Jersey City. The fire-box shell is 8 ft . 8 in . wide and 10 ft .5 in . long; the fire-box is $8 \times 91 / 2 \mathrm{ft}$., making 76 sq . ft . of grate-area. The grate is composed of bars and water-tubes alternately. The regular types of cast-iron shaking grates are also used. The height of the fre-box is only 2 ft .5 in . above the grave. The grate is terminated by a bridge of fire-brick, beyond which a combustion-chamber, 27 in . long, leads to the flue-tubes, about 184 in number, $13 / 4 \mathrm{in}$. diam. The cylinders are

    21 in . diam., w'th a stroke of 22 inches. The driving-wheels, four-coupled, are 5 ft .8 in . diam. The engine weighs 44 tons, of which 29 tons are on driving wheels. The heating-surface of the fre-box is 135 sq. ft., that of the flue-tubes is $98 \%$ sq. $\mathrm{ft} . ;$ together, 1117 sq . ft., or 14.7 times the grate-area. Hauling 15 passenger-cars, weighing with passengers 360 tons, at an average speed of 42 miles per hour, over ruling gradients of 1 in 89 , the engine consumes 62 lbs . of fuel per mile, or $341 / 4 \mathrm{lbs}$. per sq . ft . of grate per hour.

    Grate-surface, Smoke-stacks, and Exhaust-nozzles for Locomotives. (Am. Mach., Jan. 8, 1891.)-F For grate-surface for anthracite coal: Multiply the displacement in cubic feet of one piston during a stroke by 8.5 ; the product will be the area of the grate in square feet.
    For bituminous coal: Multiply the displacement in feet of one piston during a stroke by $61 / \frac{1}{2}$; the product will be the grate-area in square feet for engines with cylinders 12 in. in diameter and upwards. For engines with smaller cylinders the ratio of grate-area to piston-displacement should be $71 / 3$ to 1 , or even more, if the design of the engine will admit this proportion.

    The grate-areas in the following table have been found by the foregoing rules, and agree very closely with the average practice:

    Smoke-stacks.-The internal area of the smallest cross-section of the stack should be $1 / 17$ of the area of the grate in soft-coal-burning engines.
    A. E. Mitchell, Supt. of Motive Power of the N. Y. L. E. \& W. R. R., says that recent practice varies from this rule. Some roads use the same size of stack, $131 / 2 \mathrm{in}$. diam. at throat, for all engines up to 20 in . diam. of cylinder:

    The area of the orifices in the exhaust-nozzles depends on the quantity and quality of the coal burnt, size of cylinder, construction of stack, and the condjition of the outer atmosphere. It is therefore impossible to give rules for computing the exact diameter of the orifices. All that can be done is to give a rule by which an approximate diameter can be found. The exact diameter can ouly be found by trial. Our experience leads us to believe that the area of each orifice in a double exhaust-nozzle should be equal to $1 / 400$ part of the grate-surface, and for single nozzles $1 / 200$ of the grate-surface. These ratios have been used in finding the diameters of the nozzles given in the following table. The same sizes are often used for either hard or soft coal-burners.

    Size of Cylinders, in inches.

    |  |
    | :--- |
    | $12 \times 20$ |
    | $13 \times 20$ |
    | $14 \times 20$ |
    | $15 \times 22$ |
    | $16 \times 24$ |
    | $17 \times 24$ |
    | $18 \times 24$ |
    | $19 \times 24$ |
    | $20 \times 24$ |

    
    for Anthracite Coal, in sq. in. -
    1591
    .1883
    2179
    2742
    3415
    3856
    4381
    4810
    5337
    $\left|\begin{array}{c}\text { Grate-area } \\ \text { for Bitumin- } \\ \text { ous Coal, in } \\ \text { sq. in. } \\ \\ \hline 1217 \\ 1432 \\ 1666 \\ 2097 \\ 2611 \\ 2948 \\ 3304 \\ 3678 \\ 4081\end{array}\right|$

    |  |
    | :---: |
    | Diameter |
    | of Stacks, |
    | in inches. |
    |  |
    | $91 / 3$ |
    | $101 /$ |
    | $111 / 4$ |
    | $121 / 2$ |
    | 14 |
    | 15 |
    | $153 / 4$ |
    | $161 /$ |
    | $171 / 2$ |


    | Double <br> Nozzles. | Single <br> Nozzles. |
    | :---: | :---: |
    | Diam. of <br> Orifices, in <br> inches. | Diam. of <br> Orifices, in <br> inches. |
    | 2 | $213 / 16$ |
    | $21 / 8$ | 3 |
    | $25 / 16$ | $31 / 4$ |
    | $259 / 16$ | $311 / 16$ |
    | 27 | $41 / 16$ |
    | 27 | $1 / 8$ |
    | $31 / 16$ | $45 / 16$ |
    | $31 / 4 / 16$ | $45 / 8$ |
    | $37 / 16$ | $413 / 16$ |
    | 35 | $51 / 16$ |

    Exlaust-mozzles in Locomotive Roilers.-A committee of the Am. Ky. Master Meclianics' Assn. in 1890 reported that they had, after two years of experiment and research, come to the conclusion that. owing to the great diversity in the relative proportions of cylinders and boilers, together with the difference in the quality of fuel, any rule which does not recognize each and all of these factors would be worthless.

    The committee was unable to devise any plan to determine the size of the exhaust-nozzle in proportion to any other part of the engine or boiler, and believes that the best practice is for each user of locomotives to adopt a nozzle that will make steam freely and fill the other desired conditions, best determined by an intelligent use of the indicator and a check on the fuel account. The conditions desirable are : That it must create draught enough on the fire to make steam, and at the same time impose the least possible amount of work on the pistons in the shape of back pressure. It should be large enough to produce a nearly uniform blast without lifting or tearing
    the fire, and be economical in its use of fuel. The Annual Report of the Association for 1896 contains interesting data on this subject.

    Fire-brick Arches in Locomotive Fire-boxes.-A committee of the Am. Ry. Master Mechanics' Assin. in 1890 reported strongly in favor of the use of brick arches in locomotive fire-boxes. They say: It is the unanimous opinion of all who use bituminous coal and brick arch, that it is most efficient in consuming the various gases composing black smoke, and by impeding and delaying their passage through the tubes, and mingling and subjecting them to the heat of the furnace, greatly lessens the volume ejected, and intensifies combustion, and does not in the least check but rather augments draught, with the consequent saving of fuel and increased steaming capacity that might be expected from such results. This in particular when used in connection with extension front.
    Size, Weight, Tractive Power, etc., of Different Sizes of Locomotives. (J. G. A. Mever. Modern Locomotive Construction, Am. Mach., Aug. 8, 1885.)-The tractive power should not be more or less than the adhesion. In columu 3 of each table the adhesion is given, and since the adhesion and tractive power are expressed by the same number of pounds, these figures are obtained by finding the tractive power of each engine, for this purpose always using the small diameter of driving-wheels given in colunın 2. The weight on drivers is shown in colunn 4, which is obtained by multiplying the adhesion by 5 for all classes of engines. Column 5 gives the weights on the trucks, and these are based upon observations. Thus, the weight on the truck for an eight-wheeled engine is about one half of that placed on the drivers.
    For Mogul engines we multiply the total weight on drivers by the decimal .2 , and the product will be the weight on the truck.
    For ten-wheeled engines the total weight on the drivers, multiplied by the decimal 32 , will be equal to the weight on the truck.
    And lastly, for consolidation engines, the total weight on drivers multiplied by the decimal .16, will determine the weight on the truck.
    In column 6 the total weight of each engine is given, which is obtained by adding the weight on the drivers to the weight on the truck. Dividing the

    | Eight-wheeled Locomotives. |  |  |  |  |  |  | Ten-wheeled Engines. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | 1 | 2 | 3 | 4 | 5 | 6 | $\sigma$ | 1 | 2 | 3 | 4 | 5 | 6 | $\%$ |
    | in. |  | lbs. | lbs. | lbs. | 1bs. |  | in. |  |  |  |  |  |  |
    | 10×20 |  | $\begin{aligned} & 4000 \\ & 5321 \end{aligned}$ | 20000 26620 | 10000 1310 | 30000 3993 | ${ }_{709}^{533}$ | $12 \times 18$ $13 \times 18$ | - $39-43$ | 5981 | ${ }_{29397}^{29907}$ | 9570 | ${ }^{39477}$ |  |
    | $12 \times 22$ | 48-54 | 5940 | 29300 | 14850 | 44550 | 792 | $18 \times 1$ <br> 1420 <br> 1 | ${ }_{43-47}^{41-45}$ |  |  |  | 44070 54150 |  |
    | $13 \times 22$ | 49-57 | 6828 | 34140 | 17070 | 51210 | 910 | $15 \times 22$ | ${ }_{45-50}^{45}$ |  | 49500 |  | 54150 65340 | 1093 1320 |
    | $14 \times 24$ | 55-61 | 7697 | 38185 | 19242 | 57727 | 1026 | $16 \times 2 \pm$ | 48-54 | 11520 | 57600 | 18432 | 76032 | 1536 |
    | $15 \times 24$ $16 \times 24$ 18 | ${ }_{\text {58-66 }}{ }^{55-66}$ | 8836 953 | 44180 47665 | 22090 23832 | 66270 71497 | 1178 1271 | $17 \times 24$ $18 \times 24$ | -51-56 | 13272 | 61200 68611 | ${ }_{21955}^{1954}$ | ${ }_{905646}^{80784}$ | 1632 1829 |
    | $17 \times 24$ | $60-66$ | 10404 | 52020 | 26010 | 78030 | 1387 | $119 \times 24$ |  |  |  |  | ${ }_{95304}^{9056}$ | 182 |
    | $\underline{18 \times 24}$ | 61-66 | 11472 | 57360 | 28680 | 86010 | 1529 |  |  |  |  |  |  |  |

    Mogul Engines.
    Consolidation Engines.

    | in. | in. | lbs. | lbs. | lbs. | lbs. |  | in. | in. | libs. |  | 1 l |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $11 \times 16$ | 35-40 | 4978 | 24891 | 4978 | 29869 | 663 | $74 \times 16$ | 36-38 | 7840 | 39200 | 6272 | 45172 | 1045 |
    | $12 \times 18$ | 36-41 | 6480 | 32400 | 6480 | 38880 | 864 | $15 \times 18$ | 36-38 | 10125 | 50625 | 8100 | 58725 | 1350 |
    | $13 \times 18$ | 37-42 | 7399 | 36957 | 7309 | 44396 | 986 | $20 \times 24$ | 48-50 | 18000 | 90000 | 14400 | 104400 | 21.00 |
    | $14 \times 20$ | 39-43 | 9046 | 45230 | 9016 | 54276 | 1206 | $22 \times 24$ | 50-52 | 20909 | 104544 | 16727 | 121271 | 2787 |
    | $15 \times 22$ | 42-47 | 10607 | 53035 | 10607 | 63642 | 1414 |  |  | 20. | 10454. | , | 121* | 278 |
    | $16 \times 24$ | 45-51 | 12288 | 61440 | 12288 | 73738 | 1638 |  |  |  |  |  |  |  |
    | $17 \times 24$ | 49-54 | 12739 | 63697 | 12739 | 76436 | 1698 |  |  |  |  |  |  |  |
    | $18 \times 24$ | 51-56 | 13722 | 68611 | 13722 | 82333 | 1829 |  |  |  |  |  |  |  |
    | $19 \times 24$ | 54-60 | 14440 | 72200 | 14440 | 86640 | 1925 |  |  |  |  |  |  |  |

    adhesion given in column 3 by 712 gives the tons of 2000 lbs , that the engine is capable of hauling on a straight and level track, column 7. at slow sneed

    The weight of engines given in these tables will be found to agree generally with the actual weights of locomotives recently built, although it must not be expected that these weights will agree in every case with the actual weights, because the different builders do not build the engines alike.

    The actual weight on trucks for eight-wheeled or ten-wheeled engines will not differ much from those given in the tables. because these weights depend greatly on the difference between the total and rigid wheel-base, and these are not often changed by the different builders. The proportion between the rigid and total wheel-base is generally the same.
    'The rule for finding the tractive power is :
    $\{$ Square of dia. of $\} \times\{$ Mean effect. steam $\} \times\{$ stroke $\}$
    $\left\{\begin{array}{l}\text { square of dia. of } \\ \text { pision in inches }\end{array}\right\} \times\left\{\begin{array}{l}\text { Mean effect. steam } \\ \text { mress. per sq. in. }\end{array}\right\} \times\left\{\begin{array}{l}\text { stroke } \\ \text { in feet }\end{array}\right\}=$ tractive power. Diameter of wheel in feet.

    ## Leading American Types of Loconotive for Freight and Passenger Service.

    1. The eight-wheel or "American " passenger type, having four coupled driving-wheels and a four-wheeled truck in front.
    2. The "ten-wheel" type, for mixed traffic, having six coupled drivers and a leading four-wheel truck.
    3. The "Mogul" freight type, having six coupled driving-wheels and a pony or two-wheel truck in front.
    4. The "Consolidation" type, for heavy freight service, having eight coupled driving-wheels and a pony truck in front.

    Besides these there is a great variety of types for special conditions of service, as four-wheel and six-wheel switching-engines, without trucks; the Forney type used on elevated railroads, with four coupled wheels under the engine and a four-wheeled rear truck carrying the water-tank and fuel; locumotives for local and suburban service with four coupled driving-wheels, with a two-wheel truck front and rear, or a two-wheel truck front and a four-wheel truck rear, etc. "Decapod" engines for heavy freight service have ten ccupled driving-wheels and a two-wheel truck in front.
    

    Classification of Locomotives (Penna. R. R. Co., 1900),--Class A, two pairs of drivers and no truck. Class B, three pairs of drivers and no truck. Class C. four pairs of drivers and no truck. Class D, two pairs of drivers and four-wlieel truck. Class E, two pairs of drivers, four-wheel truck, and trailing wheels. Class F, three pairs of driving-wheels and twowheel truck. Class G, three pairs of drivers and four-wheel truck. Class H, four pairs of drivers and two-wheel truck. Class A is commonly called a "four-wheeler"; B, a "six-wheeler"; D, an "eight-wheeler," or "American "type ; E, "Atlantic" type ; F" "Mogul "; G, "ten-wheeler"; H, "Consolidation."

    ## Steam-distribution for High-speed Locomotives.

    (C. H. Quereau, Eng'g News, March 8, 1894.)

    Balanced Valves.-Mr. Philip Wallis, in 1886, when Engineer of Tests for the C., B. \& Q. R. R., reported that while $6 \mathrm{H} . \mathrm{P}$. was required to work unbalanced valves at 40 miles per hour, for the halanced valves 2.2 H.P. only was necessarv.

    Effect of Specd on Average Cylinder-pressure.-Assume that a locomotive has a train in motion, the reverse lever is placed in the running notch, and the track is level; by what is the maximum speed linited? The resistanco of the train and the load increase, and the power of the locomotive de.. creases with increasing speed till the resistance and power are equal, when the speed becomes uniform. The power of the engine depends on the average pressure in the cylinders. Even though the cut-off and boilerpressure remain the same, this pressure decreases as the speed increases; becanse of the higher piston-speed and more rapid valve-travel the stean has a shorter time in which to enter the cylinders at the higher speed. The following table, from indicator-cards taken from a locomotive at varying speeds, shows the decrease of average pressure with increasing speed:
    

    The "average pressure calculated" was figured on the assumption that the mean effective pressure would decrease in the same ratio that the speed increased. The main difference lies in the higher stean-line at the lower speeds, and consequent higher expansion-line, showing that more steam entered the cylinder. The back pressure and compression-lines agree quite closely for all the cards, though they are slightly better for the slower speeds. That the difference is not greater may safely be attributed to the large exhaust-ports, passages, and exhaust tip, which is 5 in. diameter. These are matters of great importance for high speeds.

    Boiler-pressure.-Assuning that the train resistanceincreases as the speed after about 20 miles an hour is reached, that an average of 50 lbs . per sq. in. is the greatest that can be realized in the cylinders of a given engine at 40 miles an hour, and that this pressure furnishes just sufficient power to keep the train at this speed, it follows that, to increase the speed to 50 miles, the mean effective pressure must be increased in the same proportion. To increase the capacity for speed of any locomotive its power must be increased, and at least by as much as the speed is to be increased. One way to acconplish this is to increase the boiler-pressure. That this is generally realized, is shown by the increase in boiler-pressure in the last ten years. For twentythree single-expansion locomotives described in the railway journals this fear the steam-pressures are as follows: $3,160 \mathrm{lbs}$; 4, 165 jbs ; 2 , $1 \% \mathrm{lbs}$.; 13, 180 lbs ; 1.190 lbs .

    Valve-travei. - An increased average cylinder-pressure may also be obtained by increasing the valve-travel without raising the boiler-pressure, and better results will be obtained by increasing both. The longer travel gives a higher steam-pressure in the cylinders, a later exhaust-opening. later exhaust-closure, and a larger exhaust-opening-all necessary for high speeds and economy. I believe that a 20 -in. port and $61 / 2$-in. (or even $\mathfrak{r}$-in.) travel could be successfully used for high-speed engines, and that frequently by so doing the cylinders could be economically reduced and the counterbalance lightened. Or, better still, the diameter of the drivers increased, securing lighter counterbalance and better steam-distribution.
    Size of Drivers.-Economy will increase with increasing diameter of drivers, provided the work at average speed does not necessitate a cut-off longer than one fourth the stroke. The piston-speed of a locomotive with $6 \%-\mathrm{in}$. drivers at 55 miles per hour is the same as that of one with $68-\mathrm{in}$. drivers at 61 miles per hour.

    Steam-ports.-The length of steam-ports ranges from 15 in . to 23 in ., and has considerable influence on the power, speed, and economy of the locomotive. In cards from similar engines the stean-line of the card from the engine with $23-111$. ports is considerably nearer boiler-pressure than that of the card from the engine with $161 / 4-\mathrm{in}$. ports. That the higher steam-line is due to the greater length of steam-port there is little room for doubt. The $23-\mathrm{in}$. port produced $5: 31 \mathrm{H} . \mathrm{P}$. in an $18 \frac{1}{\mathrm{~T}}$-in. cylinder at a cost of 23.5 ibs . of indicated water per I.H.P. per hour. The $11 \frac{1}{4}-\mathrm{in}$. port, $424 \mathrm{H} . \mathrm{P}$., at the rate of 22.9 lbs . of water, in a $19-\mathrm{in}$. cylinder.

    Allen Valves.-There is considierable difference of opinion as to the advantage of the Allen ported-vaive (See Eng. News, July 6, 1893.)
    Speed of Railway Trains.-In 1834 the average speed of trains on the Liverpool and Manchester Railway was twenty miles an hour; in 1838 it
    was twenty-flve miles an hour. But by 1840 there were engines on the Great Westem Railway capable of running fifty miles an hour with a train, and eighty miles an hour without. (Trans. A. S. M. E., vol. xiii., 363.)

    The limitation to the increase of speed of heavy locomotives seems at present to be the difficulty of counterbalancing the reciprocating parts. The unbalanced vertical component of the reciprocating parts causes the pressure of the driver on the rail to vary with every revolution. Whenever the speed is high, it is of considerable magnitude and its change in direction is so rapid that the resulting effect upon the rail is not inappropriately called a "hammer blow." Heavy rails have been kinked, and bridges have been shaken to their fall under the action of heavily balanced drivers revolving at high speeds. The means by which the evil is to be overcome has not yet been made clear. See paper by W. F. M. Goss, Trans. A. S. M. E., vol. xvi.
    Engine No. 999 of the New York Central Railroad ran a mile in 32 seconds equal to 112 miles per hour, May 11, 1893.

    Speed in miles $\}=$ circum. of driving-wheels in in. $\times$ no. of rev. per min. $\times 60$ per hour $\}=63,360$
    $=$ diam, of driving-wheels in in. $\times$ no. of rev. per min. $\times .003$ (approximate, giving result $8 / 10$ of 1 per cent too great).
    Formula for Curves. (Baldwin Lucomotive Works.)
    Approximate Formula for Radius. Approximate Formula for Swing.
    
    $R=$ radius of min. curve in feet.
    $P=$ play of driving-wheels in decimals of 1 ft .
    $W=$ rigid wheel-base in feet.
    
    $W=$ rigid wheel base.
    $T=$ total
    $R=$ radius of curve.
    $S=$ swing on eacli side of centre."

    Performance of a Highospecd Locomotive.-The Baldwin compound locomotive No. 10:2 , on the P'hila. \& Athatic City Ry., in July and August, 189\%, made a record of which the following is a summary:

    On July $2 d$ a train was placed in service scheduled to make the run between the terminal cities in 1 hour. Allowing 8 minutes for ferry from Philadelphia to Camden, the time for the $551 / 2$ miles from the latter point to Atlantic City was 52 minutes, or at the rate of 64 miles per hour. Owing to the inability of the ferry-boats to reach Camden on tine, the train always left late, the average detention being upwards of 2 minutes. This loss was invariably made up, the train arriving at Atlantic City ahead of time, 2 minutes on an average, every day. For the 5 d days the train ran, from July $2 d$ to Angust 31st, the average time consumed on the run was 48 minutes, equivalent to a uniform rate of speed from start $\mathrm{t} \cap \mathrm{stop}$ of 63 miles per hour. On July 14th the run from Camden to Atlantic City was made in $461 / 2 \mathrm{~min}$., an average of 71.6 miles per hour $f$ w the total distance. On 22 days the train consisted of 5 cars and on 30 days it was made up of 6 , the weight of cars being as follows : combination car, $5 \%, 200 \mathrm{lbs}$.; coaches, each, $59,200 \mathrm{lbs}$; Pullnan car, $85,500 \mathrm{lbs}$.
    The general dimensions of the locomotive are as follows: cylinders. 13 and $22 \times 26 \mathrm{in}$.; height of drivers, $841 / 4 \mathrm{in}$.; total wheel-base, 26 ft . $7 \mathrm{in} . ;$ drivingwheel base, $7 \mathrm{ft} .3 \mathrm{in}$. ; length of tubes, $13 \mathrm{ft}$. ; diameter of boiler, $583 / 4 \mathrm{in}$; diameter of tubes, $13 / 4 \mathrm{in}$.; number of tubes, $2 \pi 8$; length of fire-box, $1137 / 8 \mathrm{in}$; width of fire-box, 96 in ; heating-surface of fire-box, 136.4 sq . ft.; heatingsurface of tubes, 1614.9 sq . ft .; total heating-surface, 1835.1 sq . ft.; tank capacty, 4000 gallons; boiler-pressure, $\approx 00 \mathrm{lbs}$. per sq, in.; total weight of engine and tender, $22 \pi, 000 \mathrm{lbs}$; weight on drivers (about), $\quad 8,600 \mathrm{lbs}$.
    Locomotive Link Motion.-Mr. F. A. Halsey, in his work on "Locomotive Link Motion," 189s, shows that the location of the eccentricrod pins back of the link-arc and the angular vibrations of the eccentricrods introduce two errors in the motion which are corrected by the angular
    vibration of the connecting-rod and by locating the saddle-stud back of the link-arc. He holds that it is probable that the opinions of the critics of the locomotive link motion are mistaken ones, and that it comes little short of all that can be desired for a locomotive valve motion. The increase of lead from full to mid gear and the heavy compression at mid gear are both advantages and not defects. The cylinder problem of a locomotive is entirely different from that of a stationary engine. With the latter the problem is to determine the size of the cylinder and the distribution of steam to drive economically a given load at a given speed. With locomotives the cylinder is made of a size which will start the heaviest train which the adhesion of the locomotive will permit, and the problem then is to utilize that cylinder to the best advantage at a greatly increased speed, but undera greatly reduced mean effective pressure.
    Negative lead at full gear has been used in the recent practice of some railroads. The advantages clained are an increase in the power of the engine at full gear, since positive lead offers resistance to the motion of the piston; easier riding; reduced frequency of lot bearings; and a slight gain in fuel economy. Mr. Halsey gives the practice as to lead on several roads as follows, slowing great diversity :
    

    The link-chart of a locomotive built in 189\% by the Schenectady Locomotive Works for the Northern Pacific Ry, is as follows:

    | Lead. |  | Valve Open. |  | Cut-off. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Forward Stroke, in | Rearward <br> Stroke, in. | Forward Stroke, in. | Rearward Siroke, in. | Forward Stroke, in. | Rearward Stroke, in. |
    | $-1 / 8$ $-1 / 32$ | - $1 / 8$ $-1 / 3$ | $17 / 8$ $17 / 16$ | $17 / 8$ 1 1 | ${ }_{21}^{24} 9 / 16$ | $225 / 8$ |
    | +1/32 | +1/32 | 11/16 | $11 / 16$ | 19 |  |
    | 3/32 | 3/32 | 23/3 | 23/32 | 16 | 16 |
    | -1/8 | $1 / 8$ |  | $1 / 2$ | 13 | 131/8 |
    | $9 / 64$ $5 / 3 \cdot \mathrm{~S}$ | $9 / 64$ | 3/810 | 3/8 | 10 | 10 |
    | $5 / 3.2 \mathrm{~s}$. | $5 / 32 \mathrm{~s}$. | 5/16 | $5 / 16$ | 8 | 8 |
    | $5 / 32$ | 5/32 | $1 / 4$ | $1 / 4$ | 6 | 6 |
    | 5/32 f. | $5 / 32 \mathrm{f}$. | 7/32 | 7/32 |  | $41 / 16$ |

    Cylinders $20 \times 26 \mathrm{in}$., driving-wheels $69 \mathrm{i} \|$. six coupled wheels, main rods $1261 / 2 \mathrm{in}$., radius of link 40 in ., lap $11 / 8 \mathrm{in}$., travel 6 in ., Allen valve.

    ## DIMENSIONS Oक SOME LARGE AMERYCAN HOCOIFIOTIVES, 1893.

    The four locomotives described below were exhibited at the Chicago Exposition in 1893. The dimensions are from Engineering News, June, 1893. The first, or Decapod engine, has ten-coupled driving-wheels. It is one of the heaviest and most powerful engines ever built for freight service. The Philadelphia \& Reading engine is a new type for passenger service, with fourcoupled drivers. The Rhode Island engine has six drivers, with a 4 -wheel leading truck and a 2 -wheel trailing truck. These three engines have all compound cylinders. The fourth is a simple engine, of the standard American 8 -wheel type, 4 driving-wheels, and a 4 -wheel truck in front. This engine holds the world's record for speed (1893) for short distances, having run a mile in 32 seconds.

    |  | Baldwin. N. Y., L. E. \& W. R. R. Decapod Freight. | $\begin{array}{\|c} \text { Baldwin. } \\ \text { Phila. } \\ \&{ }^{2} \\ \text { Read. R. R. } \\ \text { Express } \\ \text { Passenger. } \end{array}$ | Rhode Isl. Locomoti'e Works. Heasy Express. | N. Y. C. \& H. R. R. Empire State Express, No. 999. |
    | :---: | :---: | :---: | :---: | :---: |
    | Rumming-gear: |  |  |  |  |
    | Driving-wheels, diam | 4 ft .2 in . | 6 ft .6 in. | 6 ft .6 in . | 7 ft .2 in . |
    | Truck "* " | $2{ }^{2} 6{ }^{\text {" }}$ | $4{ }^{\prime \prime} 0$ | $2{ }^{6} 96$ | 3 " 4 " |
    | Journals, driving-axles. | $9 \times 10 \mathrm{in}$, $5 \times 10$ | $81 / 2 \times 12 \mathrm{in} .$ | $\int_{8}^{8} \times 83 / 4 \mathrm{in} .$ | $\left\lvert\, \begin{aligned} & 9 \times 121 / 211 . \\ & 61 / 4 \times 10 \end{aligned}\right.$ |
    | tender- | $41 / 2 \times 9$ ، | $41 / 2 \times 86$ | $41 / 4 \times 8$ " | $41 / 8 \times 8$ |
    | Wheel-base: |  |  |  |  |
    | Driving | $18 \mathrm{ft} 10 in.$. | 6 ft .10 in . | $13 \mathrm{ft}$.6 in. | $8 \mathrm{ft} 6 in.$. |
    | Total eng | $2{ }^{16}$ " 3 " | 23 " 4 ' | 29 " $91 / 4{ }^{\prime \prime}$ | 23 " 11 " |
    | " tende | 16 ". 8 " | 16 " 0 " | $15 * 0{ }^{*}$ | $15 \mathrm{ft} .21 / 2{ }^{6}$ |
    | " engine and tende | 53 " $4^{\prime}$ | $4763{ }^{6}$ | 50 " 63/4 " | $47{ }^{\prime \prime} 81 / 8 "$ |
    | Wt. in working-order: |  |  |  |  |
    | On drivers | 1\%0,000 lbs. | 82,f00 lbs. | 88,500 lbs. | $84,000 \mathrm{lbs}$. |
    | On truck-wh | 29,500 " | 47,000 ' | 54,500 " | 40,000 " |
    | Engine, total. | 192,500 " | 129,500 " | 143,000 " | 124,000 " |
    | Tender " | 117,500 ' | 80,573 | 75,000 " | 80,000 " |
    | Engine and tender, loaded | 310,000 ' | 210,2\%3 " | 218,000 " | 204,000 ' |
    | Cylinders: |  |  |  |  |
    | h.p. (2) | $16 \times 98 \mathrm{in}$. | $13 \times 24 \mathrm{in}$. | one $21 \times 26$ | $19 \times 24 \mathrm{in}$. |
    | l.p. (2). | $27 \times 28$ | $\underline{82} \times 10$ | one $31 \times 26$ |  |
    | Distance centre to centre. | $7 \mathrm{fft}^{5}{ }^{\text {6 }}$ | $\bigcirc \mathrm{ft} .41 / 2 \mathrm{in}$. | $\bigcirc \mathrm{ft} .1 \mathrm{in}$. | 6 ft .5 in . |
    | Piston-rod, diam... | 4 in . | $31 / 2 \mathrm{il1}$. | $31 / 2 \mathrm{in}$. | 39/8 in. |
    | Counecting -rod, leng | $9^{\prime} 8 \hat{\imath} / 16^{\prime \gamma}$ | $8 \mathrm{ft} .01 / 2 \mathrm{in}$. | $10 \mathrm{ft} .31 / 2 \mathrm{in}$. | $8 \mathrm{ft} .11 / 2 \mathrm{in}$. |
    | Steam-ports | $281 / 2 \times 2 \mathrm{in}$. | 24×11/2 in. | $11 / 2 \times 00 \text { and }$ | $11 / 2 \times 18 \mathrm{in}$. |
    | Exhaust-ports | $281 \% \times 8$ " | $24 \times 41 / 2{ }^{1}$ | $3 \times 20 \mathrm{in}$. | $3 / 4 \times 18$ ، |
    | Slide-valves, out. lap, h.p. | \%/8in. | $7 / 8 \text { in. }$ | $11 / 4 \mathrm{in}$. | 1 in. |
    | $\cdots$ " in. lap,h.p.. |  |  | 1 m. |  |
    | in. lap, l.p. |  | None |  |  |
    | " " max.travel.. | 6 i 11. | 5 in . | 61/4 in. | 51\% in. |
    | " " lead,h.p.... | 1/10 in. | 1/8 | 3/3 ${ }^{\text {c }}$ |  |
    | " " lead, l.j.... | 5/16 ${ }^{\text {- }}$ | $3 / 8$ ، |  |  |
    | Roiler-Type | Straiglıt | Straight | Wagon top | Wagon top |
    | Diamn. of barrel inside.... | $6 \mathrm{ft}, 21 \% \mathrm{in}$. | $4 \mathrm{ft} .81 / 4 \mathrm{in}$. | $5 \mathrm{ft}, 2 \mathrm{in}$. | 4 ft .9 in . |
    | Thickness of barrel-plates | $3 / 4 \mathrm{in}$. | $5 / 8 \mathrm{in} .$ | $5 / 8 \text { in. }$ | $9 / 16 \text { in. }$ |
    | Height from rail to centre |  |  |  |  |
    | Length of smoke-box | $567 \%{ }^{6}$ |  | 6 " 1 " | 4 " 8 , |
    | Working steam-pressure.. | 180 lbs. | 180 lbs . | 200 lbs . | 190 lbs . |
    | Firebox-type | Woottell | Wootten | Radial stay | Buchanan |
    | Length inside. | $10^{\prime} 119 / 16^{\prime \prime}$ | $9 \mathrm{ft}$.6 in. | $10 \mathrm{ft}$.0 in. | $9 \mathrm{ft} .63 / 8 \mathrm{in}$. |
    | Width | $8 \mathrm{ft} .91 / 8 \mathrm{in}$. | $8{ }^{6} 01 / 8{ }^{6}$ |  | $3{ }^{\prime \prime} 47 / 8{ }^{\prime \prime}$ |
    | Depth at front . . . . . . . . | $4{ }^{\prime \prime} 6$ | $3{ }^{\prime \prime}$ 23/4 ${ }^{\text {c }}$ | $6{ }^{\prime \prime} 103 / 4{ }^{\text {" }}$ | $6^{6} 11 /{ }^{\prime}$ |
    | Thickness of side plates.. " " back plate. . | $\begin{aligned} & 5 / 16 \text { in. } \\ & 5 / 16 \end{aligned}$ | $\begin{aligned} & 5 / 16 \text { in. } \\ & 5 / 16 \text { 6 } \end{aligned}$ | $\begin{gathered} 5 / 16 \text { in. } \\ 3 / 8 \end{gathered}$ | $\begin{aligned} & 5 / 16 \mathrm{in} . \\ & 5 / 16 \end{aligned}$ |
    | Thickness of crown-sheet. |  | $5 / 16^{\sim}$ | 3\% 6 | $3 / 6$ |
    | Grate-ar | t. |  |  |  |
    | Stay-bolts, diam., 11/8 | pitch, $41 / 4$ in. |  | 4 in . | 4 in . |
    | Tubes-iron. | 354 | $3 \times 4$ | 27. | 268 |
    | Pitch. | 23/4 in. | $21 / 16 \mathrm{in}$. | $23 / 4 \mathrm{in}$. |  |
    | Diam., outside |  | 1\% in. |  | 2 in . |
    | Length betw'n tube-plates | 11 ft .11 in. | $10 \mathrm{ft}$.0 in. | $12 \mathrm{ft} .85 / 8 \mathrm{in}$. | $12 \mathrm{ft}$.0 in . |
    | Heating-surface : |  |  |  |  |
    | Tubes, exterior | $2,208.8 \mathrm{ft} .$ | $1,202 \mathrm{sq} . \mathrm{ft} .$ |  | $1,69 .{ }^{\text {m }}$ sq.ft. |
    | Fire-box | 234.3 ' | $173 \text { 6 }$ |  | 233 60 6 |
    | Miscellaneons: |  |  |  |  |
    | Exhanst-nozzle, diam.... | 5 in . | 51/8 in. |  | $31 / 2$ in |
    | Smokestack,smal'st diam. " height from | $1 \mathrm{ft}$.6 " | 1 ft .6 in . | $1 \mathrm{ft} 3 in.$. | $1 \mathrm{ft} .31 / 4 \mathrm{in}$. |
    | rail to top.... . . . . . . | 15 " 61/2" | $14 \mathrm{ft} .03 / 4 \mathrm{in}$. | 15 " $2^{\prime \prime}$ | $14{ }^{6} 10{ }^{6}$ |


    | uolsəy <br> －pv rof әqе <br>  оч ләмод－ıәри！ －［й）ј0 о！̣еч |  000000000000000000000000000 |
    | :---: | :---: |
    |  |  |
    |  |  |
    |  |  |
    |  －ヵแ！ゃəН әqn山 |  |
    |  |  |
    |  |  <br>  |
    |  |  <br>  |
    |  <br>  |  |
    |  |  |
    |  <br>  |  |
    |  |  |
    |  |  |
    |  |  |
    |  |  |

    Dimensions of Some Anerican Locomotives. - The table on page 861 is condensed from oue given by D. L. Barnes, in his paper on "Distinctive Featnres and Advantages of American Locomotive Practice," Trans. A.S.C.E., 1893. The formula from which column marked "Ratio of cylinder-power to weight available for adhesion" is calculated as follows:

    $$
    \frac{2 \times \text { cylinder area } \times \text { bniler-pressure } \times \text { stroke }}{} \text { Weight on drivers } \times \text { diameter of driving-wheel } .
    $$

    (Ratio of cylinder-power of compound engines cannot be compared with that of the single-expansion engines.)
    Where the boiler-pressure could not be determined from the description of the locomotives, as given by the builders and operators of the locomotives, it has been assumed to be 160 lbs . per sq. in. above the atmosphere.
    For compound locomotives the fignres in the last column of ratios are based on the capacity of the low-pressure cylinders only, the volume of the high-pressure being omitted. This has been done for the purpose of comparison, and because there is 110 accurate simple way of comparing the cylinder-power of single-expansion and compound locomotives.

    ## Dimensions of Standard Locomotives on the N. Y. C. \& H. R. R. and Penna. R. R., 1882 and 1893. <br> C. H. Quereau, Eng'g News, March 8, 1894.

    |  | N. Y. C. \& H. R. R. |  |  |  | Pennsylvania R. R. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Through Passenger. |  | Through Freight. |  | Through Passenger. |  | Through Freight. |  |
    |  | 188\%. | 1893. | 1882. | 1893. | 188\%. | 1893. | 1882. | 1893. |
    | Grate surface, sq. ft. | 17.80 | 27.3 | 17.87 | 29.8 | 17.6 | 33.2 | 23. | 31.5 |
    | Heating surface, sq. ft. | 1353 | 1821 | 1353 | 1763 | 1057 | 158.3 | 1260 | 1498 |
    | Boiler, diam., in | 50 | 58 | 50 | 58 | 50 | 57 | 54 | 60 |
    | Driver, ciam, in ${ }_{\text {S }}$ Steam-pressure, | 150 | 78,86 180 | 64 150 | ${ }_{160}^{67}$ | 62 125 | ${ }_{17}{ }^{2}$ | 50 | ${ }_{140}^{50}$ |
    | Cylin., diam. and stroke. | $17 \times 24$ | $19 \times 24$ | $17 \times 24$ | $19 \times 26$ | $17 \times 24$ | $18 \frac{1}{2} \times 24$ | $20 \times 24$ | $20 \times 24$ |
    | Valve-travel, ins | 51/4 | $51 / 2$ | 51/4 | 53/4 | ${ }^{5}$ | 18 | - | - $\times 1$ |
    | Lead at full gear, ins | 1/16 | 1/16 | 1/16 | 1/16 ${ }^{\text {b }}$ | 1/16 | 0 | 1/8 | 1/16 |
    | Outside lap | 8/8 | 1 | 7/8 | 7/8 | $3 / 4$ | 1 | 3 | 3/4 |
    | Inside lap or clearance.. | 0 | 0 | 1/16l | 3/32l | 0 | $1 / 8 \mathrm{cl}$ | 1/3:l | 1/3:3i |
    | Steam-ports, length... | 151/2 | $\begin{aligned} & 18 \\ & 11 / 8 \end{aligned}$ | 151/2 | 18 | 16 | 181/4 |  | 116 |
    | Type of engine.... | AI.1. | Am1. | A m. | Mog. | Am. | Am. | Cons. | Cons. |

    ## Indicated Water Consumption of Single and Compound Locomotive Engines at Varying Speeds.

    C. H. Querean, Eng'g News, March 8, 1894.

    | Two-cylinder Compound. |  |  | Single-expansion. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Revolutions. | Speed, miles per hour. | Water per I.H.P. per hour. | Revolutions. | Miles per Hour. | Water. |
    | 100 to 150 | 21 to 31 | 18.33 lbs . | 151 | 31 | $21 . \%$ |
    | 150 " 200 | 31 " 41 | 18.9 "، | 219 | 45 | 20.91 |
    | 200 " 250 | 41 " 51 | 19.7 " | 253 | 52 | 20.52 |
    | 250 " 275 | 51 " 56 | 21.4 " | $30 \hat{}$ | 63 | 20.23 |

    It appears that the compond engine is the more economical at low speeds, the economy decreasing as the speed increases, and that the single engine jucreases in economy with increase of speed within ordinary limits, becoming more economical than the compound at speeds of more than 50 miles per hour.
    The C., B. \& Q. two-cylinder compound, which was about $30 \%$ less economical than simple engines of the same class when tested in passenger service, has since been shown to be $15 \%$ more economical in freight service
    than the best single-expansion engine, and $29 \%$ more economical than the average record of 40 simple engines of the same class on the same division.

    Indicator-tests of Locomotive at High Speed. (Locomotive Eng'g, June, 1893.)-Cards were taken by Mr. Angus Sinclair on the locomotive drawing the Empire State Express.

    Results of Indicator-diagrams.

    | Card No. | Revs. | Miles |  |  |  |  |  |
    | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | per hour. | I.H.P. | Card No. | Revs. | Miles. |  |  |  |
    | per liour. | I.H.P. |  |  |  |  |  |  |
    | $\mathbf{1}$ | 160 | 37.1 | 648.3 | 7 | 304 | 70.5 | 977 |
    | $\mathbf{2}$ | 260 | 60.8 | 728 | 8 | 296 | 68.6 | 972 |
    | $\mathbf{3}$ | 190 | 44 | 551 | 9 | 300 | 69.6 | 1,045 |
    | 4 | 250 | 58 | 891 | 10 | 304 | 70.5 | 1,059 |
    | $\mathbf{5}$ | 260 | 60 | 960 | 11 | 340 | 78.9 | 1,120 |
    | 6 | 298 | 69 | 983 | 12 | 310 | 71.9 | 1,026 |

    The locomotive was of the eight-wheel type, built by the Schenectady Locomotive Works, with $19 \times 24 \mathrm{in}$. cylinders, 78 -in. drivers, and a large boiler and fire-box. Details of important dimensions are as follows: Heating-surface of fire-box, 150.8 sq. ft.; of tubes, $16 \% 0.7 \mathrm{sq} . \mathrm{ft}$.; of boiler, $1821.5 \mathrm{sq} . \mathrm{ft}$. Grate area, 27.3 sq . ft. Fire-box: length, $8 \mathrm{ft} . ;$ widtl, $3 \mathrm{ft} .47 / 8$ in. Tubes, 268 ; outside diameter, 2 in . Ports: steam, $18 \times 1 \frac{1}{4} \mathrm{in}$.; exhaust, $18 \times 23 / 4 \mathrm{in}$. Valve-travel, $51 / 2 \mathrm{in}$. Outside lap, $1 \mathrm{in}$. ; inside lap, $1 / 04 \mathrm{in}$. Jonrnals: driving-axle, $81 / 2 \times 101 / 2$ in.; truck-axle, $6 \times 10 \mathrm{in}$.

    The train consisted of four coaches, weighing, with estimated load, 340,000 lbs. The locomotive and tender weighed in working order $200,000 \mathrm{lbs}$, making the total weight of the train about 270 tons. During the time that the engine was first lifting the train into speed diagram No. 1 was taken. It shows a mean cylinder-pressure of 59 lbs . According to this, the power exerted on the rails to move the train is 6553 lbs ., or 24 lbs . per ton. The speed is 37 miles an hour. When a speed of nearly 60 miles an hour was reached the average cylinder-pressure is 40.7 lbs., representing a total traction force of $45 \% 0 \mathrm{lbs}$., without making deductions for internal friction. If we deduct $10 \%$ for friction, it leaves 15 lbs . per ton to keep the train going at the speed named. Cards 6, 7, and 8 represent the work of keeping the train running 70 miles an hour. They were taken three miles apart, when the speed was almost uniform. The average cylinder-pressure for the three cards is 47.6 lbs . Deducting $10 \%$ again for friction, this leaves 17.6 lbs . per ton as the power exerted in keeping the train up to a velocity of 70 miles. Throughout the trip 7 lbs . of water were evaporated per lb . of coal. The work of pulliug the train from New York to Albany was done on a coal consumption of about $31 / 8 \mathrm{lbs}$. per H.P. per hour. The highest power recorded was at the rate of $1120 \mathrm{H} . \mathrm{P}$.

    Locomotive-testing Apparatus at the Laboratory of Purdue University. (W. F. M. Goss, Trans. A. S. M. E., vol. xiv. 826.) The locomotive is mounted with its drivers upon supporting wheels which are carried by shafts turning in fixed bearings, thus allowing the engine to be run without changing its position as a whole. Load is supplied by four friction-brakes fitted to the supporting shafts and offering resistance to the turning of the supporting wheels. Traction is measured by a dynamoneter attached to the draw-bar. The boiler is fired in the usual way, and an exhaust-blower above the engine, but not in pipe connection with it, carries off all that may be given out at the stack.

    A Standard Method of Conducting Locomotive-tests is given in a report by a Committee of the A.S. M. E. in vol. xiv. of the Transactions, page 1312.

    Waste of Fuel in Hocomotives. - In American practice economy of fuel is necessarily sacrificed to obtain greater economy due to heavy train-loads. D. L. Barnes, in Eng. Mag., June, 1894, gives a diagram showing the reduction of efficiency of boilers due to high rates of combustion, from which the following figures are taken:
    

    A rate of 12 lbs . is given as representing stationary-boiler practice, 40 lbs . is English locomotive practice, $1 \geqslant 0 \mathrm{lbs}$. average American, and 200 lbs . maxinnum American, locomotive practice.

    Advantages of Compounding.-Report of a Committee of the A merican Railway Master Mechanics'Association on Compound Locomotives (Am. Mach., July 3, 1890) gives the following summary of the advantages gained by compounding: (a) It has achieved a saving in the fuel burnt averaging 18\% at reasonable boiler-pressures, witl encouraging possibilities
    of further improvement in pressure and in fuel and water economy. (b) It has lessened the amount of water (dead weight) to be hauled, so that (c) the tender and its load are materially rednced in weight. (d) It has increased the possibilities of speed far beyond 60 miles per hour, without unduly straining the motion, frames, axles, or axle-boxes-of the engine. (e) It has increased the haulage-power at full speed, or, in other words, has increased the continuous H.P. developed, per given weight of engine and boiler. ( $f$ ) In some classes has increased the starting-power. ( $g$ ) It has materially lessened the slide-valve friction per H.P. developed. ( $h$ ) It has equalized or distributed the turning force on the crank-pin, over a longer portion of its path, which, of course, tends to lengthen the repair life of the engine. (i) In the two-cylinder type it has decreased the oil consumption, and has even done so in the Woolf four-cylinder engine. ( $j$ ) Its smoother and steadier dranght on the fire is favorable to the combustion of all kinds of soft coal; and the sparks thrown being smaller and less in number, it lessens the risk to property from destruction by fire. (k) These advantages and economies are gained without having to improve the man handling the engine, less being left to his discretion (or careless indifference) than in the simple engine. ( $l$ ) Valve-motion, of every locomotive type, can be used in its best working and most effective position. (m) A wider elasticity in locomotive design is permitted; as, if desired, side-rods can be dispensed with, or articulated engines of 100 tons weight, with independent trucks, used for sharp curves on mountain service, as suggested by Mallet and Brunner.

    Of 27 compound locomotives in use on the Phila. and Reading Railroad (in 1892), 12 are in use on heavy mountain grades, and are designed to be the equivalent of $22 \times 24 \mathrm{in}$. simple consolidations; 10 are in somewhat lighter service and correspond to $20 \times 24 \mathrm{in}$. consolidations; 5 are in fast passenger service. The monthly coal record shows:

    | ass of Engine. | No. | Gain in Fuel Economy. |
    | :---: | :---: | :---: |
    | locomotives. |  | 25\% to 30\% |
    | ight service. | 10 | 12\% to $1 \% \%$ |
    | ng | 5 | 9\% to 11\% |

    Mountain locomotives. ........................ 12
    Heavy freight service.............................. 10
    Fast passenger

    Gain in Fuel Economy.
    $25 \%$ to $30 \%$
    $9 \%$ to $11 \%$
    (Report of Com. A. R. M. M. Assn. 1892.) For a description of the various types of compound locomotive, with discussion of their relative merits, see paper by A. Von Borries, of Germany, The Development of the Compound Locomotive, Trans. A. S. M. E. 1893, vol. xiv., p. 1172.

    Cominterbalancing Locomotives.--The following rules, adopted by clifferent locomotive-builders, are quoted in a paper by Prof. Lanza (Trans. A. S. M. E., x. 302):
    A. "For the main drivers, place opposite the crank-pin a weight equal to one half the weight of the back end of the connecting-rod plus one half the weight of the front end of the comlecting-rod, piston, piston-rod, and crosshead. For balancing the coupled wheels, place a weight opposite the crankpin equal to one half the parallel rod plus one half of the weights of the front end of the main-rod, piston, piston-rod, and cross-head. The centres of gravity of the above weights must be at the same distance from the axles as the crank-pin."
    B. The rule given by D. K. Clark: "Find the separate revolving weights of crank-pin boss, coupling-rods, and connecting-rods for each wheel, also the reciprocating weight of the piston and appendages, and one half the connecting-rod, divide the reciprocating weight equally between each wheel and add the part so allotted to the revolving weight on each wheel: the sums thus obtained are the weights to be placed opposite the crank-pin, and at the same distance from the axis. To find the counterweight to be used when the distance of its centre of gravity is known, multiply the above weight by the length of the crank in inches and divide by the given distance." This rule differs from the preceding in that the same weight is placed in each wheel.

    $$
    \text { C. " } W=\frac{S \times\left(w-\frac{w}{f}\right)}{G} \text {, in which } S=\text { one half the stroke, } G=\text { distance }
    $$ from centre of wheel to centre of gravity in counterbalance, $w=$ weight at crank-pin to be balanced, $W=$ weight in counterbalance, $f=$ coefficient of friction so called,$=5$ in ordinary practice. The reciprocating weight is found by adding together the weights of the piston, piston-rod, cross-head, and one half of the main rod. The revolving weight for the main wheel is found by adding together the weights of the crank-pin hub, crank-pin, one

    half of the main rod, and one half of each parallel-rod connecting to this wheel; to this add the reciprocating weight divided by the number of wheels. The revolving weight for the remainder of the wheels is found in the same manner as for the main wheel, except one half of the main rod is not added. The weight of the crank-pin hub and the counterbalance does not include the weight of the spokes, but of the metal inclosing them. This calculation is based for one cylinder and its corresponding wheels."
    D. "Ascertain as nearly as possible the weights of crank-pin, additional weight of wheel boss for the same, add side rod, and main connections, piston-rod and head, with cross-head on one side: the sum of these multiplied by the distance in inches of the centre of the crank-pin from the centre of the wheel, and divided by the distance from the centre of the wheel to the common centre of gravity of the countcrweights, is taken for the total counterweight for that side of the locomotive which is to be divided among the wheels on that side."
    E. "Balance the wheels of the locomotive with a weight equal to the weights of crank-pin, crank-pin hub, main and parallel rods, brasses, etc., plus two thirds of the weight of the reciprocating parts (cross-head, piston and rod and packing)."
    F. "Balance the weights of the revolving parts which are attached to each wheel with exactness, and divide equally two thirds of the weights of the reciprocating parts between all the wheels. One half of the main rod is computed as reciprocating, and the other as revolving weight."
    See also articles on Counterbalancing Locomotives, in $R$. $R$. \& Eng. Jour., March and April, 1890; Trans: A. S. M. E., vol, xvi, 305 ; and Trans. Am. Ry. Master Mechanics' Assn., 1897. TV. E. Dalby's book Ion the "Balancing of Engines" (Longmans, Green \& Co., 1902) contains a very full discussion of this subject.

    Maximum Safe Load for steel Tires on Steel Rails. (A.S. M. E., vii., p. r86.)-Mr. Chanute's experiments led to the deduction that 12,000 lbs. should be the limit of load for any one driving-wheel. Mr. Angus Sinclair objects to Mr. Chanute's figure of $12,000 \mathrm{lbs}$., and says that a locomotive tire which has a light load on it is more injurious to the rail than one which has a heavy load. In English practice 8 and 10 tons are safely used. Mr. Oberlin Smith has used steel castings for cam-rollers 4 in. diam. and 3 in. face, which stood well under loads of from 10,000 to 20,000 lbs. Mr. C. Shaler Smith proposed a formula for the rolls of a pivot-bridge which may be reduced to the form : Load $=1760 \times$ face $\times \sqrt{\text { diam., all in }}$ lbs. and inches.

    See dimensions of some large American locomotives on pages 860 and 861 . On the "Decapod" the load on each driving-wheel is $17,000 \mathrm{lbs}$., and on "No. 999," $21,000 \mathrm{lbs}$.
    Narrow-gauge IRailways in Manufacturing Works.A tramway of 18 inches gauge, several miles in length, is in the works of the Lancashire and Yorkshire Railway. Curves of 13 feet radius are used. The locomotives used have the following dimensions (Proc. Inst. M. E., July, 1888): The cylinders were 5 in . diameter with 6 in . stroke, and $2 \mathrm{ft} .31 / 4 \mathrm{in}$. centre to centre. The wheels were $161 / 4 \mathrm{in}$. diameter, the wheel-base 2 ft .9 in .; the frame $7 \mathrm{ft} .41 / 4 \mathrm{in}$. long, and the extreme width of the engine 3 feet. The boiler, of steel, 2 ft .3 in . outside diameter and 2 ft . long between tube-plates, containing 55 tubes of $13 / 8 \mathrm{in}$. outside diameter; the fire-box, of iron and cylindrical, 2 ft .3 in . long and 17 in . inside diameter. The heatingsurface 10.42 sq . ft. in the fire-box and 36.12 in the tubes, total 46.54 sq . ft.; the grate-area, 1.78 sq. ft.; capacity of tank, $261 / 2$ gallons; working-pressure, 170 lbs . per sq. in.; tractive power, say, 1412 lbs ., or 9.22 lbs. per lb. of effective pressure per sq. in. on the piston. Weight, when empty, 2.80 tons; when full and in working order, 3.19 tons.

    For description of a system of narrow-gauge railways for manufactories, see circular of the C. W. Hunt Co., New York.

    Light Locomotives.--For dimensions of light ocomotives used for. mining, etc., and for much valuable information concerning them, see catalogue of H. K. Porter \& Co., Pittsburgh.

    Petroleumaburning Locomotives. (From Clark's Steam-en-gine.)-The combustion of petroleum refuse in locomotives has been success fully practised by Mr. Thos. Urquhart, on the Grazi and Tsaritsin Railway, Southeast Russia. Since November, 1884, the whole stock of 143 locomotives under his superintendence has been fired with petroleum refuse. The oil is injected from a nozzle through a tubular opening in the back of the fire-box, by means of a jet of steam, with an induced current of air.

    A brickwork cavity or "regenerative or accumulative combustion-chamber" is formed in the fire-box, into which the combined current breaks as spray against the rugged brickwork slope. In this arrangement the brick. work is maintained at a white heat, and combustion is complete and smokeless. The form, mass, and dimensions of the brickwork are the most important elements in such a combination.

    Compressed air was tried instead of steam for injection, but no appreciable seduction in consumption of fuel was noticed.

    The heating-power of petroleum refuse is given as 19,832 heat-units, equivalent to the evaporation of 20.53 lbs . of water from and at $212^{\circ} \mathrm{F}$., or to 17.1 lls . at $81 / 2$ atmospheres, or 125 lbs . per sq. ill, effective pressure. The highest evaporative duty was 14 lbs . of water under $81 / 2$ atmospheres per lb . of the fuel, or nearly $82 \%$ efficiency.

    There is no probability of any extensive use of petroleum as fuel ior locomotives in the United States, on account of the unlimited supply of coal and the comparatively limited supply of petroleum. Texas oil is now (1902) used in locomotives of the Southern Pacific Railway.
    Fireless Locomotive. -The principle of the Franca locomotive is that it depends for the supply of steam on its spontaneous generation from a body of heated water in a reservoir. As steam is generated and drawn off the pressure falls; but by providing a sufficiently large volume of water heated to a high temperature, at a pressure correspondingly high, a margin of surplus pressure may be secured, and means may thus be provided for supplying the required quantity of steam for the trip.
    The fireless locomotive designed for the service of the Metropolitan Railway of Paris has a cylindrical reservoir having segmental ends, about 5 ft . 7 in . in diameter, $261 / 4 \mathrm{ft}$. in length, with a capacity of about 620 cubic feet. Four fifths of the capacity is occupied by water, which is heated by the aid of a powerful jet of steam supplied from stationary boilers. The water is heated until equilibrium is established between the boilers and the reservoir. The temperature is raised to about $390^{\circ} \mathrm{F}$., corresponding to 225 lbs . per sq. in. The steam from the reservoir is passed through a reducingvalve, by which the steam is reduced to the required pressure. It is then passed through a tubular superheater situated within the receiver at the upper part, and thence through the ordinary regulator to the cylinders. The exliaust-steam is expanded to a low pressure, in order to obviate noise of escape. In certain cases the exhaust-steam is condensed in closed vessels, which are only in part filled with water. In the upper free space a pipe is placed, into which the steam is exhausted. Within this pipe another pipe is fixed, perforated, from which cold water is projected into the surrounding steam, so as to effect the condensation as completely as may be. The heated water falls on an inclined plane, and flows off without inixing with the cold water. The condensing water is circulated by means of a centrifugal pump driven by a small three-cylinder engine.

    In working off the steam from a pressure of 225 lbs . to 67 lbs ., 530 cubic feet of water at $390^{\circ} \mathrm{F}$. (is sufficient for the traction of the trains, for working the circulating-pump for the condensers, for the brakes, and for electriclighting of the train. At the stations the locomotive takes from 2200 to 3300 lbs. of steam-nearly the same as the weight of steam consumed during the run between two consecutive charging stations. There is 210 cubic feet of condensing water. Taking the initial temperature at $60^{\circ} \mathrm{F}$., the temperature rises to about $180^{\circ} \mathrm{F}$. after the longest runs inderground.

    The locomotive has ten wheels, on a base 24 ft . long, of which six are coupled, $41 / 2 \mathrm{ft}$. in diameter. The extreme wheels are on radial axles. The cylinders are $231 / 2 \mathrm{in}$. in diameter, with a stroke of $231 / 2 \mathrm{in}$.

    The engine weighs, in working order, 53 tons, of which 36 tons are on the coupled wheels. The speed varies from 15 miles to 25 miles per hour. The trains weigh about 140 tons.

    Compiessed-air Locomotives.-For an account of the Mekarski system of compressed-air locomotives see page 510 aute.

    ## SHAFTING.

    ## (See also Torsional Strength; also Shafts of Steam-engines.)

    For diameters of shafts to resist torsional strains only. Molesworth gives $d=\sqrt[3]{\bar{P} \bar{K}}$, in which $d=$ diameter in inches, $P=$ twisting force in pounds applied at the end of a lever-arm whose length is $l$ in inches, $K=$ a coefficient whose values are, for cast iron 1500 , wrought iron 1700 , cast steel 3200 , gun-bronze 460 , brass 425, copper 380 , tin 920 , lead 170. The value given for cast steel probably applies only to higll-carbon steel.

    Thurston gives:

    For head shafts well supported against springing (bearings close to pulleys or gears):

    For line shafting, hangers 8 ft . apart:

    For transmission simply, no pulleys:
    H.P. $=\frac{d^{3} R}{125} ; d=\sqrt[3]{\frac{125 \mathrm{H} . \mathrm{P}}{R}}$, for iron;
    
    H.P. $=\frac{d^{3} R}{90} ; d=\sqrt[3]{\frac{90 \mathrm{H.P}}{R}}$, for iron;
    H.P. $=\frac{d^{3} R}{55} ; d=\sqrt[3]{\frac{55 \mathrm{H.P}}{R}}$, for cold-rolled iron.
    H.P. $=\frac{d^{3} R}{62.5} ; d=\sqrt[3]{\frac{62.5 \mathrm{H} . \mathrm{P}}{R}}$, for iron;
    H.P. $=\frac{d^{3} R}{35} ; d=\sqrt[3]{\frac{35 H . P}{R}}$, for cold-rolled iron.
    H.P. $=$ horse-power transmitted, $d=$ diameter of shaft in inches, $R=$ revolutions per minute.
    J. B. Francis gives for turned-iron shafting $d=\sqrt[3]{\frac{100 \mathrm{H.P}}{R}}$.

    Jones and Laughlins give the same formulæ as Prof. Thurston, with the following exceptions: For line shafting, hangers 8 ft . apart:

    $$
    \text { cold-rolled iron, H.P. }=\frac{d^{3} R}{50}, d=\sqrt[3]{\frac{50 \text { H.P. }}{R}}
    $$

    For simply transmitting power and short counters:

    $$
    \begin{aligned}
    \text { turned iron, H.P. } & =\frac{d^{3} R}{50}, d=\sqrt[3]{\frac{50 \mathrm{H} . \mathrm{P}}{R}} ; \\
    \text { cold-rolled iron, H.P. } & =\frac{d^{3} R}{20}, d=\sqrt[3]{\frac{30 \mathrm{H.P}}{R}}
    \end{aligned}
    $$

    They also give the following notes: Receiving and transmitting pulleys should always be placed as close to bearings as possible; and it is good practice to frame short "headers" between the main tie-beams of a mill so as to support the main receivers, carried by the head shafts, with a bearing close to each side as is contemplated in the formnlæ. But if it is preferred, oi necessary, for the shaft to span the full widtly of the "bay "without in.
    termediate bearings, or for the pulley to be placed away from the bearings towards or at the middle of the bay, the size of the shaft must be largely increased to secure the stiffness necessary to support the load without undue deflection. Shafts may not deflect more than $1 / 80$ of an inch to each foot of clear length with safety.

    To find the diameter of shaft necessary to carry safely the main pulley at the centre of a bay: Multiply the fourth power of the diameter obtained by above formulæ by the length of the "bay," and divide this product by the distance from centre to centre of the bearings when the shaft is supported as required by the formula. The fourth root of this quotient will be the diameter required.

    The following table, computed by this rule, is practically correct and safe.

    |  | Dianıeter of Sliaft necessary to carry the Load at the Centre of a Bay, which is from Centre to Centre of Bearings |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 21/2 ft. | 3 ft . | $31 / 2 \mathrm{ft}$. | 4 ft . | 5 ft . | 6 ft . | 8 ft . | 10 ft . |
    | in. |  | in. | in. | in. | in. | in. | in. | . |
    | 21/2 | $21 / 8$ | $21 / 4$ | 23/8 | $21 / 2$ | 25/8 | $23 / 4$ | 2\%18 | . |
    | 3 | $3{ }^{2}$ | 318 | 314 | 2388 | $31 / 2$ | 318 | $33 / 8$ | 35/8 |
    | 31/2 |  | 31. | $35 / 8$ | 338 | ${ }_{4}$ | 4 |  | 41.4 |
    | 4 |  | 4 | $41 / 8$ | $41 / 4$ | $41 / 2$ | $43 / 4$ | $51 \%$ | 434 |
    | 41/2 |  |  | $41 / 2$ | 45 | $47 \%$ | 41/4 | $51 / 8$ | 8 |
    | 5 |  |  | 5 | $51 / 8$ | 538 | 5\% | ${ }_{6}$ | $61 /$ |
    | $51 / 2$ |  |  |  | $51 / 2$ | 538 | 6 | $61 /$ | $67 \%$ |
    | 6 | .. |  |  |  | 63/8 | 65/8 | $71 / 8$ |  |

    As the strain upon a shaft from a load upon it is proportional to the product of the parts of the shaft multiplied into each other, therefore, should the load be applied near one end of the span or bay instead of at the centre, miltiply the fourth power of the diameter of the shaft required to carry the load at the centre of the span or bay by the product of the two parts of the shaft when the load is near one end, and divide this product by the product of the two parts of the shaft when the load is carried at the centre. The four th root of this quotient will be the diameter required.
    The shaft in a line which carries a receiving-pulley, or which carries a transmitting-pulley to drive another line, should always be considered a head-shaft, and should be of the size given by the rules for shafts carrying main pulleys or gears.
    Deffection of Shafting. (Pencoyd Iron Works.) - As the deflection of steel and iron is practicalls alike under similar conditions of dimensions and loads, and as shafting is usually determined by its transverse stiffness rather than its ultimate strength, nearly the same dimensions should be used for steel as for iron.
    For continuous line-shafting it is considered good practice to limit the deflection to a maximum of $1 / 100$ of an inch per foot of length. The weight of bare shafting in pounds $=2 \cdot 6 d^{2} L=W$, or when as fully loaded with pulleys as is customary in practice, and allowing 40 lbs. per inch of width for the vertical pull of the belts, experience shows the load in pounds to be about $13 d^{2} L=W$. Taking the modulus of transverse elasticity at $26,000,000$ lbs., we derive from anthoritative formulæ the following:

    $$
    L=\sqrt[3]{873 d^{2}}, d=\sqrt{\frac{L^{3}}{873}}, \text { for bare shafting; }
    $$

    $$
    \boldsymbol{L}=\sqrt{175 d^{2}}, d=\sqrt{\frac{L^{3}}{175}}, \text { for shafting carrying pulleys, etc. }
    $$

    $\boldsymbol{L}$ being the maximum distance in feet between bearings for continuous shafting subjected to bending stress alone, $d=$ diam. in inches.
    The torsional stress is inversely proportional to the velocity of rotations while the bending stress will not be reduced in the same ratio. It is therefore impossible to write a formila covering the whole problem and suff.
    ciently simple for practical application, but the following rules are correct within the range of velocities usual in practice.

    For continuons shafting so proportioned as to deflect not more than $1 / 100$ of an inch per foot of length, allowance being made for the weakening effect of key-seats,

    $$
    \begin{aligned}
    & d=\sqrt[3]{\frac{50 \mathrm{H} \cdot \mathrm{P}}{R}}, L=\sqrt[3]{720 d^{2}}, \text { for bare shafts; } \\
    & d=\sqrt[3]{\frac{\pi 0 \mathrm{H}, \mathrm{P} .}{R}}, L=\sqrt[3]{140 d^{2}}, \text { for shafts carrying pulleys, etc. }
    \end{aligned}
    $$

    $d=$ diam. in inches, $L=$ length in feet, $R=$ revs. per min.
    The following table (by J. B. Francis) gives the greatest admissible distances between the bearings of continuous shafts subject to no transverse strain except from their own weight, as would be the case were the power given off from the shaft equal on all sides, and at an equal distance from the hanger-bearings.

    > Distance between Bearings, in ft.

    Diam. of Shaft, Wrought-iron Steel $\begin{array}{ccc}\text { in inches. } & \text { Shafts. } & \text { Shafts. } \\ 2 & 15.46 & 15.89 \\ \mathbf{3} & 17.70 & 18.19 \\ 4 & 19.48 & 20.02 \\ \mathbf{5} & 2 C .99 & 21.57\end{array}$

    Distance between Bearings, in ft.
    Diam.of Shaft, Wrought-iron Steel in inches.
    6
    6
    7
    8
    9

    Shafts. Shafts.
    $22.30 \quad 22.92$ $23.48 \quad 24.13$
    $24.55 \quad 25.23$
    $25.53 \quad 26.24$

    These conditions, however, do not usually obtain in the transmission of power by belts and pulleys, and the varying circumstances of each case render it impracticable to give any rule which would be of value for universal application.

    For example, the theoretical requirements would demand that the bearings be nearer together on those sections of shafting where most power is delivered from the shaft, while considerations as to the location and desired contiguity of the driven machines may render it impracticable to separate the driving-pulleys by the intervention of a hanger at the theoretically required location. (Joshua Rose.)

    ## Horsepower Transmitted by Turned Hron Sharting at Diferent Speeds.

    As Prime Mover or Head Shaft carrying Main Driving-pulley or Gear, well supported by Bearings, Formula: H.P. $=d^{3} R+125$.

    |  | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 60 | 80 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | $2 \% 5$ | 300 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |
    | $13 / 4$ | ${ }_{2} 2.6$ | 3.4 | 4.3 | 5.4 | 6.4 | 7.5 | 8.6 | 9.7 | 10.7 | 11.8 | 12.9 |
    | 2 | 3.8 | 5.1 | 6.4 | 8 | 9.6 | 11.2 | 12.8 | 14.4 | 16 | 17.6 | 19.2 |
    | 214 | 5.4 | 7.3 | 8.1 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
    | 21.2 | 7.5 | 10 | 12.5 | 15 | 18 | 22 | 25 | 23 | 31 | 34 | 37 |
    | $23 / 4$ | 10 | 13 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
    | 3 | 13 | 17 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
    | 31/4 | 16 | $\stackrel{1}{2}$ | 27 | 34 | 40 | 47 | 54 | 61 | 67 | 74 | 81 |
    | $31 / 2$ | 20 | 27 | 34 | 42 | 51 | 59 | 68 | 76 | 85 | 93 | 102 |
    | $33 / 4$ | 25 | 33 | 42 | 52 | 63 | 73 | 84 | 94 | 105 | 115 | 126 |
    | 4 | 30 | 41 | 51 | 64 | ${ }_{6} 6$ | 89 | 102 | 115 | 127 | 140 | 153 |
    | 4112 | 43 | 58 | 72 | 90 | 108 | 126 | 144 | 162 | 180 | 198 | 216 |
    | 5 | 60 | 80 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 |
    | 51/2 | 80 | 106 | 133 | 166 | 199 | 233 | 266 | 299 | 333 | 366 | 400 |

    As Second Movers or Line-shafting, Bearings 8 ft. apart. Formula: H.P. $=d^{3} R \div 90$.

    |  | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 245 | 300 | 325 | 350 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |
    | 19/4 | ${ }_{7}^{6}$ | 7.4 9.1 | 8.9 10.9 | 10.4 | 11.9 | 13.4 | 14.9 | 16.4 | 17.9 | 19.4 | $\stackrel{\text { H.P. }}{ }$ |
    | $2{ }^{2}$ | 8.9 | 11.1 | 13.3 | 12.5 | 17.5 | ${ }_{20}^{16.3}$ | 18.2 | 20 | 21.8 | 23.6 | 25.4 |
    | 218 | 10.6 | 13.2 | 15.9 | 18.5 | 21.2 | ${ }_{23}{ }^{2} 8$ | 26.5 | 29.1 | 21.8 | 34.4 | 31 37 |
    | 214 | 12.6 | 15.8 | 19 | 22 | 25 | 28 | 31 | 35 | 38 | 41 | 3 |
    | 2 | 15 | 18 | 22 | 26 | 29 | 33 | 37 | 41 | 44 | 48 | 52 |
    | 03 | 17 | 21 | 26 | 30 | 34 | 39 | 43 | 47 | 52 | 56 | 60 |
    | $23 / 4$ | 23 | 29 | 34 | 40 | 46 | 52 | 58 | 64 | 69 | 5 | 81 |
    | 3 | 30 38 | ${ }^{37}$ | 45 57 | 52 | 60 | ${ }^{67}$ | 75 | 82 | 90 | 97 | 105 |
    | $31 / 2$ | 38 47 | 47 59 | ${ }_{71}^{57}$ | 66 83 | 76 95 | 85 | 95 | 104 | 114 | 123 | 133 |
    | 3\% | 58 | 78 | 88 | $\begin{array}{r}83 \\ 102 \\ \hline\end{array}$ | 95 | 107 | 119 | 131 | 143 | 155 | 167 |
    | 4 | 71 | 89 | 10\% | 102 125 | 117 142 | 160 | 146 | 162 | 176 | 190 | 205 |

    For Simply Transmitting Power.
    Formula: H.P. $=d^{3} R \div 50$.

    |  | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 125 | 150 | 175 | 200 | 233 | 267 | 300 | 333 | 367 | 400 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |  |  |
    | $11 / 2$ | 6.7 | 8.4 | 10.1 | 11.8 | 13.5 | 15.7 | 17.9 | 20.3 | 22.5 | 24.8 |  |
    | 15/8 | ${ }_{10} 8$ | 10.7 | 12.8 | 15 | 17.1 | 20 | 22.8 | 25.8 | 28.6 | 31.5 | 34.3 |
    | 18 | 10.7 13.2 | 13.4 16.5 | 19. | ${ }_{23}^{18.7}$ | 21.5 | 25 | 28 | 32 | 36 | $3{ }^{31}$ | 43 |
    | $2{ }^{1 / 8}$ | $16^{18}$ | 20. | ${ }_{24} 19$ | 28 | 26.4 | 31 | 45 | 39 | 44 | 48 | 53 |
    | $21 / 8$ | 19 | 24 | 29 | 33 | 38 | 44 | 51 | 48 | 53 63 | 58 70 | 64 |
    | 214 | 22 | 28 | 34 | 39 | 45 | 52 | 60 | 68 | ${ }_{7} 7$ | 83 | 76 90 |
    | 238 | 27 | 33 | 40 | 47 | 53 | 62 | ro | 79 | 88 | 96 | 105 |
    | 2 | 31 | 39 | 47 | 54 | 62 | 73 | 83 | 93 | 104 | . 114 | 125 |
    | $23 / 4$ | 41 | 52 | 62 | 73 | 83 | 97 | 111 | 125 | 139 | 153 | 167 |
    | 3 | 54 | 67 | 81 | 94 | 108 | 126 | 144 | 162 | 180 | 198 | 216 |
    | 314 | 68 | 86 | 103 | 120 | 137 | 160 | 182 | 205 | 228 | 280 | $\stackrel{1}{216}$ |
    | $31 / 2$ | 85 | 107 | 128 | 150 | $1 \pi 1$ | 200 | 228 | 257 | 285 | 2313 | ${ }_{342}$ |

    Horse-power Transmitted by Cold-rolled Iron Shafting at Dificrent Speeds.
    As Prime Mover or Head Shaft carrying Main Driving-pulley or Gear, well supported by Bearings. Formula: H.P. $=d^{3} R \div \%$.

    |  | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 60 | 80 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | $2 \pi 5$ | 300 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |  |  |
    | $11 / 2$ | 2.7 | 3.6 | 4.5 | 5.6 | 6.7 | 7.9 | 19.0 | $1{ }^{1}$ | ${ }_{11}$ | H.P. | ${ }_{13}$ |
    | $13 / 4$ | 4.3 | 5.6 | 7.1 | 8.9 | 10.6 | 12.4 | 14.2 | 16 | 18 | 19 | 21 |
    | $\stackrel{2}{2}$ | 6.4 | 8.5 | 10.7 | 13 | 16 | 19 | 21 | 24 | 26 | 29 | 31 |
    | $21 / 4$ |  | 12 | 15 | 19 | 23 | 26 | 30 | 34 | 38 | 42 | 42 |
    | $21 / 2$ | 12 | 17 | 21 | 26 | 31 | 36 | 41 | 47 | 52 | 57 | 46 |
    | $23 / 4$ | 16 | 22 | 27 | 35 | 41 | 48 | 55 | 62 | \%0 | $\stackrel{57}{76}$ | 82 |
    | 3 | 21 | $\stackrel{29}{ }$ | 36 | 45 | 54 | 63 | \% | 81 | 90 | 98 98 | 82 |
    | 31/4 | 27 | 36 | 45 | 57 | 68 | 80 | 91 | 103 | 114 | 128 | 108 |
    | 31.2 | 34 | 45 | 57 | 71 | 86 | 100 | 114 | 129 | 114 | 126 | 136 |
    | $33 / 4$ | 42 | 56 | 70 | 87 | 105 | 123 | 140 | 158 | ${ }_{174}^{114}$ | 157 | 172 210 |
    | 4 | 51 | 69 | 85 | 106 | 128 | 149 | 170 | 192 | 212 | 193 | 210 256 |
    | 41/3 | 73 | 9 ? | 121 | 151 | 182 | 212 | 243 | $2{ }^{10}$ | 302 | ${ }_{3} 243$ | 256 |

    As Second Movers or Line-shafting, Bearings 8 ft. apart.
    Formula: H.P. $=d^{3} R \div$ ع0.

    | 臣 | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 125 | 150 | 175 | 200 | 225 | 250 | $2 \%$ | 300 | 325 | 350 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |  | H.P. |
    | 119 | 6.7 | 8.4 | 10.1 | 11.8 | 13.5 | 15.2 | 16.8 | 18.5 | 20.2 | 21.9 | 23.6 |
    | 158 | 8.6 | 10.7 | 12.8 | 15 | 17.1 | 19.3 | 21.5 | 23.6 | 25.7 | 28.9 | 31 |
    | 134 | 10.7 | 13.4 | 16 | 18.7 | 21.5 | 24.2 | 26.8 | 29.5 | 32.1 | 34.8 | 39 |
    | $17 / 8$ | 13.2 | 16.5 | 19.7' | 23 | 26.4 | 29.6 | 32.9 | 36.2 | 39.5 | 42.8 | 46 |
    | 2 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 |
    | $21 / 8$ | 19 | 24 | 29 | 33 | 38 | 43 | 48 | 52 | 57 | 62 | 67 |
    | 214 | 22 | 28 | 34 | 39 | 45 | 50 | 56 | 61 | 68 | 74 | 80 |
    | 238 | 27 | 33 | 40 | 47 | 53 | 60 | 67 | 73 | 80 | 86 | 94 |
    | 212 | 31 | 39 | 47 | 54 | 62 | 69 | 78 | 86 | 93 | 101 | 109 |
    | 234 | 41 | 52 | 62 | 73 | 83 | 93 | 104 | 114 | 125 | 135 | 145 |
    | 3 | 54 | 67 | 81 | 94 | 108 | 121 | 134 | 148 | 162 | 175 | 189 |
    | $31 / 4$ | 68 | 86 | 103 | 120 | 137 | 154 | 172 | 188 | 205 | 222 | 240 |
    | $31 / 2$ | 85 | 107 | 128 | 150 | 171 | 192 | 214 | 235 | $25 \%$ | 278 | 300 |

    For Simply Transmitting Power and Short Counters.
    Formula: H.P. $=d^{3} R+30$.

    |  | Number of Revolutions per Minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 125 | 150 | 175 | 200 | 233 | 267 | 300 | 333 | 367 | 400 |
    | Ins. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. | H.P. |
    | 11/4 | 6.5 | 8.1 | 9.7 | 11.3 | 13 | 15.2 | 17.4 | 19.5 | 21.7 | 23.9 | 26 |
    | 138 | 8.5 | 10.7 | 12.8 | 15 | 17 | 19.8 | 22.7 | 25.5 | 28.4 | 31 | 34 |
    | 11.2 | 11.2 | 14 | 16.8 | 19.6 | 22.5 | 26 | 30 | 33 | 37 | 41 | 45 |
    | $15 / 8$ | 14.2 | 17.7 | 21.2 | 24.8 | 28.4 | 33 | 38 | 42 | 47 | 52 | 57 |
    | $13 / 4$ | 18 | 22 | 27 | 31 | 35 | 41 | 47 | 53 | 59 | 65 | 71 |
    | 17/8 | 22 | 27 | 33 | 38 | 44 | 51 | 58 | 65 | $7 \%$ | 79 | 87 |
    | 2 | 26 | 33 | 40 | 46 | 53 | 62 | 71 | 80 | 88 | 97 | 106 |
    | 21/8 | $3:$ | 40 | 47 | 55 | 63 | 73 | 84 | 95 | 105 | 116 | 127 |
    | 214 | 38 | 47 | 57 | 66 | 76 | 89 | 101 | 114 | 127 | 139 | 152 |
    | $23 / 8$ | 44 | 55 | 66 | 77 | 88 | 10.3 | 118 | $13: 3$ | 148 | 163 | 178 |
    | $21 \%$ | 52 | 65 | 78 | 91 | 104 | 121 | 138 | 155 | 172 | 190 | 207 |
    | 23/4 | 69 | 84 | 99 | 113 | 138 | 161 | 184 | 207 | 231 | 254 | $2 \%$ |
    | 3 | 90 | 112 | 135 | 157 | 180 | 210 | 240 | $2 \pi 0$ | 300 | 330 | 360 |

    > Speed of Shafring.-Machine shops ..................... 120 to 180
    > Wood-working................. 250 to 300
    > Cotton and woollen mills...... 300 to 400

    There are in some factories lines 1000 ft . long, the power being applied ai the middle.

    Hollow Shafts.-Let $d$ be the diameter of a solid shaft, and $d_{1} d_{2}$ the external and internal diameters of a hollow shaft of the same material. Then the shafts will be of equal torsional strength when $d^{3}=\frac{d_{1}{ }^{4}-d_{2}{ }^{4}}{d_{1}}$. A 10 -inch hollow shaft with internal diameter of 4 inches will weigh $16 \%$ less than a solid 10 -inch shaft, but its strength will be only $2.56 \%$ less. If the hole were increased to 5 inches diameter the weight would be $25 \%$ less than that of the solid shaft, and the strength $6.25 \%$ less.

    Table for Laying Out Shafting.-The table on the opposite page (from the Stevens Indicator, April, 1892) is used by Wm. Sellers \& Co. to facilitate the laying out of shafting.

    The wood-cuts at the head of this table show the position of the hangers and position of couplings, either for the case of extension in both directions from a central head-shaft or extension in one direction from that head-shaft.
    

    ## PULLEYS.

    Proportions of Pulleys. (See also Fly-wheels, pages 820 to 883.)Let $n=$ number of arms, $D=$ diameter of pulley, $S=$ thickness of belt, $t=$ thickness of rim at edge, $T=$ thickness in middle, $B=$ width of rim, $\beta=$ width of bell, $h=$ breadth of arm at hub, $h_{1}=$ breadth of arm at rim, $e=$ thickness of arm at hub $e_{1}=$ thickness of arm at rim, $c=$ amount of crowning; dimensions in inches.

    Unwin. Reuleaux.
    $B=$ width of rim.
    $t=$ thickness at edge of rim

    $$
    9 / 8(\beta+0.4)
    $$

    $T=$ " " middle of rinı
    $0.7 S+.005 D$
    $9 / 8 \beta$ to $5 / 4 \beta$
    $\{$ (thick. of 1 rim.)
    $2 t+c$
    $1 / 5 h$ to $1 / 4 h$
    $n=$ breadth of arm at hub..... $\left\{\begin{array}{l}\text { For single } \\ \text { belts }=.633 \sqrt[3]{\frac{B}{n}} \\ \text { For double } \\ \text { belts }=.798 \sqrt[3]{\frac{B D}{n}}\end{array}\right.$

    | $h_{1}=$ 6 " " "r rim... | 2/8h | $0.8 h$ |
    | :---: | :---: | :---: |
    | $e=$ thickness of arm at hub | $0.4 h$ | $0.5 h$ |
    | $e_{1}=$ "6 " ${ }^{\text {c }}$ " rim. | $0.4 h_{1}$ | $0.5 h_{1}$ |
    | single set, | $3+\frac{B D}{150}$ | $1 / 2\left(5 \times \frac{D}{2 B}\right)$ |

    $L=$ length of hub
    $\{$ not less than $2.5 S$,$\} for sin.-arm pulleys.$ $M=$ thickness of metal in hub...... $\ldots \ldots \ldots \ldots .$. $c=$ crowning of pulley
    $1 / 24 B$
    The number of arms is really arbitrary, and may be altered if necessary. (Unwin.)

    Pulleys with two or three sets of arms may be considered as two or three separate pulleys combined in one, except that the proportions of the arms should be 0.8 or 0.7 time that of single-arm pulleys. (Reuleaux.)

    Example.-Dimensions of a pulley $60^{\prime \prime}$ diam., $16^{\prime \prime}$ face, for double belt $1 / 2^{\prime \prime}$ thick.

    | Solution by.... | $n$ | $h$ | $h_{1}$ | $e$ | $e_{1}$ | $t$ | $T$ | $L$ | $M$ | $c$ |
    | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Unwin........ | 9 | 3.79 | 2.53 | 1.52 | 1.01 | .$\underbrace{65}_{1.25}$ | 1.97 | 10.7 | 3.8 | .67 |
    | Reuleaux..... | 4 | 5.0 | 4.0 | 2.5 | 2.0 |  | 16 | 5 |  |  |

    The following proportions are given in an article in the Amer. Machinist, anthority not stated:
    $h=.0625 D+.5 \mathrm{in} ., h_{1}=.04 D+3125$ in., $e=.025 D+.2$ in., $e_{1}=.016 D+$ 125 in .
    These give for the above example: $h=4.25$ in., $h_{1}=2.71 \mathrm{in} ., e=1.7$ in. $e_{1}=1.09 \mathrm{in}$. The section of the arms in all cases is taken as elliptical.
    The following solution for breadth of arm is proposed by the author: Assume a belt pull of 45 lbs. per inch of width of a single belt, that the whole strain is taken in equal proportions on one half of the arms, and that the arm is a beam loaded at one end and fixed at the other. We have the formula for a beam of elliptical section $f P=.0982 \frac{R b d^{2}}{l}$, in which $P=$ the load, $R=$ the modulus of rupture of the cast iron, $b=$ breadth, $d=$ depth, and $l=$ length of the beam, and $f=$ factor of safety. Assume a modulus of rupture of $36,000 \mathrm{lbs}$., a factor of safety of 10 , and an additional allowance for safety in taking $l=1 / 2$ the diameter of the pulley instead of $1 / 2 D$ less the radius of the hub.

    Take $d=h$, the breadth of the arm at the hub, and $b=e=0.4 h$, the thickness. We then have $f P=10 \times \frac{45 B}{n \div 2}=900 \frac{B}{n}=\frac{3535 \times 0.4 h^{3}}{1 / 2 D}$, whence $h=\sqrt[3]{\frac{900 B D}{3535 n}}=.633 \sqrt[3]{\frac{\overline{B D}}{n}}$, which is practically the same as the value reached by Unwin from a different set of assumptions.

    Convexity of Pulleys. - Authorities differ. Morin gives a rise equal to $1 / 10$ of the face; Molesworth, $1 / 24$; others from $1 / 8$ to $1 / 96$. Wcott $A$. Smith says the crown should not be over $1 / 8$ inch for a 24 -inch face. Pulleys for shifting belts should be "straight," that is, without crowning.

    ## CONE OR STEP PULLEYS.

    To find the diameters for the several steps of a pair of cone-pulleys:

    1. Crossed Belts.-Let $D$ and $d$ be the diameters of two pulleys con. nected by a crossed belt, $L=$ the distance between their centres, and $\beta=$ the angle eitlier half of the belt makes with a line joining the centres of the pulless : then total lengtlı of belt $=(D+d) \frac{\pi}{2}+(D+d) \frac{\pi \beta}{180}+2 L \cos \beta$. $\beta=$ angle whose sine is $\frac{D+d}{2 L} ; I \cdot \cos \beta=\sqrt{L^{2}-\left(\frac{D+d}{2}\right)^{2}}$. The length of the belt is constant when $D+d$ is constant; that is, in a pair of steppulleys the belt tension will be uniform when the sum of the dlameters of each opposite pair of steps is constant. Crossed belts are seldom nsed for cone-pulleys, on account of the friction between the rubbing parts of the belt.
    To design a pair of tapering speed-cones, so that the belt may fit equally tight in all positions : When the belt is crossed, use a pair of equal and similar cones tapering opposite ways.
    2. Open Relts.- When the belt is uncrossed. nse a pair of equal and similar conoids tapering opposite ways, and bulging in the middle, according to the following formula: Let $L$ denote the distance between the axes of the conoids; $R$ the radius of the larger end of each; $r$ the radius of the smaller end; then the radius in the middle, $r_{0}$, is found as follows:

    $$
    r_{0}=\frac{R+r}{2}+\frac{(R-r)^{2}}{6.28 L} . \quad \text { (Rankine.) }
    $$

    If $D_{0}=$ the diameter of equal steps of a pair of cone-pulleys, $D$ and $d=$ the diamêters of unequal opposite steps, and $L=$ distance between the axes, $D_{0}=\frac{D+d}{2}+\frac{(D-d)^{2}}{12.566 L}$.

    If a series of differences of radii of the steps, $R-r$, be assumed, then for each pair of steps $\frac{R+r}{\sim}=r_{0}-\frac{(R-r)^{2}}{6.28 L}$, and the radii of each may be computed from their half sum and half difference, as follows:

    $$
    R=\frac{R+r}{2}+\frac{R-r}{2} ; \quad r=\frac{R+r}{2}-\frac{R-r}{2}
    $$

    A. J. Frith (Trans. A. S. M. E., x. 298) shows the following application of Rankine's method: If we had a set of cones to design, the extreme diameters of which, including thickness of belt, were $40^{\prime \prime}$ and $10^{\prime \prime}$, and the ratio desired 4, 3, 2, and 1, we would make a table as follows, $L$ being $100^{\prime \prime}$ :

    | Trial <br> Sum of $D+d$. | Ratio. | Trial Diameters. |  | Values of$\frac{(D-d)^{2}}{12.56 L}$ | $\begin{aligned} & \text { Amount } \\ & \text { to be } \\ & \text { Added. } \end{aligned}$ | Corrected Values. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | D | $d$ |  |  | D | $d$ |
    | 50 | 4 | 40 | 10 | . 7165 | . 0000 | 40 | 10 |
    | 50 | 3 | 37.5 | 12.5 | . 4975 | . 2190 | 37.7190 | 12.5190 |
    | 50 | 2 | 33.333 | 16.666 | . 2212 | . 4953 | 33.8286 | 17.1619 |
    | 50 | 1 | 25 | 25 | .0000 | . 7165 | 25.7165 | 25.7165 |

    The above formulæ are approximate, and they do not give satisfactory results when the difference of diameters of opposite steps is large and when the axes of the pulleys are near together, giving a large belt-angle. The following more accurate solution of the problem is given by C. A. Smith (Trans. A. S. M. E., x. 269 ) (Fig 152):

    Lay off the centre distance $C$ or $E F$, and draw the circles $D_{1}$ and $d_{1}$ equal to the first pair of pulleys, which are always previously determined by known conditions. Draw $H I$ tangent to the circles $D_{1}$ and $d_{1}$. From $B_{5}$ midway between $E$ and $F$, erect the perpendicular $B G$, making the lengtb
    $B G=.314 C$. With $G$ as a centre, draw a circle tangent to HI. Generally this circle will be outside of the belt-line, as in the cut, but when $C$ is short and the first pulleys $D_{1}$ and $d_{1}$ are large, it will fall on the inside of the beltline. The belt-line of any other pair of pulleys must be tangent to the cirche $G$; hence any line, as $J K$ or $L M$, drawn tangent to the circle $G$, will give
    

    Fig. 152.
    the diameters $D_{2}, d_{2}$ or $D_{3}, d_{3}$ of the pulleys drawn tangent to these lines from the centres $E$ and $F^{3}$.
    The above method is to be used when the belt-angle $A$ does not exceed $18^{\circ}$. When it is between $18^{\circ}$ and $30^{\circ}$ a slight modification is made. In that case, in addition to the point $G$, locate another point $m$ on the line $B G .298 \mathrm{C}$ above $B$. Draw a tangent line to the circle $G$, making an angle of $18^{\circ}$ to the line of centres $E F$, and from the point $m$ draw an arc tangent to this tangent line. All belt-lines with angles greater than $13^{\circ}$ are tangent to this arc. The following is the summary of Mr. Smith's mathematical method:
    $A=$ angle in degrees between the centre line and the belt of any pair of pulleys;
    $a=.314$ for belt-angles less than $18^{\circ}$, and .298 for angles between $18^{\circ}$ and $30^{\circ}$;
    $B^{\circ}=$ an angle depending on the velocity ratio;
    $C=$ the centre distance of the two pulleys;
    $D, d=$ diameters of the larger and smaller of the pair of pulleys;
    $E^{\circ}=$ an angle depending on $B^{\circ}$;
    $L=$ the length of the belt when drawn tight around the pulleys;
    $r=D \div d$, or the velocity ratio (larger divided by smaller).
    (1) $\operatorname{Sin} A=\frac{D-d}{2 C}$;
    (2) $\tan B^{\circ}=\frac{2 \alpha(r-1)}{r+1}$;
    (3) $\operatorname{Sin} E^{\circ}=\sin B^{\circ}\left(\cos A-\frac{D+d}{4 a C}\right)$;
    (4) $A=B^{\circ}-E^{\circ}$ when $\sin E^{\circ}$ is positive; $=B^{\circ}+E^{\circ}$ when $\sin E^{\circ}$ is negative;
    (5) $d=\frac{2 C \sin A}{r-1} ;=.3183(L-2 C)$ when $A=0$ and $r=1$;
    (6) $D=r d$;
    (7) $L=2 C \cos A+.01745 d[180+(r-1)(90+A)]$.

    Equation (1) is used only once for any pair of cones to obtain the constant $\cos A$, by the aid of tables of sines and cosines, for use in equation (3).

    ## BELTING.

    -Theory of Belts and Bands.-A pulley is driven by a belt by means of the friction between the surfaces in contact. Let $T_{1}$ be the tension on the driving side of the belt, $T_{2}$ the tension on the loose side: then $S,=T_{1}$ $-T_{2}$, is the total triction between the band and the pulley, which is equal to the tractive or driving force. Let $f=$ the coefficient of friction, $\theta$ the ratio of the leugth of the arc of contact to the length of the radius, $a=$ the angle of the arc of contact in degrees, $e=$ the base of the Naperian logarithms $=2.71828, m=$ the modulus of the common logarithms $=0.434295$. The following formulæ are derived by calculus (Rankine's Mach'y \& Millwork, p. 351 ; Carpenter's Exper. Eng'g, p. 17 (3):

    $$
    \begin{aligned}
    & \frac{T_{1}}{T_{2}}=e^{f \theta} ; T_{2}=\frac{T_{1}}{e^{f \theta}} ; \quad T_{1}-T_{2}=T_{1}-\frac{T_{1}}{e^{f \theta}}=T_{1}\left(1-e^{-f \theta}\right) \\
    & T_{1}-T_{2}=T_{1}\left(1-e^{-f \theta)}=T_{1}\left(1-10^{-f \theta m}\right)=T_{1}\left(1-10^{-.00758 f a}\right)\right. \\
    & \frac{T_{1}}{T_{2}}=10.00758 f a
    \end{aligned} \quad T_{1}=T_{2} \times 10^{.00758 f a} ; T_{2}=\frac{T_{1}}{10^{.00758 f a}} .
    $$

    If the arc of contact between the band and the pulley expressed in turns and fractions of a turn $=n, \theta=2 \pi n ; e^{f \theta}=10^{2.7238 f n} ;$ that is, $e^{f \theta}$ is the natural number corresponding to the common logarithm $2.7: 88 \mathrm{fn}$.

    The value of the coefficient of friction $f$ depends on the state and material of the rubbing surfaces. For leather belts on iron pulleys, Morin found $f=.56$ when dry, .36 when wet. .23 when greasy, and .15 when oily. In calculating the proper mean tension for a belt, the smallest value, $f=.15$, is to be taken if there is a probability of the belt becoming wet with oil. The experiments of Henry R. Towne and Robert Briggs, however (Jour. Frank. Inst., 1868). show that such a state of lubrication is not of ordinary occurrence; and that in designing machinery we may in most cases safely take $f=0.42$. Reuleaux takes $f=0.25$. The following table shows the values of the coefficient $\quad 3.7288 f$, by which $n$ is multiplied in the last equation, corresponding to different values of $f$; also the corresponding values of various ratios among the forces, when the arc of contact is half a circumference:

    | $f=0.15$ | 0.25 | 0.42 | 0.56 |
    | ---: | :--- | :--- | :--- |
    | $2.7288 f$ | $=0.41$ | 0.68 | 1.15 |
    | d $n=1 / 2$ | then |  |  |
    | $T_{1} \div T_{2}=1.503$ | 2.188 | 3.758 |  |
    | $T_{1} \div S=2.66$ | 1.84 | 1.36 | 1.21 |
    | $T_{2} \div 2 S$ | $=2.16$ | 1.34 | 0.86 |

    In ordinary practice it is usual to assume $T_{2}=S ; T_{1}=2 S ; T_{3}+T_{2}+$ $2 S=1.5$. 'This corresponds to $f=0.2{ }^{2}$ nearly.

    For a wire rope on cast iron $f$ may be taken as 0.15 nearly; and if the groove of the pulley is bottomed with gutta-percha, 0. 5.5 . (Rankine.)
    Centrifugal rension of Belts. - When a belt or band runs at a high velocity, centrifugal force produces a tension in addition to that existing when the belt is at rest or moving at a low velocity. This centrifugal tension diminishes the effective driving force.

    Rankine says : If an endless band, of any figure whatsoever, runs at a given speed, the centrifugal force produces a uniform tension at each crosssection of the band, equal to the weight of a piece of the band whose length is twice the height from which a heavy body must fall, in order to acquire the velocity of the band. (See Cooper on Belting, p. 101.)

    If $T_{c}=$ centrifugal tension;
    $V=$ velocity in feet per second;
    $g=$ acceleration due to gravity $=32.2 ;$
    $\dot{W}=$ weight of a piece of the belt 1 ft . long and 1 sq. in. sectional area,
    Leather weighing 56 lbs . per cubic foot gives $W=56+144=.388$.

    $$
    T_{0}=\frac{W V^{2}}{g}=\frac{.388 V^{2}}{32.2}=.012 V^{2}
    $$

    Relting Practice. Handy Formula for Belting. - Since in the practical application of the above formulæ the value of the coefficient of friction must be assumed, its actual value varying within wide limits ( $15 \%$ to $135 \%$ ), and since the values of $T_{3}$ and $T_{2}$ also are fixed arbitrarily, it, is customary in practice to substitute for these theoretical formulæ more simple empirical formulæ and rules, some of which are given below.

    Let $d=$ diam. of pulley in inches; $\pi d=$ circumference;
    $V=$ velocity of belt in ft . per second; $v=$ vel. in ft . per minute;
    $a=$ angle of the are of contact;
    $L=$ length of arc of contact in feet $=\pi d a \div(12 \times 360)$;
    $F=$ tractive force per square inch of sectional area of belt;
    $w=$ width in inches; $t=$ thickness;
    $S=$ tractive force per inch of width $=F \div t$;
    rpm. $=$ revs. per minute; rps. $=$ revs. per second $=$ rpm. $\div 60$.

    $$
    \begin{aligned}
    & V=\frac{\pi d}{12} \times \mathrm{rps} .=\frac{\pi d}{12} \times \frac{\mathrm{rpm}}{60}=.004363 d \times \mathrm{rpm}=\frac{d \times \mathrm{rpm}}{229.2} \\
    & v=\frac{\pi d}{12} \times \mathrm{rpm} . ;=.2618 d \times \mathrm{rpm} .
    \end{aligned}
    $$

    Horse-power, H.P. $=\frac{S v w}{33000}=\frac{S V w}{550}=\frac{S w d \times \text { rpm. }}{126050}=.00000^{\circ} 933 S w d \times \mathrm{rpm}$.
    If $F=$ working tension per square inch $=275 \mathrm{lbs}$., and $t=7 / 32 \mathrm{inch}, S=$ 60 lbs nearly, then

    $$
    \begin{equation*}
    \text { H.P. }=\frac{v w}{550}=.109 \mathrm{~V} w=.000476 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{2101} . \tag{1}
    \end{equation*}
    $$

    If $F=180 \mathrm{lbs}$. per square inch, and $t=1 / 6 \mathrm{inch}, S=30 \mathrm{lbs}$., then

    $$
    \begin{equation*}
    \text { H.P. }=\frac{v w}{1100}=.055 \mathrm{Vw}=.000238 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{4202} \tag{2}
    \end{equation*}
    $$

    If the working strain is 60 lbs . per inch of width, a belt 1 inch wide travelling 550 ft . per minute will transinit 1 horse-power. If the working strain is 30 lbs. per inch of width, a belt 1 inch wide, travelling 1100 ft . per minute, will transmit 1 horse-power. Numerous rules are given by different writers on belting which vary between these extremes. A rule commonly used is : 1 inch wide travelling 1000 ft . per min. $=$ I.H.P.

    $$
    \begin{equation*}
    \text { H.P. }=\frac{v w}{1000}=.06 V v=.000262 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{3820} . \tag{3}
    \end{equation*}
    $$

    This corresponds to a working strain of 33 lbs . per inch of width.
    Many writers give as safe practice for single belts in good condition a working tension of 45 lbs . per inch of width. This gives

    $$
    \begin{equation*}
    \text { H.P. }=\frac{w v}{733}=.0818 v w=.000357 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm} .}{2800} \tag{4}
    \end{equation*}
    $$

    For double belts of average thickness, some writers say that the trans mitting efficiency is to that of single belts as 10 to 7 , which would give
    H.P. of double belts $=\frac{w v}{513}=.1169 \mathrm{~V} w=.00051 w d \times \mathrm{rpm} .=\frac{w d \times \mathrm{rpm}}{1960}$.

    Other authorities, lowever, make the transmitting-power of double belts $t$ wice that of single belts, on the assumption that the thickness of a doublebelt is twice that of a single belt.

    Rules for horse-power of belts are sometimes based on the number of square feet of surface of the belt which pass over the pulley in a minute. Sq. ft. per min. $=w v \div 12$. The above formulæ translated into this form give :

    The above formulæ are all based on the supposition that the are of contact is $180^{\circ}$ For other arce, the transmitting power is approximately pro portional to the ratio of the degrees of arc to $180^{\circ}$.

    Some rules base the horse-power on the length of the are of contact in feet. Since $L=\frac{\pi d a}{12 \times 360}$ and H P. $=\frac{S v w}{33000}=\frac{S w}{33000} \times \frac{\pi d}{12} \times \mathrm{rpm} . \times \frac{a}{180}$, we obtain by substitution H.P. $=\frac{S w}{16500} \times L \times \mathrm{rpm}$., and the five formulæ then take the following form for the several values of $S$ :

    $$
    \begin{aligned}
    & \text { H.P }=\frac{w L \times \mathrm{rpm}}{275}(1) ; \frac{w L \times \mathrm{rpm} .}{550}(2) ; \frac{w L \times \mathrm{rpm} .}{500}(3) ; \frac{w L \times \mathrm{rpm} .}{36 \%}(4) ; \\
    & \text { H.F. (double belt) }=\frac{w L \times \mathrm{rpm} .}{25 \%}(5) .
    \end{aligned}
    $$

    None of the handy formulæ take into consideration the centrifugal tension of belts at high velocities. When the velocity is over 3000 ft . per minnute the effect of this tension becomes appreciable, and it should be taken account of as in Mr. Nagle's formula, which is given below.

    Horsempower of a Leather Belt One Inch wide. (Nagle.)
    Formula: H.P. $=C V^{2} t u\left(S-.012 V^{2}\right) \div 550$.
    For $f=.40, a=180^{\circ}, C=.715, w=1$.

    | Laced Belts, $S=275$. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Thickness in inches $=t$. |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |
    |  | . 1 | . 16 | .18\% | . 219 |  | . 312 |  | 333 |
    | 10 | . 51 | . 59 |  |  |  | 1.05 |  |  |
    | 15 | . 75 | . 88 | 1.00 | 1.16 |  | 1. |  |  |
    | 20 | 1.00 | 1.17 | $1 \cdot 32$ | 1.54 |  | 2.19 |  |  |
    | 25 | 1.23 | 1.43 | 1.61 | 1.88 | 2.16 | 2.69 |  |  |
    | 30 | 1.47 | 1.72 | 1.93 | 2.25 | 2.58 | 3.22 |  |  |
    | 35 | 1.69 | 1.97 | 2.22 | 2.59 |  | 3. 70 |  |  |
    | 40 | 1.90 | 2.22 | 2.49 | 2.90 | 3.32 | 24.15 |  |  |
    | 45 | 2.09 | 2.45 | 2.75 | 3.21 | 3.67 | 4.58 |  |  |
    | 50 | 2.27 | 2.65 | 2.98 | 3.48 | 3.98 | 4.97 |  |  |
    | 55 | 2.44 | 2.84 | 3.19 | 3.2 |  |  |  |  |
    | 60 | 2.58 | 3.01 | 3.38 | 3.95 |  | 5.64 |  |  |
    | 65 | 2.71 | 3.16 | 3.55 | 4.14 |  |  |  |  |
    | r0 | 2.81 | 3.27 | 3.68 | 4.29 | 4.91 |  |  |  |
    | 75 | 2.89 | 3.37 | 3.79 | 4.42 |  | 6.31 |  |  |
    | 80 | 2.94 | 3.43 | 3.86 | 4.50 | 5.15 | 6.4 |  |  |
    | 8 | 2.97 | 3.47 | 3. 90 | 4.55 |  |  |  | .93 |
    | 90 | 2.97 | 3.47 | 3.904 | 4.55 |  | 6.50 |  |  |

    The H.P. becomes a maximum

    | Riveted Belts, $S=400$. |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Thickness in inches $=\boldsymbol{t}$. |  |  |  |  |  |  |
    |  | \%/32 | 1/4 | 5/16 | $1 / 3$ | 3/8 | 7/16 |  |
    |  | 219 | 250 | . 312 | . 333 | 37 | 437 | . 500 |
    | 15 | 1.69 | 1.94 | 2. | 2.58 | 2.91 | 3.39 |  |
    | 20 | 2.24 | 2.57 | 3.21 | 3.42 | 5.85 | 4.49 |  |
    | 25 | 2.79 | 3.19 | 3.98 | 4.25 | 4.78 | 5.57 | 6. |
    | 30 | 3.31 | 3.79 | 4.74 | 5.05 | 5.67 | 6.62 |  |
    | 35 | 3.82 | 4.37 | 5.46 | 5.83 | 6.56 | 7.65 | 75 |
    | 40 | 4.33 | 4.95 | 6.19 | 6.60 | 7.42 | 8.66 |  |
    | 45 | 4.85 | 5.49 | ${ }^{6} .86$ | 7.32 | 8.43 | 970 | 10.98 |
    | 50 | 5.26 | 6.01 | 7.51 | 8.02 | 9 02 | 10.52 | 12.03 |
    | 55 | 5.68 | 6.50 | 8.12 | 8.66 | 9.74 | 11.36 | 3.00 |
    | 60 | 6.09 | 6.66 | 8. 70 | 9.28 | 10.43 | 12.17 | 13.91 |
    | 65 | 6.45 | 7.37 | 9.22 | 9.83 | 11.06 | 12.90 | 14.75 |
    | \%0 | 6.78 | 7.75 | 969 | 10.33 | 11.62 | 13.56 | 5.50 |
    | 75 | 7.09 | 8.11 | 10.13 | 10.84 | 12.16 | 14.18 | 6.21 |
    | 80 | 7.36 | 8.41 | 1051 | 11.21 | 12.61 | 14.71 | 16.81 |
    | 85 | 7.58 | 8.66 | 10.82 | 11.55 | 13.00 | 15.16 | 17.32 |
    | 90 | 7.84 | 8.85 | 11.06 | 11.80 | $13.2 \pi$ | 15.48 | 17.69 |
    | 100 | 7.9 | 9.10 | 11.3 í | 12. | 13.65 |  |  | at 87.41 ft . persec,$=5245 \mathrm{ft}$. p. min. 105.4 ft . per sec. $=6324 \mathrm{ft}$. per min.

    In the above table the angle of subtension, $a$, is taken at $180^{\circ}$.
    
    A. F. Nagle's Formula (Trans. A. S. M. E., voi. ii., 1881, p. 91. Tables published in 1882.)

    $$
    \text { H.P. }=C V t u\left(\frac{S-.012 V^{2}}{550}\right) ;
    $$

    $C=1-10^{-.00758 f a}$;
    $\alpha=$ degrees of belt contast;
    $f=$ coefficient of friction;
    $v=$ width in inches;
    $t=$ thickness in inches;
    $V=$ velocity in feet per second;
    $S=$ stress upon belt per square inch.

    ## WIDTH OF BELT FOR A GIVEN HORSE-POWER. 879

    Taking $S$ at 275 lbs . per sq. in. for laced belts and 400 lbs . per sq. in. for fapped and riveted belts, the formula becomes

    $$
    \begin{aligned}
    & \text { H.P. }=C V t w\left(.50-.0000218 V^{2}\right) \text { for laced belts; } \\
    & \text { H.P. }=C V t w\left(.727-.0000218 V^{2}\right) \text { for riveted belts. }
    \end{aligned}
    $$

    $$
    \text { Values of } C=1-10^{-.00758 f a} \text {. (Nagte.) }
    $$

    | giciod | Degrees of contact $=\boldsymbol{\alpha}$. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $110.0$ | $90^{\circ}$ | $100^{\circ}$ | $110^{\circ}$ | $120^{\circ}$ | $130^{\circ}$ | $140^{\circ}$ | $150^{\circ}$ | $160^{\circ}$ | $170^{\circ}$ | $180^{\circ}$ | $200^{\circ}$ |
    | . 15 | . 210 | . 230 | . 250 | . 270 | . 288 | . 307 | . 325 | . 342 | . 359 | . 376 | . 408 |
    | . 20 | . 270 | . 295 | . 319 | . 342 | . 364 | . 386 | . 408 | . 428 | . 448 | . 467 | . 503 |
    | .25 | . 325 | . 354 | . 381 | . 407 | . 432 | . 457 | . 480 | . 503 | . 524 | . 544 | . 582 |
    | 30 | . 376 | . 408 | . 438 | . 46 ' | . 494 | . 520 | . 544 | . 567 | . 590 | . 610 | . 649 |
    | . 35 | . 423 | . 457 | . 489 | . 520 | . 548 | . 575 | . 600 | . 624 | . 646 | . 667 | . 505 |
    | .40 | . 467 | . 502 | . 536 | . 567 | . 597 | . 624 | . 649 | . 673 | . 695 | . 715 | . 753 |
    | . 45 | .507 <br> .578 | . 544 | . 579 | . 610 | . 640 | . 667 | . 692 | . 715 | . 737 | . 757 | . 792 |
    | . 60 | .578 .610 | . 6179 | . 652 | . 684 | .713 .744 | .739 .769 | .763 .792 | . 785 | . 805 | . 822 | . 853 |
    | 1.00 | . 792 | . 825 | . 858 | . 877 | . 897 | . 818 | . 9.92 | . 813 | . 838 | . 8488 | . 878 |

    The following table gives a comparison of the formulæ already given for the case of a belt one inch wide, with arc of contact $180^{\circ}$.
    Horse-power of a Belt One Inch wide, Are of Contact $180^{\circ}$.
    Comparison of Different Formules.

    | $\begin{aligned} & \equiv 0 \\ & \equiv 0 \\ & \hline 0 \end{aligned}$ | $\underset{\Delta}{\Xi} \underset{\sim}{E}$ | 븡 | $\left\lvert\, \begin{aligned} & \text { Form. } 1 \\ & \text { H.P. }= \end{aligned}\right.$ | $\text { Form. } 2$ $\mathrm{H} . \mathrm{P} .=$ | $\text { Formı } 3$ $\text { H.P. }=$ | $\text { Form. } 4$ $\text { H.P. }=$ | Form. 5 <br> dbl.belt | Nagle's Form. r/32"'single belt |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | - | 定高 | $\frac{v v}{550}$. | $\frac{2 v v}{1100}$. | $\frac{w v}{1000}$. | $\frac{w v}{733}$. | $\frac{w v}{513}$. | Laced. | Riveted |
    | 10 | 600 | 50 | 1.09 | . 55 | . 60 | 82 | 1.17 | . 73 | 1.14 |
    | 20 | 1200 | 100 | 2.18 | 1.09 | 1.20 | 1.64 | 2.34 | 1.54 | 2.24 |
    | 30 | 1800 | 150 | 3.27 | 1.64 | 1.80 | 2.46 | 3.51 | 2.25 | 3.31 |
    | 40 | 2400 | 200 | 4.36 | 2.18 | 2.40 | 3.27 | 4.68 | 2.90 | 4.33 |
    | 50 | 3000 | 250 | 5.45 | 2.73 | 3.00 | 4.09 | 5.85 | 3.48 | 5.26 |
    | 60 | 3600 | 300 | 6.55 | 3.27 | 3.60 | 4.91 | 7.02 | 3.95 | 6.09 |
    | 70 | 4200 | 350 | 7.63 | 3.82 | 4.20 | 5.73 | 8.19 | 4.29 | 6.78 |
    | 80 | 4800 | 400 | 8.73 | 4.36 | 4.80 | 6.55 | 9.36 | 4.50 | 7.36 |
    | 90 | 5400 | 450 | 9.82 | 4.91 | 5.40 | 7.37 | 10.53 | 4.55 | 7.74 |
    | 100 | 6000 | 500 | 10.91 | 5.45 | 6.00 | 8.18 | 11.70 | 4.41 | 7.96 |
    | 110 | 6800 | 550 |  |  |  |  |  | 4.05 | 7.97 |
    | 120 | 7200 | 600 |  |  |  | . |  | 3.49 | 7.75 |

    Width of Belt for a Given Horse-power. - The width of bell reqisired for any given horse-power may be obtained by transposing the for mulæ for horse-power so as to give the value of $w$. Tbus:
    From formula (1),$w=\frac{550 \mathrm{H} . \mathrm{P}}{v}=\frac{9.17 \mathrm{H} . \mathrm{P} .}{V}=\frac{2101 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm}}=\frac{275 \mathrm{H}: \mathrm{P} .}{\bar{L} \times \mathrm{rpm} .}$.
    From formula (2), $w=\frac{1100 \mathrm{H} . \mathrm{P} .}{v}=\frac{18.33 \mathrm{H} . \mathrm{P} .}{V}=\frac{4202 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{530 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}$.
    From formula (8), $w=\frac{1000 \mathrm{H} . \mathrm{P} .}{v}=\frac{16.67 \mathrm{H} . \mathrm{P} .}{V}=\frac{3820 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{500 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}$.
    From formula (4), $v=\frac{733 \mathrm{H} . \mathrm{P} .}{v}=\frac{12.22 \mathrm{H} . \mathrm{P}}{V}=\frac{2800 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{360 \mathrm{H} . \mathrm{P} .}{L \times \mathrm{rpm} .}$
    From formula (5), ${ }^{*} w=\frac{513 \mathrm{H} . \mathrm{P} .}{v}=\frac{8.56 \mathrm{H} . \mathrm{P}}{V}=\frac{1960 \mathrm{H} . \mathrm{P} .}{d \times \mathrm{rpm} .}=\frac{257 \mathrm{H} . \mathrm{P} .}{2 \times \mathrm{pm} .}$.

    * For double belts.

    Many authorities use formula (1) for double belts and formula (2) or (3) for single belts.
    To obtain the width by Nagle's formula, $w=\frac{550 \text { H.P. }}{C V t\left(S-.012 V^{2}\right)}$, or divide the given horse-power by the figure in the table corresponding to the given thickness of belt and velocity in feet per second.

    The formula to be used in any particular case is largely a matter of judgment. A single belt proportioned according to formula (1), if tightly stretched, and if the surface is in good condition, will transmit the horse-power calculated by the formula, but one so proportioned is objectionable, first, because it requires so great an initial tension that it is apt to stretch, slip, and require frequent restretching and relacing; and second, because this tension will cause an undue pressure on the pulley-shaft, and therefore an undue loss of power by friction. To avoid these difficulties, formula (2), (3), or (4,) or Mr. Nagle's table, should be used; the latter especially in cases in which the velocity exceeds 4000 ft . per min.

    Taylor's Rules for Belting.-F. W. Taylor (Trans. A. S. M. E., $x v$. 204) describes a nine years' experiment on belting in a machine-shop, giving results of tests of 42 belts running night and day. Some of these belts were run on cone pulleys and others on shifting, or fast-and-loose. pul. leys. The average net working load on the shifting belts was only $4 / 10$ of that of the cone belts.
    The shifting belts varied in dimensions from $39 \mathrm{ft} .7 \mathrm{in} .10 n \mathrm{~g}, 3.5 \mathrm{in}$. wide, .25 in . thick, to 51 ft .5 in . long, 6.5 in . wide, .37 in . thick. The cone belts varied in dimensious from 24 ft .7 in . long, 2 in . wide, .25 in . thick, to 31 ft . 10 in . long, 4 in . wide, .37 in. thick.

    Belt-clamps were used having spring-balances between the two pairs of clamps, so that the exact tension to which the belt was subjected was accurately weighed when the belt was first put on, and each time it was tightened.

    The tension under which each belt was spliced was carefully figured so as to place it under au initial strain-while the belt was at rest immediately after tightening—of 71 lbs . per inch of width of double belts. This is equivalent, in the case of
    

    From the nine years' experiment Mr. Taylor draws a number of conclu• sions, some of which are given in an abridged form below.
    In using belting so as to obtain the greatest economy and the most satis. factory results, the following rules should be observed:

    |  | Oak Tanned and Fulled Leather Belts. | Other Types of Leather Relts and 6- to \%-ply Rubber Belts. |
    | :---: | :---: | :---: |
    | A donble belt, havin |  |  |
    | $180^{\circ}$, will give an effective pull on the face |  |  |
    | of a pulley per inch of width of belt of.... Or, a different form of same rule: | 35 lbs . | 30 lbs . |
    | The number of sq. ft. of double Belt passing around a pulley per minute required to transmit one horse-power is. | $80 \mathrm{sq} . \mathrm{ft}$. |  |
    | Or: The number of lineal feet of doublebelting 1 in . wide passing around a pulley perminute required to transmit one horse- | 80 sq. ft. | 90 sq. f |
    | power is..................... ... ....... | 950 ft . | 1100 ft . |
    | Or : A double belt 6 in . wide, running 4000 to 5000 ft . per min., will transmit. | $30 \mathrm{H} . \mathrm{P}$. | 25 H.P. |

    The terms "initial tension," "effective pull," etc., are thus explained by Mr. Taylor: When pulleys upon which belts are tightened are at rest, botb strands of the belt (the upper and lower) are under the same stress per in of width. By "tension," "initial tension," or "tension while at rest," we
    mean the stress per in. of width, or sq , in. of section, to which one of the strands of the belt is tightened, when at rest. After the belts are in motion and transmitting power, the stress on the slack side, or strand, of the belt becomes less, while that on the tight side-or the side which does the pull-ing-becomes greater than when the belt was at rest. By the term " tetal load " we mean the total stress per in. of width, or sq. in. of section, on the tight side of belt while in motion.
    The difference between the stress on the tight side of the belt and its slack side, while in motion, represents the effective force or pull which is transmitted from one pulley to another., By the terms "working load," " net working load," or "effective pull," we mean the difference in the tension of the tight and slack sides of the belt per in. of width, or sq. in. section, while in motion, or the net effective force that is transmitted from one pulley to another per in. of width or sq. in. of section.
    The discovery of Messrs. Lew is and Bancroft (Trans. A. S. M. E., vii. 749) that the "sum of the tension on both sides of the belt does not remain constant," upsets all previous theoretical belting formulæ.
    The belt speed for maximum economy should be from 4000 to 4500 ft . per minute.
    The best distance from centre to centre of shafts is from 20 to 25 ft .
    Idler pulleys work most satisfactorily when located on the slack side of the belt about one quarter way from the driving-pulley.
    Belts are more durable and work more satisfactorily made narrow and thick, rather than wide and thin.
    It is safe and advisable to use: a double belt on a pulley 12 in . diameter or larger; a triple belt on a pulley 20 in. diameter or larger; a quadruple belt on a pulley 30 in . diameter or larger.

    > As belts increase in width they should also be made thicker. The ends of the belt should he fastendual

    The ends of the belt should be fastenea together by splicing and cementing. instead of lacing, wiring, or using hooks or clamps of any kind.
    A V-splice should be used on triple and quadruple belts and when idlers are used. Stepped splice, coated with rubber and vulcanized in place, is best
    For double belting the rule works well of making the splice for all belts up to 10 in . wide, 10 in . long; from 10 in . to 18 in . wide the splice should be the same width as the belt, 18 in . being the greatest length of splice required for double belting.
    Belts should be cleaned and greased every five to six months.
    Double leather belts will last well when repeatedly tightened under a strain (when at rest) of 71 lbs . per in. of width, or 240 lys . per sq. in, section. They will not maintain this tension for any length of time, however.
    Belt-clamps having spring-balances between the two pairs of clamps should be used for weighing the tension of the belt accurately each time it is tightened.
    The stretch, durability, cost of maintenance, etc., of belts proportioned (A) according to the ordinary rules of a total load of 111 lbs. per inch of width corresponding to an effective pull of 65 lbs . per inch of width, and (B) according to a more economical rule of a total load of 54 lbs ., corresponding to all effective pull of 26 lbs . per inch of width, are found to be as follows: When it is impracticable to accurately weigh the tension of a belt in tightening it, it is safe to shorten a double belt one half inch for every 10 ft. of length for (A) and one inch for every 10 ft . for ( B ), if it requires tightening.
    Double leather belts, when treated with great care and run night and day at moderate speed, should last for 7 years (A); 18 years (B).
    The cost of all labor and materials used in the maintenance and repairs of double belts. added to the cost of renewals as they give out, through a term of years, will amount oll an average per year to $3 \%$ of the original cost of the belts (A); 14\% or less (B).
    In figuring the total expense of belting, and the manufacturing cost chargeable to this account, by far the largest item is the time lost on the machines while belts are being relaced and repaired.
    The total stretch of leather belting exceeds $6 \%$ of the original length.
    The stretch during the first six months of the life of belts is $36 \%$ of their entire stretch (A); 15\% (B).
     tightened (A); $81 / 100$ of $1 \%$ (B).
    The most important consicieration in making up tables and rules for the manufacture from this source.

    The average double belt (A), when running night and day in a machine shop, will cause at least 26 interruptions to manufacture during its life, or 5 interruptions per year, tut with (B) interruptions to manufacture will not average oftener for each belt than one in sixteen months.
    The oak-tamned and fulled belts showed themselves to be superior in all respects except the coefficient of friction to either the oak-tanned not filled, the semi-raw-hide, or raw-hide with tanned face.
    Belts of any width can be successfully shifted backward and forward on tight and loose pulleys. Belts running between 5000 and 6000 ft . per min. and driving $300 \mathrm{H} . \mathrm{P}$. are now being daily shifted on tight and loose pulleys, to throw lines of shafting in and out of use.
    The best form of belt-shifter for wide belts is a pair of rollers twice the width of belt, either of which can be pressed onto the flat surface of the belt on its slack side close to the driven pulley, the axis of the roller making an angle of $75^{\circ}$ with the centre line of the belt.
    Remarks on Mri. Taylor's FEules. (Trans. A. S. M. E., Xv., 242.) -The most notable feature in Mr. Taylor's paper is the great difference between his rules for proper proportioning of belts and those given by earlier writers. A very commonly used rule is, one horse-power may be transmitted by a single belt 1 in . Wide lrunning $x \mathrm{ft}$. per min., substituting for $x$ various values, according to the ideas of different engineers, ranging usually from 550 to 1100.
    The practical mechanic of the old school is apt to swear by the figure 600 as being thorouglily reliable, while the modern engineer is more apt to use the figure 1000. Mr. Taylor, however, instead of using a figure from 550 to 1100 for a single belt, uses 950 to 1100 for double belts. If we assume that a double belt is twice as strong, or will carry twice as much power, as a single belt, then he uses a figure at least twice as large as that used in modern practice, and would make the cost of belting for a given shop twice as large as if the belting were proportioned according to the most liberal of the cinstomary rules.
    This great difference is to some extent explained by the fact that the problem which Mr. Taylor undertakes to solve is quite a different one from that which is solved by the ordinary rules with their variations. The problem of the latter generally is, "How wide a belt must be used, or how narrow a belt may be used, to transmit a given horse-power ?" Mr. Taylor's problem is: "How wide a belt must be used so that a given horse-power may be transmitted with the minimum cost for belt repairs, the longest life to the belt, and the smallest loss and inconvenience from stopping the machine while the belt is being tightened or repaired ?"
    The difference between the old practical mechanic's rule of a 1-in.-wide single belt, 600 ft . per min., transmits one horse-power, and the rule commonly used by engineers, in which 1000 is substituted for 600 , is due to the belief of the engineers, not that a horse-power could not be transmitted by the belt proportioned by the older rule, hut that such a proportion involved undue strain from overtightening to prevent slipping, which strain entailed too much journal friction, necessitated frequent tightening, and decreased the length of the life of the belt.
    Mr. Taylor's rule substituting 1100 ft . per min. and doubling the belt is a further step, and a long one, in the same direction. Whether it will be taken in any case by engineers will depend upon whether they appreciate the extent of the losses due to slippage of belts slackened by use under overstrain. and the loss of time in tightening and repairing belts, to such a degree as to induce then to allow the first cost of the belts to be doubled in order to avoid these losses.
    It should be noted that Mr. Taylor's experiments were made on rather narrow belts, used for transmitting power from shafting to machinery, and his conclusions may not be applicable to heavy and wide belts, such as engine fly-wheel belts.

    ## MISCELLANLOUS NOTES ON BELTING.

    Formulæ are useful for proportioning belts and pulleys, but they furnish no means of estimating how much power a particular belt may be transmitting at any given time, any more than the size of the engine is a measure of the load it is actually drawing, or the known strength of a horse is a measure of the load on the wagon. The only reliable means of determining the power actually transinitted is some form of dynamometer. (See Trans. A. S. M. E., vol. xii. p. 707.)

    If we increase the thickness, the power transmitted ought to increase in proportion; and for double belts we should have half the width required for a single belt under the same conditions. With large pulleys and moderate velocities of belt it is probable that this holds good. With small pulleys, however, when a double belt is used, there is not such perfect contact between the pulley-face and the belt, due to the rigidity of the latter, and more work is necessary to bend the belt-fibres than when a thinner and more pliable belt is used. The centrifugal force tending to throw the belt from the puliey also increases with the thickness, and for these reasons the width of a double belt required to transmit a given horse-power when used with small pulleys is generally assumed not less than seven tenths the width of a single belt to transmit the same power. (Flather on "Dynamometers and Measurement of Power."')
    F. W. Taylor, however, finds that great pliability is objectionable, and favors thick belts even for small pulleys: The power consumed in bending the belt around the pulley he considers inappreciable. According to Rankine's formula for centrifugal tension, this tension is proportional to the sectional area of the belt, and hence it does not increase with increase of thickness when the width is decreased in the same proportion, the sectional area remaining constant.

    Scott A. Smith (Trans. A. S. M. E., X. r65) says: The best belts are made from all oak-tanned leather, and curried with the use of cod oil and tallow, all to be of superior quality. Such belts have continued in use thirty to forty years when used as simple driving-belts, driving a proper amount of power. and having had suitable care. The flesh side should not be run to the pulley-face, for the reason that the wear from contact with the pulley should come on the grain side, as that surface of the belt is much weaker in its tensile strength than the flesh side; also as the grain is hard it is more enduring for the wear of attrition; further, if the grain is actually worn off, then the belt may not suffer in its integrity from a ready tendency of the hard grain side to crack.

    The most intimate contact of a belt with a pulley comes, first, in the smoothness of a pulley-face, including freedom from ridges and hollows left by turning-tools; second, in the smoothness of the surface and evenness in the texture or body of a belt; third, in having the crown of the driving and receiving pulleys exactly alike,-as nearly so as is practicable in a commercial sense; fourth, in having the crown of pulleys not over $18^{\prime \prime}$ for a $24^{\prime \prime}$ face, that is to say, that the pulley is not to be over $1 / 4^{\prime \prime}$ larger in diameter in its centre; fifth, in having the crown other than two planes meeting at the centre; sixth, the use of any material on or in a belt, in addition to those necessarily used in the currying process, to keep them pliable or increase their tractive quality, should wholly depend upon the exigencies arising in the use of belts; non-use is safer than over-use; seventh, with reference to the lacing of belts, it seems to be a good practice to cut the ends to a convex shape by using a former, so that there may be a nearly uniform stress on the lacing through the centre as compared with the edges. For a belt $10^{\prime \prime}$ wide, the centre of each end should recede $1 / 10^{\prime \prime}$.

    Lacing of Belts.-In punching a belt for lacing, use an oval punch, the longer diameter of the punch being parallel with the sides of the belt. Punch two rows of holes in each end, placed zigzag. In a 3 -in. belt there sliould be four holes in each end-two in each row. In a 6 -inch belt, seven holes-four in the row nearest the end. A 10 -inch belt should liave nine holes. The edge of the holes should not come nearer than $3 / 4$ of an inch from the sides, nor $7 / 8$ of an inch from the ends of the belt. The second row should be at least $13 / 4$ inches from the end. On wide belts these distances should be even a little greater.
    Begin to lace in the centre of the belt and take care to keep the ends exactly in line, and to lace both sides with equal tightness. The lacing should not be crossed on the side of the belt that runs next the pulley. In taking up belts, ohserve the same rules as putting on new ones.
    Seting a ifelt on Quarter-twist.-A belt must run squarely on to the pulley. To connect with a belt two horizontal shafts at right angles with each other, say an engine-shaft near the floor with a line attached to the ceiling, will require a quarter-turn. First, ascertain the central point on the face of each pulley at the extremity of the horizontal diameter where the belt will leave the pulley, and then set that point on the driven pulley plumb over the corresponding point on the driver. . This will cause the belt to run squarely on to each pulley, and it will leave at an angle greater or less, according to the size of the pulleys and their distance from each other.

    In quarter-twist belts, in order that the belt may remain on the pulleys, the central plane on each pulley must pass through the point of delivery of the other pulley. This arrangement does not adnit of reversed motion.
    To find the luength of Belt required for two given Pulleys.- When the length cannot be measured directly by a tape-line, the following approximate rule.may be used: Add the diameter of the two pulleys together, divioue the sum by 2 , and multiply the quotient by $31 / 4$, and add the product to twice the distance between the centres of the shafts. (See accurate formula below.)

    To find the Angle of the Are of Contact of a Belt.-Divide the difference between the radii of the two pulleys in inches by the distance between their centres, also in inches, and in a table of natural sines find the angle most nearly corresponding with the quotient. Multiply this angle by 2 , and add the product to $180^{\circ}$ for the angle of contact with the larger pulley, or subtract it from $180^{\circ}$ for the smaller pulley.

    Or, let $R=$ radius of larger pulley, $r=$ radius of smaller;

    $$
    \begin{aligned}
    & L=\text { distance between centres of the pulleys; } \\
    & \boldsymbol{\alpha}=\text { angle whose sine is }(R-v) \div L . \\
    & \text { Arc of contact with smaller pulley }=180^{\circ}-2 a \text {; } \\
    & \text { " larger pulley }=180^{\circ}+2 a \text {. }
    \end{aligned}
    $$

    To find the Length of Belt in Contact with the Pulley.For the larger pulley, multiply the angle $a$, found as above, by .0349 , to the product add 3.1416 , and multiply the sum by the radius of the pulley. Or length of belt in contact with the pulley

    $$
    =\text { radius } \times(\pi+.0349 a)=\text { radius } \times \pi\left(1+\frac{a}{90}\right)
    $$

    For the smaller pulley, length $=$ radius $\times(\pi-.0349 a)=$ radius $\times \pi\left(1-\frac{a}{90}\right)$.
    The above rules refer to Open Belts. The accurate formula for lengts of an open belt is,

    $$
    \begin{aligned}
    \text { Length } & =\pi R\left(1+\frac{a}{90}\right)+\pi r\left(1-\frac{a}{90}\right)+2 L \cos a \\
    & =R(\pi+.0349 a)+r(\pi-.0349(t)+2 L \cos a
    \end{aligned}
    $$

    in which $R=$ radius of larger pulley, $v=$ radins of smaller pulley,
    $L=$ distance betrveen centres of pullers, and $a=$ angle whose sine is

    $$
    (R-r) \div L ; \cos a=\mathcal{1}^{\prime} \overline{L^{2}-(R-r)^{2}} \div L
    $$

    Wor Crossed Hetes the formula is

    $$
    \begin{aligned}
    \text { Length of belt } & =\pi R\left(1+\frac{\beta}{90}\right)+\pi r\left(1+\frac{\beta}{90}\right)+2 L \cos \beta, \\
    & =(R+r) \times(\pi+.0349 \beta)+2 L \cos \beta,
    \end{aligned}
    $$

    in which $\beta=$ angle whose sine is $(R+r) \div L ; \cos \beta=\sqrt{L^{2}-(R+r)^{2}} \div L$.
    To find the Length of Belt when Closely Holled.-The surn of the diameter of the roll, and of the eye in inches, $x$ the number of trans made by the belt and by . 1309 , = length of the belt in feet

    Co find the Approximate Weight of Belts - Multiply the lenth of belt, in feet, oy the width in inches, and divide the product by 13 for single and 8 for double belt.

    ## Relations of the Size and Speeds of Driving and Driven

    Pulleys.-The driving pulley is called the driver, $D$, and the driven pulley the driven, $d$. If the number of teeth in gears is used instead of diameter, ir these calculations, number of teeth must be substituted wherever diameter occurs. $R=$ revs. per min. of driver, $r=$ revs. per min. of driven.$$
    D=d r \div R
    $$

    JDiam. of driver $=$ diam. of driven $\times$ revs. of driven $\div$ revs. of driver.

    $$
    d=D R \div r
    $$

    Diam. of driven $=$ diam. of driver $\times$ revs. of driver $\div$ revs. of driven.

    $$
    R=d r \div D:
    $$

    Revs, of driver $=$ revs. of driven $\times$ diam, of driven $\div$ diam. of driver,

    $$
    \cdots=D R \div d
    $$

    Revs. of driven $=$ revs. of driver $\times$ diam. of driver $\div$ diam. of driven.
    Evils of Tinht Relts. (Jones and Laughlins.)-Clamps with powerful screws are often used to put on belts with extreme tightness, and with most injurious strain upon the leather. They should be very juaiciously used for horizontal belts, which should be allowed sufficient slackness to move with a loose undulating vibration on the returning side, as a test that they have no more strain imposed than is necessary simply to transmit the power.

    Ou this subject a New England cotton-mill engmeer of large experience, says: I believe that three quarters of the trouble experienced in broken pulleys, hot boxes, etc., can be traced to the fault of tight belts. The enormous and useless pressure thus put upon pulleys must in time break them, if they are made in any reasonable proportions, besides wearing out the whole outfit, and causing heating and consequent destruction of the bearings. Below are some figures showing the power it takes in average modern mills with first-class shafting, to drive the shafting alone:

    | $\begin{gathered} \text { Mill, } \\ \text { No, } \end{gathered}$ | Whole Load, H.P. | Shafting Alone. |  | Mill,No. | Whole Load, H.P. | Shafting Alone. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Horsepower. | Per cent of whole. |  |  | Horsepower. | Per cent of whole. |
    | 1 | 199 | 51 | 25.6 | 5 | 759 | 172.6 | 22.7 |
    | 2 | 472 | 111.5 | 23.6 | 6 | 235 | 84.8 | 36.1 |
    | 3 | 486 | 134 | 27.5 | 7 | 670 | 262.9 | 39.2 |
    | 4 | 677 | 190 | 28.1 | 8 | 677 | 182 | 26.8 |

    These may be taken as a fair showing of the power that is required in many of our best mills to drive shafting. It is unreasonable to think that all that power is consumed by a legitimate amount of friction of bearings and belts. I know of no cause for such a loss of power but tight belts. These, when there are hundreds or thousands in a mill, easily multiply the friction on the bearings, and would account for the figures.

    Sag of Helts.--In the location of shafts that are to be connected with each other by belts, care should be taken to secure a proper distance one from the other. This distance should be such as to allow of a gentle sag to the belt when in motion.

    A general rule may be stated thus: Where narrow belts are to be run over small pulleys 15 feet is a good average, the belt having a sag of $11 / 2$ to 2 inches.

    For larger belts, working on larger pulleys, a distance of 20 to 25 feet does well, with a sag of $21 / 2$ to 4 inches.

    For main belts working on very large pulleys, the distance should be 25 to 30 feet, the belts working well with a sag of 4 to 5 inches.

    If too great a distance is attempted, the belt will have an unsteady flapping motion, which will destroy both the belt and machinery.

    Arrangement of Belts and ixulleys.-If possible to avoid it, connected shatts should never be placed one directly over the other, as in such case the belt must be kept very tight to do the work. For this purpose belts should be carefully selected of well-stretched leather.

    It is desirable that the angle of the belt with the floor should not exceed $45^{\circ}$. It is also desirable to locate the shafting and machinery so that belts should run off from each shaft in opposite directions, as this arrangement will relieve the bearings from the friction that would result when the belts all pull one way on the shaft.

    In arranging the belts leading from the main line of shafting to the counters, those pulling in an opposite direction should be placed as near each other as practicable, while those pulling in the same direction should be separated. This can often be accomplished by changing the relative positions of the pulleys on the counters. By this procedure much of the friction on the journals may be avoided.

    If possible. machinery should be so placed that the direction of the belt motion shall be from the top of the driving to the top of the driven pulley, when the sag will increase the arc of contact.

    The pulley should be a little wider than the belt required for the work.

    The motion of driving should run with and not against the laps of the belte. Tightening or guide pulleys should be applied to the slack side of belts and near the smaller pulley.
    Jones \& Laughlins, in their Useful Information, say: The diameter of the pulleys should be as large as can be admitted, provided they will not produce a speed of more than $4 \tilde{5} 0$ feet of belt motion per minute.

    They also say: It is better to gear a mill with small pulleys and run them at a high velocity, than with large pulleys and to run them slower. A mill thns geared costs less and has a much neater appearance than with large heavy pulleys.
    M. Arthur Achard (Proc. Inst. M. E., Jan. 1881, p. 62) says: When the belt is wide a partial vacuum is formed between the belt and the pulley at a high velocity. The pressure is the greater than that computed from the tensions in the belt, and the resistance to slipping is greater. This has the advantage of permitting a greater power to be transmitted by a given belt, and of diminishing the strain on the sliafting.

    On the other hand, some writers claim that the belt entraps air between itself and the pulley, which tends to diminish the friction, and reduce the tractive force. On this theory some manufacturers perforate the belt with numerous holes to let the air escape.

    Care of Helts.-Leather belts should be well protected against water, loose steam, and all other moisture, with which they should not come in contact. But where sucl conditions prevail fairly good results are obtained by usiug a special dressing prepared for the purpose of water-proofing leather, though a positive water-proofing naterial has not yet been discovered.

    Belts niade of coarse, loose-fibred leather will do better service in dry and warm places, but if damp or moist conditions exist then the very finest and firmest leather should be used. (Fayerweather \& Ladew.)

    Do not allow oil to drip upon the belts. It destroys the life of the leather.
    Leather belting cannot safely stand above $11 C^{\circ}$ of heat.
    Strength of Belting.- The ultimate tensile strength of belting does not generally enter as a factor in calculations of power transmission.

    The strength of the solid leather in belts is from 2000 to 5000 lbs . per square inch; at the lacings, even if well put together, only about 1000 to 1500 . If riveted, the joint should have half the strength of the solid belt. The working strain on the driving side is generally taken at not over one third of the strength of the lacing, or from one eighth to one sixteenth of the strength of the solid belt. Dr. Hartig found that the tension in practice varied from 30 to 532 lbs . per square inch, averaging 273 lbs .

    Adhesion Independent of Diameter. (Schultz Belting Co.)1. The adhesion of the belt to the pulley is the same-the arc or number of degrees of contact, aggregate tension or weight being the same-without reference to width of belt or diameter of pulley.
    2. A belt will slip just as readily on a pulley four feet in diameter as it will on a pulley two feet in diameter, provided the conditions of the faces of the pulleys, the arc of contact, the tension, and the number of feet the belt travels per minute are the same in both cases.
    3. To obtain a greater amount of power from belts the pulleys may be covered with leather; this will allow the belts to run very slack and give $25 \%$ more durability

    Endless Belts.-If the belts are to be endless, they should be put on and drawn together by "belt clamps" made for the purpose. If the belt is made endless at the belt factory, it should never be run on to the pulleys, lest the irregular strain spring the belt. Lift out one shaft, place the belt on the pulleys, and force the shaft back into place.
    Belt Data.-A fly-wheel at the Amoskeag Mfg. Co., Manchester, N. H., 30 feet diameter, 110 inches face, rumning 61 revs. per min., carried two heary double-leather belts 40 inches wide each, and one 24 inches wide. The engine indicated 1950 H.P., of which probably $1850 \mathrm{H} . \mathrm{P}$. was transmitted by the belts. The belts were considered to be heavily loaded, but not overtaxed.
    $(30 \times 3.14 \times 104 \times 61) \div 1850=323 \mathrm{ft}$. per min. for $1 \mathrm{H} . \mathrm{P}$. per inch of width.
    Samuel Webber (Am. Mach., Feb. ?2, 1894) reports a case of a belt 30 inches wide, $\frac{8}{8}$ inch thick, running for six years at a velocity of 3900 feet per minute, on to a pulley 5 feet diameter, and transmitting 5.50 H .P. This gives a velocity of 210 feet per minute for 1 H.P. per inch of width. By Mr. Nagle's table of riveted belts this belt wonld he designed for $332 \mathrm{H} . \mathrm{P}$. By Mr. Taylor's rule it would be used to transmit only 1:3 H.P.

    The above may be taken as examples of what a beltmay be made to do, but they should not be used as precedents in designing. It is not stated how much power was lost by the journal friction dut to over-tightening of these belts.

    Belt Drossings. - We advise that no belt dressing should be used except when the belt becomes dry and husky, and in such instances we recommend the use of a dressing. Where this is not used beef tallow at blood. warm temperature should be applied and then dried in either by artificial heat or tle sun. The addition of beeswax to the tallow will be of some selvice if the belts are used in wet or damp places. Our experience convinces us that resin should never be used on leather belting. (Fayerweather \& Ladew.)

    Belts should not be soaked in water before oiling, and penetrating oils should but seldom be used, except occasionally when a belt gets very dry and husky from neglect. It may then be moistened a little, andihave neat'sfoot oil applied. Frequent applications of such oils to a new belt render the leather soft and flabby, thus causing it to stretch, and making it liable to run out of line. A composition of tallow and oil, with a little resin or beeswax, is better to use. Prepared castor-oil dressing is good, and may be applied with a brush or rag while the belt is running. (Alexander Bros.)

    Cement for Cloth or Leather. (Molesworth.)- 16 parts guttapercha, 4 india-rubber, 2 pitch, 1 shellac, 2 linseed-oil, cut small, melted together and well mixed.

    Rubber Belting.-The advantages claimed for rubber belting are perfect uniformity in width and thickness; it will endiaro a great degree of heat and cold without injury; it is also specially adapted for use in damp or wet places, or where exposed to the action of steam; it is very durable, and has great tensile strength, and when adjusted for service it has the most perfect hold on the pulleys, hence is less liable to slip than leather.

    Never use animal oil or grease on rubber belts, as it will greatly injure and soon destroy them.

    Rubber belts will be improved, and their durability increased, by putting on with a painter's brush, and letting it dry, a composition made of equal parts of red lead, black lead, French yellow, and litharge, mixed with boiled linseed-oil and japan enough to make it dry quickly. The effect of this will be to produce a finely polished surface. If, from dust or other cause, the beit should slip, it should be lightly moistened on the side next the pulley with boiled linseed-oil. (From circulars of manufacturers.)

    The best conditions are large pulleys and high speeds, low tension and reduced width of belt. 4000 ft . per min. is not an excessive speed on proper sized pulleys.
    H.P. of a 4-ply rubber belt = (length of arc of contact on smaller nulley in ft. $\times$ width of belt in ins. $\times$ revs. per min. $) \div 325$. For a 5 -ply belt multiply by $11 / 3$, for a 6 -ply by $12 /$, for a 7 -ply by 2 , for an 8 -ply by $21 / 3$. When the proper weight of duck is used a 3 - or 4-ply rubber belt is equal to a single leather belt and a 5- or 6-ply rubber to a double leather belt. When the arc of contact is $180^{\circ}$, H.P. of a 4 -ply belt $=$ width in ins. $X$ velocity in ft . per min. +650 . (Boston Belting Co.)

    ## GEARING.

    ## TOOTHED-WHEEL GEARTNG.

    Pitch, Pitch-circle, etc.-If two cylinders with parallel axes are pressed together and one ot them is rotated on its axis, it will drive the other by means of the friction between the surfaces. The cylinders may be considered as a pair of spur-wheels with an infinite number of very small teeth. If actual teeth are formed upon the cylinders, making alternate elevations and depressions in the cylindrical surfaces, the distance between the axes remaining the same, we have a pair of gear-wheels which will drive one another by pressure upon the faces of the teeth, if the teeth are properly shaped. In making the teeth the cylindirical surface may entirely disappear, but the position it occupied may still be considered as a cylindrical surface, which is called the "pitch-surface," and its trace on the end of the wheel, or on a plane cutting the wheel at right angles to its axis, is called the "pitch-circle" or "pitch-line." The diameter of this circle is called the pitch-diameter, and the distance from the face of one tooth to the corresponding face of the next tooth on the same wheel, measured on an arc of the pitch-circle, is called the "pitch of the tooth," or the circular pitch.

    If two wheels having teeth of the same pitch are geared together so that their pitch-circles touch. it is a property of the pitch-circles that their diameters are proportional to the number of teeth in the wheels, and vice versa;
    thus, if one wheel is twice the diameter (measured on the pitch-circle) of the other, it has twice as many teeth. If the teeth are properly shaped the linear velocity of the two wheels are equal, and the angular velocities, or speeds of rotation, are inversely proportional to the number of teeth and to the diameter. Thus the wheel that has twice as many teeth as the other will revolve just half as many times in a minute.

    The "pitch," or distance measured on an arc of the pitch-circle from the face of one tooth to the face of the next, consists of two parts-the "thickness" of the tooth and the "space" between it and the next tooth. The space is larger than the thickness by a small amount called the "backlash," which is allowed for imperfections of workmanship. In finely cut gears the backlash may be almost nothing.

    The length of a tooth in the direc-
     tion of the radius of the wheel is called the "depth," and this is divided into two parts: First, the "addendum," the height of the tooth above the pitch line; second, the "dedendum," the depth below the pitch line, which is an amount equal to the addendum of the mating gear. The depth of the space is usually given a little "clearance" to allow for inaccuracies of workmanship, especially in cast gears.
    Referring to Fig. 153, pl, pl are the pitch-lines, $a l$ the addendum-line, $r l$ the root-line or dedendum-liné, cl the clearance-liine, and $b$ the backlash. The addendum and dedendum are usually made equal to each other.

    $$
    \begin{aligned}
    \text { Diametral pitch } & =\frac{\text { No. of teeth }}{\text { diam. of pitch-circle in inches }}=\frac{3.1416}{\text { circular pitch }} ; \\
    \text { Circular pitch } & =\frac{\text { diam. } \times 3.1416}{\text { No. of teeth }}=\frac{3.1416}{\text { diametral pitch. }}
    \end{aligned}
    $$

    Some writers use the term diametral pitch to mean $\frac{\text { diam. }}{\text { No. of teeth }}=$ $\frac{\text { circular pitch }}{3.1416}$, but the first definition is the more common and the more convenient. A wheel of 12 in . diam. at the pitch-circle, with 48 teeth is $48 / 12$ $=4$ diametral pitch, or simply 4 pitch, The circular pitch of the same wheel is $\frac{12 \times 3.1416}{48}=. \tilde{854}$, or $\frac{3.1416}{4}=.7854 \mathrm{in}$.

    Relation of Diametral to Circular Pitch.

    | $\underset{\text { Dral }}{\text { Diame- }}$ <br> Pitch | Circular Pitch. |  | Circular Pitch. | Circular Pitch. | Diametral Pitch. | Circular Pitch. | Diametral Pitch |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 3.142 in . | 11 | . 286 in . | 3 | 1.047 | 15/16 | 3.351 |
    | 11/2 | 2.094 | 12 | . 262 | 21/2 | $1.25 \%$ | 7/8 | 3.590 |
    | 2 | 1.571 | 14 | . 224 | 2 | 1.571 | 13/16 | 3.867 |
    | $21 / 4$ | 1.396 | 16 | . 196 | 17/8 | $1.6 \% 6$ | $3 / 4$ | 4.189 |
    | $21 / 2$ | 1.257 | 18 | . 175 | 134 | 1.795 | 11/16 | 4.570 |
    | $23 / 4$ | 1.142 | 20 | . 157 | 15/8 | 1.933 | 5/8 | 5.027 |
    | 3 | 1.047 | 22 | . 143 | 11/2 | 2.094 | 9/16 | 5.585 |
    | $31 / 2$ | . 898 | 24 | . 131 | 1 \%/16 | 2.185 |  | 6.283 |
    | 4 | . 785 | $\stackrel{26}{ }$ |  |  | 2.285 | 7/16 | 7.181 |
    | 5 | . 698 | 98 | . 112 | $15 / 16$ | $\stackrel{2}{2} 394$ | 3/8 | 8.378 |
    | ${ }^{6}$ | . 524 | 30 | . 105 | $11 / 4$ | 2.513 | $5 / 16$ | 10.053 |
    | 7 | . 449 | 32 | . 098 | $13 / 16$ | 2.646 |  | 12.566 |
    | 0 | . 393 | 36 | . 087 | $11 / 8$ | 2. 293 | 3/16 | 16.755 |
    | 9 | . 349 | 40 | . 079 | ${ }_{1} 1 / 16$ | 2.957 | 1/8 | 25.133 |
    | 10 | . 314 | - 48 | . 065 | 1 | 3.142 | 1/16 | 50.266 |

    Since circular pitch $=\frac{\text { diann } \times 3.1416}{\text { No. of teeth }}$, diam. $=\frac{\text { circ. pitch } \times \text { No. of teeth }}{3.1416}$, which always brings out the dianeter as a number with an inconvenient
    fraction if the pitch is in even inches or simple fractions of an inch．By the diametral－pitch system this inconvenience is avoided．＂The diameter may be in even inches or convenient fractions，and the number of teeth is usually an even multiple of the number of inches in the diameter．
    Diameter of Pitch－line of Wheels from 10 to 100 Teeth of 1 in．Circular Pitch．

    | i | ⿷匚⿳⺈⿴囗十丌 |  | $\stackrel{\dot{\tilde{j}}}{\stackrel{\rightharpoonup}{\hat{\theta}}} . \dot{=}$ | $\left\lvert\, \begin{gathered} 0 \\ 0 \\ < \end{gathered}\right.$ |  | $\left[\begin{array}{r} 0 \\ 0 \\ 80 \\ 0 \end{array}\right.$ |  |  |  | $\left\|\begin{array}{c} \dot{9} \\ 0 \\ 8 \\ 0 \end{array}\right\|$ | $\underset{\underset{\sim}{\tilde{\theta}}}{\underset{\sim}{\text { تn }}} .$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 10 | 3.183 | 26 | 8.276 | 41 | 13.051 | 56 | 17．825 | 71 | 22.600 | 86 | 27.375 |
    | 11 | 3.501 | 27 | 8.594 | 42 | 13.369 | $5 \%$ | 18.144 | \％2 | 22.918 | 87 | 27.693 |
    | 12 | 3.820 | 28 | 8.513 | 43 | 13.687 | 58 | 18.462 | 73 | 23.236 | 88 | 28.011 |
    | 13 | 4.138 | 29 | 9.231 | 44 | 14.006 | 59 | 18.781 | \％ 4 | 23.555 | 89 | 28.329 |
    | 14 | 4.456 | 30 | 9.549 | 45 | 14.324 | 60 | 19.099 | \％ | $23.8{ }^{\circ} 13$ | 90 | 28.648 |
    | 15 | 4.775 | 31 | 9.868 | 46 | 14.642 | 61 | 19．41\％ | \％ 6 | 24.192 | 91 | 28.966 |
    | 10 | 5.093 | 32 | 10.186 | $4{ }^{\circ}$ | 14.961 | 62 | 19.735 | 77 | 24.510 | 92 | 29.285 |
    | 17 | 5.411 | 33 | 10.504 | 48 | 15.279 | 63 | 20.054 | \％ | 24.828 | 93 | 29.603 |
    | 18 | 5.730 | 34 | 10.823 | 49 | 15．59\％ | 64 | $20.3 \% 2$ | 79 | 25.146 | 94 | $\stackrel{29.921}{ }$ |
    | 19 | 6.048 | 35 | 11.141 | 50 | 15.915 | 65 | 20.690 | 80 | 25.465 | 95 | 30.239 |
    | 20 | 6.366 | 36 | 11.459 | 51 | 16.234 | 66 | 21.008 | 81 | 25.783 | 96 | 30.558 |
    | 21 | 6.685 | 37 | $11.77 \%$ | 52 | 16．552 | 67 | 21.327 | 82 | 26.101 | 97 | $30.8 \uparrow 6$ |
    | 22 | $\tau .003$ | 38 | 12.096 | 53 | $16.8 \% 0$ | 68 | 21.645 | 83 | 26.419 | 98 | 31.194 |
    | 23 | 7.321 | 39 | 12． 414 | 54 | 17.189 | 69 | 21.963 | 84 | 26．738 | 99 | 31.512 |
    | 24 | 7.639 7.958 | 40 | 12．\％32 | 55 | 17．50\％ | 70 | 22.282 | 85 | ．27．056 | 100 | 31.831 |

    For diameter of wheels of any other pitch than 1 in．，multiply the figures in the table by the pitch．Given the diameter and the pitch，to find the num－ ber of teeth．Divide the diameter by the pitch，look in the table under dianieter for the figure nearest to the quotient，and the number of teeth will be found opposite．

    Proportions of Teeth．Circular Pitch $=1$ ．
    
    ＊In terms of diametral pitch．
    Authorities．－1．Sir Wm．Fairbairn．2，3．Clarlk，R．T．D．；＂used by en－ gineers in good practice．＂4．Molesworth．5，6．Coleman Sellers： 5 for cast， 6 for cut wheels．7，8．Unwin．9，10．Leading American manufacturers of cut gears．

    The Chordal Pitch（erroneously called＂true pitch＂by some authors）is the length of a straight line or chord drawn from centre to centre of two adjacent teeth．The term is now but little used．

    Chordal pitch $=$ diam. of pitch-circle $\times \sin$ of $\frac{180^{\circ}}{\text { No. of teeth }} . \quad$ Chordal pitch of a wheel of 10 in . pitch diameter and 10 teeth, $10 \times \sin 18^{\circ}=3.0902$ in. Circular pitch of same wheel $=3.1416$. Chordal pitch is used with chain or sprocket wheels, to conform to the pitch of the chain.

    ## Formulæ for Determining the Dimensions of Small Gears.

    (Brown \& Sharpe Mfg. Co.)
    $P=$ diametral pitch, or the number of teeth to one inch of diameter of pitch-circle;
    
    $a=$ distance between the centres of the two wheels;
    $b=$ number of teeth in both wheels;
    $t=$ thickness of tooth or cutter on pitch-circle;
    $s=$ addendum;
    $D^{\prime \prime}=$ working depth of tooth;
    $f=$ amount added to depth of tooth for rounding the corners and for clearance;
    $D^{\prime \prime}+\hat{f}=$ whole depth of tooth;
    $\pi=3.1416$.
    $P^{\prime}=$ circular pitch, or the distance from the centre of one tooth to the centre of the next measured on the pitch-circle.

    Formulæ for a single wheel:
    $P=\frac{N+2}{D} ; \quad D^{\prime}=\frac{D \times N}{N+2} ; \quad D^{\prime \prime}=\frac{2}{P}=2 s ; \quad s=\frac{1}{P}=\frac{P^{\prime}}{\pi}=.3183 P^{\prime} ;$
    $P=\frac{N}{D^{\prime}} ; \quad D^{\prime}=\frac{N}{P} ; \quad \begin{array}{ll}N=P D^{\prime} ; & N=P D-2 ;\end{array} \quad s=\frac{D^{\prime}}{N}=\frac{D}{N+2} ;$
    $P^{\prime}=\frac{\pi}{P}: \quad D=\frac{N+2}{P} ; \quad f=\frac{t}{10} ; \quad s+f=\frac{1}{P}\left(1+\frac{\pi}{20}\right)=.3685 t^{3}$
    $P=\frac{\pi}{P^{\prime}} ; \quad D=D^{\prime}+\frac{2}{P} ; \quad t=\frac{1.57}{P}=1 / 2 P^{\prime}$.
    Formulæ for a pair of wheels:

    $$
    \begin{aligned}
    b & =2 a P ; & n & =\frac{P D^{\prime} V}{v} ; \\
    N & =\frac{n v}{V} ; & v & =\frac{P D^{\prime} V}{n} ;
    \end{aligned} r=\frac{2 a(N+2)}{b} ;
    $$

    The following proportions of gear. wheels are recommended by Prof. Coleman Sellers. (Stevens Indicator, April, 1892.)

    Rroportions of Gear-wheels.

    |  | Circular Pitch. | Outside of Pitch-line. $P \times .3$ | Inside of Pitch-line. |  | Width of Space. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | For Cast or Cut Bevels or for Cast Spurs. $P \times: 4$ | For Cut Spurs. $P \times .35$ | For Cast Spters or Bevels. $P \times .525$ | For Cut Bevcls or Spurs. $P \times .51$ |
    |  | 1/48 | . 075 | . 100 | . 088 | . 131 | . 128 |
    | 12 10 | . 2618 | .079 .094 | . 105 | . 092 | . 137 | . 134 |
    |  | . $3 / 8$ | . 113 | . 150 | . 11 | 165 | . 16 |
    | 8 | . 3927 | . 118 | . 157 | . 137 | .190 | 191 |
    | 7 | . 4477 | . 134 | . 179 | . 157 | . 2065 | ${ }_{208}$ |
    | 6 | 1/2 | . 15 | . 20 | . 175 | . 263 | . 228 |
    |  | . 5236 | .157 | . 209 | . 183 | . 275 | . 267 |
    |  | 9/16 | . 169 | . 225 | . 197 | . 295 | . 287 |
    |  | $5 / 8$ | . 188 | . 25 | . 219 | . 328 | . 319 |
    | 5 | . 62832 | . 188 | . 251 | . 22 | . 33 | . 32 |
    | 4 | . $3 / 4$ | . 2235 | . 314 | . 26.3 | . 394 | . 383 |
    |  | .784 | . 2363 | . 314 | . 275 | . 412 | . 401 |
    |  | 1 | . 3 | . 4 | . 35 | . 559 | . 514 |
    | 3 | 1.0472 | . 314 | . 419 | . 364 | . 55 | . 534 |
    |  | 11/8 | . 338 | . 45 | . 394 | . 591 | . 574 |
    | 23/4 | 1.1424 | . 343 | . 457 | . 40 | . 6 | . 583 |
    | 21/2 | 1.114 | . 375 | . 503 | . 438 | . 656 | . 638 |
    |  | 138 | . 413 | . 55 | . 4481 | . 66 | . 641 |
    |  | $11 \%$ | . 45 | . 6 | . 525 | . 782 | . 765 |
    | 2 | 1.5708 | . 471 | . 628 | . 55 | . 825 | . 801 |
    |  | $13 / 4$ | . 525 | . 7 | . 613 | . 919 | . 893 |
    |  | 2. ${ }_{0}^{2}$ | . 6 | . 8 | . 7 | 1.05 | 1.02 |
    | 11/2 | 2.0944 | . 6275 | . 838 | .733 | 1.1 | 1.068 |
    |  | 21.2 | . 75 | 1.0 | . 875 | 1.1813 | 1. 148 |
    |  | $23 / 4$ | . 825 | 1.1 | . 963 | 1.44 ¢ | 1.403 |
    |  | 3 | . 9 | 1.2 | 1.05 | 1.575 | 1.53 |
    | 1 | 3.1416 | . 942 | 1.257 | 1.1 | 1.649 | 1.602 |
    |  | 314 | . $97 \%$ | 1.3 | 1.138 | 1.706 | 1.657 |
    |  | 31/2 | 1.05 | 1.4 | 1.225 | 1.838 | 1.785 |

    Thickness of rim below root $=$ depth of tooth.
    Width of Teeth.-The width of the faces of teeth is generally made from $z$ to 3 times the circular pitch - from 6.28 to 9.42 divided by the diametral pitch. There is no standard rule for width.
    The following sizes are given in a stock list of cut gears in "Grant's Gears: "
    $\begin{array}{lllllllll}\text { Diameter pitch..... } & 3 & 4 & 6 & 8 & 12 & 16\end{array}$
    Face, inches........ 3 and $4 \quad 21 / 213 / 4$ and $2 \quad 11 / 4$ and $11 / 23 / 4$ and $11 / 2$ and $5 / 8$ The Walker Company give:
    $\begin{array}{lllllllllllll}\text { Circnlar pitch, in.. } & 1 / 2 & 5 / 8 & 3 / 4 & 7 / 8 & 1 & 11 / 2 & 2 & 21 / 3 & 3 & 4 & 5 & 6\end{array}$
    

    To flnd the number of revolutions of the last wheel ac the end of a train of spur-wheels, all of which are in a line and mesh into one another, when the revolutions of the first wheel and the number of teeth or the diameter of the first and last are given: Multiply the revolutions of the first wheel by its number of teeth or its diameter, and divide the product by the number of teeth or the diameter of the last wheel.
    To find the number of teeth in each wheel for a train of spur-wheels, each to have a given velocity: Multiply the number of revolutions of the driving-wheel by its number of teeth, and divide the product by the number of revolutions each wheel is to make.

    To find the number of revolutions of the last wheel in a train of wheels and pinions, when the revolutions of the first or driver, and the diameter, the teeth, or the circumference of all the drivers and pinions are given: Multiply the diameter, the circumference, or the number of teeth of all the driving-wheels together, and this continued product by the number of revolutions of the first wheel, and divide this product by the continued product of the diameter, the circumference, or the number of teetlı of all the driven wheels, and the quotient will be the number of revolutions of the last wheel.

    Example.-1: A train of wheels consists of four wheels each 12 in . diameter of pitch-circle, and three pinions 4, 4, and 3 in . diameter. The large wheels are the drivers, and the first makes 36 revs. per min. Required the speed of the last wheel.

    $$
    \frac{36 \times 12 \times 12 \times 12}{4 \times 4 \times 3}=1296 \mathrm{rpm}
    $$

    2. What is the speed of the first large wheel if the pinions are the drivers, the 3 -in. pinion being the first driver and making 36 revs. per min.?

    $$
    \frac{36 \times 3 \times 4 \times 4}{12 \times 12 \times 12}=1 \mathrm{rpm} . \text { Ans. }
    $$

    Milling Cutters for Tinterchangeable Gears.-The Pratt \& Whitney Co. make a series of cutters for cutting epicycloidal teeth. The number of cutters to cut from a pinion of 12 teeth to a rack is 24 for each pitch coarser than 10. The Brown \& Sharpe Mfg. Co. make a similar series, and also a series for involute teeth, in which eight cutters are made for each pitch, as follows:

    |  | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Will cut from | 135 | 55 | 35 | 26 | 21 | 17 | 14 | 12 |
    | Win to | Rack | 134 | 54 | 34 | 25 | 20 | 16 | 13 |

    ## FORMS OF THE TEETH.

    In order that the teeth of wheels and pinions may run together smoothly and with a constant relative velocity, it is necessary that their, working faces shall be formed of certain curves called odontoids. The essential property of these curves is that when two teeth are in contact the common normal to the tooth curves at their point of contact must pass through the pitch-point, or point of contact of the two pitch-circles. Two such curves are in common use-the cyloid and the involute.

    The Cycloidal Tooth. -In Fig. 154 let $P L$ and $p l$ be the pitch-circles of two gear-wheels; $G C$ and $g c$ are two equal generating-circles, whose radii should be taken as not greater than one lalf of the radius of the smaller pitch-circle. If the circle $g c$ be rolled to the left on the larger pitch-circle $P L$, the point $O$ will describe an epicycloid, oefgh. If the other generatingcircle $G C$ be rolled to the right on $P I$, the point 0 will describe a hypocycloid oabcd. These two curves, which are tangent at $O$, form the two parts of a tooth curve for a gear whose pitch-circle is PL. The upper part oh is called the face and the lower part od is called the flank, If the same circles be rolled on the other pitch-circle $p l$, they will describe the curve for a tooth of the gear $p l$, which will work properly with the tooth on $l^{\prime} L$.
    The cycloidal curves may be drawn without actually rolling the generat-ing-circle, as follows: On the line $P L$, from $O$, step off and mark equal distances, as $1,2,3,4$, etc. From 1,2,3, etc., draw radial lines toward the centre of $P L$, and from $6,7,8$, etc., draw radial lines from the same centre, but beyond $P L$. With the radius of the generating-circle, and with centres successively placed on these radial lines, draw arcs of circles tangent to $P L$ at 123,678 , etc. With the dividers set to one of the equal divisions, as $O_{1}$,

    Step off $1 a$ and $6 e$; step off two such divisions on the circle from $\mathfrak{2}$ to $b$, and from 7 to $f$; three such divisions from 3 to $c$, and from 8 to $g$; and so on, thus locating the several points $a b c d H$ and efgl, and through these points draw the tooth curves.
    The curves for the mating tooth on the other wheel may be found in like manner by drawing arcs of the generating-circle tangent at equidistant points on the pitch-circle pl.

    The tooth curve of the face oh is limited by the addendum-line $r$ or $r_{1}$
    

    Fig. 154. ${ }^{-7}$
    and that of the flank $o H$ by the root curve $R$ or $R_{1}$. $R$ and $r$ represent the root and addendum curves for a large number of small teeth, and $R_{1} r$ the like curves for a small number of large teeth. The form or appearance of the tooth therefore varies according to the number of teeth, while the pitch circle and the generating-circle may remain the same.

    In the cycloidal system, in order that a set of wheels of different diameters but equal pitches shall all correctly work together, it is necessary that the generating-circle used for the teeth of all the wheels shall be the same, and it should have a diameter not greater than half the diameter of the pitchline of the smallest wheel of the set. The customary standard size of the generating-circle of the cycloidal system is one having a diameter equal to the radius of the pitch-circle of a wheel having 12 teeth. (Some gearmakers adopt 15 teeth.) This circle gives a radial flank to the teeth of a wheel having 12 teeth. A pinion of 10 or even a smaller number of teeth can be made, but in that case the flanks will be undercut, and the tooth will not be as strong as a tooth with radial flanks. If in any case the describing circle be half the size of the pitch-circle, the flanks will be radial; if it be less, they will spread ont toward the root of the tooth, giving a stronger form; but if greater, the flanks will curve in toward each, other, whereby the teeth become weaker and difficult to make.

    In some cases cycloidal teeth for a pair of gears are made with the gener-ating-circle of each gear, 'having a radius equal to half the radius of its pitchcircle. In this case each of the gears will have radial flanks. This method makes a smooth working gear, but a disadvantage is that the wheels are not interchangeable with other wheels of the same pitch but different numbers of teeth.

    The rack in the cycloidal system is equivalent to a wheel with an infinite number of teeth. The pitch is equal to the circular pitch of the mating gear. Both faces and flanks are cycloids formed by rolling the generatingcircle of the mating gear-wheel on each side of the straight pitch-line of the rack.
    

    Fig. 155.
    Another method of drawing the cycloidal curves is shown in Fig. 155. It is known as the method of tangent arcs. The generating-circles, as before, are drawn with equal radii, the length of the radius being less than half the radius of $p l$, the smaller pitch-circle. Equal divisions 1, 2, 3, 4, etc., are nuarked off on the pitch circles and divisions of the same length stepped off on one of the generating-circles, as oabc, etc. From the points $1,2,3,4,5$ on the line po, with radii successively equal to the chord distances oa, ob,oc, od, oe, draw the five small arcs $F$. A line drawn through the outer edges of these small arcs, tangent to them all, will be the hypocycloidal curve for the tlank of a tooth below the pitch-line pl. From the points $1,2,3$, etc., on the line $o l$, with radii as before, draw the small arcs $G$. A line tangent to these arcs will be the epicycloid for the face of the same tooth for which the flank curve has already been drawn. In the same way, from centres on the line $P_{0}$, and oL, with the same radii, the tangent ares $H$ and $K$ may be drawn, which will give the tooth for the gear whose pitch-circle i.s PL.

    If the generating-circle had a radius just one half of the radius of $p l$, the hypocycloid $F$. Id be a straight line, and the flank of the tooth would have been radial.
    The Involute Tooth.-In drawing the involute tonth curve, the angle of obliquity, or the angle which a common tangent to the teeth, when they are in contact at the pitch-point, maki with a line joining the centres of the wheels, is first arbitrarily determined. It is customary to take it at $15^{\circ}$. The pitch-lines $p l$ and $P L$ being drawn in contact at $O$, the line of obliquity $A B$ is drawn through $O$ normal to a common tancent to the tooth curves, or at the given angle of obliquity to a common tangent to the pitch-circles. In
    the cut the angle is $20^{\circ}$. From the centres of the pitch-circles draw circles $c$ and $d$ tangent to the line $A B$. These circles are called base-lines or basecircles, from which the involutes $F$ and $K$ are drawn. By laying off convenient distances, $0,1,2,3$, which should each be less than $1 / 10$ of the diameter of the base-circle, small ares can be drawn with successively increasing radii, which will form the involute. The involute extends from the points $F$
    

    Fig. 156.
    and $K$ down to their respective base-circles, where a tangent to the involute becomes a radius of the circle, and the remainders of the tooth curves, as $G$ and $H$, are radial straight lines.
    In the involute system the customary standard form of tooth is one laving an angle of obliquity of $15^{\circ}$ (Brown ant Sharpe use $14 \frac{1}{2} 2^{\circ}$ ), at addendum of about one third the circular pitch, and a clearance of aboit one eighth of the addendum. In this system the smallest gear of a set has 12 teeth, this being the smallest number of teen that will gear together when made with this angle of obliquity. In gears with less than 30 teeth the points of the teeth must be slightly rounded over to avoid interference (see Grant's Teeth of Gears). All involute teeth of the same pitch and with the same angle of obliquity work smonthly together. The rack to gear with an involute-toothed wheel has straight faces on its teeth, which make an augle with the middle line of the tooth equal to the angle of obliquity, or in the standard form the faces are inclined at an angle if $30^{\circ}$ with each other.

    To drato the teell of a rack which is to gear with an involute wheel (Fig. 15\%). Let $A B$ be the pitch-line of the rack and $A I=I I^{\prime}=$ the pitch. Through
    

    Fig. 157.
    the pitch-point $I$ draw $E F$ at the given angle of obliquity. Draw $A E$ and $I^{\prime} F^{\prime}$ perpendicular to $E F$. Through $E$ and $F^{F}$ draw lines $E G G^{\prime}$ and $F H$ parallel to the pitch-line. $E G G G^{\prime \prime}$ will be the addendum-line and $H F$ the flankline. From $I$ draw $I K$ perpendicular to $A B$ equal to the greatest addeudum: in the set of wheels of the given pitch and obliquity plus an allowance for clearance equal to $1 / 8$ of the addendum. Through $K$, parallel to $A B$, draw the clearance-line. The fronts of the teeth are planes perpendicular to $E E$, and the backs are planes inclined at the same angle to $A B$ in the contrary direction. The outer half of the working face $A E$ may be slightly curved. Mr. Grant makes it a circular are drawn from a centre on the pitch-line
    with a radius $=2.2$ inches divided by the diametral pitch, or $.67 \mathrm{in} . \times$ cir cular pitch.
    To Draw an Angle of $15^{\circ}$ without using a Protractor:-From $C$, on the line $A C$, with radius $A C$, draw an arc $A B$, and from $A$, with the same radius, cut the arc at $B$. Bisect the arc $B A$ by drawing small ares at $D$ from $A$ and $B$ as centres, with the same radius, which must be greater than one half of $A B$. Join $D C$, cutting $B A$ at $E$. The angle $E C A$ is $30^{\circ}$. Bisect the arc $A E$ in like manner, and the angle $F C A$ will be $15^{\circ}$.

    A property of involute-toothed wheels is that the distance between the axes of a pair of gears may be altered to a considerable extent without interfering with their action. The backlash is therefore variable at will, and may be adjusted by moving the wheels farther from or nearer to each other, and may thus be ardjusted so as to be no greater than is necessary to prevent jamming of the teeth.

    The relative merits of cycloidal and involute-shaper teeth are still a snbject of dispute, but there is an increasing tendency to adopt the involute tooth for all purposes.

    Clark (R. T. D., p. i34) says: Involute teeth have the disadvantage of being too much inclined to the radial line, by which an undue pressure is exerted on the bearings.

    Unwin (Elements of Machine Design, 8th ed., p. 265) says: The obliquity of action is ordinarily alleged as a serious objection to involute wheels. Its importance has perhaps been overrated.

    George B. Grant (Am. Mrtch., Dec. 26, 1885) says :

    1. 'Che work done by the friction of an involute tooth is always less than the saine work for any possible epicycloidal tooth.
    2. With respect to work done by friction, a change of the base from a gear of 12 teeth to one of 15 teeth makes an improvement for the epicycloid of less than one lalf of one per cent.
    3. For the 12 -tooth system the involute has an advantage of $11 / 5$ per cent, and for the 15 -tooth system an advantage of $3 / 4$ per cent.
    4. That a maximum improvement of about one $p \in r$ cent can be accomplished by the adoption of any possible non-interchangeable radial flank tonthin preference to the $1 \geqslant$-tooth interchangeable system.
    5. That for gears of very few teeth the involute has a decided advantage.
    6. That the common opinion among millwrights and the mechauical public in general in favor of the epicycloid is a prejudice that is founded on long-continued custom, and not on an intimate knowledge of the properties of that curve.

    Wilfred Lewis (Proc. Engrs. Club of Phila., vol. x., 1893) says a strong reaction in favor of the involute system is in progress, and he believes that an involute tooth of $2212^{\circ}$ obliquity will finally supplant all other forms.

    Approximation by Circhilar Ares.-Having found the form of the actual tooth-curve on the drawing-board, circular ares may be found by trial which will give approximations to the true curves. and these may bo
    

    Fig. 159.
    used in completing the drawing and the pattern of the gear-wheels. The root of the curve is connected to the clearance by a fillet, which should be as large aspossible to give increased strength to the tooth, provided it is not large enough to cause interference.

    Molesworth gives the following method of construction by circular ares :
    From the radial line at the edge of the tooth on the pitch-line, lay off the line $H K$ at an angle of $55^{\circ}$ with the radial line; on this line will be the centres of the root $A B$ and the point $E F$. The lines struck from these centres are shown in thick lines. Circles drawn throngh centres thus found will give the lines in which the remaining centres will be. The radins $D A$ for striking the root $A B$ is = pitch + the thickness of the tooth. The radius $C E$ for striking the point of the tooth $E F=$ the pitch.
    George B. Grant says: It is sometimes attempted to construct the curve by some handy method or empirical rule, but such methods are generally worthless.
    Stepped Gears. --Two gears of the same pitch and diameter mounted side by side on the same shaft will act as a single gear. If one gear is keyed on the shaft so that the teeth of the two wheels are not in line, but the teeth of one wheel slightly in advance of the other, the two gears form a stepped gear. If mated with a similar stepped gear on a parallel shaft the number of teeth in contact will be twice as great as in an ordinary gear, which will increase the strength of the gear and its smoothness of action.

    Twisted Teeth.-If a great number of very thin gears were placed together, one slightly in advance of the other, they would still act as a stepped gear. Continuing the subdivision until the thickness of each separate gear is infinitesimal, the thees of the teeth instead of being in steps take the form of a spiral or twisted surface, and we have a twisted gear. The twist may take any shape, and if it is in one direction for half the width of the gear and in the opposite direction for the other half, we have what is known as the herring-bone or double helical tooth. The obliquity of the twisted tooth if twisted in one direction causes an end thrust, on the shait, but if the herringbone twist is used, the opposite obliquities neutralize each other. This form of tooth is much used in heavy rolling-mili practice, where great strength and resistance to shocks are necessary. They are frequently made of steel castings (Fig. 160). The angle of the tooth with a line parallel to the axis of the gear is usually $30^{\circ}$.
    

    Fig. 160.

    Spiral Gears.-If a twisted gear has a uniform twist it becomes a spiral gear. The line in which the pitch-surface intersects the face of the tooth is part of a helix drawn on the pitch-surface. A spiral wheel may be made with only one helical tooth wrapped around the cylinder several times, in which it becomes a screw or worm. If it has two or three teeth so wrapped, it is a double- or triple-threaded screw or worm. A spiral-gear meshing into a rack is used to drive the table of some forms of planing-
    machine.

    Worm-gearing. - When the axes of two spiral gears are at right angles, and a wheel of one, two, or three threads works with a larger wheel of many threads, it beconles a worn-gear, or endless screw, the smaller
    

    Fig. 161.
    wheel or driver being called the worm, and the larger. or driven wheel, the worm-wheel. With this arrangement a high velocity latio may be obtained with a single pair of wheels. For a one-threaded wheel the velocity ratio is
    the number of teeth in the worm-wheel. The worm and wheel are com. monly so constructed that the worm will drive the wheel, but the wheel will not drive the worm.

    To find the dicmeter of a worm-wheel at the throat, number of teeth and pitch of the worm being given: Add 2 to the number of teeth, multiply the sum by 0.3183 , and by the pitch of the worm in inches.

    To find the number of teeth, diameter at throat and pitch of worm being given: Divide 3.1416 times the diameter by the pitch, and subtract 2 from the quotient.

    In Fig. $161 a b$ is the diam. of the pitch-circle, $c d$ is the diam. at the throat.
    Example.- Pitch of worm $1 / 4 \mathrm{in}$. number of teeth 70 , required the diam. at the throat. $(30+2) \times .3183 \times .25=5.73 \mathrm{in}$.

    Teeth of Bevel-wheels. (Rankine's Machinery and Millwork.)The teeth of a bevel-wheel have acting surfaces of the conical kind, generated by the motion of a line traversing the apex of the conical pitch. surface, while a point in it is carried round the traces of the teeth upon a spherical surface described about that apex.

    The operations of drawing the traces of the teeth of bevel-wheels exactly, whether by involntes or by rolling curves, are in every respect analogons to those for drawing the traces of the teeth of spur-wheels; except that in the case of bevel-wheels all those operations are to be performed on the surface of a sphere described about the apex, instead of on a plane, substituting poles for centres and great circles for straight lines.

    In consideration of the practical difficulty, especially in the case of large wheels, of obtaining an accurate spherical surface, and of drawing upon it when obtained, the following approximate method, proposed originally by Tredgold, is generally used:

    Let $O$, Fig. 162, be the common apex of the pitch-cones, $O B I, O B^{\prime} I$, of a pair of bevel-wheels; $O C, O C^{\prime}$, the axes of those cones; $O 1$ their line of con-
    
    faces $A B I, A^{\prime} B^{\prime} I$ are spread out flat circles $I B, I B^{\prime}$ when the conical surdeveloped ares as for a pair of spur-wheels, then wrap the developed ares on the normal cones, so as to make them coincide with the pitch-circles, and trace the teeth on the conical surfaces.
    For formulæ and instructions for designing bevel-gears, and for much other valuable information on the subject of gearing, see "Practical Treatise on Gearing," and "Formulas in Gearing," published by Brown \& Sharpe Mf'g Co.; and "Teeth of Gears," by George B. Grant, Lexington, Mass. The student may also consult Rankine's Machinery and Millwork, Reuleanc's Constructor, and Unwin's Elements of Machine Design. See also article on Gearing, by C. W. MacCord in App. Cyc. Mech., vol. ii.

    Annular and Differentiai Gearing. (S. W. Balch., Am. Mrch., Aug. 24, 1893.) - In internal gears the sum of the diameters of the describing circles for faces and flanks should not exceed the difference in the pitch diameters of the pinion and its interual gear. The sum may be equal to this difference or it may be less; if it is equal, the faces of the teeth of each wheel will drive the faces as well as the flanks of the teeth of the other wheel. The teeth will therefore make contact with each other at two points at the same time.

    Cycloidal tooth-curves for interchangeable gears are formed with describing circles of about $5 / 8$ the pitch dianneter of the smallest gear of the series. To admit two such circles between the pitch-circles of the pinion and internaí
    gear the number of teeth in the internal gear should exceed the number in the pinion by 12 or more, if the teeth are of the customary proportions and curvature used in interchangeable gearing.

    Very often a less difference is desirable, and the teeth may be modified in several ways to make this possible.

    First. 'The tooth curves resulting from smaller describing circles may be employed. These will give teeth which are more rounding and narrower at their tops, and therefore not as desirable as the regular forms.

    Second. The tips of the teeth may be rounded until they clear. This is a cut-and-try method which ainss at modifying the teeth to such outlines as smaller describing circles would give.

    Third. One of the describing circles may be omitted and one only used. which may be equal to the difference between the pitch-circles. This will permit the meshing of gears differing by six teeth. It will usually prove inexpedient to put wheels in inside gears that differ iby much less than 12 teeth.

    If a regular diametral pitch and standard tooth forms are determined on, the diameter to which the internal gear-blank is to be bored is calculated by subtracting 2 from the number of teeth, and dividing the remainder by the diametral pitch.

    The tooth outlines are the match of a spur-gear of the same number of teeth and diametral pitch, so that the spur gear will fit the internal gear as a. punch fits its die, except that the teeth of each should fail to bottom in the tooth spaces of the other by, the customary clearance of one tenth the thickness of the tooth.

    Internal gearing is particularly valuable :vhen employed in differential action. This is a mechanical movement in which one of the wheels is mounted on a crank so that its centre can move in a circle about the centre of the other wheel. Means are added to the device which restrain the wheel on the crank from turning over and confine it to the revolution of the crank.
    The ratio of the number of teeth in the revolving wheel compared with the difference between the two will represent the ratio between the revolving wheel and the crank-shaft by which the other is carried. The advantage in accomplishing the change of speed with such an arrangement, as compared with ordinary spur-gearing, lies in the almost entire absence of friction and consequent wear of the teeth.

    But for the limitation that the difference between the wheels must not be too small, the possible ratio of speed might be increased almost indefinitely, and one pair of differential gears made to do the service of a whole train of wheels. If the problem is properly worked out with bevel-gears this limitation may be completely set aside, and external and internal bevel-gears, differing by but a single tooth if need be, made to mesh perfectly with each other.
    Differential bevel-gears have been used with advantage in mowing-maelines. A description of their construction and operation is given by Mr. Balch in the article from which the above extracts are taken.

    ## EFFICIENCY OF GEARENG.

    An extensive series of experiments on the efficiency of gearing, chiefly worm and spiral gearing, is described by Wilfred Lewis in Trans. A. S. M. E., vii. 2 \%3. The average results are shown in a diagram, from which the following approximate average figures are taken :

    Efficiency of Spur, Spiral, and Worm Gearing.

    | Gearing. | Pitch. | Velocity at Pitch line in feet per min. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 3 | 10 | 40 | 100 | 200 |
    | Spur pinion.. |  | . 90 | . 935 | . 97 | . 98 | . 985 |
    | Spiral pinion. |  | . 81 | . 87 | . 93 | . 985 | . 965 |
    | "6 " | 30 | . 75 | . 815 | . 89 | . 93 | . 945 |
    | " ${ }^{\prime}$ | 15 | .67 | . 75 | . 855 | . 90 | . 92. |
    | Spiral pinion or worin | 10 | . 51 | . 70 | . 805 | . 87 | . $90{ }^{\circ}$ |
    | "\% " 6 | 7 | . 43 | . 53 | . 72 | . 865 | . 818 |
    | " ${ }^{\text {6 }}$ | 5 | . 34 | . 43 | . 60 | . 70 | . 765 |

    The experiments showed the advantage of spur-gearing over all oth $\downarrow \mathrm{r}$ kinds in both durability and efficiency. The variation from the mean resuts rarely exceeded 5\% in either direction, so long as no cutting occurred, but the variation became much greater and very irregular as soon as cuiting began. The loss of power varies with the speed, the pressure, the temperature, and the condition of the surfaces. The excessive friction of wom and spiral gearing is largely due to thee nd thrust on the collars of the shaft. This may be considerably reduced by roller-bearings for the collars.

    When two worms with opposite spirals run in two spiral worm-gears that also work with each other, and the pressure on one gear is opposite that out the other, there is no thrust on the shaft. Even with light loads a worm will begin to heat and cut if run at too high a speed, the linitit for safe working being a velocity of the rubbing surfaces of 200 to 300 ft . per minute, the former being preferable where the gearing has to work continuously. 'The wheel teeth will keep cool, as they form part of a casting having a large radiating surface; but the worm itself is so small that its heat is dissipated slowly. Whenever the heat generated increases faster than it can be conducted and radiated away, the cutting of the worm may be expected to begin. A low efficiency for a worm-gear means more than the loss of power, since the power which is lost reappears as heat and may cause the rapid destruction of the worm.
    Unwiu (Elements of Machine Design, p. 294) says: The efficiency is greater the less the radius of the worm. Generally the radius of the worm $=1.5$ to 3 times the pitch of the thread of the worm or the circular pitch of the worm-wheel. For a one-threaded worm the efficiency is only $2 / 5$ to $1 / 4$; for a two-threaded worm, $4 / 7$ to $2 / 5$; for a three-threaded worm, $2 / 3$ to $1 / 2$. Since so much work is wasted in friction it is not surprising that the wear is excessive. The following table gives the calculated efficiencies of wormwheels of $1,2,3$, and 4 threads and ratios of radins of worm to pitch of teeth of from 1 to 6 , assuming a coefficient of friction of 0.15 :

    | $\begin{aligned} & \text { No. of } \\ & \text { Threads. } \end{aligned}$ | Radius of Worm $\div$ Pitch. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1 | 11/4 | 112 | $13 / 4$ | 2 | 21/2 | 3 | 4 | 6 |
    |  | . 50 | . 44 | . 40 |  | . 33 | . 28 | . 25 | . 20 | . 14 |
    | $\stackrel{2}{3}$ | ${ }^{.67}$ | . 62 | . .67 | . .63 | . 60 | . 45 | . 40 | . 33 | . 23 |
    | 4 | . 80 | . 76 | . 73 | . 70 | . 60 | . 62 | . 57 | . 53 | . .40 |

    ## STRENGTI OF GEAR-TEETH.

    The strength of gear-teeth and the horse-power that may be transmitted by them depend upon so many variable and uncertain factors that it is not surprising that the formulas and rules given by different writers show a wide variation. In 1879 John H. Cooper (Jour. Frank. Inst., July, 1879) found that there were then in existence about 48 well-established rules for horse-power and working strength, differing from each other in extreme cases abont $500 \%$. In 1886 Prof. Win. Harkuess (Proc. A. A. A. S. 1886), from an examination of the bibliography of the subject, beginning in 1i96, found that according to the constants and formule used by various authors there were differences of 15 to 1 in the power which could be iransmitted by a given pair of geared wheels. The various elements which enter into the constitution of a formula to represent the working strength of a toothed wheel are the following: 1. The strength of the metal, usually cast iron, which is an extremely variable quantity. 2. The shape of the tooth, and especially the relation of its thickness at the root or point of least strength to the pitch and to the length. 3. The point at which the load is taken to be applied, assumed by sone authors to be at the pitch-line, by others at the extreme end, along the whole face, and by still others at a single outer corner. 4. The consideration of whether che total load is at any time received by a single tooth or whether it is divided between two teeth. 5 . The influence of velocity in causing a tendency to break the teeth by shock. 6 . The factor of safety assumed to cover all the uncertainties of the other ele. ments of the problen.

    Prof. Harkness, as a result of his investigation, found that all the formulæ on the subject might be expressed in one of three forms, viz.:

    $$
    \text { Horse-power }=C V p f, \text { or } C V p^{2}, \text { or } C V p^{2} f
    $$

    in which $C$ is a coefficient, $V=$ velocity of pitch-line in feet per second, $p=$ pitch in inches, and $f=$ face of tooth in inches.
    From an examination of precedents he proposed the following formula for cast-iron wheels:

    $$
    \text { H.P. }=\frac{0.910 V p f}{\sqrt{1+0.65 V}}
    $$

    He found that the teeth of chronometer and watch movements were subject to stresses four times as great as those which any engineer would dare to use in like proportion upon cast-iron wheels of large size.
    It appears that all of the earlier rules for the strength of teeth neglected the consideration of the variations in their form; the breaking strength, as said by Mr. Cooper, being based upon the thickness of the teeth at the pitchline or circle, as if the thickness at the root of the tooth were the same in all cases as it is at the pitch-line.

    Wilfred Lewis (Proc. Eng'rs Club, Phila., Jan. 1893; Am. Mach., June 22, 1893) seems to have been the first to use the form of the tooth in the construction of a working formula and table. He assumes that in well-constructed machinery the load can be more properly taken as well distribured across the tooth than as concentrated in one corner, but that it cannot be safely taken as concentrated at a maximum distance from the root less than the extreme end of the tooth. He assumes that the whole load is taken upon one tooth, and considers the tooth as a beam loaded at one end, and from a series of drawings of teeth of the involute, cycloidal, and radial flank systems, determines the point of weakest cross-section of each, and the ratio of the thickness at that section to the pitch. He thereby obtains the general formula,

    $$
    W=s p f y
    $$

    in which $W$ is the load transmitted by the teeth, in pounds; $s$ is the safe working stress of the material, taken at 8000 lbs . for cast iron, when the working speed is 100 ft . or less per minute; $p=$ pitch; $f=$ face, in inches; $y=$ a factor depending on the form of the tooth, whose value for different cases is given in the following table:

    | No. of Teeth. | Factor for Strength, $y$. |  |  | No. of Teeth. | Factor for Strength, $y$. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Involute $20^{\circ}$ Obliquity. | Involute $15^{\circ}$ and Cycloidal | Radial Flanks. |  | Involute $20^{\circ}$ Obliquity. | $\left\lvert\, \begin{aligned} & \text { Invohnte } \\ & 150 \text { and } \\ & \text { Cycloida } \end{aligned}\right.$ | Radial Flanks. |
    | 12 | . 078 | . 067 | . 052 | 27 | . 111 | . 100 | . 064 |
    | 13 | . 083 | . 000 | .053 | 30 | . 114 | 102 | . 065 |
    | 14 | . 088 | . 072 | . 054 | 34 | . 118 | . 104 | . 066 |
    | 15 | . 092 | . 075 | . 055 | 38 | . 122 | . 107 | . 067 |
    | 16 | . 094 | . 078 | . 056 | 43 | 126 | . 110 | . 068 |
    | 17 | . 096 | . 080 | . 057 | 50 | -30 | . 112 | . 069 |
    | 18 | . 098 | . 083 | . 058 | 60 | 134 | . 114 | . 070 |
    | 19 | . 100 | . 087 | . 059 | 75 | . 138 | . 116 | . 071 |
    | 20 | . 102 | . 090 | . 060 | 100 | . 142 | . 118 | .072 |
    | $\stackrel{21}{23}$ | . 104 | .092 .094 | .061 .08 .2 | 150 300 | 146 | . 120 | . 073 |
    | $\stackrel{23}{25}$ | . 106 | . 094 | . 008 | 300 | . 150 | 122 | . 074 |
    | 25 | . 108 | . 097 | . 063 | Rack. | . 154 | . 124 | . 075 |

    Safe Working Stress, $s$, for Different Speeds.

    | Speed of Teeth in ft. per minute. | $\left\|\begin{array}{c} 100 \text { or } \\ \text { less. } \end{array}\right\|$ | 80 | 300 | 600 | 930 | 1200 | 1800 | 2400 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Cast ir | 8000 | 6000 | 4800 | 4000 | 3000 | 2400 | 2000 |  |
    | Steel. | 20000 | 15000 | 12000 | 10000 | 7500 | 6000 | 5000 | 4300 |

    The values of $s$ in the above table are given by Mr. Lewis tentallvely, in the absence of sufficient data upon which to base more definite values, but they have been found to give satisfactory results in practice.

    Mr. Lewis gives the following example to illustrate the use of the tables: Let it be required to find the working strength of a 12 -toothed pinion of 1 inch pitch, $21 / 2$-inch face, driving a wheel of 60 teeth at 100 feet or less per minute, and let the teeth be of the 20 -degree involute
    

    Fig. 163. form. In the formula $W=s p f y$ we have for a cast-iron pinion $s=8000, p f=2.5$, and $y=.078$; and multiplying these values together, we have $W=1560$ pounds. For the wheel we have $y=.134$ and $W=2680$ pounds.
    The cast-iron pinion is, therefore, the measure of strength; but if a steel pinion be substituted we have $s=20,000$ and $W=3900$ pounds, in which combination the wheel is the weaker, and it therefore becomes the measure of strength.
    For bevel-wheels Mr. Lewis gives the following, referring to Fig. 16B: $D=$ large diameter of bevel; $d=$ small diameter of bevel; $p=$ pitch at large diameter; $n=$ actual number of teeth; $f=$ face of bever; $N=$ for: mative number of teeth $=n \Varangle$. secant $\alpha$, or the number corresponding to ladius $R ; y=$ factor depending upon zhape of teeth and formative number $N ; W=$ working load on teeth.

    $$
    W=\operatorname{spf} y \frac{D^{3}-d^{3}}{3 D^{2}(D-d)} ; \text { or, more simply, } W=\operatorname{spfy} \frac{d}{D}
    $$

    which gives almostidentical results when $d$ is not less than $2 / 3 D$, as is the case in good practice.
    In Am. Mach., June 22, 1893, Mr. Lewis gives the following formulæ for the working strength of the three systems of gearing, which agree very closely with those obtained by use of the table:

    $$
    \begin{aligned}
    & \text { For involute, } 20^{\circ} \text { obliquity, } \quad W=\operatorname{spf}\left(.154-\frac{.912}{n}\right) ; \\
    & \text { For involute } 15^{\circ}, \text { and cyc!oidal, } W=\operatorname{spf}\left(.124-\frac{.684}{n}\right) ; \\
    & \text { For radial flank system, } \quad W=\operatorname{spf}\left(.075-\frac{.276}{n}\right) ;
    \end{aligned}
    $$

    in which the factor within the parenthesis corresponds to $y$ in the general formula. For the horse-power transinitted, Mr. Lewis's general formula $W=s p f y,=\frac{33,000 \mathrm{H} . \mathrm{P} .}{v}$, may take the form H.P. $=\frac{s p f y v}{33,000}$, in which $v=$ velocity in feet per minute; or since $v=d \pi \times \mathrm{rpm} .+12=.2618 d \times \mathrm{rpm}$. , in which $d=$ diameter in inclies and rpm. $=$ revolutions per minute,

    $$
    \text { H.P. }=\frac{W v}{33,000}=\frac{s p f y \times d \times \mathrm{rpm} .}{126,050}=.00000 \tau 933 d s p f y \times \mathrm{rpm} .
    $$

    It must be borne in mind, however, that in the case of machines which consume power intermittently, such as punching and shearing machines. the gearing shonld be designed with reference to the maximum load $W_{\text {, }}$, which can be brought upon the teeth at any time, and not upon the average horse-power transmitted.
    Comparison of the Harkness and Levis Formulas.Take an average case in which the safe working strength of the material, $s=6000, v=200 \mathrm{ft}$. per min., and $y=.100$, the value in Mr. Lewis's table for an involute tooth of $15^{\circ}$ obliquity, or a cycloidal tooth, the number of teeth in the wheel being $2 \pi$.

    $$
    \text { H.P. }=\frac{s p f_{y} y v}{33,000}=\frac{6000 p f v \times .100}{33,000}=\frac{p f v}{55}=1.091 p f V .
    $$

    if $V$ is taken in feet per second.
    Prof. Harkness gives H.P. $=\frac{0.910 \mathrm{~V} p f}{\sqrt{1+0.65 V}}$. If the $V$ in the denominato
    be taken at $200 \quad J=31 / 3$ feet per second, $\sqrt{ } \overline{1+0.65 V}=\sqrt{3.167}=1 . \% 8$, and H.P. $=\frac{.910}{1 . \tau 3} V p f=.571 p f V$, or about $52 \%$ of the result given by Mr. Lewis's formula. This is probably as close an agreement as can be expected, since Prof. Harkness derived his formula from an investigation of ancient precedents and rule-of-thumb practice, largely with common cast gears, while Mr. Lewis's formula was derived from considerations of modern practice with machine-moulded and cut gears.
    Mr. Lewis takes into consideration the reduction in working strength of a tooth due to increase in velocity by the figures in his table of the values of the safe working stress $s$ for different speeds. Prof. Harkness gives expression to the same reduction by means of the denominator of his formula, $\sqrt{1+0.6 \overline{5} V}$. The decrease in strength as computed by this formula is somewhat less than that given in Mr. Lewis's table, and as the figures given in the table are not based on accurate data, a mean between the values given by the formula and the table is probably as near to the true value as may be obtained from our present knowledge. The following table gives the values for different speeds according to Mi'. Lewis's table and Prof. Harkness's formula, taking for a basis a working stress $s$, for cast-iron 8000, and for steel $20,000 \mathrm{lbs}$. at speeds of 100 ft . per minute and less:

    | $v=$ speed of teeth, ft. per min.. | 100 |  | 300 | 600 | 900 | 1200 | 1800 | 24 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $V=$ " ${ }^{\text {c }}$ (t. per sec.. | 12/3 | $31 / 3$ | 5 | 10 | 15 | 20 | 30 | 40 |
    | Dafe stress $s$, cast | 8000 | 6000 | 4800 | 4000 | 3000 | 2400 | 2000 | 1700 |
    | Relative do., s $\div 8000$ |  | . 75 | . 6 | . 5 | . 375 | . 3 | . 25 | . 2125 |
    | $=1 \div 11+0.65 V$ | . 6930 | 5621 | . 4850 | . 3650 | . 3050 | $26 \pi 2$ | . 2208 | . 192 |
    | Relative val. $c \div .693$ |  | . 811 | . 700 | . 526 | . 439 | . 385 | . 318 | . 2 i |
    | $s_{1}=8000 \times(c \div .693)$ | 8000 | 6438 | 5600 | 4208 | 3512 | 3080 | 2544 | 221 |
    | Mean of $s$ and $s_{1}$, cast | 8000 | 6200 | 5200 | 4100 | 3300 | 2700 | 2300 | 200 |
    | $\therefore$ " 6 for steel $=$ |  |  | 130 | 10:30 | 8100 | 6800 | $5 \pi 00$ | 490 |
    | Safe stress for steel, Lew |  |  |  |  | 7500 | 6000 |  |  |

    Comparing the two formulæ for the case of $s=8000$, corresponding to a speed of 100 ft . per min., we have
    Harkness: H.P. $=1 \div \sqrt{1+0.65 V} \times .910 \mathrm{Vpf}=.695 \times .91 \times 12 / 3 p f=1.051 p f^{\prime \prime}$
    Lewis:

    $$
    \text { H.P. }=\frac{s p f y v}{33,000}=\frac{s p f y V}{550}=\frac{8000 \times 1 \% / 3 p f y}{550}=24.24 p f y,
    $$

    In which $y$ varies according to the shape and number of the teeth.
    For radial-flank gear with 12 teeth $\quad y=.052 ; 24.24 p f y=1.260 \mathrm{pf}$;
    For $20^{\circ}$ iuvolnte, 19 teeth, or $15^{\circ}$ inv., 27 teeth $y=.100 ; 24.242 f y=2.424 \mathrm{pf}$;
    For $\because 0^{\circ}$ involute, 300 teeth
    $y=.150 ; 24.24 p f y=3.636 p f$.
    Thus the weakest-shaped tooth, according to Mr. Lewis, will transmit 20 yer cent more horse-power than is given by Prof. Harkness's formula, in which the shape of the tooth is not considered, and the average-shaped tooth, according to Mr . Lewis, will transmit more than double the horsepower given by Prof. Harkness's formula.

    Comparison of Other Tormulæ.-Mr. Cooper, in summing up his examination, selected an old English rule, which Mr. Lewis considers as a passably correct expression of good general averages, viz. : $X=2000 \mathrm{pf}$, $X=$ breaking load of tooth in pounds, $p=$ pitch, $f=$ face. If a factor of safety of 10 be taken, this would give for safe working lnad $W=200 p f$.

    George B. Grant, in his Teeth of Gears, page 33. takes the breaking load at 3500 pf , and, with a factor of safety of 10 , gives $W=350 \mathrm{pf}$.

    Nystrom's Pocket-Book, 20th ed, 1891, says: "The strength and durability of cast-iron teeth require that they shall transmit a force of 80 lbs . per inch of pitch and per inch breadth of face." This is equivalent to $W=80 p f$, or only 40\% of that given by the English rule.
    F. A. Halsey (Clark's Pocket Book) gives a table calculated from the formula H.P. $=p f d \times \mathrm{rpm} . \div 850$.

    Jones \& Laughlins give H.P. $=n f d \times \mathrm{rpm} . \div 550$.
    These formulæ transformed give $W=128 p f$ and $W=218 p f$, respectively.

    Unwin, on the assumption that the load acts on the corners of the teeth, derives a formula $p=K \sqrt{W}$, in which $K$ is a coefficient derived from existing wheels, its values being : for slowly moving gearing not subject to much vibration or shock $K=.04$; in ordinary mill-gearing. running at greater speed and subject to considerable vibration, $K=.05$; and in wheels subjected to excessive vibration and shock, and in mortise gearing, $K=.06$. Reduced to the form $W=C p f$, assuming that $f=2 p$, these values of $K$ give $W=262 p f$, 200pf, and $139 p f$, réspectively.

    Unwin also gives the following formula, based on the assumption that the pressure is distributed along the edge of the tooth : $p=K_{1} \sqrt{\frac{p}{f}} \sqrt{\bar{W}}$, where $K_{1}=$ about .0707 for iron wheels and .0848 for mortise wheels when the breadth of face is not less than twice the pitch. For the case of $f=2 p$ and the given values of $K_{1}$ this reduces to $W=200 \mathrm{pf}$ and $W=139 \mathrm{pf}$, respectively.
    Box, in lis Treatise on Mill Gearing, gives H.P. $=\frac{12 p^{2} f \sqrt{d n}}{1000}$, in which $n$ $=$ number of revolutions per minute. This formula differs from the more modern formulæ in making the H.P. vary as $p^{2} f$, instead of as $p f$, and in this respect it is no doubt incorrect.
    Making the H.P. vary as $\sqrt[V]{d n}$ or as $\sqrt{v}$, instead of directly as $v$, makes the velocity a factor of the working strength as in the Harkness and Lewis formulæ, the relative strength varying as $\frac{\sqrt{v}}{v}$, or as $\frac{1}{\sqrt{v}}$, which for different velocities is as follows:
    $\begin{array}{rlllllllll}\text { Speed of teeth in } \mathrm{ft} \text {. per min., } v & =100 & 200 & 300 & 600 & 900 & 1200 & 1800 & 2400 \\ \text { Relative strength } & =1 & .707 & .5 \pi & .408 & .333 & .289 & .236 & .204\end{array}$
    Showing a somewhat more rapid reduction than is given by Mi. Lewis.
    For the purpose of comparing different formulæ they may in general be reduced to either of the following forms:

    $$
    \text { H.P. }=C p f v, \quad \text { H.P. }=C_{1} p f d \times \mathrm{rpm} ., \quad W=c p f,
    $$

    in which $p=$ pitch, $f=$ face, $d=$ dianeter, all in inches $; v=$ velocity in feet per minute, rpm. revolutions per minute, and $C, C_{k}$ and $\bar{c}$ coefficients. The formule for transformation are as follows :

    $$
    \begin{gathered}
    \text { H.P. }=\frac{W v}{33000}=\frac{W \times d \times \mathrm{rpm} .}{126,050} ; \\
    W=\frac{33,000 \mathrm{H} . \mathrm{P} .}{v}=\frac{126,050 \mathrm{H.P} .}{d \times \mathrm{rpm.}}=33,000 C p f ; p f=\frac{\mathrm{H} . \mathrm{P} .}{C v}=\frac{\mathrm{H} . \mathrm{P} .}{O_{1} d \times \mathrm{rpm} .}=\frac{W}{c} . \\
    C_{1}=.2618 C ; \quad c=33,000 C ; \quad C=3.82 C_{1},=\frac{c}{33,000} ; \quad c=126,050 C_{1} .
    \end{gathered}
    $$

    In the Lewis formula $C$ varies with the form of the tooth and with the speed. and is equal to $s y \div 33,000$, in which $y$ and $s$ are the values taken from the table, and $c=s y$.
    In the Harkness formula $C$ varies with the speed and is equai to $\frac{910}{\sqrt{1+0.65 \nabla}}$ ( $V$ being in feet per second),$=\frac{.01517}{\sqrt{1+.011 v}}$
    In the Box formula $C$ varies with the pitch and also with the velocity and equals $\frac{12 p \sqrt{d \times \mathrm{rpm}}}{1000 v}=.02345 \frac{p}{\sqrt{v}} . \quad c=33,000 \mathrm{C}=774 \frac{p}{\sqrt{v}}$.

    For $v=100 \mathrm{ft}$. per min. $C=\% 7.4 p$; for $v=600 \mathrm{ft}$. per minute $c=31.6 p$. In the other formulæ considered $C, C_{1}$, and $c$ are constants. Reducing the several formulz to the form $W=c p f$, we have the following :

    Comparison of Different Fork, la for Strength of Gear.teeth.
    Safe working pressure per inch pitch and per inch of face, or value of $c$ in formula $W=c p f$ :

    |  | $v=100 \mathrm{ft} .$ <br> per min. | $v=600 \mathrm{ft} .$ |
    | :---: | :---: | :---: |
    | Lewis: Weak form of tooth, radial flank, 12 teeth | $c=416$ | 208 |
    |  | $c=800$ | 400 |
    | Strong form of tooth, inv. $20^{\circ}, 300$ teeth.. | $c=1200$ | 600 |
    | Harkness: Average tooth. | $c=347$ | 184 |
    | Box: Tooth of 1 inch pitch |  | 31.6 |
    | "A. "، ،6 3 inches pitch | $c=232$ | 95 |

    Varions, in which $c$ is independent of form and speed: Old Englisin rule, $c=200$; Grant. $c=350$; Nystrom, $c=80$; Halsey, $c=128$; Jones \& Langhlins, $c=218$; Unwin, $c=262,200$, or 139, according to speed, shock, and vibration.
    The value given by Nystrom and those given by Box for teeth of small pitch are so much smaller than those given by the other anthorities that they may be rejected as having an entirely unnecessary surplus of strength. The values given by Mr. Lewis seem to rest on the most logical basis, the form of the teeth as well as the velocity being considered; and since they are said to have proven satisfactory in an extended machine practice, they may be considered reliable for gears that are so well made that the pressure bears along the face of the teeth instead of upon the corners. For rough ordinary work the old English rule $W=200 p f$ is probably as good as any, except that the figure 200 may be too high for weak forms of tooth and for high speeds.
    The formula $W=200 p f$ is equivalent to H.P. $=\frac{p f d \times \mathrm{rpm} .}{630}=\frac{p f v}{165}$, or H.P. $=.00158 \mathrm{~m} 3 \mathrm{pfd} \times \mathrm{rpm} .=.006063 p f v$.

    Maximum Speed of Gearing.-A. Towler, Eng'g, April 19, 1889, p. 388, gives the maximum speeds at which it was possible under favorable conditions to run toothed gearing safely as follows:

    Ft, per min.

    | Helical |
    | :---: |
    |  |  |

    Helical "6 "، "، .................................................. 2400
    
    Helical "6 " " ................................................ 30 C 0
    Special cast-iron machine-cut wheels................. ......... . . . . . . 3000
    Prof. Coleman Sellers (Stevens Indicator, April, 1892) recommends that gearing be not run over 1200 ft . per minute, to avoid great noise. The Walker Company, Cleveland, O., say that 2200 ft . per min. for iron gears and 3000 ft . for wood and iron (mortise gears) are excessive, and should be avoided if possible. The Corliss engine at the Philadelphia Exhibition (187í) had a fly wheel 30 ft . in diameter running 35 rpm . geared into a pinion 12 ft . diam. The speed of the pitch-line was 3300 ft . per min.

    A Heavy Machine-cut Spur-gear was made in 1891 by the Walker Company, Cleveland, O., for a diamond mine in South Africa, with dimensions as follows: Number of teeth, 192 ; piten alameter, $30^{\prime} 6.66^{\prime \prime}$; face, $30^{\prime \prime}$; pitch, $6^{\prime \prime}$; bore, $27^{\prime \prime \prime}$; diameter of hub, $9^{\prime} 2^{\prime \prime}$; weight of hub, 15 tons; and total weight of gear, $663 / 4$ tons. The rim was made in 12 segments, the joints of the segments being fastened with two bolts each. The spokes were bolted to the mifdle of the segments and to the hub with four bolts in each end.

    Frictional Gearing.-In frictional gearing the wheels are toothless, and one wheel drives the other by means of the friction between the two surfaces which are pressed together. They may be used where the power to be transmitted is not very great; when the speed is so high that toothed wheels would be noisy; when the shafts require to be frequently put into and out of gear or to lave their relative direction of motion reversed; or when it is desired to change the velocity-ratio while the machinery is in motion, as in the case of disk friction-wheels for changing the feed in inachine tools.

    Let $P=$ the normal pressure in pounds at the line of contact by which two wheels are pressed together, $T=$ tangential resistance of the driven wheel at the line of contact, $f=$ the coefficient of friction, $V=$ the velocity of the pitch-surface in feet per second, and H.P. = horse-power; then $T$ may be equal to or less than $f P ; H . P,=T V \div 550$. The value of $f$ for
    metal on metal may be taken at .15 to . 20 ; for wood on metal, .25 to .30 ; and for wood on compressed paper, .20. The tangential driving force $T$ may be as high as 80 lbs . per inch width of face of the driving surface, but this is accompanied by great pressure and friction on the journal-bearings.
    In frictional grooved gearing circmmferential wedge-shaped grooves are cnt in the faces of two wheels in contact. If $P=$ the force pressing the wheels together, and $N=$ the normal pressure on all the grooves, $P=N$ ( $\sin a+f \cos \alpha$ ), in which $2 \alpha=$ the inclination of the sides of the grooves, and the maximum tangential available force $T=f N$. The inclination of the sides of the grooves to a plane at right angles to the axis is usually $30^{\circ}$.
    Frictional Grooved Gearing.-A set of friction-gears for transmitting $150 \mathrm{H} . \mathrm{P}$. is on a stean-dredge described in Proc. Inst. M. E., July, 1888. Two grooved pinions of 51 in . diam., with 9 grooves of $13 / 4 \mathrm{in}$. pitch and angle of $40^{\circ}$ cut on their face, are geared into two wheels of $12 \% 1 / 2$ in diam. similarly grooved. The wheels can be thrown in and out of gear by levers operating eccentric bushes on the large wheel-shaft. The circumferential speed of the wheels is abont 500 ft . per min. Allowing for engine-friction, if lialf the power is transmitted through each set of gears the tangential force at the rims is about 3960 lbs ., requiring, if the angle is $40^{\circ}$ and the coefficient of friction 0.18 , a pressure of $75 \% 4 \mathrm{lbs}$. between the wheels and pinion to prevent slipping.

    The wear of the wheels proving excessive, the gears were replaced by spurgear wheels and brake-wheels with steel brake-bands, which arrangement has proven more dinrable than the grooved wheels. Mr. Daniel Adamson states that if the frictional wheels had been run att a higher speed the resultis would have been better, and says they should run at least 30 ft . per secoud.

    ## HOISTING AND CON JEYING.

    Approximate Weight and Strength of Cordage. (Boston and Lorkport Block Co.)-See also pages 339 to 345 .

    | Size in Circumference. | Size in Dianleter. | Weight of 100 ft . Manila, in lbs. | Strength of Manila Rope, in lbs. | Size in Circumference. | Size in Diam. eter. | Weight of 100 ft . Manila, in lbs. | Strength of Manila Rope, in lbs. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | inch. | inch. |  |  | inch. | inch. |  |  |
    |  | $5 / 8$ | 13 | 4,000 | 43/4 | 19/16 | ${ }^{9} 2$ | 22,500 |
    | 21/4 | $13 / 16$ | 16 | 5,000 | 5 |  | 80 | 25,000 |
    |  | 13/10 | 20 | 6,250 | 51/2 | $13 / 4$ | 97 | 30,250 |
    | ${ }_{3}^{3 / 4}$ | $1^{1 / 8}$ | 24 | 7,500 | 6 | $2^{4}$ | 113 | 36,000 |
    | $31 / 4$ | $11 / 16$ | 28 | 9,000 | $61 / 2$ | 21/8 | 13:3 | 42,250 |
    | 31/4 | 11/8 | 38 38 | 10,500 | 7 | $21 / 4$ | 153 | 49,000 |
    | $33 / 4$ | 11/4 | 45 | 12,950 | 71/2 | $21 / 2$ | 184 | 56,250 |
    | 4 | $15 / 16$ | 51 | 16,000 |  | $25 / 8$ | 211 | 64.000 |
    | $41 / 4$ | $13 / 8$ | 58 | 16,000 | 89 | $27 / 8$ | 2.36 | 72,250 |
    | 41/2 | 11/2 | 65 | 20,250 | 9 | 3 | 26: | 81,000 |

    ## Working strength of Blocks. (B. \& L. Block Co.)

    Regular Mortise-blocks Single and Wide Mortise and Extra Heary Double, or'Two Double lron. strapped Blocks, will hoist about-

    | inch. | lbs. |
    | :---: | ---: |
    | 5 | 250 |
    | 6 | 350 |
    | 7 | 600 |
    | 8 | 1,200 |
    | 9 | 2,00 |
    | 10 | 4,000 |
    | 12 | 10,000 |
    | 14 | 16,000 | Iron-strapped Blocks, will hoist abont-


    | inch. | lbs. |
    | :---: | ---: |
    | 8 | 2,000 |
    | 10 | 6,000 |
    | 12 | 12,000 |
    | 14 | 24,000 |
    | 16 | 36,000 |
    | 18 | 50,000 |
    | 20 | 90,000 |

    Where a double and triple block are used together, a certain extra proportioned amount of weight can be safely hoisted, as larger hooks are used.

    # Comparative Efficiency in Chain-blocks both in 

    Hoisting and Lowering.(Tests by Prof. R. H. Thurston, Hoisting, March, 1892.)

    |  | Work of Hoisting. Load of 2000 lbs . |  |  |  | Work of Lowering. <br> Load of 2000 lbs ., lowered ${ }^{r} \mathrm{ft}$. in each case. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\begin{gathered} \text { Waste by Friction, } \\ \text { per cent. } \end{gathered}$ |  |  | Velocity-ratio. | Exclusive of Factor of Time. |  |  |  | Inclusive ofTime. |  |
    | $\begin{aligned} & \text { ou } \\ & \text { K } \\ & 0 \\ & \text { O} \\ & \text { Z } \\ & \text { Z } \end{aligned}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & \dot{E} \\ & \text { E } \\ & E \\ & E \\ & E \\ & E \end{aligned}$ |  |
    |  | 20.50 | 79.50 | 1.00 | 32.50 | 8.00 | 227. | 1,816 | 1.00 | 0.75 | 1.000 |
    | 2 <br> 3 | . 68.00 | 32.00 | . 40 | 63.44 | 14.00 | 436. | 6.104 | 3.38 | 1.20 | 1.000 .186 |
    | 3 4 | 69.00 | 31.00 28.80 | . 39 | 3000 | 92.30 | 196. | 18,090 | 10.00 | 1.50 | . 050 |
    | 5 | 73.96 | 28.80 26.04 | . 36 | 28.00 | 92.60 | 168. | 15,556 | 8.60 | 2.50 | . 035 |
    | 6 | 75.66 | 24.34 | . 31 | 53.00 | 13.30 56.60 | 170 | 1,288 20,942 | 11.60 | 2.80 | . 380 |
    | 7 | 77.00 | 23.00 | . 29 | 44.30 | 55.00 | 310 | 20,942 | 11.60 9.40 1 | ${ }_{2}^{1.80}$ | 03 |
    | 8 | 81.03 | 18.9\% | 24 | 61.00 | 48.50 | 426. | 20,000 | 11.60 | ${ }_{3} 2.75$ | . 018 |

    No. 1 was Weston's triplex block; No. 3, Weston's differential; No. 4, Weston's imported. The others were from different makers, whose names are not given. All the blocks were of one-ton capacity.

    Proportions of Rooks.-The following formulæ are given by Henry R. Towne, in his Treatise on Cranes, as a result of an extensive experimental and mathematical investigation. They apply to hooks of capacities from 250 lbs . to $20,000 \mathrm{lbs}$. Each size of hook is made from some commercial size of round iron. The basis in each case is, therefore, the size of iron of which the hook is to be made, indicated by $A$ in the diagram. The dimension $D$ is arbitrarily assumed. The other dimensions, as given by the formulæ, are those which, while preserving a proper bearing-face on the interior of the hook for the ropes or chains which may be passed through it, give the greatest resistance to spreading and to ultimate rupture, which the amount of material in the original bar admits of. The syinbol $\Delta$ is used to indicate the nominal capacity of the hook in tons of 2000 lbs. The formulæ which determine the lines of the other parts of the hooks of the several sizes are as follows, the measurements being all expressed in inches:
    

    Fig. 164.

    $$
    \begin{array}{ll}
    D=.5 \Delta+1.25 & G=.75 D \\
    E=.64 \Delta+1.60 & O=.363 \Delta+. .66 \\
    F=.33 \Delta+.85 & Q=.64 \Delta+1.60
    \end{array}
    $$

    $$
    \begin{array}{rl}
    H=1.08 A & L=1.05 A \\
    I=1.33 A & M=.50 A \\
    J=1.20 A & N=.85 B-.16 \\
    K=1.13 A & U=.866 A
    \end{array}
    $$

    The dimensions $A$ are necessarily based upon the ordinary merchant sizes of round iron. The sizes which it has been found best to select are the
    following:
    Capacity of hook:

    | $1 / 8$ | $1 / 4$ | $1 / 2$ | 1 | $11 / 2$ | 2 | 3 | 4 | 5 | 6 | 8 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Dimension $A:$ |  | 10 tons. |  |  |  |  |  |  |  |  |
    | 5 | $11 / 16$ | $3 / 4$ | $11 / 16$ | $11 / 4$ | $13 / 8$ | $13 / 4$ | 2 | $21 / 4$ | $21 / 2$ | $27 / 8$ |
    |  |  | $31 / 4 \mathrm{in}$. |  |  |  |  |  |  |  |  |

    Experiment has shown that hooks made according to the above formula will give way first by opening of the jaw, which, however, will not occur except with a load much in excess of the nominal capacity of the hook. This yielding of the hook when overloaded becomes a sonrce of safety, as it constitutes a signal of danger which cannot easily be overlooked, and which must proceed to a considerable length before rupture will occur and the load be dropped.

    ## POWER OF HOISTING-ENGINES.

    ## Horse-power required to raise a Load at a Given

    Speed. - H.P. $=\frac{\text { Gross weight iu lbs }}{33,000} \times$ speed in ft. per min. To this add $25 \%$ to $50 \%$ for friction, contingencies, etc. The gross weight includes the weight of cage, rope, etc. In a shaft with two cages balancing each other nse the net load + weight of one rope, instead of the gross weight.To find the load which a given pair of engines will start.-Let $A=$ area of cylinder in square inches, or total area of both cylinders, if there are two; $P=$ mean effective pressure in cylinder in lbs. per sq. in.; $S=$ stroke of cylinder in inches; $C=$ circumference of hoisting-drum in inches; $L=$ load lifted by hoisting-rope in lbs.; $F=$ friction, expressed as a diminution of the load. Then $L=\frac{A P 2 S}{C}-F$.

    An example in Coll'y Engr., July, 1891, is a pair of hoisting-engines $24^{\prime \prime} \times$ $40^{\prime \prime}$, drum 12 ft. diam., average steam-pre-sure in cylinder $=59.5 \mathrm{lbs} . ; A \xlongequal{=}$ 904.8; $P=59.5 ; S=40 ; C=452.4$. Theoretical load, not allowing for friction, $A P \sim S \div C=9589 \mathrm{lbs}$. The actual load that could just be lifted on trial was 7988 lbs., making friction loss $F^{\prime}=1601 \mathrm{lbs}$., or $20+$ per cent of the actual load lifted, or $16 \% / 3 \%$ of the theoretical load.
    The above rule takes no account of the resistance due to inertia of the load, but for all ordinary cases in which the acceleration of speed of the cage is moderate, it is covered by the allowance for friction, etc. The resistance due to inertia is equal to the force required to give the load the velocity acquired in a given tine, or, as shown in Mechanics, equal to the product of the mass by the acceleration, or $R=\frac{W V}{g T}$, in which $R=$ resistance in lbs. due to inertia; $W=$ weight of load in lbs. $; V=$ maximum velocity in feet per second; $T=$ time in seconds taken to acquire the velocity $V$; $g=32.16$

    Effect of Slack Rope upon Strain in Hoisting.-A series of tests with a dybamometer are published by the Trenton Iron Co., which show that a dangerous extra strain may be caused by a few inches of slack rope In one case the cage and full tubs weighed $11,300 \mathrm{lbs}$.; the strain when the load was lifted gently was $11,525 \mathrm{lbs}$.; with 3 in . of slack chain it was 19.02 lbs , with 6 in . slack $2 . \% 50 \mathrm{lbs}$, and with 9 in . slack $2 \pi, 950 \mathrm{lbs}$.

    Limit of Depth for Hoisting.-Taking the weight of a cast-steel hoisting-rope of $11 / 8$ inches dianter at 2 lbs. per running foot, and its breaking strength at $84,000 \mathrm{lbs}$., it should, theoretically, sustain itself until 42,000 feet long before breaking from its own weight. But taking the usual factor of safety of 7, then the safe working leugth of such a rope would be only 6000 feet. If a weight of 3 tons is now lung to the rope, which is equivalent to that of a cage of moderate capacity with its loaded cars, the maximum length at which such a rope could be used, with the factor of safety of 7 , is 3000 feet, or

    $$
    2 x+6000=\frac{84,000}{7} ; \quad \therefore x=3000 \text { feet. }
    $$

    This limit may be greatly increased by using special steel rope of higher strength, by using a smaller factor of safety, and by using taper ropes. (See paper by H. A. Wheeler, Trans. A. I. M. E., xix. 107.)

    Large Hoisting Records.-At a colliery in North Derbyshire during the first week in June, 1890, 6309 tons were raised from a depth of 509 yards, the time of winding being from $7 \mathrm{a} . \mathrm{m}$. to $3.30 \mathrm{p} . \mathrm{m}$.

    At two other Derbyshire pits, 170 and 140 yards in depth, the speed of winding and changing has been brought to such perfection that tubs are drawn and changed three times in one minute. (Proc. Inst. M. E., 1890.)

    At the Nottingham Colliery near Wilkesbarre, Pa., in Oct. 1891, 70,152 tons were shipped in 24.15 days, the average hoist per day being 1318 mine cars.
    The depth of hoist was $4 \%$ feet, and all coal cante from one opening. The engines were fast motion, $22 \times 48$ inches, conical drums 4 feet 1 incli long. 7 feet diameter at small end and 9 feet at large end. (Eng'g News, Nov. 1891.)

    Pneumatic Hoisting. (H. A. Wheeler, Trans. A. I. M. E., xix. 107.)A pueumatic hoist was installed in 1866 at Epinac, France, consisting of two continuous air-tight iron cylinders extending from the boltom to the top of the shaft. Within the cyliuder moved a piston from which was hung the cage. It was operated by exhausting the air from above the piston, the lower side being open to the atmosphere. Its use vas discontinued on account of the failure of the mine. Mr. Wheeler gives a description of the system, but criticises it as not being equal on the whole to hoisting by steel ropes.
    Pneumatic hoisting-cylinders using compressed air have been used at blast-furnaces, the weighted piston counterbalancing the weight of the cage, and the two being connected by a wire rope passing over a pulley-sheave above the top of the cylinder. In the more modern furnaces steam-engine hoists are generally used.

    Counterbalancing of Winding-engines. (H. W. Hughes, Columbir Coll. Qly.)-Engines running unbalanced are subject to enormous variations in the load; for Jet $W=$ weight of cage and empty tubs, say $62 \% 0$ lbs. $; c=$ weight of coal, say $4480 \mathrm{lbs} ; \quad r=$ weight of hoisting 1ope, say 6000 lbs; $\boldsymbol{y}^{\prime \prime}=$ weight of counterbalance rope hanging down pit, say 6000 lbs. The weight to be lifted will be:

    If weight of rope is unbalanced. If weight of rope is balanced.
    At beginning of lift:
    $W+c+r-W$ or $10,480 \mathrm{lbs}$.
    At middle of lift:
    $W+c+\frac{r}{2}-\left(W+\frac{r}{2}\right)$ or $4480 \mathrm{lbs} . W+c+\frac{r}{2}+\frac{r^{\prime}}{2}-\left(W+\frac{r}{2}+\frac{r^{\prime}}{2}\right)$,
    or 4480 lbs.
    at end of lift:
    $W+c-(\dot{W}+r)$ or minus 1520 lbs .
    $W+c+r^{\prime}-(W+r)$,

    That counterbalancing materially affects the size of winding-engines is shown by a formula given by Mr. Robert Wilson, which is based on the fact that the greatest work a winding-engine has to do is to get a given mass into a certain velocity uniformly accelerated from rest, and to raise a load the distance passed over during the time this velocity is being obtained.
    Let $W=$ the weight to be set in motion: one cage, coal, number of empty tubs on cage, one winding rope from pit head-gear to bottom, and one rope from banking level to bottom.
    $v=$ greatest velocity attained, uniformly accelerated from rest;
    $g=$ gravity $=32.2 ;$
    $t=$ time in seconds during which $v$ is obtained;
    $L=$ unbalanced load on engine;
    $R=$ ratio of diameter of drum and crank circles;
    $P=$ average pressure of steam in cylinders;
    $N=$ number of cylinders;
    $S=$ space passed over by crank-pin during time $t$;
    $C=2 / 3$, constant to reduce angular space passed through by crank, to the distance passed through by the piston during the time $t$;
    $A=$ area of one cylinder, withont margin for friction. To this an addition for friction, etc., of engine is to be made, varying fioin 10 to $30 \%$ of $A$.
    1st. Where load is balanced,

    $$
    A=\frac{\left\{\left(\frac{W v^{2}}{2 g}\right)+\left(L \frac{v t}{2}\right)\right\} R}{P N S C}
    $$

    2d. Where load is unbalanced:
    The formula is the same, with the addition of another term to allow for the variation in the lengths of the asceuding and descending ropes. In this case
    $\boldsymbol{h}_{1}=$ reduced length of rope in $t$ attached to ascending cage;
    $h_{2}=$ increased length of rope in $t$ attached to descending cage;
    $\boldsymbol{w}=$ weight of rope per foot in pounds. Then

    $$
    A=\frac{\left[\left(\frac{W v^{2}}{2 g}\right)+\left\{\left(\frac{v t}{2}\right)-\frac{h_{1} w+h_{2} v}{2}\right\}\right] R}{P N S C .}
    $$

    Applying the above formula when designing new engines, Mr. Wilson found that 30 inches diameter of cylinders would produce equal results, wien balanced, to those of the 36 -incli cylinder in use, the latter being unbalanced.
    Counterbalancing may be employed in the following methods :
    (a) Tapering Rope.-At the initial stage the tapering rope enables us to wind from greater depths than is possible with ropes of uniform section. The thickness of such a rope at any point should only be such as to safely bear the load on it at that point.
    With tapering ropes we obtain a smaller difference betwcen the initial and final load, but the difference is still considerable, and for perfect equalizasion of the load we must rely on some other resource. The theory of taper ropes is to obtain a rope of miform strength, thimer at the cage end where the weight is least, and thicker at the drun end where it is greatest.
    (b) The Counterpoise System consists of a heavy chain working up and down a staple pit, the motion being obtained by means of a special small drum placed on the same axis as the winding drum. It is so arranged that the chain hangs in full length down the staple pit at the commencement of the winding; in the centre of the run the whole of the chain rests on the bottom of the pit, and, finally, at the end of the winding the counterpoise has been rewound upon the small drum, and is in the same condition as it was at the commencement
    (c) Loaded-wagon S'ystem. - A plan, formerly much employed, was to have a loaded wagon rumning on a short incline in place of this liea vy chain; the rope actuating this wagon being comected in the same manner as the above to a subsidiary drum. The incline was constructed steep at the comnencement, the inclination gradually decreasing to nothing. At the beginning of a wind the wagon was at the top of the incline, and during a portion of the run gradually passed down it till, at the meet of cages, no pull was exerted on the engine - the wagon by this time being at the bottom. In the latter part of the wind the resistance was all against the engine, owing to its having to pull the wagon up the incline, and this resistance increased from nothing at the meet of cages to its greatest quantity at the conclusiou of the lift.
    (d) The Endless-rope System is preferable to all others, if there is sufficient sump room and the shaft is free from tubes, cross timbers, aud other impediments. It consists in placing beneath the cages a tail rope, similar in diameter to the winding rope, and, after conveying this down the pit, it is attached beneath the other cage.
    (e) Flat Ropes Coiling on Reels. -This means of winding allows of a certain equalization, for the radius of the coil of lascending rope continues to increase, while that of the descending one continues to diminish. Consequently, as the resistance decreases in the ascending load the leverage ncreases, and as the power increases in the other, the leverage diminishes. The variation in the leverage is a constant quantity, and is equal to the thickness of the rope where it is wound on the drum.

    By the above means a remarkable nniformity in the load may be obtained, the only objection being the use of flat ropes, which weigh heavier and only last about two thirds the time of romnd ones.
    ( $f$ ) Conical Drums.-Results analogous to the preceding may be obtained by using round ropes coiling on conical drums, which may either be smooth, with the successive coils lying side by side, or they may be provided with a spiral groove. The objection to these forms is, that perfect equalization is not obtained with the conical drums unless the sides are very steep, and consequently there is great risk of the rope slipping ; to obviate this, scroll druns were proposed. They are, however, very expensive, and the lateral displacement of the winding rope from the centre line of pulley becomes very great, owing to their necessary large width.
    (g) The Koepe System of Winding,-An iron pulley with a single circular groove takes the place of the ordinary drum. The winding rope passes from one cage, over its head-gear pulley, round the drum, and, after pass
    ing over the other head-gear pulley, is connected with the second cage. The winding rope thus encircles about half the periphery of the drum in the same manner as a driving-belt on an ordinary pull-y. There is a balance rope beneath the cages, passing round a pulley in the sump; the arrange-m-nt may be likened to an endless rope, the two cages being simply points of attachment.

    ## CRANES.

    Classification of Cranes. (Henry R. Towne, Trans. A. S. M. E., iv. 288. Revised in Hoisting, published by The Yale \& Towne Mfg. Co.)

    A Hoist is a machine for raising and lowering weights. A Crane is a hoist with the added capacity of moving the load in a horizontal or lateral direction.
    Cranes are divided into two classes, as to their motions, viz, Rotary and Rectilinear, and into four groups, as to their source of motive power, viz.:
    Hancl. - When operated by mannal power.
    Power. - When driven by power derived from line shafting.
    Steam, Electric, Hydraulic, or Pneumatic.- When driven by an engine or motor attached to the crane, and operated by steam, electricity, water, or air transmitted to the crane from a fixed source of supply.
    Locomotive. - When the crane is provided with its own boiler or other generator of power, and is self-propelling ; usually being capable of both rotary and rectilinear motions.
    Rotary and Rectilinear Cranes are thus subdivided:

    ## Rotary Cranes.

    (1) Swing-cranes.-Having rotation, but no trolley motion.
    (2) Jib-cranes.-Having rotation, and a trolley travelling on the jib.
    (3) Column-cranes.-Identical with the jib-cranes, but rotating around a fixed column (which usually supports a floor above).
    (4) Pillar-cranes.-Having rotation only; the pillar or column being supprorted entirely from the foundation.
    (5) Pillar Jib-cranes.-Identical with the last, except in having a jib and trolley motion.
    (6) Derrick-cranes.-Identical with jib-cranes, except that the head of the mast is held in position by guy-rods, instead of by attachment to a roof or ceiling.
    (7) Wulking-cranes.-Consisting of a pillar or jib-crane mounted on wheels und arranged to travel longitudinally upon one or more rails.
    (8) Locomotive-cranes.-Consisting of a pillar crane mounted on a truck, and provided with a steam-engine capable of propelling and rotating the crane, and of hoisting and lowering the load.

    ## Rectilinear Cranes.

    (9) Bridge-cranes.-Having a fixed bridge spanning an opening, and a trolley moving across the bridge.
    (10i Tram-cranes.-Consisting of a truck, or short bridge, travelling longitudinally on overhead rails, and without trolley motion.
    (11) Travelling-cranes.-Consisting of a bridge moving longitudinally on overhead tracks, and a trolley moving transversely on the bridge.
    (12) Gantries.-Consisting of an overhead bridge, carried at each end by a trestle travelling on longitudinal tracks on the ground, and having a trolley moving transversely on the bridge.
    (13) Rotary Bridge-cranes.-Combining rotary and rectilinear movements and consisting of a bridge pivoted at one end to a central pier or post, and supported at the other end on a circular track; provided with a trolley moving transversely on the bridge.
    For descriptions of these several forms of cranes see Towne's "Treatise on Cranes."
    Stresses in Cranes.-See Stresses in Framed Structures, p. 440, ante.
    position of the Inclimed Brace in a Jib-crane. The most jib at a distance from the mast equal to four fifths the effective radius of the crane. (Hoisting.)
    A Large Travelling-crane, designed and built by the Morgan Engineering Co., Alliance, U., for the 12 -inch-gun shop at the Washington Navy Yard, is described in American Machinist, June 12, 1890. Capacity, 150 net tons; distance between centres of inside rails, 59 ft .6 in.; maximum cross travel, 44 ft . 2 in ; ; effective lift, 40 ft .; four speeds for main hoist, $1,2$.

    4, and 8 ft . per min.; loads for these speeds. $150,75,3 i 1 / 2$, and $183 / 4$ tons respectively; traversing speeds of trolley on bridge, 25 and 50 ft . per minnte; speeds of bridge on main track, 30 and 60 ft . per minute. Square shafts are employed for driving.

    A 150 -ton Pillarecrane was erected in 1893 on Finnieston Quay, Glasgow. The jih is formed of two steel tubes, each 39 in . diam. and 90 ft . long. The radius of sweep for heavy lifts is 65 ft . The jib and its load are counterbalanced by a balance-box weighted with 100 tons of iron and steel punchings. In a test a 130 -ton load was lifted at the rate of 4 ft . per minute, and a complete revolution made with this load in 5 minutes. Eng'g News, July $\because 0,1893$.

    Compressed-air Travelling-cranes.-Compressed-air overhead travelling-cranes have been built by the Lane \& Bodley Co., of Cincinnati. They are of 20 tons nominal capacity, each about 50 ft . span and 400 ft . length of travel, and are of the triple-motor type, a pair of simple reversing-engines being used for each of the necessary operations, the pair of engines for the bridge and the pair for the trolley travel being each 5 -inch bore by $\tau$-inch stroke, while the pair for hoisting is 7-inch bore by 9 -inch stroke. Air is furnished by a compressor having steam and air cylinders each $10-\mathrm{in}$. diam. and 12 -in. stroke, which with a boiler-pressure of about 80 pounds gives an airpressure when required of somewhat over 100 pounds. The air-compressor is allowed to run continuously without a governor, the speed being regulated by the resistance of the air in a receiver. From a pipe extending from the receiver along one of the supporting trusses communication is continuously naintained with an auxiliary receiver on each traveller by means of a oneinch hose, the object of the auxiliary receiver being to provide a supply of air near the engines for immediate demands and independent of the liose connection, which may thus be of small dimension. Some of the advantages said to be possessed by this type of crane are: simplicity; absence of all moving parts, excepting those required for a particular motion when that motion is in use; no danger from fire, leakage, electric shocks, or freezing; ease of repair; variable speeds and reversal without gearing; almost entire absence of noise; and moderate cost.

    Quay-cranes.-An illustrated description of several varieties of statiollary and travelling cranes, with results of experiments, is given in a paper on Quay-cranes in the Port of Hamburg by Chas. Nehls, Trans. A. S. C. E., Chicago Meeting. 1893.

    Hydraulic Cranes, Accumulators, ete.-See Hydraulic Press. ure Transmission, page 616, ante.

    Clectric Cranes.-Travelling-cranes driven by electric motors have largely supplanted cranes driven by square shafts or flying-ropes. Each of the three motions, viz., longitudinal, traversing and hoisting, is usually accomplished by a separate motor carried upon the crane.

    ## COAL-HIANDLING MACHINERY.

    The following notes and tables are supplied by the Link-Belt Engineering Co. of Philadelphia, Pa.:

    In large boiler-houses coal is usually delivered from h>pper-cars into a track-hopper, about 10 feet wide, and I'2 to 16 feet long. A feeder set under the track-hopper feeds the coal at a regular rate to a crusher, which reduces it to a size suitable for stokers.

    After crushing, the coal is elevated or conveyed to overhead storage-bins. Overhead storage is preferred for several reasons:

    1. To avoid expensive wheeling of coal in case of a breakdown of the coal-handling machinery.
    2. To avoid running the coal-handling machinery continuously.
    3. Coal kept under cover indoors will not freeze in winter and clog the supply-spouts to the boilers.
    4. It is often cheaper to store overhead than to use valuable groundspace adjacent to the boiler-house.
    5. As distinguished from vault or outside hopper storage, it is cheaper to build steel bins and supports than masonry pits.

    Weight of Overhead Bins. - Steel bins of approximately rectangular cross-section, say $10 \times 10$ feet, will weigh, exclusive of supports, about one-sixth as much as the contained coal. Larger bins, witl sloping bottoms, may weigh one-eighth as much as the coutained coal. Bag botiom bins of the Berquist type will weigh about one-twelfth as much as the contained coal, not including posts, and about one-ninth as much, including posts.

    Supply-pipes from Bins. -The supply-pipes from overhead bins to the boiler-room floor, or to the stoker-hoppers, shouid not be less than 12 inches in diameter. They should be fitted at the top with a flanged casting and a cut-off gate, to permit removal of the pipe when the boilers are to be cleaned or repaired.

    Types of Coal Elevators.-Coal elevators consist of buckets of various shapes attached to one or more strands of link-belting or chain, or to rubber belting. The buckets may either be attached continuously or at intervals. The various types are as follows:

    Continuous bucket elevators consist usually of one strand of chain and two sprocket-wheels with buckets attached continuously to the chain. Each bucket after passing the head wheel acts as a chute to direct the flow from the next bucket. This type of elevator will handle the larger sizes of coal. It runs at slow speeds, usually from 90 to 175 feet per minute, and has a maximum capacity of about 120 tons per hour.

    Centrifugal discharge elevators consist usually of a single strand of chain, with the buckets attached thereto at intervals. They are used to handle the smaller sizes of coal in small quantities. They run at high speeds, usually 34 to 40 revolutions of the head wheel per minute, and have a canacity up to 40 tons per hour.

    Perfect discharge elevators consist of two strands of chain, with buckets at intervals between them. A pair of idlers sct under the head wheels cause the buckets to be completcly inverted, and to make a clean delivery into the chutes at the elevator head. This type of elevator is useful in handling material which tends to cling to the buckets. It runs at slow speeds, usually less than 150 feet per minute. The capacity depends on the size of the buckets.

    Combined Elevators and Conveyors are of the following types:
    Gravity discharge elevators, consisting of two strands of chain, with spaced $V$-shaped buckets fastened between them. After passing the head wheels the buckets act as conveyor-flights and convey the coal in a trough to any desired point. This is the cheapest type of combined elevator and conveyor, and is economical of power. A machine carrying 100 tons of coal per hour, in buckets 20 inches wide, 10 inches deep, and 24 inches long, spaced 3 feet apart, reguires 5 H.P. when loaded and $11 / 2 \mathrm{H} . \mathrm{P}$. when empty for each 100 feet of horizontal run, and $1 / 9$ H.P. for each foot of vertical lift.

    Rigid bucket-carriers consist of two strands of chain with a special bucket rigidly fastened between them. The buckets overlap and are so shaped that they will carry coal around three sides of a rectangle. The coal is carried to any desired point and is discharged by completely inverting the bucket over a turn-wheel.

    Pivoted bucket-carriers consist of two strands of long pitch steel chain to which are attached, in a piyotal manner, large malleable iron or steel buckets so arranged that their adjacent lins are close together or overlap. Overlapping buckets require special devices for changing the lap at the corner turns. Carriers in which the buckets do not overlap should be fitted with auxiliary pans or buckets, arranged in such a manner as to catch the spill which falls between the lips at the loading point, and so shaped as to return the spill to the buckets at the corner turns. Pivoted bucket carriers will carry coal around four sides of a rectangle, the buckets being dumped on the horizontal run by striking a cam suitably placed. Carriers of this-type are economical of power, but are costly and of relatively low capacity.

    Coal Conveyors.- Coal conveyors are of four general types, viz., scraper or flight, bucket, screw, and belt conveyors.

    The fight conveyor consists of a trough of any desired cross-section and a single or double strand of chain carrying scrapers or flights of approximately the same shape as the trough. The flights push the coal ahead of them in the trough to any desired point, where it is discharged through openings in the bottom of the trough.

    For short, low-capacity conveyors, malleable link hook-joint chains are used. For heavier service, malleable pin-joint chains, steel link chains,
    or monobar, are required For the heaviest service, two strands of steel link chain, usually with rollers, are used.

    Flight conveyors are of three types: plain scraper, suspended flight, and roller flight

    In the plain scraper conveyor, the flight is suspended from the chain and drags along the bottom of the trough. It is of low first cost and is useful where noise of operation is not objectionable. It has a maximum capacity of about 30 tons per hour, and requires more power than either of the other two types of flight conveyors.

    Suspended fight conveyors use one or two strands of chain. The flights are attached to cross-bars having wearing-shoes at each end. These wear-ing-shoes slide on angle-iron tracks on each side of the conveyor trough. The flights do not touch the trough at any point. This type of conveyor is used where quietness of operation is a consideration. It is of higher first cost than the plain scraper conveyor, but requires one-fourth less power for operation. It is economical up to a capacity of about 80 tons per hour.

    The roller flight conveyor is similar to the suspended flight, except that the wearing-shoes are replaced by rollers. It is lighest in first cost of all the flight conveyors, but has the advantages of low power consumption (one-half that of the scraper), low stress in chain, long life of chain, trough, and flights, and noiseless operation. It has an economical maximum capacity of about 120 tons per hour.

    The following formula gives approximately the horse-power at the head wheel required to operate flight convevors:

    $$
    \mathrm{H} . \mathrm{P} .=(A T L+B W S) \div 1000
    $$

    $T=$ tons of coal per hour; $L_{J}=$ length of convevor in feet, centre to centre; $W=$ weight of chain, flights, and shoes (both runs) in pounds: $S=$ speed in feet per minute; $A$ and $B$ constants depending on angle of incline from horizontal. See example below.

    ## Values of and B .

    | Angle, <br> Deg. | $A$ | $B$ | Angle, <br> Deg. | $A$ | $B$ | Angle, <br> Deg. | $A$ | $B$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 0 | .343 | -.01 | 10 | .50 | .01 | 30 | .79 | .009 |
    | 2 | .378 | .01 | 14 | .57 | .01 | 34 | .84 | .008 |
    | 4 | .40 | .01 | 18 | .63 | .009 | 38 | .88 | .008 |
    | 6 | .44 | .01 | 22 | .69 | .009 | 42 | .92 | .007 |
    | 8 | .47 | .01 | 26 | .74 | .009 | 46 | .95 | .007 |

    For suspended flight conveyors take $B$ as 0.8 , and for roller flights as 0.6 , of the values given in the table.

    Weight of Chain in Pounds per Foot.

    | Link-belting. |  |  |  |  | Monobar. |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & \text { Chain } \\ & \text { No. } \end{aligned}$ | Pitch of Flights, Inches. |  |  |  | $\begin{aligned} & \text { Chain } \\ & \text { No.* } \end{aligned}$ | Pitch of Flights, Inches. |  |  |  |  |  |  |
    |  | 12 | 18 | 24 | 36 |  | 12 | 18 | 24 | 36 | 48 | 54 | 72 |
    | 78 | 2.4 | 2.3 | 2.26 | 2.2 | 612 | 3.9 |  | 3.6 | 3.5 |  |  |  |
    | 88 | 2.8 | ${ }_{2} .7$ |  | 2.5 | 618 |  | 3.0 |  | 2.8 |  | 2.7 |  |
    | 85 | 3.1 | 2.8 | 2.7 | 2.6 | 818 |  | 5.7 |  | 5.5 |  | 5.3 |  |
    | 103 | 4.6 | 4.4 | 4.3 | 4.2 | 824 |  |  | 4.9 |  | 4.7 |  | 4.6 |
    | 108 | 4.9 | 4.7 | 4.4 | 4.1 | 1018 |  | 11.5 |  | 10.7 |  | 10.4 |  |
    | 110 | 5.6 | 5.2 | 4.9 | 4.71 | 1024 |  |  | 9.6 |  | 9.07 |  | 8.8 |
    | 114 | 6.3 | 6. 0 | 5.9 | 5.7 | 1224 |  |  | 14.7 |  | 14.04 |  | 13.8 |
    | 122 | 8.1 | 7.7 | 7.4 | 7.2 | 1236 |  |  |  | 11.8 |  |  | 11.34 |
    | 124 | 8.9 | S. 4 | 8.2 | 7.9 | 1424 |  |  | 20.5 |  | 19.7 |  | 19.4 |

    Pin Chains.

    | No. | Pitch of Flights, Inches. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 12 | 18 | 24 | 36 |
    | 720 | 5.9 | 5.6 | 5.4 | 5.3 |
    | 730 | 6.9 | 6.6 | 6.4 | 6.3 |
    | 825 | 9.6 | 9.3 |  | 8.9 |

    Roller Chains.

    Pitch of Flights, Inches.
    No.

    |  | 12 | 18 | 24 | 36 |  |  |  |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
    | 1112 | 7.7 | 6.9 | 6.2 | 5.7 |  |  |  |
    | 1113 | 9.5 | 8.8 | 8.0 | 7.5 |  |  |  |
    | 1130 | 10.5 | 9.5 | 9.0 | 7.8 |  |  |  |

    Weight of Flights with Wearing-shoes and Holts.

    | Size, Inches. | Steel. | Malleable Iron. | Suspended Flights. |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | Size. | Weight, Lbs. |
    | $4 \times 10$ | 3.5 | 4.3 | $6 \times 14$ | 12.37 |
    | 4 $\times 12$ | 3.9 | 4.7 | $8 \times 19$ $10 \times 24$ | 15.55 |
    | $5 \times 12$ | 4.6 | 5.7 | 10× 10 | 29.37 |
    | $5 \times 15$ | 5.8 | 5.9 | $10 \times 36$ | 33.17 |
    | $6 \times 18$ | 8.1 | 9.2 | $10 \times 42$ | 34.97 |
    | $8 \times 18$ | 10.1 | 12.7 |  |  |
    | $8 \times 20$ | 11.0 | 13.4 |  |  |
    | $8 \times 24$ $10 \times 24$ | 12.6 | 14.4 |  |  |
    | $10 \times 24$ | 15.2 | 17.4 |  |  |

    Example. - Required the H.P. for a monobar conveyor 200 ft . centre to centre, carrying 100 tons of coal per hour, up a $10^{\circ}$ incline at a speed of 100 feet per minute. Conveyor has No. 818 chain and $8 \times 19$ suspended flights, spaced 18 inches apart.

    $$
    \text { H.P. }=\frac{.5 \times 100 \times 200+.008(400 \times 5.7+267 \times 15.55) \times 100}{1000}=15.15
    $$

    The following table shows the conveying capacities of various sizes of flights at 100 feet per minute in tons of 2000 lbs . per hour. The values are true for continuous feed only.

    | $\begin{gathered} \text { Size } \\ \text { of } \\ \text { Flight. } \end{gathered}$ | Horizontal Conveyors. |  |  |  | Inclined Conveyors. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Flight Every $16^{\prime \prime}$. | Flight <br> Every $18^{\prime \prime}$ | Flight Every $24^{\prime \prime}$ | Pounds Coal per Flight. | $\begin{aligned} & 10^{\circ} \\ & \text { Flights } \\ & \text { Every } \\ & 24^{\prime \prime} \end{aligned}$ | $\stackrel{20^{\circ}}{\text { Flights }}$ Every <br> $24^{\prime \prime}$. | $30^{\circ}$ Flights Every $24^{\prime \prime}$. |
    | $6 \times 14$ | Tous. 69.75 | Tons. 62 | Tons. 46.5 | 31 | $\begin{aligned} & \text { Tons. } \\ & 40.5 \end{aligned}$ | Tons. 31.5 | Tons. 22.5 |
    | $8 \times 19$ |  | 130 | 97.5 | 65 | 78 | 62 | 52 |
    | $10 \times 24$ |  |  | 172.5 | 115 | 150 | 120 | 90 |
    | $10 \times 30$ |  |  | 220 | 147 | 184 | 146 | 116 |
    | $10 \times 36$ |  |  | 268 | 179 | 225 | 177 | 142 |
    | $10 \times 42$ |  |  | 315 | 210 | 264 | 210 | 167 |

    Bucket Conveyors.-Rigid bucket-carriers are used to convey large quantities of coal over a considerable distance when there is no intermediate point of discharge. These conveyors are made with two strands of stcel roller chain. They are built to carry as much as 10 tons of coal per minutc.

    Screw Conveyors. -Screw conveyors consist of a helical steel flight, either in one piece or in sections, mounted on a pipe or shaft, and running in a steel or wooden trough. These conveyors are made from 4 to 18 inches in diameter, and in sections 8 to 12 feet long. The speed ranges from 20 to 60 revolutions per minute and the capacity from 10 to 30 tons of coal per hour. It is not advisable to use this type of conveyor for coal, as it will only handle the smaller sizes and the flights are very easily clamaged by any foreign substance of unusual size or shape.

    Uelt Conveyors.-Rubber or cotton belt conveyors are used for handling coal, grain, sand, or other finely divided material. They combine a high carrying capacity with low power consumption, but are rela. tively high in first cost.

    In some cases the belt is flat, the material being fed to the belt at it centre in a narrow stream. In the majority of cases, however, the bel ; is troughed by means of idler pulleys set at an angle from the horizontal and placed at intervals along the length of the belt. Rubber belts are very often made more flexible for deep troughing by removing some of the layers of cotton from the belt and substituting therefor an extra thick.. ness of rubber.

    Belt conveyors may be used for elevating materials up to about $23^{\circ}$ incline. On greater inclines the material slides back on the belt and spills. With many substances it is important to feed the belt steadily if the conveyor stands at or near the limiting angle. If the flow is interrupted the material may slide back on the belt.

    Belt conveyors are run at any speed from 200 to 800 feet per minute, and are made in widths varying from 12 inches to 60 inches.
    Capacity of Belt Conveyors in Tons of Coal per Hour.

    | Width | Velocity of Belt, Feet per Minute. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Ins. | 300 | 350 | 400 | 450 | 500 | 550 | 600 |
    | 12 | 27 | 31.5 | 36 | 40.5 | 45 | 49.5 | 54 |
    | 14 | 36.7 | 42.8 | 49 | 55.2 | 61.3 | 67.4 | 73.6 |
    | 16 | 48 | 56 | 64 | 72 | S0 | 88 | 96 |
    | 18 | 60.7 | 70.8 | 81 | 91.2 | 101 | 111 | 135 |
    | 20 | 75 | 87.5 | 100 | 112.5 | 125 | 137.5 | 150 |
    | 24 | 108 | 126 | 144 | 162 | 180 | 198 | 216 |
    | 30 | 168.7 | 197 | 225 | 253 | 281 | 307 | 338 |
    | 36 | 243 | 283 | 324 | 365 | 405 | 446 | 486 |

    For materials other than coal, the figures in the above table should be multiplied by the coefficients given in the table below:

    | Material. | Coefficient. | Material. | Coefficient. |
    | :---: | :---: | :---: | :---: |
    | Ashes (damp). | 0.86 | Earth. | 1.4 |
    | Cement. | 1.76 | Sand. | 1.8 |
    | Clay. | 1.26 0.60 | Stone (crushed). | 2.0 |

    Carryingrbands or Belts, used for the purpose of sorting coal and removing impurities, are sometimes made of ar endless length of wovell wire, or of two or three endless chains, carrying steel plates varying in width from 6 inches to 14 inches. (Proc. Inst. M. E., July, 1890.)

    Grain-elevators.-American Grain-elevators are described in a paper by E Lee Heidenreich, read at the International Engineering Congress at Chicago (Trans. A. S. C. E., 1S93). See also Trans. A. S. M. E., vii, 660.

    ## WHRE-ROPE HAULAGE.

    Methods for transporting coal and other products by means of wire rope, though varying from earh other in detail, may be grouped in five classes:
    I. The Self-acting or Gravity Inclined Plane.
    II. The Simple Engine-plane.

    ## III. The Tail-rope System. <br> IV. The Endless-rope System <br> V. The Cable Tramway.

    The following brief description of these systems is abridged from a pamphlet on Wire-rope Haulage, by Wm. Hildenbrand, C.E., published by John A. Roebling's Sons Co., Trenton, N. J.

    ## H. The Selfacting Inclined Plane.-The motive power for the self-acting incliued plane is gravity; consequently this mode of transport-

    ing coal finds application only in places where the coal is conveyed from a higher to a lower point and where the plane has sufficient grade for the loaded descending cars to raise the empty cars to an upper level.At the head of the plane there is a drum, which is generally constructed of wood, having a diameter of seven to ten feet. It is placed high enough to allow men and cars to pass under it. Loaded cars coming from the pit are either singly or in sets of two or three switched on the track of the plane, and their speed in descending is regulated by a brake on the drum.
    Supporting rollers, to prevent the rope dragging on the ground, are generally of wood, 5 to 6 inches in diameter and 18 to 24 inches long, with $8 /-$ to $7 / 8$-inch iron axles. The distance between the rollers varies from 15 to 30 feet, steeper planes requiring less rollers than those with easy grades. Considering only the reduction of friction and what is best for the preservation of rope, a general rule may be given to use rollers of the greatest possible diameter, and to place them as close as economy will permit.

    The smallest angle of inclination at which a plane can be made self-acting will be when the motive and resisting forces balance each other. The motive forces are the weights of the loaded car and of the descending rope. The resisting forces consist of the weight of the empty car aud ascending rope, of the rolling and axle friction of the cars, and of the axle friction of the supporting rollers. The friction of the drum, stiffness of rope, and resistance of air may be neglected. A general rule cannot be given, because A change in the length of the plane or in the weight of the cars changes the proportion of the forces; also, because the coefficient of friction, depending on the condition of the road, construction of the cars, etc., is a very uncer-
    tain factor.

    For working a plane with a $5 / 8$-inch steel rope and lowering from one to four pit cars weighing empty 1400 lbs . and loaded 4000 lbs ., the rise in 100 feet necessary to make the plane self-acting will be from about 5 to 10 feet, decreasing as the number of cars increase, and increasing as the length of plane increases.
    A gravits inclined plane should be slightly concave, steeper at the top than at the bottom. The maximum deflection of the curve should be at an inclination of 45 degrees, and diminish for smaller as well as for steeper inclinations.

    1. The Simple Engine-plane.-The name "Engine-plane" is given to a plane on which a load is raised or lowered by means of a single wire rope and stationary steam-engine. It is a cheap and simple method of conveying coal underground, and therefore is applied wherever circumstances permit it.
    Under ordinary conditions such as prevail in the Pennsylvania mine region, a train of twenty-five to thirty loaded cars will descend, with reasonable velocity, a straight plane 5000 feet long on a grade of $13 / 4$ feet in 100 , while it would appear that $21 / 4$ feet in 100 is necessary for the same number of empty cars. For roads longer than 5000 feet, or when containing sharp curves, the grade should be correspondingly larger.

    1HI. The Tail-rope System.-Of all methods for conveying coal underground by wire rope, the tail-rope system has found the most application. It can be applied under almost any condition. The road may be straight er curved, level or undulating, in one continuous line or with side branshes. In general principle a tail-rope plane is the same as an engineplane wo:ked in both directions with two ropes. One rope, called the " main rope," serves for drawing the set of full cars outward; the other, called the "tail-rope," is necessary to take back the empty set, which on a level or undulating road cannot return by gravity. The two drums may be located at the opposite ends of the road, and driven by separate engines, but more frequently they are on the same shaft at one end of the plane. In the first case each rope would require the length of the plane, but in the second case the tail rope must be twice as long, being led from the drum around a sheave at the other end of the plane and back again to its starting-
    point. When the main rope draws a set of full cars out, the tail-rope drum runs loose on the shaft, and the rope, being attached to the rear car, unwinds itself steadily. Going in, the reverse takes place. Each drum is provided with a brake to check the speed ot the train on a down grade and prevent its overrunning the forward rope. As a rule, the tail rope is strained less than the main rope, but in cases of heavy grades dipping outward it is possible that the strain in the former may become as large, or even larger, than in the latter, and in the selection of the sizes reference should be had to this circumstance.
    IV. The Endless-rope System.-The principal features of this system are as follows:

    1. The rope, as the name indicates, is endless.
    2. Motion is given to the rope by a single wheel or drum, and friction is obtained either by a grip-wheel or by passing the rope several times around the wheel.
    3. The rope must be kept constantly tight, the tension to be produced by artificial means. It is done in placing either the return-wheel or an extra tension wheel on a carriage and comecting it with a weight hanging over a pulley, or attaching it to a fixed post by a screw which occasionally can be shortened.
    4. The cars are attached to the rope by a grip or clutch, which can take hold at any place and let go again, starting and stopping the train at will, without stopping the engine or the motion of the rope.
    5. On a single-track road the rope works forward and backward, but on a double track it is possible to run it always in the same direction, the full cars going on one track and the empty cars on the other.

    This method of conveying coal, as a rule, has not found as general an introduction as the tail-rope system, probably because its efficacy is not so apparent and the opposing difficulties require greater mechanical skill and more complicated appliances. Its advantages are, first, that it requires one third less rope than the tail-rope system. This advantage, however, is partially comterbalanced by the circumstance that the extra tension iu the rope requires a heavier size to move the same load than when a main and tail rope are used. The second and principal advantage is that it is possible to start and stop trains at will without signalling to the engineer. On the other hand, it is more difficult to work curves with the endless system, and still more so to work different branches, and the constant stretch of the rope under tension or its elongation under changes of temperature frequently causes the rope to slip on the wheel, in spite of every attention, cansing delay in the transportation and injury to the rope.
    V. Wire-rope Tranuways.-The methods of conveying products on a suspended rope tramway find especial application in places where a mine is located on one side of a river or deep ravine and the loading station on the other. A wire rope suspended between the two stations forms the track on which material in properly constructed "carriages " or "buggies" is transported. It saves the construction of a bridge or trestlework, and is practical for a distance of 2000 feet without an intermediate support.

    There are two distinct classes of rope tramways:

    1. The rope is stationary, forming the track on which a bucket holding the material moves forward and backward, pulled by a smaller endless wire rope.
    2. The rope is movable, forming itself an endless line, which serves at the same time as supporting track and as pulling rope.

    Of these two the first method has found more general application, and is especially adapted for long spans, steep inclinations, and heavy loads. The second method is used for long distances, divided into short spans, and is only applicable for light loads which are to be delivered at regular intervals.

    For detailed descriptions of the several systems of wire-rope transportation, see circulars of John A. Roebling's Sons Co., The Trenton Iron Co., and other wire-rope manufacturers. See also paper on Two-rope Haulage Systems, by R. Van A. Norris, Trans. A. S. M. E., xii. $6: 6$.

    In the Bleichert System of wire-rope tramways, in which the track rope is stationary, loads of 1000 pounds each and upward are carried. While the average spans on a level are from 150 to 200 feet, in crossing rivers, ravines, etc., spans up to 1500 feet are frequently adopted. In a tramway on this system at Granite, Montana, the total length of the line is 9750 feet, with a fall of 1225 feet. The descending loads, amounting to a constant weight of about 11 tons, develop over 14 horse-power, which is sufficient to hau' 'ne empty buckets as well as about 50 tons of supplies per day up the line, and
    also to run the ore crusher and elevator. It is capable of delivering 250 tons of material in 10 hours.

    ## Suspension Cableways or Cable Hoist-conveyors.

    (Trenton Iron Co.)
    In quarrying, rock-cutting, stripping, piling, dam-building, aud many other operations where it is necessary to hoist and convey large individual loads economically, it frequently happens that the application of a system of derricks is impracticable, by reason of the limited area of their efficiency and the room which they occupy.
    To meet such conditions cable hoist-conveyors are adapted, as they can be operated in clear spans up to 1500 feet, and in lifting individual loads up to 15 tons. Two types are made-one in which the hoisting and conveying are done by separate running ropes, and the other applicable only to inclines, in which the carriage descends by gravity, and but one running rope is required. The moving of the carriage in the former is effected by means of an endless rope, and these are commonly known as "endless-rope" hoist. conveyors to distinguish them from the latter", which are termed "inclined" hoist-conveyors.
    The general arrangement of the eadless-rope hoist-conveyors consists of a main cable passing over towers, A frames or masts, as may be most convenient, and anchored firmly to the ground at each end, the requisite tension in the cable being maintained by a turnbuckle at one anchorage.

    Upon this cable travels the carriage, which is moved back and forth over the line by means of the endless rope. The hoisting is done by a separate rope, both ropes being operated by an engiue specially designed for the purpose, which may be located at either end of the line, and is constructed in such a way that the hoisting-rope is coiled up or paid out automatically as the carriage is moved in and out. Loads may be picked up or discharg+d at any point along the line. Where sufficient inclination can be obtained in the main cable for the carriage to descend by gravity, and the loading and unloading is done at fixed points, the endless rope can be dispensed with. The carriage, which is similar in construction to the carriage used in the endless-rope cableways, is arrested in its descent by a stop-block, which may be clamped to the main cable at any desired point, the speed of the descending carriage being under control of a brake on the engine-drum.

    Stress in Hoistingeropes on Inclined Planes. (Trenton Iron Co.)

    |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | ${ }_{5}^{\mathrm{ft} .}$ | $2^{\circ} 52^{\prime}$ | 140 | $\begin{aligned} & \mathrm{ft} . \\ & 55 \end{aligned}$ |  |  | 110 |  |  |
    | 10 | $5^{\circ} 43^{\prime}$ | 240 | 60 | $30^{\circ} 58^{\prime}$ | 1003 | 110 | $47^{\circ} 44^{\prime}$ | 1516 |
    | 15 | $8^{\circ} 32^{\prime}$ | 336 | 65 | $33^{\circ} 02^{\prime}$ | 1128 | 130 | $50^{\circ} 12^{\prime}$ | 1573 |
    | 20 | $11^{\circ} 10^{\prime}$ | 432 | 70 | $35^{\circ} 00^{\prime}$ | 1185 | 140 |  | 1620 |
    | 25 | $14^{\circ} 003^{\prime}$ | 527 | 75 | $36^{\circ} 53{ }^{\prime}$ | 1238 | 150 | $56^{\circ}{ }^{\circ} 19^{\prime}$ | 1663 |
    | 30 | $16^{\circ} 43^{\prime}$ | 613 | 80 | $38^{\circ} 40^{\prime}$ | 1287 | 160 | ${ }_{58}{ }^{\circ} 100^{\prime}$ | 1699 1730 |
    | 35 | ${ }^{19} 9^{\circ} 18^{\prime}$ | 700 | 85 | $40^{\circ} 22^{\prime}$ | 1332 | 160 | $58^{\circ} 0^{0} 00^{\prime}$ $59^{\circ}$ 3 | 1730 |
    |  | $21^{\circ} 49^{\prime}$ | $78 \cdot$ | 90 | $42^{\circ} 00^{\prime}$ | 1375 | 180 | $60^{60^{\circ}} 5{ }^{\circ}$ | 1758 |
    | 45 50 | $214^{\circ} 14^{\prime}$ $266^{\circ} 3$ | 860 | 95 | $43^{\circ} 3 y^{\prime}$ | 1415 | 190 | $6: 2^{\circ} 15^{\prime}$ | 1801 |
    | 50 | $26^{\circ} 34^{\prime}$ | $9: 33$ | 100 | $45^{\circ} 00^{\prime}$ | 1450 | 200 | $63^{\circ} 2{ }^{\prime}$ | 182\% |

    The above table is based on an allowance of 40 lbs . per ton for rolling friction, but an additional allowance must be made for stress due to the weight of the rope proportional to the length of the plane. A factor of safety of 5 to 7 should be taken.
    In hoisting the slack-rope should be taken up gently before beginning the lift, otherwise a severe extra strain will be brought on the rope.
    A Double-suspension Cableway, carrying loads of 15 tons, erected near Williamsport, Pa., by the Trenton Iron Co., is described by E. G. Spilsbury in Traus. A. I. M. E. xx. 666 . The span is 733 feet, crossing the Susquehanna River. Two steel cables, each 2 in. diam., are used. On these cables runs a carriage supported on four wheels and moved by an endless cable 1 inch in diam. The load consists of a cage carrying $e$ railroad-car loaded with lum.
    ber, the latter weighing about 12 tons. The power is furnished by a $50-\mathrm{H} . \mathrm{P}$. engine, and the trip across the river is made in about three minutes.

    A hoisting cableway on the endless-rope system, erected by the Lidgerwood Mfg. Co., at the Austin Dam, Texas, had a single span 1350 ft . in length, with main cable $21 / 2 \mathrm{in}$. diam., a'd hoisting-rope $13 / 4 \mathrm{in}$. diam. Loads of 7 to 8 tons were haudled at a speed of 500 to 800 ft . per minute.

    Another, of still longer span, 1650 ft ., was erected by the same company at Holyoke, Mass., for use in the construction of a dain. The main cable is the Elliott or locked wire cable, having a smooth exterior. In the construction of the Chicago Drainage Canal twenty cableways, of roo ft . span and 8 tons canacity, were used, the towers travelling on rails.

    Tension required to Prevent Slipping of R ope on Drum. (Trenton Iron Co.)-The amount of artificial tension to be applied in an endless rope to prevent slipping on the driving-drum depends on the character of the drum, the condition of the rope and number of laps which it makes. If $T$ and $S$ represer $t$ respectively the tensious in the taut and slack lines of the rope; $W$, the necessary weight to be applied to the tail-sheave; $R$, the resistance of the cars and rope, allowing for friction; $n$, the number of half-laps of the rope on the driving-drum; and $f$, the coefficient of friction, the following relations must exist to prevent slipping:

    $$
    \begin{aligned}
    & \qquad T=S e^{f n \pi}, \quad W=T+S \text {, and } R=T-S ; \\
    & \text { from which we obtain } \quad W=\frac{e^{f n \pi}+1}{e^{f n \pi}-1} R,
    \end{aligned}
    $$

    in which $e=2.71828$, the base of the Naperian system of logarithms. The following are some of the values of $f$ :

    | Wire-1rope on a grooved iron drum....... | Dry. | Wet. | Greasy. | .085 |
    | :--- | :--- | :---: | :---: | :---: |
    | Wire-rope on wood-filled sheaves..... | 235 | .170 | .140 |  |
    | Wire-rope on rubber and leather filling.. | .495 | .400 | .205 |  |

    The importance of keeping the rope dry is evident from these figures.
    The values of the coeffcient $\frac{e^{f n \pi}+1}{e^{f n \pi}-1}$, corresponding to the above values
    of $f$, for one up to six half-laps of the rope on the driving-drum or sheaves,
    are as follows: are as follows:

    | $f$ | $n=$ Number of IIalf-laps on Driving-wheel. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1 | 2 | 3 | 4 | 5 | 6 |
    | . 0.0 | 9.130 | 4.6:3 | 3.111 | 2.418 | 1.999 | 1.729 |
    | . 085 | 7.536 | 3.883 | 2.699 | $2.04 \%$ | 1.714 | 1.505 |
    | . 120 | 5.345 | 2.6TH | 1.953 | 1.510 | 1.358 | 1.232 |
    | . 140 | 4.623 | $\stackrel{2}{2} .418$ | 1.79 | 1.416 | 1.249 | 1.154 |
    | . 170 | 3.833 | 2.047 | 1.505 | 1.268 | 1.149 | 1.085 |
    | . 205 | 3.212 | 1.769 | 1.838 | 1.165 | 1.08:3 | 1.043 |
    | . 235 | 2.831 | 1.59 ? | 1.24. | 1.110 | 1.051 | 1.024 |
    | . 400 | 1.795 | 1.116 | 1.04 \% | 1.013 | 1.004 | 1.001 |
    | . 495 | 1.538 | 1.093 | 1.019 | 1.004 | 1.001 |  |

    When the rope is at rest the tension is distributed equally on the two lines of the rope, but when rumning there will be a difference in the tensions of the tant and slack lines equal to the resistance, and the values of 7 ' and $S$ may be readily computed from the foregoing formulæ.

    Taper Ropes of Uniform Tensife Strength. -The true form of rope is not a regular taper but follows a logarithmic curve, the girth rapidly increasing toward the upper end. Mr. Chas. D. West gives the following formula, based on a breaking strain of $80,000 \mathrm{lbs}$. per sq. in. of the rope, core included, and a factor of safety of $10: \log G=F / 3680+\log g$, in which $F=$ length in fathoms, and $G$ and $g$ the girth in inches at any two sections $F$ fathoms apart. The girth $g$ is first calculated for a safe strain of 8000 lbs . per sq. in., and then $f$ is obtained by the formula. For a mathematical investigation see The Engineer, April, 1850, p. 267.

    ## TRANSMISSION OF POWER BY WIRE ROPE.

    Tha foliowing notes have been furnished to the author by Mr. Wm Hewitt, Vice-President of the Trenton Iron Co. (See also circulars of the Trenton Iron Co. and of the Johu A. Roebling's Snus Co., Trenton. N. J : "Transmission of Power by Wire Ropes," by A. W. Stahl, Van Nostrand's Science Series, No. 28; and Reuleaux's Constructor.)
    The force transmitted should not exceed the difference between the elastic limit of the wires and the bending stress as deternined by the following tables, taking the elastic linit of tempered steel, such as is used in the best rope, at $5 \pi^{2}, 000 \mathrm{lbs}$. per sq. in., and that of Swedish iron at half this. or $28,500 \mathrm{lbs}$. (The el. lim. of fine steel wires may be higher than $57,000 \mathrm{lbs}$.)

    Elastic Limit of Wire Ropes.

    | 7-Wire Rope. | Diam. of Wires. | Aggregate Area of Wires | Elastic Limit. Steel. | Elastic Limit. Iron. |
    | :---: | :---: | :---: | :---: | :---: |
    | $\begin{gathered} \text { diam., in. } \\ 1 / 1 . \\ 5 / 16 \\ 3 / 8 \\ 7 / 16 \\ 1 / 8 \\ 9 / 16 \\ 58 \\ 11 / 16 \\ 3 / 4 \\ 3 / 8 \\ 1 / 8 \end{gathered}$ | ins. <br> . 023 <br> .035 <br> .042 <br> .055 <br> .0625 <br> .076 <br> .097 <br> . 111 |  |  |  |
    | 18-Wire Rope. $1 / 16$ $5 / 16$ 38 $7 / 16$ $1 / 6$ $9 / 16$ 5.8 $11 / 16$ $3 / 4$ $1^{3 / 8}$ | .017 .0 .21 .024 .0 .9 .0 .93 .035 .042 .046 .050 .058 .067 |  | The elastic rope may be as for 7 -wire ultimate stı greater. | mit of 19 -wire laten the same ngth of the 10 per cent |

    The working tension may be greater, therefore, as the bending stress is less; but since the tension in the slack portion of the rope cannot be less than a certain proportion of the tension in the taut portion, to avoid slipping, a ratio exists between the diameter of sheave and the wires composing the rope, corresponding to a maximum safe working tension. This ratio depends upon the number of laps that the rope makes about the sheaves, and the kind of filling, in the rims or the character of the material upon which the rone tracks.
    rhe sheaves (Fig. 165) are usually of cast iron, and are made as light as possible consistent with the requisite strength. Varions inaterials have been used for filling the bottom of the groove, such as tarred oakum. jute yarn, hard wood, India-rubber, and leather. The filling which gives the best satisfaction, however, in ordinary transmissions consists of segments of leather and blocks of India-rubber soaked in tar and
    

    Fig. 165. packed alternately in the groove. Where
    great, however, the wood filling is to be preferred, as in the case of long-distarce transmissions where the rope makes several laps about the sheaves, and is run at a comparatively slow speed.
    The Bending Stress is determined by the formula

    $$
    k=\frac{E t t}{z .06(R \div(l)+C} .
    $$

    $k=$ bending stress in lbs. $; E=$ modulus of elasticity $=28,500,000 ; a=$ aggregate area of wires, sq. ins.; $R=$ radius of bend; $d=$ diam. of wires, ins.

    For $i$-wire rope $l=1 / 9$ diam. of rope; $C=2 \tilde{2} .54$.
    " 19 -wire " $d=1 / 15$ " " " $; C=45.9$.
    From this formula the tables below have been calculated.
    Bending Stresses, 7 -wire Rope.

    | Diam. Bend. | 24 | 36 | 48 | 60 | 82 | 84 | 96 | 108 | 120 | 132 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diam. Rope |  |  |  |  |  |  |  |  |  |  |
    | 1/4. | 810 1,095 | 745 | 411 556 | 330 447 | 275 375 375 | 236 $3 \geqslant 1$ | 2078 | 184 250 | 166 <br> 25 <br> 88 | 151 |
    | $5 / 16$ | 1,569 | 1,060 | 800 | 642 | 537 | 461 | 404 | 359 | 324 | 294 |
    | 3/8 | 2,69: | 1,82: | 1,3\% | 1,106 | 9:3 | 794 | 696 | 620 | 558 | 508 |
    | \%/16 | 4,243 | 2,878 | 2,178 | 1,\%51 | 1,465 | 1,259 | 1,104 | 982 | 885 | 806 |
    | $1 /$ | 5,96: | 4,053 | 3,0r0 | 2,470 | 2,06 | 1,7\% | 1,55S | 1,38\% | 1,250 | 1,138 |
    | $9 / 16$ | 8,701 | 5,915 | 4,486 | 3,613 | 3,0:25 | 2,601 | $\stackrel{2}{2}$ | 2,032 | 1,831 | 1,667 |
    | 5/8 |  | 8,26 \% | 6,2\%8 | 5,060 | 4,239 | 3,646 | 3,199 | 2,849 | 2,569 | 2,339 |
    | 11/16 |  | 10,535 | 8,008 | 6,459 | 5,412 | 4,65i |  | 3,641 | 3,283 | 3,059 |
    |  |  | 13,655 | 10,392 | 8,388 | \%,032 | $6,0.33$ | 5,314 | 4,735 | 4,270 | 3,888 |
    | $7 / 8$ |  | 21,585 | 16,465 | 13,309 | 11,168 | 9,6:0 | 8,449 | 7,532 | 6,795 | 6,189 |
    |  |  |  | 31,493 | 19,8.4 | 16,651 | 14,354 | 12,613 | 11,249 | 10,151 | 9,249 |
    | 11/8 |  |  | 34,21 | 28,144 | 23, 661 | $\because 0,411$ | 17,986 | 16,011 | 14,453 | 13,172 |
    | $11 / 4$ |  |  |  | 38,472 | 32,374 | 27.945 | 24,582 | 21,942 | 19,814 | 18,062 |
    | 13/8 |  |  |  |  | 42,96: | 37,110 | 3:, 661 | 29,164 | 26,344 | 24,0:31 |
    | 11/2 |  |  |  |  | 55,595 | 48,054 | 42,314 | 37,799 | 34,155 | 31,151 |

    Bending Stresses, 19-Wire Rope.

    | Diam. Bend | 12 | 24 | 36 | 48 | 60 | \%2 | 84 | 96 | 108 | 120 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diam. Rope. | 965 | 495 | 339 | 250 | 200 | $16{ }^{*}$ | 144 | 126 | 112 | 101 |
    | 516 | 1,774 | 920 | $6 \cdot 1$ | 468 | 376 | 314 | $2 \% 0$ | 236 | 210 | 183 |
    | 3/8 | 2,620 | 1,366 | 924 | 6.98 | 561 | 469 | 403 | 353 | 314 | $28: 3$ |
    | 716 | 4,546 | 2,359 | 1,6:0 | 1,226 | 986 | $8: 4$ | 708 | 621 | 553 | 498 |
    | $1 / 6$ | 6,609 | 3,495 | 2,376 | 1,800 | 1,448 | 1,212 | 1,042 | 913 | 813 | 733 |
    | $9 / 16$ |  | 5,089 | 3,468 | 2,630 | 2.118 | 1,773 | 1,525 | 1,338 | 1,191 | 1,004 |
    |  |  | 7,095 | 4,8+7 | 3,680 | 2,967 | 2,485 | 2,137 | 1,876 | 1,671 | 1,506 |
    | $11 / 16$ |  | 9,25? | 6,201 | 4,818 | 3,886 | 3, 254 | 2,802 | 2,459 | 2,191 | 1,976 |
    | 34 |  | 11,807 | 8,101 | 6,165 | 4,9\%7 | 4,173 | 3,591 | 3,153 | 2,809 | 2,534 |
    | $7 / 8$ |  | 18,183 | 12,528 | 9,556 | 7,924 | 6,481 | 5,583 | 4,886 | 4,371 | 3,943 |
    | 1 |  | 27,61: | 19,113 | 14,614 | 11,830 | 9,937 | 8,566 | 7,508 | 6,714 | 6,059 |
    | 11/8 |  |  | 26,566 | 20, 357 | 16,500 | 13,872 | 11,966 | 10,523 | 9,387 | 8,474 |
    | $11 /$ |  |  | -35,683 | 27,400 | 22,2:39 | 18,713 | 16,153 | 14,209 | 12,682 | 11,452 |
    | 13\% |  |  | 42,109 | 37,028 | 30,096 | 25,350 | $\stackrel{1}{2}$-,97 | 19,272 | 17,209 | 15.545 |
    | 11\% |  |  | 61:238 | 47,209 | 38,436 | 3:,403 | 2S,008 | マ4,662 | 22,030 | 19,906 |
    | 15/8 |  |  |  | 59.094 | 48,152 | 40,6:9 | 35,140 | 30,95 | 27,664 | 2s̃, 005 |
    | $13 / 4$ |  |  |  | 74,565 | 60,84 | 19,919 | 41,4\%6 | 39,203 | 35,048 | 31.689 |
    | $17 / 8$ |  |  |  | 90,3:5 | 73, 795 | 62,379 | 54,022 | 47,639 | +2,606 | 38.534 |
    | 2 |  |  |  |  | 88,409 | 74,795 | 61,814 | 57,183 | 51,160 | 46,285 |
    | $21 / 4$ |  |  |  |  |  |  | 92,203 | 81,428 | -2,908 | 66.002 |
    | $21 / 2$ |  |  |  |  |  | .... | , | 1, | 99,951 | 96,540 |

    Horse-Power Transmitted. - The general formula for the amount of power capable of being transmitted is as follows:

    $$
    \text { H.P. }=\left[c c l^{2}-.000006\left(w+g_{1}+g_{2}\right)\right] v
    $$

    in which $d=$ diameter of the rope in inches, $v=$ velocity of the rope in feet per second, $w=$ weight of the rope, $g_{1}=$ weight of the terminal sheaves and shafts, $g_{2}=$ weight of the intermediate slieaves and shafts (all in lbs.), and $c=$ a constant depending on the material of the rope, the filling in the grooves of the sheaves, and the number of laps about the sheaves or drums, a single lap meaning a half-lap at each end. The values of $c$ for one up to six laps for steel rope are given in the following table:

    | $c=$ for steel rope on | Number of Laps about Sheaves or Drums. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1 | 2 | 3 | 4 | 5 | 6 |
    | Iron. | 5.61 | 8.81 | 10.62 | 11.65 | 12.16 | 12. 56 |
    | Wood. | 6. 10 | 9.93 | 11.51 | 12.26 | 12.66 | 12.83 |
    | Ruiber and leather: | 9.29 | 11.95 | 12.\% | 12.91 | 12.97 | 13.00 |

    The values of $c$ for iron rope are one half the above.
    When more than three laps are made, the character of the surface in contact is immaterial as far as slippage is concerned.

    From the above formma we have the general rule, that the actual horsepower capable of being transmitted by any wire rope approximately equals $c$ times the square of the diameter of the rope in inches, less six millionths the entire weight of all the moving parts, mulliplied by the speed of the rope, in feet per second.
    Instead of grooved drums or a number of sheaves, about which the rope makes two or more laps, it is sometimes found more desirable, especially where space is limited, to use grip-pulleys. The rim is fitted with a continuous series of steel jaws, which bite the rope in contact by reason of the pressure of the same against them, but as soon as relieved of this pressure they open readily, offering no resistauce to the egress of the rope.
    In the ordinary or "flying" tranemission of power, where the rope makes a single lap about sheaves lined with rubber and leather or wood, the ratio between the diameter of the sheaves and the wires of the rope, corresponding to a maximum safe working tension, is: For $\tau$-wire rope, steel, 76.9 iron, 15テ̃.8. For 12-wire rope, steel, 59.3 ; iron, 12..6. For 19 -wire rope, steel, 44.5; iron, 93.1.

    ## Diameters of Pininimum Sheaves in Inches, Corresponding to a Paximum Safe Working Tension.

    | Diameter of Rope. In. | Steel. |  |  | Iron. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | \%-Wire. | 12-Wire. | 19. Wire. | r-Wire. | 12-Wire. | 19 Wire. |
    |  | 19 |  |  | 39 |  | 23 |
    | 5/16 | 24 | 19 | 14 | 49 | 38 | 29 |
    |  | 29 | $\stackrel{120}{20}$ |  | 59 | 46 | 35 |
    | $7 / 16$ | 34 | 26 | 19 | 69 | 54 | 41 |
    |  | 38 | 30 | 23 | \%9 | 61 | 47 |
    | $9 / 16$ | 43 | 33, | 25 | 89 | 69 | 52 |
    | 5/8 | 48 | 37 | 28 | 99 | \% | 58 |
    | 11/16 | 53 | 41 | 31 | 109 | 84 | 64 |
    | $3 / 4$ | 58 | 44 | 31 | 119 | 92 | \%0 |
    | $1^{7 / 8}$ | ${ }_{7}^{67}$ | 52 | 39 | 138 | $10 \%$ | 81 |
    | 1 | 76 | 59 | 45 | 158 | 123 | 93 |

    The transmission of greater horse powers than 250 is impracticable with filled sheaves, as the tension would be so great that the filling would quickly cut out, and the adhesion on a metallic surface would be insufficient where the rope makes but a single lap. In this case it becomes necessary to use the Remleaux method, in which the rope is given more than one lap, as referred to below, nnder the caption "Long-distance Transmissions."
    Horse-power Cransmitted by a Steel IRope on Wood-filled Sheaves.

    | Diameter <br> of Rope. In. | Velocity of Rope in Feet per Second. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 10 | ュ0 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
    | $1 / 4$ | $\stackrel{4}{7}$ | 8 | 13 | 17 | 21 | 25 | 28 | 32 | 37 | 40 |
    | 5/16 | 7 | 13 | $\therefore 0$ | 26 | 33 | 40 | 44 | 51 | $5{ }^{\text {r }}$ | 6\% |
    |  | 10 | 19 | 28 | 38 | 47 | 56 | 64 | 73 | 80 | 89 |
    | $7 / 16$ | 13 | 26 | 38 | 51 | 63 | 75 | 88 | 99 | 109 | 121 |
    | 1/20 | 17 | 31 | 51 | $6 \pi$ | 83 | 99 | 115 | 130 | 144 | 159 |
    | $9 / 16$ | 22 | 43 | 65 | 86 | 106 | 128 | 147 | 167 | 184 | 203 |
    | 5/8 | 27 | 5.3 | 79 | 104 | 130 | 155 | 179 | 203 | 225 | 247 |
    | 11/16 | 32 | 63 | 9.5 | 126 | 157 | 186 | 217 | 245 |  |  |
    | 34 | 38 | \% 6 | 103 | 150 | 186 | 223 |  |  |  |  |
    | 7/8 | 52 | 104 | 156 | 206 |  |  |  |  |  |  |
    | 1 | 68 | 135 | 202 |  |  |  |  |  |  |  |

    The horse-power that may be transmitted by iron ropes is one half of the above.

    This table gives the amount of horse-power transmitted by wire ropes under maximum safe workiug tensions. In using wood-lined sheaves, therefore, it is well to make some allowance for the stretching of the rope, and to advocate somewhat heavier equipments than the above table wonld give; that is, if it is desired to transmit 20 horse-power, for instance, to put in a plant that would transmit 25 to 30 horse-power, thus avoiding the necessity of having to take up a compratively small anomit of stretch. On rubber and leather filling, however, the amount of power capable of being transmitted is 40 per cent greater than for wood, so that this filling is generally used, and in this case no allowance need be made for stretch. as such sheaves will likely transmit the power given by the table, imder all possible deflections of the rope.

    Under ordinary conditions, ropes of seven wires to the strand, laid about a hemp core, are best adapted to the transmission of power, but conditions often occur where 12 - or 19 -wire rope is to be preferred, as stated below.

    Deflections of the Rope.-The iension of the rope is measured by the amount of sag or deflection at the centre of the span, and the deflection corresponding to the maximum sate wriking tension is determined by the following formulæ, in which $S$ represents the span in feet:

    $$
    \begin{aligned}
    & \text { Def. of still rope at centre, in feet.... } h \stackrel{\text { Steel Rope. }}{=1.00004 S^{2}} \quad \stackrel{\text { Iron Rope. }}{=}=.00008 S^{2} \\
    & \begin{array}{lllllll}
    \because & \text { driving } & 6 & \because & \because & \ldots . h_{1}=.000025 S^{2} & h_{1}=.00005 S^{2} \\
    \text { slack } & 6 & \because & \ldots . h_{2}=.0000875 S^{2} & h_{2}=.0001 \% 5 S^{2}
    \end{array}
    \end{aligned}
    $$

    Limits of Span.-On spans of less than sixty feet, it is impossible to splice the rope to such a degree of nicety as to give exactly the required defleciion, and as the rope is further subject to a certain amonnt of stretch, it becomes necessary in such cases to anply mechanical means for producing the proper tension, in order to avoid frequent splicing, which is very objectionable : but care should always be exercised in using snch tightening devices that they do not become the means, in unskilled hands, of over-straining the rope. The rope also is more sensitive to every irregularity in the sleaves and the fluctuations in the amount of power transmitted, and is apt to sway to such an extent beyond the narrow limits of the required deflections as to cause a jerking motion, which is very injurious. For this reason on very short spans it is fomd desirable to use a considerably heavier rope than that actually required to transmit the power: or in other words, instead of a 7 -wire rope corresponding to the conditions of maximum tension, it is better to use a 19-wire rope of the same size wires, and to run this muder a tension considerably below the maximum. In this way is ubtained the acivantages of increased weight and lessstretch, without
    having to use larger sheaves, while the wear will be greater in proportion to the increased surface.

    In determining the maximum limit of span, the contour of the ground and the available height of the terminal sheares must be taken into consideration. It is customary to transmit the power through the lower portion of the rope, as in this case the greatest deflection in this portion occurs when the rope is at rest. When running, the lower portion rises and the upper portion sinks, thus enabling obstructions to be avoided which otherwise would have to be removed, or make it necessary to erect very high towers. The maximum limit of span in this case is deternined by the maximum deflection that may be given to the upper portion of the rope when running, which for sheaves of 10 ft . diameter is about 600 feet.

    Much greater spans than this, however, are practicable where the contour of the ground is such that the upper portion of the rope may be the driver, and there is nothing to interfere with the proper deflection of the under portion. Some very long transmissions of power have been effected in this way without an intervening support, one ar Lockport, N. Y., having a clear span of 1,00 feet.

    Hongedistance Transhnissions. - When the distance exceeds the limit for a clear span, internediate supporting sheaves are used, with plain gronves (not filled), the spacing and size of which will be governed by the contour of the ground and the special conditions involved. The size of these sheaves will depend on the angle of the bend, gauged by the tangents to the curves of the rope at the points of inflection. If the curvature due to this angle and the working tension, regardless of the size of the sheaves, as determined by the table on the next page, is less than that of the minimum sheave (see table p.919) the intermediate sheaves should not be smaller than such minimum sheave, but if the curvature is greater, smaller intermediate sheares may be used.

    In very long transmissions of power, requiring numerous intermediate supports, it is found impracticable to lun the rope at the high speeds maintained in "flying transmissions." The rope therefore is run under a higher working tension, made practicable by wrapping it several times about grooved terminal.drims, with a lap about a sheave on a take-up or counterWeighted carriage, which preserves a constant tension in the slack portion.

    耳nclined Transmissions.-When the terminal sheaves are not on che same elevation, the tension at the upper sheave will be greater than that at the lower, but this difference is so slight, in most cases, that it may be ignored. The span to be considered is the horizontal distance between the sheaves, and the principles governing the limits of span will hold good in this case, so that for very steep inclinations it becomes necessary to resort to tightening devices for maintaining the requisite tension in the rope. The limiting case of inclined transmissions occurs when one wheel is directly above the other. The rope in this case produces no tension whatever on the lower wheel, while the upper is subject only to the weight of the rope, which is usually so insignificant that it may be neglected altogether, aud on vertical transmissions, therefore, mechanical tension is an absolute necessity.

    Bending Curvature of Wire Fopes.-The curvature due to any bend in a wire rope is dependent on the tension, and is not always the same as the sheare in contact, but may be greater, which explains ho w it is that large ropes are frequently run around comparatively small sheaves without detriment, since it is possible to place these so close that the bending angle on each will be such that the resulting curvature will not overstrain the wires. This cnrvature may be ascertained from the formula and table on the next page, which give the theoretical radii of curvature in inches for various sizes of ropes and different angles for one pound tension in the rope. Dividing these figures by the actual tension in pounds, gives the radius of curvature assumed by the rope in cases where thís exceeds the curvature of the sheave. The rigidity of the rope or internal friction of the wires and core has not been taken into acconnt in these figures, but the effect of this is insignificant, and it is on the safe side to ignore it. By the "angle of bend" is meant the angie between the tangents to the curves of the rope at the points of inflection. When the rope is straight the angle is $180^{\circ}$. For angles less than $160^{\circ}$ the radius of curvature in most cases will be less than that corresponding to the safe working tension, and the proper size of sheave to use in such cases will be governed by the table headed "Diameters of Minimum Sheaves Corresponding to a Maximum Safe Working Tension" on page 919.

    ## Radius of Curvature of Wire Ropes in Inches for l-lb, Tension.

    Formula : $R=E \delta^{4} n \div 5.25 t \cos 1 / 2 \theta$; in which $R=$ radius of curvature: $E=$ modulus of elasticity $=28,500,000 ; \delta=$ diameter of wires; $n=n 0$. of wires ; $\theta=$ angle of bend; $t=$ working stress (lbs. andins.).

    Divide by stress in pounds to obtain radius in inches.

    | Diam. <br> of wire. | $\mathbf{1 6 0}$ | $\mathbf{1 6 5}$ |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

    ## ROPE-DRIVING.

    The transmission of power by cotton or manila ropes is a competitor with gearing and leather belting when the amount of power is large, or the distanee between the power and the work is comparatively great. The following is eondensed from a paper by C. W. Hunt, Trans. A. S. M. E., xii. $230 \cdot$

    But few accurate data are available, on account of the long period required in each experiment, a rope lasting from three to six years. Installations which have been suceessful, as weil as those in which the wear of the rope was destruetive, indicate that 200 lbs . on a rope one inch in diameter is a safe and economicat working strain When the strain is materially increased, the wear is rapid.

    In the following equations
    $C=$ eircumference of rope in inches;
    $D=$ sag of the rope in inches;
    $F=$ eentrifugal force in pounds;
    $P=$ pounds per foot of rope;
    $g=$ gravity;
    II = horse-power;
    $L=$ distance between pulleys in feet;
    $w=$ working strain in pounds;

    $$
    R=\text { force in pounds doing useful work; }
    $$

    $S=$ strain in pounds on the rope at the pulley;
    $T=$ tension in pounds of driving side of the rope;
    $t=$ tension iu pounds on slack side of the rope;
    $v=$ velo ity of the rope in feet per seeond;
    $W=$ ultimate breaking strain in pounds.

    $$
    W=720 C^{2}: \quad P=.032 C^{2} ; \quad w=20 C^{2}
    $$

    This makes the normal working strain equal to $1 / 36$ of the breaking strength, and about $1 / 25$ of the strength at the splice. The actual strains are ordinarily mueh greater, owing to the vibrations in running, as well as from imperfectly adjusted tension mechanism.

    For this investigation we assume that the strain on the driving side of a rope is equal to 200 lbs . on a rope one ineh in diameter, and an equivalent strain for other sizes, and that the rope is in motion at various veloeities of from 10 to 140 ft . per second.

    The centrifugal force of the rope in ruming over the pulley will reduce
    the amount of force available for the transmission of power. The centrifugal force $F^{\prime}=P v^{2} \div g$.

    At a speed of about 80 ft . per second, the centrifugal force increases faster than the power from increased velocity of the rope, and at about 140 ft . per second equals the assumed allowable tension of the rope. Computing this force at various speeds and then subtracting it from the assumed maximum tension, we have the force available for the transmission of power. The whole of this force cannot be used, because a certain amount of tension on the slack side of the rope is needed to give adhesion to the puiley. What tension should be given to the rope for this purpose is uncertain, as there are no experiments which give accurate data. It is known from considerable experience that when the rope runs in a groove whose sides are inclined toward each other at an angle of $45^{\circ}$ there is sufficient adhesion when the ratio of the tensions $T \div t=2$.

    For the present purpose, $T$ can be divided into three parts: 1. Tension doing useful work; 2. Teusion from centrifugal force; 3. Tension to balance the strain for adhesion.

    The tension $t$ can be divided into two parts: 1. Tension for adhesion: 2. Tension from centrifugal furce.

    It is evident, however, that the tension required to do a given work should not be materially exceeded during the life of the rope.

    There are two methods of putting ropes on the pulleys; one in which the ropes are single and spliced on, being made very taut at first, and less so as the rope lengthens, stretching until it slips, when it is respliced. The other method is to wind a single rope over the pulley as many turns as needed to obtain the necessary horse-power and put a tension pulley to give the necessary adhesion and also take up the wear. The tension $t$ required to transmit the normal horse-power for the ordinary speeds and sizes of rope is computed by formula (1), below. The total tension $T$ on the driving side of the rope is assumed to be the same at all speeds. The centrifugal force, as well as au amount equal to the tension for adhesion on the slack side of the rope, must be taken from the total tension $T$ to ascertain the amount of force available for the transmission of power.

    It is assumed that the tension on the slack side necessary for giving adhesion is equal to one half the force doing useful work on the driving side of the rope; hence the force for useful work is $R=\frac{2(T-F)}{3}$; and the tension on the slack side to give the required adhesion is $1 / 3(T-F)$. Hence

    $$
    \begin{equation*}
    t=\frac{(T-F)}{3}+F \tag{1}
    \end{equation*}
    $$

    The sum of the tensions $T$ and $t$ is not the same at differeut speeds, as the equation (1) indicates.

    As $F$ varies as the square of the relocity, there is, with an increasing speed of the rope, a decreasing useful force, and an increasing total tension, $t$, on the slack side.

    With these assumptions of allowable strains the horse-power will be

    $$
    \begin{equation*}
    H=\frac{2 v(T-F)}{3 \times 550} \tag{2}
    \end{equation*}
    $$

    Transmission ropes are usually from 1 to $13 / 4$ inches in diameter. A computation of the horse-power for four sizes at various speeds and under ordinary conditions, based on a maximum strain equivalent to 200 lbs . for a rope one inch in diameter, is given in Fig. 166. The horse-power of other sizes is readily obtaiued from these. The maximum power is transmitted, under the assumed conditions, at a speed of about 80 feet per second.

    The wear of the rope is both internal and external; the internal is caused by the movement of the fibres on each other, undel pressure in bending over the sheaves, and the external is caused by the slipping and the wedg. ing in the grooves of the pulley. Both of these causes of wear are, within the limits of ordinary practice, assumed to be clirectly proportional to the speed. Hence, if we assume the coefficient of the wear to be $k$, the wear will be $k v$, in which the wear increases directly as the velocity, but the horse-power that can be transmitted, as equation (2) shows, will not vary at the sane rate.
    The rope is supposed to have the strain $T$ constant at all speeds on the driving side, and in direct pronortion to the area of the cross-section; hence
    the catenary of the driving side is not affected by the speed or by the diam. eter of the rope.

    The deflection of the rope between the pulleys on the slack side varies with each change of the load or change of the speed, as the tension equation (1) indicates.

    The deflection of the rope is computed for the assumed value of $T$ and
    

    Fig. 166.
    by the parabolic formula $S=\frac{P L^{2}}{8 D}+P D, S$ being the assumed strain $T$ on the driving side, and $t$, calculated by equation (1), on the slack side. The tension $t$ varies with the speed.

    ## Horse-power of Transmission Rope at Various Speeds.

    Computed from formula (2), given above.

    | - | Speed of the Rope in feet per minute. |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | 1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000 | 6000 | 7000 | 8000 |  |
    | $1 / 2$ | 1.45 | 1.9 | 2.3 | 2.7 | 3 | 3.2 | 3.4 |  | 3.1 | 2.2 | 0 | 20 |
    | 588 | 2.3 | 3.2 | 3.6 | 4.2 | 4.6 | 5.0 | 5.3 | 5.3 | 4.9 | 3.4 | 0 | 24 |
    | 8 | 3.3 | 4.3 | 5.2 | 5.8 | 6.7 | \%.2 | 7.7 | 7.7 | 7.1 | 4.9 |  | 30 |
    | 8 | 4.5 5.8 | 5.9 | 7.0 | 8.2 | 9.1 | 9.8 | 10.8 | 10.8 | 9.3 | 6.9 | 0 | 36 |
    | 11/4 | 5.8 9.2 | 7.7 12.1 | 9.2 | 10.7 | 11.9 | 12.8 | 13.6 | 13.7 | 12.5 | 8.8 | 0 | 42 |
    | $11 / 2$ | 13.1 | 17.4 | 20.7 | 23.1 | $\underline{18.8}$ | 28.0 | 21.2 30 | 21.4 30.8 | 19.5 | 13.8 | 0 | 54 |
    | 13/4 | 18 | 23.7 | 28.2 | 32.8 | 36.4 | 39.2 |  |  | 28.2 | ${ }_{2-1}^{19}$ | 0 | 60 |
    | 2 | 23.2 | 30.8 | 36.8 | 42.8 | 47.6 | 51.2 | 54.4 | 548 | 50 | 2.6 35.2 | 0 | 8 |

    The following notes are from the circular of the C. W. Hunt Co., New York:
    For a temporary installation, when the rope is not to be long in use, it might be advisable to increase the work to double that given in the table.

    For convenience in estimating the necessary clearance on the driving and on the slack sides, we insert a table showing the sag of the rope at different speeds when transmitting the horse-power given in the preceding table. When at rest the sag is not the same as when running, being greater on the driving and less on the slack sides of the rope. The sag of the driving side when transmitting the normal horse-power is the same no matter what size of rope is used or what the speed driven at, because the assumption is that the strain on the rope shall be the same at all speeds when transmitting the
    assumed horse-power, but on the slack side the strains, and consequently the sag, vary with the speed of the rope and also with the horse-power. The table gives the sag for three speeds. If the actual sag is less than given in the table, the rope is strained more than the work requires.

    This table is only approximate, and is exact only when the rope is running at its normal speed, transmitting its full load and strained to the assumed amount. All of these conditions are varying in actual work, and the table must be used as a guide ouly.

    ## Sag of the Rope between Pulleys.

    

    The size of the pulleys has all important effect on the wear of the ropethe larger the sheaves, the less the fibres of the rope slide on each other, ant consequently there is less internal wear of the rope. The pulleys should not be less than forty times the diameter of the rope for economical wear, and as much larger as it is possible to make them. This rule applies also to the idle and tension pulleys as well as to the main driving-pulley.

    The angle of the sides of the grooves in which the rope runs varies, with different engineers. from $45^{\circ}$ to $60^{\circ}$. It is very important that the sides of these grooves should be carefully polished, as the fibres of the rope rubbing on the metal as it comes from the lathe tools will gradually break fibre by fibre, and so give the rope a short life. It is also necessary to carefully avoid all sand or blow holes, as they will cut the rope out with surprising rapidity.

    Much depends also upon the arrangement of the rope on the pulleys, especially where a tension weight is used. Experience shows that the increased wear on the rope from bending the rope first in one direction and then in the other is similar to that of wire rope. At mines where two cages are used. one being hoisted and one lowered by the same engine doing the same work, the wire ropes, cut from the same coil, are usually arranged so that one rope is bent continuously in one direction and the other rope is bent first in one direction and then in the other, in winding on the drum of the engine. The rope having the opposite bends wears nuch more rapidly than the other, lasting about three quarters as long as its mate. This difference in wear shows in manila rope, both in transmission of power and in coalhoisting. The pulleys should be arranged, as far as possible, to bend the rope in one direction.

    Tension on the Slack Part of the Rope.

    | Speed of Rope, in feet per second. | Diameter of the Rope and Pounds Tension on the Slack Rope. |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1/2 | 5/8 | $3 / 4$ | 7/8 | 1 | 11/4 | 112 | 13/4 | 2 |
    | 20 | 10 | 27 | 40 | 54 | 71 | 110 | 162 | 216 | 283 |
    | 30 | 14 | 29 | 42 | 56 | 74 | 115 | 170 | 226 | 296 |
    | 40 | 15 | 31 | 45 | 60 | 79 | 123 | 181 | 240 | 315 |
    | 50 | 16 | 33 | 49 | 65 | 85 | 132 | 195 | 259 | 339 |
    | 60 | 18 | 36 | 53 | 71 | 93 | 145 | 214 | 285 | 373 |
    | 70 | 19 | 39 | 59 | ¢8 | 101 | 158 | 236 | 310 | 406 |
    | 80 | 21 | 43 | 64 | 85 | 111 | 173 | 255 | 340 | 445 |
    | 90 | 24 | 48 | 70 | 93 | 122 | 190 | 279 | 372 | 487 |

    For large amounts of power it is common to use a number of ropes lying side by side in grooves, each spliced separately. For lighter drives some engineers use one rope wrapped as many times around the pulleys as is necessary to get the horse-power required, with a tension pulley to take up the slack as the rope wears when first put in use. The weight put upon this tension pulley should be carefully adjusted, as the overstraining of the rope from this cause is one of the most common errors in rope driving. We therefore give a table showing the proper strain on the rope for the various sizes, from which the tension weight to transmit the horse-power in the tables is easily deduced. This strain can be still further reduced if the horse-power transmitted is usually less than the nominal work which the lope was proportioned to do, or if the angle of groove in the pulleys is acute.

    Diameter of Pulleys and Weight of Rope.

    | Diameter of Rope, in inches. | Smallest Diameter of Pulleys, in inches. | Length of Rope to allow for Splicing, in feet. | Approximate Weight, in lbs. per foot of rope. |
    | :---: | :---: | :---: | :---: |
    | $1 / 2$ | 20 | 6 | . 12 |
    | 5/8 | 24 | 6 | . 18 |
    | 3 | 30 | 8 | . 24 |
    | $1^{1 / 8}$ | 36 | 8 | . 32 |
    | $11 / 4$ | 54 | 9 10 | . 49 |
    | 112 | 60 | 12 | . 83 |
    | $13 / 4$ | 72 | 13 | 1.10 |
    | 2 | 84 | 14 | 1.40 |

    With a given velocity of the driving-rope, the weight of rope required for transmitting a given horse-power is the same, no matter what size rope is adopted. The smaller rope will require more parts, but the weight will be the same

    Miscellaneous Notes on Rope-driving.-W. H. Booth communicates to the Amer. Machinist the following data fiom English practice with cotton ropes. The calculated fignres are based on a total allowable tensior: on a $13 / 4$-inch rope of 600 lbs ., and an initial tension of $1 / 10$ the total allowe. stress, which corresponds fairly with practice.

    | Diameter of rope | 11/4 ${ }^{\prime \prime}$ | $13 / 8^{\prime \prime}$ | $11 / 2^{\prime \prime}$ | 15/8' ${ }^{\prime \prime}$ | 13/4' | 17/8' | $2^{\prime \prime}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Weight per foot, lbs .............. | . 5 | . 6 | . | . 844 | . 98 | 1.125 | 1.3 |
    | Centrifugal tension $=V^{2}$ divided by | 64 | 53 | 44 | 38 | 23 | 28 | 25 |
    | " for $V=80 \mathrm{ft}$. per sec., lbs. | 100 | 121 | 145 | 170 | 193 | 228 | 56 |
    | Total tension allowable..... ....... | 300 | 360 | 430 | 500 | 600 | $6{ }^{\sim} 5$ | \% 80 |
    | Initial tension. | 30 | 36 | 43 | 50 | 60 | 67 | 78 |
    | Net workiug tensiou at 80 ft , velocity | 170 | 203 | 242 | 280 | 347 | 380 | 446 |
    | Horse-power per rope | 24 | 28 | 34 | 41 | 49 | 54 | 63 |

    The most usual practice in Lancashire is summed up roughly in the following figures: 13.4 inch cotton ropes at 5000 ft . per minute velocity $=50 \mathrm{H} . \mathrm{P}$. per rope. The most common sizes of rope now used are $13 / 4$ and $15 / 8 \mathrm{in}$. The maximmm horse-power for a given rope is obtained at abont 80 to 83 feet per second. Above that speed the power is reduced by centrifugal tension. At a speed of 2500 ft . per minute four ropes will do about the same work as three at 5000 ft . per 1 min .
    Cotton ropes do not require much lubrication in the sense that it is required by ropes made of the rough fibre of manila hemp. Merely a slight surface dressing is all that is required. For sniall ropes, common in spinning machinery, from $1 / 2$ to $3 / 4$ inch diameter it is the custom to prevent the Huffing of the ropes on the surface by a light application of a mixture of black-lead and molasses,-but only enongh should be used to lay the fibres,put upon one of the pulleys in a series of light dabs.
    Reuleaux's Constructor gives as the "specific capacity" of hemp rope in actual practice, that is, the horse-power transmitted per square inch of cross-section for each foot of linear velocity per minute, 004 to .002 , the cross-section being taken as that due to the full outside diameter of the rope. For a $13 / 4$-in. rope, with a cross-section of $2.405: q$. in., at a velocity of 5000 ft . per min., this gives a horse-power of from 24 to 48 , as against 41.8 by Mr. Hunt's table and 49 by Mr. Booth's.

    Reuleaux gives formulæ for calculating sources of loss in hemp-rope transmission due to (1) journal friction, (2) stiffness of ropes, and (3) creep of ropes. The constants in these formulæ are, however, uncertain from lack of experimental data. He calculates an average case giving loss of power due to journal friction $=4 \%$, to stiffness $7.8 \%$, and to creep $5 \%$, or $16.5 \%$ in all, and says this is not to be considered higher than the actual loss.
    Spencer Miller, in a paper entitled "A Problem in Continuous Rope-driving " (Trans. A. S. C. E., 1897), reviews the difficulties which occur in ropedriving, with a continuous rope from a large to a small pulley. He adopts the angle of $45^{\circ}$ as a minimum angle to use on the smaller pulley, and recommends that the larger pulley be grooved with a wider angle to a degree such that the resistance to slipping is equal in both wheels. By doing this the effect of the tension weight is felt equally throughout all the slack strands of the rope-drive, hence the tight ropes pull equally. It is shown that when the wheels are grooved alike the strains in the various ropes may differ greatly, and to such a degree that danger is introduced, for while onehalf the tension weight shonld represent the maximum strain on the slack rope, it is demonstrated in the paper that the actual maximum strain may be even four or six times as great.
    In a drive such as is recommended, with a wide augle in the large sheave with the larger arc of contact, the conditions governing the ropes are the same as if the wheels were of the same diameter; and where the wheels are of the same dianeter, with a proper tension weight, the ropes pull alike. It is claimed that by widening the angle of the large sheave not only is there no power lost, but there is actually a great gain in power transmitted. An example is given in which it is shown that in that instance the power transmitted is nearly doubled. Mr. Miller refers to a 250 -horse-power drive which has been running ten years, the large pulley being grooved $60^{\circ}$ and the smaller $45^{\circ}$. This drive was designed to use a $11 / 4$-in. manila rope, but the grooves were made deep enough so that a $7 / 8-\mathrm{in}$. rope would not bottom. In order to determine the value of the drive a common $7 / 8-\mathrm{in}$. rope was put in at first, and lasted six years, working under a factor of safety of only 14 . He recommends, however, the employment in continuous rope-driving of a factor of safety of not less than 20 .
    The Walker Company adopts a curved form of groove instead of one with straight sides inclined to each other at $45^{\circ}$. The curves are concave to the rope. The rope rests on the sides of the groove in driving and driven pulleys. In idler pulleys the rope rests on the bottom of the groove, which is semicircular. The Walker" Company also uses a "differential" drum for heavy rope-drives, in which the grooves are contained each in a separate ring which is free to slide on the turned surface of the drum in case one rope pulls more than another.
    A heavy rope-drive on the separate, or English, rope system is described and illustrated in Power, April, 1892. It is in use at the India Mill at Darwen, England. This mill was originally driven by gears, but did not prove successful, and rope-driving was resorted to. The 85,000 spindles and preparation are driven by a 2000 -horse-power tandem compound engine, with cylinders 23 and 44 inches in diameter and r 2 -inch stroke, running at 54 revolutions per minute. The fly-wheel is 30 feet in diameter, weighs 65 tons, aud is arranged with 30 grooves for $13 / 4$-inch ropes. These ropes lead off to receiv-ing-pulleys upon the several floors, so that each floor receives its power direct from the fly-wheel. The speed of the ropes is 5089 feet per minute, and five $\%$-foot receivers are used, the number of ropes upon each being proportioned to the amount of power required upon the several floors. Lambeth cotton ropes are used. (For much other' information on this subject see "RopeDriving," by J. J. Flather, John Wiley \& Sons, 1895.)

    ## FRICTION AND LUBRICATION.

    Friction is defined by Rankine as that force which acts between two bodies at their surface of contact so as to resist their sliding on each other, and which repends on the force with which the bodies are pressed together.

    Coefficient of Friction. - The ratio of the force required to slide a body along a horizontal plane surface to the weight of the body is called the coefficient of friction. It is equivalent to the tangent of the angle of repose, which is the angle of inclination to the horizontal of an inclined plane on which the body will just overcome its tendency to slide. The angle is usually denoted by $\theta$, and the coefficient by $f . f=\tan \theta$.

    Friction of Rest and of Miotion. - The force required to start a body sliding is called the friction of'rest, and the force required to continue its sliding after laving started is called the friction of motion.

    Rolling Friction is the force required to roll a cylindrical or spherical body on a plane or on a curved surface. It depends on the nature of the surfaces and on the force with which they are pressed together, but is essentially different from ordinary, or slidiug, friction.
    Friction of Solids.-Rennie's experiments (18:9) on friction of solids, usually unlubricated and dry, led to the following ennclusions:

    1. The laws of sliding friction differ with the character of the bodies rubbing together.
    2. Tlie friction of fibrous material is increased by increased extent of surface and by time of contact, and is diminished by pressure and speed.
    3. With wood, metal, and stones, within the limit of abrasion, friction varies only with the pressure, and is independent of the extent of surface, time of contact and velocity.
    4. The limit of abrasion is determined by the hardness of the softer of the two rubbing parts.
    5. Friction is greatest with soft and least with hard materials.
    6. The friction of lubricated surfaces is determined by the nature of the lubricant rather than by that of the solids themselves.

    Friction of Rest. (Rennie.)

    | Pressure, | Values of $f$. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | per square inch. | Wrought iron on Wrought Iron. | Wrought on Cast Iron. | Steel on Cast Iron. | Brass on Cast Iron. |
    | 187 | . 25 | . 28 | . 30 |  |
    | $\stackrel{224}{336}$ | . 27 | . 29 | . 33 | . 22 |
    | 336 448 | . 31 | . 33 | . 35 | . 21 |
    | 540 | . 38 | . 37 | . 35 | . 21 |
    | ${ }^{5672}$ | Abiraded | . 38 | . 36 | . 23 |
    | \% 84 | Abraded | Abraded | A ${ }^{40}$ | . 23 |

    Latv of Unlubricated Friction.-A. M. Wellington, Eng'g News, April $\boldsymbol{T}, 1888$, states that the most important and the best determined of all the laws of unlubricated friction may be thus expressed:

    The coefficient of unlubricated friction decreases materially with velocity, is very much greater at minute velocities of $0+$, falls very rapidly with minute increases of such velocities, and continues to fall much less rapidly with higher velocities $11 p$ to a certain varying point, following closely the laws which obtain with hubricated friction.
    hriction of Steel Tires Sliding on Steel Rails. (Westing*

    | Sp | 10 |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | oefficient of f | 0.110 | . 087 | 80 | $\begin{array}{r} 38 \\ .051 \end{array}$ | $\begin{aligned} & 45 \\ & .044 \end{aligned}$ |  |
    | Adhesion, lis. per ton (z240 libs.) | 246 | 195 | 179 | 12 |  |  |

    Rolling Friction is a consequence of the irregularities of form and the roughness of surface of bodies rolling one over the other. Its laws are not yet definitely established in consequence of the uncertainty which exists in experiment as to how much of the resistance is due to roughness of surface, how much to original and permanent irregularity of form, and how much to distortion under the load. (Thurston.)

    Coefficients of Rolling Friction.-If $R=$ resistance applied at the circumference of the wheel, $W=$ total weight, $r=$ radius of the wheel, and $f=$ a coefficient, $R=f W \div r \cdot f$ is very variable. Coulomb gives . 06 for wood, .005 for metal, where $W$ is in pounds and $r$ in feet. Tredgold nade the value of $f$ for iron on iron .002.
    For wagons on soft soil Morin found $f=.065$, and on hard smooth roads 02.

    A Committee of the Society of Arts (Clark, R. T. D.) reported a loaded omnibus to exhibit a resistance on various loads as below:

    Pavement Speed per hour. Coefficient. Resistance.

    | Granite | 2.87 miles. | . 007 | 17.41 | t |
    | :---: | :---: | :---: | :---: | :---: |
    | Asphalt: | 3.56 | . 0121 | 27.14 |  |
    | Wood | 3.34 | . 0185 | 41.60 | ' |
    | Macadam, | 3.45 | . 0199 | 44.48 | " |
    |  | 3.51 | . 0451 | 101.09 |  |

    Thurston gives the value of $f$ for ordinary railroads, .003, well-laid railroad track, 002 ; best possible railroad track, . 001 .

    The few experiments that have been made upon the coefficients of rolling friction, apart from axle friction, are too incomplete to serve as a basis for practical rules. (Trautwine).

    Laws of FIuid Friction. - For all fluids, whether liquid or gaseous, the resistance is (1) independen ${ }^{\text {, }}$ of the pressure between the masses in contact; (2) directly proportional to the area of rubbing-surface; (3) proportional to the square of the relative velocity at moderate and high speeds, and to the velocity nearly at low speeds; (4) independent of the nature of the surfaces of the solid against which the stream may flow, but dependent to some extent upon their degree of roughuess; (5) proportional to the density of the fluid, and related in some way to its viscosity. (Thurston.)

    The Friction of Lubricated Surfaces approximates to that of solid friction as the journal is run dry, and to that of fluid friction as it is flooded with oil.

    ## Angles of Repose and Coeficients of Friction of Building Materials. (From Rankine's Applied Mechanics.)

    |  | 9. | $f=\tan \theta$. | $\frac{1}{\tan \theta}{ }^{\text {a }}$ |
    | :---: | :---: | :---: | :---: |
    | Dry masonry and brickwork.. | $31^{\circ}$ to $35^{\circ}$ | . 6 to . 7 | 1.67 to 1.4 |
    | Masonry and brickwork with damp mortar | $3612^{\circ}$ | . 74 | 1.35 |
    | Timber on stone. |  | about . 4 | 2.5 |
    | Iron on stone. | $35^{\circ}$ to $16 \% \%^{\circ}$ | . 7 to . 3 | 1.43 to 3.3 |
    | Timber on timber | $261 \%^{\circ}$ to $1113^{\circ}$ | . 5 to . 2 | 2 to 5 |
    | " " metals | $31^{\circ}$ to $1113^{\circ}$ | .6 to . 2 | 1.67 to 5 |
    | Metals on metals | $14^{\circ}$ to $811^{\circ}$ | .25 to .15 | 4 to 6.67 |
    | Masonry on dry clay . | ${ }_{181} 18{ }^{\circ}$ | . 51 | 1.96 |
    | Earth on earth ........ | $14^{\circ}$ to $45^{\circ}$ | . 25 to 1.0 | 4 to 1 |
    | and mixed earth. ... | $21^{\circ}$ to $3 \%^{\circ}$ | . 38 to . 75 | 2.63 to 1.33 |
    | Earth on earth, damp clay. | $45^{\circ}$ | 1.0 | 1 |
    | " "6 "6 wet clay.. | $17^{\circ}$ | . 31 | 3.23 |
    | gravel ............................. | $39^{\circ}$ to $48^{\circ}$ | . 81 | 1.23 to 0.9 |

    Friction of Motion. - The following is a table of the angle of repose $\theta$, the coefficient of friction $f=\tan \theta$, and its reciprocal, $1 \div f$, for the materials of mechanism-condensed from the tables of General Morin (1831), and other sources, as given by Kankine:

    | No. | Surfaces. | $\theta$. | $f$. | $1 \div f$ |
    | :---: | :---: | :---: | :---: | :---: |
    | 1 | Wood on wood, dry .... | 140 to $261 / \%^{\circ}$ | . 25 to . 5 |  |
    | 3 | Metals on oak, soaped.. | 111\% to ${ }^{1 / 2}$ | .2 to 04 | $4{ }^{4}$ to 25 |
    | 4 | "، "، wet...... | $131 \%^{\circ}$ to to $14^{\circ}$ | . 5 5 to to 68 | 2 to $1.6 \%$ |
    | ${ }_{6}^{5}$ | "، " ${ }^{\text {" }}$ " soan, dry... | , | . 24 to $\cdot 26$ | $\begin{gathered} 4.17 \text { to } 3.85 \\ 5 \end{gathered}$ |
    | $\stackrel{7}{8}$ | Hemp on oak, dry ....... | 11/29 $8^{28^{\circ}}$ | . 2 to .83 | 5 to 4 1.89 |
    | 8 | Leather on oak... |  | . 33 | 1.89 |
    | 10 | "، "، metals, dry.. |  | . 27 | 3.7 to ${ }_{\text {1. } 2.8} .86$ |
    | 12 | " "، ${ }^{\text {c }}$ wet. | $20^{\circ}$ | . 36 | 2.78 |
    | 13 | " " " ${ }^{\text {oreasy }}$ oily... | ${ }^{131} 1^{\circ}$ | . 23 | 4.35 |
    | 14 15 | Metals on metals, dry , ${ }^{\text {a }}$ | $812^{\circ} \mathrm{to}$ to $11^{\circ}$ | . 15 to . 2 | ${ }_{6.67} 6.68$ |
    | 16 | Smooth surfaces, wet... | $161 / 2^{\circ}$ | . 3 | 3.33 |
    | 17 | Sioually greased..... | $4^{\circ}$ to $41 / 2^{\circ}$ | .ar to 08 | 14.3 to 12.5 |
    | 14 | Siooth surfaces, con- | $3^{\circ}$ | . 05 | 20 |
    | 18 | Smooth surfaces, best |  |  |  |
    | 19 | Bronze on lignum vitæ, constantly wet. | $3 \circ$ ? | . 03 to . 036 |  |

    Coefficients of Friction of Journals. (Morin.)

    | Material. | Unguent. | Lubrication. |  |
    | :---: | :---: | :---: | :---: |
    |  |  | Intermittent. | Continuous. |
    | Cast iron on cast iron.... $\{$ | Oil, lard tallow. Unctuous and wet. | $.07 \text { to } .08$ | . 03 to . 054 |
    | Cast iron on bronze.. | Oil, lard, tallow. Unctuous and wo | . 07 to to 08 | . 03 to . 054 |
    | Cast iron on lignum-vitæ Wrought iron oncastiron | oil, lard | . 16 | . 09 |
    | ". ${ }^{\text {a }}$ "bronze.. $\}$ | Oil, lard, tallow. | . 07 to . 08 | . 03 to . 054 |
    | Iron on lignum vitæ.... $\{$ | Oil, lard. | . 11 |  |
    | Bronze on bronze....... $\{$ | Olive-oil. Lard. | . 110 |  |

    Prof. Thurston says concerning the above figures that much better results are probably obtained in good practice with ordinary machinery. Those here given are so greatly modified by variations of speed, pressure, and temperature, that they cannot be taken as correct for general purposes.
    Arerage Coeficients of Fricicion. Journal of cast iroses in bronze bearing; velocity $\tau 20$ feet per minute; tmmperature $\mathrm{ro}^{\circ} \mathrm{F}$.; intermittent feed through an oil-hole. (Thurston on Friction and Lost Work.)

    | Oils. | Pressures. pounds per square inch. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | 8 | 16 | 32 | 48 |
    | Sperm, lard, neat's-foot, etc. | . 159 to . 250 | . 138 to . 192 |  |  |
    | Olive, cotton-seed, rape, etc. Cod and menhaden. | . $160 \times 10.283$ | . 10768 | . 101 to ${ }^{\text {. }} .14188$ | . 077 to . 144 |
    | Mineral lubricating-oils. | . 248 " 6.9 .208 | . 124 " 145.167 | . 097 "6. 102 | . 081 ، ${ }^{\text {c }} .122$ |

    With fine steel journals running in bronze bearings and continuous lubrication, coefficients far below those above given are obtained. Thus with sperm-oil the coefficient with 50 lbs . per square inch pressure was .0034 ; with 200 lbs., . 0051 ; with 300 lhs . . $005 \%$.

    For very low pressures, as in spindles, the coefficients are much higher. Thus Mr. Woodbu:y found, at a temperature of $100^{\circ}$ and a velocity of 600 feet per minute,

    | Pressures, lbs. per sq. in...... | 1 | 2 | 3 | 4 | 5 |
    | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
    | Coefficient.... ................ | .38 | .27 | .22 | .18 | .17 |

    These hig.: coefficients, however, and the great decrease in the coefficient at increased pressures are limited as a practical matter only to the smaller pressures which exist especially in spinning machinery, where the pressure is so light and the film of oil so thick that the viscosity of the oil is an important part of the total frictional resistance.
    Experiments on Friction of a Journal Lubricated by an Oil-bath (reported by the Committee on Friction, Proc. Inst. M. E., Nov. 1883) show that the absolute friction, that is, the absolute tangential force per square inch of bearing, required to resist the tendency of the brass to go ronnd with the journal, is nearly a constant under all loads, within ordinary working limits. Most certainly it does not increase in direet proportion to the load, as it shoull do according to the ordinary theory of solid friction. The results of these experiments seem to show that the friction of a perfectly lubricated journal follows the laws of liquid friction much more closely than those of solid friction. They slow that under these circumstances the friction is nearly independent of the pressure per square iuch, and that it increases with the velocity, though at a rate not nearly so rapid as the square of the velocity.

    The experiments on friction at different temperatures indicate a great diminution in tha friction as the temperature rises. Thus in the case of lard-oil, taking e speed of 450 revolutions per minute, the coefficient of friction at a temperature of $120^{\circ}$ is only one third of what it was at a temperature of 60 .
    The journal was of steel, 4 inches diameter and 6 inches long, and a gunmetal brass, embracing somewhat less than half the circumference of the journal, rested on its upper side, on which the load was applied. When the bottom of the journal was immersed in oil, and the oil therefore carried under the brass by rotation of the journal, the greatest load carried with rape-oil was 573 lbs . per square inch, and with mineral oil 625 lbs .

    In experiments with ordinary lubrication, the oil being fed in at the centre of the top of the brass, and a distributing groove being cut in the brass parallel to the axis of the journal, the bearing would not run cool with only 100 lbs . per square inch, the oil being pressed out from the bearing-surface and through the oil-hole, instead of being carried in by it. On introducing the oil at the sides through two parallel grooves, the lubrication appeared to be satisfactory, but the bearing seized with 380 los. per square inch.

    When the oil was introduced through two oil-holes, one near each end of the brass, and each connected with a curved groove, the brass refused to take its oil or run cool, and seized with a load of only 200 lbs . per square inch.

    With an oil-pad under the journal feeding rape-oil, the bearing fairly carried 551 lbs . Mr. Tower's conclusion from these experiments is that the friction depends on the quantity and uniformity of distribution of the oil, and may be anything between the oil-bath results and seizing, according to the perfaction or imperfection of the lubrication. The lubrication may be very small, giving a coefficient of $1 / 100$; but it appeared as thongh it could not be diminished and the friction increased much beyond this point without imminent risk of heating and seizing. The oil-bath probably represents the most perfect lubrication possible, and the limit beyond which friction cannot be reduced by lubrication; and the experiments show that with speeds of from 100 to 200 feet per minute, by properly proportioning the bearingsurface to the load, it is possible to reduce the coefficient of friction to as low as $1 / 1000$. A coefficient of $1 / 1500$ is easily attainable, and probably is frequently attained, in ordinary engine-bearings in which the direction of the force is rapidly alternating and the oil given an opportunity to get between the surfaces, while the duration of the force in one direction is not sufficient to allow time for the oil film to be squeezed out.

    Observations on the behavior of the apparatus gave reason to believe that with perfect lubrication the speed of minimum friction was from 100 to 150 feet per minute, and that this speed of minimum friction tends to be higher with an increase of load, and also with less perfect lubrication. By the speed of minimum friction is meant that speed in approaching which from rest the friction diminishes, and above which the friction increases.

    Cocficients of Friction of Journal vith Oil-bath.-Ab. stract of results of 'Tower's experiments onf friction (Proc. Inst. M. E., Nov. 1883). Journal, 4 in. diam., 6 in . long; temperature, $90^{\circ} \mathrm{F}$.

    | Lubricant in Bath. | Nominal Load; in pounds per square inch. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 625 | 520 | 415 | 310 | 205 | 153 | 100 |
    |  | Coefficients of Friction. |  |  |  |  |  |  |
    | Lard-oil: |  |  |  |  |  |  |  |
    | 157 ft ", per min |  | . 0009 | . 0012 | . 0014 | . 0020 | .002\% | .0042 |
    | $4 \pi 1$ |  | . 0017 | . 0021 | . 0029 | . 0042 | . 0052 | . 003 |
    | Mineral grease : $15 \% \mathrm{ft}$ per min |  |  |  |  |  |  |  |
    | ${ }_{4 \pi 1}^{157} \mathrm{ft}_{6} \mathrm{per}^{\text {min }}$ | . 001 | . 0014 | . 0016 | . 0032 | . 0034 | . 0038 | . $00 \% 6$ |
    |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |
    | Rape-oil: | (573 lb.) |  |  |  |  |  |  |
    | ${ }_{4}^{151} \mathrm{ft} \mathrm{ft}_{6}$ per $\mathrm{min}_{6}$ | . 001 | . 001 | . 0009 | . 0008 | . 0014 | . 002 | . 004 |
    |  |  |  |  |  |  |  |  |
    | $15 \% \mathrm{ft}$. per min | . 0013 | . 0012 | .0012 | . 0014 | . 0021 |  | . 004 |
    |  |  |  |  |  |  |  | . 007 |
    |  |  |  |  |  |  |  | . 0125 |
    |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |

    Comparative friction of different lubricants under same circumstances, temperature $90^{\circ}$, oil-bath:

    | Sperm-oil | 100 per cent. | Lard.................. 135 per |
    | :---: | :---: | :---: |
    | Rape-oil |  | Olive-oil.............. 135 |
    | Mineral o | 129 | Mineral grease....... 21\% |

    Coeflicients of Friction of Motion and of Rest of a Journal.-A cast-iron journal in steel boxes, rested by Prof. Thurston at a speed of rubbing of 150 feet per minute, with lard and with sperm oil, gave the following:
    

    The coefficient at a speed of 150 feet per minute decreases with increase of pressure until 500 lbs . per sq. in. is reached; above this it increases. The coefficient at rest or at starting increases with the pressure throughout the range of the tests.

    Value of Antiofriction Metals. (Denton.)-The various white metals a vallable for lining brasses do not afford coefficients of friction lower than can be obtained with hare brass, but they are less liable to "overhtating," because of the superiority of such material over bronze in ability to permit of abrasion or crushing, without excessive increase of friction.

    Thurston (Friction aud Lost Work) sars that gun-bronze, Babbitt, and other soft white alloys have substantially the same friction; in other words, the friction is detemmine, by the natnre of the unguent and not by that of the rubbing-surfaces, when the latter are in gond order. The soft metals run at higher temperatures than the bronze. This, however, does not necessarily indicate a serious defect, but simply deficient conductivity. The value of the white alloys for bearings lies mainly in their ready reduction to a smooth surface after any local or general injury by alteration of either surface or form.

    Cast-iron for Hearings. (Joshua Rose.)-Cast iron appears to be ar excrpion to the general rule, that the harder the nietal the greater the resistance to wear, because cast iron is softer in its texture and easier to cut with steel tools than steel or wrought iron, but in some situations it is far more durable than hardened steel; thus when surrounded by steam it will wear better than will any other metal. Thus, for instauce, experience has demonstrated that piston-rings of cast iron will wear smoother, betrer, and equaliy as long as those of steel, and longer than those of either wrought iron or brass, whether the cylinder in which it works be composed of brass, steel, wronght iron, or cast iron; the latter being the more noteworthy, since two surfaces of the same metal do not, as a rule, wear or work well together. So also slide-valves of brass are not found to wear so long or so smoothly as those of cast iron, let the metal of which the seating is composed be whatever it may; while, on the other hand, a cast iron slidevalve will wear longer of itself and cause less wear to its seat, if the latter is of cast iron, than if of steel, wrought iron, or brass.

    Friction of Metals under Steam-pressure.- The friction of brass upon iron under stean-pressure is double that of iron upon iron. (G. H. Babcock, Trans. A. S. M. E., i. 151.)

    Morin's ${ }^{66}$ Laws of Friction.99-1. The friction between two bodies is directly proportioned to the pressure; i.e., the coefficient is constant for all pressures.
    2. The coefficient and amount of friction, pressure being the same, is independent of the areas in contact.
    3 The coefficient of friction is independent of velocity, although static friction (friction of rest) is greater than the friction of motion.

    Eng'g News, April 7, 1888, coinments on these "laws" as follows : From 1831 till about 1876 there was no attempt worth speaking of to enlarge our knowledge of the laws of friction, which during all that period was assumed to be complete, although it was really worse than nothing, since it was for the most part wholly false. In the year first mentioned Morin began a series of experiments which extended over two or tbree years, and which resulted in the enunciation of these three "fundamental laws of friction," no one of which is even approximately true.

    For fifty years these laws were accepted as axiomatic, and were quoted as such without question in every scientific work published during that whole period. Now that they are so thoroughly discredited it has been attempted to explain away their defects on the ground that they cover only a very limited range of pressures, areas, velocities, etc., and that Morin bimself only announced them as true within the range of his conditions. It is now clearly establisbed that there are no limits or conditions within which any one of them even approximates to exactitude, and that there are many conditions under which they lead to the wildest kind of error, while many of the constants were as inaccurate as the laws. For example, in Morin's "Table of Coefficients of Moving Friction of Smonth Plane Surfaces, perfectly lubricated," which may be found in bundreds of text-books now in use, the coefficient of wrought iron on brass is given as .075 to .103 , which would make the rolling friction of railway trains 15 to 20 lbs. per ton instead of the 3 to 6 lbs . which it actually is.

    General Morin, in a letter to the Secretary of the Institution of Mechanical Engineers. dated March 15, 1879, writes as follows concerning:his experiments on friction made more than forty years before: "The results furnished by my experiments as to the relations between pressure, surface, aud speed on the one hand, and sliding friction on the other, have always been regarded by myself, not as mathematical laws, but as close approximations to the truth, within the limits of the data of the experiments themselves. The same holds. in iny opinion, for many other laws of practical mechanics, such as those of rolling resistance, fluid resistance, etc."

    Prof. J. E. Denton (Steveus Indicator, July, 1890) says: It has been generally assumed that friction between lubricated surfaces follows the simple law that the amount of the friction is some fixed fraction of the pressure between the surfaces, such fraction being independent of the intensity of the pressure per square inch and the velocity of rubbing, between certain limits of practice. and that the fixed fraction referred to is represented by the coefficients of friction given by the experiments of Morin or obtained from experimental data which represent conditions of practical lubrication, such as those given in Webber's Manual of Power.
    By the experiments of Thurston, Woodbury, Tower, etc., however, it appears that the friction between lubricated metallic surfaces, such as ma-
    chine bearings, is not directly proportional to the pressure, is not independent of the speed, and that tbe coefficients of Morin and Webber are about tenfold too great for modern journals.

    Prof. Denton offers an explanation of this apparent contradiction of authorities by skowing, with laboratory testing-machine data, that Moriu's laws hold for bearings lubricated by a restricted feed of lubricant, such as is afforded by the oil-cups common to machinery; whereas the modern experiments have beeu made with a surplus feed or superabundance of lubricant, such as is provided only in railroad-car journals, and a few special cases of practice.
    That the low coefficients of friction obtained under the latter conditions are realized in the case of car journals, is proved by the fact that the temperature of car-boxes remains at $100^{\circ}$ at high velocities; and experiment shows that this temperature is consistent only with a coefficient of friction of a fraction of one per cent. Deductions from experiments on train resistance also indicate the same low degree of friction. But these low co-efficients do not account for the internal friction of steam-eugines as well as do the co efficients of Morin and Webber.

    In American Machinist, Oct. 23, 1890, Prof. Denton says: Morin's measurement of friction of lubricated journals did not extend to light pressures. They apply only to the conditions of general shafting and engine work.

    He clearly understood that there was a frictional resistance. due solely to the viscostty of the oil, and that therefore, for very light pressures, the laws which he emunciated did not prevail.

    He applied his dynamometers to ordinary shaft-journals without special preparation of the rubbing-surfaces, and without resorting to artificial methods of supplying the oil.

    Later experimenters have with few exceptions devoted themselves exclusively to the measurement of resistance practically due to viscosity alone. They have eliminated the resistance to which Morin confined his nieasurements. namely, the friction due to such contact of the rubbing-surfaces as prevail with a very thin film of lubricant between comparatively rough surfaces.

    Prof. Deuton also says (Trans. A. S. M. E.. x. 518): "I do not believe there is a particle of proof in any investigation of friction ever made, that Morin's laws do not hold for ordinary practical oil-cups or restricted rates of feed."

    Latvs of Friction of well-lubricated Journals, - John Goodman (Traus. Inst. C. E. 18s6, Eng'? Neus, Apr. 7 and 14, 18ss), reviewing the results obtained from the testing-machines of Thurston, Tower, and Stroudley, arrives at the following laws:

    ## Lats of Friction: Well-lubricated Surfaces. (Oil-bath.)

    1. The coefficient of friction with the surfaces efficiently lubricated is from $1 / 6$ to $1 / 10$ that for dry or scantily himbricated surfaces.
    2. The coefficient of friction for moderate pressures and speeds varies approximately inversely as the normal pressure: the frictional resistance varies as the area in contact, the normal pressure remaining constant.
    3. At very low journal speeds the coefficient of friction is abnormally high; but as the speed of sliding increases from about 10 to 100 ft . per min, the friction diminishes, and again rises when that speed is exceeded, varying approximately as the square root of the speed.
    4. The coefficient of friction varies approximately inversely as the temperature, within certain limits, namely, just before abrasion takes place.
    The evidence upon which these laws are based is taken from various modern experiments. That relating to Law 1 is derived from the "First Reporic on Friction Experiments," by Mr. Beauchamp Tower.

    | Method of Lubrication. | Coefficient of Friction. | Comparative Friction. |
    | :---: | :---: | :---: |
    | Oil-bath. | . 00139 | 1.00 |
    | Siphon lubricator. | . 0098 | 7.06 |
    | Pad under journal ........... | . 0090 | 6.48 |

    .009\%, or six times as much, with a pad. The very low coefficients obtained by Mr. Tower will be accounted for by Law 2, as he found that the frictional resistance per square inch under varying loads is uearly constant, as below:
    Load in lbs. per sq. in..... $599 \quad 468 \quad 415 \quad 363 \quad 310 \quad 258$ Frictional resist. per sq. in. . 416 . 514 . 498 . 4 T: 464 . 438 . $43 \quad .458$. 45

    The frictional resistance per square inch is the product of the coefficient of friction into the load per square inch on horizontal sections of the brass. Hence, if this product be a constant, the one factor must vary inversely as the other, or a high load will give a low coefficient, and vice versu.

    For ordinary lubrication, the coefficient is more constant under varying loads; the frictional resistance then varies directly as the load, as shown by Mr. Tower in Table VIII of his report (Proc. Inst. M. E. 1883).

    With respect to Law 3, A. M. Wellington (Trans. A. S. C. E. 1884), in experiments on journals revolving at very low velocities, found that the friction was then very great, and nearly constant under varsing conditions of the lubrication, load, and temperature. But as the speed increased the friction fell slowly and regularly, and again returned to the original amount when the velocity was reduced to the same rate. This is shown in the following table:
    Speed, feet per minute:
    $\begin{array}{lllllllllll}0+ & 2.16 & 3.33 & 4.86 & 8.82 & 21.42 & 35.37 & 53.01 & 89.28 & 106.02\end{array}$ Coefficient of friction:
    .118 . 094 . 0 亿̃0 0.069 . 055 . 047 . 040 . 035 . 030 . 026
    It was also found by Prof. Kimball that when the journal velocity was increased from 6 to 110 ft . per minute, the friction was reduced ro\%; in another case the friction was reduced $67 \%$ when the velocity was increased from 1 to 100 ft . per minute; but after that point was reached the coefficient varied approximately with the square root of the velocity.

    The following results were obtained by Mr. Tower:

    | Feet per minu | 209 | 26. | 314 | 366 | 419 | 471 | Nominal Load per sq. in. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Coeff. of friction.. | $\begin{array}{r} .0010 \\ .0013 \\ .0014 \end{array}$ | $\begin{gathered} .0012 \\ .0014 \\ .0015 \end{gathered}$ | $\begin{aligned} & .0013 \\ & .0015 \\ & .0017 \end{aligned}$ | $\left.\begin{array}{\|} .0014 \\ .0017 \\ .0019 \end{array} \right\rvert\,$ | $\left.\begin{array}{\|c\|} .0015 \\ .0018 \\ .0021 \end{array} \right\rvert\,$ | $\begin{array}{\|l\|} .0017 \\ .002 \\ .0024 \end{array}$ | $\begin{aligned} & 520 \mathrm{lbs} . \\ & 468 \\ & 415 \end{aligned}$ |

    The variation of friction with temperature is approximately in the inverse ratio, Law 4. Take, for example, Mr. Tower's results, at 262 ft . per minute:

    | Temp. F. | $110^{\circ}$ | $100^{\circ}$ | $90^{\circ}$ | $80^{\circ}$ | $70^{\circ}$ | $60^{\circ}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Onserved. | . 0044 | . 0051 | . 006 | 001.3 | . 0092 | . 0119 |
    | Calculated. | . 00451 | . 00518 | . 00608 | . 00733 | . 00964 | . 01252 |

    This law does not hold good for pad or siphon lubrication, as then the coefficient of friction diminishes more rapidly for given increments of temperature, but on a gradually decreasing scale, until the normal temperature has been reached; this normal temperature increases directly as the load per sq in. This is shown in the following table taken from Mr. Stroudley's experiments with a pad of rape oil:

    | Temp. F $\ldots \ldots . \ldots$ | $105^{\circ}$ | $110^{\circ}$ | $115^{\circ}$ | $120^{\circ}$ | $125^{\circ}$ | $130^{\circ}$ | $135^{\circ}$ | $140^{\circ}$ | $145^{\circ}$ |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Coefficient. $\ldots \ldots \ldots$ <br> Decrease of coeff.. | .022 | .0180 | .0160 | .0140 | .0125 | $\frac{.0115}{}$ | $\frac{.0110}{.010}$ | .010 | $\frac{.0102}{.0020}$ |

    In the Galton-Westinghouse experiments it was found that with velocities below 100 ft . per min., and with low pressures, the frictional resistance varied directly as the normal pressure; but when a velocity of 100 ft . per min. was exceeded, the coefficient of friction greatly diminished; from the same experiments Prof. Kennedy found that the coefficieut of friction for high pressures was sensibly less than for low.

    Allowable Pressures on Ereaing-surfaces. (Proc. Inst. M. E., May, 1888.)-The Committee on Friction experimented with a steel ring of
    rectangular section, pressed between two cast-iron disks, the annular bear ing-surfaces of which were covered with gun-metal, and were 12 in . inside diameter and 14 in. outside. The two disks were rotated together, and the steel ring was prevented from rotating by means of a lever, the holding force of which was measured. When oiled throngh grooves cut in each face of the ring and tested at from 50 to 130 revs. per nill., it was found that a pressure of $\mathrm{T}_{5} \mathrm{lbs}$. per sq . in. of bearing-surface was as much as it would bear safely at the highest speed without seizing, although it carried 90 lbs . per sq. in. at the lowest speed. The coefficient of friction is also much higher than for a cylindrical bearing, and the friction follows the law of the friction of solids much more nearly than that of liquids. This is doubtless due to the much less perfect lubrication applicable to this form of bearing compared with a cylindrical one. The coefficient of friction appears to be about the same with the same load at all speeds, or, in other words, to be independent of the speed; but it seems to diminish somewhat as the load is increased. and may be stated approximately as $1 / 20$ at 15 lvs . per sq. in., diminishing to $1 / 30$ at $\% 5 \mathrm{lbs}$. per sq. in.
    The high coefficients of friction are explained by the difficulty of lubricat. ing a collar-bearing. Jt is similar to the slide-block of an engine, which can carry only about one tenth the load per sq. in. that can be carried by the crank-pins.
    In experiments on cylindrical journals it has been shown that when a cylindrical journal was lubricated from the side on which the pressure bore, 100 lbs . per sq. in. was the limit of pressure that it would carry; but when it came to be lubricated on the lower side and was allowed to drag the oil in with it, 600 lbs . per sq in. was reached with impunity; and if the 600 lbs . per sq. in., which was reckoned upon the full dianeter of the bearing. came to be reckoned on the sixth part of the circle that was taking the greater proportion of the load, it followed that the pressure upon that part of the circle amounted to about $1: 200 \mathrm{lhs}$. per sq. in.
    In connection with these experiments. Mr. Wicksteed states that in drill-ing-machines the pressure on the collars is frequently as high as 336 lbs . per sq. in., but the speed of rubbing in this case is lower than it was in any of the experiments of the Research Committee. In machines working very slowly and intermittently, as in testing-machines, very much higher pressures are admissible.
    Mr. Adamson mentions the case of a heavy upright shaft carried upon a smail footstep-bearing, where a weight of at least 20 tons was carried on a shaft of 5 in . diameter. or, say, 20 sq . in, area, giving a pressure of 1 ton per sq. in. The speed was 190 to 200 revs. per min. It was necessary to force the oil under the bearing by means of a pump. For leavy horizontal shafts, such as a fly-wheel shaft, carrying 100 tons on two journats, his practice for getting oil into the bearings was to flatten the journal along one side throughout its whole length to the extent of about an eighth of an inch in width for each inch in diameter up to 8 in . diameter; above that size rather less flat in proportion to the dianeter. At first sight it appeared alarming to get a continuous flat place coming round in every revolution of a heavily loaded shaft; yet it carried the oil effectually into the bearing, which ran much better in consequence than a truly cylindrical journal without a flat side.
    In thrust-bearings on torpedo-boats Mr. Thornycroft allows a pressure of never more than 50 lhs. per' sq. in.
    Prof. Thurston (Friction and Lost Work, p. 240) says 7000 to 9000 lbs . pressure per square inch is reached on the slow-working and rarely-moved pivots ot swing bridges.
    Mr. Tower says (Proc. Inst. M. E... Jan. 1884): In eccentric-pins of punching and shearing-machines very high pressures are sometimes used without seizing. In addition to the alteruation in the direction. the pressure is applied for only a very short space of time in these machines, so that the oil has no time to be squeezed out.
    In the discussion on Mr. Tower's paper (Proc. Inst. M. E. 1885) it was stated that it is well known from practical experience that with a constant load ou an ordinary journal it is difficult and alnost impossible to have more than 200 ibs. per square inch, otherwise the bearing would get hot and the oil go out of it; but when the motion was reciprocating, so that the load was alternately relieved from the journal, as with crank-pins and similar journals, much higher loads might be applied than even 700 or 800 lbs. per square

    Mr. Goodman (Proc. Inst. C. E. 1886) found that the total frictional resistance is materially reduced by diminishing the width of the brass.

    The lubrication is most efficient in reducing the friction when the brass subtends an angle of from $1: 0^{\circ}$ to $60^{\circ}$. The film is probably at its best between the angles $80^{\circ}$ and $110^{\circ}$.
    In the case of a brass of a railway axle-bearing where an oil-groove is cut along its crown aud an oil-hole is drilled through the top of the brass into it, the wear is invariably on the off side, which is probably due to the oil escaping as soon as it reaches the crown of the brass, and so leaving the off side almost dry, where the wear consequently ensues.

    In railway axles the brass wears always on the forward side. The same observation has been made in marine engine journals, which always wear in exactly the reverse way to what they might be expected. Mr. Stroudley thinks this peculiarity is due to a film of lubricant being drawn in from the under side of the journal to the aft part of the brass, which effectually lubricates and prevents wear on that side; and that when the lubricant reaches the forward side of the brass it is so attenuated down to a wedge shape that there is insufficient lubrication, and greater wear consequently follows.
    Prof. J. E. Denton (Am. Micch., Oct. 30, 1890) Says: Regarding the pressure to which oil is subjected in railroad car-service, it is probably more severe than in any other class of practice. Car brasses, when used bare, are so imperfectly fitted to the journal, that during the early stages of their use the area of bearing may be but about one square inch. In this case the pressure per square inch is upwards of 6000 lbs . But at the slowest speeds of freight service the wear of a brass is so rapid that, within about thirty minutes the area is either increased to about three inches, and is thereby able to relieve the oil so that the latter can successfully prevent overheating of the journal, or else overheating takes place with any oil, and measures of relief must be taken which eliminate the question of differences of lubricating power among the different lubricants available. A brass which has been run about fifty miles under 5000 lbs . load may have extended the area of bearing-surface to about three square inches. The pressure is then about 1700 lbs. per square inch. It may be assumed that this is an average minimum area for car-service where no violent and unmanageable overbeating has occurred during the use of a brass for a short time. This area will very slowly increase with any lubricant.
    C. J. Field (Pover, Feb. 1893) sars: One of the most vital points of an engine for electrical service is that of main bearings. They should have a surface velocity of not exceeding 350 feet per minute, with a mean bearingpressure per square inch of projected area of journal of not more than 80 lbs. This is considerably within the sate limit of cool performance and easy operation. If the bearings are designed in this way, it would admit the use of grease on all the main wearing-surface, which in a large type of engines
    for this class of work we think advisable.

    Oil-pressure in a Bearing,-Mr. Beauchamp Tower (Proc. Inst. M. E. Jan. 1885) made experiments with a brass bearing 4 inches diameter by 6 inches long, to determine the pressure of the oil between the brass and the journal. The bearing was half immersed in oil, and had a total load of 8008 lbs. upon it. The journal rotated 150 revolutions per minute. The pressure of the oil was determined by drilling small holes in the bearing at different points and connecting them by tubes to a Bourdon gauge. It was found that the pressure varied from 310 to 625 lbs . per square inch, the greatest pressure being a little to the "off" side of the centre line of the top of the bearing, in the direction of motion of the journal. The sum of the upward force exerted by these pressures for the whole lubricated area was nearly equal to the total pressure on the bearing. The speed was reduced from 150 to 20 revolutions, but the oil-pressure remained the same, showing that the brass was as completely oil-borne at the lower speed as at the higher. The following was the observed friction at the lower speed:

    $$
    \begin{array}{lcccc}
    \text { Nominal load, lbs. per square inch... } & 443 & 333 & 211 & 89 \\
    \text { Coefficient of friction .................. } & .00132 & .00168 & .00247 & .0044
    \end{array}
    $$

    The nominal load per square inch is the total load divided by the product of the diameter and length of the journal. At the same low speed of 20 revolutions per minute it was increased to 676 lbs . per square inch without any signs of heating or seizing.

    Friction of Car-journal Brasses. (J. E. Denton, Trans. A. S. M. E., xii. 405 . - - A new brass dressed with an emery-wheel, loaded with 5000 lbs., may have an actual bearing-surface on the journal, as sbown by the polish
    of a portion of the surface, of only 1 square inch. With this pressure of 5000 lbs. per square inch, the coefficient of friction may be 6\%, and the brass may be overheaied, scarred and cut but, on the contrary, it may wear down evenly to a smootb bearing, giving a highly polished area of contact of 3 square inches, or more, inside of two hours of running, gradually decreasing the pressure per square inch of contact, and a coefficient of friction of less than $0.5 \%$. A reciprocating motion in the direction of the axis is of importance in reduciug the friction. With such polished surfaces any oil will lubricate, and the coefficient of friction then depends on the viscosity of the oil. With a pressure of 1000 lbs. per square inch, revolutions from 170 to 320 per minute, and temperatures of $\tau 5^{\circ}$ to $113^{\circ} \mathrm{F}$. with both spern and parraffine oils, a coefficient of as low as $0.11 \%$ has been obtained, the oil being fed continuously by a pad.

    ## Experiments on Overheating of Bearings. -Hot Boxes.

    (Denton.) -Tests with car brasses loaded from 1100 to 4500 lbs . per square inch gave 7 cases of overheating out of $3 \%$ trials. The tests show how purely a matter of clance is the overheating, as a brass which ran hot at 5000 lbs . load on one day would run cool on a later date at the same or higher pressure. The explanation of this apparently arbitrary difference of belavior is that the accidental variations of the smootbness of the surfaces, almost infinitesimal in their magnitude, cause variations of friction which are always tending to produce overheating, and it is solely a matter of chance when these tendencies preponderate over the lubricating influence of the oil. There is 10 appreciable advantage shown by sperm-oil, when there is no teudency to overheat-that is, paraffine can lubricate under the highest pressures which occur, as well as sperm, when the surfaces are with in the conditions affording the minimum coefficients of friction.Sperm and other oils of high heat-resisting qualities, like vegetable oil and petroleum cylinder stocks, only differ from the more volatile lubricants, like paraffine, in their ability to reduce the chances of the continual accidental infinitesimal abrasion producing overheating.
    The effect of emery or otber gritty substance in reducing overheating of a bearing is thus explained:
    The effect of the emery upon the surfaces of the bearings is to cover the latter with a series of parallel grooves, and apparently after such prooves are made the presence of the emery does not practically increase the friction over the amount of the latter when pure oil only is between the surfaces. The infinite number of grooves constifute a very perfect ineans of insuring a uniform oil supply at every point of the bearings. As long as grooves in the journal match with those in the brasses the friction appears to amount to only about $10 \%$ to $15 \%$ of the pressure. But if a smooth journal is placed between a set of brasses which are grooved, and pressure be applied, the journal crushes the grooves and becomes brazed or coated with brass, and then the coefficient of friction becomes upward of $40 \%$. If then emery is applied, the friction is made very much less by its presence, because the grooves are made to match each other, and a uniform oil supply prevails at every puint of the bearings, whereas before the application of the emery many spots of the latter receive no oil between them.

    ## Moment of Friction and work of Friction of Sliding-

    Moment of Friction, inch-lbs.
    Flat surfaces
    Shafts and journals
    Flat pivots.
    Collar-bearing......................
    Conical pivot......................
    Conical journal. $\qquad$
    Truncated-cone pivot.............
    Hemispherical pivot.
    Tractrix, or Schiele's "، antifriction" pivot

    Energy lost by Friction in ft.-lbs. per min. fWS
    $.2618 f W d n$ .349 fWrn
    $.349 f W n \frac{r_{2}{ }^{3}-r_{1}{ }^{3}}{r_{2}{ }^{2}-r_{1}{ }^{2}}$
    -349f Wrm cosec a -349f Wrn sec a
    $.349 f W \frac{r_{2}{ }^{3}-r_{1}{ }^{3}}{r_{2} \sin a}$
    .5236f Wrn
    . $5236 f$ Win

    In the above $f=$ coefficient of friction;
    $W=$ weight on journal or pivot in pounds;
    $r=$ radius, $d=$ diameter, in inches;
    $S=$ space in feet through which sliding takes place;
    $r_{2}=$ outer radius, $r_{1}=$ inner radius;
    $n=$ number of revolutions per minute;
    $a=$ the half-angle of the cone, i.e., the angle of the slope with the axis.

    To obtain the horse-power, divide the quantities in the last column by 33,000 . Horse-power absorbed by friction of a shaft $=\frac{f W d n}{126050^{\circ}}$.
    The formula for energy lost by shafts and journals is approximately true for loosely fitted bearings. Prof. Thurston shows that the correct formula varies according to the character of fit of the bearing; thus for loosely fitted journals, if $U=$ the energy lost,

    $$
    U=\frac{2 f \pi r}{\sqrt{1+f^{2}}} W n \text { inch-pounds }=\frac{.2618 f W d n}{\sqrt{1+f^{2}}} \text { foot-lbs. }
    $$

    For perfectly fitted journals $U=2.54 f \pi \cdot W n$ inch-1bs. $=.3325 f W d n, \mathrm{ft}^{2}-1 \mathrm{lbs}$,
    For a bearing in which the journal is so grasped as to give a nniform pressure throughout, $U=f \pi^{2} r W n$ inch-lbs. $=.4112 f W d n$, ft.-lbs.
    Resistance of railway trains and wagons due to friction of trains:

    $$
    \text { Pull on draw-bar }=\frac{f \times 2240}{R} \text { pounds per gross ton, }
    $$

    in which $R$ is the ratio of the radius of the wheel to the radius of journal.
    A cylindrical journal, perfectly fitted into a beariug, and carrying a total load, distributes the pressure due to this load unequally on the bearing, the maximum pressure being at the extremity of the vertical radius, while at the extremities of the horizontal diameter the pressure is zero. At any point of the bearing-surface at the extremity of a radius which makes an angle $\theta$ with the vertical radius the normal pressuse is proportional to $\cos \theta$. If $p=$ normal pressure on a unit of surface, $w=$ total load on a unit of length of the journal, and $r=$ radius of journal,

    $$
    w \cos \theta=1.5 \pi r p, \quad p=\frac{w \cos \theta}{1.5 \%}
    $$

    ## PIVOT-REARENGS.

    The Schiele Curve. - W. II. Marrison, in a letter to the Am. Machinist, 1891, says the Schiele curve is not as good a form for a bearing as the segment of a sphere. He says: A mill-stone weighing a ton frequently bears its whole weight upon the flat end of a hard-steel pivot $11 / 8^{\prime \prime}$ diameter, or one square inch area of bearing; but to carry a weight of 3000 lbs . he advises an end bearing about 4 inches diameter, made in the form of a segment of a sphere about $1 / 2$ inch in height. The die or fixed bearing should be dished to fit the pivot. This form gives a chance for the bearing to adjust itself, which it does not have when made flat, or when made with the Schiele curve. If a side bearing is necessary it can be arranged farther np the shaft. The pivot and die should be of steel, hardened; cross-gutters should be in the die to allow oil to flow, and a central oil-hole should be made in the shaft.

    The advantage claimed for the Schiele bearing is that the pressure is uniformly distributed over its surface, and that it therefore wears miformly. Wilfred Lewis (Am. Mach., April 19, 1894) says that its merits as a thristbearing have been vastly overestimated; that the term "anti-friction" epplied to it is a misnomer, since its friction is greater than that of a flat step or collar of the same diameter. He advises that tlat thrust-bearings shonld always be annular in form, having an inside diameter one half of the external diameter

    Friction of a Flat Pivot-bearing. -The Research Committee on Friction (Proc. Inst. M. E. 1891) experimented on a step-bearing, flatended, 3 in . diam., the pil being forced into the bearing through a hole in its centre and distributed through two radial grooves, insuring thorough lubrication. The step was of steel and the bearing of manganese-bronze.

    | At revolutions per mi | 50 | 128 | 194 | 290 | 353 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | The coefficient of friction varied \{ | . 0181 | . 0053 | . 0051 | . 0044 | . 0053 |
    | between | and .0221 | . 0113 | . 0102 | . $01 \% 8$ | . 0167 |

    With a white-metal bearing at 128 revolutions the coefficient of friction was a little larger than with the manganese-brouze. At the higher speeds the coefficient of friction was less, owing to the more perfect linbrication, as shown by the more rapid circulation of the oil. At 128 revolutions the bronze bearing heated and seized on one occasion with a load of 260 pounds and on another occasion with 300 pounds per square inch. The white-metal bearing under similar conditions heated and seized with a load of 240 pounds per square inch. The steel footstep on manganese-bronze was afterwards tried. lubricating with three and with four radial grooves; but the friction was from one and a half tinies to twice as great as with only the two grooves. (Ser also Allowable Pressures, page 936.)

    Mercury-bath Pivot.-A nearly frictionless step-bearing may be obtained by floating the bearing with its superincumbent weight upon mercury. Such an apparatus is used in the lighthouses of La Heve, Havre. It is thus described in Eng ${ }^{\circ}$, July \& 4, 1893, p. 41:
    The optical apparatus, weighing about 1 ton, rests on a circular cast-iron table. which is supported by a vertical shaft of wrought iron 2.36 in. diameter.

    This is kept in position at the top by a bronze ring and outer iron support, and at the bottom in the same way, while it rotates on a removable steel pivot resting in a steel socket, which is fitted to the base of the support. To the vertical shaft there is rigidly fixed a floating cast-iron ring $1 \% .1 \mathrm{in}$. diameter and 11.8 in . in depth, which is plunged into and rotates in a mercury bath contained in a fixed outer drun or tank, the clearance between the vertical surfaces of the drum and ring being only 0.2 in ., so as to reduce as much as possible the volnme of mercury (about 220 lbs .), while the horizontal clearance at the bottom is 0.4 in .

    ## BALL-IREARINGS, FRECTION ROLLERS, ETC.

    A. H. Tyler (Eng'g, Oct. 20, 1893, p. 483), after experiments and comparison with experiments of others arrives at the following conclusions:
    That each ball must have two points of contact only.
    The balls and race must be of glass hardness, and of absolnte truth.
    The balls should be of the largest possible diameter which the space at disposal will admit of.
    Any one ball should be capable of carrying the totalload upon the bearing. Two rows of balls are always sufficient.
    A ball-bearing requires no oil, and has no tendency to heat unless overloaded.

    Until the crushing strength of the balls is being neared, the frictional resistance is proportional to the load.
    The frictional resistance is inversely proportional to the diameter of the balls, but in what exact proportion Mr. Tyler is unable to say. Probably it varies with the square.
    The resistance is independent of the number of balls and of the speed.
    No rubbing action will take place between the balls, and devices to guard against it are unnecessary, and nsually injurious.

    The above will show that the ball-bearing is most suitable for high speeds and light loads. On the spindles of wood-carving machines some make as much as 30,000 revolutions per minute. They run perfectly cool, and never have any oil upon them. For heavy loads the balls should not be less than two thirds the diameter of the shaft, and are better if made equal to it.

    Ball-bearings have not been found satisfactory for thrust-blocks, for the reason apparently that the tables crowd together. Better results have been obtained from coned rollers. A combined system of rollers and balls is described in Eug'o. Oct. 6, 1893, p. 429.

    Friction-rollers. - If a journal instead of revolving on ordinary bearings he supported on friction-rollers the force required to make the journal revolve will be reduced in nearly the same proportion that the diameter of the axles of the rollers is less than the diameter of the rollers themselves. In experiments by A. M. Wellington with a journal $31 / 2$ in. diam. supported on rollers 8 in . diam., whose axles were $13 / 4 \mathrm{in}$. diam., the friction in starting from rest was $1 / 4$ the friction of an ordinary $31 / 2-\mathrm{n}$. wearing, but at a car speed of 10 miles per hour it was $1 / 2$ that of the ordinary bearing. The ratio of the diam. of the axle to diam. of roller was $13 / 4: 8$, or as 1 to 4.6 .

    Bearings for Very High Rotarive Speeds. (Proc. Inst. M. E., Oct. 1888, p. 48\%.)-In the Parsons steam-turbine, which has a speed of as high as $18,000 \mathrm{rev}$. per min., as it is impossible to secnre absolute accuracy of balance, the bearings are of special construction so as to allow of a certain very small amount of lateral freedom. For this purpose the bearing is surrounde by two sets of steel washers $1 / 16$ inch thick and of different diameters, the larger fitting close in the casing and about $1 / 3 \geqslant$ inch clear of the bearing, and the smaller fitting close on the bearing and about $1 / 32$ inch clear of the casing. These are arranged alternately, and are pressed together by a spiral spring. Consequently any lateral movement of the bearing causes them to slide mutually against one another, and by their friction to check or damp any vibrations that may be set up in the spindle. The tendency of the spindle is then to rotate about its axis of mass, or principal axis as it is called; and the bearings are thereby relieved from excessive pressure, and the machine from undue vibration. The finding of the centre of gyration, or rather allowing the turbine itself to find its cwn centre of gyration, is a well-known device in other branches of mechanics: as in the instance of the centrifugal hydro-extractor, where a mass very much out. of balance is allowed to find its own centre of gyration; the faster it ran the more steadily did it revolve and the less was the vibration. Another illustration is to be found in the spindles of spinning machinery, which run at about 10,000 or 11,000 revolutions per minute: they are made of hardened and tempered steel, and although of very small dimeusions, the outside diameter of the largest portion or driving whorl being perliaps not more than $11 / 4 \mathrm{in}$., it is found impracticable to run them at that speed in what might be called a hard-and-fast bearing. They are therefore run with some elastic substance surrounding the bearing, such as steel springs, hemp, or cork. Any elastic substance is sufficient to absorb the vibration, and permit of absolutely steady running.

    ## FRICTION OF STEAII-ENGINES.

    Distribution of the Friction of Engines.-Prof. Thurston in his "Friction and Lost Work," gives the following:
    

    No. 1, Straight-line, $6^{\prime \prime} \times 12^{\prime \prime}$, balanced valve; No. 2, Straight-line, $6^{\prime \prime} \times 12^{\prime \prime}$, unbalanced valve; No. $3,7^{\prime \prime} \times 10^{\prime \prime}$, Lansing traction locomotive valve-gear.
    Prof. Thurston's tests on a number of different styles of engines indicate that the friction of any engine is practically constant under all loads. (Trans. A. S. M. E., viii. 86; ix. 74.)
    In a Straight-line engine, $8^{\prime \prime} \times 14^{\prime \prime}$, I.H.P. from 7.41 to 57.54 , the friction $H$. P. varied irregularly between 1.97 and 4.02 , the variation being independent of the load. With 50 H.P. on the brake the I.H.P. was only 52.6 , the friction being only 2.6 H.P., or about $5 \%$.
    In a compound condensing-engine, tested from 0 to 102.6 brake H.P., gave I.H.P. from 14.92 to $117.8 \cdot \mathrm{H.P}$. the friction H.P. varying only from $14.9: 2$ to 17.42. At the maximum load the friction was 15.2 H . P., or $12.9 \%$.

    The friction increases with increase of the boiler-pressure fiom 30 to $\%$ lbs , ard then becomes constant. The friction generally increases with in. crease of speed, but there are exceptions to this rule.
    Prof. Denton (Stevens Indicator, July, 1890), comparing the calculated friction of a number of engines with the friction as deternined by measurement, finds that in one case, a 75 -ton anmonia ice-machine, the friction of the compressor, $171 / 2$ H.P., is accounted for by a coefficient of friction of $71 / 2 \%$ on all the external bearings, allowing $6 \%$ of the entire friction of the machine tor the friction of pistons, stuffing-boxes, and valves. In the case of the Pawtucket pumping-engine, estimating the friction of the external bearings with a coefficient of friction of $6 \%$ and that of the pistons, valves, and stuff-ing-boxes as in the case of the ice-machine, we have the total friction distributed as follows:

    |  | Horsepower. | Per cent of Whole. |
    | :---: | :---: | :---: |
    | Crank-pins and effect of piston-thrust on main shaft. | 0.71 | 11.4 |
    | Weight of fly-wheel and main shaft. | 1.95 | 32.4 |
    | Steam-valves | 0.23 | 3.7 |
    | Eccentric Pistons... | 0.07 | 1.2 |
    | Stuffing-boxes, six altogether | 0.43 | ${ }^{7.2}$ |
    | Air-pump...................... | 2.10 | 31.8 |
    | Total friction of eugine with load. | 6.21 | 100.0 |
    | Total friction per cent of indicated power | 4.27 |  |

    The friction of this engine, though very low in proportion to the indicated power, is satisfactorily accounted for by Morin's law nsed with a coefficient of friction of $5 \%$. In both cases the main items of friction are those due to the weight of the fly-wheel and main shaft and to the piston-thrust on crank-pins and main-shaft bearings. In the ice-machine the latter items are the larger owing to the extra crank-pin to work the pumps, while in the Pawtucket engine the former preponderates, as the crank-thrusts are partly absorbed by the pump-pistons, and only the surplus effect acts on the crank-shaft.

    Prof. Denton describes in Trans. A. S. M. E., x. 392, an apparatus by which he measured the friction of a piston packing-ring. When the parts of the piston were thoronghly devoid of lubricant, the coefficient of friction was found to be about $11 \%$; with an oil-feed of one drop in two minutes the coefficient was abont $5 \%$; with one drop per minute it was about $3 \%$. These rates of feed gave unsatisfactory lubrication, the piston groaning at the ends of the stroke whell run slowly, and the flow of oil left upon the surfaces was found by analysis to contain about $50 \%$ of iron. A feed of two drops per mimite reduced the coefficient of friction to about $1 \%$, and gave practically perfect lubrication, the oil retaining its natural color and purity.

    ## LUBHECATEON.

    Measurement of the Durability of Lubricants. (J. E. Den. ton, Trans. A. S. M. E., xi. 1013.)-Practical differences of durability of hubricants depend not on any differences of inherent ability to resist being "worn out " by rubbing, but upon the rate at which they flow through and away from the bearing-smrfaces. The conditions which control this flow are so delicate in their influence that all attempts thus far made to measure durability of lubricants may be said to have failed to make distinctions of lubricating value having any practical significance. In some kinds of service the limit to the consumption of oil dependsupon the extent to which dust or other refuse becomes mixed with it, as in railroad-car lubrication and in the case of agricultural machinery. The economy of one oil over another, so far as the quality used is concerned-that is, so far as durability is concerned-is simply proportional to the rate at which it can insinuate itself into and fow out of minute orifices or cracks. Oils will differ in their ability to do this, first, in proportion to their viscosity, and, second, in proportion to the capillary properties which they may possess by virtue of the particular ingredients used in their composition. Where the thickness of film between rub-biug-surfaces must be so great that large amounts of oil pass through bearings in a given time, and the surroundings are such as to permit oil to be fed at high temperatures or applied by a method not requiring a perfect fluidity, it is probable that the least amount of oil will be used when the viscosity is as great as in the petroleum cylinder stocks. When, however, the oil must flow freely at ordinary temperatures and the feed of oil is restricted, as in the case of crank-pin bearings, it is not practicable to feed such heavy oils in a satisfactory manner. Oils of less viscosity or of a fluidity'approximating to lard-oil must then be used.
    Relative Value of Lubricants. (J. E.Denton, Am. Mach., Oct. 30, 1890.) - The three elements which deternine the value of a lubricant are the cost due to consumption of lubricants, the cost spent for coal to overcone the frictional resistance caused by use of the linbricant, and the cost due to the metallic wear on the journal and the brasses.

    The Qualifications of a Good lubricant, as laid down by W. H. Bailey, in Proc. Inst. C. E., vol. xlv., p. 3'e, are: 1. Sufficient body to keep the surfaces free from contact under maximum pressure. 2. The
    greatest possible fluidity consistent with the foregoing condition. 3. Tilie lowest possible coefficient of friction, which in bath lubrication would be for fluid friction approximately. 4. The greatest capacity for storing and carrying away heat. 5. A high temperature of decomposition. 6. Power to resist oxidation or the action of the atmosplere. 7. Freedom from corrosive ac on on the metals upon which used.

    ## Amount of ©il needed to Ran an Engine. -The Vacuum Oil

    Co. in 1892 , in response to au inquiry as to cost of oil to run a 1000 -H.P. Corliss engine, wrote: The cost of running two engines of equal size of the same make is not always the same. Therefore while we could furnish figures showing what it is costing some of our customers having Corliss engines of $1000 \mathrm{H} . \mathrm{P}$., we could only give a general idea, which in itself might be considerably ont of the way as to the probable cost of cylinderand engine-oils per year for a particular engine. Such an engine ought to run readily on less than 8 drops of 600 W oil per minute. If 3000 drops are figured to the quart, and 8 drops used per minnte, it would take about two and one half barrels ( 53.5 gallons) ( 600 W cylinder-oil, at 65 cents per gallon, or about $\$ 85$ for cylinder-oil per year, running 6 days a week and 10 hours a day. Engine-oil would be even more difficult to guess at what the cost would be, because it would depend upon the number of cups required on the engine, which varies somewhat according to the style of the engine. It would doubtless be safe, however, to calculate at the outside that not more than twice as much engine-oil would be required as of cylinder-oil.The Vacnum Oil Co. in 1892 published the following results of practice with " 600 W " cylinder-oil:
    Corliss compound engine, $\{20$ and $33 \times 48 ; 8.3$ revs. per min.; 1 drop of oil -، triple exp.
    Porter-Allen
    Ball per min. to 1 drop in two minutes.
    20, 33, and $46 \times 48 ; 1$ drop every 2 minutes.
    $\{20$ and $36 \times 36 ; 143$ revs. per min. $: 2$ drops of oil per min., reduced afterwards to 1 drop per min.

    Results of tests on ocean-steamers communicated to the author by Prof. Denton in 1892 gave: for 1200-H.P. marine engine, 5 to 6 English gallons ( 6 to T. 2 U. S. gals.) of engine-oil per 24 hours for external lubrication; and for a 1500 -H.P. marine engine, triple expansion, rumniug 75 revs. per min., 6 to 7 English gals. per 24 hours. The cylinder-cil consumption is exceedingly variable,-from 1 to 4 gals. per day on different engines, including cylinderoil used to swab the piston-1ods.
    Quantity of Oil used on a Locomotive Crank-pin.-Prof. Denton, Traus. A. S. M. E., xi. 1020, says: A very ecouomical case of practical nil-consumption is when a locomotive main crank-pin consumes about six cubic inches of oil in a thousand miles of service. This is equivalent to a consumption of one milligram to seventy square inches of surface rubived over.

    The Examination of Lubricating-oils. (Prof. Thos. B. Stillman, Stevens Iudicator. July, 1890.)-The generally accepted conditions of a gond lubricant are as follows:

    1. "Body" enough to prevent the snrfaces, to which it is applied, from coming in contact with each other. (Viscosity.)
    2. Freedom from corrosive acid, either of mineral or animal origin.
    3. As fluid as possible consistent with "body."
    4. A minimum coefficient of friction.
    5. High "flash" and burving points.
    6. Freedom from all materials liable to produce oxidation or "gumming."

    The examinations to be made to verify the above are both chemical and mechanical, and are usually arranged in the following order:

    1. Identification of the oil, whether a simple mineral oil, or animal oil, or a mixture. 2. Density. 3. Viscosity. 4. Flash-point. 5. Burning -point. 6. Acidity. 7. Coefficient of friction. 8. Cold test.

    Detailed directions for making all of the above tests are given in Prof. Stillman's Article. See also stillman's Enginetring Chitmistry, p. 366.

    Notes on Specifications for Pexroleum Lubricants. (C. M. Everest, Vice-Pres. Vacuunı Oil Co, Proc. Engineering ('ongress, Chicago World's Fair, 1893.)-The specific gravity was the first standard established for determining quality of lubricating oils, but it has loug since been discarded as a conclusive test of lubricating quality. However, as the specific gravity of a particular petroleum oll increases the visccsity also increases.

    The object of the fire test of a lubricant, as well as its flash test, is the prevention of danger from fire through the use of an oil that will evolve infiammable vapors. The lowest fire test permissible is $300^{\circ}$, which gives a liberal factor of safety under ordinary conditions.
    The cold test of an oil, i.e, the temperature at which the oil will congeal, slould be well below the temperature at which it is used; otherwise the coefficient of friction would be correspondingly increased.
    Viscosity, or fluidity, of an oil is usually expressed in secouds of time in which a given quantity of oil will flow through a certain orifice at the temperature stated, comparison sometimes being made with water, sometimes with sperm-oil, and again with rape seed oil. It seems evident that within limits the lower the viscosity of an oil (without a too near approach to metallic contact of the rubbing surfaces) the lower will be the coefficient of friction. But we consider that each bearing in a mill or factory would probably require an oil of different viscosity from any other bearing in the mill, in order to give its lowest coefficient of friction, and that slight variations in the condition of a particular bearing would change the requirements of that bearing; and further, that when nearing the "danger point" the question of viscosity alone probably does not govern.
    The requirement of the New England Manufacturers' Association, that an oil shall not lose over $5 \%$ of its volume when lieated to $140^{\circ}$ Fahr. for 12 hours, is to prevent losses by evaporation, with the resultant effects.

    The precipitation test givers no indication of the quality of the oil itself, as the free carbon in improperly manufactured oils can be easily removed.

    It is doubtful whether oil buyers who require certain given standards of laboratory tests are better served than those who do not. Some of the standards are so fanlty that to pass them an oil manufacturer must supply oil he knows to be faulty; and the requirements of the best standards can generally be met br products that will give inferior results in actual service.

    Penna. R. IR. Specifications for Petroleum Products, 1900.-Five different grades of petroleun products will be used.

    The materials desired under this specification are the products of the distillation and refining of petroleum unmixed with any other. substances.
    $150^{\circ}$ Fire-test Oil.-This grade of oil will not be accepted if sample (1) is not "water-white" in color" (2) flashes below $130^{\circ}$ Falnenheit; (3) burns below $151^{\circ}$ Fahrenheit; (4) is cloudy or shipment has cloudy barrels when received, from the presence of glue no suspended inatter; (5) hecones opaque or shows cloud when the sample has been 10 minutes at a temperature of $0^{\circ}$ Fahrenheit.
    $300^{\circ}$ Fire-test Oil.,This grade of oil will not be accepted if sample (1) is not "water-white" in color; (2) flashes below "490 Fahrenheit; (3) burns below $298^{\circ}$ Fahrenheit; (1) is cloudy or shipment has cloudy barrels when received, from the presence of glue or suspended natter; (5) becomes opaque or shows cloud when the sample has been 10 minutes at a temperature of $32^{\circ}$ Fahrenheit; (6) shows precipitation when some of the sample is heated to $450^{\circ} \mathrm{F}$. The precipitation test is made by having about two fluid ounces of the oil in a six-ounce beaker, with a thermometer suspended in the oil, and then heating slowly until the thermometer shows the required temperature. The oil changes color, but must show no precipitation.
    Paraffine and Neutral Oits.-These grades of oil will not be accepted if the sample from shipment (1) is so dark in color that printing with longprimer type cannot be read with ordinary daylight throngh a layer of the oil 36 inch thick; ( 2 ) flashes below $298^{\circ} \mathrm{F} . ;$ (3) has a gravity at $60^{\circ} \mathrm{F}$., below $24^{\circ}$ or above $35^{\circ}$ Baumé; (4) from October ist to May 1st las a cold test above $10^{\circ} \mathrm{F}$., and from May ist to October 1st has a cold test above $33^{\circ} \mathrm{F}$.
    The color test is made by having a layer of the oil of the prescribed thickness in a proper glass vessel, and then putting the printing on one side of the vessel and reading it through the layer of oil with the back of the observer toward the source of light.

    Well Oil.-This grade of oil will not be accepted if the sample from shipment (1) flashes, from May 1st to October 1st, below $295^{\circ} \mathrm{F}$., or, from October 1st to May 1st, helow $249^{\circ} \mathrm{F}$.; (2) has a gravity at $60^{\circ} \mathrm{F}$., below $28^{\circ}$ or abore $31^{\circ}$ Banmé; (3) from October 1st to May 1st has a cold test above $10^{\circ}$ F., and from May 1st to October 1st has a cold test above $3 \%^{\circ} \mathrm{F} .{ }^{-1}$ (4) shows any precipitation when 5 cubic centimetres are mixed with 90 c. c. of gasnline. The precipitation test is to exclude tarry and suspended matter. It is made by putting 95 c.c. of $88^{\circ} \mathrm{B}$ gasolive, which must not be above $80^{\circ} \mathrm{F}$. in temperature, into a 100 c . c.
    graduate, then adding the prescribed amount of oil and shaking thoroughly. Allow to stand ten minutes. With satisfactory oil no separated or precipitated material can be seen.
    $500^{\circ}$ Fire-test Oil.-This grade of oil will not be accepted if sample from shipment (1) flashes below $494^{\circ} \mathrm{F}$.; (2) shows precipitation with gasoline when tested as described for well oil.

    Printed directions for determining flashing and burning tests and for making cold tests and taking gravity are furnished by the railroad company.

    Penna. R. HR. Specifications for Lubricating Oils (1894). (In force 140?.)

    Constituent Oils.
    

    Used for.
    Parts by volume.
    

    A, fieight cars; engine oil on shifting-engines; miscellaneous greasinc in foundries, etc. B. cylinder lubricant on marine equipment and on stationary engines. $C$, engine oil; all engine machinery; engine and tender truck boxes; shafting and machine tools; bolt cutting; general lubrication except cars. $D$, passenger-car lubrication. $E$, cylinder lubricant for locomotives. $C_{1}, D_{1}$, for use in Dec., Jan., and Feb. $; C_{2}, D_{2}$, in March, April, May, Sept., Oct., and Nov.: $C_{3}, D_{3}$ in June, July, and August. Weights per gallon, $A$, 7.4 lbs ; $B, C, D, E, 7.5 \mathrm{lbs}$.

    Soda Mixture for Machine Tools. (Penna. R. R. 1894.)-Dissolve 5 lbs . of common sal-soda in 40 gallons of water and stir thoroughly. When needed for use mix a gallon of this solution with about a pint of engine oil. Used for the cutting parts of machine tools instead of oil.

    ## SOLID LUBRICANTS.

    Graphite in a condition of powder and used as a solid lubricant, so whed, to distinguish it from a liquid lnbricant, has been found to do well where the latter has failed.
    Rennie, in 1829, says: "Graphite lessened friction in all cases where it was used." General Morin, at a later date, concluded from experiments that it could be used with advantage under heavy pressures; and Prof. Thurston found it well adapted for use under both light and heavy pressures when mixed with certain oils. It is especially valuable to prevent abrasion and cutting under heavy loads and at low velocities.

    Soapstone, also called talc and steatite, in the form of powder and mixed with oil or fat, is sometimes used as a lubricant. Graphite or soapstone, mixed with soap, is used on surfaces of wood working against either iron or wood.

    Fibreographite.-A new self-lubricating bearing known as fibregraphite is destribed by John H. Cooper in Trans. A. S. M. E., xiii. 374, as the invention of P. H. Holmes, of Gardiner, Me. This bearing material is composed of selected natural graphite, which has been finely divided and freed from foreign and gritty matter, to which is added wood-fibre or other growth mixed in water in various proportions, according to the purpose to be served, and then solidified by pressure in specially prepared moulds ; after removal from which the bearings are first thoroughly dried, then saturated with a drying oil, and finally subjected to a current of hot, dry air for the purpose of oxidizing the oil, and hardening the mass. Wlien finished, they may be " machined " to size or shape with the same facility and means employed on metals. (Holmes Fibre-Graphite Mrg. Co., Philadelphia.)

    Metaline is a solid compound, usually containing graphite, made in the form of small cylinders which are fitted permanently into holes drilled in the surface of the bearing. The bearing thus fitted runs without any other lubrication. (North American Metaline Co., Long Island City, N. Y.)

    ## THE FOUNDRY.

    ## CUPOLA PRACTICE.

    The following notes, with the accompanying table, are taken from an article by Simpson Bolland in American Machinist, June 30, 1892. The table shows heights, depth of bottom, quantity of fuel on bed, proportion of fuel and iron in charges, diameter of main blast-pipes, number of tuyeres, blastpressure, sizes of blowers and power of engines, and melting capacity per hour, of cmpolas from 24 inches to 84 inches in diameter.

    Crpucity of Cupola. - The accompanying table will be of service in determining the capacity of cupola needed for the production of a given quantity of iron in a specified time.
    First, ascertain the amount of iron which is likely to be needed at each cast, and the length of time which can be devoted profitably to its disposal: and supposing that two hours is all that can be spared for that purpose, and that ten tons is the amount which must be melted, find in the column, Melting Capacity per hour in Pounds, the nearest figure to five tons per hour, Which is fonnd to be 10,760 pounds per hour, opposite to which in the column Diameter of Cupolas, Inside Lining, will be found 48 inches; this will be the size of cupola required to furnish ten tons of molten iron in two hours.
    Or suppose that the heats were likely to average 6 tons, with an occasional increase up to ten, then it might not be thought wise to incur the extra expense consequent on working a 48 -inch cnpola, in which case, by following the directions given, it will be found that a 40 -inch cupola would answer the purpose for 6 tons, but would require an additional hour's time for melting whenever the 10 ton heat came along.
    The quotations in the table are not supposed to be all that can be melted in the hour by some of the very best cupolas, but are simply the amounts which a common cupola under ordinary circumstances may be expected to melt in the time specified.

    Height of Cupola.-By height of cupola is meant the distance from the base to the bottom side of the charging hole.
    Depth of Bottom of Cupola.-Depth of bottom is the distance from the sand-bed, after it has been formed at the bottom of the cupola, up to the under side of the tuyeres.

    All the amounts for fuel are based upon a bottom of 10 inches deep, and any departure from this depth must be met by a corresponding change in the quantity of fuel used on the bed; more in proportion as the depth is increased, and less when it is made shallower.
    Amount of Fuel Required on the Bed.-The column "Amount of Fuel re. quired on Bed, in Pounds" is based on the supposition that the cupola is a straight one all through, and that the bottom is 10 inches deep. If the bottom be more, as in those of the Colliau type, then additional fuel will be needed.
    The amounts being given in pounds, answer for both coal and coke, for, shonld coal be used, it would reach about 15 inches above the tuyeres; the same weight of coke would bring it up to about 22 inches above the tuyeres. which is a reliable amount to stock with.
    First Charge of Iron. - The amounts given in this column of the table are safe figures to work upon in every instance, yet it will always be in order. after proving the ability of the bed to carry the load quoted, to make a slow and gradual increase of the load until it is fully demonstrated just how much burden the bed will carry.
    Succeeding Charges of Fuel and Iron. - In the columns relating to succeeding charges of fuel and iron, it will be seen that the highest proportions are not favored, for the simple reason that successful melting with any greater proportion of iron to fuel is not the rule, but, rather, the exception. Whenever we see that iron has been melted in prime condition in the proportion of 12 pounds of iron to one of fuel, we may reasonably expect that the talent, material, and cupola have all been up to the highest degree of excellence. Diameter of Main Blast-pipe. -The table gives the diameters of main blast-pipes for all cupolas from 24 to 84 inches diameter. The sizes given opposite each cupola are of sufficient area for all lengths up to 100 feet.

    ## Cupola Practice．

    |  |  <br>  <br>  |
    | :---: | :---: |
    |  |  |
    |  |  |
    |  |  |
    | วฉnu！̣u дad suolinloazy |  |
    |  |  nin |
    | $\begin{array}{\|c\|c\|c\|} \text { - paュunbad } \\ \cdot \text { ss } \end{array}$ |  |
    |  |  $\times \times  <br>  <br>  |
    |  |  |
    |  |  <br>  |
    |  |  <br>  <br>  |
    |  |  <br>  ーデデージージーi |
    |  |  <br>  |
    |  |  ตศ納 <br>  |
    |  |  <br>  |
    |  |  <br>  |
    | $\left\|\begin{array}{c\|c}  & \text { su!u! } \\ \text { ap!su! } & \text { god } \\ -n \partial ~ j o ~ & \frac{\dot{D}}{3} \\ \frac{3}{\Xi} \end{array}\right\|$ | がに以 |

    Tuyeres for Cupola. - Two columns are devoted to the number and sizes of tuyeres requisite for the successful working of each cupola; one gives the number of pipes 6 inches diameter, and the other gives the number and dimensions of rectangular tuyeres which are their equivalent in area.

    From these two colmmns any other arrangement or disposition of tuyeres may be made, which shall answer in their totality to the areas given in the table.

    When cupolas exceed 60 inches in diameter, the increase in diameter should begin somewhere above the thyeres. This method is necessary in all common cupolas above 60 inches, because it is not possible to force the blast to the middle of the stock, effectively, at any greater diameter.

    On no consideration must the tuyere area be reduced; thus, an 84 -inch cupola must have tuyere area equal to 31 pipes 6 inches diameter, or 16 flat tuyeres 16 inches by $131 / 2$ inches.

    If it is found that the given number of flat tuyeres exceed in circumference that of the diminished part of the cupola, they can be shortened, allowing the decreased length to be added to the depth, or they may be built in on end; by so doing, we arrive at a modified form of the Blakeney cupola.
    Another important point in this connection is to arrange the tuyeres in such a manner as will concentrate the fire at the melting-point into the smallest possible compass, so that the metal in fusion will have less space to traverse while exposed to the oxidizing influence of the blast.
    To accomplish this, recourse has been liad to the placing of additional rows of tuyeres in some instan es-the "Stewart rapid cupola" having three rows, and the "Colliau cupola furnace" having two rows, of tuyeres.
    Blast-pressure.-Experiments show that about 30,000 cubic feet of air are consumed in melting a ton of iron, which would weigh about 2400 pounds, or more than both iron and fuel. When the proper quantity of air is supplied, the combustion of the fuel is prfect, and carbonic-acid gas is the result. When the supply of air is insufficient, the combustion is imperfect, and carbonic-oxide gas is the result. The amount of heat evolved in these two cases is as 15 to $41 / 2$, showing a loss of over two thirds of the heat by imperfect combustion.
    It is not always true that we obtain the most rapid melting when we are forcing into the cupola the largest quantity of air- Some time is required to elevate the temperature of the air supplied to the point that it will enter into combustion. If more air than this is supplied, it rapidly absorbs heat, reduces the temperature, and retards combustion, and the fire in the cupola may be extinguished with too much blast.
    slag in Cupolas.-A certain amount of slag is necessary to protect the molten iron which has fallen to the bottom from the action of the blast; if it was not there, the iron would suffer from decarbonization.

    When slag from any cause forms in too great abundance, it should be led away by inserting a hole a little below the tuyeres, through which it will find its way as the iron rises in the bottom.

    In the event of clean iron and fuel, slag seldom forms to any appreciable extent in small heats; this renders any preparation for its withdrawal unnecessary, but when the cupola is to be taxed to its utmost capacity it is then incumbent on the melter to flix the clarges all through the heat. carrying it away in the manner directed.
    The best flux for this purpose is the chips from a white marble yard. About 6 pounds to the ton of iron will give good results when all is clean.
    When fuel is bad, or iron is dirty, or both together, it becomes imperative that the slag be kept running all the time.
    Fuel for Cupolas.- The best fuel for melting iron is coke, because it requires less blast, makes lootter iron, and melts faster than coal. When coal must be used, care should be exercised in its selection. All anthracites which are bright, black. hard. and free from slate, will melt iron admirably. The size of the coal used affects the melting to an appreciable extent, and, for the best results, small cupolas should be clarged with the size called "egg." a still larger grade for medium-sized cupolas, and what is called " lump" will answer for all large cupolas, when care is taken to pack it carefully on the charges.

    Chareing a Cupola.-Chas. A. Smith (Am. Mach., Feb. 12, 1891) gives the following: A 28 -in. cupola should have from 300 to 400 pounds of coke on hottom bed; a $36-\mathrm{in}$. cupola, 700 to 800 pounds; a $48-\mathrm{in}$. cupola, 1500 lbs .; and a fio-in. cupola should have one ton of fuel on bottom bed. To every pound of finel on the bed, three, and sometimes four pounds of metal can be added with safety, if the cupola has proper blast; in after-charges, to every
    pound of fuel add 8 to 10 pounds of metal; any well-constructed cupola will stand ten.
    F. P. Wolcott (Am. Mach., Mar. 5, 1891) gives the following as the practice of the Colwell Iron-works, Carteret, N. J.: "We melt daily from twenty to forty tons of iron, with an average of 11.2 pounds of iron to one of fuel. In a $36-\mathrm{in}$. cupola seven to nine pounds is good melting, but in a cupola that lines up 48 to 60 inches, anything less than nine pounds shows a defect in arrangement of tuyeres or strength of blast, or in charging up."
    "The Moulder's Text-book," by Thos. D. West, gives forty-six reports in tabular form of cupola practice in thirty States, reaching from Maine to Oreson.

    Cupola Charges in Stove-foundries. (Iron Age, April 14, 1892.) No two cupolas are charged exactly the same. The amount of fuel on the bed or between the charges differs, while varying amounts of iron are used in the charges. Below will be found charging-lists from some of the prominent stove-foundries in the country:

    $$
    \begin{align*}
    & \text { A-Bed of fuel, coke......... lbs. } \\
    & \text { First charge of iron ....... } 5,000 \\
    & \text { All other charges of iron.. } 1,000 \\
    & \text { First and second charges } \\
    & \text { of coke, each }  \tag{100}\\
    & 200 \\
    & \text { lbs. } \\
    & \text { Four next charges of coke, } \\
    & \text { each ........................ } 150 \\
    & \text { Six next charges of coke, each } 1: 0 \\
    & \text { Nineteen next charges of coke, } \\
    & \text { each. }
    \end{align*}
    $$

    Thus for a melt of 18 tons there would be 5120 lbs . of coke used, giving a ratio of 7 to 1 . Increase the amount of iron melted to 24 tons, and a ratio of 8 pounds of iron to 1 of coal is obtained.

    $$
    \begin{aligned}
    & \text { B-Bed of fuel, coke .......... } 1,600 \\
    & \text { First charge of iron } \\
    & \text { 1,800 } \\
    & \text { First charge of fuel } \\
    & 150 \\
    & \text { All other charges of iron, } \\
    & 1,000
    \end{aligned}
    $$

    Second and third charges of
    fuel................................ fuel.

    130
    All other charges of fuel, each 100

    For an 18 -ton melt 5060 lbs . of coke would be necessary, giving a ratio of 7.1 lbs of iron to 1 pound of coke.

    | C-Bed of fuel, coke........... 1bs. 1,600 | All other charges of iron..... 2,0000 |
    | :---: | :---: |
    | First charge of iron ...... . 4,000 | All other charges of coke...... 150 |
    | First and second charges of coke ... ..... ......... 200 |  |
    | In a melt of 18 tons 4100 lbs . of col | ould be used, or a ratio of 8.5 to 1. |
    | lbs. | lbs. |
    | First charge of iron....... 5,600 | All other charges of iron ....... 2,900 |

    In a melt of 18 tons, 3900 lbs . of fuel would be used, giving a ratio of 9.4 pounds of iron to 1 of coke. Very high, indeed, for stove-plate.

    |  | lbs. |  | lbs. |
    | :---: | :---: | :---: | :---: |
    | E-Bed of fuel, coal | 1,900 | All other charges of iron, each | 2,000 |
    | First charge of iron | 5,000 | All other charges of coal, each | 175 |
    | First charge of coal. | 200 |  |  |

    In a melt of 18 tons 4700 lbs . of coal would be used, giving a ratio of 7.7 lbs. of iron to 1 lb . of coal.
    These are sufficient to demonstrate the varying practices existing among different stove-foundries. In all these places the iron was proper for stoveplate purposes, and apparently there was little or no difference in the kind of work in the sand at the different foundries.

    Results of Increased Driving. (Erie City Iron-works, 1891.)-May-Dec. 1890: $60-\mathrm{in}$. cupola, 100 tons clean castings a week, melting 8 tons per hour: iron per pound of fuel, $7^{7} 1 / 2 \mathrm{lbs}$. ; per cent weight of good castings to iron charged, $753 / 4$. Jan.-May, 1891: Increased rate of melting to $111 / 2$ tons per hour; iron per lb. fuel, $91 / 2$; per cent weight of good castings, 75 ; one week, $131 / 4$ tons per hour, 10.3 lbs . iron per lb. fuel; per cent weight of good castings, 75.3. The increase was made by putting in an additional row of tuyeres and using stronger blast, 14 ounces. Coke was used as fuel. (W. O. Webber, Trais. A. S. M. E. xii. 1045.)

    Ruffalo Steel Pressure-Dionvers, Speeds and Capacitios as applied to Cupolas.

    |  |  |  |  |  |  |  | N . . 0 0 0 0 0 0 |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 20 |  | 4 |  | 606 | 9 | 50:30 | 164 | 7 |
    | 5 | 6 | 25 | 8 | 4209 | 2321 | 7.3 | 10 | 4726 | 2600 | 86\% |
    | 6 | 8 | 30 | 8 | 3660 | 3093 | 951 | 1 c | 4108 | 36.1 | 1067 |
    | 7 | 14 | 35 | 8 | 3244 | 4218 | 1486 | 10 | 3342 | $4 \pi \%$ | 1668 |
    | 8 | 18 | 40 | 8 | 2948 | 5425 | 2199 | 10 | 3310 | 6082 | 2469 |
    | 9 | 26 | 45 | 10 | 2185 | 5818 | 3203 | 12 | 3:260 | 8.598 | 3523 |
    | 10 | 36 | 55 | 10 | 2195 | 11295 | 4938 | 12 | 2413 | $123 \% 8$ | 5131 |
    | 11 | 45 | 65 | 12 | 195 | 16955 | Ti07 | 14 | 2116 | 18:35\% | 8353 |
    | 111/2 | 55 | 72 | 12 | 164\% | 2260 í | $102 \hat{16}$ | 14 | 179\% | 25176 | 11144 |
    | 12 | 75 | 84 | 12 | 16:5 | 25836 | 11\%44 | 14 | 1775 | 28019 | 12736 |

    In the table are given two different speeds and pressures for each size of blower, and the quantity of iron that may be melted, per hour, with each. In all cases it is recommended to use the lowest pressure of blast' that will do the work. Run up to the speed given for that pressure, and regulate quantity of air by the blast-gate. The tuyere area sloould be at least one ninth of the area of cupola in square inches, with not less than four tuyeres at equal distances around cupola, so as to equalize the blast thronghout. Variations in temperature affect the working of cupolas materially, hot weather requiring increase in volume of air.
    (For tables of the Sturtevant blower see paces 519 and 520.)
    Loss in Melting Iron in Cupolas.-G. O. Vair, Anr. Mach., March 5, 1891, gives a record of a 45 -in. Colliau cupola as follows:

    Ratio of fuel to iron, 1 to 7.42.
    

    Use of Softeners in Foundry Practice. (W. Graham, Iron Age, June $2 \pi .1889$.)-ln the foundry the problen is to have the right proportions of combined and graphitic carbon in the resulting casting; this is done by getting the proper proportion of silicon. The variations in the proportions of silicon afford a reliable and inexpensive ureans of producing a cast iron of any required mechanical character which is possible with the material employed. In this way, by mixing suitable irons in the right proportions, a required grade of casting can be made more cheaply than by using irons in which the necessary proportions are already found.

    If a strong machine casting were required, it would be necessary to keep the phosphorus, sulphur, and manganese within certain limits. Professor Turner found that cast iron which possessed the maximum of the desired qualities contained, graphite, $2.59 \%$; silicon, $1.42 \%$; phosphorus, $0.39 \%$; sulphur, $0.06 \%$; manyanese, $0.58 \%$.

    A strong casting could not be made if there was much increase in the amount of phosphorus, sulphur, or manganese. Irons of the above percentages of phosphorus, sulphur, and manganese wonld be most suitable for this purpose, but they could be of different grades, having different percentages of silicon, combined and graphitic carbon. Thus liard irons, mottled and White irons, and even steel scrap, all containing low percentages of silicon and high percentages of combined carbon, could be employed if an iron having a large anount of silicon were mixed with them in sufficient amount. This would bring the silicon to the proper proportion and would cause the combined carbon to be forced into the graphitic state, and the resulting
    casting would be soft. High-silicon irons used in this way are called "softeners.
    The following are typical analyses of softeners:

    |  | Ferro-silicon. |  |  |  | Softeners, American. |  |  | $\begin{gathered} \text { Scotch } \\ \text { Irolls, No. } 1 . \end{gathered}$ |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | For | n. | Ame | can. | Wellston. | Globe | Bellefonte. | $\underset{\text { linton }}{\text { Eg- }}$ | $\begin{aligned} & \text { Colt- } \\ & \text { ness. } \end{aligned}$ |
    | Silicon ...... | 10.55 | 9.80 | 12.08 | 10.34 | 6.67 | 5.89 | 3 to 6 | 2.15 | 2.59 |
    | Combined C.. | 1.84 0.52 | 0.69 | 0.06 | 0.07 |  | 0.30 | 0.25 | 0.21 |  |
    | Manganese |  | 1.12 1.95 | 1.52 0.76 | 1.92 0.52 | 2.57 | 2.85 | 3. | 3.76 |  |
    | Phosphorus. . | 0.04 | 0.21 | 0.48 | 0.45 | 0.50 | 1.10 | 0.53 | 2.80 062 | 1.70 0.85 |
    | Sulphur | 0.03 | 0.04 | Trace | Trace | Trace | 0.02 | 0.03 | 0.03 | 0.01 |

    (For other analyses, see pages 371 to 373.)
    Ferro-silicons contain a low percentage of total carbon and a high percentage of combined carbon. Carbon is the most important constituent of cast iron, and there should be about $3.4 \%$ total carbon present. By adding ferro-silicon which contains only $2 \%$ of carbon the amount of carbon in the resulting mixture is lessened.
    Mr. Keep found that more silicon is lost during the remelting of pig of over $10 \%$ silicon than in remelting pig iron of lower percentages of silicon. He also points out the possible disadvantage of using ferro-silicons containing as high a percentage of combined carbon as $0.70 \%$ to overcome the bad effects of combined carbon in other irons.
    The Scotch irons generally contain much more phosphorns than is desired in irons to be employed in making the strongest castings. It is a mistake to mix with strong low-phosphorus irons an iron that would increase the amount of phosphorus for the sake of adding softening qualities, when softuess can be produced by mixing irons of the same low phosphorus.
    (For further discussion of the influence of silicon see page 365.)
    Shrinkace of Castings.--The allowance necessary for shrinkage varies for different kinds of metal, and the different conditions under which they are cast. For castings where the thickness runs about one inch, cast under ordinary conditions, the following allowance can be made:

    | For ca | inch per foot. | For zinc, | 5/16 inch p |
    | :---: | :---: | :---: | :---: |
    | breel, 1 | ، ، ، |  |  |
    | mal. iron, 1/8 |  | Britannia, | 1/39 |

    Thicker castings, under the same conditions, will shrink less, and thinner ones more, than this standard. The quality of the material and the manner of moulding and cooling will also make a difference.
    Numerous experiments by W. J. Keep (see Trans. A. S. M. E., vol. xvi.) showed that the shrinkage of cast iron of a given section decreases as the percentage of silicon increases. while for a given percentage of silicon the sllrinkage decreases as the section is increased. Mr. Keep gives the follow. ing table showing the approximate relation of shrinkage to size and per-

    | $\begin{gathered} \text { Percentage } \\ \text { of } \\ \text { Silicon. } \end{gathered}$ | Sectional Area of Casting. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 12" ${ }^{\prime \prime}$ | $1^{\prime \prime} \square$ | $1^{\prime \prime} \times 2^{\prime \prime}$ | $2^{\prime \prime}$ | $3^{\prime \prime}$ 口 | 4" |
    |  | Shrinkage in Decimals of an inch per foot of Length. |  |  |  |  |  |
    | ${ }_{1.5}^{1.5}$ | .183 .171 | . 158 | . 146 | . 130 | . 113 | . 102 |
    | 1.5 | . 1711 | . .135 | . 1331 | . 1174 | . 0985 | . 087 |
    | 2.5 | . 147 | . 121 | . 108 | . 092 | . 073 | . 060 |
    | ${ }_{3.5}$ | .135 .123 | . 108 | . 095 | .077 | . 059 | . 045 |
    | 3.6 | .123 | . 095 | . 082 | . 065 | . 046 | . 032 |

    Mr. Keep also gives the following " approximate key for regulating foundry mixtures" so as to produce a shrinkage of $1 / 8 \mathrm{in}$. per ft. in castings of different sections:

    | Size of casting................ 1/2 | 1 | 2 | , | 4 in. |
    | :---: | :---: | :---: | :---: | :---: |
    | Silicon required, per cent..... 3.25 | 2.75 | 2.25 | 1.75 | 1.25 per cent. |
    | Shrinkage of a $1 / 2$-in. test-bair. 125 | . 135 | . 145 | . 155 | . 165 in . per ft |

    ## Weight of Castings determined from Weight of Patterin.

    (Rose's Pattern-maker's Assistant.)

    | A Pattern weighing One Pound, made of- | Will weigh when cast in |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Cast Iron. | Zinc. | Copper. | Yellow Brass. | Gunmetal. |
    | Mahogany-Nassau. | lbs. | $1 \mathrm{lbs}$. | lbs. | lbs. | lbs. |
    | Mal Honduras. | 12.9 | 12.4 | 12.8 15.3 | 12.2 |  |
    | "، Spanish... | 8.5 | 8.2 | 10.1 | 14.6 | ${ }_{9} 9$ |
    | Pine, red....... ..... | 12.5 | 12.1 | 14.9 | 14.2 | 14.6 |
    | " white. | 16.7 | 16.1 | 19.8 | 19.0 | 19.5 |
    | yello | 14.1 | 13.6 | 16.7 | 16.0 | 16.5 |

    Moulding Sand. (From a paper on "The Mechanical Treatment of Moulding Sand," by Walter Bagshaw, Proc. Inst. M. E. 1891.)-The chemical composition of sand will affect the nature of the casting, no matter what treatment it undergoes. Stated generally, good sand is composed of 94 parts silica, 5 parts alumina, and traces of magnesia and oxide of iron. Sand containing much of the metallic oxides, and especially lime, is to be avoided. Geographical position is the chief factor governing the selection of sand: and whether weak or strong, its deficiencies are made up for by the skill of the moulder. For this reason the same sand is often used for both heavy and light castings, the proportion of coal varying according to the nature of the casting. A common mixture of facing-sand consists of six parts by weight of old sand, fonl of new sand, and one of coal-dust. Floor-sand requires only half the above proportions of new sand and coal-dust to renew it. German founders adopt one part by measure of new sand to two of old sand; to which is added coal-dust in the proportion of one tenth of the bulk for large castings, and one twentieth for small castings. A few founders mix street-sweepings with the coal in order to get porosity when the metal in the mould is likely to be a long time before setting. Plumbago is effective in preventing destruction of the sand; lut owing to its refractory nature, it must not be dusted on in such quantities as to close the pores and prevent free exit of the gases. Powdered French chalk, soapstone, and other substances are sometimes used for facing the mould; but next to plumbago, oak charcoal takes the best place, notwithstanding its liability to float occasionally and give a rongh casting.

    For the treat ment of sand in the moulding-shop the most primitive method is that of hand-riddling and treading. Here the materials are roughly proportioned by volume, and riddled over an iron plate in a flat heap, where the mixture is trodden into a cake by stamping with the feet; it is turned over with the shovel, and the process repeated. Tongh sand can be obtained in this manner, its toughness being usnally tested by squeezing a handful into a ball and then breaking it; but the process is slow and tedious. Other things being equal, the chief characteristics of a good moulding-sand are toughness and porosity, qualities that depend on the manner of mixing as well as on uniform ramming.

    Toughness of Sand.-In order to test the relative toughness, sand mixed in varions ways was pressed under a uniform load into bars 1 in . sq. and about 12 in . long, and each bar was made to project further and further over the edge of a table until its end broke off by its own weight. Old sand from the shop floor had very irregular coliesion, breaking at all lengths of projections from $1 / 2 \mathrm{in}$. to $11 / 2 \mathrm{in}$. New sand in its natural state held together until an overhang of $23 / 4 \mathrm{in}$. was reached. A mixture of old sand, new sand, and coal-dust
    Mixed under rollers...................... broke at in the centrifugal machine...... $_{6}^{2}$ to $\underset{21}{21}$ in. of overhang. through a riddle.
    " " 13/4
    " 214 " "
    -

    Sho-ring as a mean of the tests only slight differences between the last three methods, but in favor of machine-worls. In many instances the fractures were so uneven that minute measurements were not taken.
    Dimensions of Foundry Ladles. - The following table gives the dimensons. inside the lining, of ladles from 25 lbs. to 16 tons capacity. All the ladles are supposed to have straight sides. (Am. Mach., Aug. 4, 1892.)

    | Capacity. | Diam. | Depth. | Capacity | Diam. | Depth. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 16 tolls | $\operatorname{in}_{54} .$ | $\mathrm{in}_{56} .$ |  | $\mathrm{in}_{20}$ | $\operatorname{in}_{20} .$ |
    | 14 6 | 52 | 53 | $1 / 36$ | 17 | $1 \sim$ |
    | 12 " | 49 | 50 | $14{ }^{1}$ | 131/2 | $131 /$ |
    | 10 | 46 | 48 | 300 pounds | 111 | 111\% |
    | 8 " | 43 | 44 | 250 " | 103/4 | 11 |
    | 5 | 39 | 40 | 200 " | 10 | 101\% |
    | 4 ، | 84 | 35 | 150 | 9 | 91\% |
    | 3 | 31 | 32 | 100 | 8 | 81. |
    | 2 | 27 | 28 | 75 | 7 | $71 / 3$ |
    | 11/2"6 | 2412 | 25 | 50 - | 61/2 | $61 / 2$ |
    | $1{ }^{6}$ | 22 | 22 | 35 " | 51/3 | 6 |

    ## THE MACHINE-SHOP.

    ## SPEED OF CUTTHNG-TOOLS IN LATHES, MHLLING IVEACHINES, ETC.

    Relation of diameter of rotating tool or piece, number of revolutions, and cutting-speed:
    Let $d=$ diain. of rotating piece in inches, $n=$ No. of revs. per min.;
    $S=$ speed of circumference in feet per minute;

    $$
    \mathcal{S}=\frac{\pi d n}{12}=.2618 d n ; \quad n=\frac{S}{.2618 d}=\frac{3.82 S}{d} ; \quad d=\frac{3.82 S}{n} .
    $$

    Approximate rule: No. of revs. per min. $=4 \times$ speed in ft. per min. + dian. in inches.
    speed of Cut for Lathes and Planers. (Prof. Coleman Sellers, Stevers' Indicator, April, 189\%.)-Bruss may be turned at high speed like wood.

    Bronze.-A speed of 18 feet per minute can be used with the soft alloyssay 8 to 1, while for hard mixtures a slow speed is required-say 6 feet per minute.

    Wrought Iron can be turned at 40 feet per minute, but planing-machines that are used for both cast and forged iron are operated at 18 feet per minute.

    Machinery Steel.-Ordinary, 14 feet per minute; car-axles, etc., 9 feet per minnte.

    Wheel Tires. -6 feet per minute; the tool stands well, but many prefer to run faster, say 8 to 10 feet, and grind the tool more frequently.
    Lathes.-The speeds obtainable by means of the cone-pulley and the back gearing are in geometrical progression from the slowest to the fastest. In a well-proportioned machine the speeds hold the same relation through all the steps. Many lathes have the same speed on the slowest of the cone and the fastest of the back-gear speeds.
    The Speed of Counter-shaft of the lathe is determined by an assumption of a slow speed with the back gear, say 6 feet per minute, on the largest diametre that the lathe will swing.
    Example.-A 30 -inch lathe will swing 30 inches $=$, say, 90 inches circumfersnce $=7^{\prime} 6^{\prime \prime}$; the lowest triple gear shuld give a speed of 5 or 6 per minute.
    In turning or planing, if the cutting-speed exceed 30 ft . per minute, so much heat will be produced that the temper will be drawn from the tool. The speed of cutting is also governed by the thickness of the shaving, and by the hardness and tenacity of the metal which is being cut; for instance, in cutting mild steel, with a traverse of $3 / 8$ in. per revolution or stroke, and with a shaving about $\frac{5}{8} \mathrm{in}$. thick, the speed of cutting must be reduced to about 8 ft . per minute. A good average cutting-speed for wrought or cast

    Iron is 20 ft , per minute, whether for the Iathe, planing, shaping, or slotting machine. (Proc. Inst. M. E., April, 1883, p. 248.)

    Table of Cutting-speeds.

    | Diameter, inches. | Feet per minute. |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 5 | 10 | 16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
    |  | Revolutions per minute. |  |  |  |  |  |  |  |  |  |
    | 14 | 76.4 | 152.8 | 229.2 | 305.6 | 382.0 | 458.4 | 534.8 | 611.2 | 687.6 | \%64.9 |
    | 3/8 | 50.9 | 101.9 | 152.8 | 203.7 | 254.6 | 305.6 | 356.5 | 407.4 | 458.3 | 509.3 |
    | $1 / 3$ | 38.2 | 76.4 | 114.6 | 152.8 | 191.0 | 229.2 | 267.4 | 305.6 | 3438 | 382.0 |
    | 5 | 30.6 | 61.1 | 91.7 | 122.2 | 152.8 | 183.4 | 213.9 | 244.5 | 275.0 | 305.6 |
    | 3/4 | $\stackrel{25.5}{21.5}$ | 50.9 | 765.4 | 101.8 | 127.3 | 152.8 | 178.2 | 203.7 | $2: 29.1$ | 254.6 |
    | 88 | 21.5 | 43.4 | 65.5 | 87.3 | 109.1 | 130.9 | 152.8 | 174.6 | 196.4 | 218.3 |
    | $11 / 6$ | 19.1 | 38.2 | 57.8 | 76.4 | 95.5 | 114.6 | 133.7 | 152.8 | 171.9 | 191.0 |
    | 118 | 17.0 | 34.0 | 50.9 | 67.9 | 84.9 | 101.8 | 118.8 | 135.8 | 152.8 | 169.5 |
    | 114 | 15.3 | 30.6 | 45.8 | 61.1 | 76.4 | 91.7 | 106.9 | 122.2 | 137.5 | 152.8 |
    | $11 / 2$ | 12.7 | 25.5 | 38.2 | 50.6 | 63.6 | 83.3 76.4 | 97.2 89.1 | 111.1 | 125.0 | 138.9 |
    | $13 / 4$ | 10.9 | 21.8 | 32.7 | 43.6 | 54.6 | 65.5 | 76.4 | 87.3 | 98.2 | 109.8 |
    | 2 | 9.6 | 19.1 | 28.7 | 38.2 | 47.8 | 57.3 | 66.9 | 76.4 | 86.0 | 95.5 |
    | 214 | 8.5 | 17.0 | 25.5 | 34.0 | 42.5 | 50.9 | 59.4 | 67.9 | 76.4 | 84.9 |
    | $21 / 3$ | 7.6 | 15.3 | 229 | 30.6 | 38.2 | 45.8 | 53.5 | 61.1 | 68.8 | r6.4 |
    | $33 / 4$ | 6.9 | 13.9 | 20.8 | 27.8 | 34.7 | 41.7 | 48.6 | 55.6 | 62.5 | 69.5 |
    | 3 $31 / 2$ | 6.4 5.5 | 12.7 10.9 | 19.1 16.4 | 25.5 | 31.8 | 38.2 | 44.6 | 50.9 | 57.3 | 633.7 |
    | $31 / 2$ | 5.5 4.8 | 10.9 9.6 | 16.4 | 21.8 | 27.3 23.9 | 32.7 | 38.2 | 43.7 <br> 38 | 49.1 | 54.6 |
    | $41 / 2$ | 4.2 | 8.5 | 12.7 | 19.0 | 23.9 21.2 | 28.7 | 33.4 29.7 | 38. ${ }^{\text {P }}$ | 43.0 | 47.8 |
    | 5 | 3.8 | 7.6 | 11.5 | 15.3 | 19.1 | 22.9 | 26.7 | 30.6 | 34.4 | 38.1 |
    | $51 / 3$ | 3.5 | 6.9 | 10.4 | 13.9 | 17.4 | 20.8 | 24.3 | 27.8 | 31.2 | 34.7 |
    | 6 | 3.2 | 6.4 | 9.5 | 12.7 | 15.9 | 19.1 | 22.3 | 25.5 | 28.6 | 31.8 |
    | 7 | 2.7 | 5.5 | 8.2 | 10.9 | 13.6 | 16.4 | 19.1 | 21.8 | 24.6 | 27.3 |
    | 8 | 2.4 | 4.8 | 7.2 | 9.6 | 11.9 | 14.3 | 16.7 | 19.1 | 21.5 | 23.9 |
    |  | 2.1 | 4.2 | 6.4 | 8.5 | 10.6 | 12.7 | 14.8 | 17.0 | 19.1 | 21.2 |
    | 10 | 1.8 | 3.8 | 5.7 | 7.6 | 9.6 | 11.5 | 13.3 | 15.3 | 17.2 | 19.1 |
    | 11 12 | 1.7 1.6 | 3.5 | 5.2 | 6.9 | 8.7 | 10.4 | 12.2 | 13.9 | 15.6 | 17.4 |
    | 12 | 1.6 | 3.2 | 4.8 | 6.4 | 8.0 | 9.5 | 11.1 | 12.7 | 14.3 | 15.9 |
    | 13 | 1.5 | 2.9 | 4.4 | 5.9 | \%. 3 | 8.8 | 10.3 | 11.8 | 13.2 | 14.7 |
    | 14 | 1.4 | 2.7 | 4.1 | 5.5 | 6.8 | 8.2 | 9.5 | 10.9 | 12.3 | 13.6 |
    | 15 16 | 1.3 | 2.5 | 3.8 | 5.1 | 6.4 | 7.6 | 8.9 | 10.2 | 11.5 | 12.7 |
    | 16 | 1.2 | 2.4 | 3.6 | 4.8 | 6.0 | 7.2 | 8.4 | 9.5 | 10.10 | 11.9 |
    | 18 20 | 1.1 | 2.1 | 3.2 | 4.2 | 5.8 | 6.4 | 7.4 | 8.5 | 9.5 | 10.6 |
    | 20 | 1.0 | 1.9 | 2.9 | 3.8 | 4.8 | 5.7 | 6.7 | 7.6 | 8.6 | 9.6 |
    | 22 24 | .9 | 1.7 | 2.6 | 3.5 | 4.3 | 5.2 | 6.1 | 6.9 | 7.8 | 8.7 |
    | $\stackrel{24}{26}$ | . 8 | 1.6 | 2.4 | 3.2 2.9 | 4.0 | 4.8 | 5.6 | 6.4 | 7.2 | 8.0 |
    | $\stackrel{28}{28}$ | . 7 | 1.5 | 2.2 | 2.9 | 3.7 3.4 | 4.4 | 5.1 | 5.9 | 6.6 | 7.3 |
    | 30 | . 6 | 1.3 | 1.9 | 2.5 | 8.2 | 4.8 | 4.8 | 5.5 | 6.1 | 6.8 |
    | 36 | . 5 | 1.1 | 1.6 | 2.1 | 2.7 | 3.2 | 8.7 | 4.2 | 4.8 | 5.4 |
    | 42 | . 5 | . 9 | 1.4 | 1.8 | 2.3 | 2.7 | 8.2 | 3.6 | 4.1 | 4.5 |
    | 48 | . 4 | . 8 | 1.2 | 1.6 | 2.0 | 2.4 | 2.8 | 3.2 | 3.6 | 4.0 |
    | 54 | . 4 | . 7 | 1.1 | 1.4 | 1.8 | 2.1 | 2.5 | 2.8 | 3.2 | 3.5 |
    | 60 | . 3 | . 6 | 1.0 | 1.3 | 1.6 | 1.9 | 2.2 | 2.5 | 2.9 | 3.2 |

    Speed of Cutting with Turret Lathes.-Jones \& Lamson Machine Co. give the following cutting-speeds for use with their flat turret lathe on diameters not exceeding two inches:
    Ft. per minute.
    $\left\{\begin{array}{l}\text { Tool steel and taper on tubing. }\end{array}\right.$ ..... 10
    Threading Machinery. ..... 15
    Very soft steel..
    Very soft steel.. ..... 20 ..... 20
    Turning $\left\{\begin{array}{l}\text { Cut which reduces the stock to } 1 / 3 \text { of its original diam.. } \\ \text { Cut }\end{array}\right.$ ..... 20
    machinery Cut which reduces the stock to 34 of its original diam.. Cut which reduces the stock to 34 of its original diam.. ..... 25 ..... 25

    steel
    Cut which reduces the stock to 78 of its original diam.. 30 to 35
    Cut which reduces the stock to $15 / 16$ of its original diam. 40 to 45

    Formas of Metal-cutting Tools.-"Hutte," the German Engineers' Pocket-book, gives the following cutting-angles for using least power: Top Rake. Angle of Cutting-edge.
    
    $3^{\circ}$ $51^{\circ}$ $51^{\circ}$
    Bronze.
    $4^{\circ}$
    $66^{\circ}$
    The American Machinist comments on these figures as follows: We are not able to give the best nor even the generally used angles for tools, because these vary so much to suit different circumstances, such as degree of hardness of the metal being cut, quality of steel of which the tool is made, depth of cut, kind of finish desired, etc. The angles that cut with the least expenditure of power are easily determined by a few experiments, but the best angles must be determined by good judgnent, guided by expe: rience. In nearly all cases, however, we think the best practical angles are greater than those given.

    For illustrations and descriptions of various forms of cutting-tools, see articles on Lathe Tools in App. Cyc. App. Mech., vol. ii., and in Modern Mechanism.

    Cold Chisels. - Angle of cutting-faces (Joshua Rose): For cast steel, about 65 degrees; for gun-metal or brass, about 50 degrees; for copper and soft metals, about 30 to 35 degrees.

    Rule for Gearing Lathes for Screw-cutting. (Garvin Machine Co.)-Read from the lathe mdex the number of threads per inch cut by equal gears, and multiply it by any number that will give for a product a gear on the index; put this gear upon the stud, then multiply the number of threads per inch to be cut by the same number, and put the resulting gear upon the screw.
    Example.-To cut $111 / 2$ threads per inch. We find on the index that 48 into 48 cuts 6 threads per inch, then $6 \times 4=24$, gear on stud, and $11 \backsim \times 4=46$, gear on screw. Any multiplier may be used so long as the products include gears that belong with the lathe. For instance, instead of 4 as a multiplier
     upon screw.

    Rules for Calculating Simple and Comipor: 1 Gearing where there is no Index. (Am Mach.)-It the lathe is simple. geared, and the stud runs at the same speed as the spindle, select some gear for the screw, and multiply its number of teeth by the number of threads per inch in the lead-screw, and divide this result by the number of threads per inch to be cut. This will give the number of teeth in the gear for the stud. If this result is a fractional number, or a number which is not among the gears on hand, then try some other gear for the screw. Or, select the gear for the stud first, then multiply its number of teeth by the number of threads per inch to be cut, and divide by the number of threads per inch on the lead-screw. This will give the number of teeth for the gear on the screw. If the lathe is compound, select at random all the driving-gears, multiply the numbers of their teeth together, and this product by the number of threads to be cut. Then select at random all the driven gears except one; multiply the numbers of their teeth together, and this product by the number of threads per inch in the lead-screw. Now divide the first result by the second, to obtain the number of teetli in the remaining driven gear. Or, select at random all the driven gears. Multiply the numbers of their teeth together, and this product by the number of threads per inch in the leadscrew. Then select at random all the driving-gears except one. Multiply the numbers of their teeth together, and this result by the number of threads per inch of the screw to be cut. Divide the first result by the last, to obtain the number of teeth in the remaining driver. When the gears on the compounding stud are fast togethe:, and cannot be changed, then the driven one has usually twice as many teeth as the other, or driver, in which case in the calculations consider the lead-screw to have twice as many threads per inch as it actually nas, and then igore the compounding entirely. Some lathes are so constructed that the stud on which the first driver is placed revolves only half as fast as the spindle. This can be ignored in the calculations by doubling the number of threads of the lead-screw. If ioth the last conditions are present ignore them in the calculations by multiplying the number of threads per inch in the lead-screw by four. If the thread to be cut is a fractional one, or if the pitch of the leal-screw is fractional, or if both are fractional, then reduce the fractions to a common denominator, and use the numerators of these fractions as if thev equalled the pitch of the screw
    to be cut, and of the lead-screw, respectively. Then use that part of the rule given above which applies to the lathe in question. For instance, suppose it is desired to cut a thread of $25 / 3: 2$-inch pitch, and the lead-serew has 4 threads per inch. Then the pitch of the lead-screw will be $1 / 4$ inch, which is equal to $8 / 32$ inch. We now have two fractiou, $25 / 32$ and $8 / 32$, and the two screws will be in the proportion of 25 to 8 , and the gears can be figured by the above rule, assuming the number of threads to be cut to be 8 per inch, and those on the lead-screw to be 25 per inch. But this latter number may be further modified by conditions named above, such as a reduced speed of the stind, or fixed compound gears. In the instance given, if the lead-serew had been $21 / 2$ threads per inch, then its pitch being $4 / 10$ inch, we lave the fractions $4 / 10$ and $25 / 32$, which, reduced to a common denominator, are $64 / 160$ and $125 / 160$, and the gears will be the same as if the lead-screw had 125 threads per inch, and the screw to be cut 64 threads per inch.

    On this subject consult also "Formulas in Gearing," published by Brown \& Sharpe Mfy. Co., and Jamieson's Anntied Mechanics.

    Change-gears for Ecrew-cutting Lathes.-There is a lack of uniformity anong lathe-builders as to the change-gears provided for screwcutting. W. R. Macdonald, in Am. Mach., April 7, is 42 . proposes the following series, by which 33 whole threads (not fractional) may be cut by changes of only nine gears:

    |  | Spindle. |  |  |  |  |  |  |  |  | Whole Threads. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 20 | 30 | 40 | 50 | 60 | 70 | 110 | 120 | 130 |  |  |  |  |
    | 20 |  | 8 |  | $44 / 5$ |  | $33 / \hat{i}$ | $20 / 11$ | 2 | $111 / 13$ | 2 | 11 | 22 |  |
    | 30 | 18 |  | 9 | $71 / 5$ | 6 | $51 / \tau$ | $33 / 11$ | 3 | ${ }^{1} 110 / 13$ | 3 | 12 | 24 | 48 |
    | 40 50 | 24 30 | 16 | 12 | $93 / 5$ | 8 | 6 6/7 | $44 / 11$ | 4 | $3 \begin{array}{ll}3 & 9 / 13\end{array}$ | 4 | 13 | 26 | 52 |
    | ${ }_{60}^{50}$ | 30 36 | 20 | 18 | $14 \geqslant$ | 10 |  | [50/11 | 5 | $\begin{array}{ll}4 & 8 / 13 \\ 5 & 7 / 13\end{array}$ | 5 | 14 | 28 30 | $\stackrel{66}{\sim}$ |
    | 70 | 42 | 28 | 21 | 16 4/5 | 14 | 10 2/ | \% 8 \%/11 | ${ }_{7}^{6}$ | 5 6 | $\stackrel{6}{7}$ | 15 16 | 30 33 |  |
    | 110 | 66 | 44 | 3.3 | 262/5 | 2 | $18 \% / 7$ | , 1 | 11 | 10 $2 / 13$ | 8 | 18 | 36 |  |
    | 120 | 2 |  | 36 | $284 / 5$ | 24 | 20 4/7 | 13 1/1i | 1 | 11 $1 / 1 / 3$ | 8 | 20 | 36 39 |  |
    | 130 | 78 | 52 | 39 | $311 / 5$ | 26 | 22 3/\% | $142 / 11$ | 13 | \|lay | 10 | 21 | 42 |  |

    Ten gears are sufficient to cut all the usual threads, with the exception of perhaps 111/2, the standard pipe-thread; in ordinary practice any fractional thread between 11 and 12 will be near enough for the customary short pipethread; if not, the addition of a single gear will give it.
    In this table the pitch of the lead-screw is 12, and it may be objected to as too fille for the purpose. This may be rectified by making the real pitch 6 or any other desirable pitch, and establishing the proper ratio between the lathe spindle and the gear-stud.
    Metric Screw-tirreads may be cut on lathes with inch-divided lead-ing-screws, by the use of change wheels with 50 and 127 teeth; wor 127 centimetres $=50$ inches ( $127 \times 0.3937=49.9999$ in. $)$.

    Rule for Setting the Taper in a Latire. (Am. Mach.)-No rule can be given which will produce exact results, owing to the fact that the centres enter the work an indefinite distance. If it were not for this circumstance the following would be an exact rule, and it is an approximation as it is. To find the distance to set the centre over: Divide the difference in the diameters of the large and small end of the taper by 2 , and multiply this quotient by the ratio which the total length of the slaft bears to the length of the tapered portion. Example: Suppose a shaft three feet long is to have a taper turned on the end one foot long, the large end of the taper being two inches and the small end one inch diameter. $\frac{2-1}{2} \times \frac{3}{1}=1 / 2$ inches.

    ## Electric Drilling-macbines-Speed of Drilling Holes in

    Steel Plates. (1'roc. Inst. M. L., Aug. 188̃, p. $3: 9$. .)-In drilling holes in the shell of the S.S. "Albania," after a very small amount of practice the men working the machines drilled the $\% / 8$-inch holes in the sliell with great rapidity, doing the work at the rate of one liole every 69 seconds, inclusire of the lime occupied in altering the nusition of the machines by means of differential pulley-blocks, which were not conveniently arranged as slings for this purjose. Repeated trials of these drilling-machines have also shown that, when using electrical energy in buth holding-on magnets and motoramounting to about $3 / 4 \mathrm{~F} . \mathrm{P}$. , they have drilled holes of 1 inch diameter through 112 inch thickness of solid wrought iron, or through $15 / 8$ inch of mild steel in two plates of $13 / 16$ inch each, taking exactly $13 / 4 \mathrm{~min}$. for each hole.
    Speed of Drills. (Morse Twist-drill and Machine Company.)-The following table gives the revolutions per minute for drills from $1 / 16$ in. to 2 in. diameter, as usually applied:

    | Diameter of Drills, in | Speed for Wrought Iron and Steel. | Speed for Cast Iron. | Speed for <br> Brass | Diameter of Drills, in. | Speed for Wrought Iron and Steel. | Speed for Cast Iron. | Speed for Brass |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1/16 | 1712 | 2353 | 3544 | 11/16 | T2 | 108 | 180 |
    |  | 855 | 1191 | $1{ }^{1 \%}$ | 11/8 | 68 | 102 | $1 \% 0$ |
    | $3 / 16$ | 571 | 794 | 1181 | $13 / 16$ | 64 | 97 | 161 |
    | $1 / 4$ | 397 | 565 | 855 | 11/4 | 58 | 89 | 150 |
    | 5/16 | 318 | 452 | 681 | $15 / 16$ | 55 | 84 | 143 |
    | m $3 / 8$ | 265 | $3: 7$ | 540 | 13/8 | 53 | 81 | 136 |
    | $7 / 16$ | 227 | 323 | 489 | $17 / 16$ | 50 | 77 | 130 |
    | 1/2 | 183 | 266 | 419 | 11/2 | 46 | 74 | 122 |
    | $9 / 16$ | 163 | 238 | 367 | $19 / 16$ | 44 | 71 | 117 |
    | 5/8 | 147 | 214 | 330 | $15 / 8$ | 40 | 66 | 113 |
    | 11/16 | 133 | 194 | 300 | $13 / 11 / 1$ | 38 38 | 61 | 109 105 |
    | 13/16 | 103 | 155 | 244 | $113 / 16$ | 36 | 59 | 101 |
    | $1 / 8$ | 96 | 144 | 227 | 17/8 | 33 | 55 | 98 |
    | 15/16 | 89 | 134 | 212 | $115 / 16$ | 32 | 53 | 95 |
    | 1 | 76 | 115 | 191 | 2 | 31 | 51 | 92 |

    One inch to be drilled in soft cast iron will usually require: for $1 / 4-\mathrm{in}$. drill, 160 revolutions; for $1 / 2$-in. drill, 140 revolutions; for $3 / 4-\mathrm{in}$. drill, 100 revolutions; for $1-\mathrm{in}$. drill, 95 revolutions. These speeds should seldom be exceeded. Feed per revolution for $14-\mathrm{in}$. drill, . 005 inch; for $1 / 2-\mathrm{in}$. drill, . 007 inch; for $3 / 4-\mathrm{in}$. drill .010 inch.
    The rates of feed for twist drills are thus given by the samo company: $\begin{array}{llllllll}\text { Diameter of drill........... } & 1 / 16 & 1 / 4 & 3 / 8 & 1 / 2 & & 3 / 4 & 1 \\ \text { Revs. per inch depth of hole. } 125 & 125 & 120 \text { to } 140 & 1 \text { inch feed per min. }\end{array}$

    ## MILLING-CUTTNERS。

    George Addy, (Proc. Inst. M. E., Oct. 1890, p. 537), gives the following :
    Analyses of Steel.-The following are analyses of milling cutter blanks, inade from best quality crucible cast steel and from self-hardening "Ivanhoe" steel:

    Crucible Cast Steel, per cent.

    | Carbon | 1.2 |
    | :---: | :---: |
    | Silicou. | 0.112 |
    | Phosphorus ..................... | 0.018 |
    | Manganese. | 0.36 |
    | Sulphur. | 0.02 |
    | Tungsten |  |
    | Iron, by difference.......... ... | 98.29 |
    |  | 100.000 |

    Ivanhoe Steel, per cent. 1.67 0.252 0.051 2.557 0.01 4.65 90.81
    100.000

    The first analysis is of a cutter 14 in . diam., 1 in . wide, which gave very good service at a cutting-speed of 60 ft . per min. Large nilling-cutters are sometimes built up, the cutting-edges only being of tool strel. A cutter 22 in . diam. by $51 / 2 \mathrm{in}$. wide has been made in this way, the teeth being clamped between two cast-iron flanges. Mr. Addy recommends for this form of tooth one with a cutting-angle of $70^{\circ}$, the face of the tooth being set $10^{\circ}$ back of a radial line on the cutter, the clearance-angle being thus $10^{\circ}$. At the Clarence Iron-works, Leeds, the face of the tooth is set $10^{\circ}$ back of the radial line for cutting wrought iron and $20^{\circ}$ for steel.

    Pitch of Teeth.-For obtaining a suitable pitch of teeth for millingcutters of various dianeters there exists no standard rule, the pitch being usually decided in an arbitrary manner: according to individual taste.

    For estimating the pitch of teeth in a cutter of any diameter from 4 in. to 15 in., Mr. Addy has worked out the following rule, which he has found capable of giving good results in practice:

    $$
    \text { Pitch in inches }=\sqrt{(\text { dianl. in inches } \times 8)} \times 0.0625=.1 \% 7 \sqrt{\text { diam. }}
    $$

    J. M. Gray gives a rule for pitch as follows: The number of teeth in a milling.cutter ought to be 100 times the pitch in inches; that is, if there were 27 teeth, the pitch ought to be $0.2 \%$ in. The rules are practically the same, for if $d=$ diam., $n=$ No. of teeth, $p=$ pitch, $c=$ circumference, $c=$ $p n ; \quad d=\frac{p n}{\pi}=\frac{100 p^{2}}{\pi}=31.83 p^{2} ; p=\sqrt{.0314 d}=.1 \% \sqrt{d} ;$ No. of teeth, $n,=$ $3.14 d \div p$.

    Number of Teethin Hills or Cutters. (Joshua Rose.) -The teeth of cutters must obviously be spaced wide enough apart to adinit of the emerywheel grinding one tooth without touching the next one, and the front faces of the teeth are always made in the plane of a line radiating from the axis of the cutler. In cutters up to 3 in . in diam. it is good practice to provide 8 teeth per in. of diam, while in cutters above that diameter the spacing may be coarser, as follows:

    $$
    \text { Diameter of cutter, }{ }_{6}^{6} \mathrm{in} \text {; ; number of teeth in cutter, } 40
    $$

    Speed of Cutters. - The cutting speed for milling was originally fixed very low; but experience has shown that with the improvements now in use it may with advantage be considerably increased, especially with cutters of large diameter. The following are recommended as safe speeds for cutters of 6 im . and upwards, provided there is not any great depth of material to cut away:

    |  | Steel. | Wrought iron. Cast iron. | Brass. |  |
    | :--- | :---: | :---: | :---: | :---: |
    | Feet per minute..... | 36 | 48 | 60 | 120 |
    | Feed, inch per minn.. | $1 / 2$ | 1 | $12 / 3$ | $2 \% / 3$ |

    Should it be desired to remove any large quantity of material, the same cutting-speeds are still recommended, but with a finer feed. A simple rule for cutting-speed is: Number of revolutions per minute which the cutter spindle shonld make when working on cast iron $=240$, divided by the diameter of the cutter in inches.

    Speed of Milling-cutters. (Proc. Inst. M. E., April, 1883, p. 248.)The cutting-speed which can be employed in milling is much greater than that which can be used in any of the ordinary operations of turning in the lathe, or of planing, shaping, or slotting. A milling-cutter with a plentiful supply of oil, or soap and water, can be run at from 80 to 100 ft . per min., when cutting wrought iron. The same metal can only be turned in a lathe, with a tool-holder having a good cutter, at the rate of 30 ft . per min., or at about one thild the speed of milling. A milling-cutter will cut cast steel at the rate of 25 to 30 ft . per min.

    The following extracts are taken from an article on speed and feed of milling-cutters in Eng'g, Oct. 22, 1891: Milling-cutter's are successfully employed on cast iron at a speed of 250 ft . per min.; on wrought iron at from 80 ft . to 100 ft . per min. The latter materials need a copious supply of good lubricant, such as oil or soapy water. These rates of speed are not approached by other tools. The usual cutting-speeds on the lathe, planing. shaping, and slotting machines rarely exceed about one third of those givem above, and frequently average about a fifth, the time lost in back strokes not being reckoned.
    The feed in the direction of cutting is said by one writer to vary, in ordinary work, from 40 to 70 revs. of a 4 -in. cutter per in. of feed. It must always to an extent depend on the character of the work done, but the above gives shavings of extreme thinness. For example, the circumference of a 4 -in. cutter being, say, $121 / 2 \mathrm{in} .$, and having, say, 60 teeth, the advance corresponding to the passage of one cutting-tooth over the surface, ill the coarser of the above-named feed-motions, is $1 / 40 \times 1 / 60=1 / 2400 \mathrm{in}$.; the finer feed gives an advance for each tooth of only $1 / \% 0 \times 1 / 60=1 / 4200 \mathrm{in}$. Such fine feeds as these are used only for light finishing cuts, and the same authority recommends, also for fini-hing, a cutter about 9 in . in circumference, or nearly 3 in. in diameter, which shonld be run at about 60 revs. per min. to cut tough wrought steel, 120 for ordinary cast iron, about 80 for wrought

    Iron, and from 140 to 160 for the various qualtities of gun-metal and brass. With cutters smaller or larger the rates of revolution are increased or diminished to accord with the following table, which gives these rates of cutting-speeds and shows the lineal speed of the cutting-edge:

    Steel. Wrought Iron. Cast Iron. Gun-metal. Brass. $\begin{array}{lllllll}\text { Feet per minute... } & 45 & 60 & 90 & 105 & 120\end{array}$

    These speeds are intended for very light finishing cuts, and they must be reduced to about one half for heavy cutting.
    The following results have been found to be the highest that conld be attained in ordinary workshop rontine, having due consideration to economy and the time taken to change and grind the cutters when they become dull: Wrought iron- 36 ft . to 40 ft . per min.; depth of cut. 1 in .; feed, $5 / 8 \mathrm{in}$. per min. Soft mild steel-About 30 ft . per min.; depth of cut, $1 / 4 \mathrm{in}$.; feed, $3 / 4$ in. per min. Tough gun-metal-80 ft. per min.; depth of cut, $1 / 2 \mathrm{in} . ;$ feed, $3 / 4$ in. per min. Cast-iron gear-wheels-261/2 ft. per min.; deptll of cut, $1 / 2 \mathrm{in}$.; feed, $3 / 4 \mathrm{in}$. per min. Hard, close-grained cast iron- 30 ft . per min.; depth of cut, $21 / 2 \mathrm{in} .:$ feed, $5 / 16 \mathrm{in}$. per min. Gun-metal joints, 53 ft . per min.; depth of cut, $13 / 8 \mathrm{in}$.; feed, $5 / 8 \mathrm{in}$. per min. Steel-bars- 21 ft . per min.; depth of cut, $1 / 32 \mathrm{in}$.; feed, $3 / 4 \mathrm{in}$. per min.

    A stepped milling-cutter, 4 in . in diam. and 12 in . wide, tested under two conditions of speed in the same machine, gave the following results: The cutter in both instances was worked up to its maximum speed before it gave way, the object being to ascertain definitely the relative amount of work done by a high speed and a light feed, as compared with a low speed and a heavy cut. The machine was used single-geared and double-geared, and in both cases the width of cut was $101 / 2 \mathrm{in}$.
    Single-gear, 42 ft . per min.; $5 / 16 \mathrm{in}$. depth of cut; feed, 1.3 in . per min. = 4.16 cu in. per min. Double-gear, 19 ft . per min.; $3 / 8 \mathrm{in}$. depth of cut; feed, $5 / 8 \mathrm{in}$. per min. $=2.40 \mathrm{cu}$. in. per min.

    Extreme Results with Filling-machines. - Horace L. Aruold (Am. Mach., Dec. 28, 1893) gives the following results in flat-surface nilling, obtained in a Pratt \& Whitney milling-machine: The mills for the flat cut were $5^{\prime \prime}$ diam., 12 teeth, 40 to 50 revs. and $4 \% / 8^{\prime \prime}$ feed per min. One single cut was run over this piece at a feed of $9^{\prime \prime}$ per min., but the mills showed plainly at the end that this rate was greater than they could endure. At 50 revs. for these mills the figures are as follows, with $4 \% / 8^{\prime \prime}$ feed: Surface speed, 64 ft ., nearly; feed per tooth, $0.00812^{\prime \prime}$ : cuts per inch, 123 . And with $9^{\prime \prime}$ feed per min.: Surface speed, 64 ft . per min.; feed per tooth, $0.015^{\prime \prime}$; cuts per inch, $66 \%$.
    At a feed of $47 / 8^{\prime \prime}$ per min. the mills stood up well in this job of cast-iron surfacing, while with a $9^{\prime \prime}$ feed they required glinding after surfacing one piece; in other words, it did not damage the mill-teeth to do this job with 123 cuts per in. of surface finished, but they would not endure $66 \% / 3$ cuts per inch. In this cast-iron milling the surface speed of the mills does not seeni to be the factor of mill destruction: it is the increase of feed per tooth that prohibits increased production of finished surface. This is precisely the reverse of the action of single-pointed lathe and planer tools in general: with such tools there is a surface-speed limit which cannot be economically exceeded for dry cuts, and so long as this surface-speed limit is not reached, the cut per tooth or feed can be made anything up to the limit of the driving power of the lathe or planer, or to the safe strain on the work itself, which can in many cases be easily broken by a ton great feed.
    In wrought metal extreme figures were obtained in one experiment made in cutting keyways $5 / 16^{\prime \prime}$ wide by $1 / 8^{\prime \prime}$ deep in a bank of 8 shafts $11^{\prime \prime}$ diam. at once, on a Pratt \& Whitney No, 3 colnmn milling-machine. The 8 mills were successfully operated with 45 ft . surface speed and $191 / 2 \mathrm{in}$. per mirr. feed; the cutters were $5^{\prime \prime}$ diam., with $2 S$ teeth, giving the following figures, in steel: Surface speed, 45 ft . per min.; feed per tooth. $0.02024^{\prime \prime}$; cuts per inch, 50 , nearly. Fed with the revolution of mill. Flooded with oil, that is, a large stream of oil running constantly over each mill. Face of tooth radial. The resulting keyway was described as having a heavy wave or-cutter-mark in the bottom, and it was said to have slown no signs of being heavy work on the cutters or on the machine. As a result of the experiment it was decided for economical steady work to run at 17 revs., witlı a feed of $4^{\prime \prime}$ per min., flooded cut, work fed with mill revolution, giving the following figures: Surface speed, $221 / 4 \mathrm{ft}$. per min.; feed per tooth, $0.0084^{\prime \prime}$ : cuts per inch, 119.

    An experiment in milling a wrought iron connecting-rod of a focomotive on a Pratt \& Whitney double-head milling-machine is described in the Iron Age, Aug. $2^{2 \prime}, 1891$. The amount of metal removed at one cut measured $31 / 2$ in. wide by $13 / 16 \mathrm{in}$. deep in the groove, and across the top $1 / 8 \mathrm{in}$. deep by $43 / 4$ in. wide. This represented a section of nearly $41 / 2$ sq. in. This was done at the rate of $13 / 4 \mathrm{in}$ per min. Nearly 8 cu . in, of metal were cut up into chips every minute. The surface left by the cutter was very perfect. The cutter moved in a direction contrary to that of ordinary practice; that is, it cut down from the upper surface instead of up from the bottom.

    Milling ${ }^{66}$ with 9 or ${ }^{66}$ against 9 the Foed.-Tests made with the Brown \& Sharpe No. 5 milling-machine (described by H. L. Arnold, in Am. Mach., Oct. 18, 1894) to determine the relative advantage of running the milling-cutter with or against the feed - "with the feed "meaning that the teeth of the cutter strike on the top surface or "scale" of cast-iron work in process of being milled, and "against the feed" meaning that the teeth begin to cut in the clean, newly cut surface of the work and cut upwards toward the scale-showed a decided advantage in favor of running the cutter against the feed. The result is directly opposite to that obtained in tests of a Pratt \& Whitney machine, by experts of the P. \& W. Co.
    In the tests with the Brown \& Sharpe machine the cutters used were 6 inches face by $41 / 2$ and 3 inches diameter respectively, 15 teeth in each mill, 4: revolutions per minute in each case, or nearly 50 feet per minute surface speed for the $41 / 2$-inch and 33 feet per minute for the 3 -inch mill. The revolution marks were 6 to the inch, giving a feed of 7 inches per minute, and a cut per tooth of $.011^{\prime \prime}$. When the machine was forced to the limit of its driving the depth of cut was $11 / 32$ inch when the cutter ran in the "old" way, or against the feed, and only $1 / 4$ inch when it. ran in the "new" way, or with the feed. The endurance of the milling-cutters was much greater when they were rum in the "old "way.
    Spirai Millimgecutters.- There is no rule for finding the angle of the spiral; from $10^{\circ}$ to $15^{\circ}$ is usually considered sufficient; if much greatur the end thrust on the spindle will be increased to an extent not desirable for some machines.
    Millingecutters with Inserted Teeth. - When it is required to use milling-cutter's of a greater diameter than about 8 in ., it is preferable to insert the teeth in a disk or head, so as to avoid the expense of making solid cutters and the difficulty of hardening them, not merely because of the risk of breakage in hardening them, but also on account of the difficulty in obtaining a uniform degree of hardness or temper.

    Hilline - machine versus Planer. - For comparative data of work done by each see paper by J. J. Glant, Trans. A. S. M. E., ix. 259. He says: The advantages of the milling machine over the planer are many, among which are the following : Exact duplication of work; rapidity of production - the cutting being continuous; cost of production, as several machines can be operated by one workman, and lie not a skilled mechanic; and cost of tools for producing a given amount of work.

    ## POWER REQUIRED FOR MACHINE TOOLS.

    Resistance Overcome in Cutting Metal. (Trans. A. S. M. E., viii. 305.)-Some experiments made at the works of William Sellers \& Co. showed that the resistance in cutting steel in a lathe would vary from 180,000 to 700,000 pounds per square inch of section removed, while tor cast iron the resistance is about one third as much. The power required to remove a given amount of metal depends on the shape of the cut and on the shape and the sharpness of the tool used. If the.cut is nearly square in section, the power required is a minimum; if wide and thin, a maximum. The dulness of a tool affects but little the power required for a heavy cut.
    Heavy Work on a Planer.-Win. Sellers \& Co. write as follows to the Americun Machimist. The $120^{\prime \prime}$ planer table is geared to run 18 ft . per minute monder cut, ard $72 \sim$ feet per minute on the return, which is equivalent, without allowance for time lost in reversing, to continuous cut of 14.4 feet per minnte. Assuming the work to be 28 feet long, we may take 14 feet as the continuous cutting speed per minute, the 8 of a foot being much more than sufficient to cover time loss in reversing and feeding. The machine carries four tools. At $1 / 8^{\prime \prime}$ feed per tool, the surface planed per hour would be 35 square feet. The section of metai cut at $34^{\prime \prime}$ depth would be $.75^{\prime \prime} x$ $.125^{\prime \prime} \times 4=.375$ square inch, which would require approximately $30,000 \mathrm{lbs}$.
    pressure to remove it. The weight of metal removed per hour would be $14 \times 12 \times .375 \times .26 \times 60=1082.8 \mathrm{lbs}$. Our earlier form of $36^{\prime \prime}$ planer has removed with one tool on $3 / 4^{\prime \prime}$ cht on work 200 lbs. of metal per hour, and the $120^{\prime \prime}$ machine has more than five times its capacity. The total pulling power of the planer is $45,000 \mathrm{lbs}$.
    Horse-power Required to Run Lathes. (J. J. Flather, Am. Mach., April 23, 1891.)-The power required to do useful work varies with the depth and breadth of chip, with the shape of tool, and with the nature and density of metal operated upon; and the power required to run a machine empty is often a variable quantity.

    For instance, when the machine is new, and the working parts have not become worn or fitted to each other as they will be after running a few months, the power required will be greater than will be the case after the running parts have become better fitted.
    Another cause of variation of the power absorbed is the driving-belt; a tight belt will increase the friction, hence to obtain the greatest efficiency of a machine we should use wide belts, and run them just tight enough to prevent slip. The belts should also be soft and pliable, otherwise power is consumed in bending them to the curvature of the pulleys.

    A third cause is the variation of journal-friction, due to slacking up or tightening the cap-screws, and also the end-thrust bearing screw.

    Hartig's investigations show that it requires less total power to turn off a given weight of metal in a given time than it does to plane off the same amount; and also that the power is less for large than for small diameters.

    The following table gives the actual horse-power required to drive a lathe empty at varying numbers of revolutions of main spindle.

    Horse-power for Small Lathes.

    | Without Back Gears. |  | With Back Gears. |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Revs. of Spindle per min. | H.P. required to drive empty. | Revs, ot Spindle per min. | H.P. <br> required to drive empty. | Remarks. |
    | $\begin{aligned} & 132.72 \\ & 219.08 \\ & 365.00 \end{aligned}$ | $\begin{array}{r} .145 \\ .197 \\ .310 \end{array}$ | $\begin{aligned} & 14.6 \\ & 24.33 \\ & 38.42 \end{aligned}$ | $\begin{aligned} & .126 \\ & .141 \\ & .274 \end{aligned}$ | $20^{\prime \prime}$ Fitchburg lathe. |
    | $\begin{gathered} 4 \pi .4 \\ 125.0 \\ 188 \end{gathered}$ | $\begin{array}{r} .159 \\ .259 \\ .339 \end{array}$ | $\begin{aligned} & 4.84 \\ & 12.8 \\ & 192 \end{aligned}$ | $\begin{aligned} & .132 \\ & .187 \\ & .230 \end{aligned}$ | Smallla the ( $1312^{\prime \prime}$ ), Chemnitz. Germany. New machine. |
    | $\begin{aligned} & 54.6 \\ & 122 \\ & 183 \end{aligned}$ | .206 .339 .455 | 6.61 14.8 22.1 | .157 .206 .249 | 171/2' lathe do. New machine. |
    | $\begin{aligned} & 18.8 \\ & 54.6 \\ & 82.2 \end{aligned}$ | .086 .810 .326 | $\begin{gathered} 2.31 \\ 6.72 \\ 10.8 \end{gathered}$ | .035 .063 .087 | $26^{\prime \prime}$ lathe do. |

    If H.P. ${ }_{0}=$ horse-power necessary to drive lathe empty, and $N=$ number ${ }^{\circ}$ of revolitions per minute, then the equation for average small lathes is $\mathrm{H} . \mathrm{P} \cdot 0=0.095+0.0012 N$.

    For the power necessary to drive the lathes empty when the back gears are in, an average equation for lathes under $20^{\prime \prime}$ swing is

    $$
    \mathrm{H} . \mathrm{P}_{\cdot 0}=0.10+0.006 N .
    $$

    The larger lathes vary so much in construction and detail that no general rule can be obtained which will give, even approximately, the power required to run them, and although the average formula shows that at least 0.095 horse-power is needed to start the small lathes, there are many American lathes under $20^{\prime \prime}$ swing working on a consumption of less than 0 . horse-power.

    The amount of power required to remove metal in a machine is determin． able within more accurate limits．
    Referring to Dr．Hartig＇s researches，H．P．${ }_{1}=C W$ ，where $C$ is a constant， and $W$ the weight of chips removed per hour．
    Average values of $C$ are .030 for cast－iron， .032 for wrought－iron， .047 for steel．
    The size of lathe，and，therefore，the diameter of work，has no apparent effect on the cutting power．If the lathe be heavy，the cut can be increased， and consequently the weight of chips increased，but the value of $C$ appears to be about the same for a given metal through several varying sizes of lathes．

    Horse－power required to remove Cast Iron in $\mathbb{A} 20$－tnch Lathe． （J．J．Hobart．）

    |  |  | Tool used． |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 22 | Side tool． | 37.90 | 125 | 015 |  |  |  |
    | $\stackrel{2}{3}$ | 15 | Diamond． | 30.50 | ． 125 | ． 015 | ． 218 | 10.70 | ． $0: 0$ |
    | 3 | 17 | Round nose．．．．．．．． | 42.61 | ． 125 | ． 015 | ． 352 | 14.95 | ． 023 |
    | 4 | 2 | Left－hand round nose．．．．．．．．．．．． | 26.29 | ． 125 | ． 015 | ． 237 | 9.22 | ． 026 |
    | 5 | 4 | Square－faced tool |  |  |  |  |  | ． 026 |
    |  |  | 1／2＂broad ．．．．．．．． | ${ }_{0}^{25.82}$ | ． 015 | ． 125 | ． 255 | 9.06 | ． 028 |
    | 6 <br> 7 | 1 |  | 25.27 25.64 | ． 048 | ． 048 | ． 200 | 10.89 | ． 018 |

    The ebove table shows that an average of .26 horse－power is required to turn off 10 pounds of cast－iron per hour，from which we obtain the average value of the constant $C=.024$ ．
    Most of the cuts were taken so that the metal would be reduced $14^{\prime \prime}$ in diameter；with a broad surface cut and a coarse feed，as in No． 5 ，the power required per pound of chips removed in a given time was a maximum；the least power per unit of weight removed being required when the chip was square，as in No． 6.

    Horse－power required to remove Metal in a 29 －inch Lathe． （R．H．Smith．）

    |  | Metal． |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 4 | Cast iron |  |  |  |  |  |  |
    | 4 | Cast iron | 11.1 | ． 135 | ． 046 | ${ }^{.105}$ | $\begin{array}{r}5.49 \\ 12.96 \\ \hline\end{array}$ | ． 019 |
    | $\stackrel{2}{4}$ | Cast iron | 12.85 | ． 04 | ． 033 | ． 098 | 3.66 | ． 027 |
    | 4 | Wrought iron | 9.6 | ． 03 | ． 046 | ． 059 | 2.49 | ． 023 |
    | 4 | Wrought irou | 9.1 | ． 06 | ． 046 | ． 138 | 4.72 | ． 029 |
    | 2 | Wrought iron | \％．9 | ． 14 | ． 046 | ． 186 | 9.56 | ． 019 |
    | 2 | Wrought iron | 9.35 | ． 045 | ．0．38 | ．092 | 2.99 | ． 031 |
    | 4 | Steel | 6.00 | ． 02 | ． 046 | ． 043 | 1.03 | ． 042 |
    | 4 | Steel | 5.8 | ． 04 | ． 046 | ． 085 | 2.00 | ． 012 |
    |  | Steel | 5.1 | ． 06 | ． 046 | 108 | 2.64 | ． 040 |

    The small values of $C, .017$ and .019 , obtained for cast iron are probably due to two reasons: the iron was soft and of fine quality, known as pulley netal, requiring less power to cut; and, as Prof. Sinith remarks, a lower cuttiog-speed also takes less horse-power.

    Hardness of metals and forms of tools vary, otherwise the amount of cliips turned out per hour per horse-power wonld be practically constant, the higher cutting-speeds decreasing but slightly the visible work done.

    Taking into account these variations, the weight of metal removed per hour, multiplied by a certain constant, is equal to the power necessary to do the work.

    This constant, according to the above tests, is as follows :
    Cast Iron. Wrought Iron. Steel.

    | Hartig. | . 030 | . 032 | . 047 |
    | :---: | :---: | :---: | :---: |
    | Smith. | .0\%3 | . 028 | . 042 |
    | Hobart | . 024 |  |  |
    | Average | . 026 | . 030 | . 044 |

    The power necessary to run the lathe empty will vary from about 05 to H.P., which should be ascertained and added to the useful lorse-power, to obtain the total power expended.

    Power used by Machine-tools. (R. E. Dinsmore, from the Electrical World.)

    1. Shop shafting $23 / 16^{\prime \prime} \times 180 \mathrm{ft}$. at 160 revs., carrying ${ }^{\circ}$ p pulleys from $6^{\prime \prime}$ diam. to $36^{\prime \prime}$, and running 20 ddle machine belt
    1.32 H.P.
    2. Lodge-Davis upright back-geared drill-press with tá le, $28^{\prime \prime}$ swing, drilling $3 / 8^{\prime \prime}$ hole in cast iron, with a feed of 1 n . per minute.
    0.78 H .1
    3. Morse twist-drill grinder No. $\ddot{2}$, carrying $z^{\prime \prime} \times 0^{\prime \prime}$ wheels t 3200 revs.
    0.29 H.P.
    4. Pease planer $30^{\prime \prime} \times 36^{\prime \prime}$, table 6 ft ., planing cast iron, cl $14^{\prime \prime}$ deep, planing 6 sq. in. per minute, at 9 reversals.
    1.06 H.P.
    5. Shaping-machine $22^{\prime \prime}$ stroke, cutting steel die, $6^{\prime \prime}$ stroke $1 / 8^{\prime \prime}$ deep, shaping at rate of 1.7 square inch per minute.... .... ${ }^{\prime}$
    6. Engine-lathe $17^{\prime \prime}$ swing, turning steel shaft $23 / 8^{\prime \prime}$ diam., cut $0 / 16$ deep, feeding 7.92 inch per minute
    $0.3 \pi \mathrm{H} . \mathrm{P}$.
    7. Engine-lathe $21^{\prime \prime}$ swing, boring cast-iron hole $5^{\prime \prime}$ diam., cut $3 / 16$ diam., feeding $0.3^{\prime \prime}$ per minute
    0.43 H.P.
    8. Sturtevant No. 2, monogram blower at 1800 revs. per minute,
    no piping
    $0.23 \mathrm{H} . \mathrm{P}$.
    0.8 H.P.
    9. Heavy planer $28^{\prime \prime} \times 28^{\prime \prime} \times 14 \mathrm{ft}$. bed, stroke $8^{\prime \prime}$, cutting steel, 22 reversals per minute
    3.2 H.P.

    The table on the next page compiled from various sources, principally from Hartig's researches, by Prof. J. J. Flather (Anc. Mach., April 12, 1894), may be used as a guide in estimating the power required to run a given machine; but it must be understood that these values, although determined by dynamometric measurements for the individual machines designated, are not necessarily representative, as the power required to drive a machine itself is dependent largely on its particular design and construction. The character of the work to be done niay also affect the power required to operate; thus a machine to be used exclusively for brass work may be sperded from $10 \%$ to $15 \%$ higher than if it were to be used for iron work of similar size, and the power required will be proportionately greater.

    Where power is to be transmitted to the machines by means of shafting and countershafts, an additional amount, varying from $30 \%$ to $50 \%$ of the total power absorbed by the machines, will be necessary to overcome the friction of the shafting.
    EIorse-power required to drive Shafting.-Samuel Webber, in his "Manual of Power" gives among numerons tables of power required to drive textile machinery, a table of results of tests of shafting. A line of $21 / 8^{\prime \prime}$ shafting, 342 ft . long, weighing 4098 lbs ., with pulleys weighing 5331 lbs. or a total of 9429 lbs ., supported on 47 bearings, 216 revolutions per minute, required 1.858 H.F. to drive it. This gives a coefficient of friction of $5.5 \% \%$. In seventeen tests the coefficient rauged from $3.34 \%$ to $11.4 \%$, averagiug $5.73 \%$.

    Horse-power Required to Drive Machinery.

    ## Name of Machine.

    Small screw-cutting lathe $131 / 2^{\prime \prime}$ swing, B. G.
    Screw-cutting lathe $1711^{\prime \prime}$, B. G................
    Screw-cutting lathe $26^{\prime \prime}$, B. G
    Lathe, $80^{\prime \prime}$ face plate, will swing $108^{\prime \prime}, T . G$.
    Large facing lathe, will swing $68^{\prime \prime}$, T.'G..
    Wheel lathe $60^{\prime \prime}$ swing
    Small shaper (stroke $4^{\prime \prime}$, traverse $11^{\prime \prime}$ ). .
    Small shaper, Richards ' $\left(911^{\prime \prime} \times 22^{\prime \prime}\right) \ldots$
    Shaper ( $15^{\prime \prime}$ stroke Gould \& Eberhardt)
    Large shaper, Richards ( $29^{\prime \prime} \times 91^{\prime \prime}$ ).
    Crank planer (capacity $23^{\prime \prime} \times 27^{\prime \prime} \times 2812^{\prime \prime}$ stroke).
    Planer (capacity $36^{\prime \prime} \times 36^{\prime \prime} \times 11$ feet).
    Large planer (capacity $76^{\prime \prime} \times{ }^{11} \times 57$ feet
    Small drill press
    
    Medium drill press.
    Large drill press.
    Radial drill 6 feet swing
    Radial drill $81 / 9$ feet swing
    Radial drill press
    Slotter ( $8^{\prime \prime}$ stroke)
    Slotter ( $91 / 2^{\prime \prime}$ stroke)
    Slotter ( $15^{\prime \prime}$ stroke).
    Universal milling mach (Brown \& Sharpe No. 1).
    Milling machine ( $13^{\prime \prime}$ cutter-head, 12 cutters).
    Small head traversing milling machine (cutter-head $11^{\prime \prime}$ diameter, 16 cutters)
    Gear cutter will cut $20^{\prime \prime}$ diameter
    Horizontal boring machine for iron, $221 / 2^{\prime \prime}$ swing
    Hydraulic shearing machine
    Large plate shears-knives $28^{\prime \prime}$ long, $3^{\prime \prime}$ stroke
    Large punch press, over-reach $28^{\prime \prime}, 3^{\prime \prime}$ stroke, $113^{\prime \prime}$ stock can be punched.
     Circular saw for hot iron ( $3011^{\prime \prime}$ diameter of saw)
    Plate-bending rolls, diam. of rolls $13^{\prime \prime}$, length $91 / 2 \mathrm{ft}$.
    Wood planer 131/2"' (rotary knives, 2 hor'l 2 vert.
    Wood planer $24^{\prime \prime}$ (rotary knives)
    Wood planer $171 / 2^{\prime \prime}$ (rotary knives).
    Wood planer $288^{\prime \prime}$ (rotary knives).
    Wood planer 28' $^{\prime \prime}$ (Daniel's pattern)
    Wood planer and matcher (capacity $141 / 2 \times 43 / 41 \prime \ldots$
    Circular saw for wood (23"' diameter of saw)
    Circular saw for wood ( $35^{\prime \prime}$ diameter of saw)
    Band saw for wood ( $34^{\prime \prime}$ band wheel)
    Wood-mortising and boring machine
    Hor'l wood-boring and mortising machine, drill $4^{\prime \prime}$ diam., mortise $81 / 2$ deep $\times 1112^{\prime \prime}$ long
    Tenon and mortising machine
    Tenon and mortising machine
    Tenon and mortising machine
    Edge-molder and shaper. (Vertical spindle)
    Wood-molding mach. (cap. $71 / 2 \times 21 / 2$ ). Hor. spindie
    Grindstone for tools, $31^{\prime \prime}$ diam., $6^{\prime \prime}$ face. Velocity 680 ft . per minute
    Grindstone for stock, $42^{\prime \prime} \times 12^{\prime \prime}$. Vel. 1680 ft . per $\ldots$ in.
    Emery wheel $111 / 2^{\prime \prime}$ diameter $\times 1 / 4^{\prime \prime}$. Saw glinder.

    | Observed Horse-power. |  |
    | :---: | :--- |
    | Total <br> Work. | Running Light. |
    | 0.41 |  |
    | $0.18 ; 0.15 *-0.34 \dagger$ |  |
    | 0.867 | $0.207 ; 0.16-0.466$ |
    | 0.47 | $0.12 ; 0.12$ to 0.31 |
    | 0.462 | $0.05 ; 0.03$ to 0.33 |
    | 0.53 | $0.187 ; 0.12 t o 0.66$ |
    | 0.91 | $0.37 ; 0.39$ to 0.81 |

    0.23 to 3.40
    0.086 to 0.26
    $0.07 ; 0.07$ to 0.12
    $0.21 ; 0.01$ to 0.47
    $0.26 ; 0.15$ to $0 . \%$
    0.12; 0.12 to 0.40

    $$
    \begin{aligned}
    & 0.27 \\
    & 0.60 \\
    & 0.39
    \end{aligned}
    $$

    $0.15 ; 0.15$ to 0.43
    0.62
    0.62
    $0.44 ; 0.1$ *-0.44 $\dagger$
    $0.30 ; 0.12 *-0.80 \dagger$
    0.46
    $0.09 ; 0.05$ to 0.25
    $0.22 ; 0.15$ to 0.65
    $0.57 ; 0.43$ to 0.91
    $0.01 ; 0.003-0.13$
    $0.26 ; 0.26$ to 0.55
    $0.18 \quad 0.10$
    0.28 - 0.11
    0.12; 0.10-0.12*;
    0.10 to $0.25 t$

    037
    0.67
    1.00
    0.16
    0.61
    . 54
    3.35

    142
    1.25
    $0.1 \pm \ddagger-0.17 \S$
    1.45
    4.18
    0.70
    1.16
    0.19
    0.34
    $1.67 ; 0.65$ to 2.0
    1.42
    0.61
    $2.1 \pi$
    1.30
    2.00
    0.32
    $3.11 \quad 0.24$
    0.56
    0.40

    * With back gears. + Without back gears. $\ddagger$ For surface cutters. § With side cutters. B. G., back-geared. T. G.. triple-geared.

    Horse-power consumed in Machine-shops.-How much power is required to drive ordinary machine-tools? and how many men can be employed per horse-power! are questions which it is impossible to answer by any fixed rule. The power varies greatly according to the conditions in each shop. The following table given by J. J. Flather in his work on Dynamometers gives an idea of the variation in several large works. The percentage of the total power required to drive the shafting varies from 15 to 80 , and the number of men employed per total H.P. varies from 0.62 to 6.04 .

    ## Horse-power; Friction; Men Employed.

    | Name of Firm. | $\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Work. } \end{aligned}$ | Horse-power. |  |  |  |  |  | $\begin{aligned} & \text { No. of Men per Effec- } \\ & \text { tive H.P. } \end{aligned}$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $$ |  |  |  |  |  |  |
    | Lane \& Bodley | E. \& W. W. | 58 |  |  |  | 132 | 2.27 |  |
    | J. A. Fay \& Co | W. W. | 100 |  | 85 | 15 | 300 | 3.00 | 3.53 |
    | Union Iron Works......... | E., M. M. | 400 |  | 305 | 23 | 1600 | 4.00 | 5.24 |
    | F'rontier Iron \& Brass W'ks | M. E., etc. | 25 |  | 17 | 32 | 150 | 6.00 | 8.82 |
    | 'f'aylor Mfg. Co........ | E. | 95 |  |  |  | 230 | 2.42 |  |
    | Baldwin Loco. Works.. ... | L. | 2500 | 2000 | 500 | 80 | 4100 | 1.64 | 8.20 |
    | W. Sellers \& Co. (one department) | H. M. | 102 |  | 61 | 40 | 300 | 2.93 | 4.87 |
    | Pond Machine Tool Co | M. T. | 180 | 75 | 105 | 41 | 432 | 2.40 | 4.11 |
    | Pratt \& Whitney Co. |  | 120 |  |  |  | 225 | 6.04 |  |
    | Brown \& Sharpe Co. |  | 230 |  |  |  | 900 | 3.91 |  |
    | Yale \& Towne Co.. | C. \& L. | 135 | 67 | 68 | 49 | \%00 | 5.11 | 10.25 |
    | Ferracute Machine Co | P. \& D. | 35 | 11 | 24 | 31 | 90 | 2.57 | 3.75 |
    | T. B. Wood's Sons | $\mathbf{P}$ \& S. | 12 |  |  |  | 30 | 2.50 |  |
    | Bridgeport Forge Co | H. F. | 150 | 75 | 75 | 50 | 130 | . 86 | 1.73 |
    | Singer Mfg. Co............. | S. M. | 1300 |  |  |  | 3500 | 2.69 |  |
    | Howe Mfg. Co............. | " S | 350 |  |  |  |  | 4.28 |  |
    | Worcester Mach. Screw Co Hartford | M is $^{\text {S }}$. | 40 400 | 100 | 300 | 25 | 80 250 20 | 2.00 | 0.83 |
    | Nicholson File Co. | F. | 350 |  |  |  |  |  |  |
    | A verages |  | 346:4 |  |  | 38.6\% | 818.3 | 2.96 | 5.13 |

    Abbreviations: E., engine; W.W., wood-working machinery; M. M., mining machinery; M. E., marine engines; L., locomotives; H. M., heavy inachinery; M. T., machine tools; C. \& L., cranes and locks; P. \& D., presses and dies; P. \&S., pulleys and shafting; H. F., heavy forgings; S. M., sewing. machines; M. S., machine-screws: F., files.
    J. T. Henthorn states (Trans. A. S. M. E., vi. 462) that in print-mills which he examined the friction of the shafting and engine was in 7 cases below $20 \%$ and in 35 cases between $20 \%$ and $30 \%$, in 11 cases from $30 \%$ to $35 \%$ and in 2 cases above $35 \%$, the average being $25.9 \%$. Mr. Barrus in eight cotton-mills found the range to be between $18 \%$ and $25 . \% \%$, the average being $22 \%$. Mr . Flather believes that for shops using heavy machinery the percentage of power required to drive the shafting will average from $40 \%$ to $50 \%$ of the total power expended. This presupposes that under the head of shafting are included elevators, fans, and blowers.

    ## ABRASIVE PROCESSES.

    Abrasive cutting is performed by means of stones, sand, emery, glass, corundum, carborundum, crocus, rouge, chilled globules of iron, and in some cases by soft, friable iron alone. (See paper by John Richards, read before the Technical Society of the Pacific Coast, Am. Mach., Aug. 20, 1891, and Eng. © M. Jour., July 25 and Aug. 15, 1891.)

    The ${ }^{6}$ Cold Saw."-For sawing any section of iron while couc che cold saw is sometimes used. This consists simply of a plain soft steel or iron disk without teeth, about 42 inches diameter and $3 / 16$ inch thick. The velocity of the circumference is about 15,000 feet per minute. One of these saws will saw through an ordinary steel rail cold in about one minute. In this saw the steel or iron is ground off by the friction of the disk, and is not cut as with the teeth of an ordinary saw. It has generally been found more profitable, however, to saw iron witl disks or band-saws fitted with cuttingteeth, which run at moderate speeds, and cut the metal as do the teeth of a milling-cutter.

    Reese's Fusing-disk.-Reese's fusing-disk is an application of the cold saw to cutting iron or steel in the form of bars, tubes, cylinders, etc., in which the piece to be cut is made to revolve at a slower rate of speed than the saw. By this means only a small surface of the bar to be cut is presented at a time to the circunference of the saw. The saw is about the same size as the cold saw above described, and is rotated at a velocity of about $2 \overline{5}, 000$ feet per minute. The heat generated by the friction of this saw against the small surface of the bar rotated against it is so great that the particles of iron or steel in the bar are actually fused, and the "sawdust" welds as it falls into a solid mass. This disk will cut either cast iron, wrought tron, or steel. It will cut a bar of steel $13 / 8$ inch diameter in one minute, including the time of setting it in the machine, the bar being rotated about 200 thrns per minute.

    Cutting Stone with Wire. - A plan of cutting stone by means of a wirt cord lias been tried in Europe. While retaining sand as the cutting agent, M. Panlu: Gay, of Marseilles, has succeeded in applying it by mechanical means, and as continuously as formerly the sand-blast and band-saw, with both of which appliances his system-that of the "helicoidal wire cord"-has considerable analogy. An engine puts in motion a continuous wire cord (varying from five to seven thirty-seconds of an inch in diameter, according to the work), composed of three mild-steel wires twisted at a certain pitch, that is found to give the best results in practice, at a speed of from 15 to $1 \%$ feet per second.

    The Sand-blast.--In the sand-blast, invented by B. F. Tilghman, of Philadelphia, and first exhibited at the Anerican Institute Fair, New York, in 18\%1, common sand, powdered quartz, emery, or any sliarp cutting material is blown by a jet of air or steam on glass, metal, or other comparatively brittle substance, by which means the latter is cut, drilled, or engraved To protect those portions of the surface which it is desired shall not be abraded it is only necessary to cover them with a soft or tough material, such as lead, rubber, leather, paper, wax, or rubber-paint. (See description, in App. Cyc. Merh.; also U. S. 'eport of Vienna Exlibition, 1873, vol. iii. 316.)
    A"jet of sand" impelled by steam of nıoderate pressure, or even by the blast of an ordinary fan, depolishes glass in a few seconds; wood is cut quite rapidly; and metals are given the so-called "frosted" surface with great rapidity. With a jet issuing from under 300 ponnds pressure, a liole was cut through a piece of corundrum 136 inches thick in 25 minutes.
    The sand-blast has been applied to the cleaning of metal castings and sheet metal, the graining of zine plates for lithographic purposes, the frosting of silverware, the cutting of figures on stone and glass, and the cutting of devices on monnments or tombstones, the recutting of files, etc. The time required to sharpen a worn-out 14 -inch bastard file is about four minntes. About one pint of sand, passed through a No. 120 sieve, and four horse-power of $60-1 \mathrm{~b}$. steanl are required for the operation. For cleaning eastings compressed air at from 8 to 10 pounds pressure per square inch is employed. Chilled-iron globules instead of quartz or flint-sand are used with good results, both as to speed of working and cost of material, when the operation can be carried on under proper conditions. With the expenditure of 2 horse-power in compressing air, 2 square feet of ordinary scale on the surface of steel and iron plates can be removed per minute. The surface thus prepared is ready for timing, galvanizing, plating, bronzing, painting, etc. By contiming the operation the hard skin on the surface of castings, which is so destructive to the cutting edges of milling and other tools, can be removed. Small castings are placed in a sort of slowly rotating barrel, open at one or both ends, through which the blast is directed downward against them as they tumble over and over. No portion of the surface escapes the action of the sand. Plain cored work, such as valve-bodies, can be cleaned perfectly both inside and out. 100 lbs , of castings can be cleaned in from 10 to 15 minutes with a blast created by 2 horse-
    power. The same weight of small forgings and stampings can be scaled in from 20 to 30 minutes.- Iron Age, March \&, 1894 .

    ## EMERY-WHEELS AND GRINDSTONES.

    The Selection of Emery-wheels. - A pamphlet entitled "Emerywheels, their Selectiou and Use," published by the Brown \& Sharpe Mfg.
    Co., after calling attention to the fact that too much should not be expected Co., after calling attention to the fact that too much should not be expected of one wheel, and commenting upon the importance of selecting the proper wheel for the work to be done, says :

    Wheels are numbered from coarse to fine; that is, a wheel made of No. 60 emery is coarser than one made of No. 100 . Within certain limits, and other things being equal, a coarse wheel is less liable to change the temperature of the work and less liable to glaze than a fine wheel. As a rule, the harder the stock the coarser the wheel required to produce a given, finish. For example, coarser wheels are required to produce a given surface upon liardened steel than upon soft steel, while finer wheels are required to produce this surface upon brass or copper than upon either hardened or soft steel.

    Wheels are graded from soft to hard, and the grade is denoted by the letters of the alphabet, A denoting the softest grade. A wheel is soft or hard chiefly on account of the anount and character of the material com. bined in its mannfacture with emery or corundum. But other characteristics being equal, a wheel that is composed of fine emery is more compact and harder than one made of coarser emery. For instance, a wheel of No. 100 emery, grade B, will be harder than one of No. 60 emery, same grade.
    The softness of a wheel is generally its most important characteristic. A soft wheel is less apt to canse a change of temperature in the work, or to become glazed, than a harder one. It is best for grinding hardened steel, cast-iron, brass, copper, and rubber, while a harder or more compact wheel is better for grinding soft steel and wrought iron. As a rule, other things being equal, the harder the stock the softer the wheel required to produce a given finish.

    Generally speaking, a wheel should be softer as the surface in contact with the work is increased. For example, a wheel $1 / 16$-inch face should be harder than one $1 / 2$-inch face. If a wheel is hard and heats or chatters, it can often be made somewhat more effective by turning off a part of its cutting surface; but it should be clearly understond that while this will sometimes prevent a hard wheel from heating or chattering the work, such a wheel will not prove as economical as one of the full width and proper grade, for it should be borne in mind that the grade shonld always bear the proper relation to the width. (See the pamphlet referred to for other information. See also lecture by T. Dmbin Paret, Pres't of The Tanite Co., on Emery-wheels. Jour. Frank. Inst., March, 1890.)
    Speed of Emery-wheels.--The following speeds are recommended by different makers :

    |  | Revolutions per minute. |  |  |  |  | Revolutions per minute. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |  |  |  |  |  |
    | 1 | 19,000 |  |  |  | 10 | 1,950 | 2,160 | 2,200 | 0 |
    | 11/2 | 12,500 | 14,400 |  | 12,000 | 12 | 1,600 | 1.800 | 1,800 | 1,850 |
    |  | 9.500 7,600 | 10,800 8,640 |  | 10.000 | 14 | 1,400 | 1,5\%0 | 1,600 | 1.600 |
    | 3 | 6,400 | 8,640 7,200 |  | 8,500 7,400 | 16 18 | 1,200 | 1,350 | 1,400 | 1,400 |
    | 4 | 4,800 | 5,400 | 5,400 | 7,400 5,450 | 18 | 1,050 | 1,222 | 1,250 | 1,250 |
    | 5 | 3,800 | 4, 320 | 4,400 | 4,400 | 22 | 850 | 1,080 | 1,100 | 1,100 |
    | 6 | 3,200 | 3,600 | 3,600 | 3,600 | 24 | 8800 | 1.000 | 1,000 | 1,000 |
    | $\tau$ | 2,700 | 3,080 | 3,200 | 3,150 | $\stackrel{1}{26}$ | \%50 | 917 | 600 | 88.5 |
    | 8 | 2.400 | 2,700 | 2,700 | 2,750 | 30 | 675 | \%33 | 500 | 735 |
    | 9 | 2,150 | 2,400 | 2,400 | 2,450 | -36 | 550 | 611 | 400 | 550 |


    solid emery-wheels at a higher rate than 5500 feet per minute peripheral speed." (Springfield E. W. Mfg. Co.)
    "Although there is no exactly defined limit at which a wheel must be run to render it effective, experience has demonstrated that, taking into account safety, durability, and liability to heat, 5500 feet per minute at the periphery gives the best results. All first-class wheels have the number of revolutions necessary to give this rate marked on their labels, and a column of figures in the price-list gives a corresponding rate. Above this speed all wheels are unsafe. If run much below it they wear away rapidly in proportion to what they accomplisis." (Northampton E. W. Co.)
    Grades of Emery. -The numbers representing the grades of emery run from \& to $1: 0$, and the degree of smoothness of surface they leave may be compared to that left by files as follows:

    | 8 and 10 re | 10 represent the cut of a wood rasp. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 16 " 20 |  |  |  |  | a coarse roug |  |
    | 24 " 30 | " |  |  |  | an ordinary ro | , |
    | 36 " 40 | " | " |  |  | a bastard file |  |
    | 46 " 60 | " | " |  |  | "a second-cut | file |
    | 70 " 80 | " | " |  |  | " a smooth |  |
    | 90 " 100 | '6 |  |  |  |  |  |
    | 120 F and FF | ' | ، |  |  | a dead-smooth | th file |

    ## Speed of Polishing-wheels.

    Wood covered with leather, about................... ... 7000 ft . per minute
    " " " a hair brush, about................ 2500 revs. tor larges " ${ }^{\text {" }}$ " $11 / 2^{\prime \prime}$ to $8^{\prime \prime}$ diam., hair $1^{\prime \prime}$ to $11 /^{\prime \prime}$ long, ab. 4500 "t. "sinallest
    Rag-wheels, 4 to 8 in. dianeter. about. 8000 ft . per minute
    Safe Speeds for Grindstones and Emery-wheels.-G. D. Hiscox (Iron Age, April \%', 189\%), by all application of the formula for centrifugal force in fly-wheels (see Fly-wheels), obtains the figures for strains in grindstones and emery-wheels which are given in the tables below. His formulæ are:
    Stress per sq. in. of section of a grindstone $=(.7071 D \times N)^{2} \times .0000795$
    " " "" " " " an emery-wheel $=(.7071 D \times N)^{2} \times .00010226$ $D=$ diameter in feet, $N=$ revolutions per minute.
    He takes the weight of sandstone at $.0 \% 8 \mathrm{lb}$. per cubic inch, and that of an emery-wheel at 0.1 lb . per cubic inch; Ohio stone weighs about .081 lb . and Huron stone about .089 lb . per cubic inch. The Ohio stone will bear a speed at the periphery of 2000 to 3000 ft . per min., which latter should never be exceeded. The Huron stone can be trusted up to 4000 ft ., when properly clamped between flanges and not excessively wedged in setting. Apart from the speed of grindstones as a caluse of bursting, probably the majority of accidents have really been caused by wedging them on the shaft and over: wedging to true them. The holes being square, the excessive driving of wedges to true the stones starts cracks in the corners that eventually run out until the centrifugal strain becomes greater than the tenacity of the remaining solid stone. Hevce the necessity of great caution in the use of wedges, as well as the holding of large quick-running stones between large
    flanges and leather washers.

    ## Strains in Grindstones.

    Limit of Velocity and Approximate Actual Strain per Square Tnce ol Sectional Area for Grindstones of Medium Tensile Strengit.

    | Diameter: | Revolutions per minute. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
    | $\begin{aligned} & \text { feet. } \\ & 2 \\ & 21 / 2 \\ & 3 \\ & 31 / 2 \\ & 4 \\ & 41 / 2 \\ & 45 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$ | lbs. | lbs. | lbs. | lbs. | lbs. | lbs. | lbs. |
    |  | 1.58 | 3.57 | 6.35 | 9.93 | 14.30 | 18.36 | 165.42 |
    |  | $2.4 \pi$ | 5.57 | 9.88 | 15.49 | 22.29 |  | 39.75 |
    |  | 3.51 4.86 | 8.04 | 14.28 | 22.34 | 32.16 |  |  |
    |  | 4.86 6.35 | 10.93 14.30 | 19.44 27.37 | 30.38 |  |  |  |
    |  | 8.04 | 18.08 | 32.16 |  |  |  |  |
    |  | 9.93 | 22.34 |  | Approximate breaking strain ted times the strain for size opposits the bottom figure in each column. |  |  |  |
    |  | 14.30 19.44 | 32.17 |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |

    The figures at the bottom of columns designate the limit of velocity (in revolutions per minute), at the head of the columns for stones of the diameter in the first colimm opposite the designating fignre.

    A general rule of safety for any size grindstone that has a compact and strong grain is to limit the peripheral velocity to 47 feet per second.
    There is a large variation in the listed speeds of emery-wheels by different makers- 4000 as a minimum and 5600 maximum feet per minute, while others claim a maximum speed of 10,000 feet per minute as the safe speed of their best emery-wheels. Rim wheels and iron centre wheels are specialties that require the maker's guarantee and assignment of speed.

    ## Strains in Emery-wheels.

    Actual Strain per Square Inch of Section in Emery-wheels at the Velocities at head of Columys for Sizes in First Column.

    |  | Revolutions per minute. |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\stackrel{\text { ® }}{\square}$ | 600 | 800 | 1000 | 1200 | 1400 | 1600 | 1800 | 2000 | 2200 | 2400 | 2600 |
    | 4 |  |  |  |  |  |  |  | 22.67 | 27.43 | 22.64 | 38.31 |
    | 8 |  |  |  |  |  |  |  | 51.13 | 61.86 | 73.62 | 8640 |
    | 10 |  |  | 32.47 | 51.08 | 44.45 69.51 | 58.05 90.81 | 114.47 | $90{ }^{1} 1$ | 109.76 | 130.6: | 153.30 |
    | 12 | 18.40 | 33.72 | 51.12 | 73.62 | 100.21 | 130.88 | 114.94 | 141.90 | 171.71 |  |  |
    | 14 | 24.80 | 43.90 | 68.70 | 94.21 | 134.65 | 175.60 | 16.65 |  |  |  |  |
    | 16 | 32.57 | 57.65 | 90.24 | 130.31 | 177.80 |  |  |  |  |  |  |
    | 18 | 41.41 | 73.62 | 115.03 | 165.65 | 17.0 |  |  |  | Diam | mi | $\text { in. }^{p}$ |
    | 20 | 50.98 | 90.23 | 141.22 |  |  |  |  |  |  |  |  |
    | 22 | 61.81 | 109.41 | 171.23 |  |  |  |  |  | in. | 2800 | 3000 |
    | 24 | 73.62 | 130.88 |  |  |  |  |  |  | in. | 280 | 300 |
    | 26 30 | 86.36 | 152.85 |  |  |  |  |  |  |  |  |  |
    | 30 36 | 115.04 |  |  |  |  |  |  |  |  | $\left\|\begin{array}{\|c\|} 44.43 \\ 100.21 \end{array}\right\|$ | $115.03$ |
    | 36 | 165.64 | ...... |  |  |  |  |  |  | 8 | $\left\|\begin{array}{l} 100.21 \\ 137.80 \end{array}\right\|$ | 115.03 |

    Joshua Rose (Modern Machiue-shop Practice) says: The average speed of grindstones in workshops may be given as follows:

    Circumferential Speed of Stone.
    For grinding machinists' tools, about Circumferential Speed of S
    The speeds of stones for file-grinding, and other similar rapid grinding is thus given in the "Grinders' Lise."
    $\begin{array}{llllllllllll}\text { Dianc. ft....... } & 8 & 71 / 3 & 7 & 61 / 3 & 6 & 51 / 2 & 5 & 41 / 2 & 4 & 31 / 2 & 3\end{array}$ $\begin{array}{llllllllllll}\text { Revs. per min. } & 135 & 144 & 154 & 166 & 180 & 196 & 216 & 240 & 250 & 308 & 360\end{array}$
    The following table, from the Mechanical World, is for the diameter of stones and the number of revolutions they shonld run per minute (not to be exceeded), with the diameter of change of shift-pulleys required, varying each shift or change $21 / 2$ inches, $21 / 4$ inches, or 2 inches in diameter for each reduction of 6 inches in the diameter of the stone.

    Diameter
    of Stone.

    | Diameter <br> of Stone. | Revolutions <br> per minute. |  |
    | :---: | :---: | :---: |
    | ft. | in. | 135 |
    | 8 | 0 | 134 |
    | 7 | 6 | 154 |
    | 7 | 0 | 166 |
    | 6 | 6 | 180 |
    | 6 | 0 | 216 |
    | 5 | 6 | 240 |
    | 5 | 0 | 20 |
    | 4 | 6 | 308 |
    | 4 | 0 | 360 |
    | 3 | 6 | 2 |
    | 3 | 0 |  |

    Shift of Pulleys, in inches.

    | 21/2 | 21/4 | 2 |
    | :---: | :---: | :---: |
    | 40 | 36 | 32 |
    | $371 / 2$ | 333/4 | 30 |
    | ${ }_{3}^{35}$ | $311 / 2$ | 28 |
    | 30 | ${ }_{27} 91 / 4$ | 26 |
    | 271/2 | 243/4 | 22 |
    | 25 | 2:3 | 20 |
    | 221/2 | 2014 | 18 |
    | 20 | 18 | 16 |
    | $171 / 2$ | 153/4 | 14 |
    | 15 | 131/3 | 12 |
    | 3 | 4 | 5 |

    Columns 3,4 , and 5 are given to show that if we start an 8 -foot stone with, say, a countershaft pulley driving a 40 -inch pulley on the grindstone spindle, and the stone makes the right number (135) of revolutions per minute, the reduction in the diameter of the pulley on the grinding-stone spindle, when the stone has been reduced 6 inches in diameter, will require to be also reduced $51 / 2$ inches in diameter, or to shift from 40 inches to $311 / 2$ inches, and so on similarly for columns 4 and 5 . Any other suitable dimensions of pulley may be used for the stone when eight feet in diameter, but the number of inches in each shift named, in order to be correct, will have to be proportional to the numbers of revolutions the stone should run, as given in column 2 of the table.

    Varieties of Grindstones.
    (Joshua Rose.)
    For Grinding Machinists' Tools.

    | Name of Stone. | Kind of Grit. | Texture of Stone. | Color of Stone. |
    | :---: | :---: | :---: | :---: |
    | Nova Scotia, $\}$ | All kinds, from finest to coarsest | All kinds, from hardest to softest | Blue or yellowish gray |
    | Bay Chaleur (New $\}$ | Medium to finest | Soft and sharp | Uniformly light blue |
    | Liverpool or Melling. | Merium to fine | Soft, with sharp grit | Reddish: |

    For Wood-working Tools.

    |  |  |  |  |
    | :---: | :---: | :---: | :---: |
    | Liverpool or Melling | Medium to fine $\{$ | Soft. with sharp grit | Re |
    | ay Clialeur (New $\}$ Brunswick), | Medium to finest | Soft and sharp | U |
    | Huron, Michigan ... | Fine | Soft | U |

    For Grinding Broad Surfaces, as Saws or Iron Plates.

    | N | Coarse to med'm | hard ones | , |
    | :---: | :---: | :---: | :---: |
    | Independence | Coarse | Hard to medium | Grayish white |
    | Massillon | Coarse | Hard to medium | Yellowish white |

    ## TAP DRELES.

    Taps for Machine-screws. (The Pratt \& Whitney Co.)

    | Approx. Diameter, tractions of an inch. | Wire Gauge. | No. of Threads to inch. | Approx. Diameter, fractions of all inch. | Wire Gange. | No. of Threads to incli. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | No. 1 | 60,72 $48,56,64$ | $1 / 4$ | No. 13 | $\begin{aligned} & 20,24 \\ & 16.18,20,22,24 \end{aligned}$ |
    |  | 3 | 40, 48, 56 | $1 / 4$ | 15 15 | 18, $20,24,2,21$ |
    | 7/64 |  | 32, 36, 40 | 17/64 | 16 | 16, 18, 20, 22 |
    |  | 5 | 30, 32, 36, 40 | 9/32 | 18 | - 16, 18, 20 |
    | 9/64 | ${ }_{7}^{6}$ | 30, 32, 36, 40 |  | 19 | 16, 18, 20 |
    |  | 8 | 24, 30, 32 | 5/16 | 20 | 16, 18, 20 |
    | 5/32 | 9 | 24, 30, 32, 36, 40 |  | 22 | 16, 18 |
    | 3/16 | 9 ${ }^{9}$ | $24,28,30,32$ $20,22,84,30,32$ | 3/8 | 24 26 | ${ }_{16}^{14,16,18}$ |
    |  | 11 | 22, 24.20 |  | 28 | 16 |
    | 7/32 | 12 | 20. 22.24 |  | 30 | 16 |

    The Morse Twist Drill and Machine Co. gives the following table showing the different sizes of drills that should be used when a suitable thread is to be tapped in a hole. The sizes given are practically correct.
    

    ## TAPER BULTS, PINS, REAMERS, ETC.

    Taper Bolts for Locomotives.-Bolt-threads, U. S. standard, except stay-bolts and boiler-studs, $V$ theads, 12 per inch; valves, cocks, and plugs, V threads, 14 per inch, and $1 / 8$-inch taper per 1 inch. Standard bolt taper $1 / 16$ inch per foot.

    Taper Reamers.-The Pratt \& Whitney Co. makes standard taper reamers for lucomotive work taper $1 / 16$ inch per foot from $1 / 4$ inch diam.; 4 in . length of flute to 2 in . diam.; 18 im . length of flute, diameters advancing by 16 ths and $32 d$ s. P. \& W. Co.'s standard taper pin reamers taper $1 / 4 \mathrm{in}$. per foot, are made in 14 sizes of diameters, 0.135 to 1.009 in .; length of flute $15 / 16 \mathrm{in}$. to 12 in .

    ## Dimensions of The Pratt \& Whitney Company's Reamers for Morse Standard-taper Socket.

    | No. | Diameter Small End, inclies. | Diameter Large Eud, inches. | Gauge Dianl..la'ge end, inches | Gauge L'ngth, inches. | Length Flute, inches. | Total <br> L'ngth. | Taper per foot, inches. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 1 | 0.365 | 0.5*5 | 0.475 |  |  |  | 0.600 |
    | 2 | 0.573 | 0.649 | 0.699 | 218 | $31 / 3$ | $61 / 4$ | 0.603 |
    | 3 | 0.7 . 29 | 0.982 | 0.936 | $35 / 16$ | 4 | 71 | 0.602 |
    | 4 | 1.026 | 1. 283 | 1.231 |  | 5 | $83 / 4$ | 0.623 |
    | 5 | 1.486 | 1.796 | 1.746 | 5 | 6 | $10^{*}$ | 0.630 |
    | 6 | 2.117 | 2.566 | 2.500 | 71/4 | 81/2 | 121/2 | 0.626 |

    Standard Steel Taper-pins.-The following sizes are made by The riatl \& Whitney Co.: Number:

    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Diameter large end: |  |  |  |  |  |  |  |  |  |  |
    | . 156 | . 172 | . 193 | . 219 | . 250 | . 289 | . 341 | . 409 | . 492 | . 591 | . 706 |
    | Approximate fractional sizes: |  |  |  |  |  |  |  |  |  |  |
    | Leugths from |  |  |  |  |  |  |  |  |  |  |
    | To* ${ }^{3 / 4}$ | 3/4 |  | $3 / 4$ $13 / 4$ | $\frac{3}{2}$ | 3 314 214 | $3 / 4$ 314 | $33 / 4$ | $11 / 4$ $41 / 2$ | 113 $51 / 4$ | 11 6 |
    | Diameter small end of standard taper-pin reamer: $\dagger$ |  |  |  |  |  |  |  |  |  |  |
    | . 135 | . 146 | . 162 | . 183 | . 208 | . 240 | . 279 | . 331 | . 398 | . 482 | . 581 |

    Standard Steci MIandrels. (The Pratt \& Whitney Co.)-These mandrels are made of tool-steel, hardened, and ground true on their centres. Centres are also ground to true $60^{\circ}$ cones. The ends are of a form best adapted to resist injury likely to be caused by driving. They are slightly taper. Sizes, $1 / 4 \mathrm{in}$. diameter by $37 / 8 \mathrm{in}$. long to 3 in . diam. by $145 / 8 \mathrm{in}$. long, diameters advancing by 16 ths.

    ## PUNCHES AND DIES, PRESSES, ETC.

    Clearancebetween Punch and Pie.-For computing the amount of clearance that a die should have, or, in other words, the difference in size between die and punch, the general rule is to make the diameter of die-hole equal to the diameter of the punch, plus $2 / 10$ the thickness of the plate. Or, $D=d+.2 t$, in which $D=$ diameter of die-hole, $d=$ diameter of punch, and $t=$ thickness of plate. For very thick plates some mechanics prefer to make the die-hole a little smaller than called for by the above rule. For ordinary boiler-work the die is made from $1 / 10$ to $3 / 10$ of the thickness of the plate larger than the diameter of the punch; and some boiler-makers advocate making the punch fit the die accurately. For punching nuts, the punch fits in the die. (Am. Machinist.)

    Kennedy's Spiral Punch. ('The Pratt \& Whitney Co.)-B. Martell, Chief Surveyor of Lloyd's Register, reported tests of Kennedy's spiral punches in which a $7 / 8$-inch spiral punch penetrated a $5 / 8$-inch plate at a pressure of 22 to 25 tons, while a flat punch required 33 to 35 tons. Steel boilerplates punched with a flat punch gave an average tensile strength of $58,5 \% 9$


    lbs. per square inch, and an elongation in two inches across the hole of $5.2 \%$, while plates punched with a spiral punch gave $63,929 \mathrm{lbs}$., and $10.6 \%$ elongation.
    The spiral shear form is not recommended for punches for use in metal of a thickness greater than the diameter of the punch. This form is of greatest benefit when the thickness of metal worked is less than two thirds the diameter of punch.
    Size of Blanks used in the Drawing-press. Oberlin Smith (Jour. Frank. Inst., Nov. 1886, gives three methods of tinding the size of blanks. The first is a tentative method, and consists simply in a series of experiments with various blanks, until the proper one is found. This is for use mainly in complicated casses, and whent the cutting portions of the die and punch can be finally sized after the other work is done. The second method is by weighing the sample piece, and then, knowing the weight of the sheet metal per square inch, computing the diameter of a piece having the required area to equal the sample in weight. The third method is by computation, and the formula is $x=\sqrt{d^{2}+4 d h}$ for sharp-cornered cup, where $x=$ diameter of blank, $d=$ diameter of cup, $h=$ height of cup. For round-cornered cup where the corner is sinall, say radius of corner less than $1 / 4$ height of cup, the formula is $x=\left(\sqrt{d^{2}+4 d h}-r\right.$, about; $r$ being the radins of the corner. This is based upon the assumption that the thickness of the metal is not to be altered by the drawing operation.
    Pressure attainable by the Use of the Drop-press. (R. H. Tlurstour, Trans. A.S. M. E., v. 53.)-A set of copper cylinders was prepared, of pure Lake Superior copper; they were subjected to the action of presses of different weights and of different heights of fall. Companion specimens of copper were compressed to exactly the same amourt, and measures were obtained of the loads producing compression, and of the amount of work done in producing the compression by the drop. Comparing one with the other it was found that the work done with the hammer was $90 \%$ of the work which should have been done with perfect efficiency. That is to say, the work done in the testing-machine was equal to $90 \%$ of that due the weight of
    the drop falling the given distance.
    Formula: Mean pressure in pounds $=\frac{\text { Weight of drop } \times \text { fall } \times \text { efficiency }}{\text { compression. }}$.
    For pressures per square inch, divide by the mean area opposed to crushIng action during the operation.
    Flow of Metals. (David Townsend, Jour. Frank. Inst., March, 1878.) It was found that the core purched out wash iron blocks $13 / 4$ inches thick, It was found that the core punched ont was only $11 / 16$ inch thick. and its volume was only about $32 \%$ of the volume of the hole. Therefore, $68 \%$ of the metal displaced by punching the hole flowed into the block itself, increasing its dimensions.

    ## FORCENG AND SHREINEING FITS.

    Forcing Fits of Pins and Axles by Hydraulic Pressure. - A -incli axle is turned . 015 inch diameter larger than the hole into which it is to be fitted. They are pressed on by a pressure of 30 to 35 tons. (Lecture by Coleman Sellers, 1872.)
    For forcing the crank-pin into a locomotive driving- wheel, when the pinhole is perfectly true and smooth, the pin should be pressed in with a pressure of 6 tons for every inch of diameter of the wheel fit. When the hole is
    not perfectly true, which may be the not perfectly true, which may be the result of shrinking the tire on the wheel centre after the hole for the crank-pin has been bored, or if the hole is not perfectly smooth, the pressure may have to be increased to 9 tons for every inch of diameter of the wheel-fit. (Am. Machinist.)
    Shrinkage Fits.-In 1886 the American Railway Master Mechanics' -Associatiou recommended the following shrinkage allowances for tires of standard locomotives. The tires are uniformly heated by gas-flames, slipped over the cast-iron centres, and allowed to cool. The centres are turned to the standard sizes given below, and the tires are bored smaller by the amount of the shrinkage desiguated for each:

    $$
    \begin{array}{lrrrrrr}
    \text { Diameter of centre, in in... } & 38 & 44 & 50 & 56 & 62 & 66 \\
    \text { Shrinkage allowance, in.. } & .040 & .047 & .053 & .060 & .066 & .070
    \end{array}
    $$

    This shrinkage allowance is approximately $1 / 80$ inch per foot, or $1 / 960$. A common allowance is $1 / 1000$. Taking the modulus of elasticity of steel at
    $30,000,000$, the strain caused by shrinkage would be 30.000 lbs . per square inch, less an uncertain amount due to compression of the centre.

    ## SCREWS, SCREW-THREADS, ETTC.*

    Efficiency of a screw.-Let $a=$ angle of the thread, that is, the angle whose langent is the pitch of the screw divided by the circumference of a circle whose diameter is the mean of the diameters at the top and bottom of the thread. Then for a square thread

    $$
    \text { Efficiency }=\frac{1-f \tan a}{1+f \operatorname{cotan} a}
    $$

    in which $f$ is t'ie coefficient of friction. (For demonstration, see Cotterill and Slade, Applied Mechanics, p. 146.) Since cotall $=1 \div$ Ian, we may substitute for cotan $a$ the reciprocal of the tangent, or if $p=$ pitch, and $c=$ mean circumference of the screw,

    $$
    \text { Efficiency }=\frac{1-f \frac{p}{c}}{1+f \frac{c}{p}}
    $$

    Example.-Efficiency of square-threaded screws of $1 / 2 \mathrm{in}$. pitch.

    |  | $\stackrel{2}{21 / 2}$ | ${ }_{3}^{3}$ | 4 $41 / 6$ |
    | :---: | :---: | :---: | :---: |
    | Mean circumference " " ".... 3.927 | 7.069 | 10.21 | 13.35 |
    |  | 14.14 | 20.42 | 26.10 |
    |  | .0i0\% | . 0490 | . $03 \%$ |
    | Efficiency if $f=.10 \ldots \ldots \ldots \ldots \ldots \ldots$. | 41. $2 \%$ | 32.7\% | 27.2\% |
    |  | 31.\%\% | 24.4\% | 19.9\% |

    The efficiency thus increases with the steepness of the pitch.
    The above formulæ and examples are for square-threaded screws, and consider the friction of the screw-thread only, and not the friction of the collar or step by which end thrust is resisted, and which further reduces the efficiency. The efficiency is also further reduced by giving an inclination to the side of the thread, as in the V-threaded screw. For discussion of this subject, see paper by Wilfred Lewis, Jour. Frank. Inst. 1880; also Trans. A. S. M. E., vol. xii. శ̌84.

    Efficiency of Screw-bolts. -Mr. Lewis gives the following approximate formula for ordinary serew-bolts (V threads, with collars): $p=$ pitch of screw, $d=$ outside diameter of screw, $F=$ force applied at circumference to lift a unit of weight, $E=$ efficiency of screw. For an aver age case, in which the coefficient of friction may be assumed at .15 ,

    $$
    F=\frac{p+d}{3 d}, \quad E=\frac{p}{p+d}
    $$

    For bolts of the dimensions given above, $1 / 2-\mathrm{in}$. pitch, and outside dam. eters $11 / 2,21 / 2,31 / 2$, and $41 / 2 \mathrm{in}$., the efficiencies according to this formule would be, respectively, .25, .167,.125, and . 10 .

    James McBride (Trans. A. S. M. E.. xii. \%81) describes an experiment with an ordinary $2-\ln$. screw-bolt, with a $V$ thread, $41 / 2$ threads per inch, raising a weight of 7500 lbs ., the force being applied by thrning the nut. Of the power applied $89.8 \%$ was absorbed by friction of the nut on its supporting washer and of the threads of the bolt in the nut. The nut was not faced. and had the flat side to the washer.

    Prof. Ball in his "Experimental Mechanics" says: "Experiments showed in two cases respectively about $2 / 3$ and $3 / 4$ of the power was lost."

    Trautwine says: "In practice the friction of the screw (which under heavy loads becomes very great) make the theoretical calculations of but little value."

    Weisbach says: "The efficiency is from $19 \%$ to $30 \%$."
    Efficiency of a Differential Screw.-A correspondent of the American Machinist describes an experiment with a differential screwpunch, consisting of an outer screw 2 in. diam., 3 threads per in., and an inner screw $13 / 8 \mathrm{in}$. diam., $31 / 2$ threads per inch. The pitch of the outer screw


    buing $1 / 3 \mathrm{in}$. and that of the inner screw $2 / 7 \mathrm{in}$., tro punch would advance in one revolution $1 / 3-2 / 7=1 / 21 \mathrm{in}$. Experiments were made to determine the force required to punch an $11 / 16-111$. hole in iron $1 / 4 \mathrm{in}$, thick, the force being applied at the end of a lever arm of $4 \times 3 \mathrm{in}$. The leverage would be $43 / 4 \times 2 \pi \times 21=6300$. The inean force applied at the end of the lever was 95 lbs ., and the force ar the punch, if there was no friction, would be $6300 \times 95=598,500 \mathrm{lbs}$. The force required to punch the iron, assuming a shearing resistance of $50,000 \mathrm{lbs}$. per sq. in., would be $50,000 \times 11 / 16 \times \pi \times$ $1 / 4=2 \pi, 000$ lbs., and the efficiency of the punch would be $27,000 \div 598,500=$ ouly $4.5 \%$. With the larger screw only used as a punch the mean force at the end of the lever was only 82 lbs. The leverage in this case was $453 / 4 \times$ $2 \pi \times 3=900$, the total force referred to the punch, including friction, $900 \times$ $82=73,800$, and the efficiency $27,000 \div 73,800=36 . \% \%$. The screws were of tool-steel, well fitted, and lubricated with lard-oil and plumbago.

    Powell's New Screwnthread.-A. M. Powell (An... Mach., Jan. D. 1895) has designed a new screw-thread to replace the square form of thread, giving the advantages of greater ease in making fits, and provision for" take up " in case of wear. The dimensions are the same as those of squarethread screws, with the exception that the sides of the thread, instead of being perpendicular to the axis of the screw, are inclined $141 / 2^{\circ}$ to such perpendicular; that is, the two sides of a thread are inclined $29^{\circ}$ to each other. The formulæ for dimensions of the thread are the following: Depth of thread $=1 / 2 \div$ pitch; width of top of thread $=$ widh of space at bottom $=$ $.3007 \div$ pirch; thickness at root of thread $=$ width of space at top $=.6293 \div$ pitch. The term pitch is the number of threads to the ineh.

    ## PROPORTIONING PARTS OF MACHINES IN A SERIES OF SIZES.

    ## (Stevens Indicutor, April, 1892.)

    The following method was used by Coleman Sellers while at William Sellers \& Co.'s to get the proportions of the parts of machines, based upon the size obtained in building a large machine and a small one to any series of machines. This formula is used in getting up the proportion-book and arranging the set of proportions from which any machine can be constructed of intermediate size between the largest and smallest of the series.
    Rule to Establish Construction Fornulae. -Take difference between the nominal sizes of the largest and the smallest machines that have been designed of the same construction. 'Jake also the difference between the sizes of similar parts on the largest and smallest machines selected. Divide the latter by the former, and the result obtained will be a "factor," which, multiplied by the nominal capacity of the intermediate machine, and increased or diminished by a constant "increment," will give the size of the part required. To find the "increment:" Multiply the nominal capacity of some known size by the factor obtained, and subtract the result from the size of the part belonging to the machine of nominal capacity selected.

    ExAMPLE.-Suppose the size of a part of a r2-in, machine is 3 in ., and the corresponding part of a $42 \mathrm{-in}$. machine is $1 \% / 8$, or 1.875 in .: then $72-43=$ 30 , and $3 \mathrm{in} .-17 / 8 \mathrm{in} .=11 / 8 \mathrm{in} .=1.125 .1 .125 \div 30=.0375=$ the "factor." and $.0375 \times 42=1.575$. Then $1.875-1.5 \%=.3=$ the "increment" to be added. Let $D=$ nominal capacity; then the formula will read: $x=$ $D \times .03$ in +.3 .

    Proof: $42 \times .0375+.3=1.8 \%$, or $18 / 8$, the size of one of the selected parts.
    Some prefer the formula: $a D+c=x$, in which $D=$ nominal capacity in inches or in pounds, $c$ is a constant increment, $a$ is the factor, and $x=$ the part to be found.

    ## KEYS.

    Sizes of Keys for Mill-gearing. (Trans. A. S. M. E., xiii. 229.)-E. G. Parkhurst's rule: Width of key $=1 / 8$ diam. of shaft, depth $=1 / 9$ diam. of slaft: taper $1 / 8 \mathrm{in}$. to the foot.

    Custom in Michigan saw-mills : Keys of square section, side $=1 / 4$ diam. of shaft, or as nearly as may be in even sixteenths of an inch.
    J. T. Hawkins's rule: Width $=1 / 8$ diam. of hole; depth of side abutment in shaft $=1 / 8$ diam. of hole.
    W. S. Huson's rule : $1 / 4$-inch key for 1 to $11 / 4$ in. shafts, $5 / 16$ key for $11 / 4$ to $11 / 2 \mathrm{in}$. shafts, $3 / 8 \mathrm{in}$. key for $11 / 2$ to $13 / 4 \mathrm{in}$. shafts, and so on. Traper $1 / 8 \mathrm{in}$. to the foot. Total thickness at large end of splice, $4 / 5$ width of key.

    Unwin (Elements of Machine Design) gives: Width $=1 / 4 d+1 / 8 \mathrm{in}$. Thick ness $=1 / 8 d+1 / 8$ in., in which $d=$ diam. of shaft in inches. When wheels or pulleys transmitting only a small amount of power are keyed on large shafts, he says, these dimensions are excessive. In that case, if H.P. = horsepower transmitted by the wheel or pulley, $N=$ revs. per min, $P=$ force acting at the circumference, in lbs., and $R=$ radius of pulley in inches, take

    $$
    d=\sqrt[3]{\frac{100 \mathrm{H.P}}{N}} \text { or } \sqrt[3]{\frac{P R}{630}} .
    $$

    Prof. Coleman Sellers (Stevens Indicator, April, 1892) gives the following : The size of keys, both for shafting and for machine tools, are the proportious adopted by William Sellers \& Co., and rigidly adhered to during a period of nearly forty years. Their practice in makivg keys and fitting them is, that the keys shall always bind tight sidewise, but not top and bottom; that is, not necessarily touch either at the bottom of the key-seat in the shaft or touch the top of the slot cut in the gear-wheel that is fastened to the shaft; but in practice keys used in this manner depend upon the fit of the wheel upon the shaft being a forcing fit, or a fit that is so tight as to re quire screw-pressure to put the wheel in place upon the shaft.

    Size of Keys for Shafting.
    

    ## Size of Keys for Machine Tools.

    | Diam. of Shaft, in. | Size of Key, in. sq. | Diam. of Shaft, in. | Size of K in. sq. |
    | :---: | :---: | :---: | :---: |
    | 15/16 and under |  | to $5 \pi / 16$ | 13/16 |
    | 1 to $13 / 16$ | 3/16 | $51 / 2$ to $615 / 16$ | 15/16 |
    | $11 / 4$ to $17 / 16$ | . $1 / 4$ | to $815 / 16$. | 11/16 |
    | $11 / 2$ to $111 / 16$ | . 5/16 | to $1015 / 16$ | $13 / 16$ |
    | $13 / 4$ to $23 / 16$. | 7/16 | 11 to $1: 215 / 16$ | $15 / 16$ |
    | $21 / 4$ to $211 / 16$ | - 9/16 | 13 to $1415 / 16$ | 1 \%/11 |
    | $23 / 4$ to $315 / 16$. | 11/16 |  |  |

    John Richards, in an article in Cassier's Magazine, writes as follows: There are two kinds or system of keys, both proper and necessary, but widely different in nature. 1. The common fastening key, usually made in width one fourth of the shaft's diameter, and the depth fire eighths to one third the width. These keys are tapered and fit on all sides, or, as it is commonly described, "bear all over." They perform the double function in most cases of driving or transmitting and fastening the keyed-on member against movement endwise on the shaft. Such keys, when properly made, drive as a strut, diagonally from corner to corner.
    2. The other kind or class of keys are not tapered and fit on their sides only, a slight clearance being left on the back to insure against wedge action or radial strain. These keys drive by sliearing strain.
    For fixed work where there is no sliding movement such keys are commonly made of square section, the sides only being planed, so the depth is more than the width by so much as is cut avay in finishing or fitting.
    For sliding bearings, as in the case of drilling machine spindles, the depth should be increased, and in cases where there is heavy strain there should be two keys or feathers instead of one.
    The following tables are taken from proportions adopted in practical use.
    Flat keys, as in the first table, are employed for fixed work when the parts are to be lield not only against torsional strain, but also against movement endwise; and in case of heavy strain the strut principle being the strongest and most secure against movement when there is strain each way as in the case of engine cranks and first movers generally. The objections

    ## HOLDING-POWER OF KEYS AND SET-SCREWS. $9 \gamma \%$

    to the system for general use are, straining the work out of truth, the care and expense required in fitting, and destroying the evidence of good or bad fitting of the keyed joint. When a wheel or other part is fastened with a tapering key of this kind there is no means of knowing whether the work is well fitted or not. For this reason such keys are not employed by machine-tool-makers, and in the case of accurate work of any kind, indeed, cannot be, because of the wedging strain, and also the difficulty of inspecting completed work.
    I. Dimensions of Flat Keys, in Inches.
    
    II. Dimensions of Square Keys, in Inches.

    | Diam. of shaft. | 1 |  | 132 |  |  | $1212$ |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Breadth of keys. | 5/32 | 7/32 | 9/32 | 13/4/32 |  | $\begin{gathered} 21 / 2 \\ 15 / 32 \end{gathered}$ |  | 312/16 | $11 / 16$ |
    | Depth of keys... | 3/16 | $1 / 4$ | 5/16 | $18 / 8$ | \%/16 | 1/2 | 9/16 | $\begin{aligned} & 9 / 1 \\ & 5 / 8 \end{aligned}$ | $\begin{aligned} & 11 / \\ & 3 / 4 \end{aligned}$ |

    III. Dimensions of Sliding Feather-keys, in Inches.

    | Diam. of shaft.... | $11 / 4$ | $11 / 2$ | $13 / 4$ | 2 | $1 / 4$ | $21 / 2$ | 3 | $31 / 2$ | 4 | $41 / 2$ |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Breadth of keys.. | $1 / 4$ | $1 / 4$ | 516 | $5 / 16$ | $3 / 8$ | $3 / 8$ | $1 / 2$ | $9 / 16$ | $9 / 16$ | $5 / 8$ <br> Depth of keys.... |
    | $3 / 8$ | $3 / 8$ | $7 / 16$ | $7 / 16$ | $1 / 2$ | $1 / 8$ | $5 / 8$ | $3 / 4$ | $3 / 4$ | $7 / 8$ |  |

    P. Pryibil furnishes the following table of dimensions to the Am . Machinist. He says: On special heavy work and very short hubs we put in two keys in one shaft $90^{\circ}$ apart. With special long hubs, where we cannot use keys with noses, the keys should be thicker than the standard.

    Diameter of Shafts, inches.

    | $3 / 4$ | to 1 | $1 / 16$ |
    | :--- | :--- | :--- |
    | $11 / 8$ | to 1 | $5 / 16$ |
    | 17 | $7 / 16$ | to 1 |
    | $11 / 16$ |  |  |
    | 1 | $15 / 16$ | to $23 / 16$ |
    | 2 | $7 / 16$ | to |
    | 2 | $11 / 16$ |  |
    | 2 | $15 / 16$ | to 3 |
    | 3 | $3 / 16$ |  |


    | Width, inches. | Thickness, in. |
    | :---: | :---: |
    | 3/16 | 3/16 |
    | 5/16 |  |
    | $3 / 8$ | 5/16 |
    | 5 | 3/8 |
    | $3 / 4$ | ${ }_{9} / 16$ |


    | Diameter of Shafts, inches. | Width, inches. | Thickness, in |
    | :---: | :---: | :---: |
    | $37 / 16$ to $311 / 16$ | 7/8 |  |
    | $315 / 16$ to $43 / 16$ | 1 | 11/16 |
    | $47 / 16$ to $411 / 16$ | 11/6 | 3/4 |
    | $\begin{array}{ll}47 / 8 & \text { to } 53 / 8 \\ 5 \% / 8 & \text { to } 63 / 8\end{array}$ | 11/4 | ${ }_{1}^{15 / 16}$ |
    | 67/8 to 738 | $13 / 4$ | 11/8 |

    Keys longer than 10 inches, say 14 to $16^{\prime \prime}, 1 / 16^{\prime \prime}$ thicker; keys longer than 10 inches, say 18 to $20^{\prime \prime}$, $18^{\prime \prime}$ thicker; and so on. Special short hubs to have two keys.
    For description of the Woodruff system of keying, see circular of the Pratt \& Whitney Co.; also Modern Mechanism, page 455.

    ## HOLDENG-POWER OF KEYS AND SET-SCREWS.

    Tests of the Holding-power or Set-screws in Pulleys. G. Lanza, Trans. A. S. M. E., x. 230.)-These tests were made by using a pulley fastened to the shaft by two set-screws with the shaft keyed to the holders; then the load required at the rim of the pulley to cause it to slip was determined, and this being multiplied by the number 6.037 (obtained by adding to the radius of the pulley one-half the diameter of the wire rope, and dividing the sum by twice the radius of the shaft, since there were two set-screws in action at a time) gives the holding-power of the set-screws. The set-screws used were of wrought-iron, $5 / 8$ of an inch in diameter, and ten threads to the inch; the shaft used was of steel and rather hard, the setscrews making but little impression upon it. They were set up with a force of m5 lbs. at the end of a ten-inch monkey-wrench. The set-screws used were of four kinds, marked respectively $A, B, C$, and $D$. The results were as follows :
    

    Remarks.-A. The set-screws were not entirely normal to the shaft; hence they bore less in the earlier trials, before they had become flattened by wear:
    B. The ends of these set-screws, after the first two trials, were found to be flattened, the flattened area having a diameter of about $1 / 4$ inch.
    C. The ends were found, after the first two trials, to be flattened, as in B.
    D. The first test held well because the edges were sharp, then the holdingpower fell off till they had become flattened in a manner similar to $B$, when the holding-power increased again.

    Tests of the Golding=power of Keys. (Lanza.)-The load was applied as in the tests of set-screws, the shatt being firmly keyed to the holders. The load required at the rim of the pulley to shear the keys was determined, and this, multiplied by a suitable constant, determined in a similar way to that used in the case of set-screws, gives us the shearing strength per square inclo of the keys.
    The keys tested were of eight kinds, denoted, respectively, by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H , and the results were as follows : A, B, D and F , each 4 tests; E, 3 tests; C, G, and H, each 2 tests.
    

    In A and $B$ some crushing took place before shearing. In E, the keys being only $7 / 16 \mathrm{in}$. deep, tipped slightly in the ker-way. In H , in the first test, there was a defect in the key-way of the pulley.

    ## DYNAMOMETERS.

    Dynamometers are instruments used for measuring power. They are of several classes, as: 1. Traction dynamometers, used for determining the power required to pull a car or other vehicle, or a plough or harrow. 2. Brake or absorption dynamometers, in which the power of a rotating shaft or wheel is absorbed or converted into heat by the friction of a brake; and, 3. Transmission dynamometers, in which the power in a rotating shaft is measnred during its transmission through a belt or other connection to another shaft, without being absorbed.
    Traction Dynamometers generally contain two principal parts: (1) A spring or series of springs, through which the pull is exerted, the extension of the spring measuling the amount of the pulling force; and (2) a paper. covered drum, rotated either at a miform speed by clockwork, or at a speed proportional to the speed of the traction, through gearing, on which the extension of the spring is registered by a pencil. From the average height of the diagram drawn by the pencil above the zero-line the average pulling force in pounds is obtained, and this multiplied by the distance traversed. in feet, gives the work done, in foot-pounds. The product divided by the time in minutes and by 33,000 gives the horse-power.
    The Prony brake is the typical form of absorption dynamometer. (See Fig. 167, from Flather on Dynamometers and the Measurement of Power.)

    Primarily this consists of a lever connected tu a revolving shaft or pulley in such a manner that the friction induced between the surfaces in contact will tend to rotate the arm in the direction in which the shaft revolves. This rotation is counterbalanced by weights $P$, hung in the scale-pan at the end of the lever. In order to measmre the power for a given number of revolutions of pulley, we add weights to the scale-pan and screw up on bolts $b b$, until the friction induced balances the weights and the lever is maintained

    In its horizontal position while the revolutions of shaft per minute remain constant.

    For small powers the beam is generally omitted-the friction being measured by weighting a band or strap thrown over the pulley. Ropes or cords are often used for the same purpose

    Instead of hanging weights in a scale-pan, as in Fig. 167, the friction may be weighed on a platform-scale; in this case, the direction of rotation being the same, the lever-arm will be on the opposite side of the shaft.
    In a modification of this brake, the brake-wheel is keyed to the shaft, and its rim is provided with inner flanges which form an annular trough for the retention of water to keep the pulley from heating. A small stream of water constantly discharges into the trough and revolves with the pulley-th : centrifugal force of the
    

    Fig. 167. particles or water overcoming the action of gravity; a waste-pipe with its end flattened is so placed in the trough that it acts as a scoop, and removes all surplus water. The brake consists of a flexible strap to which are fitted blocks of wood forming the rubbing-surface; the ends of the strap are connected by an adjustable bolt-clamp, by means of which any desired tension may be obtained.

    Tue horse-power or work of the shaft is determined from the following:
    Let $W=$ work of shaft, equals power absorbed, per minute;
    $P=$ unbalanced pressure or weight in pounds, acting; on lever-arm
    $L=$ length of lever-arm in feet from centre of shaft;
    $V=$ velocity of a point in feet per minute at distance $L$, if arm were allowed to lotate at the speed of the shaft;
    $N=$ number of revolutions per minute;
    H.P. $=$ horse-power.

    Then will $W=P V=2 \pi L N P$.
    Since H.P. $=P V \div 83,000$, we have H.P. $=2 \pi L N P \div 33,000$.
    If $L=\frac{33}{2 \pi}$, we obtain H.P. $=\frac{N P}{1000} .33 \div 2 \pi$ is practically 5 ft .3 in ., a value often used in practice for the length of arm.
    If the rubbing-surface be too small, the resulting friction will show great irregularity-probably on account of insufficient lubrication-the jaws being allowed to seize the pulley, thus producing shocks and sudden vibrations of the lever-arm.

    Soft woods, such as bass, plane-tree, beech, poplar, or maple are all to be preferred to the harder woods for brake-blocks. The rubbing-surface should be well luhricated with a heavy grease.
    The Alden Absorption-dynamometer, (G. I. Alden, Trans. A S. M. E., vol. xi. 958 ; also xii, 700 and xiii. 429.)-This dynamometer is a friction-brake, which is capable in quite moderate sizes of absorbing large powers with unusual steadiness and complete regulation. A smooth castiron disk is keyed on the rotating shaft. This is enclosed in a cast-iron shell, formed of two disks and a ring at their circumference, which is free to revolve on the shaft. To the interior of each of the sides of the shell is fitted a copper plate, enclosing between itself and the side a water-tight \&pace. Water under pressure from the city pipes is admitted into each of these spaces, forcing the copper plate against the central disk. The chamber enclosing the disk is filled with oil. To the outer shell is fixed a weighted arm, which resists the tendency of the shell to rotate with the shaft, caused by the friction of the plates against the central disk. Four brakes of this type, 56 in. niam., were used in testing the experimental locomotive at Purdue University (Trans. A. S. M. E., xiii. 469). Each was designed for a maximum moment of 10,500 foot-pounds with a water-press--ure of 40 lbs. per sq. in.
    The area in effective contact with the copper plates on either side is represented by an anuular surface having its outer radins equal to 28 inches, and its inner radius equal to 10 inches. The apparent coefficient of firictionr
    between the plates and the disk was $31 / 2 \%$.
    W. W. Beaumont (Proc. Inst. C. E. 1889) has deduced a formula by means of which the relative capacity of brakes can be compared, judging from the amount of horse-power ascertained by their use.

    If $W=$ width of rubbing-surface on brake-wheel in inches; $V=$ vel. of point on circum. of wheel in feet per minute; $K=$ coefficient; then

    $$
    K=W V+H \cdot P
    $$

    Capacity of Friction-brakes.-Prof. Flather obtains the values of $K$ given in the last column of the subjoined table :
    

    The above calculations for eleven brakes give values of $K$ varying from 847 to 1385 for actual horse-powers tested, the average being $K=65 \%$.
    Instead of assuming an average coefficient, Prof. Flather proposes the following :

    Water-cooled brake, non-compensating, $K=400 ; W=400 \mathrm{H} . \mathrm{P} . \div \nabla$.
    Water-cooled brake, compensating. $K=750 ; W=750$ H.P. $\div \dot{\varphi}$.
    Non cooling brake, with or without compensating device, $K=900$; $W=900 \mathrm{H} . \mathrm{P} . \div V$.
    Transmission Dynamometers are of various forms, as the Batchelder dynamometer, in which the power is transmitted through a "train-arm" of bevel gearing, with its modifications, as the one described by the author in Trans. A. I. M. E., viii. 177, and the one described by Samuel Webber in Trans. A. S. M. E.. X. 514 : belt dynamometers, as the Tatham; the Van Winkle dynamometer. in which the power is transmitted from a revolving shaft to another in line with it, the two almost touching, through the medium of coiled springs fastened to arms or disks keyed to the shafts; the Brackett and the Webb cradle dynamometers, used for measuring the power required to rum dynamo-electric machines. Descriptions of the four last named are given in Flather on Dynamometers.
    Much information on various forms of dynamometers will be found in Trans. A. S. M. E., vol. vii. to xv., inclusive, indexed under Dynamoneters

    ## ICE-MAKING OR REFRIGERATING MACHINES.

    References.-An elaborate discussion of the thermodynamic theory of the action of the various fluids used in the production of cold was published by M. Ledoux in the Annales des Mines, and translated in Van Nostrand's Maguzine in 1879. This work, revised and additions made in the light of recentexperience by Professors Denton, Jacobus. and Riesenberger, was reprinted in 1892. (Van Nostrand's Science Series, No. 46.) The work is largely mathematical, but it also contains much information of immediate practical value, from which some of the matter given below is taken. Other references are Wood's Thermodynamics, Chap. V., and numerous papers by Professors Wood, Denton, Jacobus, and Linde in Trans. A. S. M. E., vols. X. to xiv.; Johnson's Cyclopædia, article on Refrigerativg-machines; also Eng'g, June 18, July 2 and 9, 1886; A pril 1, 1887; June 15, 1888; July 31, Aug. 28, 1889 ; Sept. 11 and Dec. 4, 1891 ; May 6 and July 8, 1892. For properties of Ammonia and Sulphur Dioxide, see papers by Professors Wood and Jacobus, Trans. A. S. MI. E., vols. x. and zii.

    For illustrated articles describing refrigerating-machines, see Am. Mach., May 29 and June 26, 1890, and Mfrs. Record, Oct. 7 , 1892; also catalogues of builders, as Frick \& Co., Waynesboro, Pa.; De La Vergne Refrigerating-machine Co, New York; and others.
    Operations of a Refrigerating-machine.-Apparatus designed for refrigerating is based upon the following series of operations:
    Compress a gas or vapor by means of some external force, then relieve it of its heat so as to dimiuish its volume; next, canse this compressed gas or vapor to expand so as to protuce mechanical work, and thus lower its temperature. The absorption of heat at this stage by the gas, in resuming its original condition, constitutes the refrigerating effect of the apparatus.
    A refrigerating-machine is a heat-engine reversed.
    From this similarity between heat-notors and freezing-machines it results that all the eqnations deduced from the mechanical theory of heat to determine the performance of the first, apply equally to the second.
    The efficiency depends upon the difference between the extremes of tem. perature.
    The nseful effect of a refrigerating-machine depends upon the ratio betweell the heat-units eliminated and the work expended in compressing and expanding.
    This result is independent of the nature of the body employed.
    Unlike the heat-motors, the freezing-machine possesses the greatest efficiency when the range of temperature is small, and when the final temperature is elevated.
    If the temperatures are the same, there is no theoretical advantage in em. ploying a gas rather than a vapor in order to produce cold.
    The choice of the intermediate body would be determined by practical considerations based on the physical characteristics of the body, such as the greater or less facility for manipulating it, the extreme pressures required for the best effects, etc.

    Air offers the double advantage that it is everywhere obtainable, and that we can vary at will the higher pressures, independent of the temperature of the refrigerant. But to prodnce a given useful effect the apparatus must be of larger dimensions than that required by liquefiable vapors.
    The maximum pressure is determined $b \dot{y}$ the temperature of the condenser and the nature of the volatile liquid: this pressure is often very high.
    When a change of volume of a saturated vapor is made under constant pressure, the temperature remains constant. The addition or subtraction of heat, which produces the change of volume, is represented by an increase or a diminution of the quantity of liquid mixed with the vapor.
    On the other hand, when vapors, even if saturated, are no longer in cuntact with their liquids, and receive an addition of heat either through compression by a mechanical force, or from some external source of heat, they comport themselves nearly in the same way as permanent gases, and be-
    It results from this property, that refrigerating-machines using a liquefiable gas will afford results differing according to the method of working,
    and depending lupon the state of the gas, whether it remains constantly sate urated, or is superheated during a part of the cycle of working.

    The temperature of the condenser is determined by local conditions. The interior will exceed by $9^{\circ}$ to $18^{\circ}$ the temperature of the water furnished to the exterior. This latter will vary from about $52^{\circ} \mathrm{F}$., the temperature of water from considerable depth below the surface, to about $95^{\circ} \mathrm{F}$., the temperature of surface-water in hot climates. The volatile liquid employed in the machine ought not at this temperature to have a tension above that which can be readily managed by the apparatus.

    On the other hand, if the tension of the gas at the minimum temperature is too low, it becomes necessary to give to the compression-cylinder large dimensions, in order that the weight of vapor compressed by a single stroke of the piston shall be sufficient to produce a notably nseful effect.

    These two conditions, to which may be added others. such as those depending upon the greater or less facility of obtaining the liquid, upon the dangers incurred in its use, either from its inflammability or unhealthfulness, and finally upon its action upon the metals, limit the choice to a small number of substances.
    The gases or vapors generally available are: sulphuric ether, sulphurous oxile, ammonia, methylic ether, and carbonic acid.
    The following table, derived from Regnault, shows the tensions of the vapors of these substances at different temperatures between $-22^{\circ}$ and + $104^{\circ}$.

    ## Pressures and Boiling-points of Liquids available for

    Use in Refrigerating-machines.| Temp. of Ebullition. | Tension of Vapor, in lbs. per sq. in., above Zero. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Deg. Falir. | Sulphuric Ether. | Sulphur Dioxide. | Ainmonia. | Methylic Ether. | Carbonic Acid. | Pictet Fluid. |
    | - 40 |  |  | 10.22 |  |  |  |
    | - 31 |  |  | 13.23 |  |  |  |
    | - | . .. | 5.56 | 16.95 | 11.15 |  |  |
    | - 13 -4 |  | 7.23 | 21.51 | 13.85 | 251.6 |  |
    | - ${ }^{4}$ | 1.30 | 11.76 | 27. 04 | ${ }_{20}^{17.06}$ | 292.9 | 13.5 |
    | 14 | 2.19 | 14.75 | 41.58 | $\stackrel{20}{25.27}$ | 340.1 393.4 | 16.2 19.3 |
    | 23 | 2.79 | 18.31 | 50.91 | 30.41 | 453.4 | ${ }_{2}^{19.3}$ |
    | 32 | 3.55 | 22.53 | 61.85 | 36.34 | 520.4 | 26.9 |
    | 41 | 4.45 | 27. 48 | 74.55 | 43.13 | 594.8 | 31.2 |
    | 50 | 5.54 | 33.26 | 89.21 | 50.84 | 6 6\%. 9 | 36.2 |
    | 59 | 6.84 | 39.93 | 105.99 | 5956 | 766.9 | 41.7 |
    | 68 | 8.38 | 47.62 | $1: 5.08$ | 69.35 | 864.9 | 48.1 |
    | 77 86 | 10.19 | 56.39 | 146.64 | 80.28 | 971.1 | 55.6 |
    | 86 95 | 12.31 | 66.37 | 170.83 | 92.41 | 1085.6 | 64.1 |
    | 95 104 | 14.76 | 77.64 | 197.83 |  | 1207.9 | 73.2 |
    | 104 | 17.59 | 90.32 | 227.76 |  | 1338.2 | 83. 9 |

    The table shows that the use of ether does not readily lead to the production of low temperatures, because its pressure becomes then very feeble.
    Ammonia, on the contrary, is well adapted to the production of low tem. peratures.

    Methylic ether yields low temperatures without attaining too great pressures at the temperature of the condenser. Sulphur dioxide readily affords temperatures of -14 to -5, while its pressure is ouly 3 to 4 atmospheres at the ordinary temperature of the condenser. These latter substances then lend themselves conveniently for the production of cold by means of mechanical force.

    The "Pictet fluid" is a mixture of $9 \% \%$ sulphur dioxide and $3 \%$ carbonic acid. At atmospheric pressure it affords a temperature $14^{\circ}$ lower than sulphur dioxide.

    Carbonic acid is as yet (1895) in use but to a limited extent, but the relatively greater compactness of compressor that it requires, and its inoffensive
    character, are leading to its recommendation for service on shipboard, where economy of space is important.

    Certain ammonia plants are operated with a surplus of liquid present during compression, so that superheating is prevented. This practice is known as the "cold system" of compression.

    Nothing definite is known regarding the application of methylic ether or of the petroleum product chymogene in practical refrigerating service. The inflammability of the latter and the cumbrousness of the compressor reqnired are objections to its use.

    66 Fcemmelting Effect." -it is agreed that the term "ice-melting effect" means the cold prodnced in an insulated bath of brine, on the assumption that each 142.2 B.T.U.* represents one pound of ice, this being the latent heat of fusion of ice, or the heat required to melt a pound of ice at $32^{\circ}$ to water at the same temperature.

    The performance of a machine, expressed in pounds or tons of "ice-melting capacity, "does not mean that the refrigerating-machine would make the same amount of actual ice, but that the cold produced is equivalent to the effect of the melting of ice at $32^{\circ}$ to water of the same temperature.

    In making artificial ice the water frozen is generally about ro $0^{\circ} \mathrm{F}$. when submitted to the refrigerating effect of a machine; second, the ice is chilled from $1: 30$ to $20^{\circ}$ below its freezing-point; third, there is a dissipation of cold, from the exposure of the brine tank and the manipulation of the ice-cans: therefore the weight of actual ice made, multiplied by its latent heat of fusion, 142.2 thermal units, represents only about three fourths of the cold produced in the brine by the refrigerating fluid per I.H.P. of the engine driving the compressing-pumps. Again, there is considerable fuel consumed to operate the brine-circulating pump, the condensing-water and feed-pumps, and to reboil, or purify, the condensed steam from which the ice is frozen. This fuel, together with that wasted in leakage and drip water, amounts to about one half that required to drive the main steam-engine. Hence the pounds of actual ice manufactured from distilled water is jnst about half the equivalent of the refrigerating effect produced in the brine per indicated horsepower of the steam-cylinders.
    When ice is made directly from natural water by means of the "plate system," about half of the fuel, used with distilled water, is saved by avoiding the reboiling, and using steam expansively in a compound engine.
    Ether-machines, used in India, are said to have produced about 6 lbs. of actual ice per pound of fuel consumed.
    The ether machine is obsolete, because the density of the vapor of ether, at the necessary working-pressure, requires that the compressing-cylinder shall be about 6 times larger than for sulphur dioxide, and 17 times larger: than for ammonia.

    Air-machines require about 1.2 times greater capacity of compressing cylinder, and are, as a whole, more cumbersome than ether machines, but they remain in use on ship-board. In using air the expansion must take place in a cylinder doing work, instead of through a simple expansion-cock which is used with vapor machines. The work done in the expansion-cylinder is utilized in assisting the compressor.
    Ammonia Compressionwmachines.-"Cold" vs. "Dry" Systems of Compression. - In the "cold "system or" humid" system some of the ammonia entering the compression-cylinder is liquid, so that the heat developed in the cylinder is absorbed by the liquid and the temperature of the ammonia thereby confined to the boiling-point due to the condenser-pressure. No jacket is therefore required about the cylinder.

    In the "dry" or "hot" system all ammonia entering the compressor is gaseous, and the temperature becomes by compression several hundred degrees greater than the boiling-point due to the condenser-pressure. A waterjacket is therefore necessary to permit the cylinder to be properly lubri cated.
    IRelative Performance of Ammonia Compression- and Absorption-machines, assuming no Water to be Entrained with the Ammonia-gas in the Condenser. (Denton and Jacobus, Trans. A. S. M. E., xiii.)-lt is assumed in the calculation for both machines that 1 lb . of coal imparts $10,000 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. to the boiler. The


    condensed steam from the generator of the absorption－machine is assumed to be returned to the boiler at the temperature of the steam entering the generator．The engine of the compression－machine is assumed to exhanst through a feed－water heater that heats the feed－water to $21: 0^{\circ} \mathrm{F}$ ．The engine is assumed to consume $261 / 4 \mathrm{lbs}$ ．of water per hour per horse－power．The figures for the compression－machine include the effect of friction，which is taken at $15 \%$ of the net work of compression．

    | Cond | ser． | Refrigerat－ ing Coils． |  | $\begin{aligned} & \text { E. } \\ & \text { Q } \\ & \text { Q } \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$ | Pounds of Ice－melting Effect per lb．of Coal． |  |  |  | 花落 Oٌ <br> 句苞药 $\boldsymbol{E}$ E引納 <br>  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 岸 |  | $\stackrel{\Phi}{\Phi}$ |  | $\begin{gathered} \mathrm{Col} \\ \mathrm{Ma} \end{gathered}$ | ress． ine． | $\underset{\mathrm{m}}{\mathrm{Abs}}$ | ption－ ine．＊ |  |
    |  | $\stackrel{\dot{0}}{\stackrel{0}{0}}$ |  | $\dot{\stackrel{y}{=}}$ |  |  | 등 |  |  |  |
    |  |  |  | $\stackrel{y}{y}$ | ¢ |  |  |  |  |  |
    | $\stackrel{\oplus}{\mathscr{Q}}$ |  | © |  |  |  |  | －${ }^{\text {a }}$ | \％\％\％\％\％ |  |
    | v |  | $\pm$ | $\stackrel{0}{0}$ | ， |  |  | \％ 8 | － |  |
    | T |  | 0 |  | $4$ |  | ， | O． | ＋ |  |
    | $\pm$ |  | ． |  |  | $\underset{\sim}{2} \underset{\sim}{2}$ | － |  | － |  |
    |  | $\begin{aligned} & \frac{20}{0} \\ & 0.0 \\ & 0.0 \\ & \frac{0}{4} \end{aligned}$ |  |  | E. |  |  | $\begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | g ex |  |
    | 61.2 | 110.6 | 5 | 33.7 | 61.2 | 38.1 | 71.4 | 38.1 | 33.5 | 969 |
    | 59.0 | 106.0 | 5 | 33.7 | 59.0 | 39.8 | 74.6 | 38.3 | 33.9 | 96 \％ |
    | 59.0 | 106.0 | 5 | 33.7 | 130.0 | 39.8 | 74.6 | 39.8 | 35.1 | 931 |
    | 59.0 | 106.0 | －22 | 16.9 | 59.0 | 23.4 | 43.9 | 36.3 | 31.5 | 1000 |
    | 86.0 | 170.8 | 5 | 33.7 | 86.0 | 25.0 | 46.9 | 35.4 | 28.6 | 988 |
    | 86.0 | 170.8 | 5 | 33.7 | 130.0 | 25.0 | 46.9 | 36.2 | 29.2 | 966 |
    | 86.0 | 170.8 | －22 | 16.9 | 86.0 | 16.5 | 30.8 | 33.3 | 26.5 | 1025 |
    | 86.0 | 170.8 | －22 | 16.9 | 130.0 | 16.5 | 30.8 | 34.1 | 27.0 | 1002 |
    | 104.0 | 227.7 | 5 | 83.7 | 104.0 | 19.6 | 36.8 | 33.4 | 25.1 | 1002 |
    | 104.0 | 227.7 | －22 | 16.9 | 104.0 | 13.5 | 25.3 | 31.4 | 23.4 | 1041 |

    The Ammonia Absorption－machine comprises a generator which contains a concentrated solution of ammonia in water；this gener－ ator is heated either directly by a fire，or indirectly by pipes leading from a steam－boiler．The condenser communicates with the upper part of the gen－ erator by a tube；it is cooled externally by a current of cold water．The cooler or brine－tank is so constructed as to utilize the cold produced；the up－ per part of it is in communication with the lower part of the condenser．

    An absorption－chamber is filled with a weak solution of ammonia；a tube puts this chamber in communication with the cooling－tank．
    The absorption chamber communicates with the boiler by two tubes：one leads from the bottom of the generator to the top of the chamber，the other leads from the bottons of the chamber to the top of the generator．Upon the latter is mounted a pump，to force the liquid from the absorption－cham－ ber，where the pressure is maintained at about one atmosphere，into the gen－ erator，where the pressure is from 8 to 12 atmospheres．
    To work the apparatus the ammonia solntion in the generator is first heated．This releases the gas from the solution，and the pressure rises． When it reaches the tension of the saturated gas at the temperature of the condenser there is a liquefaction of the gas，and also of a small amount of steam．By means of a cock the flow of the liquefied gas into the refrigerat－ ing－coils contained in the cooler is regulated．It is here vaporized by ab－ sorbing the heat from the substance placed there to be cooled．As fast as it is vaporized it is absorbed by the weak solution in the absorbing－chamber．
    Under the influence of the heat in the boiler the solution is unequally sat－ urated，the stronger solution being uppermost．
    The weaker portion is conveyed by the pipe entering the top of the absorb－ ing－clamber，the flow being regulated by a cock，while the pump sends an equal quantity of strong solution from the chamber back to the boiler．

    The working of the apparatus depends upon the adjustment and regulation of the flow of the gas and liquid; by these means the pressure is varied, and consequently the temperature in the cooler may be controlled.
    The working is similar to that of compression-machines. The absorptionchamber fills the office of aspirator, and the generator plays the part of compressor.
    The mechanical force producing exhaustion is here replaced by the affinity of water for ammonia gas; and the mechanical force required for compression is replaced by the heat which severs this affinity and sets the gas at liberty.
    (For discussion of the efficiency of the absorption system, see Ledoux's work; paper by Prof. Linde, and discussion on the same by Prof. Jacobus, Trans. A. S. MI. E., Xiv. 1416, 1436; aud papers by Denton and Jacobus, Trans. A. S. M. E. x. 792 ; xiii. 507.

    Sulphur-Dioxide Machines.-Results of theoretical calculations are given in a table by Leduux showing an ice-melting capacity per hour per horse-power ranging from 134 to 63 lbs ., and per pound of coal ranging from 44.7 to $21.1 \mathrm{lbs} .$, as the temperature corresponding to the pressure of the vapor in the condenser rises from $59^{\circ}$ to $104^{\circ} \mathrm{F}$. The theoretical results do not represent the actual. It is necessary to take into account the loss occasioned by the pipes, the waste spaces in the cylinder. loss of time in opening of the valves, the leakage around the piston and valves, the reheating by the external air, and finally, when the ice is being made, the quantity of the ice melted in removing the blocks from their moulds. Manufacturers estimate that practically the sulphur-dioxide apparatus using water at $55^{\circ}$ or $60^{\circ} \mathrm{F}$. produces 56 lbs . of ice, or about 10,000 heat-units, per hour per horse-power, measured on the driving-shaft, whicl is about $55 \%$ of the theoretical useful effect. In the commercial manufacture of ice about 7 lbs. are produced per pound of coal. This includes the fuel used for reboiling the water, which, together with that wasted by the pumps and lost oy radiation, amounts to a considerable portion of that used by the engine.

    Prof. Denton says concerning Ledoux's theoretical results: The figures given are higher than those obtained in practice, because the effect of superheating of the gas during admission to the cylinder is not considered. This superheating may cause an increase of work of about $25 \%$. There are other losses due to superheating the gas at the brine-tank, and in the pipe leading from the brine-tank to the compressor, so that in actual practice a sulphur-dioxide machine, working under the conditions of an absolute pressure in the condenser of 56 lbs . per sq. in. and the corresponding temperature of $77^{\circ}$ F., will give about 22 lbs . of ice-melting capacity per pound of coal, which is about $60 \%$ of the theoretical amount neglecting friction, or ro\% including friction. The following tests, selected from those made by Prof. Schröter on a Pictet ice-machine having a compression-cylinder 11.3 in. bore and 24.4 in . stroke, show the relation between the theoretical and actual ice-melting capacity.

    | No. of Test. | Temp. in degrees Fahr. corresponding to pressure of vapor. |  | Ice-melting capacity per pound of coal, assuming 3 lbs. per hour per H.P. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Condenser. | Suction. | $\begin{aligned} & \text { Theoretical } \\ & \text { frictiou } \\ & \text { included.* } \end{aligned}$ | Actual. | Per cent loss due to cylinder superlieating, or difference between cols. 4 and 5. |
    | 11 | 27. ${ }^{2}$ | 28.5 | 41.3 | 32.1 | 19.9 |
    | 12 | 76.2 | 14.4 | 31.2 | 24.1 | 22.8 |
    | 13 | 75.2 | -2.5 | 23.0 | 17.5 | 23.9 |
    | 14 | 80.6 | -15.9 | 16.6 | 10.1 | 39.2 |

    The Refrigerating Coils of a Pictet ice-machine described by Ledoux had 79 sq . ft . of surface for each 100.000 theoretic negative heat-units produced per hour. The temperature corresponding to tine pressure of the dioxide in the coils is $10.4^{\circ} \mathrm{F}$., and that of the bath (calcium chloride solu-
    tion) in which they were immersed is $194^{\circ}$ tion) in which they were immersed is $194^{\circ}$.


    Ammonia Compression-machines.-Ammonia gas possesses the advantage or affording about three times the useful
    effect of sulphur dioxide for the same volume described by the piston.
    The perfection of ammonia apparatus now renders it so convenient and reliable that no practical advantag. results from the
    lower pressures afforded by sulphur dioxide. mmonia are given in the table below:
    Performance of Ammonia Compression-machines.
    Gas superheated during compression as in ordinary practice. Temperature of condenser, 64.4 Fahr. Pressure in condenser, 11 ..44 lbs per sq. in. (Ledoux.)
    
    The therretical results for ammonia are higher than the actual, for the same reasons that have been stated for sulphur dioxide. Prof. Denton, and the amount found to cylinder-walls in superheating the entering vapor has been determined experimentally by 75-ton refrigerating machine was measured directly by means of a special meter so that in addition to determining the effect of superheating, the latent heats can be calculated at the suction and condenser pressure.
    E

    |  <br>  <br>  |  | 280808008 |
    | :---: | :---: | :---: |
    |  <br>  | ¢ |  |
    | - dur $\boldsymbol{D}_{\mathrm{L}} \mathrm{JO}$ <br>  <br>  <br>  | 苞 |  |
    | ‘7иәшәวセ!đs!! <br>  | E |  |
    |  | $\stackrel{\circ}{\square}$ |  |
    |  | $\stackrel{\sim}{2}$ |  |
    |  | $\stackrel{\stackrel{5}{2}}{\stackrel{\circ}{1}}$ | $\text { S20 } 080$ |
    |  | $\frac{\square}{\square}$ |  |
    | -иоџю!t, Bu!pnou! <br>  | $\begin{aligned} & \dot{P} \\ & \mathrm{Ei} \\ & \dot{\theta} \end{aligned}$ |  |
    |  <br> -pnou! "pəpuadx‘' <br>  | $\begin{aligned} & \dot{p} \\ & \dot{\mu} \\ & \dot{n} \end{aligned}$ |  |
    |  | $\begin{aligned} & \text { B. } \\ & \text { \&i } \end{aligned}$ |  |

    Refrigerating Effect of 1 cu . Ft. or . 06386 lbs. of Ammonia Expanded through a Simple Cock to 16.95 lbs. Absolute Pressure

    | (1) | (2) | (3) |  |  | (6) |  | (8) | (0) | () | (11) | (1) | (13) |  | (15) | (16) | (17) | (18) |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 59. | 106.0 | 224.1 | 40.28 | 32.93 | 4.48 | 5.680 | 6,530 | . 00580 | . 00504 | 9,980 | 80.7 | \%0.2 | 26.9 | 23. 4 | . 000116 | . 1611 | 1,390 | 97 |
    | 68 | 12.). 1 | 252.2 | 40.50 | 32.31 | 3.95 | 6,330 | \%,240 | . 00510 | . 00444 | 8,790 | r1.0 | 61.8 | 23.7 | 20.6 | . 000114 | . 1620 | 1,420 | 99 |
    | ro | 146.6 | 280.2 | 40.70 | 31.69 | 3.52 | 6,960 | 8,000 | . 00455 | . 00:396 | r,840 | 63.3 | 55.1 | 21.1 | 18.4 | . 000111 | . $16: 8$ | 1,470 | 1.02 |
    | 86 | 170.8 | 308.3 | 40.90 | 31.05 | 3.15 | \%,610 | 8,750 | . 00408 | . 00355 | 7,030 | 56.8 | 49.4 | 18.9 | 16.5 | . 000109 | . 1636 | 1,500 | 1.04 |
    | 95 | 197.8 | 336.2 | 41.07 | 30.41 | 2.85 | 8,240 | 9,480 | . 00369 | . 00321 | 6,360 | 51.4 | 44.7 | 17.1 | 14.9 | . 000107 | . 1643 | 1,540 | $1.0{ }^{1}$ |
    | 104 | 227.8 | 364.0 | 41.23 | 29.\% | 2.59 | 8,8,0 | 10,200 | . 00335 | . $00 \div 92$ | 5,780 | 46.6 | 40.6 | 15.5 | 13.5 | . 000105 | . 1649 | 1,5\%0 | 1.09 |

    The following is a comparison of the theoretical ice-melting capacity of an ammonia compression machine with that obtained in some of Prof. Schröter's tests on a Linde machine having a compression-cylinder 9.9-in. bore and 16.5 in . stroke, and also in tests by Prof. Denton on a machine having two single-acting compression cylinders 12 in. $\times 30$ in.:

    | No. of Test. | 'Temp. in Degrees F. Corresponding to Pressure of Vapor. |  | Ice-melting Capacity per lb. of Coal, assuming 3 lbs per hour per Horse-power. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Condenser. | Suction. | Theoretical, Friction * included. | Actual. | Per Cent of Loss Due to Cylinder Superheating. |
    |  | 72.3 70.5 69.2 68.5 | 26.6 14.3 0.5 -11.8 | 50.4 37.6 29.4 22.8 | 40.6 30.0 22.0 16.1 | $\begin{aligned} & 19.4 \\ & 20.2 \\ & 25.2 \\ & 29.4 \end{aligned}$ |
    |  | 84.2 82.7 84.6 | 15.0 -3.2 -10.8 | 27.4 21.6 18.8 | 24.2 17.5 14.5 | $\begin{aligned} & 11.7 \\ & 19.0 \\ & 22.9 \end{aligned}$ |

    Refrigerating Machines using Vapor of Water. (Ledoux.)
    -In these machines, somerimes called vacuum machines, water, at ordinary temperatures, is injected into, or placed in connection with, a chamber in which a strong vacuum is maintained. A portion of the water vaporizes, the heat to cause the vaporization being supplied from the water not vaporized, so that the latter is chilled or frozen to ice. If brine is used instead of pure water, its temperature may be reduced below the freezing-point of water. The water vapor is compressed from, say, a pressure of one tenth of a pound per square inch to one and one half pounds, and discharged into a condenser. It is then condensed and removed by means of an ordinary air-pump. The principle of action of such a machine is the same as that of volatile-vapor machines.
    A theoretical calculation for ice-making, assuming a lower temperature of $32^{\circ} \mathrm{F}$., a pressure in the condenser of $11 / 2 \mathrm{lbs}$. per square inch, and a coal consumption of 3 lbs . per I.H.P. per hour, gives an ice-melting effect of 34.5 lbs. per pound of coal, neglecting friction. Ammonia for ice-making conditions gives 40.9 lbs . The volume of the compressing cylinder is about 150 times the theoretical volume for an ammonia machine for these conditions.

    Relative Efficiency of a Refrigerating Machine.-The efficiency of a refrigerating machine is sometimes expressed as the quotient of the quantity of heat received by the ammonia from the brine, that is, the quantity of useful work done, divided by the heat equivalent of the mechanical work done in the compressor. Thus in column 1 of the table of performance of the 75 -ton machine (page 998 ) the heat given by the brine to the ammonia per minute is 14, , $\tau 6$ B.T.U. The horse-power of the ammonia cylinder is 65.7 and its heat equivalent $=65.7 \times 33,000+778=2786 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. Then $14, \pi 76 \div 2 \pi 86=5.304$, efficiency. The apparent paradox that the efficiency is greater than unity, which is impossible in any machine, is thus explained. The working fluid, as ammonia, receives heat from the brine and rejects heat into the condenser. (If the compressor is jacketed, a portion is rejected into the jacket-water.). The heat rejected into the condenser is greater than that received from the brine; the difference (plus or minus a small difference radiated to or from the atmosphere) is heat received by the ammonia from the compressor. The work to be done by the compressor is not the mechanical equivalent of the refrigeration of the brine, but only that necessary to supply the difference between the heat rejected by the anmonia into the condenser and that received from the brine. If cooling water colder than the brine were available, the brine night transfer its heat directly into the cooling water, and there would be no need of ammonia or of a compressor; but


    since such cold water is not available, the brine rejects its heat into the colder ammonia, and then the compressor is required to heat the ammonia to such a temperature that it may reject heat into the cooling water.
    The efficiency of a refrigerating plant referred to the amount of fuel consumed is
     per pound of fuel. $\}=\frac{142.2 \times \text { pounds of fuel used per hour. }}{}$
    The ice-melting capacity is expressed as follows:

    $\left.\begin{array}{c}\text { Tons (of 2000 lbs.) } \\ \text { ice-melting ca- } \\ \text { pacity per } 24 \text { hours }\end{array}\right\}=\frac{\left\{\begin{array}{c}24 \times \text { pounds } \\ \times \text { specific heat } \\ \times \text { range of temp. }\end{array}\right\} \text { of brine circulated per hour. }}{142.2 \times 2000}$
    The analogy between a heat-engine and a refrigerating-machine is as follows: A steain-engine receives heat from the boiler, converts a part of it into mechanical work in the cylinder, and throws away the difference into the condenser. The ammonia in a compression refrigerating machine receives heat from the brine-tank or cold-room, receives an additional amount of heat from the mechanical work done in the compression-cylinder, and throws away the sum into the condenser. The efficiency of the steam-engine $=$ work done $\div$ heat received from boiler. The efficiency of the refrigerat-ing-machine $=$ heat received from the brine-tank or cold-room $\div$ heat required to produce the work in the compression-cylinder. In the ammonia
    

    DIAGRAM OF AMMONIA COMPRESSION MACHINE.
    

    DIAGRAM OF AMMONIA ABSORPTION MACHINE.
    absorption-apparatus. the ammonia receives heat from the brine-tank and additional heat from the boiler or generator, and rejects the sum into the condenser and into the cooling water supplied to the absorber. The efficiency $=$ heat received from the brine $\div$ heat received from the boiler.

    ## TEST-TRYALS OF REFRIGERATHNG-MIACHINES.

    (G. Linde, Trans. A. S. M. E., xiv. 1414.)

    The purpose of the test is to determine the ratio of consumption and production, so that there will have to be measured both the refrigerative effect and the heat (or mechanical work) consumed, also the cooling water. The refrigerative effect is the product of the number of heat-units ( $Q$ ) abstracted from the body to be cooled, and the quotient $\frac{T_{c}-T}{T}$; in which $T_{c}=$ absoIute temperature at which heat is transmitted to the cooling water, and $T=$ absolute temperature at which heat is taken from the body to be cooled.
    The determination of the quantity of cold wiil be possible with the proper exactness only when the machine is employed during the test to refrigerate a liquid; and if the cold be found from the quantity of liquid circulated per unit of time, from its range of refrigeration, and fron its specific heat, Sufficient exactness cannot be obtained by the refigeration of a current of circulating air, nor from the manufacture of a certain quantity of ice, no from a calculation of the fluid circulating within the machine (for instance, the quantity of ammonia circulated by the compressor'). Thus the refrigeration of brine will generally form the basis for tests making any pretension to accuracy. The degree of refrigeration should not be greater than necessary for allowing the range of temperature to be measured with the necessary exactness; a range of temperature of from $5^{\circ}$ to $6^{\circ} \mathrm{Fahr}$. will suffice.
    The condenser measurements for cooling water and its temperatures will be possible with sufficient accuracy only with submerged condensers.
    The measurement of the quantity of brine circulated, and of the cooling water, is usually effected by water-meters inserted into the conduits. If the necessary precautions are observed, this method is admissible. For quite precise tests, however, the use of two accurately gauged tanks must be ad vised, which are alternately filled and emptied.
    To ineasure the temperatures of brine and cooling water at the entrance and exit of refrigerator and condenser respectively, the employment of specially constructed and ffequently standardized thermometers is indis. pensable; no less important is the precaution of using at each spot sinultaneously two thermometers, and of changing the position of one such thermometer series from inlet to outlet (and vice versa) after the expiration of one half of the test, in order that possible errors may be compensated.
    It is important to determine the specific heat of the brine used in each instance for its corresponding temperature range, as small differences in the composition and the concentration may cause considerable variations.
    As regards the neasurement of consumption, the programme will not have auy special rules in cases where only the measurement of steam and cooling water is undertaken, as will be mainly the case for trials of absorption-machines. For compression-machines the steam consumption depends both on the quality of the steam-engine and on that of the refrigerating-machine, while it is evidently desirable to know the consumption of the former separately from that of the latter. As a rule steam-engine and compressor are coupled directly together, thus rendering a direct measurement of the power absorbed by the refrigerating-machine impossible, and it will have to suffice to ascertain the indicated work both of steam-engine and compressor. By further measuring the work for the engine running empty, and by comparing the differences in power between steam-engine and compressor resulting for wide variations of condenser-pressures, the effective consumption of work $L$ fe for the refrigerating-machine can be found very closely. In general, it will suffice to use the indicated work found in the steam-cylinder, especially as from this observation the expenditure of heat can be directly determined. Ordinarily the use of the indicated work in the compressorcylinder, for purposes of comparison, should be avoided; firstly, because there are usually certain accessory apparatus to be driven (agitators, etc.), belonging to the refrigerating-machine proper; and secondly, because the external friction would be excluded.

    Heat Ralance.-We possess an important aid for checking the correctness of the results found in each trial by forming the balance in each case for the heat received and lejected. Only such tests should be regarded as correct beyond doubt which show a sufficient conformity in the heat balance. It is true that in certain instances it may not be easy to account fully for the transmission of heat between the several parts of the machine and its environment by radiation and convection, but generally
    (particularly for compression-machines) it will be possible to obtain for the heat received and rejected a balance exhibiting small discrepancies only.

    Report of Test.-Reports intended to be used for comparison with the figures found for other machines will therefore have to embrace at least the following observations :
    Refrigerator:
    Quantity of brine circulated per hourBrine temperature at inlet to refrigerator
    Brine temperature at outlet of refrigerator ..... it
    Specific gravity of brine (at $64^{\circ}$ Fahr.)
    Specific heat of brineHeat abstracted (cold produced)
    Absolute pressure in the refrigerator.
    Qe
    Condenser :
    Quantity of cooling water per hour
    Temperature at inlet to condenser.
    Temperature at outlet of condenser ..... t
    Heat abstracted ..... $Q_{1}$
    Absolute pressure in the condenser.Temperature of gases entering the condenser

    ## Absorption-machine.

    ## Still:

    Steam consumed per hour......
    Abs. pressure of heating steam.
    Temperature of condensed steam at outlet
    Heat imparted to still......... Q'e Absorber:

    Quantity of cooling water per hour
    Temperature at inlet
    Temperature at outlet
    Heat removed
    Pup for 1 .............. $Q_{2}$
    Indicated work of steam-engine
    Steam-consumption for punip..
    Thermal equivalent for work of pump.................... ALp
    Total sum of losses by radiation and convection.......... $\pm Q_{3}$ Heat Balance :
    $Q e+Q^{\prime} e=Q_{1}+Q_{2} \pm Q_{3}$.
    For the calculation of efficiency and for comparison of various tests, the actual efficiencies must be compared with the theoretical maximum of effi$\operatorname{ciency}\left(\frac{Q}{A L}\right) \max =\frac{T}{T_{c}-T}$ corresponding to the temperature range

    Temperature Range, - As temperatures ( $T$ and $T c$ ) at which the heat is abstracted in the refrigerator and imparted to the condenser, it is cor rect to select the temperature of the brine leaving the refrigerator and that of the cooling water leaving the condenser, because it is in principle impos. sible to keep the refrigerator pressure higher than would correspond to the lowest brine temperature, or to reduce the condenser pressure below that corresponding to the outlet temperature of the cooling water.

    Prof. Linde shows that the maximum theoretical efficiency of a com-pression-machine may be expressed by the formula

    $$
    \frac{Q}{A L}=\frac{T}{T c-T}
    $$

    in which $Q=$ quantity of heat abstracted (cold produced);

    $$
    \begin{aligned}
    A L & =\text { thermal equivalent of the mechanical work expended; } \\
    L & =\text { the mechanical work, and } A=1+\text { Tr8; } \\
    T & =\text { absolute temperature of heat abstraction (refrigerator); } \\
    T_{o} & =\text { "4 rejection (condenser). }
    \end{aligned}
    $$

    If $u=$ ratio between the heat equivalent of the mechanical work $A L$, and the quantity of heat $Q^{\prime}$ which must be imparted to the motor to produce the work $L$, then

    $$
    \frac{A L}{Q^{\prime}}=u, \text { and } \frac{Q^{\prime}}{Q}=\frac{T c-T}{u T} .
    $$

    It follows that the expenditure of heat $Q^{\prime}$ necessary for the production of the quantity of cold $Q$ in a compression-machine will be the smaller, the smaller the difference of temperature $T_{c}-T$.
    Metering the Ammonia.-For a complete test of an ammonia re-frigerating-machine it is advisable to measure the quantity of ammonia circulated, as was done in the test of the 75-ton machine described by Prof. Denton. (Trans. A. S. M. E., xii. 326.)

    ## PROPEIETIES OF SULPHUR DIOXIDE AND AMIEONIA GAS.

    ## Ledoux's Table for Saturated Sulphur-dioxide Gas.

    Heat-units expressed in B.T.U. per pound of sulphur dioxide.

    |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Deg. F | Lbs | B.T.U. | B.T.U. | B.T.U. | B.T.U. | B.T.U. | $\mathrm{Cu} . \mathrm{ft}$. | Lbs. |
    | -22 | 5. | 157.43 | -19.56 | 176.99 | 13.59 | 163.39 | 13.17 | . 6 |
    | 13 | 7.23 | 158.6 | -16.30 | 174.95 | 13.83 | 161.12 | 10.27 | . 09 |
    | 4 | 9.27 | 159.84 | -13.05 | 172.89 | 14.05 | 158.84 | 8.12 | 123 |
    | 5 | 11.76 | 161.03 | - 9.79 | 170.8\% | 14.26 | 156.56 | 6.50 | . 153 |
    | 14 | 14.74 | 162.20 | -6.53 | 168.73 | 14.46 | 154.27 | 5.25 | 190 |
    | 23 | 18.31 | 163.36 | - 3.27 | 166.63 | 14.66 | 151.97 | 4.29 | . 232 |
    | 32 | 22.5 .3 2.48 | 164.51 | 0.00 | 164.51 | 14.84 | 149.68 | 3.54 | . 282 |
    | 41 | 27.48 | 165.65 | 3.27 | 162.38 | 15.01 | 147.37 | 2.93 | . 340 |
    | 50 | 33.25 | 166.78 | 6.55 | 160.23 | 15.17 | 145.06 | 2.45 | . 407 |
    | 59 68 | 39.93 47.61 | 167.90 168.99 | 9.83 13.11 | 158.07 <br> 155.89 | 15.32 | 142.75 | 2.07 | . 483 |
    | 68 | 47.61 | 168.99 | 13.11 | 155.89 | 15.46 | 140.43 | 1.75 | . 5 \% 0 |
    | 77 86 | 56.39 66.36 | 170.09 | 16.39 | 153.70 | 15.59 | 138.11 | 1.49 | . 669 |
    | 86 95 | $\begin{aligned} & 66.36 \\ & 77.64 \end{aligned}$ | 171.17 172.24 17.3 | 19.69 22.98 | 151.49 <br> 149.26 | 15.71 | 135.78 | 1.27 | . 780 |
    | 95 104 | 90.31 | 172.21 173.30 | 22.98 26.28 | 149.26 | 15.82 15.91 | 133.45 | 1.09 | 6 |

    Density of Liquid Ammonia. (D'Andreff, Trans. A. S. M. E., x. 641.)

    | At temperature C. | - 10 | -5 | 0 | 5 | 10 | 15 | 20 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $+14$ | 23 | 32 | 41 | 50 | 59 | 68 |
    | Density. | . 6492 | . 6429 | 6364 | 6298 | 6230 | . 6160 | . 6089 |

    ## These may be expressed very nearly by

    $$
    \begin{aligned}
    & \delta=0.6364-0.0014 t^{\circ} \text { Centigrade; } \\
    & \delta=0.6502-0.000 \hat{r} \% T^{\circ} \text { Fahr. }
    \end{aligned}
    $$

    Latent Heat of Evap oration of Ammonia. (Wood, Trans, A. S. M. E., x. 641.)

    $$
    h e=555.5-0.613 T-0.000219 T^{2}(\text { in B.T.U., Fahr. deg.) }
    $$

    Ledoux found $h e=583.33-05499 T-0.0001173 T^{2}$.
    For experimental values at different temperatures determined by Prof. Denton, see Trans. A. S. M. E., xii. 356. For calculated values, see vol. x. 646.
    Density of Ammonia Gas.-Theoretical, 0.5894; experimental, 0.596 . Regnault (Traus. A. S. M. E.. x. 633)

    Specific Heat of Liquid Ammonia. (Wood, Trans. A. S. M. E., x 645 )-The specific heat is nearly constant at different temperatures, and about equal to that of water, or unity. From $0^{\circ}$ to $100^{\circ} \mathrm{F}$., it is

    $$
    c=1.096-.0012 T, \text { nearly }
    $$

    In a later paper by Prof. Wood (Trans. A.S. M. E., xii, 136) he gives a higher value, viz., $c=1.12136+0.000438 T$.
    L. A. Elleau and Wm. D. Ennis (Jour. Franklin Inst., April, 1898) give the results of nine determinations, made between $0^{\circ}$ and $20^{\circ} \mathrm{C}$, which range from 0.983 to 1.056 , averaging 1.0206. Von Strombeck (Jour. Frankliu Inst., Dec. 1890) found the specific lieat betwcen $6 z^{\circ}$ and $31^{\circ} \mathrm{C}$. to be $1.2 \div 876$. Ludeking and Starr (Am. Jour. Science, iii, 45, 200) obtained 0.886. Prof. Wood deduced from thermodynamic equations $c=1.093$ at $-34^{\circ} \mathrm{F}$. or $-38^{\circ} \mathrm{C}$., and Ledoux in like manner finds $c=1.0058+.003658 t^{\circ} \mathrm{C}$. Elleau and Ennis give Ledoux's equation with a new constant derived from their experiments, thus $c=0.9834+0.003658 t^{\circ} \mathrm{C}$.

    Properties of the Saturated Vapor of Ammonia.
    (Wood's Thermodynamici.)

    | Temperature. |  | Pressure, Absolute. |  | Heat of Vaporization, thermal units. | Volume of Vapor per lb., cu. ft. | Volume of Liquid per lb., cu. ft. | Weight of a cu. <br> ft . of <br> Vapor, lbs. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & \text { Degs. } \\ & \text { F. } \end{aligned}$ | Absolute, F . | Lbs.per sq. ft. | $\begin{aligned} & \text { Lbs.per } \\ & \text { sq.in. } \end{aligned}$ |  |  |  |  |
    | - 40 | 420.66 | 1540.7 | 10.69 | 579.67 | 24.372 | . 0234 | 0410 |
    | - 35 | 425.66 | 1773.6 | 12.31 | 576.69 | 21.319 | . 0233 | 0468 |
    | - 30 | 430.66 | 2035.8 | 14.13 | 573.69 | 18.697 | . 0237 | . 0535 |
    | - 25 | 435.66 | 2329.5 | 16.17 | 570.68 | 16.445 | . 0238 | . 0608 |
    | - 20 | 440.66 | 2657.5 | 18.45 | 567.67 | $14.50 \%$ | . 0240 | . 0689 |
    | - 15 | 445.66 | 3022.5 | 20.99 | 564.64 | 12.8834 | . 0242 | . 0 Ti9 |
    | - 10 | 450.66 | 3428.0 | 23.80 | 561.61 | 11.384 | . 0243 | . 0878 |
    | - 5 | 455.66 | 3875.2 | 26.93 | 558.56 | 10.125 | . 0244 | . 0988 |
    |  | 460.66 | 4373.5 | 30.37 | 555.50 | 9.027 | . 0246 | . 1108 |
    | + 5 | 465.66 | 4920.5 | 31.17 | 55\%.43 | 8.069 | . 024 \% | . 1239 |
    | + 10 | 470.66 | 5522.2 | 38.34 | 549.35 | 7.229 | . 0249 | . 1383 |
    | +15 | 475.66 | 6182.4 | 42.93 | 546.26 | 6.492 | . 0250 | . 1544 |
    | + 20 | 480.66 | 6905.3 | 47.95 | 543.15 | 5.842 | . 0252 | . 1712 |
    | a $+\quad 25$ $+\quad 30$ | ${ }^{485.66}$ | \% 6959.2 | 53.43 | 540.03 | 5.269 | . 0253 | . 1898 |
    | a $+\quad 30$ $+\quad 35$ | 490.66 | 8.556 .6 | 59.41 | 536.92 | 4.763 | . 0254 | . 2100 |
    | + $\quad 35$ $+\quad 40$ | 495.66 500.66 | 9493.9 10512 | 65.93 73.00 | 533.78 | 4.313 | . 0256 | . 2319 |
    | + 45 | 505.66 | 11616 | 73.00 80.66 | 530.63 | 3.914 3.559 | . 0257 | . 2555 |
    | 50 | 510.66 | 12811 | 88.96 | 524.30 | 3.242 | . 0261 | . 2809 |
    | + 55 | 515.66 | 14102 | 97.43 | 521.12 | 2.958 | . 0263 | . 3.381 |
    | +60 | 520.66 | 15494 | 107. 60 | 51 T .93 | 2.704 | . 0265 | . 3698 |
    | +65 | 225.66 | 16993 | 118.03 | 514.73 | 2.476 | . 0266 | . 4039 |
    | 70 | 530.66 | 18605 | 129.21 | 511.52 | 2.271 | . 02668 | . 4403 |
    | + 75 | 535.66 | 20336 | 141.25 | 508.29 | 2.087 | . $02 \pi 0$ | . 4793 |
    | + 80 | 540.66 | $2 \cdot 192$ | 151.11 | 505.05 | 1.920 | . 0272 | . 5208 |
    | +85 | 545.66 | 24178 | 167.86 | 501.81 | 1.750 | .0273 | . 5650 |
    | -90 | 550.66 | 26300 | 18\%. 8 | 498.11 | 1.632 | . 0274 | . 6128 |
    | -95 | 595.66 | 28565 | 198.37 | 495.29 | 1.510 | . 0274 | . $66: 23$ |
    | +100 +105 | 560.66 | 30980 | 215.14 | 492.01 | 1.398 | .0279 | . 7153 |
    | +105 +110 | 565.06 | 333550 | 23.98 | 488.72 | 1.296 | . 0281 | . 7716 |
    | +110 +115 | 5.0 .66 575.66 | 36284 39188 | 251.97 272.14 | 485.42 | 1.203 | . 0283 | .8312 |
    | +120 | 580.66 | 42:267 | 293.49 | 478.79 | 1.045 | .0287 | . 89569 |
    | 125 | 585.66 | 45598 | 316.16 | 475.45 | 0.9 ¢0 | .0289 | 1.0309 |
    | 150 | 590.66 | 48978 | 340.42 | 472.11 | 0.905 | . 0291 | 1.1049 |
    | +135 | 595.66 | 52626 | 365.16 | 468.75 | 0.845 | . 0293 | 1.1834 |
    | 140 | ¢00.66 | 56483 | 39222 | 465.39 | 0.791 | .0295 | 1.2642 |
    | +145 | 605.66 | 60550 | 420.49 | 462.01 | 0.741 | . 0297 | 13495 |
    | +150 +155 | 610.66 615.66 | 64833 69341 | 450.20 | 458.62 | 0.695 | . 02999 | 1.4388 |
    | +160 | 615.66 $6: 0.66$ | ${ }_{7}^{69341}$ | 481.54 514.40 | 455.22 | 0.652 0.613 | .0302 .0304 | 1.5337 1.6343 |
    | +165 | 625.66 | 79071 | 549.04 | 448.39 | 0.577 | . 0306 | 1.7333 |

    Specific Heat of Ammonia Vapor at the Saturation
    Point. (Wood, Trans. A.S. M."E., x. 644.)-For the range of temperatires ordinarily used in engineeering practice, the specific heat of saturated ammonia is negative, and the saturated vapor will condense with adiabatic expansion, and the liquid will evaporate with the compression of the vapor, and when all is vaporized will superheat.

    Regnault (Rel. des. Exp., ii. 16: ) gives for specific heat of ammonia-gas 0.50836. (Wood, Traus. A. S. M. E., xii. 133.)

    Properties of 1 rine useal to absorb Refrigerating Effect of Ammonia. (J. E. Denton, Trans, A. S. M. E., x. 799. - - A solution of Liver'pool salt in well-water having a specific gravity of 1.17, or a weigh! per cubic foot of 73 lbs ., will not sensibly thicken or congeal at $0^{\circ}$ Fahrenheit.

    The mean specific heat between $39^{\circ}$ and $16^{\circ} \mathrm{Fahr}$. was found by Denton to be 0.80 .). Brine of the same specific gravity has a specific heat of 0.805 at $65^{\circ}$ Fahr., according to Naumain.

    Naumann's values are as follows (Lehr-und Handbuch der Thermochemie, 188\%):

    $$
    \begin{array}{llllllll}
    \text { Specific heat.... } & \begin{array}{c}
    .791 \\
    \text { Specific gravity. }
    \end{array} & 1.805 * & .863 & .805 & .895 & .931 & .962 \\
    \text { *Ir0 } & 1.103 & 1.072 & 1.044 & 1.023 & 1.012 \\
    & & & \text { FInterpolated. }
    \end{array}
    $$

    Chloriderofecalcium solution has been used instead of brine. According to Naumann, a solution of 1.0255 sp . gr. has a specific heat of $.35 \%$. A solution of 1.163 sp . g1. in the test reported in $E\urcorner g^{\prime} g$, July 22,1887 , gave a specific heat of .827 .

    ## ACTUAL PEREORTEANCES OF ICE-MAKING MACHENES.

    The table given on page 996 is abridged from Denton, Jacobus, and Riesenberger's translation of Ledoux on Ice-making Machines. The following shows the class and size of the machines tested, referred to by letters in the

    | Class of Machines. | Authority. | Dimensions of Compres-sion-cylinder in inches. |  |
    | :---: | :---: | :---: | :---: |
    |  |  | Bore. | Stroke. |
    | A. Ammonia cold-compression.. | Schröter. | 9.9 |  |
    | B. Pictet fluid dry-compression. <br> C. Bell-Coleman air |  | 11.3 | 24.4 |
    | C. Bell-Coleman air ............. | (Renwick \& | 28.0 | 23.8 |
    | I). Closed cycle air............ |  <br> \{ Jacobus. | 10. | 18.0 |
    | E. Ammonia dry-compression. <br> F. Ammonia absorption | Denton. | 12.0 | 30.0 |

    ## Performance of a 75 -ton Ammonia Compression-

    machine. (J. E. Denton, Trans. A.S. M. E., xii, 326. D $^{\prime}$-The machine had two single-acting compression cylinders $12^{\prime \prime} \times 30^{\prime \prime}$, and one Corliss steamcylinder, double-acting, $18{ }^{\prime \prime} \times 36^{\prime \prime}$. It was rated by the manufacturers as a 50 -ton machine, but it showed $\%$ tons of ice-refrigerating effect per 24 hours during the test.The most probable figures of performance in eight trials are as follows:

    | $\begin{aligned} & \text { Hi } \\ & \dot{\circ} \\ & \dot{4} \end{aligned}$ | Ammonia Pressures, lbs. above Atmosphere. |  | Brine Temperatures, Degrees F. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | $\left\lvert\, \begin{gathered} \text { Con- } \\ \text { densing } \end{gathered}\right.$ | Suction. | Inlet. | Outlet. |  |  |  |  |  |
    |  | 151 | 28 | 36.7 | 28.86 | \%0. |  |  |  |  |
    | 8 | 161 | 27.5 | 36.36 | 28.45 | 70.1 | 22.27 | 1.09 | 1.0 | 1.0 |
    | 7 | 147 | 13.0 | 14.29 | 2.29 | 42.0 | 16.27 | 0.83 | $1 . \% 0$ | 1.60 |
    | 4 | 152 | 8.2 | 6.21 | 2.03 | 36.43 | 14.10 | 1.1 | 1.93 | 1.92 |
    | ${ }_{2}^{6}$ | 105 | 7.6 | 6.40 | -2.2. | 37.20 | 17.00 | 2.00 | 1.91 | 1.88 |
    |  | 135 | 15.7 | 4.62 | 3.22 | 27.2 | 13.20 | 1.25 | 2.59 | ${ }_{2} 57$ |

    The principal results in four tests are given in the table on page 998. The fuel economy under different conditions of operation is shown in the fol

    |  |  | Pounds of Ice-melting Effect with Engines- |  |  |  |  |  | B.T.U. per lb, of Steam with Engines- |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Non-condensing. |  | Non-compound Condensing. |  | Compound Condensing. |  |  | $\begin{aligned} & \text { ed } \\ & . \tilde{E}_{2}^{w} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |
    |  |  | $\begin{gathered} \text { ET } \\ 0.0 \\ 0 \\ 0 \end{gathered}$ |  |  |  | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ |  |  |  |  |
    | 150 | 28 | 24 | 2.90 | 30 | 3.61 | 37.5 | 4.51 | 393 | 513 |  |
    | 150 | 8 | 14 | 1.69 | 1\%.5 | 2.11 | 21.5 | 2.58 | 240 | 300 | 366 |
    | 105 | 28 | 34.5 | 4.16 | 43 | 5.18 | 54 | 6.50 | 591 | $2 \cdot 5$ | 923 |
    | 10.5 | r | 22 | 2.65 | 27.5 | 3.31 | 34.5 | 4.16 | $3 \% 6$ | $4 \% 0$ | 501 |

    The non-condensing engine is assumed to require 25 lbs . of steam per horse-power per hour, the non-compound condensing 20 lbs ., and the comdensing 16 lbs., and the boiler efficiency is assumed at 8.3 lbs . of water per lb. coal under working conditions. The following conclusions were derived from the investigation :

    1. The capacity of the machine is proportional, almost entirely, to the weight of ammonia circulated. This weight depends on the suctionpressure and the displacement of the compressor-pumps. The practical suction-pressures range from $\%$ lbs, above the atmospliere, with which a temperature of $0^{\circ} \mathrm{F}$. can be produced, to 28 lbs , above the atmosphere, 11 ith which the temperatures of refrigeration are confined to about $28^{\circ} \mathrm{F}$. At the lower pressure only about one half as much weight of ammonia can be circulated as at the upper pressure, the proportion being about in accordance with the ratios of the absolute pressures, 22 and 42 lbs. respectively. For each cubic foot of piston-displacement per minute a capacity of about one sixth of a ton of "refrigerating effect" per 24 hours can be pioduced at the lower pressure, and of about one third of a ton at the upper pressure. No other elements practically affect the capacity of a machine, provided the coolingsurface in the brine-tank or other space to be cooled is equal to about 36 sq . ft. per ton of capacity at, 28 lbs . back pressure. For example, a difference of $100 \%$ in the rate of circulation of brine, while producing a proportional difference in the range of temperature of the latter, made no practical difference in capacity.
    The brine-tank was $101 / \times 13 \times 10 \% \mathrm{ft}$., and contained 8000 lineal feet of 1 -in. pipe as cooling-surface. The condensing-tank was $12 \times 10 \times 10 \mathrm{ft}$., and contained 5000 lineal feet of 1 -in. pipe as cooling-surface.
    2. The economg in coal-consumption depends mainly upon both the suc-tion-pressures and condensing-pressures. Maximum economy, with a given type of engine, where water must be bought at average city prices, is obtained at 28 lbs . suction-pressure and about 150 lbs . condensing-pressure. Under these conditions, for a non-condensing steam-engine, consuming coal at the rate of 3 lbs. per hour per I.H.P. of stean-cylinders, 24 lbs . of icerefrigerating effect are obtained per lb, of coal consumed. For the same condensing-pressure, and with $\gamma$ lbs. suction-pressure, which affords temperatures of $0^{\circ} \mathrm{F}$., the possible economy falls to about 14 lbs . of "refrigerating effect" per lb. of coal consumed. The condensing-pressure is determined by the amount of condensing-water supplied to liquefy the ammonia in the condenser. If the latter is about 1 gallon per ninute per ton of refrigerating effect per 24 hours, a condensing-pressure of 150 lbs . results, if the initial tensperature of the water is about $56^{\circ} \mathrm{F}$. Twenty five per cent less water causes the condensing-pressure to increase to 190 lbs. The work of compression is thereby increased about $20 \%$, and the resulting "economy" is reduced to about 18 lbs . of "ice effect" per lb . of coal at 28 lbs . suction-pressure and 11.5 at 7 lbs . If, on the other hand, the supply of water is made 3 gallons per minute, the condensing-pressure may be confined to about 105 lbs . The work of compression is thereby reduced about $25 \%$, and a proportional increase of economy results. Minor alterations of economy depend on the initial temperature of the condensing-water and variations of latent heat, but these are confined within about $5 \%$ of the gross result, the main element of control being the work of compression, as affected by the baciz pressure and con-densing-pressure, or both. If the steam-engine supplying the motive power may use a condenser to secure a vacnum, an increase of economy of $25 \%$ is available over the above figures, making the lbs. of "ice effect" yer lb, of
    coal for 150 lbs . condensing-pressure and 28 lbs . suction-pressure 30.0 , and for $\% \mathrm{lbs}$, suction-pressure, 17.5 . It is, however, impracticable to use a condenser in cities where water is bought. The latter must be practically free of cost to be available for this purpose. In this case it may be assmmed that water will also be available for condensing the ammonia to obtain as low a condensling-pressure as about 100 lbs., and the economy of the refrig-elating-machine becomes, for 28 lbs . back pressure, 43.0 lbs . of "ice effect", per 1 lb . of coal, or for $\mathfrak{i} \mathrm{lbs}$. back-pressure, 27.5 lhs . of ice effect per lb. of coal. If a compound condensing-engine can be used with a steam-consumption per hour per horse-power of 16 lbs . of water, the economy of the refrigerating-machine may be $25 \%$ higher than the figures last named, making for 28 lbs . back pressure a refrigerating effect of 54.0 lbs . per lb . of coal, and for ${ }^{7} \mathrm{lbs}$. back pressure a refrigerating effect of 34.0 lbs . per lb . of coal.

    Actual Performance of Ice-making Machines.
    

    Iu class A, a German màchine, the ice-melting capacity ranges from 46.29 to 16.14 lbs . of ice per pound of coal, according as the suction pressure varies from about 45 to 8 lbs . above the atmosphere, this pressnre being the condition which mainly coutrols the economy of compression-machines. These results are equivalent to realizing from $\% \%$ to $5 \% \%$ of theoretically perfect performances. The higher per cents appear to occur with the ligher suction-pressures, indicating a greater loss from cylinder-heating (a phenomenon the reverse of cyliuder condensation in steam-engines), as the range of the temperature of the gas in the compression-cylinder is greater.
    In E , an American compression-machine, operating oir the "dry system," the percentage of theoretical effect realized ranges from $69.5 \%$ to $69.6 \%$. The friction losses are higher for the American machine. The latter's higher efficiency may be attributed, therefore, to more perfect displacement.
    The largest "ice-melting capacity" in the American machine is 24.16 lbs . This corresponds to the higlest suction-pressures used in American practice for such refrigeration as is required in beer-storage cellars using the directexpansion system. The conditions most nearly corresponding to A merican brewery practice in the German tests are those in line 5 , which give an "icemelting capacity "of 19.07 lbs .
    For the manufacture of artificial ice, the conditions of practice are those of lines 3 and 4 , and lines 25 and 26 . In the former the condensing pressure used requires more expense for cooling water than is common in American practice. The ice-melting capacity is therefore greater in the German machine, being 22.03 and 16.14 lbs . against 17.55 and 14.52 for the American apparatus.
    Class B. Sulphur Dioxide or Pictet Machines.-No records are available for determination of the "ice-melting capacity" of machines using pure sulphur dioxide. This fluid is in use in American machines, but in Europe it has given way to the "Pictet fluid," a mixture of about 9 .\% of sulphur dioxide and 3\% of carbonic acid. The presence of the carbonic acid affords a temperature about 14 Fahr. degrees lower than is obtained with pure sulphur dioxide at atmospheric pressure. The latent heat of this mixture has never been determined, but is assumed to be equal to that of pure sulphur dioxide.
    For brewery refrigerating conditions, line 17, we liave 26.24 lbs . "icemelting capacity," and for ice-making conditions, line 13, the "ice-melting capacity" is 17.47 lbs . These figures are practically as economical as those for ammonia, the per cent of theoretical effect realized ranging from 65.4 to $5 \uparrow .8$. At extremely low temperatures, $-15^{\circ}$ Fahr., lines 14 and 18 , the per cent realized is as low as 42.5 .
    Cylinder-heating.-In compression-machines employing volatile vapors the principal cause of the difference between the theoretical and the practical result is the heating of the ammonia, by the warm cylinder walls, during its entrance into the compressor, thereby expanding it, so that to compress a pound of ammonia a greater number of revolutions must be made by the compressing-pumps than corresponds to the density of the ammonia-gas as it issues from the brine-tank.
    Tests of Ammonia Absorption-machine used in storage-warehouses under approaches to the New York and Brooklyn Bridge. (Eng'g, July $2 \cdot, 1887$. - The circulated fluid consisted of a solution of chloride of calcium of 1.163 sp . gr. Its specific heat was found to be .827 .
    The efficiency of the apparatus for 24 hours was found by taking the product of the cubic feet of brine circulating through the pipes by the average difference in temperature in the ingoing and outgoing currents, as observed at frequent intervals by the specific heat of the brine (. $82 \%$ ) and its weiglt per cubic foot (73.48). The final product, applying all allowances for corrections from various causes, amounted to $6,218,816$ heat-units as the amount abstracted in 24 hours, equal to the melting of $43,565 \mathrm{lbs}$. of ice in the same time.
    The theoretical heating-power of the coal used in 24 hours was $27,000,000$ heat-units; hence the efficiency of the apparatus was $23 \%$. This is equivalent to an ice-melting effect of 16.1 lbs. per 1 b . of coal having a heating value of 10,000 B.T.U. per 1b.
    A test of a 35 -ton absorption-machine in New Haven, Conn., by Prof. Denton (Trans. A. S. M. E., x. 792), gave an ice-melting effect of 20.1 ilbs . per lb. of coal on a basis of boiler economy equivalent to 3 lbs . of steam per I.H.P. in a good non-condensing steam-engine. The ammonia was worked between 138 and 23 lbs . pressure above the atmosphere.

    ## Performance of a $\quad$ g-ton Refrigerating-machime.

    |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    | Av. high ammonia press. abo | 151 lbs . | 152 lbs . | 147 lbs . |  |
    | Av. back aminonia press. above atmos. |  | 8.2 6. |  | 27.5 - |
    | Av. temperature brine inlet | $36.76{ }^{\circ}$ | $6.27^{\circ}$ | $14.20^{\circ}$ |  |
    | Av. teuperature brine outle | $28.86^{\circ}$ | $2.03{ }^{\circ}$ | $2.29{ }^{\circ}$ | $28.45^{\circ}$ |
    | Av. range of temperature .. | $7.9^{\circ}$ | $4.24^{\circ}$ | $12.00^{\circ}$ | $7.91{ }^{\circ}$ |
    | Lbs. of brine circnlated per minute Av temp condensing woter at ine | 2281 | 2173 | 943 | $23 \tilde{4}$ |
    |  | $44.65^{\circ}$ | $56.65^{\circ}$ | $46.9^{\circ}$ | $54.00^{\circ}$ |
    | Av. temp, condensing-water at outlet...... <br> Av. range of temperature | $83.66{ }^{\circ}$ $39.011^{\circ}$ |  | $85.46{ }^{\circ}$ 38.56 | $88.86{ }^{\circ}$ |
    | Lbs. water circulated p. min. thro' cond'ser | $442{ }^{39}$ | $38.75{ }^{\circ}$ | ${ }_{2} 2578{ }^{38}$ | ${ }^{28.81 .5}$ |
    | Lbs. water per miu. through jackets | 25 | 44 | 40 |  |
    | Range of temperature in jackets | $24.0^{\circ}$ | $16.2^{\circ}$ | $16.4{ }^{\circ}$ | $29.1{ }^{\circ}$ |
    | Lbs. ammonia circulated per min.......... | *28.17 | 14.68 | $16.6 \pi$ | 28.32 |
    | Probable temperature of liquid ammonia, eutrance to brine-tank. | * $1.3{ }^{\circ}$ | *68 ${ }^{\circ}$ | *63.70 ${ }^{\circ}$ | 6.6.\% ${ }^{\circ}$ |
    | Temp. of amm. corresp, to av. back press. | $+14^{\circ}$ | - $8^{\circ}$ | - $5^{\circ}$ | $14^{\circ}$ |
    | Av. temperature of gas leaviog brine-tanks | $34.2{ }^{\circ}$ | $14.7{ }^{\circ}$ | $30^{\circ}$ | $29.2{ }^{\circ}$ |
    | Temperature of gas entering compressor.. | *39 ${ }^{\circ}$ | $25^{\circ}$ | $10.13^{\circ}$ | $34{ }^{\circ}$ |
    | Av. temperature of gas leaving compressor | $213^{\circ}$ | $263^{\circ}$ | $239{ }^{\circ}$ | $221^{\circ}$ |
    | Av. temp. of gas entering condenser...... | $200^{\circ}{ }^{\circ}$ | $218^{\circ}{ }^{\circ}$ | $209^{\circ}{ }^{\circ}$ | $168^{\circ}$ |
    | Temperature due to condensing pressure.. Heat given ammonia: | $84.5{ }^{\circ}$ | $84.0{ }^{\circ}$ | $82.5{ }^{\circ}$ | $88.0^{\circ}$ |
    | By brine, B T.U. ner miniute | 14\% ${ }^{7} 6$ | $\cdots 186$ | 8824 | 14647 |
    | By compressor, B.T.U. per minut | 2786 | 2320 | 2518 | 3020 |
    | By atmusphere, B.T.U. per minute..... | 140 | 147 | 167 | 141 |
    | Total heat rec. by amm., B.T.U. per min. Heat taken from ammonia: | $1 \%$ \% 02 | 0653 | 11409 | $17 \% 03$ |
    | By condenser, B.T.U. per n | 17242 | 9056 | 9910 | 1\%35 |
    | By jackets, B.T.U. per min | 608 | 712 | 656 | 406 |
    | By atmosphere, B.T.U. per min | 18. | 338 | 250 | 252 |
    | Total heat rej. by amm., B.T. U. per min... | $1803 \%$ | 10106 | 10816 | 1801\% |
    | Dif. of heat recd and rej., B.T.U. per min. | 330 | 453 | $40 \%$ | 309 |
    | \% work of compression removed by jackets. | 22\% | 31\% | $26 \%$ | 13\% |
    | Av. revolutions per min | 58.09 | $57 . \%$ | 57.88 | 58.89 |
    | Mean elf. press. steam-cyl., lbs, per sq. in. | 32.5 | 27.17 | 27.83 | 32.97 |
    | Mean eff. press. amm.-cyl., lbs, per sq. in. Av. H.P. stean-cylinder | 65.9 | 53.3 | 59.86 | 70.54 |
    | Av. H.P. ammonia-cylinder | 85.00 65.7 | \%1.7 | \% 73.6 | 88.63 |
    | Friction in per cent of stean $\ddot{\mathrm{H}} \ddot{\mathrm{P}}$ | 23.0 | 54.7 24.0 | 59.37 20.0 | ${ }_{19} 1.20$ |
    | Total cooling water, gallons per min. per ton per 24 hours | 0.75 | 24.0 1.185 | 0.79\% | 19.61 0.99 |
    | Tons ice-melting capacity per 24 hours | 74.8 | 36.43 | 44.64 | 74.56 |
    | Lbs ice-refrizerating eff. per lb. coal at 3 lbs. per H.P per hour |  |  |  | . 5 |
    | Cost coal per ton of ice-refrigerating effect | 24.1 | 14.1 | 17.27 | $23.3 \%$ |
    | at \$4 per ton ......................... | \$0.166 | \$0.283 | \$0.231 | \$0.1\%0 |
    | Cost water per ton of ice-refrigerating effect at $\$ 1$ per 1000 cu . ft. | \$0.128 | \$0.200 |  |  |
    | Total cost of 1 ton of ice-refrigerating eff.. | \$0.294 | \$0.483 | \$0.467 | \$0.339 |

    Figures marked thus (*) are obtained by calcolation; all other figures are obtained from experimental data; temperatures are in Fahrenheit degrees,

    ## Ammonia Compression-machine.

    ## Actual Resulas obtained at the Munich Tests.

    (Prof. Linde, Trans, A. S. M. E., xiv. 1419.)

    | No. of Test | 1 | 2 | 3 | 4 | 5 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Temp. of refrig- $\}$ Inlet, deg | 43.194 | 28.344 | 13.952 | -0.299 | 28.251 |
    | erated brine f Ontlet, $t$ deg. | 37.054 | 22.885 | 8.771 | -5.8\%9 | 23.0 2 |
    | Specific heat of brine. | 0.861 | 0.851 | 0.843 | $0.83 \hat{1}$ | 0.851 |
    | Quantity of brine circ. per h., cu. ft. | 1,039.38 | 908.84 | 633.89 | 414.98 | 800.93 |
    | Cold produced, B.T.U. per hour.... | 342,909 | 263,950 | 1ヶ2, 1 \% 6 | 121,474 | 220,284 |
    | Quant. of cooling water per h., c. ft. | 338.76 | 260.83 | 187.506 | 139.99 | 97.76 |
    | l.H.P. in steam-engine cylinder ( $L e$ ). | 15.80 | 16.47 | 15.28 | 14.24 | 21.61 |
    | Cold pro- ${ }^{\text {duced }}$ Per I. H.P. in comp.-cyl. | 24,813 | 18,4i1 | 12,r70 | 10,140 | 11,151 |
    | $\left.\begin{array}{l}\text { duced per } \\ \text { h., B.T.U. }\end{array}\right\} \begin{aligned} & \text { Per } \\ & \text { Per Ib. }\end{aligned}$ | $21 . \% 03$ $1,100.8$ | 16,026 | 11,307 | 8,530 | 10,194 |

    Means for Applying the Cold. (M. C. Bannister, Liverpool Eng'g Soc'y, 1890.)-The most useful means for applying the cold to various uses is a saturated solution of brine or chloride of magnesium, which remains liquid at $5^{\circ}$ Fahr." The brine is first cooled by being circulated in contact with the refrigerator-tubes, and then distributed through coils of pipes, arranged either in the substances requiring a reduction of temperature, or in the cold stores or rooms prepared for them; the air coming in contact with the cold tubes is immediately chilled, and the moisture in the air deposited on the pipes. It then falls, making room for warmer air, and so circulates until the whole room is at the temperature of the brine in the pipes.

    In a recent arrangement for refrigerating made by the Linde British Refrigeration Co., the cold brine is circulated through a shallow trough, in which revolve a number of shafts, each geared together, and driven by mechanical means. On the shafts are fixed a number of wrought-iron disks, partly immersed in the brine, which cool them down to the brine tempera ture as they revolve; over these clisks a rapid circulation of air is passed by a fan, being cooled by contact with the plates; then it is led into the chambers requiring refrigeration, from which it is again drawn by the same fan; thus all moisture and impurities are removed from the chambers, and deposited in the brine, producing the most perfect antiseptic atmosphere yet invented for cold storing; while the maximum efficiency of the brine temperature was always available, the brine being periodically concentrated by suitable arrangements.

    Air has also been used as the circulating medium. The ammonia-pipes refrigerate the air in a cooling-chamber, and large wooden conduits are used to convey it to and return it from the rooms to be cooled. An advantage of this system is that by it a room may be refrigerated more quickly than by brine-coils. The returning air deposits its moisture in the form of snow on the ammonia-pipes, which is removed by mechanical brushes.

    ## ARTIFICIAL ICE-RIANUTACTURE.

    Under summer conditions, with condensing water at ro $0^{\circ}$, artificial ice-machines use ammonia at abont 190 lbs . above the atmosphere condenserpressure, and 15 lbs . suction-pressure.
    In a compression type of machine the useful circulation of ammonia, allowing for the effect of cylinder-heating, is about 13 lbs . per hour per indicated horse-power of the steam cylinder. This weight of ammonia produces about 32 lbs . of ice at $15^{\circ}$ from water at $70^{\circ}$. If the ice is made from distilled water, as in the "can system," the amoint of the latter supplied by the boilers is about $33 \%$ greater than the weight of ice obtained. This exvess represents stean escaping to the atmosphere, from the re-boiler and stean-coudenser, to purify the distilled water, or free it from air; also, the loss throngh leaks and drips, and loss by melting of the ice in extracting it from the cans. The total steam consumed per horse-power is, therefore, about $32 \times 1.33=43,0 \mathrm{lbs}$. About 7.0 lbs . of this covers the steam-consumption of the steam-engines driving the brine circulating-pumps, the several
    cold-water pumps, and leakage, drips, etc. Consequently, the main steam. engine must consume 36 lbs . of steam per hour per I.H.P., or else live steam must be condensed to supply the required amonnt of distilled water. There is, therefore, nothing to be gained by using steam at high rates of expansion in the steam-engines, in making artificial ice from distilled water. If the cooling water for the ammonia-coils and steam-condenser is not too hard for use in the boilers, it may enter the latter at about $115^{\circ} \mathrm{F}$., by restricting the quantity to $11 / 2$ gallons per minute per ton of ice. With good coal $81 / 2 \mathrm{lbs}$. of feed.water may then be evaporated, on the average, per lb. of coal.
    The ice made per pound of coal will then be $32 \div(43.0 \div 8.5)=6.0 \mathrm{lbs}$. This corresponds with the results of average practice.

    If ice is manufactured by the "plate system," no distilled water is used for freezing. Hence the water evaporated by the boilers may be reduced to the amount which will drive the steam-motors, and the latter may use steam expansively to any extent consistent with the power required to compress the ammonia, operate the feed and filter pumps, and the loisting machinery. The latter may require about $15 \%$ of the power needed for compressing the ammonia.
    If a compound condensing steam-engine is used for driving the compressors, the steam per indicated stean horse-power, or per 32 1bs. of net ice, may be 14 lbs . per hour. The other motors at 50 lbs . of steam per horsepower will use 7.5 lbs . per hour, making the total consumption per steam horse-power of the compressor 21.5 lbs . Taking the evaporation at 8 lbs ., the feed-water temperature being limited to about $110^{\circ}$, the coal per horsepower is 2.7 lbs . per hour. The net ice per lb . of coal is then about $32 \div 2.7=$ 11.8 lbs. The best results with "plate-system" plants, using a compound steam-engine. have thus far afforded aboitt $101 / 1 \mathrm{lbs}$. of ice per lb . of coal.
    In the "plate system" the ice gradually forms, in from 8 to 10 days, to a thickness of about 14 inches, on the hollow plates, $10 \times 14$ feet in area, in which the cooling fluid circulates.

    In the "can system" the water is frozen in blocks weighing about 300 lbs . each, and the freezing is completed in from 40 to 48 bours. The freezingtank area occupied bs the "plate system" is, therefore, about twelve times, and the cubic contents about four times as much as required in the "can system."

    The investment for the "plate" is about one-third greater than for the "can" system. In the latter system ice is being drawn throughout the 24 hours, and the hoisting is done by hand tackle. Snme "can"plants are equipped with pnermatic hoists and on large hoists electric cranes are used to alvantage. In the "plate system" the entire daily product is drawn, cut, and stored in a few hours, the hoisting being performed by power: The distribution of cost is as follows for the two systems, taking the cost for the "can" or distilfed-water system as 100 , which represents an actual cost of about $\$ 1.25$ per net ton:

    Hoisting and storing ice.
    Engineers, firemen, and coal-passer.
    Coal at $\$ 3.50$ per gross ton..
    Water pumped directly from a natural source at 5 cts. per 1000 cubic feet.
    Interest and depreciation at $10 \%$.
    Repairs.

    Can System. Plate System.
    $14.2 \quad 2.8$
    $\begin{array}{ll}15.0 & 13.9\end{array}$
    $42.2 \quad 20.0$

    | 1.3 | 2.6 |
    | :---: | ---: |
    | 24.6 | 32.7 |
    | 2.7 |  |
    | 100.00 |  |

    A compound condensing engine is assumed to be used by the "plate sys tem."

    Test of the New York Hygeia Tcemaking Plant.-(By Messrs. Hupfel, Griswold, and Mackenzie; Stevens Indicator, Jan. 1891.)
    The final results of the tests were as follows:
    Net ice made per pound of coal, in pounds ..... 7.12
    Pounds of net ice per hom per horse-power ..... 37.8
    Net, ice manufactured per day ( $1: 2$ hous) in tons ..... 97
    Av. pressure of ammonia-gas at condenser, lbs. per sq. in. ab.a............ ..... 135.2
    Average back pressure of amm.-gas, his, per sq. in. above atmos.. ..... 15.8
    Average temperature of brine in freezing-tanks, degrees $F$ ..... 197
    Total number of cans filled per week
    4389
    4389
    Ratio of cooling-surface of coils in brine-tank to can-surface. ..... 7 to 10
    Ratio of brine in tanks to water in cans ..... 1 to 1.2
    Ratio of circulating water at condensers to distilled water ..... 26 to 1
    Pounds of water evaporated at boilers per pound of coal ..... 8.085
    Total horse-powel developed by compressol-engines. ..... 444 ..... 2.2
    Percentage of ice lost in removing from cans
    Percentage of ice lost in removing from cans
    APPROXIMATE DIVISION OF STEAM IN PER CENTS OF TOTAL AMOUNT.
    Compressor-engines ..... 60.1
    Live steam admitted directly to condenser. ..... 19.7
    Steam for pumps, agitator, and elevator engines ..... 7.6
    Live steam for reboiling distilled water
    6.5
    6.5
    Steam for blowers furnishing draught at boilers ..... 5.6
    Sprinklers for removing ice from cans ..... 0.5
    The precautions taken to insure the purity of the ice are thus described:
    The water which finally leaves the condenser is the accumulation of theexhausts from the various pumps and engines, together with an amount oflive steam injected into it directly from the boilers. This last quantity isused to make up any deficit in the amount of water necessary to supply theice-cans. This water on leaving the condensers is violently reboiled, andafterwards cooled by running through a coil surface-cooler. It then passesthrough an oil-separator, after which it runs throngh three charcoal-filtersand deodorizers, placed in series and containing 28 feet of charcoal. It nextpasses into the supply-tank in which there is an electrical attachment fordetecting salt. Nitrate-of-silver tests are also made for salt daily. Fromthis tank it is fed to the ice-caus, which are carefully covered so that thewater cannot possibly receive any impurities.

    ## MARINE ENGINEERING.

    Rules for Measuring Dimensions and Obtaining Tonnage of Vessels. (Record of American \& Foreign Shipping. American Bureau of Shipping, N. Y. 1890.)-The dimensions to be measured as follows:
    I. Length. L.-From the fore side of stem to the after side of stern-post measured at niddale line on the upper deck of all vessels, except those having a continuous hurricane-deck extending right fore and aft, in which the length is to be measured on the range of deck immediately below the hurri-cane-deck.
    Vessels having clipper heads, raking forward, or receding stems, or rak. ing stern-posts, the length to be the distance of the fore side of stem from aft-side of stern-post at the deep-load water-line measured at middle line. (The inner or propeller-post to be taken as stern-post in screw-steamers.
    II. Breadth, $B$. -To be measured over the widest frame at its widest part; in other words, the moulded breadth.
    III. Depth, $D$.-To be measured at the dead-flat frame and at middle line of vessel. It shall be the distance from the top of floor-plate to the upper side of upper deck-beam in all vessels except those having a continuous hurricane-deck, extending right fore and aft, and not intended for the American coasting trade, in which the depth is to be the distance from top of floor-plate to midway between top of hurricane deck-beam and the top of deck-beam of the deck immediately below hurricane-deck.

    In vessels fitted with a continuous hurricane deck, extending right fore and aft. and intended for the American coasting trade, the depth is to be the distance from top of floor-plate to top of deck-beam of deck immediately below hurricane-deck.

    Rule for obtaining Tonnage.-Multiply together the length, breadth, and depth, and their product by .75; divide the last product by 100 ; the quotient will be the tonnage. $\frac{L \times B \times D \times 75}{100}=$ tonnage.

    ## The U. S. Custom-house 'Tonnage Law, May 6, 1864, provides

    that "the register tonnage of a vessel shall be her entire internal cubic capacity in tons of 100 cubic feet each." This measurement includes all the space between upper decks, however many there may be. Explicit directions for making the measurements are given in the law.The Displacement or a Vessel (measured in tons of 2240 lbs .) is the weight of the volume of water which it displaces. For sea-water it is equal to the volume of the vessel beneath the water-line, in cubic feet, divided by 35 , which figure is the number of cubic feet of sea-water at $00^{\circ}$
    F. in a ton of 2240 lbs . For fresh water the divisor is 35.93 . The U. S. reg. ister tonnage will equal the displacement when the entire internal cubic capacity bears to the displacement the ratio of 100 to 35 .
    The displacement or gross tonnage is sometimes approximately estimated as follows: Let $L$ denote the length in feet of the boat, $B$ its extreme breadth in feet, and $D$ the mean draught in feet; the product of these three dimensions will give the volume of a parallelopipedon in cubic feet. Putting $V$ for this volume, we have $V=L \times B \times D$.
    The volume of displacement may then be expressed as a percentage of the volume $V$, known as the "block coefficient." This percentage varies for different classes of ships. In racing yachts with very deep keels it varies from 22 to 33 ; in modern merchantinen from 55 to 75 ; for ordinary small boats probably 50 will give a fair estimate. The volume of displacement in cubic feet divided by 35 gives the displacement in tons.
    Coefficient of Fineness.-A term used to express the relation between the displacement of a ship and the volume of a rectangular prism or box whose lineal dimensions are the length, breadth, and draught of the ship.
    Coefficient of fineness $=\frac{D \times 35}{L \times B \times W} ; D$ being the displacement in tons of 35 cubic feet of sea-water to the ton, $L$ the length between perpendiculars, $B$ the extreme breadth of beam, and $W$ the mean draught of water, all in feet.
    Coefficient of Water-lines.-An expression of the relation of the displacement to the volume of the prism whose section equals the midship section of the ship, and length equal to the length of the ship.
    Coefficient of water-lines $=\frac{D \times 35}{\text { gives the following values: }} \begin{aligned} & \text { area of immersed water section } \times L\end{aligned}$. Seaton
    gin

    |  | Coefficient of Fineness. | Coefficient of Water-lines. |
    | :---: | :---: | :---: |
    | Finely-shaped ships. | 0.55 | 0.63 |
    | Ordinary merchant steamers for speeds of | 0.61 | 0.67 |
    | 11 knots.... $\ldots \ldots \ldots \ldots$ | 0.65 | 0.72 |
    | Modern cargo steamers of large size. | 0.70 0.78 | ${ }_{0}^{0.76}$ |

    Resistance of Ships. - The resistance of a ship passing through water may vary from a number of causes, as speed, form of body, displacement, midship dimensions, character of wetted surface, fineness of lines, etc. The resistance of the water is twofold: 1 st. That due to the displace, ment of the water at the bow and its replacement at the stern, with the consequent formation of waves. 2d. The friction between the wetted surface of the ship and the water, known as skin resistance. A common approximate formula for resistauce of vessels is
    Resistance $=$ speed $^{2} \times \sqrt[3]{\text { displacement }}{ }^{2} \times$ a constant, or $R=S^{2} D^{2} \times C$.
    If $D=$ displacement in pounds, $S=$ speed in feet per minute, $R=$ resist. ance in foot-pounds per minute, $R=C S^{2} D^{\frac{2}{3}}$. The work done in overcom. ing the resistance through a distance equal to $S$ is $R \times S=C S^{3} D^{\frac{2}{3}}$; and if $E$ is the efficiency of the propeller and machinery combined, the indicated horse-power I.H.P. $=\frac{C S^{3} D^{\frac{2}{3}}}{E \times 33,000}$.
    If $S=$ speed in knots, $D=$ displacement in tons, and $C$ a constant which includes all the constants for form of vessel, efficiency of mechanism, etc., I.H.P. $=\frac{S^{3} D^{\frac{2}{3}}}{C}$

    The wetted surface varies as the cube root of the square of the displacement; thus, let $L$ be the length of edge of a cube just immersed, whose displacement is $D$ and wetted surface $W$. Then $D=L^{3}$ or $L=\sqrt[3]{D}$, and $W=5 \times L^{2}=5 \times(\sqrt[3]{D})^{2}$. That is, $W$ varies as $D \mathbf{3}_{\text {. }}$.

    Another approximate formula is

    $$
    \text { I.H.P. }=\frac{\text { area of immersed midship section } \times S}{K}
    $$

    The usefulness of these two formulæ depends upon the accuracy of the so-called "constants" $C$ and $K$, which vary with the size and form of the ship, and probably also with the speed. Seaton gives the following, which may be taken roughly as the values of $C$ and $K$ under the conditions expressed:

    | General Description of Ship. | Speed, <br> knots. | Value of $C$. | Value of $k$. |
    | :---: | :---: | :---: | :---: |
    | Ships over ${ }_{300}^{400}$ feet long, finely shaped | $\left\|\begin{array}{ccc}15 & \text { to } \\ 15 & 17 \\ 17 \\ 17 & 17\end{array}\right\|$ | $\begin{aligned} & 240 \\ & 190 \end{aligned}$ | 620 500 |
    | " ${ }^{6}$ | 13 ${ }^{13}$ ، 15 | 240 | ${ }^{650}$ |
    | Ships over 300 feet Jong, fairl | 1110 11313 | ${ }_{240}^{260}$ | 200 650 |
    |  | ${ }^{9}$ 9 ${ }^{1}$ " 11 | 260 | \% 000 |
    | Ships over 250 feet long, finely shaped | \|lll13 c <br> 11 15 | ${ }_{240}^{200}$ | 580 660 |
    | "، ، " |  | $\stackrel{240}{260}$ | ${ }_{700}^{660}$ |
    | Ships over 250 feet long, fairly shaped | 11 " 13 | 220 | 620 |
    | Ships over 200 feet long, finely shap |  | $\stackrel{250}{220}$ | 680 600 |
    |  |  | $\stackrel{2}{240}$ | 600 640 |
    | Ships over 200 feet long, fairly shaped | 9 " 11 | 220 | 620 |
    | Ships under 200 feet long, finely slaped |  | 200 210 | 550 580 |
    |  | 9 "10 | $\stackrel{230}{230}$ | 620 |
    | Ships under 200 feet long, fairly shaped | 9 "10] | 200 | 600 |

    Coefficient of Performance of Vessels...-The quotient

    $$
    \frac{\sqrt[3]{(\text { displacement })^{2}} \times(\text { speed in knots })^{3}}{\text { tons of coal in } 24 \text { hours }},
    $$

    gives a quotient of performance which represents the comparative cost of propulsion in coal expended. Sixteen vessels with three-stage expansionengines in 1890 gave an average coefficient of 14,810 , the range being from 12,150 to 16,700.

    In 1881 seventeen vessels with two-stage expansion-engines gave an average coefficient of 11.710 . In 1881 the length of the vessels tested ranged from 260 to 320 , and in 1890 from 295 to 400 . The speed in knots divided by the square root of the length in feet in 1881 averaged 0.539 ; and in 1890, 0.579 ; ranging from 0.520 to 0.641 . (Proc. Inst. M E., July, 1891, p. 329.)

    Defects of the Common Fornula for Resistance.-Moderu experiments throw doubt upon the truth of the statement that the resistance varies as the square of the speed. (See Robt. Mansel's letters in Engineering, 1891; also his paper ou The Mechanical Theory of Steamship Propulsion read before Section G of the Engineering Congress, Chicago, 1893.)

    Seaton says: In small steamers the chief resistance is the skin resistance In very fine steamers at high speeds the amount of power required seems excessive when compared with that of ordinary steamers at ordinary speeds.

    In torpedo-launches at certain high speeds the resistance increases at a lower rate than the square of the speed.

    In ordinary sea-going and river steaners the reverse seems to be the case.
    Rankine's Formula for total resistance of vessels of the "waveline" type is:

    $$
    R=A L B V^{2}\left(1+4 \sin ^{2} \theta+\sin ^{4} \theta\right)
    $$

    in which equation $\boldsymbol{\theta}$ is the mean angle of greatest obliquity of the stream lines, $A$ is a constant multiplier, $B$ the mean wetted girth of the surface exposed to friction, $L$ the length in feet, and $V$ the speed in knots. The power demanded to impel a ship is thus the product of a constant to be determined by experiment, the area of the wetted surface, the cube of the speed, and the
    quantity in the parenthesis, which is known as the "coefficient of augmentation." The last term of the coefficient may be neglected in calculating the resistance of ships as too small to be practically inportant. In applying the formula, the mean of the squares of the sines of the angles of maximum obliquity of the water-lines is to be taken for $\sin ^{2} \theta$, and the rule will then read thus:

    To obtain the resistance of a ship of good form, in pounds, multiply the length in feet by the mean immersed girth and by the coefficient of augmentation, and then take the product of this "augmented surface," as Rankine termed it, by the square of the speed in knots, and by the proper constant coefficient selected from the following:

    $$
    \begin{aligned}
    & \text { For clean painted vessels, iron hulls......... } A=.01 \\
    & \text { For clean coppered vessels................. } A=.009 \text { to } .008 \\
    & \text { For moderately rough iron vessels........ } A=.011+
    \end{aligned}
    $$

    The net, or effective, horse-power demanded will be quite closely obtained by multiplying the resistance calculated, as above, by the speed in knots and dividing by 326 . The gross, or indicated, power is obtained by multiplying the last quantity by the reciprocal of the efficiency of the machinery and propeller, which usually should be about 0.6. Rankine uses as a divisor in his case 200 to 260 .
    The form of the vessel, even when designed by skilful and experienced naval architects, will often vary to such an extent as to cause the above constant coefficients to vary somewhat; and the range of variation with good forms is found to be from 0.8 to 1.5 the figures given.
    For well-shaped iron vessels, an approximate formula for the horse-power required is H.P. $=\frac{S V^{3}}{20,000}$, in which $S$ is the "augmented surface." The expression $\frac{S V^{3}}{H . P}$. has been called by Rankine the coefficient of propulsion. In the Hudson River steamer "Mary Powell," according to Thurston, this coefficient was as high as 23,500 .
    The expression $\frac{D^{\frac{2}{3}} V^{3}}{\text { H.P. }}$ has been called the locomotive performance. (See Rankine's Treatise on Shipbuilding, 1864; Thurston's Manual of the Steamengine, part ii. p. 16; also paper by F. T. Bowles, U.S.N., Proc. U. S. Naval Institute, 1883.)

    Rankine's method for calculating the resistance is said by Seaton to give more accurate and reliable results than those obtained by the older rules, but it is criticised as being difficult and inconvenient of application.

    Dr. Kirk's Method.-This method is generally used on the Clyde.
    The general idea proposed by Dr. Kirk is to reduce all ships to so definite and simple a form that they may be easily compared; and the magnitude of certain features of this form shall determine the suitability of the ship for
    speed, etc.

    The form consists of a middle body, which is a rectangular parallelopiped, and fore body and after body, prisms laving isosceles triangles for bases, as shown in Fig. 168.
    

    Fig. 168.
    This is called a block model, and is such that its length is equal to that of the ship, the depth is equal to the mean draught, the capacity equal to the displacement volume, and its area of section equal to the area of im-
    mersed midship section. The dimensions of the block model may be obtained as follows:

    $$
    \begin{aligned}
    & \text { Let } A G^{\gamma}=H B=\text { length of fore- or after-body }=F \text {; } \\
    & G H=\text { length of middle body }=M ; \\
    & K L=\text { mean draught } \quad=H \text {; } \\
    & E K=\frac{\text { area of immersed midship section }}{K L}=B \text {. }
    \end{aligned}
    $$

    Volume of block $=(F+M) \times B \times H$;
    Midship section $=B \times H$;
    Displacement in tons $=$ volume in cubic ft. -35 .

    $$
    A H=A G+G H=F+M=\text { displacement } \times 35 \div(B \times H)
    $$

    The wetted surface of the block is nearly equal to that of the ship of the same length, beam and draught; usually $2 \%$ to $5 \%$ greater. In exceedingly fine hollow-line ships it may be $3 \%$ greater.

    $$
    \begin{aligned}
    & \text { Area of bottom of block }=(F+M) \times B \text {; } \\
    & \text { Area of sides }=2 M \times H .
    \end{aligned}
    $$

    $$
    \begin{aligned}
    & \text { Area of sides of ends }=4 \sqrt{F^{2}+\left(\frac{B}{2}\right)^{2}} \times H \\
    & \text { Tangent of half angle of entrance }=\frac{1 / 2 B}{\vec{F}^{2}}=\frac{B}{2 W^{\prime}}
    \end{aligned}
    $$

    From this, by a table of natural tangents, the angle of entrance may be obrained:

    Angle of Entrance Fore-body in of the Block Model. parts of length.
    Ocean-going steamers, 14 knots and upward.
    12 to 14 knots.........
    cargo steamers, 10 to 12 knots..
    $18^{\circ}$ to $15^{\circ}$
    21 to 18
    30 to 22
    .3 to .36
    .26 to .3
    .22 to . 26
    E. R. Mumford's Method of Calculating Wetted Surfaces
    is given in a paper by Archibald Denny, Eng'g, Sept. 21 , 1894. The following is his formula, which gives closely accurate results for medium draughts, beams, and finenesses:

    $$
    S=(L \times D \times 1.7)+(L \times B \times C)
    $$

    in which $S=$ wetted surface in square feet;
    $L=$ length between perpendiculars in feet;
    $D=$ middle draught in feet:
    $B=$ beam in feet;
    $C=$ block coefficient.
    The formula may also be expressed in the form $S=L(1.7 D+B C)$.
    In the case of twin-screw ships having projecting shaft-casings, or in the case of a ship having a deep keel or bilge keels, an addition must be made for such projections. The formula gives results which are in general much more accurate than those obtained by Kirk's method. It underestimates the surface when the beam, draught, or block coefficients are excessive; but the error is small except in the case of abnormal forms, such as stern-wheel steamers having very excessive beams (nearly one fourth the length), and also very full block coefficients. The formula gives a surface about $6 \%$ too small for such forms.

    To Find the Endicated Horsepower from the Wetted Surface. (Seaton.)- 11 ordinary cases the horse-power per 100 feet of wetted surface may be found by assuming that the rate for a speed of 10 knots is 5, and that the quantity varies as the cube of the speed. For example: To find the number of I.H.P. necessary to drive a ship at a speed of 15 knots, having a wetted skin of block model of 16,200 square feet:

    The rate per 100 feet $=(15 / 10)^{3} \times 5=16.875$.
    Then I.H.P. required $=16.875 \times 162=2734$.

    When the ship is exceptionally well-proportioned, the bottom quite ciean, and the efficiency of the machinery high, as low a rate as 4 I.H.P. per 100 feet of wetted skin of block model may be allowed

    The gross indicated horse-power includes the power necessary to overcome the friction and other resistance of the engine itself and the shafting, and also the power lost in the propellor. In other words, I.H.P. is no measure of the resistance of the slip, and can only be relied on as a means of deciding the size of engines for speed, so long as the efficiency of the engine and propellor is known definitely, or so long as similar engines and propellers are employed in ships to be compared. The former is difficult to obtain, and it is nearly impossible in practice to know how much of the power shown in the cylinders is employed usefully in overcoming the resistance of the ship. The following example is given to show the variation in the efficiency of propellers:
    H.M.S. "Amazon," with a 4-bladed screw, gave............. Knots. 12.064 with 1940 H.M.S. "A mazon," with a 2 -bladed screw, increased pitch, and less revolutions per minute.
    12.396 " 1663 H.M.S. "Iris,", with a 4-bladed screw.............................. 16.5 16.57 " 750.3
    
     Vessels. (Horse-power for 10 knots $=1$.) -The horse-power is taken usually to vary as the cube of the speed, but in different vessels and at different speeds it may vary from the 2.8 power to the 3.5 power, depending upor the lines of the vessel and upon the efficiency of the engines, the propeller, etc.

    |  | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | . 0769 | 239 | . 535 |  | 1.666 | 2.565 | 3.729 | 5.185 | 6.964 | 9.095 | 11.60 | 14.50 |  |  |
    | $S^{2.9}$ | . 0701 | 227 | . 524 | 1. 1 | 1.697 | 2.653 |  |  | 7.464 | 9.841 | $12.6{ }^{1}$ | 14.92 |  |  |
    | $S^{3}$ | . 0640 | . 216 | . 512 | 1.1 | 1. 728 | 2.741 | 4.096 | 5.832 | 8.464 | 19.84 | 12.6. | 15.97 17.58 | 19.80 | -4.19 |
    | $S^{3 \cdot 1}$ $S^{3 \cdot 2}$ | . 0584 | . 205 | . 501 | 1.1 | 1.760 | $\because .838$ | 4.293 | 6.185 | 8.574 | 11.52 | 15.09 | 19.34 | 24.33 | 30.14 |
    | $S^{3 \cdot 2}$ $S^{3 \cdot 3}$ | .0533 .0486 | . 185 | . 490 | 1.1 | 1.792 | 2. 935 | 4.500 | 6.55 | 9.189 | $12.4 \sim$ | 16.47 | 21.28 | 26 | 33.63 |
    | ${ }^{\text {S }}$ | . 0444 | . 18 | . 468 | 1. 1 | 1.825 | 3.036 | 4. 716 | $6.95{ }^{\circ}$ | 9.849 | 13.49 | 17.95 | 23.41 | 29.90 | 37.54 |
    | $S^{3.6}$ | . 0405 | 16 | . 458 | 1.1 | 1.859 | . 132 |  |  |  | 14.60 | 19.62 | 25.76 | 33.14 | 41.90 |

    Example in Use of the Table.-A certain vessel makes 14 knots speed with 587 I.H.P. and 16 knots with 900 I.H.P. What I.H.P. will be required at 18 knots , the rate of increase of horse-power with increase of speed remaining constant? The first step is to find the rate of increase, thus: $14^{x}: 16^{x}::$ 587 : 900.

    $$
    \begin{aligned}
    & x \log 16-2 \log 14=\log 900-\log 587 \\
    & x(0.204120-0.146128)=2.954243-2.768638
    \end{aligned}
    $$

    Whence $x$ (the exponent of $S$ in formula H.P. $\propto S^{x}$ ) $=3.2$.
    From the table, for $S^{3 \cdot 2}$ and 16 knots, the I.H.P. is 4.5 times the I.H.P. at $10 \mathrm{knots}, \therefore$ H.P. at 10 knots $=900 \div 4.5=200$.
    From the table, for $S^{3.2}$ and 18 knots, the I.H.P. is 6.559 times the I.H.P. at 10 knots: $\therefore$ H.P. at 18 knots $=200 \times 6.559=1312$ H.P.

    ## Resistance per Horse-power for Different Speeds. (One

    horse-power $=33,000 \mathrm{lbs}$. resistance overcome through 1 ft . in 1 min.)-The resistances per horse-power for various speeds are as follows: For a speed of 1 knot, or 6080 feet per hour $=1011 / 3 \mathrm{ft}$. per min., $33,000 \div 1011 / 3=325.658 \mathrm{lbs}$. per horse-power; and for any other speed 325.658 lbs. divided by the speed in knots; or for1 knot 325.66 lbs . 2 knots 162.83 6. 6 knots 54.28 lbs . 7 k 46 111 12 81.41 " 81.41 "

    Hesulis of Trials of Steam-vessels of Various Sizes.
    (From Seaton's Marine Engineering.)

    |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Length, perpendicula | $90^{\prime} 0^{\prime \prime}$ | $171^{\prime} 9^{\prime \prime}$ | $130^{\prime} 0^{\prime \prime}$ | $286^{\prime} 0^{\prime \prime}$ | $230^{\prime} 0^{\prime \prime}$ | $33^{\prime \prime} 0^{\prime \prime}$ |
    | Breadth, extreme.. . | $10^{\prime} 6^{\prime \prime}$ | $18^{\prime} 9^{\prime \prime}$ | $21^{\prime} 0^{\prime \prime}$ | $34^{\prime} 3^{\prime \prime}$ | $29^{\prime} 0^{\prime \prime}$ | $3^{3} 5^{\prime \prime} 0^{\prime \prime}$ |
    | Mean draught water. | ${ }^{2} 6^{\prime \prime}$ | $6^{\prime} 912^{\prime \prime}$ | $8^{\prime} 10^{\prime \prime}$ | $6^{\prime} 0^{\prime \prime}$ | $13^{\prime} 6^{\prime \prime}$ | $13^{\prime} 0^{\prime \prime}$ |
    | lisplacement (tons).. | 29.73 | 280 | 370 | 800 | 1500 | 1900 |
    | Area Immersed mid. section | 24? | 99 | 148 | 200 | 340 | 3.36 |
    | 埌 हetted skin...... .. .. | 903 | 3793 | 3754 | 8:22 | 10,075 | 15,782 |
    | 边 4 Length, fore-body. | $45^{\prime} 0^{\prime \prime}$ | $72^{\prime} 00{ }^{\prime \prime}$ | $49^{\prime} 6^{\prime \prime}$ | $143^{\prime} 0^{\prime \prime}$ | \%9' $6^{\prime \prime}$ | $129{ }^{\prime \prime}$ |
    | ค\% (Angle of entrance. | $12^{\circ} 40^{\prime}$ | $11^{\circ} 30^{\prime}$ | $23^{\circ} 50^{\prime}$ | $13^{\circ} 21^{\prime}$ | $17^{\circ} 0^{\prime \prime}$ | $11^{\circ} 26^{\prime}$ |
    | Displacement $\times 35$ | 0.481 | 0.576 | 0.608 |  |  |  |
    | Length $\times$ Imm. mid area | 0.481 | 0.576 | 0.608 | 0.489 | 0.671 | 0.605 |
    | Speed (knots) | 22.01 | 15.3 | 10.74 | 17.20 | 10.04 | 17.8 |
    | Indicated horse-power. | 460 | 798 | 371 | 1490 | 503 | $4751$ |
    | [.H.P. per 100 ft . wetted skin | 50.9 | 21.04 | 9.88 | 18.12 | 5.00 | $30.00$ |
    | I.H.P. per 100 ft . wetted skin, reduced to 10 knots............... . | 4.78 | $5.8 \%$ | 8.97 | 3.56 | 4.90 | 5.32 |
    | $\frac{D^{\frac{2}{3}} \times S^{3}}{\text { I.H.P. }} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$ | 223 | 192 | 172.8 | 293.7 | 266 | 182 |
    | $\frac{\text { Immersed mid area } \times S^{3}}{\text { I.H.P. }}$ | 556? | 445 | 495 | 683 | 690 | 399 |
    | - |  |  |  |  |  |  |
    | Length, perpendiculars.. | $270^{\prime} 0^{\prime \prime}$ | $300^{\prime} 0^{\prime \prime}$ | $300^{\prime} 0^{\prime \prime}$ | $370^{\prime} 0^{\prime \prime}$ | $392 \quad 0{ }^{\prime \prime}$ | $450^{\prime} 0^{\prime \prime}$ |
    | Breadth, extreme........ | $48^{\prime} 0^{\prime \prime}$ | $46^{\prime} 0^{\prime \prime}$ | $46^{\prime} 0^{\prime \prime}$ | $41^{\prime} 0^{\prime \prime}$ | $390^{\prime \prime}$ | 45' $2^{\prime \prime}$ |
    | Mean draught water. | $18^{\prime} 10^{\prime \prime}$ | $18^{\prime} 2^{\prime \prime}$ | $18^{\prime} 2^{\prime \prime}$ | $18^{\prime} 11^{\prime \prime}$ | $21^{\prime} 4^{\prime \prime}$ | $23^{\prime \prime}$ |
    | Displacement (tons). | 3057 | 3790 | 3:90 | 4635 | 5767 | 8500 |
    | Areal Imm, mid. section | 632 | 700 | 700 | 656 | \%38 | 906 |
    | is \& Wetted skin........ | 16,008 | 18,168 | 18,168 | 22,633 | 26,235 | 32,578 |
    |  | $101^{\prime} 0^{\prime \prime}$ | $135 \prime 6$ | $135^{\prime} 6^{\prime \prime}$ | $123^{\prime \prime} 0^{\prime \prime}$ | $118^{\prime} 0^{\prime \prime}$ | $129^{\prime} 0^{\prime}$ |
    | $\widehat{\oplus}^{(2)}$ Angle of entrance.. ...... | $18^{\circ} 44^{\prime}$ | $16^{\circ} 16^{\prime}$ | $16^{\circ} 16^{\prime}$ | $16^{\circ} 4^{\prime}$ | $16^{\circ} 30^{\prime}$ | $17^{\circ} 16^{\prime}$ |
    | Displacement $\times 35$ | 0.629 | 0.548 | 0.548 | 0.668 | 0.698 | 0.714 |
    | Longth $\times$ Imm. mid area ${ }^{\text {a }}$... | 0.623 | 0.048 | 0.048 | 0.668 | 0.698 | 0.714 |
    | Speed (knots) | 14.966 | 18.573 | 15. 146 | 13.80 | 12.054 | 15.045 |
    | Indicated horse-power. | 4015 | \% 714 | 3958 | 2500 | 1758 | 4900 |
    | I.H.P. per 100 ft , wetted skin.... | 25.08 | 42.46 | 21.78 | 11.04 | 6.7 | 15.04 |
    | I.H.P. per 100 ft . wetted skin, reduced to 10 knots............. . | 7.49 | 6.631 | 5.58 | 4.20 | 3.83 | 15.01 4.43 |
    | $D^{\frac{2}{3}} \times S^{3}$ |  |  |  |  |  |  |
    | $\frac{\text { I.H.P. }}{}$. . . ................. | 175.8 | 183.î | 218.2 | 292 | 320 | 289.3 |
    | $\frac{\text { Immersed mid area } \times S^{9}}{\text { I.H.P. }}$ | 527.5 | 581.4 | 690.5 | 689 | 735 | 642.5 |

    ## Results of Progressive Speed Trials in Typical Vessels.

    (Eng'g, April 15, 1892, p. 463.)
    

    The figures for I.H.P. are "round." The "Medusa's" figures for 20 knots are from trial on Stokes Bay, and show the retarding effect of shallow water. The figures for the other ships for 20 knots are estimated for deep water.
    More accurate methods than those above given for estimating the horse-power required for any proposed, ship are: 1. Estimations calcutated from the results of trials of "similar" vessels driven at "corresponding", speeds; "similar" vessels being those that have the same ratio of length to breadth and to draught, and the same coefficient of fineness, and "corresponding" speeds those which are proportional to the square roots of the lengths of the respective vessels. Froude found that the resistances of such vessels varied almost exactly as wetted surface $\times$ (speed) ${ }^{2}$.
    2. The method employed by the British Admiralty and by some Clyde shipbuilders, viz, ascertaining the resistauce of a model of the vessel, 12 to 20 ft . long, in a tank, and calculating the power from the results obtained.
    Speed on Canals.-A great loss of speed occurs when a steam-vessel passes from open water into a more or less restricted channel. The a verage speed of vessels in the Suez Canal in 1882 was only $51 / 3$ statute miles per hour. (Eug'g. Feh. 15, 1884, p. 139.)

    ## Estimated Displacement, Horse-power, etc.-The table on

    the next page, calculated by the author, will be found convenient for making approximate estimates.The figures in ith column are calculated by the formula H.P. $=S^{3} D^{\frac{2}{3}} \div c$, in which $c=200$ for vessels under 200 ft . long when $C=.65$, and 210 when $C=.55 ; c=200$ for vessels 200 to 400 ft . long when $C=.75,220$ when $C=.65,240$ when $C=.55 ; c=230$ for vessels over 400 ft . long when $C=.75, ~$
    250 when $C=.65,260$ when $C=.55$. 250 when $C=.65,260$ when $C=.55$.
    The figures in the 8 th column are based on 5 H.P. per 100 sq . ft . of wetted The
    The diameters of screw in the 9th column are from formula $D=$ $3.31 \sqrt[5]{\text { I. ... } \bar{P}}$, and in the 10 th column from formula $D=2.71 \sqrt[5]{\text { I.H.P. }}$
    To find the dianeter of screw for any other speed than 10 knots, revolutions being 100 per minute, multiply the diameter given in the table by the 5 h root of the cube of the given speed $\div 10$. For any other revolutions per minute than 100 , divide by the revolutions and multiply by 100 .
    To find the approximate horse-power for any other speed than 10 knots, multiply the horse-power given in the table by the cube of the ratio of the given speed to 10 , or by the relative figure from table on p. 1006 .

    Fstimated Displacement, Horse-power, etc., of Steam-
    

    ## THE SCREW-PROPELETER,

    The "pitch" of a propeller is the distance which any point in a blade, describing a helix, will travel in the direction of the axis curing one revolution, the point being assumed to move around the axis. The pitch of a propeller with a uniform pitch is equal to the distance a propeller will advance during one revolution, provided there is no slip. In a case of this kind, the term "pitch" is analogous to the ter'n "pitch or the thread" of an ordinary single-threaded screw.

    Let $P=$ pitch of screw in feet, $R=$ number of revolutions per second, $V=$ velocity of stream from the propeller $=P \times R, v=$ velocity of the ship in feet per second, $V-v=$ slip, $A=$ area in square feet of section of stream from the screw, approximately the area of a circle of the same diameter, $A \times V=$ volume of water projected astern from the ship in cubic feet per second. Taking the weight of a cubic foot of sea-water at 64 lbs., and the force of gravity at 32 , we have from the common formula for force of acceleration, viz.: $F=M \frac{v_{1}}{t}=\frac{W}{g} \frac{v_{1}}{t}$, or $F=\frac{W}{g} v_{1}$, when $t=1$ second, $v_{1}$ being the acceleration.

    Thrust of screw in pounds $=\frac{64 A V}{32}-(V-v)=2 A V(V-v)$.
    Rankine (Rules, Tables, and Data, p. 275) gives the following: To calculate the thrust of a propelling instrument (jet, paddle, or screw) in pounds, multiply together the transverse sectional area, in square feet, of the stream driven astern by the propeller; the speed of the stream relatively to the suip in knots; the real slip, or part of that speed which is impressed on that stream by the propeller, also in knots; and the constant 5.66 for sea-water, or 5.5 for fresh water. If $S=$ speed of the screw in knots, $s=$ speed of ship in knots, $A=$ area of the stream in square feet (of sea-water),

    $$
    \text { Thrust in pounds }=A \times S(S-s) \times 5.66
    $$

    The real slip is the velocity (relative to water at rest) of the water projected sternward; the apparent slip is the difference between the speed of the ship and the speed of the screw; i.e., the product of the pitch of the screw by the number of revolutions.

    This apparent slip is sometimes negative, due to the working of the screw in disturbed water which has a forward velocity, following the ship. Negative apparent slip is an indication that the propeller is not suited to the ship.

    The apparent slip should generally be about $8 \%$ to $10 \%$ at full speed in wellformed vessels with moderately fine lines; in bluff cargo boats it rarely exceeds $5 \%$.

    The effective area of a screw is the sectional area of the stream of water laid hold of by the propeller, and is generally, if not always, greater than the actual area, in a ratio which in good ordinary examples is 1.2 or thereabouts, and is sometimes as high as 1.4: a fact probably due to the stiffness of the water, which communicates motion laterally amongst its particles. (Rankine's Shipbuilding, p. 89.)

    Prof. D. S. Jacobus, Trans. A. S. M. E., xi. 1028, found the ratio of the effective to the actual disk area of the screws of different vessels to be as follows:
    Tug-boat, with ordinary true-pitch screw....................... ............. 1.42 " "" screw having blades projecting backward.................. . 5 .
    Ferryboat " Bergen," with or- $\{$ at speed of 12.09 stat. miles per hour. 1.53 dinary true-pitch screw $\left\{\right.$ " " 13.4 " " ${ }^{2}$ " 1.48
    Steamer "Homer Ransdell," with ordinary true-pitch screw........... 120
    Size of Screw.-Seaton says: The size of a screw depends on so many things that it is very difficult to lay down any rule for guidance, and much must always be left to the experience of the designer, to allow for all the circunstances of each particular case. The following rules are given for ordinary cases. (Seaton and Ronnthwaite's Pocket-book):
    $P=$ pitch of propeller in feet $=\frac{10133 S}{R(103-x)}$, in which $S=$ speed in knots, $R=$ revolutions per minute, and $x=$ percentage of apparent slip. For a slip of $10 \%$. pitch $=\frac{112.6 S}{1 i}$.
    $\boldsymbol{D}:=$ diameter of propeller $=K \sqrt{\frac{1 . \mathrm{H} \cdot \mathrm{P}}{\left(\frac{P \times R}{100}\right)^{3}}}, K$ being a coefficient given in the table below. If $K=20, D=20000 \sqrt{\frac{\text { I.H.P. }}{(P \times R)^{3}}}$.
    Total developed area of blades $=C \sqrt{\frac{\overline{\text { I.H.P }}}{R}}$, in which $C$ is a coefficient to be taken from the table.

    Another formula for pitch, given in Seaton's Marine Engineering, is $P=\frac{C}{R} \sqrt[3]{\frac{\text { I.H.P. }}{D^{2}}}$, in which $C=\% 3$ for ordinary vessels, and 660 for slow. speed cargo vessels with full limes.
    Thickness of blade at root $=\sqrt{\frac{\overline{d^{3}}}{a b}} \times k$, in which $d=$ diameter of tail shaft in inches, $n=$ number of blades, $b=$ breadth of blade in inches where it joins the boss, measured parallel to the shaft axis; $k=4$ for cast iron, 1.5 for cast steel, e for gun-metal, 1.5 for high-class bronze.

    Thickness of blade at tip: Cast iron $.04 D+.4 \mathrm{in}$; cast steel $.03 D+.4 \mathrm{in} . ;$ gun-metal $.03 D+.2$ in.; higl-class bronze $.0: 2 D+.3$ in., where $D=$ diameter of propeller in feet.

    ## Propeller Coeficients.

    Description of Vessel.
    

    |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 8-10 | One | 4 | $17-175$ | $19-17.5$ | Cast iron |
    | 10-13 |  | 4 | 18 -19 | $17-15.5$ |  |
    | 13-17 | Twi | 4 | 19.5-20.5 | $15-13$ | C. I. or S. |
    | 13-17 | Twin | 4 | 20.5-21-5 | 14.5-12.5 | " |
    | $17-22$ <br> $1 \%-22$ | One | 4 3 | 21 22 $21-23$ | 12.5-11 | G. M. or ${ }_{6}{ }_{6}$ |
    | 16-22 | " | 4 | $21-22.5$ | 11.5-10.5 | "، "6 |
    | 16-22 |  | 2 | 22 -23.5 | $8.5-7$ | " ${ }^{6}$ " |
    | 20-26 | One | 3 | 25 | 7-6 | B. or F. S. |

    C. I., cast iron; G. M., gun-metal; B., bronze; S., steel; F. S., forged steel.

    From the formulæ $D=20000 \sqrt{\frac{\mathrm{I} \cdot \mathrm{H} . \mathrm{P}}{(P \times R)^{3}}}$ and $P=\frac{737}{R} \sqrt[3]{\frac{\text { I.H.P. }}{D^{2}}}$, if $P=n$ and $R=100$, we obtain $D=\sqrt[5]{400 \times \text { I.H.P. }}=331 \sqrt[5]{\text { I.H.P. }}$
    If $P=1.4 D$ and $R=100$, then $D=\sqrt[5]{145.8 \times \text { I.H.P. }}=2.71 \sqrt[5]{\text { I.H.P. }}$
    From these two formulæ the figures for diameter of screw in the table on page 1009 have been calculated. They may be used as rougl approxinations to the correct diameter of screw for any given horse-power, for a speed of 10 knots and 100 revolutions per minute.

    For any other number of revolutions per minute multiply the figures in the table by 100 and divide by the given number of revolutions. For any other speed than 10 knots, since the I.H.P. varies approximately as the cube of the speed, and the diameter of the screw as the 5th root of the I.H.P., multiply the diameter given for 10 knots by the 5 th root of the cube of one tenth of the given speed. Or, multiply by the following factors:
    For speed of knots:

    | $\frac{4}{4}$ | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 16 |
    | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\sqrt[5]{(S+10)^{3}}$ |  |  |  |  |  |  |  |  |  |  |  |
    | $=.577$ | .660 | .736 | .807 | .875 | .939 | 1.059 | 1.116 | 1.170 | 1.224 | 1.275 | 1.327 |

    Speed:

    | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\sqrt[5]{(S \div 10)^{3}}$ |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |

    For more accnrate determinations of diameter and pitch of screw, the formulæ and coefficinnts given by Seaton, quoted ahore, should be used.
    Emeiency of the Propeller.-According to Rankine, if the slip of the water be $s$, its weight $W$, the resistance $R$, and the speed of the ship $v$,

    $$
    F=\frac{W s}{g} ; \quad R v=\frac{W s v}{g} .
    $$

    This impelling action must to secure maximum efficiency of propeller, be effected by an instrument which takes hold of the fluid withont shock or disturbance of the surrounding mass, and, by a steady acceleration, gives it the required final velocity of discharge. The velocity of the propeller overcoming the resistance $R$ would then be

    $$
    \frac{v+(v+s)}{2}=v+\frac{s}{2}
    $$

    and the work performed would be

    $$
    R\left(v+\frac{s}{2}\right)=\frac{W v s}{g}+\frac{W s^{2}}{2 g}
    $$

    the first of the last two terms being useful, the second the minimum lost work; the latter being the wasted energy of the water thrown backward. The efficiency is

    $$
    E=v \div\left(v+\frac{s}{2}\right)
    $$

    and this is the limit attainable with a perfect propelling instrument, which limit is approached the more nearly as the conditions above prescribed are the more nearly fulfilled. The efficiency of the propelling instrument is probably rarely much above 0.60 , and never above 0.80 .

    In designing the screw-propeller, as was shown by Dr. Froude, the best angle for the surface is that of $45^{\circ}$ with the plane of the disk; but as all parts of the blade cannot be given the same angle, it should, where practicable, be so proportioned that the "pitch-angle at the centre of effort", should be madle $45^{\circ}$. The maximum possible efficiency is then, according to Froude, $77 \%$.

    In order that the water should be taken on without shock and discharged with maximum backward velocity, the screw must have an axially increasing pitch.

    The true screw is by far the more usual form of propeller, in all steamers, both merchant and naval. (Thurston, Manual of the Steam-engine, part ii., p. 176.)

    The combined efficiency of screw, shaft, engine, etc., is generelly taken at $50 \%$. In some cases it may reach $60 \%$ or $65 \%$. Rankine takes the effective H.P. to equal the I.H.P. $\div 1.63$.

    ## Pitch-ratio and Slip for Screvs of Standard Form.

    | Pitch-ratio. | Real Slip of <br> Screw. | Pitch-ratio. | Real Slip of <br> Screw. |
    | :---: | :---: | :---: | :---: |
    | .8 | 15.55 | 1.7 | 21.3 |
    | .9 | 16.22 | 1.8 | 21.8 |
    | 1.0 | 16.88 | 1.9 | 22.4 |
    | 1.1 | 17.55 | 2.0 | 22.9 |
    | 1.2 | 18.2 | 2.1 | 23.5 |
    | 1.3 | 19.8 | 2.2 | 24.0 |
    | 1.4 | 20.5 | 2.3 | 24.5 |
    | 1.5 | $20 . \%$ | 2.4 | 25.0 |
    | 1.6 |  | 2.5 | 25.4 |

    Results of Recent Researches on the efficiency of screw-propellers are summarized by S. W. Baruaby, in a paper read before section G of the Engineering Congress. Chicago, 1893. He states that the following general principles have been established:
    (a) There is a definite amount of real slip at which, and at which only, maximum efficiency canl be obtained with a screw of any given type, and this amount varies with the pitch-ratio. The slip-ratio proper to a given ratio of pitch to diameter has been discovered and tabulated for a screw of a standard type, as below (see table on page 1012):
    (b) Screws of large pitch-ratio, besides being less efficient in themselves, add to the resistance of the hull by an amount bearing some proportion to their distance from it, and to the amount of rotation left in the race.
    (c) The best pitch-ratio lies probably between 1.1 and 1.5 .
    (d) The fuller the lines of the vessel, the less the pitch-ratio should be.
    (e) Coarse-pitched screws should be placed further from the stern than fine-pitched ones.
    ( $f$ ) Apparent negative slip is a natural result of abnormal proportions of propellers.
    (g) Three blades are to be preferred for high-speed vessels, but when the diameter is unduly restricted, four or even more may be advantageously employed.
    ( $h$ ) An efficient form of blade is an ellipse having a minor axis equal to four tenths the major axis.
    (i) The pitch of wide-bladed screws should increase from forward to aft, but a uniform pitch gives satisfactory results when the blades are narrow, and the amount of the pitch variation should be a function of the width of the blade.
    (j) A considerable inclination of screw shaft produces vibration, and with right-handed twin-screws turning outwards, if the shafts are inclined at all, it should be upwards and outwards from the propellers.

    For results of experiments with screw-propellers, see F. C. Marshall, Proc. Inst. M. E. 1881; R. E. Froude, Trans. Institution of Naval Architects, 1886; G. A. Calvert, Trans. Institution of Naval Architects 1887; and S. W. Barnaby, Proc. Inst. Civil Eng'rs 1890, vol. cii.

    One of the most important results deduced from experiments on model screws is that they appear. to have practically equal efficiencies throughout a wide range both in pitch-ratio and in surface-ratio; so that great latitude is left to the designer in regard to the form of the propeller. Another important feature is that, althnugh these experiments are not a direct guide to the selection of the most efficient propeller for a particular ship, they supply the means of analyzing the performances of screws fitted to vessels, and of thus indirectly determining what are likely to be the best dimensions of screw for a vessel of a class whose results are known. Thus a great advance has been made on the old method of trial upon the ship itself, which was the origin of almost every conceivable erroneous view respecting the screw-propeller. (Proc. Inst. M. E., July, 1891.)

    ## THE PADDLE-WHEEL.

    Paddlewheels with Radial Floats. (Seaton's Marine En-gineering.)-The effective diameter of a radial wheel is usually taken from the centres of opposite floats; but it is difficult to say what is absolutely that diameter, as much depends on the form of float, the amount of dip, and the waves set in motion by the wheel. The slip of a radial wheel is from 15 to 30 per cent, depending on the size of float.

    $$
    \text { Area of one float }=\frac{\text { I.H.P. }}{D} \times C .
    $$

    $D$ is the effective diameter in feet, and $C$ is a multiplier, varying from 0.25 in tugs to 0.175 in fast-running light steamers.

    The breadth of the float is usually about $1 / 4$ its length, and its thickness about $1 / 8 \mathrm{its}$ breadth. The number of floats varies directly with the diameter, and there should be one float for every foot of diameter.
    (For a discussion of the action of the radial wheel, see Thurston, Manual of the Steam-engine, part ii., $p, 182$.)

    Feathering Paddle wheels. (Seaton.) - The diameter of a feathering-wheel is found as follows: The amount of slip varies from 12 to 20 per cent, although when the floats are small or the resistance great it
    is as high as 25 per cent; a well-designed wheel on a well-formed ship should not exceed 15 per cent under ordinary circumstances.
    If $K$ is the speed of the ship in knots, $S$ the percentage of slip, and $R$ the revolutions per minute,

    $$
    \text { Diameter of wheel at centres }=\frac{K(100+S)}{3.14 \times R}
    $$

    The diameter, however, must be such as will suit the structure of the ship, so that a modification may be necessary on this account, and the revolutions altered to suit it.
    The diameter will also depend on the amount of "dip" or immersion of float.

    When a ship is working always in smooth water the immersion of the top edge should not exceed $1 / 8$ the breadth of the float; and for general service at sea an immersion of $1 / 2$ the breadth of the float is sufficient. If the ship is intended to carry cargo, the immersion when light need not be more than 2 or 3 inches, and should not be more than the breadth of float when at the deepest draught; indeed, the efficiency of the wheel falls off rapidly with the immersion of the wheel.

    $$
    \text { Area of one float }=\frac{\mathrm{I} \cdot \mathrm{H} \cdot \mathrm{P}}{D} \times C .
    $$

    $C$ is a multiplier, varying fronı 0.3 to $0.35 ; D$ is the diameter of the wheel to the float centres, in feet.

    The number of floats $=1 / 2(D+2)$.
    The breadth of the float $=0.35 \times$ the length.
    The thickness of floats $=1 / 12$ the breadih.
    Diameter of gudgeons $=$ thickness of float.
    Seaton and Rounthwaite's Pocket-bonk gives:

    $$
    \text { Number of floats }=\frac{60}{\sqrt{R}}
    $$

    where $R$ is number of revolutions per minute.

    $$
    \text { Area of one float (in square feet) }=\frac{\text { I.H.P. } \times 33000 \times K}{N \times(D \times R)^{3}}
    $$

    where $N=$ number of floats in one wheel.
    For vessels plying always in smooth water $K=1200$. For sta-going steamers $K=1400$. For tugs and such craft as require to stop and start frequently in a tide-way $K=1600$.

    It will be quite accurate enough if the last four figures of the cube ( $D \times R)^{3}$ be taken as ciphers.

    For illustrated description of the feathering paddle-wheel see Seaton's Marine Engineering, or Seaton and Rounthwaite's Pocket-book. The diameter of a feathering-wheel is about one half that of a radial wheel for equal efficiency. (Thurston.)

    Efficiency of Paddle-wheels.- Computations by Prof. Thurston of the efficiency of propulsion by paddle-wheels give for light river steamers with ratio of velocity of the vessel, $v$, to velocity of the paddle float at centre of pressure, $V$, or $\frac{v}{V},=\frac{3}{4}$, with a dip $=3 / 20$ radius of the wheel, and a slip of 25 per cent, an efficiency of .714 ; and for ocean steamers with the same slip and ratio of $\frac{v}{V}$, and a dip $=1 / 3$ radius, an efficiency of .685 .

    ## JETRPROPULSION.

    Numerous experiments have been made in driving a vessel by the reaction of a jet of water pumped through an orifice in the stern, but they "have all resulted in commercial failure. Two jet-propnlsion steanters, the "Waterwitch," 1100 tons, and the "Squirt," a small torpedo-boat, were built by the British Government. The former was tried in 1867, and gave an efficiency of apparatus of only 18 per cent. The latter gave a speed of 12 knots, as against 17 knots attained by a sister-ship having a screw and equal steam-power. The mathematical theory of the efficiency of the jet was discussed by Rankine in The Engineer, Jan. 11, 1867, and he showed thit the greater the quantity of water operated on by a jet-propeller, the greater
    is the efficiency. In defiance both of the theory and of the results of earlier experiments, and also of the opinions of many naval engineers, more than $\$ 200,000$ were spent in 1888 - 90 in New York upon two experimental boats. the "Prima Vista" and the "Evolution," in which the jet was made of very small size, in the latter case only $5 / 8$-inch diameter, and with a pressure of 2500 lbs. per square inch. As had been predicted, the vessel was a total failure. (See article by the author in Mechanics, March, 1891.)
    The theory of the jet-propeller is similar to that of the screw-propeller. If $A=$ the area of the jet in square feet, $V$ its velocity with reference to the orifice, in feet per second, $v=$ the velocity of the ship in reference to the earth, then the thrust of the jet (see Screw propeller, ante) is $火 A V(V-v)$. The work done on the vessel is $2 A V(V-v) v$, and the work wasted on the rearward projection of the jet is $13 \times 2 A V(V-v)^{2}$. The efficiency is $\frac{2 A V(V-v) v}{2 A V(V-v) v+A V} \frac{2 v}{(V-v)^{2}}=\frac{2 v}{V+v}$. This expression equals unity when $V=v$, that is, when the velocity of the jet with reference to the earth, or $V-v,=0$; but then the thrust of the propeller is also 0 . The greater the value of $V$ as compared with $v$, the less the efficiency. For $V=20 v$, as was proposed in the "Evolution," the efficiency of the jet would be less than 10 per cent, and this would be further reduced by the friction of the pumping mechanism and of the water in pipes.
    The whole theory of propulsion may be summed up in Rankine's words: "That propeller is the best, other things being equal, which drives astern the largest body of water at the lowest velocity."
    It is practically impossible to devise any system of hydraulic or jet propulsion which can compare favorably, under these cunditions, with the screw or the paddie-wheel.

    Reaction of a Jet.-If a jet of water issues horizontally from a vessel, the reaction on the side of the vessel opposite the orifice is equal to the weight of a column of water the section of which is the area of the orifice, and the height is twice the head.

    The propelling force in jet-propulsion is the reaction of the stream issuing from the orifice, and it is the same whether the jet is discharged under water, in the open air, or against a solid wall. For proof, see account of trials by C. J. Everett, Jr., given by Prof. J. Burkitt Webb, Trans. A. S. M. E., xii. 904.

    ## RECENT PRACTECE IN IIARINE ENGENES.

    (From a paper by A. Blechynden on Marine Engineering during the past Decade. Proc. Inst. MI. E., July, 1891.)
    Since 1881 the three-stage-expansion engine has become the rule, and the boiler-pressure has been increased to 160 lbs . and even as high as 200 lbs .per square inch. Four-stage-expansion engines of various forms have also been adopted.

    Forced Draught has become the rule in all vessels for naval service, and is comparatively common in both passenger and cargo vessels. By this means it is possible considerably to augment the power obtained from a given boiler; and so long as it is kept within certain limits it need result in no injury to the boiler, but when pushed too far the increase is sometimes purchased at considerable cost.

    In regard to the econonyy of forced draught, an examination of the appended table (page 1018) will show that while the mean consumption of coal in those steamers woriking under natural draught is 1.573 lbs . per indicated horse-power per hour, it is oniyy $1.3: 36 \mathrm{lbs}$. in those fitted with forced draught. This is equivalent to an economy of $15 \%$. Part of this economy, however, may be due to the other heat-saving appliances with which the latter steamers are fitted.
    Boilers.-As a material for boilers, iron is now a thing of the past, though it seems probable that it will continue yet awhile to be the material for tubes. Steel plates can be procured at $13: 2$ square feet superficial area and $11 / 2$ inches thick. For purely boiler work a punching-machine has become obsolete in marine-engine work.

    The increased pressures of steam have also caused attention to be directed to the furnace, and have led to the adoption of various artifices in the shape of corrugated, ribbed, and spiral flues, with the object of giving increased strength against collapse without abnormally increasing the thickness of the plate. A thick furnace-plate is viewed by many engineers with great
    suspicion; and the advisers of the Board of Trade have fixed the limit of thickness for furnace-plates at $5 / 8$ inch ; but whether this limitation will stand in the light of prolonged experience remains to be seen. It is a fact generally accepted that the conditions of the surfaces of a plate are far greater factors in its resistance to the transmission of heat than either the material or the thickness. With a plate free from lamination, thickness being a mere secondary element, it would appear that a furnace-plate night be increased from $1 / 2$ inch to $3 / 4$ inch thickness without increasing its resistance more than $11 / 4 \%$. So convinced have some engineers become of the soundness of this view that they have adopted flues $3 / 4$ inch thick.

    Piston-valves.--Since higher steam-pressures have become common, piston-valves have become the rule for the high-pressure cylinder, and are not unusual for the intermediate. When well designed they have the great advantage of being almost free from friction, so far as the valve itself is concerned. In the earlier piston-valves it was customary to fit spring rings, which were a frequent source of trouble and absorbed a large amount of power in friction; but in recent practice it has become usual to fit springless adjustable sleeves.
    For low-pressure cylinders piston-valves are not in favor; if fitted with spring rings their friction is about as great as and occasionally greater than that of a well-balanced slide-valve; while if fitted with springless rings there is always some leakage, which is irrecoverable. But the large port-clearances inseparable from the use of piston-valves are most objectionable; and with triple engines this is especially so, because with the customary late cut-off it becomes difficult to compress sufficiently for iusuring economy and smoothness of working when in "full gear," without some special device.
    Steam-pipes.-The failures of copper steam-pipes on large vessels have drawn serious attention both to the material and the modes of construction of the pipes. As the brazed joint is liable to be imperfect, it is proposed to substitute solid drawn tubes, but as these are not made of large sizes two or more tubes may be needed to take the place of one brazed tube. Reinforcing the ordinary brazed tubes by serving them with steel or copperwire, or by hooping them at intervals with steel or iron bands, has been tried and found to answer perfectly.
    Auxiliary Supply of Fresh Water-Evaporators.-To make up the losses of water due to escape of steam from safety-valves, leakage at glands, joints, etc., either a reserve supply of fresh water is carried in tanks, or the supplementary feed is distilled from sea-water by special apparatus provided for the purpose. In practice the distillation is effected by passing stean, say from the first receiver, through a nest of tubes inside a still or evaporator, of which the steam-space is connected either with the second receiver or with the condenser. The temperature of the steam inside the tubes being higher than that of the steam either in the second receiver or in the condenser, the result is that the water inside the still is evaporated, and passes with the rest of the steam into the condenser, where it is condensed and serves to make up the loss. This plan localizes the tronble of the deposit, and frees it from its dangerous character, because an evaporator cannot become overheated like a boiler, even though it be neglected until it salts up solid; and if the same precautions are taken in working the evaporator which used to be adopted with low-pressure boilers when they were fed with salt water, no serious trouble should result.
    Weir's Feed-water Heater. -The principle of a method of heating feed-water introduced by Mr. James Weir and widely adopted in the marine service is founded on the fact that, if the feed-water as it is drawn from the hot-well be raised in temperature by the heat of a portion of steam introduced into it from one of the steam-receivers, the decrease of the coal necessary to generate steam from the water of the higher temperature bears a greater ratio to the coal required without feed-heating than the power which would be developed in the cylinder by that portion of steam would bear to the whole power cleveloped when passing all the steam through all the cylinders. Suppose a triple-expansion engine were working under the following conditions without feed-heating: boiler-pressure 150 lbs.; I.H.P. in high-pressure cylinder 398 , in intermediate and low-pressure cylinders together 790 , total 1188 . The temperature of hot-well $100^{\circ} \mathrm{F}$. Then with feedheating the same engine might work as follows: the feed might be heated to $220^{\circ} \mathrm{F}$., and the percentage of steam from the first receiver required to heat it would be $10.9 \%$; the I.H.P. in the h.p. cylinder would be as before 398 , and in the three cylinders it would be 1103, or $93 \%$ of the power developed without
    feed－heating．Mean while the heat to be added to each pound of the feed－water at $220^{\circ} \mathrm{F}$ ．for converting it into steam would be 1005 units against 1125 unirs with feed at $100^{\circ} \mathrm{F}$ ．，equivalent to an expenditure of only $89.4 \%$ of the heat required without feed－heating．Hence the expenditure of leat in relation to power would be $89.4 \div 93.0=96.4 \%$ ，equivalent to a heat economy of $3.6 \%$ ． If the steam for heating can be taken from the low－pressure receiver，the economy is about doubled．

    Passenger Steamers fitted with Twin Screws．

    | Vessels． |  | $\begin{aligned} & \text { 玉゙ } \\ & \text { む̃ } \\ & \text { ค } \end{aligned}$ | Cylinders，two sets in all． |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | Diameters． | Stro． |  |  |
    |  | Feet | Feet | Inches |  | Lbs． | I．H．P． |
    | City of ${ }_{6}$ New Yaris York $\}$ |  | 631／4 | $45,71,113$ | $60$ | 150 | $20,000$ |
    | Majestic | 565 | 58 | 43，68， 110 | 60 | 180 |  |
    | Normannia | 500 |  |  |  |  |  |
    | Columbia．．．．．．．． | 4631／2 | 551／2 | 41，66， 101 | 66 | 160 | $\begin{aligned} & 11,500 \\ & 12,500 \end{aligned}$ |
    | $\left.\begin{array}{ccc}\text { Empress of } & \text { India } \\ " & \text {＂Japan } \\ \text {＂} & \text { China }\end{array}\right\}$ | 440 | 51 | 32，51，82 | 54 | 160 | 10，125 |
    | Orel．．．．．．．．．．．．．．．．． | 415 | 48 | 34，54， 85 | 51 | 160 |  |
    | Scot．．．．．．．．．．．．．．． | 460 | 541／2 | $341 / 2,5 \pi 1 / 2,92$ | 60 | 170 | 11，656 |

    Comparative Results of Working of Marine Engines， 1872 ， 1881 ，and 1891 ．
    

    ## Weight of Three－stage＝expansion Engines in Nine Steamers in Relation to Indicated Horse－power and to Cylinder－capacity．

    |  | Weight of Machinery． |  |  | Relative Weight of Machinery． |  |  |  |  | Type of Machinery． |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Per Indicated Horse－ power． |  |  |  |  |  |
    |  |  |  |  | Engine－ room． | Boiler－ room． | Total |  |  |  |
    | 1 | tons． <br> 681 | tons． 662 | tons． <br> 1313 | lbs． 226 | lbs． 220 | ${ }_{446}$ | tons． | tons． |  |
    | $\stackrel{1}{2}$ | 638 | 619 | 1257 | $\stackrel{226}{259}$ | 220 | $\begin{aligned} & 446 \\ & 510 \end{aligned}$ | 1.30 1.46 | 3.75 4.10 | ercan |
    | 2 | 134 | 128 | 262 | 207 | 198 | 405 | 1.23 | 3.23 | ، |
    | 5 | 38.8 | 46.2 | 85 | 170 | 203 |  | 1.29 | 3.30 | ＂ |
    | 5 | 719 | 695 | 1414 | 167 | 162 | 329 | 1.41 | 3.44 | ＂ |
    | 6 | 75.2 | 107.8 | 183 | 141 | 202 |  | 1.37 | 3.37 | ${ }^{6}$ |
    | 7 | 44 | 61 | 105 | 77 | 108 | 185 | 1.21 | 2.729 | Naval |
    | 8 | 73.5 | 109 | 182.5 | 78 | 116 | 194 | 1.11 | 2.78 |  |
    | 9 | 262 | 429 | 691 | 62.5 | 102 | 165 | 0.82 | $2.70\{$ | Naval vertica？ |

    Particulars of Chree-stage-expension Engines in Twenty-eight Steamers. (A. Blechynden.)
    

    Dimensions, Indicated Horse $\boldsymbol{n}$ power, and cylinder capacity of Three-stage - expansion Engines in Nine Steamiers.
    

    ## CONSTRUCTION OF BUILDINGS.*

    ## (Extract from the Building Laws of the City of New York, 1893.)

    Walls of Warehouses, Stores, Factories, and Stables.
    25 feet or less in width between walls, not less than 12 in. to height of 40 ft . If 40 to 60 ft . in height, not less than 16 in . to 40 ft , and 12 in . thence to top;
     to top;
    85 to 100 ft . in height, not less than 28 in . to 25 ft .; 24 in . to 50 ft ; ; $20 \mathrm{in}^{\circ}$ to 75 ft ., and 16 in . to top;
    Over 100 ft . in height, each additional 25 ft . in height, or part thereof, next above the curb, shall be increased 4 inches in thickness, the upper 100 feet remaining the same as specified for a wall of that weight.
    If walls are over 25 feet apart, the bearing-walls shall be 4 inches thicker than above specified for every $123 / 2$ feet or fraction thereof that said walls are more than 25 feet apart.

    ## Strength of Floors, Roois, and Supports. <br> Floor's calculated to bear <br> safely per sq. ft., in addition to their own weight.

    Floors of dwelling, tenement, apartment-house or hotel, not
    less than
    Floors of office-building, not less than
    70 lbs.

    - public-assembly building, not...............................
    public-assembly building, not less than. .............
    store, factory, warehouse, etc., not less than... 100 "
    120
    150 "
    Roofs of all buildings, not less than
    50 "
    Every floor shall be of sufficient strength to bear safely the weight to be imposed thereon, in addition to the weight of the materials of which the floor is composed,

    Columns and Posts. - The strength of all columns and posts shall be computed according to Gordon's formulæ, and the crushing weights in pounds, to the square incl of section, for the following-named materials, shall be taken as the coefficients in said formulæ, namely: Cas' iron, 80,000;


    wrought or rolled iron, 40,000 ; rolled steel, 48,000 ; white pine and spruce, 3500 ; pitch or Georgia pine, 5000 ; imerican oak, Covo. The breaking strength of wooden beams and girders shall be computed according to the formulæ in which the colistants for transverse strains for central load shall be as follows, namely: Hemlock, 400; white pine, 450; spruce, 450; pitch or Georgia pine, 550; Antrican otis, 550; and for wooden beams and girders carrying a uniformly distributed load the constants will be doubled. The factors of safety shall be as one to tour for all beams, girders, aud other pieces subject to a transverse strain; as one to four for all posts, columns, and other vericill supports when of wronght iron or rolled steel; as one to five for other materials, subject to a compressive strain; as one to six for tierods, tie-beans. and other pieces subject to a tensile strain. Good, solid, natural earth shall be deemed to safely sustain a load of four tons to the superficial foot, or as otherwise determined by the superintendent of buildings, and the width of footing-courses shall re at least sufficient to meet this requirement. In computing the width of walls, a cubic foot of brickwork shall be decmed to weigh 115 lbs . Sandstone, white marble, granite, and other kimis of huilding-stone shall deemed to weigh 160 lbs . per cubic foot. The safe-bearing load to apply to good brickwork shall be taken at 8 tons per superficial foot when good lime mortar ic used, $111 / 2$ t ons per superficial foot when good lime and cement morte • mixed is used, and lî ions per sup. elficial fool whell gond cement mortar is used.
    Firemproor Enildings-Iron and steel Columns.-All castiron, wrought-irou, or rollei-steel columms s'sall be made true and smooth at both euds, and shall rest on iron wreet bed-phates, and have iron or steel cap-plates, which shall also be made tru. All iron or steel trimmerbeams, headers, and tail-beams shall be suitably framed and connected together, and the iron girders, columus, beans, tru ses, and all other ironwork of all floors and roofs shall be strapped, bolted ancnored, and connected together, and to the walls, in a strong and substantial manner. Where beams are framed into headers, the angle irons, which are bolted to the tail-beams, shall have at least two bolts for all beams over $\%$ inches in depth, and three bolts for all beams $1: 2$ inches and over in depth, and the e bolts shall not $b y$ less than $3 / / 2$ inch in diameter. Each one of such angles or knees, when bolterl to girders, shall have the same number of bolts as stated for the other leg, The angle iron in 1.0 case shall be less in thickness than the header or tim. mer to which it is bolted, and the width of angle in $n o$ case shal be less than one third the depth of beani, excepting that no angle-knee shall be less than $21 / 2$ inches wide, nor required to be more than 6 inches wids. All wroughtiron or rolied-steel beams 8 inches deep and under shall ha e bearings equal to their depth, if resting on a wall; 9 to 12 inch beams shall have a bearing of 10 inches, and all beams more than 12 inches in depth shall have bearings of not less than 12 inches if resting on a $w$ all. Where beams rest on iton supports, and are properly tied to the same, no greater bearings shall be required than one third of the depth of the beams. Iron or steel floor-beams shall be so arranged as to spacing and length of beams that the load to be supported by them, together with the weights of the materials used in the construction of the said floors, shall not cause a deflection of the said beams of more than $1 / 30$ of an inch per linear foot of span; and they shall be tied toxether at intervals of not more than eight times the depth of the beam.

    Under the ends of all iron or steel beams, where they rest on the walls, a stone or cast-iron template shall be built into the walls. Said template shall be 8 inches wide in 12 -inch walls, and in all walls of greater thickness said template shall be 12 inches wide; and such templates, if of stone, shall unt be in any case less than $21 / 2$ inches in thickness, and no template shall be less than 12 inches long.
    No cast iron post or colums shall be used in any building of a less average thickness of shaft than three quarters of an inch, nor shall it have an tur supported length of more than iwenty times its least lateral dimensions or dianneter. No wrought-iron or rolled-steel column shall have an unsupported length of more than thirty times its"least lateral dimension or diameter; nor shall its metal be less than one fourth of an inch in thickness.

    Lintels, Bearings and Supports.-All iron or sitel lintels shall have bearings proporthonate to the weight to be imposed thereon, but no lintel ised to span any openmg more than 10 feet in width shall have a bearing less than 12 inches at each end, if resting on a wall; but if resting on an iron post, such lintel shall have a bearing of at least 6 inches at each end, by the thickness of the wall to he smplorted
    Strains on cirders and Hivets.-Rolled iron or steel beam gir-
    ders, or riveted iron or steel plate girders used as lintels or as girders. carrying a wall or floor or both, shall be so proportioned that the loads which may come upon them shall not produce strains in tension or compression upon the flanges of more than $12,000 \mathrm{lbs}$. for iron, nor more than 15.000 lbs . for steel per square inch of the gross section of each of such flanges, nor a shearing strain upon the web-plate of more than 6000 lbs. per square inch of section of such web-plate, if of iron, nor more than $\% 000$ pounds if of steel; but no web-plate shall be less than $1 / 4$ inch in thickness. Rivets in plate girders shall not be less than $5 / 8$ inch in diameter, and shall not be spaced more than 6 inches apart in any case. They shall be so spaced that their shearing strains shall not exceed 9000 lbs . per square inch, on their diameter, multiplied by the thickness of the plates through which they pass. The riveted plate girders shall be proportioned upon the supposition that the bending or chord strains are resisted entirely by the upper and lower flanges, and that the shearing strains are resisted entirely by the web-plate. No part of the web shall be estimated as flange area, nor more than one half of that portion of the angle-iron which lies against the web. The distance between the centres of gravity of the flange areas will be considered as the effective depth of the girder.
    The building laws of the City of New York contain a great amount of detail in addition to the extracts above, and penalties are provided for violation. See An Act creating a Department of Buildings, etc., Chapter 275, Laws of 1892. Pamphlet copy published by Baker, Voorhies \& Co., New York.

    ## RHAXMMUI LOAD ON FLOORS.

    (Eng'g, Nov. 18, 189:. p. 644.)-Maximum load per square foot of floor surface due to the weight of a dense crowd. Considerable variation is apparent in the figures given by many authorities, as the following table shows:

    Authorities.
    Weight of Crowd,
    lbs. per sq. ft.
    French practice, quoted by Trautwine and Stoney ........... 41
    Hatfield ("Transverse Strains." p. 80) 80
    Mr. Page, London, quoted by Trautwine......... 84
    Maximum load on American highway bridges according to
    Waddell's general specifications ... ...........................
    Mr. Nash, architect of Buckingham Palace........................... 120
    Ixperiments by Prof. W. N. Kernot, at Melbourne ..... .... $\left\{\begin{array}{l}126 \\ 143.1\end{array}\right.$
    Experiments by Mr. B. B. Stoney ("On Stresses," p. 617).... 147.4
    The highest results were ohtained by crowding a number of persons previously weighed into a small room, the men being tightly packed so as to resemble such a crowd as frequently occurs on the stairways and platforms of a theatre or other public building.

    ## STRENGTH OF FLOOITS.

    (From circular of the Boston Manufacturers' Mutual Insurance Co.)
    The following tables were prepared by C.J. H. Woodbury, for determining safe loads on floors. Care should be observed to select the figure giving the reatest possible amount and concentration of load as the one which may be put upon any beam or set of floor-beams; and in no case should beams be subjected to greater loads than those specified, unless a lower factor of safety is warranted under the ad vice of a competent engineer.

    Whenever and wherever solid beams or heavy timbers are made use of in the construction of a factory or warehouse, they should not be painted, varnished or oiled, filled or encased in impervious concrete, air-proof plastering, or metal for at least three years, lest fermentation should destroy them by what is called "dry rot."

    It is, on the whole, safer to make floor-beams in two parts, with a small open space between, so that proper ventilation may be secured, even if the outside should be inadvertently painted or filled.

    These tables apply to distributed loads, but the first can be used in respect to floors which may carry concentrated loads by using half the figure given in the table, since a beam will bear twice as much load when evenly distributed over its length as it would if the load was concentrated in the centre of the spall.

    The weight of the floor should be deducted from the figure given in the table, in order to ascertain the net load which may be placed upon any floor: The weight of spruce may be taken at 36 lbs . per cubic foot, and that of Southern pine at 48 lbs . per cubic foot.

    Table I was computed upon a working modulus of rupture of Southern pine at 2160 lbs ., using a factor of safety of six. It can also be applied to ascertaining the strength of spruce beams if the figures given in the table are multiplied by 0.78 ; or in designing a floor to be sustained by spruce beams, mimltiply the required load by 1.28 , and use the dinıensions as given by the table.

    Theses tables are computed for beams one inch in width, because the strength of beams increases directly as the width when the beans are broad enough not to cripple.

    Example.-Required the safe load per square foot of floor, which may be sately sustained by a floor on Southern pine $10 \times 14$ inch beams, 8 feet on centres, and 20 feet span. In Table I a $1 \times 14$ inch beam, 20 feet span, will sustain 118 lbs. per foot of span; and for a beam 10 inches wide the load would be 1180 lbs . per foot of span, or $14 \tilde{r}^{1} / 2 \mathrm{lbs}$. per square foot of Hoor fur Southern-pine beams. From this should be deducted the weight of the floor, which would amount to $1 \% 1 / 2 \mathrm{lbs}$. per square foot, leaving 130 lbs. per square foot as a safe load to be carried upon such a floor. If the beams are of spruce, the result of $1471 / 2 \mathrm{lbs}$. would be multiphed by $0 . \tau 8$, reducing the load to 115 lbs . The weight of the floor, in this instance amounting to 16 lbs ., would leave the safe net load as 90 lbs . per sqnare foot for spruce beams.
    Table II applies to the design of floors whose strength must be in excess of that necessary to sustain the weight, in order to meet the conditions of delicate or rapidly moving machinery, to the end that the vibration or distortion of the floor may be reduced to the least practicable limit.

    In the table the limit is that of load which would cause a bending of the beams to a curve of which the average radius would be 1250 feet.

    This table is based upon a modulus of elasticity obtained from observations npon the deflection of loaded storenouse floors, and is taken at 2,000.000 lbs. for Southern pine; the same table can be applied to spruce, whose modulus of elasticity is taken as $1.200,000 \mathrm{lbs}$., if six tenths of the load for Southern pine is taken as the proper load for spruce; or, in the matter of designing, the load should be increased one and two thirds times, and the dimension of timbers for this increased load as found in the table should be used for spruce.
    It can also be applied to beams and floor-timbers which are supported at each end and in the middle, remembering that the deflection of a beam supported in that manner is only four tenths that of a beam of equal span which rests at each end; that is to say, the floor-planks are two and one half times as stiff, cut two bays in length, as they would be if cut only one bay in length. When a floor-plank two bays in length is evenly loaded, three sixteenths of the load on the plank is su-tained by the bean at each end of the plank, and ten sixteenths by the beam under the middle of the plank; so that for a completed floor three eighths of the load would be sustained by the beams under the joints of the plank, and five eighths of the load by the beams under the middle of the plank: this is the reason of the importance of breaking joints in a floor-plank every three feet in order that each bean shall receive an identicai load. If it were not so, three eighths of the whoie load upon the floor would be sustained by every other beam, and five eighths of the load by the corresponding aternate beams.
    Repeating the former example for the load on a mill floor on Southernpine beams $10 \times 14$ inches, and 20 feet span, laid 8 feet on centres: In ${ }^{4}$ Table II a $1 \times 14$ inch beam should receive 61 lbs , per foot of span, or 75 lbs . per sq. ft. of floor, for Sonthern-pine beams. Deducting the weight of the floor, 1\%1/2 livs. per sq. ft., leaves 57 lbs . per sq. ft. as the advisable load.

    If the beams are of spruce, the result of 25 lbs . should be multiplied by 0.6 , reducing the load to 45 lbs . The weight of the floor, in this instance amounting to 16 lbs .. would leave the net load as 29 lbs . for spruce beams.

    If the beams were two spans in length, they could, under these conditions, support two and a half times as much load with an equal amount of deflection. unless such load should exceed the limit of safe load as found by Table I, as would be the case under the conditions of this problem.

    Mill Columns. - Timber posts offer more resistance to fire than iron pillars. and have generally displaced them in nillwork. Experiments made on the testing-machine at the U. S. Arsenal at Watertown. Mass., show that sonnd timber posts of the proportions customarily used in millwork yield by direct crushing, the strength being directly as the area at the smallest part. The columns yielded at about 4500 lbs . per square inch, confirming the general practice of allowing 600 lbs . per square inch, as a safe load. Square columns are one fourth stronger than round ones of the same diameter.

    I．Safe Distributed Loads upon Southern－pine Beams One Inch in Width．
    （C．J．H．Woodbury．）
    （If the load is concentrated at the centre of the span，the beams will sus－ tain half the amount as given in the table．）

    |  | Depth of Beam in inches． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
    |  | Load in pounds per foot of Span． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | 5 | 38 | 86 | 154 | 240 | 346 | 470 | 614 | \％18 | 960 |  |  |  |  |  |  |
    | $\stackrel{6}{6}$ | 27 | 60 | $10 \sim 7$ | 167 | 240 | $32 \hat{1}$ | 427 | 540 | $66{ }^{4}$ | 804 |  |  |  |  |  |
    | ก | 20 | 44 | 78 | 122 | 176 | 240 | 314 | $39 \%$ | 490 | 593 | ro5 | 828 |  |  |  |
    | 8 | 15 | 34 | 60 | 94 | 135 | 184 | 240 | 304 | 375 | 454 | 540 | 634 | 735 |  |  |
    | 9 |  | 27 | 47 | 74 | 104 | 145 | 190 | 240 | 296 | 359 | 42 r | 501 | 581 | 667 | 759 |
    | 10 |  | 22 | 38 | 60 | 86 | 118 | 154 | $19+$ | 240 | 290 | 346 | 406 | $4 \%$ | 540 | 614 |
    | 11 |  |  | 32 | 50 | 71 | 97 | 127 | 161 | 198 | 240 | 286 | 335 | 389 | 446 | 508 |
    | 12 |  |  | 27 | 42 | 60 | $8 \cdot$ | 107 | 135 | 16 亿 | 202 | 240 | 282 | $32 \sim$ | 375 | 474 |
    | 13 |  |  |  | 36 | 51 | \％0 |  | 115 | 142 | 172 | 205 | 240 | 278 | 320 | 364 |
    | 14 |  |  |  | 31 | 44 | 60 | 78 | 99 | $1: 3$ | 148 | 176 | 207 | 240 | $2{ }^{2} 6$ | 314 |
    | 15 |  |  |  | 27 | 33 | 52 | 68 | 86 | 107 | 129 | 154 | 180 | 209 | 240 | 273 |
    | 16 |  |  |  |  | 34 | 46 | 60 | 76 |  | 113 | 135 | 158 | 184 | 211 | 240 |
    | 18 |  |  |  |  | 30 | 41 | 53 | 67 | 83 | 101 | 120 | 140 | 163 | 187 | $21 \%$ |
    | 18 |  |  |  |  | ．． |  |  | 60 | T4 | 90 | 107 | 125 | 145 | $16 \%$ | 190 |
    | 19 |  |  |  |  |  |  | 43 | 54 |  | 80 | 96 | 112 | 130 | 150 | 170 |
    | 20 |  |  |  |  |  |  | 38 |  |  | 73 | 86 | 101 | 118 | 135 | 154 |
    | 21 |  |  | ． |  |  |  |  |  | 54 | 66 | 78 | 92 | 10 ${ }^{\text {a }}$ | 122 | 139 |
    | 22 |  |  | ． |  |  |  |  |  | 50 | 60 | 71 | 84 | 97 | 11\％ | 127 |
    | 23 |  |  |  |  |  |  |  |  |  | 55 | 65 | 77 | 89 | 102 | 116 |
    | 24 |  |  |  |  |  |  |  |  |  | 50 | 60 | 70 | 82 | 94 | 107 |
    | 25 |  |  |  |  | ． | ．． |  | ．． |  | 46 | 55 | 65 | 75 | 86 | 98 |

    1I．Distributed Loads upon Southern＝pine Reams suffi＝ cient to produce Standard Limit of Deflection．
    （C．J．H．Woodbury．）

    | $\stackrel{+}{0}$ | Depth of Beam in inches． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | デ | 2 | 3 | 4 | 5 | 6 | ？ | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |
    |  | Load in pounds per foot of Span． |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | 5 | 3 | 10 | 23 | 44 | \％ 7 | 122 | 182 | 259 |  |  |  |  |  |  |  | ． 0300 |
    | $\stackrel{6}{6}$ | 2 | 7 | 16 | 31 | 53 | 85 | 126 | 180 | $24 \sim$ |  |  |  |  |  |  | ． 0433 |
    | 7 |  | 5 | 12 | 23 | 39 | 62 | 93 | 132 | 181 | 241 |  |  |  |  |  | ． 0588 |
    | 8 |  | 4 | ${ }_{\sim}^{9}$ | 17 | 30 | 48 | 71 | 101 | 139 | 185 | 240 | 305 |  |  |  | ． 0768 |
    | ， |  |  | 7 | 14 | 24 | 38 | 56 | 80 | 110 | 146 | 190 | 241 |  |  |  | ．0902 |
    | 10 |  |  | 6 | 11 | 19 | 30 | 46 | 65 | 89 | 118 | 154 | 195 | 244 | 300 |  | ． 1200 |
    | 11 |  |  |  | ， | 16 | 25 | 38 | 54 | 73 | 98 | 127 | 161 | 502 | 248 | 301 | ．145： |
    | 12 |  |  |  | ．．． | 13 | 21 | 32 | 45 | 62 | 82 | $10{ }^{\circ}$ | 136 | 169 | 208 | $25:$ | ． 1728 |
    | 13 | $\cdots$ |  |  | ． | 11 | 18 | 27 | 38 | 53 | 70 | 91 | 116 | 144 | 1\％8 | 215 | ． 2028 |
    | 14 |  |  |  |  |  | 16 | 23 | 33 | 45 | 60 | 78 | 100 | 124 | 153 | 186 | ．235\％ |
    | 15 |  |  |  |  |  | 14 | 20 | 29 | 40 | 53 | 68 | 87 | 108 | 133 | 162 | ．2r00 |
    | 16 |  |  |  |  |  | ．．． |  | 25 | 35 | 46 | 60 | 76 | 95 | 117 | 14 | ． 3072 |
    | 17 |  |  |  |  |  |  | 16 | 22 | 31 | 41 | 53 | 68 | 84 | 104 | 126 | ． 3468 |
    | 18 |  |  |  |  |  |  |  | 20 | 2 | 37 | 47 | 60 | 75 | 93 | 112 | ． 3888 |
    | 19 |  |  |  |  |  |  |  | 18 | 25 | 33 | 43 | 54 | 68 | 83 | 101 | ．4332 |
    | 20 |  |  |  |  |  |  |  |  | 22 | 30 | 38 | 49 | 61 | 75 | 91 | ． 4800 |
    | 21 |  |  |  |  |  |  |  |  | 20 | $2 i$ | 35 | 44 | 55 | 68 | 83 | ．5292 |
    | 22 | $\cdots$ |  |  |  |  |  |  |  |  | 24 | 32 | 40 | 50 | 6. | 75 | ． 5808 |
    | 23 |  |  |  |  |  |  |  |  |  | 22 | 29 | 37 | 46 | 57 | 69 | ． 6348 |
    | 24 |  |  |  |  |  |  |  |  |  |  | 27 | 34 | 42 | 52 | 63 | ． 6912 |
    | 2 |  |  |  |  |  |  |  |  |  |  | 25 | 31 | 39 | 48 | 58 | ． 7500 |

    ## ELECTRICAL ENGINEERING.

    ## STANDARDS OF MEASUREMENT.

    ## C.G.S. (Centimetre, Gramme, Second) or "Absolute": System of Physical Measurements:

    $$
    \begin{array}{ll}
    \text { Unit of space or distance } & =1 \text { centimetre, } \mathrm{cm} . ; \\
    & =1 \text { gramine, gm.; } \\
    \text { Unit of nass } & =1 \text { second, s. } ; \\
    \text { Unit of time } & =1 \text { centimetre in } 1 \text { second; } \\
    \text { Unit of velocity }=\text { space } \div \text { time } & =1 \\
    \text { Unit of accelelation }=\text { change of } 1 \text { unit of velocity in } 1 \text { second; } \\
    \text { Acceleration due to gravity, at Paris, }=981 \text { centimetres in } 1 \text { second; } ; \\
    \text { Unit of force }=1 \text { dyne }=\frac{1}{981} \text { gramme }=\frac{.0022046}{981} \mathrm{lb} .=.00000224 \% \mathrm{lb} .
    \end{array}
    $$

    A dyne is that force which, acting on a mass of one gramme during one second, will give it a velocity of one centimetre per second. The weight of one gramme in latitude $40^{\circ}$ to $45^{\circ}$ is about 980 dynes, at the equator 973 dynes, and at the poles nearly 984 dynes. Taking the value of $g$, the acceleration dine to gravity, in British measures at 32.185 feet per second at Paris, and the nuetre $=39.3$ rinches, we have

    $$
    1 \text { gramme }=32.185 \times 12 \div .393 \pi=981.00 \text { dynes }
    $$

    Unit of work $=1 \mathrm{erg}=1 \mathrm{dyne}$-centimetre $=.0000000737 \mathrm{f}$ foot-pound; Unit of power $=1$ watt $=10$ million ergs per second,

    $$
    \begin{aligned}
    & =.7373 \text { foot-pound per second, } \\
    & =\frac{.7373}{550}=\frac{1}{746} \text { of } 1 \text { horse-power }=.00134 \mathrm{H} . \mathrm{P} .
    \end{aligned}
    $$

    C.G.S. Unit of magnetism $=$ the quantity which attracts or repels an equal quantity at a centimetre's distance with the force of 1 dyne.
    C.G.S. Unit of electrical current = the current which, flowing throngh a length of 1 centimetre of wire, acts with a force of 1 dyne upon a unit of magnetism distant 1 centimetre from every point of the wire. The anpere, the commercial unit of current, is one tenth of the C.G.S. unit.
    The Practical Units used in Electrical Calculations are: Ampere, the unit of current strenglh, or rate of flow, represented by $I$.
    Volt, the unit of electro-motive force, electrical pressure, or difference of potential, represented by $E$.
    Ohm, the unit of resistance, represented by $R$.
    Coulomb (or ampere-second), the unit of quantity, $Q$.
    Ampere-hour $=3600$ conlombs, $Q^{\prime}$.
    Watt (ampere-volt, or volt-ampere), the unit of power, $P$.
    Joule (volt-coulomb), the unit of energy or work, $W$.
    Farad, the unit of capacity, represented by $C$.
    Henry, the unit of inductance, represented by $L$.
    Using letters to represent the units, the relations between them may be expressed by the following formulæ, in which $t$ represents one second and $T$ one liour:

    $$
    I=\frac{E}{R}, \quad Q=I t, \quad Q^{\prime}=I T, \quad C=\frac{Q}{E}, \quad W=Q E, \quad P=I E
    $$

    As these relations contain no coefficient other than unity, the letters may represent any quantities given in terms of those units. For example, if $E_{A}$ represents the number of volts electromotive force, and $R$ the number of ohms resistance in a circuit, then their ratio $E+R$ will give the number of amperes current strength in that circuit.

    The above six formulæ can be combined by substitution or elimination, so as to give the relations between any of the quantities. The most inpor. tant of these are the following :

    $$
    \begin{array}{ll}
    Q=\frac{E}{R} l, \quad C=\frac{I}{L} t, \quad W=I E t=\frac{E^{2}}{R} t=I^{2} R t=P t, \\
    E=I I, \quad K=\frac{E}{b}, \quad P=\frac{E^{2}}{R}=I^{2} R=\frac{W}{t}=\frac{Q E}{t}
    \end{array}
    $$

    The definitions of these units as axopted at the International Electrical Congress at Chicago in 1893, and as established by Act of Congress of the United States, Juiy 12, 1894, are as follows:

    The ohm is substantially equal to $10^{9}$ ( $\mathrm{or}^{\circ} 1,000,000,000$ ) units oir resistance of the C.G.S. system, and is represented by the resistance offered to an unvarying electric current by a column of mercury at $32^{\circ} \mathrm{F}$., 14.4521 grammes in mass, of a constant cross-sectional area, and of the length of 106.3 centimetres.

    The ampere is $1 / 10$ of the unit of current of the C.G.S. system, and is the practical equivalent of the unvarying current which when passed through a solution of nitrate of silver in water in accordance with standard specifications deposits silver at the rate of .001118 gramme per second.

    The volt is the electro-motive force that, steadily applied to a conductor whose resistance is one ohm, will produce a current of one ampere, and is practically equivalent to $1000 / 1434$ (or .6974) of the electro-motive force between the poles or electrodes of a Clark's cell at a temperature of $15^{\circ} \mathrm{C}$., and prepared in the manner described in the standard specifications.

    The coulomb is the quantity of electricity transferred by a current of one ampere in one second.

    The farad is the capacity of a condenser charged to a potential of one volt by one coulomb of electricity.
    The joule is equal to $10,000,000$ units of work in the C.G.S. system, and is practically equivalent to the energy expended in ons second by an ampere in an ohm.

    The watt is equal to $10,000,000$ units of power in the C.G.S. system, and is practically equivalent to the work done at the rate of one joule per second.

    The henry is the induction in a circuit when the electro-motive force induced in this circuit is one volt, while the inducing current varies at the rate of one ampere per second.

    The ohm, volt, etc., as above defined, are called the "international "ohm, volt, etc., to distinguish them from the "legal" ohm, B.A. unit, etc.

    The value of the ohm, determined by a committee of the British Association in 1863, called the B.A. unit, was the resistance of a certain piece of copper wire. The so-called "legal" ohm, as adopted at the Internationat Congress of Electricians in Paris in 1884, was a correction of the B.A. unit. and was defined as the resistance of a column of mercury 1 square millimetre in section and 106 centimetres long. at a temperature of $32^{\circ} \mathrm{F}$.

    | egal ohm | 1.0112 B.A. units, | B.A. unit $=0.9889$ legal ohm; |
    | :---: | :---: | :---: |
    | ernatio | 1.0136 | $1^{\prime \prime}{ }^{\prime \prime}$ = 0.9866 int. ohm; |
    | 1 " " | 1.0023 legal ohm | 1 legal ohım $=0.997 \%$ |

    ## Derived Units.

    | 1 megohm | $=1$ million ohms; |
    | ---: | :--- |
    | 1 microhm | $=1$ millionth of an ohm; |
    | 1 millianpere | $=1 / 1000$ of an ampere; |

    1 micro-farad $=1$ millionth of a farad.
    Relations of Various Únits.
    

    The ohm, ampere, and volt are defined in terms of one another as follows: Ohm, the resistance of a conductor througl which a current of one ampere will pass when the electro-motive force is one volt. Ampere, the quantity of current which will flow through a resistauce of one ohm when the electromotive force is one volt. Volt, the electro-motive force required to cause a current of one ampere to flow through a resistance of one olim.
    Cquivalent Values of Electrical and Mechanical Units.

    |  |  | Unit. | E | Ull | nt Value in Other Units. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\underset{\mathrm{Kour}}{\mathrm{~W}} \stackrel{1}{\mathrm{~W}}_{=}$ | 1,000 watt hours. <br> 1.34 horse-power hours. <br> $2,654,200 \mathrm{ft} .-1 \mathrm{bs}$. <br> $3,600,000$ joules. <br> 3,41: heat-units. <br> 367,000 kilogram metres. <br> .235 lb . carbon oxidized with perfect efficiency. <br> 3.53 los. water evap. from and at $212^{\circ} \mathrm{F}$. | ${ }^{\mathrm{H} . \mathrm{P} .}=$ | $.746 \mathrm{~K} . \mathrm{W}$. <br> $33,000 \mathrm{ft}$.-lbs. per minute. <br> 550 ft -lbs. per second. <br> 2,545 heat-units per hour. <br> 42. 4 heat-units per minute. <br> .707 heat-units per second. <br> .175 lbs carbon oxidized per hour. <br> 2.64 lbs. water evap. per hour | 1 <br> Heat- <br> unit $=$ <br>  | 1,055 watt seconds. <br> 778 ft. -lbs. <br> 107.6 kilogram metres. <br> $.000 \div 93 \mathrm{~K}$. W. hour. <br> .000393 H.P. hour. <br> .0000688 lbs. carbon oxidized. <br> .001036 lbs . water evap. from and at $212^{\circ} \mathrm{F}$. |
    |  | {f28585f48-1bec-43ee-af2f-6b72be21f0b2}$22 .{ }^{\circ} 5 \mathrm{lbs} \text { of water raised }$ <br>  from  $6 \because 0$ <br>  to $\approx 12^{\circ} \mathrm{F} .$}$.746 \mathrm{~K} . \text { W. hours. }$ |  | from and at $21:{ }^{\circ} \mathrm{F}$. | 1 Heat-unit per Sq. Ft. pel min. $=$ | watts per square in. $66 \mathrm{~K} . \mathrm{W}$. per sq. ft. 36 H.P. per sq. ft. |
    | $\begin{aligned} & \text { H.P. } \\ & \text { Hour }= \end{aligned}$ | 2,545 heat-units. 273, $240 \mathrm{k} . \mathrm{g}$. m. $.1 \% \mathrm{lb}$. carbon oxidized | $\stackrel{1}{\text { Joule }=}$ | $.00094 \%$ heat-units. <br> $.73 \% 3 \mathrm{ft}-\mathrm{Ib}$. |  | $7.233 \mathrm{ft} .-1 \mathrm{bs}$. <br> .00000365 H.P. hour. <br> . 000002 \% 2 K. W. hour. <br> .009:3 leat-units. |
    |  | from and at $212^{\circ} \mathrm{F}$. <br> 17.0 lbs . water raised from $62^{\circ} \mathrm{F}$. to $212^{\circ} \mathrm{F}$. | $\stackrel{1}{1} \mathrm{Ft}$ $=$ | 1.356 joules. <br> .1383 k. g. m. <br> .000000377 K. W. hours. <br> .001285 heat-units. <br> .0000005 H.P. hour. | 1 lb. Carbon Oxidized | 14,544 heat-units. <br> 1. 11 lb. Anth'cite coal ox. <br> 2.5 lbs dry wood oxidized. <br> 21 cu .ft. illuminating-gas. |
    | $\underset{\text { Katt }}{\stackrel{1}{\text { Kilo- }}}=$ | 1,000 watts. 1.34 horse-power. $2,654,200 \mathrm{ft} .-1 \mathrm{lbs}$. per hour. <br> 44,240 ft. -1 bs . per minute. 737.3 ft .-lbs. per second. <br> 3,412 heat-units per hour. <br> 56.9 heat-units per milute. <br> .948 heat-unit per second. <br> .2275 lb. carbon oxidized per hour. <br> 3.53 lbs . water evap. per hour from and at $21 \succcurlyeq 0 \mathrm{~F}$. | Watt = | 1 joule per second. .00134 H.P. <br> 3.412 heat-units per hour. <br> $.7373 \mathrm{ft} .-1 \mathrm{lbs}$ per second. | fect Efficiency = | 5.71 H.P. hours. <br> $11,315,000 \mathrm{ft} .-$ - b bs . <br> 15 lbs . of water evap. from and at $212^{\circ} \mathrm{F}$. |
    |  |  |  | .0035 lbs . water evap. per hr. 44.24 ft .-lbs. per minute. |  | 283 K. W. hou 379 H.P. hour. |
    |  |  | $\left\|\begin{array}{cc} 1 & \text { Watt } \\ \text { per } & \text { sq. } \\ \text { in. } & = \end{array}\right\|$ | 8.19 heat-units per sq. ft. per minute. <br> 6371 ft .-lus. per sq. ft. per minute. <br> .103 H. P ner sq. ft. | 1lb. Water Evapor'ed rom and at $212 \cdot \mathrm{~F} .=$ | 965.7 heat-units. <br> $103,900 \mathrm{k} . \mathrm{g} . \mathrm{m}$. <br> $1,019,000$ joules. <br> 751,300 ft.-lbs. <br> .0664 lb . of carbon oxi- |

    ## Units of the Magnetic Circuit.--(See Electro-magnets, page 105\%.)

    ## For IIethods of making Electrical Measurements, Test-

    Ing, etc.g see Munroe \& Jamieson's Pocket-Book of Electical Rules, Trables, and Data; S. P. Thompson's Dynamo-Electric Machinery; Carlarit \& Patterson's Electrical Measurements; and works on Electrical Engineering.

    Equivalent Electrical and Mechanical Units.-H. Ward Leonard published in The Electrical Engineer, Feb. 25, 1895, a table of useful equivalents of electrical and mechanical units, from which the table on page $10 \because 6$ is taken, with some modifications.

    ## ANALOGIES HETWEEN THE FLOW OF WATER AND EHECTRECHTY.

    Water.
    Head, difference of level, in feet.
    Difference of pressure, lbs. per sq. in.
    Resistance of pipes, a pertures, etc., increases with length of pipe, with contractions, roughness, etc.; decreases with increase of sectional area.
    Rate of flow, as cubic ft. per second, gallons per minute, etc., or volume divided by the time. In the mining regions sometimes expressed in "miners' inches."
    Quantity, usually measured in cubic ft. or gallons, but is also equivalent to rate of flow $\times$ time, as cu.ft. per second for so many hours.
    Work, or energy, measured in fontpounds; product of weight of falling water into heiglit of fall; in pumping, product of quantity in cubic feet into the pressure in lbs. per square foot against which the water is pumped.
    Power, rate of work. Horse-power = ft . -lbs . of work in $1 \mathrm{~min} . \div 33,000$. In water flowing in pipes, rate of flow in cu. ft . per second $X$ resistance to the flow in lbs. per sq. ft. $\div 550$.

    ## Electricity.

    Volts; electro-motive force; difference of potential; E. or E.M.F.
    Ohns, resistance, $R$. Increases directly as the length of the conductor or wire and inversely as its sectional area, $R \propto l \div s$. It varies with the nature of the conductor.
    A inperes; current; current strength; intensity of current; rate of flow; 1 ampere $=1$ coulonb per second.
    Amperes $=\frac{\text { volts }}{\text { ohms }} ; I=\frac{E}{R} ; E=I R$.
    Coulomb, unit of quantity, $Q=$ rate of flow $\times$ time, as ampere-seconds. 1 ampere-hour $=3600$ coulombs.
    Joule, volt-coulomb, $W$, the unit of work, = product of quantity by the electro-motive force = volt-amperesecond. 1 joule $=.7373$ foot-pound.
    If $C$ (amperes) = rate of flow, and $E$ (volts) $=$ difference of pressure between two points in a circuit, energy expended $=I E t,=I^{2} R t$.
    Watt, unit of power, $P,=$ volts $\times$ amperes, $=$ current or rate of flow $\times$ difference of potential.
    1 watt $=.7373$ foot-pound per second $=1 / \pi 46$ of a liorse-power.

    ## ELECTEICAL RESISTANCE.

    Laws of Electrical Resistance.-The resistance, $R$, of any conductor varies directly as its length, $l$, and inversely as its sectional area, $s$, or $R \propto l \div s$.

    If $r=$ the resistance of a conductor 1 unit in length and 1 square unit in sectional area, $R=r \cdot l \div s$. The common unit of length for electrical calculations in English measure is the foot, and the unit of area of wires is the circular $\mathrm{mil}=$ the area of a circle 0.001 in . diameter. 1 mil-foot $=1$ foot long 1 circ.-mil area.

    Resistance of 1 mil-foot of soft copper wire at $51^{\circ} \mathrm{F} .=10$ international ohms.

    Eximple.-What is the resistance of a wire 1000 ft . long, 0.1 in . diam.? 0.1 in. diam. $=10,000$ circ. mils.

    $$
    R=r l \div s=10 \times 1000 \div 10,000=1 \mathrm{ohm}
    $$

    Specific resistance, also called resistivity, is the resistance of a material of unit length and section as compared with the resistance of soft copper.

    Conductivity is the reciprocal of specific resistance, or the relative conducting power compared with copper taken at 100.

    # Relative Conductivities of Difrerent Thetals at $0^{\circ}$ and $100^{\circ}$ C. (Mathiessen.) 

    | Metals. | Conductivities. |  | Metals. | Conductivities. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | At $0^{\circ} \mathrm{C}$. ${ }^{\circ} \mathrm{F}$. | At $100^{\circ} \mathrm{C}$. |  | $\begin{array}{cc} \text { At } & 0^{\circ} \mathrm{C} \\ { }^{\prime} & 3 \geqslant{ }^{\circ} \mathrm{F} \end{array}$ | $\begin{aligned} & \text { At } 100^{\circ} \mathrm{C} \\ & \text { " } 212^{\circ} \mathrm{F} . \end{aligned}$ |
    | Silver, hard.. | 100 | 71.56 |  | 12.36 |  |
    | Copper, hard | 99.95 | 70.2 r | Lead | 8.32 | 5.86 |
    | Gond, hard.... | 7.96 99.02 9.98 | 55.90 20.67 | Arsenic. | 4.76 | 3.33 |
    | Cadmimm...... | 23.72 | 16.67 | Antimony | 4.62 | 3.26 |
    | l'atimum, soft. | 18.00 |  | Bismuth.? | 1.60 | 0.878 |
    | Iron, soft | 16.80 |  |  | 1.24 | 0.818 |

    ## Electrical Conductivity of Different Metals and Alloys.

    The following figures of electrical conductivity are given by Lazare Weiler

    Pure silver......... ............. 100
    Pure copper...................... . . 100
    Telegraphic silicious bronze.. 98
    Alloy of $1 / 2$ copper, $1 / 2$ silver... 86.65
    Pure gold.... ..... ............ is
    Silicide of copper, $4 \%$ si ......... 75

    ## Telephonic silicious bronze... 35

    Pure zinc...................... 29.9
    Brass with $35 \%$ of zinc........... 21.5
    Phosphor tin.... ............. $1 \%$ 1. 7
    Alloy of $1 / 2$ gold, $1 \lessdot$ silver...... 16.12

    Swedish iron..................... 16
    Pure Banca tin................... $16 .{ }^{15}$
    Aluminum bronze ( $10 \%$ ).......... 12.6
    Siemens steel........................ 12
    Pnre platinum............................ 10.6
    Copper with $10 \%$ of nickel...... 10.6
    Pure lead........................ $\quad 8 .{ }_{8}$
    Bronze with $20 \%$ of tin........... 8.4
    Pure nickel....................... $\quad$. 89
    Phosphor-bronze, $10 \%$ tin.... .. 6.5
    Antimony....................... 3.88

    Conductivity of Aluminnm.-J. W. Richards (Jour. Frank. Inst., Mar. 189テ) gives fur hard-dra"u aluminum of purity 98.5, 99.0, 99.5, and 99.75\% respectively a conductivity of $55,59,61$, and 63 to $64 \%$, copper being $100 \%$. The Pittsburg Reduction Co. claims that its purest aluminum has a conductivity of over $64.5 \%$. (Eng'? Nens, Dec. 17, 1896.)

    German Silver.-The resistance of German silver depends on its composition. Mattliessen gives it as nearly 13 times that of copper, with a temperature coefficient of .0004433 per degree C. Weston, however (Proc. Electrical Congress 1893. p. 179), has found copper-nickel-zinc alloys (German silver) which had a resistance of nearly 28 times that of copper, and a temperature coefficient of about one half that given by Mathiessen.

    ## Conductors and Insulators in Order of their Value.

    All metals
    Well-burned charcoal
    Plumbago
    Acid solutions
    Saline solutions
    Metallic ores
    Animal fluids
    Living vegetable substances
    Moist earth
    Water
    nsulators (non-conductors).

    Dry air
    Shellac
    Para.ffin
    Amber
    Resins
    Sulphur
    Wax
    Jet
    Glass
    Mica

    Ebonite
    Gutta-percha India-rubber Silk
    Dry paper
    Parchnent
    Dry leather
    Porcelain
    Oils

    According to Culley, the resistance of distilled water is 6754 million times as great as that of copper. Impurities in water decrease its resistance.

    ## Resistance Varies with Temberature.-For every degree Cen-

    tigrate the resistance of copper increases about $0.4 \%$. or for every degree $F$. $0.2 \geqslant 2 \%$ Thus a piece of copper "ire having a lesistance of 10 ohms at $3 \%^{\circ}$ would have a resistance of 11.11 ohms at $8 \because^{\circ} \mathrm{F}$.The following table shows the annunt of resistance of a few substances used for varions electrical purposes by which 1 olm ins increased by a rise of
    temperature of $1^{\circ} \mathrm{C}$.

    | Platinc | .000:1 | Gold, silver.... ........ . . . . . . . . 00065 |
    | :---: | :---: | :---: |
    | Platinuı ;ilver | . 00031 | Cast iron........ . . . . . . . . . . . . . . 00080 |
    | Germau siver (see above | . 00044 | Copper . . . . . . . . . . . . . . . . . . . . . . . 00400 |

    Amnealing.-Resistance is lessened by annealing. Matthiessen gives the following relative conductivities for copper and silver, the comparison being made with pure silver at $100^{\circ} \mathrm{C}$.:

    | Metal. | Temp. C. | Hard. | Annealed. | Ratio. |
    | :---: | :---: | :---: | :---: | :---: |
    | Copper. | ... $11^{\circ}$ | 97.31 | 97.83 | 1 to $1.02{ }^{2}$ |
    | Silver... | ... $14.0^{\circ}$ | 95.36 | 103.33 | 1 to 1.08 t |

    Dr. Siemens compared the conductivities of copper, silver, and brass with the following results. Ratio of hard to annealed:
    Copper.
    Silver.
    1 to 1.145 Brass.
    1 to 1.180

    Standard of Resistance of Copper Wire. (Trans. A. I. E. E., Sept. and Nov. $18^{\prime} 9$. )- Math hiessen's standard is: A hard-drawn copper wire 1 metre long, weighing 1 gramme, has a resistance of 0.1469 B . A. unit at $0^{\circ} \mathrm{C}$. Relative conducting power (Matthiessen): silver, 100 ; hard or unannealed copper, 99.95; soft or annealed copper, 102.21. Conductivity of copper at other temperatures than $0^{\circ} \mathrm{C} ., C_{t}=C_{0}\left(1-.00387 t+.000009009 t^{2}\right)$.

    The resistance is the reciprocal of the conductivity, and is

    $$
    R_{t}=R_{0}\left(1+.00387 t+.0000059 \sim t^{2}\right)
    $$

    The shorter formula $R_{t}=R_{0}(1+.00406 t)$ is commonly used
    A committee of the Am. Inst. Electrical Engineers recommend the following as the most correct form of the Matthiesseu staudard, taking 8.89 as the sp. g1. of pure copper:

    A soft copper wire 1 metre long and 1 mm . diam. has an electrical resistance of .02057 B . A. unit at $0^{\circ} \mathrm{C}$. From this the resistance of a soft copper wire 1 foot long and .001 in . diam. (nil-foot) is $9 . \tau_{2} 0 \mathrm{~B} . \mathrm{A}$. units at $0^{\circ} \mathrm{C}$.

    $$
    \text { Standard Resistance at } 0^{\circ} \text { C. B.A. Units. Legal Ohms. } \begin{gathered}
    \text { Internat. } \\
    \text { Ohnis. }
    \end{gathered}
    $$

    

    For tables of the resistance of copper wire, see pages 218 to 220 , also pp. 1034, 1035.

    Taking Matthiessen's standard of pure copper as $100 \%$, some refined metal has exhibited an electrical conductivity equivalent to $103 \%$.

    Matthiessen found that impurities in copper sufficient to decrease its density from 8.94 to 8.90 produced a marked increase of electrical resistance.

    ## DIRECT ELECTRIC CURRENTS.

    Ohm's Law. -This law expresses the relation between the three fundamental units of resistance, electrical pressure, and current. It is :
    Current $=\frac{\text { electrical pressure }}{\text { resistance }} ; \quad I=\frac{E}{R} ;$ whence $E=I R$, and $\quad R=\frac{E}{I}$.
    In terms of the units of the three quantities,

    $$
    \text { Amperes }=\frac{\text { volts }}{\text { ohms }} ; \quad \text { volts }=\text { amperes } \times \text { ohms } ; \quad \text { ohms }=\frac{\text { volts }}{\text { amperes }} .
    $$

    Examples: Simple Circuits.-1. If the source has an effective electrical pressure of 100 volts, and the resistance is two ohms, what is the current?

    $$
    I=\frac{E}{R}=\frac{100}{2}=50 \text { amperes. }
    $$

    2. What pressure will give a current of 50 amperes through a resistance of 2 ohms? $E=I R=50 \times 2=100$ volts.
    3. What resistance is required to obtain a current of 50 amperes when the pressure is 100 volts? $R=E \div 1=100 \div 50=2$ ohms.

    Ohm's law applies equally to a complete electrical circuit and to any part thereof.

    Series Circuits.-If conductors are arranged one after the other they
    are said to be in series, and the total resistance of the circuit is the sum of
    

    Fig. 1 riv. the resistances of its several parts. Let $A$, Fig. $1 \%^{\circ} 0$, be a source of rurrent, such as a battery or generator, producing a difference of potential or E. M. F. of $1: 0$ volts, measured across $a b$, and let, the circuit contain four conductors whose resistances, $r_{1}, r_{2}, r_{3}, r_{4}$, are 1 ohm each, and three other resistances, $R_{1}, R_{2}, R_{3}$, each 2 ohms. The total resistance is 10 ohms, and by Ohm's law the current $I=E \div R=120 \div 10=12$ amperes. This current is constant throughout the circuit, and a series circuit is therefore one of constont current. The drop of potential in the whole circuit from a arond to $b$ is 120 volts, or $E=R I$. The drop in any postion depends on the resistance of that portion; thus from " to $R_{1}$ the resistance is 1 ohm, the constant current 12 amperes, and the drop $1 \times 12$ $=1:$ volts. The drop in passing through each of the resistances $R_{1}, R_{2}, R_{3}$ is $2 \times 12=24$ volts.
     a generator producing an E. M. $\mathbb{F}$. of $2: 0$ volts across the terminals $a b$. The
     current is divided, so that part flows through the main wires ac and part through the "shunt" $s$, having a resistance of 0.5 ohm . Also the current has three patbs between $c$ and $d$, viz, through the three resistances in parallel $R_{1}, R_{2}, R_{3}$, of 2 ohms each. Consider that the resistance of the wires is so small that it may be neglected. Let the conductances of the four paths be represented by $C_{s}, C_{1}$, $C_{2}, C_{3}$. The total conductance is $C_{s}+C_{1}$ $+C_{2}+C_{3}=C$ and the total resistance $R=1 \div C$. The conductance of each path is the reciprocal of its resistance, the total conductance is the sum of the separate conductances, and the resistance of the combined or "parallel " paths is the reciprocal of the total conductance.

    $$
    R=1 \div\left(\frac{1}{0.5}+\frac{1}{2}+\frac{1}{\ddot{2}}+\frac{1}{\dot{\sim}}\right)=1 \div 3.5=0.286 \mathrm{ohm} .
    $$

    The current $I=E \div R=\pi 0$ amperes.
    Conductors in Series and Parallel.-Let the resistances in parallel be the same as in lig. 1 n 1 , with the additional resistance of 0.1 ohm in each of the six sections of the main wires, $u c, b d$, etc., in series. The voltage across ab being 200 volts, determine the drop in voltage at the several points, the total current, and the current through each path. The problem is somewhat complicated. It may be solved as follows : Consider first the points eg; here there are two paths for the current, efyh and ey. Find the resistance and the conductance of each and the total resistance (the reciprocal of the joint conductance) of the parallel paths. Next consider the points $c d$; here there are two paths-one through e and the other through cd. Find the total resistance as before. Finally consider the points $a b$ : here there are two paths-one through $c$, the other through s. Find the conductances of each and their sum. The product of this sum and the voltage at $a b$ will be the total amperes of current. and the current through any path will be proportional to the conductance of that path. The resistances, $R$, and conductances, $C$, of the several paths are as follows.

    Total current $=220 \times 3.0332=667.3$ amperes .
    Current through $s=220 \times 2=440 \mathrm{amp}$.; through $c=227^{\circ} .3 \mathrm{amp}$.
    $" c R_{1} d=22 \pi .3 \times 0.5 \quad \div 1.3013=8 \% .34 \mathrm{amp}$.
    " $e=2=2.7 .3 \times 0.8013 \div 1.3013=139.96$
    " $e R_{2} g=139.36 \times 0.5 \div 0.9545=73.31$ "
    " $f R_{3}=139.96 \times 0.4545 \div 0.9545=66.65$ "
    The drop in voltage in any section of the line is found by the formula $E=R 1, R$ being the resistance of that section and $I$ the current in it. As the $R$ of each section is 0.1 ohm we find $E$ for ac and $b d$ each $=2: .2 .7$ volts, for $c e$ and $d g$ each 14.0 volts, and for ef and $g h$ each 6.67 volts. The voltage across $c d$ is $220-2 \times 22.7=174.6$ volts; across eg, $174.6-2 \times 14.0=146.6$, and across $f h 146.6-2 \times 667=133.3$ volts. Taking these voltages and the resistances $R_{1} R_{2} R_{3}$, each 2 ohims, we find from $I=E \div R$ the current through each of these resistances $87.3,73.3$, and 66.65 amperes, as before.

    Internal. Resistance. - In a simple circuit we have two resistances, that of the circuit $R$ and that of the internal parts of the sonrce of electromotive force, called internal resistance, $r$. The formula of Ohm's law when the internal resistance is considered is $I=E \div(R+r)$.

    Power of the Circuit. - The power, or rate of work, in watts = current in amperes $\times$ elfctro-motive force in volts $=I \times E$. Since $I=E \div R$, watts $=E^{2} \div R=$ electro-motive force ${ }^{2} \div$ resistance.

    Example.-What H.P. is required to supply 100 lamps of 40 ohms resistance each, requiring an electro-motive force of 60 volts ?

    The number of volt-amperes for each lamp is $\frac{E^{2}}{R}=\frac{60^{2}}{40}, 1$ volt-ampere $=$ .00134 H.P.; therefore $\frac{60^{2}}{40} \times 100 \times .00134=12$ H.P. (electrical) very nearly.
    Electrical, Brake, and Indicated Horse-power.-The power given out by a dynamo $=$ volts $\times$ amperes $\div 1000=$ kilowatts, kw . Volts $\times$ amperes $-746=$ electrical horse-power, E.H.P. The power put into a dynamo shaft by a direct-connected engine or other prime mover is called the shaft or brake horse-power, B.H.P. If $e_{1}$ is the efficiency of the dynano, B.H.P. $=$ E.H.P. $-e_{1}$. If $e_{2}$ is the mechanical efficiency of the engine, the indicated horse-power, I.H.P. $=$ brake H.P. $\div e_{2}=$ E.H.P. + $\left(e_{1} \times e_{2}\right)$.

    If $e_{1}$ and $e_{2}$ each $=911 / 2 \%$, I.H.P. $=$ E.H.P. $\times 1.194=\mathrm{kw} . \times 1.60$. In directconnected units of 250 kw . or less the rated H . P . of the engine is conmmonly taken as $1.6 \times$ the rated kw . of the generator.
    Electric motors are rated at the H.P. given out at the pulley or belt. H.P. of notor $=$ E.H.P. supplied $\div$ efficiency of molor.
    Heat Generated by a Current. -Joule's law shows that the heat developed in a conductor is directly proportional. 1st, to its resistance; 2d, to the square of the current strength; and $3 d$, to the time during which the current flows, or $H=I^{2} R t$. Since $I=E \div R$,

    $$
    I^{2} R t=\frac{E}{R} I R t=E I t=E \frac{E}{R} t=\frac{E^{2} t}{R} .
    $$

    Or, leat $=$ current ${ }^{2} \times$ resistance $\times$ time

    $$
    \begin{aligned}
    & =\text { electro-motive furce } \times \text { current } \times \text { time } \\
    & =\text { electromotive force } \times \text { time } \div \text { resistance. } \\
    Q & =\text { quantity of electicity fowing }=I t=(E t \div R) \text {. } \\
    H & =E Q ; \text { or lieat }=\text { elect.o-motive force } \times \text { quantity. }
    \end{aligned}
    $$

    The electro-motive force here is that causing the flow, or the difference in potential between the ends of the conductor.
    The electrical unit of heat, or "joule" $=107$ ergs = heat generated in one second by a current of 1 ampere flowing through a resistance of one ohm $=$ .239 gramme of water raised $1^{\circ} \mathrm{C} . H=I^{2} R t \quad \times .239$ gramme calories $=$ $I^{2} R t \times .0009478$ British thermal units.

    In electric lighting the energy of the current is converted into heat in the lamps. The resistance of the lamp is made great so that the required auantity of heat may be developed, while in the wire leading to and from the lamp the resistance is made as small as is cominercially practicable, so that as little energy as possible may be wasted in heating the wire.
    Heating of Conductors. (From Kapp's Electrical Transmission of Energy.)-It becomes a matter of great importance to deternine before-
    hand what rise in temperature is to be expected in each given case, and if that rise should be found to be greater than appears safe, provision must be made to increase the rate at which heat is carried off. Tbis can generally be done by increasing the superficial area of the conductor. Say we have one circular conductor of 1 square inch area, and find that with 1000 amperes flowing it would become too hot. Now by splitting up this conductor into 10 separate wires each one teuth of a square inch cross-sectional area, we have not altered the total amount of energy transformed into heat, but we have increased the surface exposed to the cooling action of the surrounding air in the ratio of $1: \sqrt{10}$, and therefore the ten thin wires can dissipate more than three times the heat, as compared with the single thick wire.

    Prof. Forbes states that an insulated wire carries a greater current without overleating than a bare wire if the diameter be not too great. Assuming the diameter of the cable to be twice the diam. of the conductor, a greater current can be carried in insulated wires than in bare wires up to 1.9 inch diam. of conductor. If diam. of cable $=4$ times diain. of couductor, this is the case up to 1.1 inch diam. of conductor.

    Heating of Bare Wires. - The following formulæ are given by Kennelly:

    $$
    T=\frac{I^{2}}{d^{3}} \times 90,000+t ; \quad d=44.8 \sqrt[3]{\frac{I^{2}}{T-t}}
    $$

    $T=$ temperature of the wire and $t$ that of the air, in Fahrenheit degrees; $I=$ current in amperes, $d=$ diameter of the wire in mils.

    If we take $T-t=90^{\circ} \mathrm{F} ., \sqrt[3]{90}=4.48$, then

    $$
    d=10 \sqrt[3]{I^{2}} \quad \text { and } \quad I=\sqrt{d^{3} \div 1,000}
    $$

    This latter formula gives for the carrying capacity in amperes of bare wires almost exactly the figures given for weather-proof wires in the Fire Underwriters' table except in the case of Nos. 18 and 16, B. \& S. gauge, for which the formula gives $\gamma$ and 11 ampere, respectively, instead of 5 and 8 amperes, given in the table.

    Heating of Coils. - The rise of temperature in magnet coils due to the passage of current through the wire is approximately proportional to the watts lost in the coil per unit of effective radiating surface, thus:

    $$
    t \propto \frac{1^{2} R}{S}, \quad \text { or } \quad t=\frac{12 R}{k S}
    $$

    $t$ being the temperature rise in degrees Fahr.; $S$, the effective radiating surface; and $k$ a coefficient which varies widely, according to conditions. In electronnagnet coils of small size and power, $k$ may be as large as 0.015 . Ordinarily it ranges from 0.012 down to 0.005 ; a fair average is 0.007 . The more exposed the coil is to air circulation, the larger is the value of $k$; the larger the proportion of iron to copper, by weight, in the core and winding, the thinner the winding with relation to its dimension parallel with the magnet core, and the larger the "space factor" of the winding, the larger will be the value of $k$. The space factor is the ratio of the actual copper cross-section of the whole coil to the gross cross-section of copper, insulation, and interstices.

    See also the discussion of magnet windings under Electromagnets, p. 1050.
    Fusion of Wires. - W. H. Preece gives a formula for the current required to fuse wires of different metals, viz., $I=a d^{\frac{3}{2}}$, in which $d$ is the diameter in inches and a a coefficient whose value for different metals is as follows: Copper, 10244 ; aluminum, 7585 ; platinum, 5172 ; German silver, 5230 ; platinoid, 4750 ; iron, 3148; tin, 1462; lead, 1379; alloy of 2 lead and 1 tin, 1318.

    Allowable Carrying Capacity of Copper Wires.
    (Fire Linderwriters' liules.)

    | B. \&S. Gauge. | Circular Mils. | Amperes. |  | Circular Mils. | Amperes |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Rubber Covererl. | Weatherproof. |  | Rubber Corered | Weatherproof. |
    | 18 | 1,624 | 3 | 5 | 200,000 | 200 | 300 |
    | 16 | 2,583 | 6 | 8 | 300,000 | 270 | 400 |
    | 14 | 4,107 | 12 | 16 | 400.000 | 330 | 500 |
    | 12 |  | 17 | 23 | 500,000 | 390 | 590 |
    | 10 | 10,380 | 24 | 32 | 600,000 | 450 | 680 |
    | 8 | 16,510 | 33 | 46 | 700.000 | 500 | 760 |
    | ${ }_{5}^{6}$ | 26,250 | 46 | 65 | 800000 | 550 | 840 |
    | 5 4 | 33,100 41,740 | 54 | 77 | 900,000 1,000 | 600 650 | 920 |
    | 3 | -52,630 | 76 | 92 110 | $1,000,000$ $1,100,000$ | 650 690 | 1.000 1.080 |
    | 2 | 66,370 | 90 | 131 | 1.200,000 | 730 | 1,150 |
    | 1 | 83,690 | 107 | 156 | 1,300,000 | 770 | 1,220 |
    | 0 | 105,500 | 127 | 185 | 1.400,000 | 810 | 1,290 |
    | 00 | 133,100 | 150 | 220 | 1,600,000 | 890 | 1,430 |
    | 000 | 167,800 | 177 | 262 | 1,800,000 | 970 | 1,550 |
    | 0000 | 211,600 | 210 | 312 | 2,000,000 | 1,050 | 1,670 |

    For insulated aluminum wire the safe-carrying capacity is 84 per cent of that of copper wire with the same insulation.
    Underviriters' Insulation. - The thickness of insulation required by the rules of the National Board of Fire Underwriters varies with the size of the wire, the character of the insulation and the voltage. The thickness of insulation on rubber-covered wires carrying voltages up to 600 varies from ${ }^{\frac{1}{2} 2}$ inch for a No. 18 B. \& S. gauge wire to $\frac{1}{8}$ inch for a wire of 1000000 circular mils. Weather-proof insulation is required to be slightly thacker. For voltages of over 600 the insulation is required to be at least $1 / 16$ inch thick for all sizes of wire under No $8 \mathrm{~B} . \& \mathrm{~S}$. gauge, and to be at least $3 / 32$ inch thick for all sizes greater than No. 0010 B. \& S. gauge.

    Copper-wire Table.-The table on pages 1034 and 1035 is abridged from one computed by the Committee on Units and Standards of the American Institute of Electrical Engineers (Trans. Oct. 1893).

    ## ELECTREC TRANSMISSION, DIRECT CURRENTS.

    Cross-section of Wire Required for a Given current.Let $R=$ resistance of a git en line of copper wire, in ohme.$r=" \quad " 1$ mil-foot of copper;
    $L=$ length of wire, in feet;
    $e=$ drop in voltage between the two ends;
    $I=$ current, in amperes;
    $A=$ sectional area of wire, in circular mils;
    then $I=\frac{e}{\overparen{R}} ; R=\frac{e}{I} ; R=r \frac{L}{A}$; whence $A=\underset{e}{r I L}$.
    The value of $r$ for soft copper wire at $75^{\circ} \mathrm{F}$. is 10.505 international ohms. For ordinary drawn copper wire the value of 10.8 is commonly taken, corresponding to a conductivity of 97.2 per cent.

    For a circuit, going and return, the total length is $2 L$, and the formula becomes $A=21.6 I L \div e, L$ here being the distance from the point of supply to the point of delivery.

    If $E$ is the voltage at the generator and $a$ the per cent of drop in the line. then $e=E a \div 100$, and $A=\frac{2160 I L}{a E}$.

    If $P=$ the power in watts, $=E I$, then $I=\frac{P}{E}$, and $A=\frac{2160 P L}{a E^{2}}$.
    If $P_{k}=$ the power in kilowatts, $A$

    | Gauges. |  | Diameter, inches. | Area, Circular mils. | Weight. |  | Length. |  | Resistance in International Ohms. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | A. W. G. B. \& S. | B. W. G. Stubbs'. |  |  | Lbs. per Foot. | $\begin{aligned} & \text { Lbs. per Ohm, } \\ & \text { at } 20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F} \text {. } \end{aligned}$ | $\begin{gathered} \text { Feet per } \\ \text { Lb. } \end{gathered}$ | $\begin{aligned} & \text { Ft. per Ohm, } \\ & \text { at } 20^{\circ} \mathrm{C} .68^{\circ} \mathrm{F} \end{aligned}$ | $\begin{aligned} & \text { Ohms per Lb. } \\ & \text { at } 20^{\circ} \mathrm{C} ., 68^{\circ} \mathrm{F} \text {. } \end{aligned}$ | $\left\lvert\, \begin{array}{ll} \text { O. per ft., at } \\ 20^{\circ} \mathrm{C}, 68^{\circ} & \mathrm{F} \end{array}\right.$ | $\begin{aligned} & \text { O. per ft., at } \\ & 50^{\circ} \mathrm{C}, 122^{\circ} \mathrm{F} . \end{aligned}$ | O. per ft., at $80^{\circ} \mathrm{C} ., 176^{\circ} \mathrm{F}$. |
    | 0000 |  | 0.460 | 211,600 | 0.6405 | 13,090 | 1.561 | 20,440 | 0.00007639 | 0.00004893 | 0.00005467 | 0.00006058 |
    |  | 0000 | 0.454 | 206,100 | 0.6239 | 12,420 | 1.603 | 19,910 | 0.00008051 | 0.00005023 | 0.00005612 | 0.00006220 |
    |  | 000 | 0.425 | 180,600 | 0.5468 | 9,538 | 1.829 | 17,450 | 0.0001048 | 0.00005732 | 0.00006404 | 0.00007097 |
    | 000 |  | 0.4096 | 167,800 | 0.5080 | 8,232 | 1.969 | 16,210 | 0.0001215 | 0.00006170 | 0.00006893 | 0.00007640 |
    |  | 00 | 0.380 | 144,400 | 0.4371 | 6,096 | 2.288 | 13,950 | 0.0001640 | 0.00007170 | 0.00008011 | 0.00008878 |
    | 00 |  | 0.3648 | 133,100 | 0.4028 | 5,177 | 2.482 | 12,850 | 0.0001931 | 0.00007780 | 0.00008692 | 0.00009633 |
    |  | 0 | 0.340 | 115,600 | 0.3499 | 3,907 | 2.858 | 11,16才 | 0.0002560 | 0.00008957 | 0.0001001 | 0.0001109 |
    | 0 |  | 0.3249 | 105,500 | 0.3195 | 3,256 | 3.130 | 10,190 | 0.0003071 | 0.00009811 | 0.0001096 | 0.0001215 |
    |  | 1 | 0.3000 | 90,000 | 0.2724 | 2,368 | 3.671 | 8,692 | 0.0004223 | 0.0001150 | 0.0001285 | 0.0001424 |
    | 1 |  | 0.2893 | 83,690 | 0.2533 | 2,048 | 3.947 | 8,083 | 0.0004883 | 0.0001237 | 0.0001382 | 0.0001532 |
    |  | 2 | 0.2840 | 80,660 | 0.2441 | 1,902 | 4.096 | 7,790 | 0.0005258 | 0.0001284 | 0.0001434 | 0.0001589 |
    | 2 | 3 | 0.2590 | 67,080 | 0.2031 | 1,316 | 4.925 | 6,479 | 0.0007601 | 0.0001543 | 0.0001724 | 0.0001911 |
    |  |  | 0.2576 | 66,370 | 0.2009 | 1,288 | 4.977 | 6,410 | 0.0007765 | 0.0001560 | 0.0001743 | 0.0001932 |
    | 3 | 4 | 0.2380 | 56,640 | 0.1715 | 938.0 | 5.832 | 5,471 | 0.001066 | 0.0001828 | 0.0002042 | 0.0002263 |
    |  |  | 0.2394 | 52,630 | 0.1593 | 810.0 | 6.876 | 5,084 | 0.001235 | 0.0001967 | 0.0002198 | 0.0002435 |
    |  | 5 | 0.2200 | 48,400 | 0.1465 | 684.9 | 6.826 | 4,675 | 0.001460 | 0.0002139 | 0.0002390 | 0.0002649 |
    | 4 |  | 0.2043 | 41,740 | 0.1264 | 509.4 | 7.914 | 4,031 | 0.001963 | $0.000 \% 480$ | 0.0002771 | 0.0003071 |
    | 5 | 6 | 0.2030 | 41,210 | 0.1247 | 496.5 | 8.017 | 3,980 | 0.002014 | 0.0002513 | 0.0002807 | 0.0003111 |
    |  |  | 0.1819 | 33,100 | 0.1002 | 320.4 | 9.980 | 3,197 | 0.003122 | 0.0003128 | 0.0003495 | 0.0003873 |
    |  | 7 | 0.1800 | 32,400 | 0.09808 | 306.9 | 10.20 | 3,129 | 0.003258 | 0.0003196 | 0.0003570 | 0.0003957 |
    | 6 | 8 | 0.1650 | 27,230 | 0.08241 | 216.7 | 12.13 | 2,629 | 0.004615 | 0.0003803 | 0.0004249 | 0.0004709 |
    |  |  | 0.1620 | 26,250 | 0.07946 | 201.5 | 12.58 | 2,535 | 0.004963 | 0.0003944 | 0.0004406 | 0.0004883 |
    | 7 | 9 | 0.1480 | 21,900 | 0.06630 | 140.3 | 15.08 | 2,116 | 0007129 | 0.0004727 | 0.0005281 | 0.0005853 |
    |  |  | 0.1443 | 20.820 | 0.06302 | 126.7 | 15.87 | 2,011 | 0.007892 | 0.0004973 | 0.0005556 | 0.0006158 |
    | 8 | 10 | 0.1340 | 17,960 | $0.05+35$ | 94.26 | 18.10 | 1,734 | 0.01061 | 0.0005766 | 0.0006442 | 0. 0007140 |
    |  | 11 | 01285 | 16,510 | 0.04998 | 79.69 | 20.01 | 1,595 | 0.01255 | 0.0006271 | 0.0007007 | 0.0007765 |
    | 9 | 11 | 0.1144 | 14,090 | 0.04359 0.03963 | 60.62 50.12 | 23.94 | 1,391 | 0.01650 | 0.0007190 | 0.0008033 | 0.0008903 |
    |  | 12 | 0.1090 | 11,880 | 0.03596 | 41.27 | $\underset{27.81}{ }$ | 1,147 | 0.01996 0.02423 | 0.0007908 0.0008715 | $0.000{ }^{\circ} 835$ 0.0009736 | 0.0009791 0.001079 |
    | 10 |  | 0.1019 | 10,380 | 0.03143 | 31.52 | 31.82 | 1,003 | 0.03173 | 0.0009972 | 0.001114 | 0.001235 |
    |  | 13 | 0.0950 | 9,025 | 0.02732 | 23.81 | 36.60 | 871.7 | 0.04199 | $0.00114{ }^{7}$ | 0.001282 | 0.001420 |
    | 11 |  | 0.09074 | 8,234 | 0.02493 | 19.82 | 40.12 | 795.3 | 0.05045 | 0.001257 | 0.001405 | 0.001557 |
    |  | 14 | 0.088 .00 | 6,889 | 0.02085 | 13.87 | 47.95 | 665.4 | 0.07207 | 0.001503 | 0.001679 | 0.001861 |
    | 12 |  | 0.08081 | 6,530 | 0.01977 | 12.47 | 50.59 | 630.7 | 0.08022 | 0.001586 | 0.001771 | 0.001963 |
    |  | 15 | 0.07200 | 5,184 | 0.01569 | 7.857 | 63.73 | 500.7 | 0.1273 | 0.001997 | 0.002231 | 0.002473 |
    | 13 |  | 0.07196 | 5,178 | 0.01568 | 7.840 | 63.79 | 500.1 | 0.1276 | 0.001999 | 0.002231 | 0.002476 |
    |  | 16 | 0.06500 | 4,225 | 0.01279 | 5.213 | 78.19 | 408.1 | 0.1916 | 0.002451 | 0.002738 | 0.003034 |
    | 14 |  | 0.06408 | 4,107 | 0.01243 | 4.931 | 80.44 | 396.6 | 0.2028 | 0.002521 | 0.002817 | 0.003122 |
    |  | 17 | 0.0580 | 3,364 | 0.01018 | 3.308 | 98.23 | 334.9 | 0.3023 | 0.003078 | 0.003439 | 0.003811 |
    | 1516 |  | 0.05707 | 3,257 | 0.009858 | 3.101 | 101.4 | 314.5 | 0.3225 | 0.003179 | 0.003552 | 0.003936 |
    |  | 18 | 0.05082 0.04900 | 2,583 | 0.007818 0.007968 | 1.950 | 127.9 | 249.4 | 0.5138 | 0.004009 | 0.004479 | 0004964 |
    |  | 18 | 0.04900 | 2,401 | $0.007 \approx 68$ | 1.685 | 137.6 | 231.9 | 0.5933 | 0.004312 | 0.004818 | 0.005339 |

    Weights, Lengths, and Resistances of Cool, Warm, and Hot Copper Wires.-(Continued.)
    

    If $L m=$ the distance in miles, and $A c$ the area in circular inches, $A_{c}=6405 \mathrm{PkLm} \div a E^{2}$. If $A_{s}=$ area in square inches $A_{s}=5030 P_{k L m}$ $\div a E^{2}$. When the area in circular mils has been determined by either of these formulæ reference should be made to the table of Allowahle Capacity of Wires, to see if the calculated size is sufficient to avoid overheating. For all interior wiring the rules of the National Board of Fire Underwriters should be followed. See Appendix to Vol. II of Crocker's Electric Lighting.

    Weiglit of copper for a Given Power.-Taking the weight of a mil-ffot of copper at .000003027 lb ., the weight of copper in a circuit of length $2 L$ and cross-section $A$, in circ. mils, is $0.000006054 L A$ lbs., $=W$. Substituting for $A$ its value $2160 P L \div a E^{2}$ we have

    $$
    \begin{aligned}
    & W=0.0130766 P L_{2}^{2} \div a E^{2} ; \quad P \text { in watts, } L \text { in } \mathrm{ft} . \\
    & W=13.0766 P k L^{2} \div a E^{2} ; \quad P k \text { in kilowatts, } L \text { in } \mathrm{ft} . \\
    & W=364.556,000 P k L^{2} m \div a E^{2} ; P k \text { in kilowatts, } L m \text { in miles. }
    \end{aligned}
    $$

    The weight of copper required varies directly as the power transmitted; inversely as the percentage of drop or loss; directly as the square of the distance; and inversely as the square of the voltage.

    From the last formula the following table has been calculated.
    WEIGAT OF COPPER WIRE TO CARRY 1000 KILOWATTS WITH $10 \%$ LOSS.

    | Distance in miles. | 1 | 5 | 10 | 20 | 50 | 100 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Volts. | Weight in lbs. |  |  |  |  |  |
    | 500 | 145:822 | 3,645,560 |  |  |  |  |
    | 1,000 | 36,456 | 911,390 | 3,645,560 |  |  |  |
    | 2,000 | 9,114 | 227,848 | 911,390 | 3,645,560 |  |  |
    | 5,000 | 1,458 | 36,456 | 145,822 | 593,290 | 3,645,560 |  |
    | 10,000 | 365 | 9,114 | 36,456 | 145,822 | 911,390 | 3,645,560 |
    | 20.000 40 | 91 | 2,278 | 9.114 | 36,456 | 227,848 | 911,390 |
    | 60,000 |  | 570 | 1,013 | 9,114 4,051 | 56,962 25,316 | 227,848 101,266 |

    In calculating the distance, an addition of about 5 per cent should be made for sag of the wires.

    Short-circuiting.-From the law $I=\frac{E}{R}$ it is seen that with any pressure $F$, the current $I$ will become very great if $R$ is made very small. In short-circuiting the resistance becomes small and the current therefore great. Hence the dangers of short-circuiting a current.

    Economy of Electric Transmission.-Lord Kelvin's rule for the most economical section of conductor is that for which the annual interest on capital outlay is equal to the annual cost of energy wasted.

    Tables have been compiled by Professor Forbes and others in accordance with modifications of this rule. For a given entering horse-power the question is merely one as to what current density, or how many amperes per square inch of conductor, should be employed. Kelvin's rule gives about 393 amperes per square inch, and Professor Forbes's tables give a current density of about 380 amperes per square inch as most economical.
    Bell (Electric Transmission of Power) shows that while Kelvin's rule correctly indicates the condition of minimum cost in transmission for a given surrent and line, it omits many practical considerations and is inapplicable to most power transmission work. Each plant has to be considered on its merits and very various conditions are likely to determine the line loss in different cases. Several cases are cited by Bell to show that neither Kelrin's law nor any modification of it is a safe guide in determining the proper allowance for loss of energy in the line.

    Wire Tables. - The tables on the following page show the relation between load, distance, and "drop" or loss by voltage in a two-wire circuit of any standard size of wire. The tables are based on the formula

    $$
    (21.6 I L) \div A=\text { Drop in volts. }
    $$

    $I=$ current in amperes, $L=$ distance in feet from point of supply to point of delivery. The factors $I$, and $L$ are combined in the table, in the compound factor "ampere feet."

    Wire Table-Relation between Load, Distance, Losj, and Size of Conductor.

    ## Table I.-110-volt and 220-volt Two-Wire Circuits.

    Note.- The numbers in the body of the tables are Ampere-Feet; i.e., Amperes $\times$ Distance (length of one wire) in feet. See examples on next page.

    Wire Sizes; B. \& S. Gauge.

    Line Loss in Percentage of the Rated Voltage; and Power Loss in Percentage of the Delivered Power.

    | 110 V . | 220 V | 1 | $1 \frac{1}{2}$ | 2 | 3 | 4 | 5 | 6 | 8 | 10 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 0000 | 21,550 | 32,325 | 43,100 | 64,650 | 86,200 | 107,750 | 129,300 | 172,400 | 215,500 |
    |  | 000 | 17,080 | 25,620 | 34,160 | 51,240 | 68,320 | 85,400 | 102,480 | 136,640 | 170,800 |
    |  | 00 | 13,550 | 20,325 | 27,100 | 40,650 | 54,200 | 67,750 | 81,300 | 108,400 | 135,500 |
    | 0000 000 | 0 | 10,750 8,520 | 16,125 | 21,500 | 32,250 | 43,000 | 53,750 | 64,500 | 86,000 | 107,500 |
    | $000$ | 1 | 8,520 | 12,780 | 17,040 | 25,560 | 34,080 | 42,600 | 51,120 | 68,160 | 85,200 |
    | 00 | 2 | 6,750 | 10,140 | 13,520 | 20,280 | 27,040 | 33,800 | 40,560 | 54,080 | 67,600 |
    | 0 | 3 | 5,360 | 8,040 | 10,720 | 16,080 | 21,440 | 26,800 | 32,160 | 42,880 | 53,600 |
    | 1 | 4 5 | 4,250 3,370 | 6,375 | 8,500 | 12,750 | 17,000 | 21,250 | 25,500 | 34,000 | 42,500 |
    | 2 3 | 5 | 3,370 2,670 | 5,055 | 6,740 | 10,110 | 13,480 | 16,850 | 20,220 | 26,960 | 33,700 |
    | 3 | 6 | 2,670 | 4,005 | 5,340 | 8,010 | 10,680 | 13,350 | 16,020 | 21,360 | 26,700 |
    | 4 | 7 | 2,120 | 3,180 | 4,240 | 6,360 | 8,480 | 10,600 | 12,720 | 16,960 | 21,200 |
    | 5 | 8 | 1,680 | 2,520 | 3,360 | 5,040 | 6,720 | 8,400 | 10,800 | 13,440 | 16,800 |
    | 6 | 9 | 1,330 | 1,995 | 2,660 | 3,990 | 5,320 | 6,650 | 7,980 | 10,640 | 13,300 |
    | 7 | 10 | 1,055 | 1,582 | 2,110 | 3,165 | 4,220 | 5,275 | 6,330 | 8,440 | 10,550 |
    | 8 | 11 | 835 | 1,257 | 1,675 | 2,514 | 3,350 | 4,190 | 5,028 | 6,700 | 8,380 |
    | 9 | 12 | 665 | 997 | 1,330 | 1,995 | 2,660 | 3,320 | 3,990 | 5,320 | 6,650 |
    | 10 | 13 | 527 | 790 | 1,054 | 1,580 | 2,108 | 2,635 | 3,160 | 4,215 | 5,270 |
    | 11 | 14 | 418 | 627 | 836 | 1,254 | 1,672 | 2,090 | 2,508 | 3,344 | 4,180 |
    | 12 |  | 332 | 498 | 665 | 997 | 1,330 | 1,660 | 1,995 | 2,660 | 3,325 |
    | 14 | . . . | 209 | 313 | 418 | 627 | 836 | 1,045 | 1,354 | 1,672 | 2,090 |

    Table Ir. $-500,1000$, and 2000 Volt Circuits.

    Wire Sizes;
    B. \&S. Gauge.

    | 500 V | 1000 V | 2000 V. |
    | ---: | ---: | ---: |
    |  | 0000 | 0 |
    |  | 000 | 0 |
    | 0000 | 00 | 2 |
    | 000 | 1 | 3 |
    | 00 | 2 | 4 |
    | 0 | 3 | 6 |
    | 1 | 4 | 7 |
    | 2 | 5 | 8 |
    | 3 | 6 | 9 |
    | 4 | 7 | 10 |
    | 5 | 8 | 11 |
    | 6 | 9 | 12 |
    | 7 | 10 | 13 |
    | 8 | 11 | 14 |
    | 9 | 12 | $\cdots$ |
    | 10 | 13 | $\cdots$ |
    | 11 | 14 | $\cdots$ |
    | 12 | $\cdots$ | $\cdots$ |
    | 14 | $\cdots$ | $\cdots$ |

    Line Loss in Percentage of the Rated Voltage; and Power Loss in Percentage of the Delivered Power.

    | 1 | 11/2 | 2 | $2{ }^{\frac{1}{2}}$ | 3 | 4 | 5 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 97,960 | 146,940 | 195,920 | 244,900 | 293,880 | 391,840 | 00 |
    | 77,690 | 116,535 | 155,380 | 194,225 | 233,970 | 310,760 | 388,450 |
    | 61,620 | 92,430 | 123,240 | 154,050 | 184,860 | 246,48 | 308,100 |
    | 48,880 | 73,320 | 97,760 | 122,200 | 146,640 | 195,42 | 244,400 |
    | 38,750 | 58,125 | 77,500 | 96,875 | 116,250 | 155,000 | 193,750 |
    | 30,760 | 46,140 | 61,520 | 76,900 | 92,280 | 123,040 | 153,800 |
    | 24,370 | 36,555 | 48,740 | 60,925 | 73,110 | 97,480 | 121,850 |
    | 19,320 | 28,980 | 38,640 | 48,300 | 57,960 | 77,280 | 96,600 |
    | 15,320 | 22,980 | 30,640 | 38,300 | 45,960 | 61,280 | 76,600 |
    | 12,150 | 18,225 | 24,300 | 30,375 | 36,450 | 48,300 | 60,750 |
    | 9,640 | 14,460 | 19,280 | 24,100 | 28,920 | 38,560 | 48,200 |
    | 7,640 | 11,460 | 15,280 | 19,100 | 22,920 | 30,560 | 38,200 |
    | 6,060 | 9,090 | 12,120 | 15,150 | 18,180 | 24,240 | 30,300 |
    | 4,805 | 7,207 | 9,610 | 12,010 | 14,415 | 19,220 | 24,025 |
    | 3,810 | 5,715 | 7,020 | 9,525 | 11,430 | 15,220 | 19,050 |
    | 3,020 | 4,530 | 6,040 | 7,550 | 9,060 | 12,050 | 15,100 |
    | 2,395 | 3,593 | 4,790 | 5,985 | 7,185 | 12,580 | 11,975 |
    | 1,900 | 2,850 | 3,800 | 4,750 | 5,700 | 7,600 | 9,500 |
    | 1,510 | 2,265 | 3,020 | 3,775 | 4,530 | 6,040 | 7,550 |
    | 950 | 1,425 | 1,900 | 2,375 | 2,850 | 3,800 | 4,750 |

    Examples in the Use of the Wire Tabies. - 1. Required the maximum load in amperes at 220 volts that can be carried 95 feet by No. 6 wire without exceeding $11 / 2 \%$ drop.

    Find No. 6 in the 220 -volt column of Table I; opposite this in the $11 / 2 \%$ column is the number 4005 , which is the ampere-feet. Dividing this by the required distance ( 95 feet), gives the load, 42.15 amperes.

    Example 2. A 500 -volt line is to carry 100 amperes 600 feet with a drop not exceeding $5 \%$; what size of wire will be required?

    The ampere-feet will be $100 \times 600=60,000$. Referring to the $5 \%$ column of Table II, the nearest number of ampere-feet is 60,750 , which is opposite No. 3 wire in the 500 -volt columm.

    These tables also show the percentage of the nower delivered to a line that is lost in non-inductive alternating-current circuits. Such circuits are obtained when the load consists of incandescent lamps and the circuit wires lie only an inch or two apart, as in conduit wiring.

    Efficiency of Long-distance Transmission. (F. R. Hart, Power, Feb. 189\%.)-The mechanical efficiency of a system is the ratio of the power delivered to the dymamoelectric machines at one end of the line to the power delivered by the electric motors at the distant end. The conimercial efficiency of a dynamo or motur varies with its load. Under the most favorable conditious we must expect a loss of say $9 \%$ in the dynamo and $9 \%$ in the motor. The loss in transmission, due to fall in electrical pressure or" "drop" in the line, is governed by the size of the wires, the other conditions remaining the same. For a long-distance transmission plant this will vary from $5 \%$ upwards. With a loss of $5 \%$ in the line the total efficiency of transmission will be slightly under $79 \%$. With a loss of $10 \%$ ir. the line it will be slightly under $55 \%$. We may call $80 \%$ the practical limit of the efficiency with the apparatus of to day. The methods for long-distance transmission may be divided into three general classes: (1) continuous current: (2) alternating current; and (3) 1'generating or "motor-dynamo" Systems.

    Ther' $e$ are many factors which govern the selection of a system. For each problem considered there will be found certain fixed and certain unfixed conditions. In general the fixed factors are:- (1) capacity of source of power; (2) cost of power at source; (3) cost of power by other means at noint of delivery; (4) danger considerations at motors; (5) operating conditions; (6) construction conditions (length of line, character of country, etc.). The partly fixed conditions are: (7) power which minst be delivered, i.e., the efficiency of the system; (8) size and number of delivery units. The variable conditions are: (9) initial voltage; (10) pounds of copper on line; (11) original cost of all apparatus and construction: (i2) expenses, operating (fixed charges, interest, depreciation, taxes, insurance, etc.); (13) liability of trouble and stoppages; (14) danger at station and on line; (15) convenience in operating, making changes, extensions, etc.

    The relative advantages of different systems vary with each particular transmission problem, but in a general way may be tabulated as below:

    |  | System. | Advantages. | Disadvantages. |
    | :---: | :---: | :---: | :---: |
    |  | \{ Low voltage. | Safety, simplicity. | Expense for copper. |
    |  | High voltage. | Economy, simplicity. | Danger; difficulty of building machines. |
    |  | 3-wire. | Low voltage on machines and saving in copper. | Net saving enough in copper for long dis- |
    |  | Multiple-wire. | Low voltage at machines and saving in copper. | tauces. Necessity for " balanced " system. |
    |  | Single phase. | Economy of copper. | Cannot start under load. Low efficiency. |
    |  | Multiphase. | Econmmy of copper, synchronous speed umecessary; applicable to very long distances. | Requires more than two wires. |
    |  | Motor-dynamo. | High-voltage transmission. Low-voltage delivery. | Expensive. Low efficiency. |

    TABLE OF ELECTRICAL HORSE-POWERS. 1039
    TABLE OF ELECTRICAL HORSE-POWIERS.
    Formula: $\frac{\text { Volts } \times \text { Amperes }}{746}=$ H.P., or 1 volt-ampere $=.0013405 \mathrm{H} . \mathrm{P}$.
    Read amperes at top and volts at side, or vice versa.
    

    ## Cost of Copper for Long-distance Transmission.

    (Westinghouse El. \& Mfg. Co.)
    Cost of Copper required for the Delivery of One Mechanical Horsepower at Motor Shaft with $1000,2000,3000,4000,5000$, and 10,000 Volts at Motor Terminals, or at Terminals of Lowering Transformers.
    Loss of energy in conductors (drop) equals $20 \%$. Motor efficiency, $90 \%$. Length of conductor per mile of single distance, $11,000 \mathrm{ft}$., to allow for sag. Cost of copper taken at 16 cents per pound.

    | Miles. | 1000 v | 2000 v. | 3000 v. | 4000 v. | 5000 v. | $10,000 \mathrm{v}$. |
    | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
    | 1 | $\$ 2.08$ | $\$ 0.52$ | $\$ 0.23$ | $\$ 0.13$ | $\$ 0.08$ | $\$ 0.02$ |
    | 2 | 8.33 | 2.08 | 0.93 | 0.52 | 0.33 | 0.05 |
    | 3 | 18.70 | 4.68 | 2.08 | 1.17 | 0.75 | 0.19 |
    | 4 | 33.30 | 8.32 | 3.70 | 2.08 | 1.33 | 0.33 |
    | 5 | 52.05 | 13.00 | 5.78 | 3.25 | 2.08 | 0.52 |
    | 6 | 74.90 | 18.70 | 8.32 | 4.68 | 3.00 | 0.75 |
    | 7 | 102.00 | 25.50 | 11.30 | 6.37 | 4.08 | 1.02 |
    | 8 | 133.25 | 33.30 | 14.80 | 8.32 | 5.33 | 1.33 |
    | 9 | 168.60 | 42.20 | 18.70 | 10.50 | 6.74 | 1.69 |
    | 10 | 208.19 | 52.05 | 23.14 | 13.01 | 8.33 | 2.08 |
    | 11 | 251.90 | 63.00 | 28.00 | 15.75 | 10.08 | 2.52 |
    | 12 | 299.80 | 75.00 | 33.30 | 18.70 | 12.00 | 3.00 |
    | 13 | 352.00 | 88.00 | 39.00 | 22.00 | 14.08 | 3.52 |
    | 14 | 408.00 | 102.00 | 45.30 | 25.50 | 16.32 | 4.08 |
    | 15 | 468.00 | 117.00 | 52.00 | 29.25 | 18.72 | 4.68 |
    | 16 | 533.00 | 133.00 | 59.00 | 33.30 | 21.32 | 5.33 |
    | 17 | 600.00 | 150.00 | 67.00 | 37.60 | 24.00 | 6.00 |
    | 18 | 675.00 | 169.00 | 75.00 | 42.20 | 27.00 | 6.75 |
    | 19 | 750.00 | 188.00 | 83.50 | 47.00 | 30.00 | 7.50 |
    | 20 | 833.00 | 208.00 | 92.60 | 52.00 | 33.32 | 8.33 |

    Cost of Copper required to deliver One Mechanical Horse-power at Motor-shaft with Varying Percentages of Loss in Conductors, ipon the assumption that the Potential at Motor Terminals is in Each Case 3000 Volts.
    Motor efficiency, $90 \%$. Cost of copper equals 16 cents per pound.
    Length of conductor per mile of single distance, $11,000 \mathrm{ft}$., to allow for sag.

    | Miles. | $10 \%$ | $15 \%$ | $20 \%$ | $25 \%$ | $30 \%$ |
    | :---: | ---: | ---: | ---: | ---: | ---: |
    | 1 | $\$ 0.52$ | $\$ 0.33$ | $\$ 0.23$ | $\$ 0.17$ | $\$ 0.13$ |
    | 2 | 2.08 | 1.31 | 0.93 | 0.69 | 0.54 |
    | 3 | 4.68 | 2.95 | 2.08 | 1.55 | 1.21 |
    | 4 | 8.32 | 5.25 | 3.70 | 2.77 | 2.15 |
    | 5 | 13.00 | 8.20 | 5.78 | 4.33 | 3.37 |
    | 6 | 18.70 | 11.75 | 8.32 | 6.23 | 4.85 |
    | 7 | 25.50 | 16.00 | 11.30 | 8.45 | 6.60 |
    | 8 | 33.30 | 21.0 | 14.80 | 11.00 | 8.60 |
    | 9 | 42.20 | 26.60 | 18.75 | 14.00 | 10.90 |
    | 10 | 52.05 | 32.78 | 23.14 | 17.31 | 13.50 |
    | 11 | 63.00 | 39.75 | 28.00 | 21.00 | 16.30 |
    | 12 | 75.00 | 47.20 | 33.30 | 24.90 | 19.40 |
    | 13 | 88.00 | 55.30 | 390 | 29.20 | 22.80 |
    | 14 | 102.00 | 64.20 | 45.30 | 33.90 | 26.40 |
    | 15 | 117.00 | 73.75 | 520 | 38.00 | 30.30 |
    | 16 | 133.00 | 83.80 | 59.00 | 44.30 | 34.50 |
    | 17 | 150.00 | 94.75 | 67.00 | 50.00 | 39.00 |
    | 18 | 169.00 | 106.00 | 75.00 | 56.20 | 43.80 |
    | 19 | 188.00 | 118.00 | 83.50 | 62.50 | 48.70 |
    | 20 | 208.00 | 131.00 | 92.60 | 69.25 | 54.00 |

    ## Systems of Electrical Distribution in Common Use.

    I. Direct Curizent.
    A. Constant Potential.

    110 to 125 and 220 to 250 , Volts.-Distances less than, say, 1500 feet.
    For incandescent lamps.
    For arc-lamps, usually 2 in series.
    For motors of moderate sizes.
    200 to 250 and 440 Volts, 3-wire.-Distances less than, say,
    For incandescent lamps.
    For arc-lamps, usually 2 in series on each branch.
    For motors 110 or 220 volts, usually 220 volts.
    500 Volts.-Distances less than, say, 20,000 feet.
    Incidentally for arc-lamps, usually 10 in series.
    For motors, stationary and strcet-car.
    B. Constant C'urrent.

    Usually $5,6 \frac{1}{2}$, or $9 \frac{1}{2}$ amperes, the volts increasing to several thousand, as demanded, for arc-lamps.
    II. Alternating Current.
    A. Constant Potential.

    For incandescent lamps, arc-lamps, and motors. Ployphase Systems.

    For are and incandescent lamps, motors, and rotary converters for giving direct current.
    Ployphase-2-and 3-phase-high tension ( 25,000 volts and over), for long-distance transmission; transformed by step-up and step-down transformers.

    ## B. Constant Current.

    Usually 5 to 6.6 amperes. For arc-lamps.
    References on Power Distribution.-Abbott, Electric Transmission of Energy; Bell, Electric Power Transmission; Cushing, Standard Wiring for Incandescent Light and Power; Crocker, Electric Lighting, 2 vols.; Poole, Electric Wiring.

    ## ELECTRECRAILWAYS.

    Space will not admit of a proper treatment of this subject in this work. Consult Crosby and Bell, The Electric Railway in Theory and Practice; Fairchild, Street Railways; Merrill, Reference Book of T'ables and Formulæ for Street Railway Engineers ; Bell. Electric Transmission of Power ; Dawson, Engineering and Electric Traction Pocket-book.

    ## ELECTREC LIGHTHNG.

    Arc Lights.-Direct-current open arcs usually require about 10 am peres at 45 volts. or 450 watts. The range of voltage is from 42 to 52 for ordinary arcs. The most satisfactory light is given by 45 to 47 volts. Search-light projectors use from 50 to 100 amperes at 48 to 53 volts.

    The candle-power of an arc light varies according to the direction in which the light is measured; thus we have, 1 , mean horizontal candle-power; 2, maximum candle-power. which is usually found at an angle below the horizontal; 3. mean spherical candle-power; 4, mean hemispherical candlepower, below the horizontal.

    The nominal candle-power of an arc lamp is an arbitrary figure. A 450watt arc is commonly called $2000 \mathrm{c} .-\mathrm{p}$. and a 300 -watt arc is 1200 co .-p. These figures greatly exceed the true candle-power. Carhart found with an arc of 10 amperes and 45 volts a maximum c.-p. of 450 , but with the same watts 8.4 amperes, and 54 volts he obtained 900 c.-p. Blondel. however, found the c.-p. a maximum usually below 45 volts. Crocker explains the discrepancy as probably due to a difference in size and quality
    of the carbons.

    Current for arc lighting is furnished either on the scries. constant current, or on the parallel constant potential system. In the latter the voltage of the circuit is usually 110 and two lamps are connected in series. In currents with higher voltages more lamps are used in series; for instance 10 with a 500 -volt circuit.

    Enclosed Arcs - Direct current enclosed arcs consume about 5 amperes at 80 volts, or 400 watts. The chief advantages of the enclosed arcs, on constant potential circuits are the long life of the carbons, 100 to 150 hours, as compared with 8 to 10 hours for open arcs; simplicity of construction, absence of sparks, agreeable quality and better distribution of light.

    Alternating-current enclosed arcs usually take a current of 6 amperes at 70 or 75 volts. With 70 volts and 6 amperes, in a 104-volt circuit, the apparent watts at the lamp terminals are 625 and at the arc 420 . the actual watts being 445 and 390 respectively. The watts consumed in the inductive resistance average 35 to 45.

    Hncandescent Lamps.-Candle-power of nominal 16 c.p. 110 -volt lamp;

    Mean horizontal 15.7 to 16.6
    Mean spherical 12.7 to 13.8
    Mean hemispherical 14.0 to 14.6
    Mean within $30^{\circ}$ from tip 7.9 to 10.9
    Ordinary lamps take from 3 to 4 watts per candle-power. A 16 candlepower lamp using 3.5 watts per candle-power or 56 watts at 110 volts takes a current of $56 \div 11.0=0.51$ ampere. For a given efficiency or watts per candle-power the current and the power increase directly as the candlenower. An ordinary lamp taking 56 watts, 13 lamps take 1 H.P. of electrical energy, or 18 lamps 1.008 kilowatts.

    Variation in Cande-Power, Efficiency, and Life.-The following table shows the variation in candle-power, etc., of the Cieneral Electric Co.'s standard 100 to 125 volts, 3.1 and 3.5 watt lamps, due to variation in voltage supplied to them. It will be seen that if a 3.1 watt lamp is run at 10 per cent below its normal voltage, it may have over 9 times as long a life, but it will give only 53 per cent of its normal lighting power, and the light will cost 50 per cent more in energy per candle-power. If it is run at 6 per cent above its normal voltage, it will give 37 per cent more light, will take nearly 20 per cent less energy for equal light power, but it will have less than one third of its normal life.

    | Per cent of <br> Normal <br> Voltage. | Per cent of <br> Normal Can- <br> dle-power. | Efficiency in <br> watts per <br> Candle, 3.1 <br> watt Lamp. | Relative <br> Life. 3.1 <br> watt Lamp. | Efficiency in <br> watts per <br> Candle. <br> Can watts. | Relative <br> Life. <br> Life. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | 90 | 53 | 4.65 | 9.41 |  |  |
    | 91 | 57 | 4.44 | 7.16 | 5.36 |  |
    | 92 | 61 | 4.24 | 5.55 | 5.09 |  |
    | 93 | 65 | 4.10 | 4.35 | 4.85 |  |
    | 94 | 69.5 | 3.90 | 3.63 |  |  |
    | 95 | 74 | 3.75 | 2.75 | 4.44 | 3.94 |
    | 96 | 79 | 3.60 | 2.20 | 4.26 | 3.10 |
    | 97 | 84 | 3.45 | 1.79 | 4.09 | 2.47 |
    | 98 | 89 | 3.34 | 1.46 | 3.93 | 1.95 |
    | 99 | 94.5 | 3.22 | 1.21 | 3.78 | 1.53 |
    | 100 | 100 | 3.10 | 1.00 | 3.64 | 1.26 |
    | 101 | 106 | 2.99 | .818 | 3.50 | 1.00 |
    | 102 | 112 | 2.90 | .681 | 3.38 | .84 |
    | 103 | 118 | 2.80 | .562 | 3.27 | .68 |
    | 104 | 124 | 2.70 | .452 | 3.16 | .58 |
    | 105 | 130 | 2.62 | .374 | 2.95 | .47 |
    | 106 | 137 | 2.54 | .310 | 2.85 | .39 |

    The candle-power of a lamp falls off with its length of life, so that during the latter half of its life it has only 60 per cent or 70 per cent of its rated candle-power, and the watts per candle-power are increased 60 per cent $r$ 70 per cent. After a lamp has burned for 500 or 600 hours it is more economical to break it and supply a new one if the price of electrical energy is that usually charged by central stations.

    Specifications for Lamps. (Crocker.)-The initial candle-power of any lamp at the rated voltage should not be more than 9 per cent above or helow the value called for. The average candle-power of a lot should be within 6 per cent of the rated value. The standard efficiencies are 3.1 3.5, and 4 watts per candle-power. Each lamp at rated voltage should take within 6 per cent of the watts specified, and the average for the lot should be within 4 per cent. The useful life of a lamp is the time it will burn before falling to a certain candle-power, say 80 per cent of its initial candle-power. For 3.1 watt lamps the useful life is abcut 400 to 450 hours. for 3.5 watt lamps about. 800, and 4 watt lamps about 1600 hours.
    Special Lamps.-The ordinary $16 \mathrm{c} \cdot-\mathrm{p}$. 110 -volt is the standard for interior lighting. Thousands of varieties of lamps for different voltages and candle-power are made for special purposes, from the primary lamp, supplied by primary batteries using three voits and about 1 ampere and giving $1 / 2 \mathrm{c} .-\mathrm{p} .$, and the $3 / 4 \mathrm{c} .-\mathrm{p}$. hicycle lamp, 4 volts and 0.5 ampere, to lamps of $100 \mathrm{r} . \mathrm{p}$. at 220 volts. Series lamps of 1 c.-p. are used in illuminating signs, $2 / 3$ ampere and 12.5 to 15 volts, eight lamps being used on a 110 -vnlt circuit. Standard sizes for different voltages. 50,110 , or 220 , are 8, 16. 24, 32, 50, and 100 c.-p.

    Nernst Lamp.-A form of incandescent lamp originated by Dr. Walther Nernst, of Göttingen, is being developed in this country by the Nernst Lamp Company, Pittsburg, Pa. It depends for its operation upon the peculiar property of certain rare earths, such as yttrium, thorium, zirconiun, etc., of becoming electrical conductors when heated to a certain temperature; when cold, these oxides are non-conductors. The lamp contprises a "glower" composed of rare earths mixed with a bindmg material and pressed into a small rod; a heater for bringing the glower up to the conducting temperature; an automatic cut-out for disconnecting the heater when the glower lights up, and a "ballast" consisting of a small resistance coil of wire having a positive temperature-resistance coefficient. The ballast is connected in series with the glower; its presence is required to compensate the negative temperature-resistance coefficient of the glower; without the ballast, the resistance of the glower would become lower and lower as its temperature rose, until the flow of current through it would destroy it. Fig. 171a shows the elementary circuits of a simple Nernst lamp. The cut-out is an electromagnet connected in series with the glower. When current begins to flow through the glower, the magnet pulls up the armature lying across the contacts of the cutout, thereby cutting out the heater. The heater is a coil of fine wire either located very near the glower or encircling it. The glower is from $1 / 32$ to $1 / 16$ inch in diameter and about 1 inch long.

    The material of the glower is an electrolyte, so that this type of lamp is not well adapted for operation on direct-current circuits because of the wasting away at the positive end and the deposition of material at the nega-
    

    Fig. $171 a$.

    The lamps are made with one glower, or with two, three, or six glowers
    connected in parallel, and for operation on 100 to 120 and 200 to 240 volt
    circuits.

    ## ELECEREC WEEDING.

    The apparatus most generally used consists of an alternating-current dynamo, feeding a comparatively high-potential current to the primary coil of an induction-coil or transformer, the secondary of which is made so large in section and so short in length as to supply to the work currents not exceeding two or three volts, and of very large volume or rate of flow. The welding clamps are attached to the secondary terminals. Other forms of apparatus, such as dynamos constructed to yield alternating currents direct from the armature to the welding-clamps, are used to a limited extent.
    The conductivity for heat of the netal to be welded has a decided influence on the heating, and in welding iron its comparatively low heat conduction assists the work 1naterially. (See papers by Sir F. Bramwell, Proc. Inst. C. E., part iv., vol. cii. p. 1; and Elihu Thomson, 'Trans. A. I. M. E., xix. 8~7.)
    Fred. P. Royce, Iron Age, Nov. 28, 1892, gives the following figures showing the amount of power required to weld axles and tires:

    ## AXLE-WELDING.

    1 -inch round axle requires 25 H.P. for
    1 -inch square axle requires $30 \mathrm{H} . \mathrm{P}$. for ..... 48 ..... 45Seconds.
    114 -inch round axle requires 35 H.P. for ..... 60
    $11 / 4$-inch square axle requires $40 \mathrm{H} . \mathrm{P}$. for
    2-inch round axle requires 75 H.P. for ..... 95
    2-inch square axle requires $90 \mathrm{H} . \mathrm{P}$. for ..... 100

    The slightly increased time and power requirod for welding the square axle is not only due to the extra metal in it, but a. part to the cade which it is best to use to secure a perfect alignment.

    ## TIRE-WELDING.

    $1 \times 3 / 16$-inch tire requires $11 \mathrm{H} . \mathrm{P}$. for
    Seconds.
    $114 \times 3 / 8$-inch tire requires $23 \mathrm{H} . \mathrm{P}$. for ..... 15
    $112 \times 3 / 8$-inch tire requires $20 \mathrm{H} . \mathrm{P}$. for ..... 25
    $112 \times 1 / 2$-inch tire requires $23 \mathrm{H} . \mathrm{P}$. for. ..... 30
    $2 \times 1 / 2$-inch tire requires 29 H.P. for ..... 40 ..... 40
    $2 \times 3 / 4$-inch tire requires 42 H.P. for. ..... 62

    The time above given for welding is of course that required for the actual application of the current only, and does not inchude that consumed by placing the axles or tires in the machine, the removal of the upset and other finishing processes. From the data thus submitted, the cost of welding can be readily figured for any locality where the price of fuel and cost of labor are known.

    In almost all cases the cost of the fuel used under the boilers for producing power for electric welding is practically the same as the cost of fuel used in forges for the same anount of work, taking into consideration the difference in price of fuel used in either case.
    Prof. A. B. W. Kennedy found that $21 / 2$-inch iron tubes $1 / 4$ inch thick were welded in 61 seconds, the net horse-power required at this speed being 23.4 (say 33 indicated horse-power) per square inch of section. Brass tubing re quired 21.2 net horse-power. About 60 total indicated horse-power would be required for the welding of angle irons $3 \times 3 \times 1 / 2$ inch in from two to three minntes. Copper requires about 80 horse-power per square inch of section, and anl inch bar can be welded in 25 seconds. It takes about 90 seconds to weld a steel bar 2 inches in diameter.

    ## ELECTRHC HEATERS.

    Wherever a comparatively small amount, of heat is desired to be automatically and uniformly maintained, and started or stopped on the instant without waste, there is the province of the electric heater.

    The elementary form of heater is some form of resistance, such as coils of thin wire introduced into an electric circuit and surrounded with a substance, which will permit the conduction and radiation of heat, and at the same time serve to electrically insulate the resistance.

    This resistance should be proportional to the electro-motive force of the current used and to the equation of Joule's law:

    $$
    H=I^{2} R t \times 0.24,
    $$

    where $I$ is the current in amperes; $R$, the resistance in ohms; t, the time in seconds; and $H$, the heat in gram-centigrade units.

    Since the resistance of metals increases as their temperature increases, a thin wire heated by current passing through it will resist more, and grow hotter and hotter until its rate of loss of heat by conduction and radiation equals the rate at which heat is supplied by the current. In a short wire, before heat enough can be dispelled for commercial purposes, fusion will begin; and in electric heaters it is necessary to use either long lengths of thin wire, or carbon, which alone of all conductors resists fusion. In the majority of heaters, coils of thin wire are used, separately embedded in some substance of poor electrical but good thernal conductivity.

    The Consolidated Car-lieating Co.'s electric heater consists of a galvanized iron wire wound in a spiral groove upon a porcelain insulator. Each heater is $305 / 8 \mathrm{in}$. long, $87 / 8 \mathrm{in}$. high, and $65 / 8 \mathrm{in}$. wide. Upon it is wound 392 ft . of wire. The weight of the whole is $2: 31 / 2 \mathrm{ibs}$.
    Each heater is designed to absorb 1000 watts of $n 570$.volt current. Six heaters are the complement for an ordinary electric car. For ordinary weather the heaters may be combined by the switch in different ways, so that five different intensities of heating-surface are possible, besides the position in which no heat is generated, the current being turned entirely off.

    For heating an ordinary electric car the Cousolidated Co. states that from 2 to 12 amperes on a 500 -volt circuit is sufficient. With the outside temperature at $: 0^{\circ}$ to $30^{\circ}$, about 6 amperes will suffice. With zero or lower temperature, the full 12 amperes is required to heat a car effectively.
    Compare these figures with the experience in steam-heating of railway. cars, as follows :
    1 B.T.U. $=0.29084$ watt-hours.
    6 amperes on a 500 -volt circuit $=3000$ watts.
    A current consumption of 6 amperes will generate $3000 \div 0.29084=10,315$ B.'T.U. per hour.

    In steam-car heating, a passenger coach usually requires from 60 lbs . of steam in freezing weather to 100 lbs . in zero weather per hour. Supposing the steam to enter the pipes at 20 lbs . pressure, and to be discharged at $200^{\circ}$ F., each pound of steam will give up 983 B TI.U. to the car. Then the equivalent of the thermal units delivered by the electrical-heating system in pounds of steam, is $10,315 \div 983=101 / 2$, nearly.
    Thus the Consolidated Co.'s estimates for electric-heating provide the equivalent of $101 / \mathrm{lbs}$. of steam per car per hour in freezing weather and 21
    Suppose that by the use of good coal, carefnl firing, well designed boilers, and triple-expansion engines we are able in daily practice to generate $1 \mathrm{H} . \mathrm{P}$. delivered at the fly-wheel with an expenditure of $21 / 2 \mathrm{lbs}$. of coal per hour.
    We have then to convert this energy into electricity, transmit it by wire to the heater, and convert it into heat by passing it through a resistance-coil. We may set the combined efficiency of the dynamo and line circuit at $85 \%$, and will suppose that all the electricity is converted into heat in the resist-ance-coils of the radiator. Then 1 brake H.P. at the engine $=0.85$, electrical H.P. at the resistance-coil $=1,683,000 \mathrm{ft}$. 1 lbs . energy per hour $=2180$ heatunits. But since it required $21 / 2 \mathrm{lbs}$. of coal to develop 1 brake $H . P$., it follows that the heat given out at the radiator per pound of coal burned in the boiler furnace will be $2180+21 / 2=8 \cdot \tilde{2}$ H.U. An ordinary stean-heating system utilizes $9652 \mathrm{H} . \mathrm{U}$. per 1 b . of coal for heating; hence the efficiency of the electric system is to the efficiency of the steam-heating system as 8i2 to 9652 , or about 1 to 11. (Eng'g News, Aug, 9, '00; Mar. 30, ${ }^{\prime} 92$; May 15, 93. .)

    ## ELECIRICAL ACCUIIULATORS OR STORAGEBA'TVERIES.

    The original, or Planté, storage battery consisted of two plates of metallic lead immersed in a vessel containing sulphuric acid. An electric current being sent through the cell the surface of the positive plate was converted into peroxide of fead, $\mathrm{PbO}_{2}$. This was called charging the cell. After being thus charged the cell could be used as a source of electric current, or discharged. Planté and other authorities consider that in charging, $\mathrm{PbO}_{2}$ is formed on the positive plate and spongy metallic lead on the negative, both being con-
    verted into learl oxide, PbO , by the discharge, but others hold that sulphate of lead is made on both plates by discharging and that during the charging $\mathrm{PbO}_{2}$ is formed on the positive plate and metallic Pb on the other, sulphuric acid being set free.

    The acid being continually abstracted from the elcetrolyte as the discharge proceeds, the density of the solution becomes less. In the charging operation this action is reversed, the acid being reinstated in the liquid and therefore causing an increase in its density.

    The difference of potential developed by lead and lead peroxide immersed in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ is about two volts. A lead-peroxide plate gradually loses its electrical energy by local action, the rate of such loss varying according to the circumstances of its preparation and the condition of the cell.

    In the Faure or pasted cells lead plates are coated with minium or litharge made into a paste with acidulated water. When dry these plates are placed in a bath of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and subjected to the action of the currcnt, by which the oxide on the positive plate is converted into peroxide and that on the negative plate reduced to finely divided or porous lead.

    The initial clectro-motive force of the Faure cell averages 2.25 volts, but after being allowed to rest some little time it is reduced to about 2.0 volts.

    The "chloride" accumulator, made by the Electric Storage Battery Co., of Yhiladelphia, consists of lead plates containing cells filled with spongy lead or with lead peroxide. The spongy lead is formed by first casting into the lead plate pastilles of a mixture of lead and zinc chlorides, the lead in which is afterwards by an electrolytic method converted into spongy lead, while the zinc chloride is dissolved and washed away. Plates intended for positive plates have the spongy lead converted into peroxide by immersing them in sulphuric acid and passing a current through them in one direction for about two weeks.

    The following tables give the elements of several sizes of "chloride" accumulators. Type G is furnished in cells containing 11-125 plates, and type $H$ froln 21 plates to any greater number desired. The voltage of cells of all sizes is slightly above two volts on open circuit, and during discharge varics from that point at the beginning to 1.8 at the end.

    Accumulators are largely used in central lighting and power stations, in office buildings and other large isolated plants, for the purpose of absorbing the energy of the generating plant during times of light load, and for giving it out during times of heavy load or when the generating plant is idle. The advantages of their use for such purposes are thus enumerated:

    1. Reduction in coal consumption and general operating expenses, due to the generating machinery being run at the point of greatest economy while in service, and being shut down entirely during hours of light load, the battery supplying the whole of the current.

    | Size of Plates, $3 \times 3 \mathrm{in}$. | TYPE "C." Plates, $43 \leqslant \times 4$ in. |  |  |  | TYPE "D." <br> Size of Plates, $6 \times 6$ in. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | N |  |  |  |  |  |  |  |  |  |  |
    | Discharge ( For |  | 114 |  |  |  |  |  |  |  |  |
    | in am- $\left\{\begin{array}{l}\text { \% }\end{array}\right.$ |  |  | $31 /$ | 51 |  |  |  |  |  |  |
    | peres: |  | $21 / 2$ |  |  |  | 10 |  |  |  |  |
    | Normal |  | 1 |  | $11{ }^{3}$ |  | 14 |  |  |  |  |
    | Weight of each element, lbs... Outside measurement ( Width. |  |  |  | 11 |  | 14 3 | 20 4 | - 26 |  | 38 |
    | Outside measurement \| Width. of rubber jar in $\{$ Length. |  | $4^{2}$ |  | $4^{3} 4$ |  | 3 |  | 5 |  | 7 |
    | inches: (Height. |  |  |  |  |  |  |  | 9 |  |  |
    | Outside measurement S Wi |  |  |  |  |  |  |  |  |  |  |
    | of glass jar i |  |  |  |  |  |  |  |  |  |  |
    | inches: . ${ }^{\text {Height. }}$ | 41/2 |  |  |  |  |  |  |  |  |  |
    | Weight of acid in glass jars in lbs. |  |  |  |  |  |  |  |  |  |  |
    | Weight of acid in rubber in lbs. | 34 |  |  |  |  |  |  |  |  |  |
    | Weight of cell comp acid, in rubber jar | 4 |  |  |  |  |  |  |  |  |  |
    | cight of cell over all in |  | 10 |  |  |  |  | 1 | 101 |  | 12 |

    ELECTRICAT ACCUMULATORS OR STORAGE-BATTERIES. $104^{\circ}$
    

    | TYPE "G." <br> Size of Plates, $151 / 2 \times 151 / 2 \mathrm{in}$. |  |  |  |  |  |  |  | TYPE " H ." Size of Plates, $151 / 2 \times 32 \mathrm{in}$. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Number of plates. | 11 | 13 | 15 | $1 \%$ | 25 | 125 | D* | 21 | 23 | 25 | 125 | D* |
    | Discharge (For 8 his. | 100 | 120 | 140 | 160 | 240 | 1240 | 10 | 400 | 440 | 180 | 2480 | 20 |
    | in am- $\left\{\begin{array}{llll}6 & 5 & \\ \hline\end{array}\right.$ | 140 | 168 | 196 | 224 | 336 | 1 1'36 | 14 | 560 | 616 | $6^{6} 2$ | $3+7.2$ | 28 |
    | peres: ${ }^{\prime \prime}$ " 3 | 200 | 240 | 280 | 3:0 | 480 | 2480 | 20 | 800 | 880 | 960 | 4960 | 40 |
    | Normal charge rate. | 100 | 1:0 | 140 | 160 | 240 | 1240 | 10 | 400 | 440 | 480 | $\because 480$ | 20 |
    | Weight of each element, lbs............. | 219 | 260 | 300 | 311 | 503 | 2538 | 20.4 | \%90 | 866 | 980 942 | $\pm 741$ | 38 |
    | Outside Width. | 151/8 | 163/4 | 183/8 | 20 | 275\% | $111 \frac{1}{4}$ | 7/8 | 251/8 | 263/4 | 283/8 | $111 \frac{1}{6}$ | 7/8 |
    | measurement of tank in Length | 193/4 | 193/4 | 193/4 | 193/4 | $203 / 4$ | 211/2 |  | $121 / 2$ | 2116 | 211/2 | 2116 | 8 |
    | inches. (Height | 227/8 | 227/8 | 227/8 | 227/8 | 227/8 | 2434 |  | 427/8 |  |  |  |  |
    | Weight of acid in pounds | 160 | 179 | $197$ | 216 | 299 | 1242 |  | 515 | 427 <br> 552 | 4278 590 | 4378 2512 |  |
    | Weight of cell, complete, with acid in lead-lined tank in pounds: |  | 188 | 691 | ~16 | ${ }_{09.0}$ | 12 | ${ }^{9.5}$ | 515 | ${ }^{552}$ | ${ }^{590}$ | 2512 | 19.2 |
    | Height of cell over all. |  | ธ5 | 6 |  | 99 | 4560 | 36 | 1635 | 1769 | 1904 | S696 | 68 |
    | inches.. | 26 | 26 | 26 | 26 | 26 | 29 |  | 45 | 45 | 45 | 46 |  |

    * $\mathrm{D}=$ addition per plate from 25 to 125 plates; approximate as to dimensions and weights.

    2. The possibility of obtaining good regulation in pressure during flıctuations in load, especially when the day load consists largely of elevators and similar disturbing elements.
    3. To meet sudden demands which arise unexpectedly, as in the case of darkness caused by storm or thunder-showers; also in case of emergency due to accident or stoppage of generating-plant,
    4. Smaller generating-plant required where the battery takes the peak of the load, which usually only lasts for a few hours, and yet where no battery is used necessitates sufficient generators, etc, being installed to provide for the maximum output, which in many cases is about double the normal output.

    Whe Working Current, or Energy Eficiency, of a storagecell is the ratio between the value of the current or energy expended in the charging operation, and that obtained when the cell is discharged at any specified rate.

    In a lead storage-cell, if the surface and quantity of active material be accurately proportioned, and if the discharge be commenced immediately after the termination of the charge, then a current efficiency of as much as $98 \%$ may be obtained, provided the rate of discharge is low and well regulated. In practice it is found that low rates of discharge are not economical, and as the current efficiency always decreases as the discharge rate increases, it is found that the normal current efficiency seldom exceeds $90 \%$, and averages about $85 \%$.

    As the normal discharging electro-motive force of a lead secondary cell never exceeds 2 volts, and as an electro-motive force of from 2.4 to 2.5 volts is required at its poles to overcome both its opposing electro-motive force and its intcrnal resistance, there is an initial loss of $20 \%$ between the energy required to charge it and that given out during its discharge.

    As the normal discharging potential is continually being reduced as the rate of discharge increases, it follows that an energy efficiency of $80 \%$ can never be rcalized. As a matter of fact, a ma imum of $75 \%$ and a mean of $60 \%$ is the usual energy efficiency of lead-sulphuric-acid storage-cells.

    Important General Rules. - Storage cells should not be allowed to stand idle when charged, and must not stand idle when uncharged or aiter being discharged. If a battery is to be put out of commission for any length of time, it should be fully charged, the electrolyte all drawn off, the cells filled with pure water and then discharged slightly-say until the E.M.F. is 1.95 volts. The cells should then be emptied, and the plates dried in a varm atmospherc.

    In mixing the electrolyte, the acid should always be poured into the water. The mixing must be very gradual in order to avoid excessive heating. The acid solution must be cooled before the cells are filled with it. The acid should be tested for impurities before mixing the electrolyte.

    Tests for Impurities.-To test for copper and arsenic, add a small quantity of dilute acid to an equal quantity of fresh sulphide of hydrogen $\left(\mathrm{H}_{2} \mathrm{~S}\right)$. The presence of copper will cause a black precipitate; that of arsenic, a yellow precipitate.

    To test for iron, add a few drops of nitric acid to a small quantity of dilute acid and heat the mixture; after cooling add a few drops of potassium sulphocyanide solution. The presence of iron will be indicated by a deep red color.

    Charging and Discharging.-Charging should be stopped when the voltage is 26 volts per cell and gas is given off, except in the first charging, when 2.7 should be reached. Discharging should be stopped and the cells recharged when the voltage is down to 1.8 volts per cell when discharging at normal rate.

    ## ELEC'TROLYSIS.

    The separation of a chemical compound into its constituents by means of an electric current. Faraday gave the nomenclature relating to electrolysis. The compound to be decomposed is the Electrolyte, and the process Electrolysis. The plates or poles of the battery are Electrodes. The plate where the greatest pressure exists is the Anode, and the other pole is the Cathode. The products of decomposition are Ions.

    Lord Rayleigh found that a current of one ampere will deposit 0.017253 grain, or 0.001118 gramme, of silver per second on one of the plates of a silver voltameter, the liquid employed being a solution of silver nitrate containing from $15 \%$ to $20 \%$ of the salt. The weight of hydrogen similarly set free by a current of one ampere is .00001038 gramme per second.

    Knowing the amount of hydrogen thus set free, and the chemical equivalents of the constituents of other substances, we can calculate what weight of their elements will be set free or deposited in a given time by a given current. Thus, the current that liberates 1 gramme of hydrogen will liberate 8 grammes of oxygen, or 107.7 grammes of silver, the numbers 8 and 107.7 being the chemical equivalents for oxygen and silver respectively.

    To find the weight of metal deposited by a given current in a given time, find the weight of hydrogen liberated by the given current in the given time, and multiply by the chemical equivalent of the metal.

    ELECTRO－CHEMLCAL EQUIVALENTS．

    | Elements． | $\begin{aligned} & \text { N. } \\ & \text { © } \\ & \text { d } \\ & \text { D } \\ & \stackrel{0}{5} \end{aligned}$ | $\begin{aligned} & + \\ & \stackrel{y}{80} \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$ |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Electro－positive． |  |  |  |  |  |  |
    | Hydrogen | $\mathrm{H}_{1}$ | 1.00 | 1.00 | ． 010384 | 96293.00 | 0.03738 |
    | Potassium | $\mathrm{K}_{1}$ | 39.04 | 39.04 | ． 40539 | 2467.50 | 1.45950 |
    | Soclium | $\mathrm{Na}_{1}$ | 22.99 | $2: .99$ | ． 23873 | 4188.90 | 0.85942 |
    | Aluminum | $\mathrm{Al}_{3}$ | 27.3 | 9.1 | ． 09449 | 1058.30 | 0.34018 |
    | Magnesium | $\mathrm{Mr}_{2}$ | 23.94 | 11.97 | ． 12430 | 804.03 | 0.44747 |
    | Gold ．．．．．．． | $\mathrm{Al}_{3}$ | 196.2 | 65.4 | ． 67911 | 1473.50 | 2.44480 |
    | Silver． | $A g_{1}$ | 107.66 | $10 \%$ \％． 66 | 1.11800 | 894.41 | 4.02500 |
    | Copper（cupric）．．．．．．．． | $\mathrm{Cu}_{2}$ | 63.00 | 31.5 | ． 32409 | 3058.60 | 1.17700 |
    | ．．（cuprous）．．．．．． | $\mathrm{Cu}_{1}$ | 63.00 | 63.00 | ． 65419 | $15: 5.30$ | 2.35500 |
    | Mercury（mercuric）．．．． | $\mathrm{Hg}_{1}$ | 199.8 | 99.9 | 1．08\％40 | 963.99 | 3.73450 |
    | 6،（mercurous）．． | $\mathrm{Hg}_{1}$ | 199.8 | 199.8 | 2.07470 | 481.99 | 7.46900 |
    | Tin（stannic）．．．．．．．．． | $\mathrm{SH}_{4}$ | 117.8 | 29.45 | .30581 | 3970.00 | 1.10090 |
    | ＂（stannous）．．．．．．．． | $\mathrm{Sn}_{2}$ | 117.8 | 58.9 | ． 61162 | 1635.00 | 2.20180 |
    | Iron（ferric）．．．．．．．．．．． | $\mathrm{Fe}_{4}$ | 55.9 | 18．64 ${ }^{+}$ | ． 19356 | 5166.4 | 0.69681 |
    | ＂（ferrous）．．．．．．．．．．． | $\mathrm{Fe}_{2}$ | 55.9 | 27.95 | ． 29035 | 3145.50 | 1.04480 |
    | Nickel．．．．．．．．．．．．．．．．．． | $\mathrm{Ni}_{2}$ | 58.6 | 29.3 | ． 30425 | 3286.80 | 1.09530 |
    | Zinc． | $\mathrm{Zl1}_{2}$ | 64.9 | 32.45 | ． 33696 | 2967.10 | 1.21330 |
    | Lead． | $\mathrm{Pb}_{2}$ | 206.4 | 103．2 | 1.07160 | 933.26 | 3.85780 |
    | Electro－negative． |  |  |  |  |  |  |
    | Oxygel <br> Chlorine | $\mathrm{O}_{2}$ | 15.96 35.37 | 7.98 35.37 | .08286 $.36 \% 28$ |  |  |
    | Iodine．．．．．．．．．．．．．．．．． | $\mathrm{I}_{1}$ | 126.53 | 126.53 | 1.31390 |  |  |
    | Bromine | $\mathrm{Br}_{1}$ | 79.75 | 79.75 | ． 82812 |  |  |
    | Nitrogen． | $\mathrm{N}_{3}$ | 14.01 | 4.62 | ． 04849 |  |  |


    ## ELECTRO-MAGNETS.*

    ## Units of Clectro-magnetic Neasurements.

    Unit magnetic pole is a pole of such strength that when placed at a distance of one centimetre from a similar pole of equal strength it repels it with a force of one dyne.

    Gauss=unit of field strength, or density, symbol $H$, is that intensity of field which acts on a unit pole with a force of one dyne, =one line of force per square centimetre. A field of $H$ units is one which acts with $H$ dynes on unit pole, or $H$ lines per square centimetre. A unit magnetic pole has $4 \pi$ lines of force proceeding from it.

    Maxwell = unit of magnetic flux, is the amount of magnetism passing through every square centimetre of a field of unit density. Symbol, $\phi$.

    Gilbert = unit of magneto-motive force, is the amount of M.M.F., that would be produced by a coil of $10 \div 4 \pi$ or 0.7958 ampere-turns. Symbol, F.

    The M.M.F. of a coil is equal to 1.2560 times the ampere-turns.
    If a solenoid is wound with 100 turns of insulated wire carrying a current of 5 amperes, the M.M.F. exerted will be 500 ampere-turns $\times 1.2566=628.3$ gilberts.

    Oersted $=$ unit of magnetic reluctance ; it is the reluctance of a cubic centimetre of an air-pump vacuum. Symbol, R.

    Reluctance is that quantity in a magnetic circuit which limits the flux under a given M.M.F. It corresponds to the resistance in the electric circuit.

    The reluctivity of any medium is its specific reluctance, and in the C.G.S. system is the reluctance offered by a cubic centimetre of the body between opposed parallel faces. The reluctivity of nearly all substances, other than the magnetic metals, is sensibly that of vacuum, is equal to unity, and is independent of the flux density.

    Permeability is the reciprocal of magnetic reluctivity. It is a number, and the symbol is $n$.

    Permeance is the reciprocal of reluctance.
    Lines and Loops of Force. - In discussing magnetic and electrical phenomena it is conventionally assumed that the attractions and repulsions as shown by the action, of a magnet or a conductor upon iron filings are due to "lines of force" surrounding the magnet or conductor. The "number of lines" indicates the magnitude of the forces acting. As the iron filings arrange themselves in concentric circles, we may assume that the forces may be represented by closed curves or "loops of force." The following assumptions are made concerning the loops of force in a conductive circuit:

    1. That the lines or loops of force in the conductor are parallel to the axis of the conductor.
    2. That the loops of force external to the conductor are proportional in number to the current in the conductor, that is, a definite current generates a definite number of loops of force. These may be stated as the strength of field in proportion to the current.
    3. That the radii of the loops of force are at right angles to the axis of the conductor.

    The magnetic force proceeding from a point is eaual at all points on the surface of an imaginary sphere described by a given radius about that point. A sphere of rarlius 1 cm . has a surface of 4 square centimetres. If $\phi=$ total flux, expressed as the number of lines of force emanating from a magnetic pole having a strength, $M$,

    $$
    \phi=4 \pi M ; M=\phi \div 4 \pi .
    $$

    Magnetic moment of a magnet=product of strength of pole $N /$ and its length, or distance between its poles $L$. Magnetic moment $=\frac{\phi L}{4 \pi}$.

    If $\mathbf{B}=$ number of lines flowing through each square centimetre of crosssection of a bar-magnet, or the "specific induction," and $A=$ cross-section,

    $$
    \text { Magnetic Moment }=L A B \div 4 \pi
    $$

    If the bar-magnet be suspended in a magnetic field of density $H$, and so placed that the lines of the field are all horizontal and at right angles to the axis of the bar, the north pole will be pulled forward, that is, in the direction in which the lines flow, and the south pole will be pulled in the opposite direction, the two forces producing a torsional moment or torque,

    $$
    \text { Torque }=M L \mathrm{H}=L A \mathrm{BH} \div 4 \pi, \text { in dyne-centimetres. }
    $$

    Magnetic attraction or repulsion emanating from a point varies inversely as the square of the distance from that point. The law of inverse squares, however, is not true when the magnetisin proceeds from a surface of appreciable extent, and the distances are sinall, as in dynamo-electric machines and ordinary electromagnets.

    Permeability. - Materials differ in regard to the resistance they offer to the passage of lines of force; thus iron is more permeable than air, The permeability of a substance is expressed by a coefficient, $\mu$, which denotes its relation to the permeability of air, which is taken as 1 . If $\mathrm{H}=$ number of magnetic lines per square centimetre which will pass through an airspace between the poles of a magnet, and $\mathbf{B}$ the number of lines which will pass through a certain piece of iron in that space, then $\mu=B \div H$. The permeability varies with the quality of the iron and the degree of saturation, reaching a practical limit for soft wrought iron when $B=$ about 18,000 and for cast iron when $\mathbf{B}=$ about 10,000 C.G.S lines per square centimetre.

    The permeability of a number of materials may be determined by means of the table on the following page.

    The Magnetic Circuit.-In the electric circuit

    $$
    \text { Current }=\frac{\text { E.M.F. }}{\text { Resistance }}, \quad \text { or } \quad I=\frac{E}{R} .
    $$

    Similarly, in the magnetic circuit

    $$
    \text { Magnetic Flux }=\frac{\text { Magnetomotive Force }}{\text { Reluctance }} \text {, or } \phi=\frac{F}{R} \text {. }
    $$

    Reluctance is the reciprocal of permeance, and permeance is equal to permeability $\times$ path area $\div$ path length (metric measure); hence

    $$
    \phi=\mathbf{F} \frac{\mu a}{l} .
    $$

    One ampere-turn produces 1.257 gilberts of magnetomotive force and one inch equals 2.54 centimetres; hence, in inch measure,

    $$
    \phi=\left(1.257 A_{t}\right) \frac{\mu 6.45 a}{2.54 l}=\frac{3.192 \mu a A_{t}}{l} .
    $$

    The ampere-turns required to produce a given magnetic flux in a given path will be

    $$
    A_{t}=\frac{\phi l}{3.192 \mu a}=\frac{0.3133 \phi l}{\mu a} .
    $$

    Since magnetic flux $\div$ area of path $=$ magnetic density, the ampere-turns required to produce a density $\mathbf{B}$, in lines of force per square inch of area of path, will be

    $$
    A_{t}=0.3133 \mathrm{~B} l \div \mu
    $$

    This formula is used in practical work, as the magnetic density must be predetermined in order to ascertain the permeability of the naterial under its working conditions. When a magnetic circuit includes several
    qualities of material, such as wrought iron, cast iron, and air, it is most direct to work in terms of ampere-turns per unit length of path. The ampere-turns for each material are determined separately, and the winding is designed to produce the sum of all the ampere-turns. The following table gives the average results from a number of tests made by Dr. Samuel
    Sheldon:

    Values of B and H .

    | H |  |  | Cast Iron. |  | Cast Steel. |  | WroughtIron |  | Sheet Metal. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  | $\frac{o}{i z}$ |  | $\infty$ |  | $\infty \frac{0}{i=} \overbrace{0}^{i g}$ |  |  |  |
    | 10 | 7.95 | 20.2 | 4.3 | 27.7 | 11.5 | 74.2 | 13.0 | 83.8 |  |  |
    | 20 | 15.90 | 40.4 | 5.7 | 36.8 | 13.8 | 89.0 | 14.7 | 94.8 | 14.3 | 100.7 |
    | 30 40 | 23.85 31.80 | 60.6 80 | 6.5 | 41.9 | 14.9 | 96.1 | 15.3 | 98.6 | 16.2 | 104.5 |
    | 40 50 | 31.80 39.75 | 80.8 101.0 | 7.1 7.6 | 45.8 49.0 | 15.5 | 100.0 | 15.7 | 101.2 | 16.6 | 107.1 |
    | 60 | 39.75 47.70 | 121.2 | ${ }^{7.6}$ | 49.0 51.6 | 16.0 16.5 | 103.2 | 16.0 16.3 | 03.2 | 16.9 | 109.0 |
    | 70 | 55.65 | 141.4 | 8.4 | 51.0 59.2 | 16.5 16.9 | 106.5 | 16.3 16.5 | 105.2 | 17.3 | 111.6 |
    | S0 | 63.65 | 161.6 | 8.7 | 56.1 | 17.2 | 111.0 | 16.5 | 106.5 107.8 | 17.5 | 112.9 |
    | 90 | 71.60 | 181.8 | 9.0 | 58.0 | 17.4 | 112.2 | 16.9 | 109.0 | 17.7 | 114.1 |
    | 100 | 79.50 | 202.0 | 9.4 | ${ }_{60.6}$ | 17.7 | 114.1 | 17.2 | 110.9 | 18.0 | 116.1 |
    | 150 | 119.25 | 303.0 | 10.6 | 68.3 | 18.5 | 119.2 | 18.0 | 116.1 | 19.0 | 117.3 122.7 |
    | 200 | 159.0 | 404.0 | 11.7 | 75.5 | 19.2 | 123.9 | 18.7 | 120.8 | 19.6 | 126.5 |
    | 250 | 198.8 | 505.0 | 12.4 | S0.0 | 19.7 | 127.1 | 19.2 | 123.9 | 20.2 |  |
    | 300 | 238.5 | 606.0 | 13.2 | 85.1 | 20.1 | 129.6 | 19.7 | 127.1 | 20.7 | 133.5 |

    $\mathrm{H}=1.257$ ampere-turns per $\mathrm{cm} .=.495$ ampere-turns per inch.
    Example.-A magnetic circuit consists of 12 inches of cast steel of 8 square inches cross-section; 4 inches of cast iron of 22 square inches cross-section; 3 inches of sheet iron of 8 square inches cross-section; and two air-gaps each $1 / 16$ inch long and of 12 square inches area. Required, the ampere-turns to produce a flux of 768,000 maxwells, which is to be uniform throughout the magnetic circuit.

    The flux density in the steel is $768,000 \div 8=96,000$ maxwells; the ampereturns per inch of length, according to Sheldon's table, are 60.6 , so that the 12 inches of steel will require 727.2 ampere-turns.
    The density in the cast iron is $768,000 \div 22=34,900$; the ampere-turns
    $4 \times 40=160$. $=4 \times 40=160$.

    The density in the sheet iron $=768,000 \div 8=96,000$; ampere-turns per inch $=30$; total ampere-turns for sheet iron $=90$.
    The air-gap density is $768,000 \div 12=64,000$; ampere-turns per inch $=$ 0.3133 B ; ampere-turns required for air-gap $=0.3133 \times 64,000 \div 8=2506.4$.

    The entire circuit will require $727.2+160+90+2506.4=3483.6$ ampereturns, assuming uniform flux throughout.
    In practice there is considerable "leakage" of magnetic lines of force; that is, many of the lines stray away from the useful path, there being no material opaque to magnetism and therefore no means of restricting it to a given path. The amount of leakage is proportional to the permeance of the leakage paths available between two points in a magnetic circuit which are at different magnetic potentials, such as opposite ends of a magnet coil. It is seldom practicable to predetermine with any approach to accuracy the magnetic leakage that will occur under given conditions unless one has profuse data obtained experimentally under similar conditions. In dynamo-electric machines the leakage coefficient varies from
    1.3 to 2 .

    Tractive or Lifting Force of a Magnet.-The lifting power or "pull" exerted by an electro-magnet upon an armature in actual contact with its pole-faces is given by the formula

    $$
    \frac{\mathbf{B}^{2} a}{72,134,000}=\text { Lbs., }
    $$

    $a$ being the area of contact in square inches and $\mathbf{B}$ the magnetic density over this area. If the armature is very close to the pole-faces, this formula also applies with sufficient accuracy for all practical purposes, but a considerable air-gap renders it inapplicable. The accompanying table is convenient for approximating the dimensions of cores and pole-faces for tractive magnets.

    Dimensions of Lifting Magnets.

    | Density B. | Ampere-turns per inch of length. |  |  | Pull in <br> lbs. per sq. in. | Density B. | Ampere-turns per inch of length. |  |  | Pull in lbs. per sq. in. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | Air. | Cast Iron. | Cast Steel. |  |  | Air. | Cast <br> Iron. | Cast Steel. |  |
    | 10,000 | 3133 | 18 | 3.7 | 1.38 | 29,000 | 9,086 | 49 | 6.5 | 11.6 |
    | 11, 000 | 3447 | 19.2 | 3.81 | 1.65 | 30,000 | 9,400 | 52 | 6.7 | 12.4 |
    | 12,000 | 3760 | 20.4 | 3.93 |  | 31.000 | 9,713 | 55 | 6.9 | 13.2 |
    | 13,000 | 4073 | 21.6 | 4.05 | 2.3 | 32,000 | 10,026 | 58 | 7.1 | 14 |
    | 14,000 | 4387 | 22.8 | 4.17 | 2.7 | 33,000 | 10,339 | 61 | 7.3 | 15 |
    | 15,000 | 4700 | 24 | 4.3 | 3.1 | 34.000 | 10,652 | 64 | 7.5 | 16 |
    | 16,000 | 5013 | 25.2 | 4.44 | 3.5 | 35,000 | 10,965 | 68 | 7.7 | 17 |
    | 17,000 | 5326 | 26.5 | 4.58 | 4 | 36,000 | 11,278 | 72 | 7.9 | 18 |
    | 18,000 | 5640 | 27.9 | 4.72 | 4.5 | 37,000 | 11,590 | 76 | 8.1 | 19 |
    | 19.000 | 5953 | 29.3 | 4.86 | 5 | 38,000 | 11,904 | 80 | 8.3 | 20 |
    | 20,000 | 6266 | 30.7 | 5 | 5.5 | 39,000 | 12,217 | 85 | 8.55 | 21 |
    | 21,000 | 6580 | 32.2 | 5.16 | 6 | 40,000 | 12,532 | 90 | 8.8 | $\stackrel{22}{23}$ |
    | 21,500 | 6736 | 33.1 | 5.24 | 6.4 | 41,000 | 12,843 | 95 100 | ${ }_{9}^{9.05}$ |  |
    | 22,000 | 6893 | 34 | 5.32 | 67 | 42,000 | 13,159 13,472 | 100 | 9.3 9.55 | ${ }_{25}^{24.25}$ |
    | 22,500 | 7050 | 35 | ${ }_{5}^{5.4}$ | 7.3 | 43,000 44,000 | 13,472 13,785 | 106 | 9.55 9.8 | ${ }_{26.75}^{25.5}$ |
    | 23,000 23,500 | 7206 7363 | 36 37 | 5.48 5.56 | 7.3 | 44,000 45,000 | 13,785 14.098 | 112 | 9.8 10.25 | ${ }_{28}^{26.75}$ |
    | 24,500 | 7520 | 38 | 5.64 | 7.9 | 46,000 | 14,412 | 125 | 10.5 | 29.3 |
    | 25,000 | 7833 | 40 | 5.8 | 8.6 | 47,000 | 14,725 | 132 | 10.8 | 30.6 |
    | 26,000 | 8146 | 42 | 5.97 | 9.3 | 48,000 | 15,038 | 140 | 11.15 | 31.9 |
    | 27,000 | 8459 | 44 | 6.14 | 10 | 49,000 | 15,350 | 150 | 11.5 | 33.2 |
    | 28,000 | 8773 | 46 | 6.32 | 10.8 | 50,000 | 15,665 | 160 | 11.9 | 34.6 |

    Magner Windings.-Knowing the ampere-turns required to produce the desired excitation of a magnetic circuit, the winding may be approximately determined as follows:

    For round cores under 1 inch in diameter make the depth or thickness of winding, $t$, equal to the core diameter; over 1 inch, let $t=$ cube root of core diameter. For slab-shaped cores let the coil thickness be equal to the core thickness up to 1 inch, and to the square root of the core thickness above that.

    The ampere-turns produced by any coil will be

    $$
    A_{t}=\frac{V d^{2}}{l_{k}}
    $$

    in which $V=$ volts at the coil terminals,
    $d^{2}=$ area of the wire in circular mils,
    $l=$ mean length in inches per turn of wire,
    $k=$ a coefficient depending on the temperature of the coil.

    The mean length per turn of wire is

    $$
    a+\pi t=l_{m},
    $$

    $g$ being the perimeter of the core. The size of wire required for a given excitation will be

    $$
    d^{2}=\frac{k A_{t}}{V}(g+\pi t)
    $$

    At $140^{\circ}$ Fahr. $k=1$. The table herewith gives the values of $k$ at various other practical temperatures.

    Values of $k$ in Misqet-coil Hormula.

    | Temp. | $k$ | Tenip. | $k$ | Temp. | $k$ | Temp. | $k$ |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | 100 | 0.923 | 115 | 0.952 | 130 | 0.981 | 150 | 1.0195 |
    | 105 | 0.933 | 120 | 0.962 | 135 | 0.99 | 155 | 1.029 |
    | 110 | 0.942 | 125 | 0.971 | 145 | 1.01 | 160 | 1.0387 |

    The rise above atmospheric temperature will be

    $$
    \frac{V^{2}}{k_{i} R S}=\theta,
    $$

    in which $R=$ the resistance of the coil when hot, $S=$ its radiating surface, and $k_{t}$ is a variable coefficient (see p. 1032). The value of $k_{t}$ will be about 0.008 for electro-magnets of ordinary size not enclosed or shielded in any way from the surrounding air.

    For fuller treatment of the subject, see American Electrician, April and May, 1901, and January, 1904.

    Betermining the Polarity of Electro-magnets.- If a wire is wound around a magnet in a right-handed helix, the end at which the current flows into the hclix is the south pole. If a wire is wound around an ordinary wood-screw, and the current flows around the helix in the direction from the head of the screw to the point, the head of the screw is the south pole. If a magnet is held so that the south pole is opposite the eye of the observer, the wire being wound as a right-handed helix around it, the current flows in a right-handed direction, with the hands of a clock.

    Determining the Direction of a Current. - Place a wire carrying a current above and parallel to a pivoted magnetic needle. If the current be flowing along the wire from N. to S.: it will cause the N.seeking pole to turn to the eastward; if it be flowing from S. to N., the pole will turn to the westward. If the wire be below the needle, these motions will be reversed.

    Maxwell's rule. The direction of the current and that of the resisting magnetic force are related to each other as are the rotation and the forward travel of an ordinary (right-handed) cork-screw.

    ## DYNAMO-ELECTREC MACHINES.

    There are three classes of dynamo-electric machines, viz.:

    1. Generators, for the conversion of mechanical into electrical energy.
    2. Motors, for the conversion of electrical into mechanical energy.

    Generators and motors are both subdivided into direct-current and alter-nating-current machines.
    3. Transformers, for the conversion of one character or voltage of current into another, as direct into alternating or alternating into direct, or from one voltage into a higher or lower voltage.

    Kinds of Dynamo-electric Machines as regards Manner of Winding.

    1. Separately-excited Dynamo.-The field-magnet coils have no connection with the armature-coils, but receive their current from a separate machine or source.
    2. Series-wound Dynamo.-The field winding and the external circuit are connected in series with the armature winding, so that the entire armature current must pass through the field-coils.

    Since in a sevies-wound dynamo the armature-coils, the field, and the external circuit are in series, any increase in the resistance of the external circuit will decrease the electro-motive force from the decrease in the magnetizing currents. A decrease in the resistance of the external circuit will, in a like manner, increase the electro-motive force from the increase in the magnetizing current. The use of a regulator avoids these changes in the electro-motive force.
    3. Shunt-wound Dynamo.--The field-magnet coils are placed in a shunt to the armature circuit, so that only a portion of the current generaterl passes through the field-magnet coils, but all the difference of potential of the armature acts at the terminals of the field-circuit.

    In a shunt-wound dynamo an increase in the resistance of the external circuit increases the electro-motive force, and a decrease in the resistance of the external circuit decreases the electro-motive force. This is just the reverse of the series-wound dynamo.

    In a shunt-wound dynamo a colltinuous balancing of the current occurs, the current dividing at the brushes between the field and the external circuit in the inverse proportion to the resistance of these circuits. If the resistance of the external circuit becomes greater, a proportionately greater current passes through the field-magnets, and so causes the electro-motive force to become greater. If, on the contrary, the resistance of the external circuit decreases, less current passes through the field, and the electromotive force is proportionately decreased.
    4. Compound-wound Dynamo.-The field-magnets are wound with two separate sets of coils, one of which is in series with the armature and the external circuit, and the other in shunt with the armature, or the external circuit.

    Motors.-The above classification in regard to winding applies also to motors.

    Moving Force of a Dynamo-electric Machine.-A wire through which a current passes has, when placed in a magnetic field, a tendency to move perpendicular to itself and at right angles to the lines of the field. The force producing this tendency is $P=l B I$ dynes, in which $l=$ length of the wire, $I=$ the current in C.G.S. units, and $B=$ the induction, or flux density, in the field in lines per square centimetre.

    If the current $I$ is taken in amperes, $P=l B I \div 10=l B I \quad 10^{-1}$.
    If $P k$ is taken in kilogrammes,

    $$
    P k=l B I \div 9,810,000=10.1937 l B I \quad 10^{-8} \text { kilogrammes. }
    $$

    Example.-The mean strength of field, $B$, of a dynamo is 5000 C.G.S. lines; a current of 100 amperes flows through a wire; the force acts upon 10 centimetres of the wire $=10.1937 \times 10 \times 100 \times 5000 \times 10^{-8}=.5097$ kilogrammes.

    In the "English" or Kapp's system of measurement a total flow of 6000
    C.G S. lines is taken to equal one English line. Calling $B E$ the induction in English, or Kapp's, lines per square inch, and $B$ the induction in C. G. S. lines per square centimetre, $B E=B \div 930.04$; and taking $l^{\prime \prime}$ in inches and $P P$ in pounds, $P P=531 / l^{\prime \prime} B E 10^{-6}$ pounds.

    Torque ofan Armature. - The torque of an armature is the moment tending to turn it. In a generator it is the moment which must be applied to the armature to turn it in order to produce current. In a motor it is the turning moment which the armature gives to the pulley.

    Let $I=$ current in the armature in amperes, $E=$ the electro-motive force in volts, $T=$ the torque in pound-feet, $\phi=$ the flux through the armature in maxwells, $N=$ the number of conductors around the armature, and $n=$ the number of revolutions per second. Then

    $$
    \text { Watts }=I E=2 \pi n T \times 1.356 . *
    $$

    In any machine if the flux be constant, $E$ is directly proportional to the speed and $=\phi N n \div 10^{8}$; whence

    $$
    \begin{gathered}
    \frac{\phi N I}{10^{8}}=2 \pi T \times 1.356 ; \\
    T=\frac{\phi N I}{10^{8} \times 2 \pi \times 1.356}=\frac{\phi N I}{8.52 \times 10^{8}} \text { pound-feet. }
    \end{gathered}
    $$

    Let $l=$ length of armature in inches, $d=$ diameter of armature in inches, $B=$ flux density in maxwells per square inch, and let $m=$ the ratio of the conductors under the influence of the pole-pieces to the whole number of conductors on the armature. Then

    $$
    \phi=\frac{\pi d}{2} \times l \times B \times m
    $$

    These formulæ apply to both generators and motors. They show that torque is independent of the speed and varies directly with the current and the flux. The total peripheral force is obtained by dividing the torque by the radius (in feet) of the armature, and the drag on each conductor is obtained by dividing the total peripheral force by the number of conductors under the influence of the pole-pieces at one time.

    Example.-Given an armature of length $l=20$ inches, diameter $d=12$ inches, number of conductors $N=120$, of which 80 are under the influence of the pole-pieces at one time; let the flux density $B=30,000$ maxwells per sq. in. and the current $I=400$ amperes.

    $$
    \begin{aligned}
    \phi & =\frac{12 \pi}{2} \times 20 \times 30,000 \times \frac{80}{120}=7,540,000 \\
    T & =\frac{7,540,000 \times 120 \times 400}{8.52 \times 100,000,000}=424.8 \text { pound-feet. }
    \end{aligned}
    $$

    Total peripheral force $=424.8 \div .5=849.6 \mathrm{lbs}$.
    Drag per conductor $=849.6 \div 120=7.08 \mathrm{lbs}$.
    The work done in one revolution $=$ torque $\times$ circumference of a circle of 1 foot radius $=424.8 \times 6.28=2670$ foot-pounds.

    Let the revolutions per minute equal 500 , then the horse-power

    $$
    =\frac{2670 \times 500}{33000}=40.5 \mathrm{H} . \mathrm{P}
    $$

    Electro-motive Force of the Armature Circuit. - From the horse-power, calculated as above, together with the amperes. we can obtain the E.M. F., for $I E=$ H.P. $\times 746$, whence E.M.F. or $E=$ H.P. $\times 746 \div I$. If H.P., as above, $=40.5$, and $I=400, E=\frac{40.5 \times 746}{400}=75.5$ volts.
    The E.M.F. may also be calculated by the following formulæ:
    $I=$ Total current through armature;
    ea $=$ E.M.F. in armature in volts;
    $N=$ Number of active conductors counted all around armature;
    $p=$ Number of pairs of poles ( $p=1$ in a two-pole machine);
    $n=$ Speed in revolutions per minute;
    $\phi=$ Total flux in maxwells.


    Electro-motive

    force: $\left\{\begin{array}{l}e a=\phi N \frac{n}{60} 10^{-8} \text { for two-pole machines. } \\ e a=\frac{p \phi N n}{10^{8}} \frac{n}{60} \quad \text { for multipolar machines with }\end{array}\right.$

    Strength of the Magnetic Field.-The fundamental equation for calculations relating to the magnetic circuit is

    $$
    \text { Flux }=\frac{\text { Magneto-motive Force }}{\text { Reluctance }}
    $$

    Magneto-motive force is the magnetizing effect of an electric current. It varies directly as the number of turns in a coil, and as the current. It is numerically equal to $1.257 \times$ amperes $\times$ turns.

    Reluctance is the resistance any material offers to the setting up in itself of magnetic lines. It varies directly as the length and inversely as the area of the cross-section of the core, taken at right angles to the direction of the magnetic lines, and inversely as the permeability of the material.

    Let $I=$ current in amperes, $N=$ number of turns in the coil, $A=$ area of the cross-section of the core in square centimetres, $l=$ length of core in centimetres, $\mu$ the permeability of the core, and $\phi=$ flux in maxwells. Then

    $$
    \phi=\frac{1.257 N I}{(l \div A \mu)} .
    $$

    In a dynamo-electric machine the reluctance will be made up of three separate quantities, viz.: the reluctance of the field magnet cores, the reluctance of the air spaces between the field magnet pole-pieces and the armature, and the reluctance of the armature. The total reluctance is the sum of the three. Let $L_{1}, L_{2}, L_{3}$ be the length of the path of magnetic lines in the field magnet cores,* in the air-gaps, and in the armature respectively; and let $A_{1}, A_{2}, A_{3}$ be the areas of the cross-sections perpendicular to the path of the magnetic lines in the field magnet cores, the air-gaps, and the armature respectively. Let the permeability of the field magnet cores be $\mu_{1}$, and of the armature $\mu_{3}$. The permeability of the air-gaps is taken as unity. Then the total reluctance of the machine will be

    $$
    \frac{I_{1}}{A_{1} \mu_{1}}+\frac{L_{2}}{A_{2}}+\frac{L_{3}}{A_{3} \mu_{3}}
    $$

    The formula for magnetic flux will now read

    $$
    \phi=\frac{1.257 N I}{\left(L_{1} \div A_{1} \mu_{1}\right)+\left(L_{2} \div A_{2}\right)+\left(L_{3} \div A_{3} \mu_{3}\right)}
    $$

    The ampere turns necessary to create a given flux in a machine may be found by the formula

    $$
    N I=\phi \frac{\left[\left(L_{1} \div A_{1} \mu_{1}\right)+\left(L_{2} \div A_{2}\right)+\left(L_{3} \div A_{3} \mu_{3}\right)\right]}{1.257}
    $$

    But the total flux generated by the field coils is not available to produce current in the armature. There is a leakage between the field magnets, and this must be allowed for in calculations. The leakage coefficient varies from 1.3 to 2 in different machines. The meaning of the coefficient is that if a flux of say 100 maxwells per square cm . are desired in the field coils, it will be necessary to provide ampere turns for $1.3 \times 100=130$ maxwells, if the leakage coefficient be 1.3.

    Another method of calculating the ampere turns necessary to produce a given flux is to calculate the magneto-motive force required in each portion of the machine, separately, introducing the leakage coefficient in the calculation for the field magnets, and dividing the sum of the magnetive-moto forces by 1.257. An example of this last method is appended.

    Example.- Given a two-pole generator with a single magnetic circuit of the following dimensions, in centimetres and square centimetres: $L_{1}=$ 150, $L_{2}=$ each $.5, L_{3}=25 ; A_{1}=1200, A_{2}=1400, A_{3}=1000$; leakage


    coefficient $=\lambda=1.32$; flux in armature $=10,000,000$ inaxwells. Requircd the ampere turns on field magncts. Let $B=$ intensity of magnetic induction, or flux deasity, and $H=$ intensity of the magnetic field.
    $$
    \text { Armature: } B=\frac{\phi}{A_{3}}=\frac{10,000,000}{1000}=10,000
    $$

    From the permeability tabie, $\mu_{3}=2000$

    $$
    M . M . F_{3}=\phi \frac{L_{3}}{A_{3} \mu_{8}}=\frac{10,000,000 \times 25}{1000 \times 2000}=125
    $$

    Air-gaps:

    $$
    M . M \cdot F_{2}=\frac{10,000,000 \times 2 \times .5}{1400}=7150
    $$

    Field Cores:

    $$
    \begin{gathered}
    B=\frac{\phi \times \lambda}{A_{1}}=\frac{10,000,000 \times 1.32}{1200}=11,000 ; \mu=1692 . \\
    M . M . F_{1}=\frac{\phi \lambda L_{1}}{A_{1} \mu_{1}}=\frac{10,000,000 \times 1.32 \times 150}{1200 \times 1692}=975 . \\
    \text { Total M.M.F.}=125+7150+975=8250 . \\
    \text { Ampere turns }=\frac{M . M . F}{1.257}=\frac{8250}{1.257}=6563 .
    \end{gathered}
    $$

    In a machine having a double magnetic circuit, the calculation is slightly varied. The total flux is created by the two separate sets of windings. each set creating one half. The ampere turns are calculated for one set of windings. The flux, $\dot{\psi}$, used in the calculation is taken as one hali the total flux created. The areas of the air-gaps $A_{2}$ and of the armature $A_{3}$ are also taken as one half the actual area. Except for these changes, the calculation is made in the same manner as for the single magnetic circuit; the result is the ampere turns for one set of field windings.

    In the ordinary type of multipolar machine there are as many magnetic circuits as there are poles. Each winding energizes part of two circuits The calculation is made in the same manner as for a single magnetic circuit.

    Dynamo Design. - In the design of a niotor or generator the following data are usually given, being determined by local conditions Class, viz., bipolar or multipolar, series, shunt or compound wound; size, in kilowatts; voltage; and current. The following is an outline of the method pursued in the complete design. (For complete method see Wiener's Dynamo-electric Machines.)

    Notation. $-E=$ e.m.f. in external circuit in volts; $E^{\prime}=$ total e.m.f. generated in armature in volts; $e=$ e.m.f. necessary to overcome internal resistances of nachine; $I=$ current in external circuit. in amperes; $I=$ current generated in armature in amperes; $i$ current in shunt field in amperes; $H_{1}=$ assumed flux density of field in maxwells per sq. inch; $B=$ actual flux density in armature, maxwells per square inch.; $L$. $=$ length of armature in inches; $D=$ diameter of armature in inches; $l=$ length of active conductor (i.e., that on pole-facing surface of armature) in feet; $d=$ diameter of armature conductor in mils; $d^{2}=$ area of armature conductor. circular mils; $d^{\prime}=$ diameter of insulated armature conductor in inches; $N=$ number of conductors on armature; $p=$ number of pairs of poles in field; $C=$ number of bars on commutator; $\phi=$ magnetic flux in armature in maxwells; $\phi^{\prime}=$ total magnetic flux; $\lambda=$ leakage coefficient of magnetic circuit; $V=$ mean velocity of armature conductors in feet per second; $h=$ available depth of winding space on armature, inches (in a slotted armature $h$ is the depth of slot); $n_{1}=$ number of wires stranded in parallel to make one armature conductor; $n_{2}=$ number of conductors per layer on armature; $n_{3}=$ number of layers of conductor on armature $k, m, b=$ variables and factors explained in the text.

    A value is first assumed for $H_{1}$. This is governed by the size of the machine, the style of armature, the number of poles, and the material of the pole-pieces, magnet cores, and frame. For a smooth core armature in a 1 kw . bipolar machine, with cast-iron pole-pieces, it may be taken as 15,000 maxwells per sq. inch for cast-iron; for wrought iron or steel polepieces it may be taken at 22,000 maxwells. For a 300 kw . bipolar machine
    it may be assumed at 30,000 maxwells with cast-iron pole-pieces, and at 45,000 with wrsught-ircn pole-pieces. In multipolar machines, the figures are from 5000 to 7000 higher in each case.
    A formula for the length of active armature conductor is

    $$
    l=\frac{E^{\prime} \times p}{k \times \pi \times H_{1}} .
    $$

    The value of $k$ is determined by multiplying $10^{-8}$ by a factor ranging from 50 to 72 , depending on the percentage of polar arc, i.e.. the percentage of the armature subtended by the pole-pieces. If the percentage of polar arc is 50 the factor is 50 , if the percentage is 100 the factor is $72 . V$ varies from 35 in a 1 kw . machine to 50 in a 2000 or 300 kw . machine with a drum armature. With ring armatures. in high speed machines. $V$ varies from 6.5 in a 1 kw . machine to 75 in a 25 kw .85 in a 360 kw , and 100 in a 5000 kw . machine. On low speed dynamos the figures are approximately one half the above.
    $E^{\prime}=\left(E_{+}+e\right)$. In series machines. under 1 liw.. $e$ is from 40 to 20 per cent of $E$; in machines of from 1 to 25 kW. , from 20 to 10 per cent; in 25 to 500 kw . machines from 10 to 4 per cent; and in machines of over 500 kw. from 4 to 2.5 per cent of $E$. In shunt-wound machines $e$ has approximately one half the value used in series machines; in compound-wound machines approximately three quarters the value used in series machines.
    The diameter of the armature core is found by means of the assumed velocity and the given revolutions per minute, $D=(12 \times 60 \mathrm{~V})-$ (r.p.m. $\times \pi)$.
    The area of the conductors on the armature depends on the amount of current to be carried. $d^{2}=300 I^{\prime} \div p$.
    In a series machine $I^{\prime}=I$, in shunt and compound machines $l^{\prime}=I+i$. The current consumed in the shunt field varies with the size of the machine approximately as follows

    | $\mathrm{kw}_{\mathrm{i}}=$ | 1 | 5 | 10 | 20 | 50 | 100 | 500 | 2000 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $i=$ | $.08 I$ | $.06 I$ | $.05 I$ | $.04 I$ | $.03 I$ | $.0275 I$ | $.02 I$ | $.015 I$ |

    In large machines it is better, in order to diminish the eddy currents, to make the armature conductors in the form of a cable. than to use single wires. If the conductor on the armature is a single wire the thickness of insulation varies from .012 to .020 inch , depending on the voltage. If the conductor is a cable, each strand is insulated with a thickness of from . 005 to .01 inch and the entire cable is covered with insulation of thickness varying from 005 to .01 inch.

    In a small machine with but a single layer of conductors on the armature $L=l \div N . \quad N=(1.885,000 D \times h) \div d^{2}$.
    For drum armatures $\quad N=2\left(n_{2} \times n_{3}\right) \div n_{1}$;
    for ring armatures $\quad N=\left(n_{2} \times n_{3}\right) \div n_{1}$.
    A general formula given by Wiener for the length of armature is

    $$
    L=\frac{12 \times n_{1} \times l}{n_{2} \times n_{3}} ; \quad n_{2}=\frac{D \times \pi}{d^{\prime}} ; \quad n_{3}=\frac{h}{d^{\prime^{\prime}}} .
    $$

    The minimum number of bars on the commutator is $C$ min $=E^{\prime} p \leftarrow b$.
    The value of $b$ depends on the current as follows:
    $\begin{array}{cccccccc}\text { Amperes: over } & 100 & 100-50 & 50-20 & 20-10 & 10-5 & 5-2 & 2-1 \\ b & 10 & 10.5 & 11.5 & 12.5 & 15 & 20 & 20 .\end{array}$
    The number which may be used, provided it does not fall below $C$ min is

    $$
    C=\left(n_{2} \times n_{3}\right) \div n_{1} .
    $$

    For drum armatures the number of conductors attached to each commutator bar must be an even number. The quotient of $C$, obtained as above, by the largest even number which will give a result, greater than $C$ min is the proper number of commutator bars for drum armatures. For ring armatures it is the quotient of $C$ by the largest number which will give a result greater than Cmin. In eacli case the divisor is the number of conductors which should be attached to each bar.
    The flux through the armature is:

    $$
    \phi=\frac{6 \times p \times E^{\prime} \times 10^{9}}{N \times \text { r.p.m. }} .
    $$

    The flux density in the armature :ore is

    $$
    B=\frac{\phi}{\pi \times D \times L \times m},
    $$

    where $m$ is a factor depending on the percentage of polar arc. Assuming 100 per cent and 50 per cent as the limits of polar are, the following are the respective values of $m$ at those limits In bipolar, smecth armature, machines $m=1.00$ and .70 ; in bipolar, toothed armature machines $m=1.00$ and .55 ; in smooth armature multirnlar machines $m=100$ and .625 , with from 4 to 12 poles: $m=1.00$ and .60 with from 14 and 20 poles. With toothed armatures the figures are slightly lower.
    The arca of the field magnet cores depends on the flux to be generated

    $$
    \phi^{\prime}=\phi \times \lambda .
    $$

    A value for $\lambda$ is assumed, which will rary with the size and type of machine. By means of this assumed value the principal dimensicns of the magnetic circuit are calculated. The truc value of $\lambda$ is next calculated by means of the formula

    $$
    \lambda=\frac{\text { Joint permeance of useful and stray paths }}{\text { Permeance of usefui path }} \text {. }
    $$

    The permeance of a path is its magnetic conductance.

    $$
    \text { Permeance }=(\text { Permcability } \times \text { Area }) \div \text { Length. }
    $$

    The stray paths are those across the pole-pieces, acress the magnet cores and between the pole-pieces and the yoke joining the magnet ecres.

    With the new value of $\lambda$, $\phi^{\prime}$ is recalculated. If the true and assumed values of $\lambda$ give a large difference in flux then the dimensions of the circuit must be changed and $\lambda$ recalculated.
    The areas of the various portions are found by dividing the total flux by the allowable flux density. The allowable flux densities in maxwells per square inch are as follows: Wrought iron, 90,000 ; cast steel. 85.000 ; cast iron, 40,000 .

    The various areas being known, the winding of the magnets is calculated as shown in the section on Strength of the Magnetic Field.

    Example.-Design a $200 \mathrm{~K} . \mathrm{W}$. bipolar, smontl drum armature, shunt dynamo, with wrought-iron pole-pieces. and cast iron magnet cores and yoke. Volts, 500; amperes, 400; R.P.M., 450.

    Assume $H_{1}=40,000 ; V=45 ; e=.03 E ; i=.025 I ;$ percentage of polar arc $=85$. Then $E^{\prime}=515 ; I^{\prime}=410$ and $k=68 \times 10^{-8}$.

    $$
    \begin{aligned}
    & l=(515 \times 1 \times 10,00,000) \div(68 \times 45 \times 40,000)=420.7 \text { feet. } \\
    & D=(12 \times 60 \times 45) \div(450 \times 3.1416)=22.91 \text { inches. } \\
    & d^{2}=300 \times 410 \div 1=123.000 \text {. } 10 \text { this size nf manhino it ic }
    \end{aligned}
    $$

    $d^{2}=300 \times 410 \div 1=123,000$. In this size of machine it is desirable to use cables. Each conductor may be composed of three cahles in parallel, each composed of seven wires. A No. 12 B . \& S . gauge wire has an area of 6530 cir. mils, and $7 \times 3 \times 6530=137,130$, which is near enough to $d^{2}$.
    To find $d^{\prime} \cdot$ Number of strands on a diametcr $=3$. Insulation on each strand $=.005$; insulation of cable $=.008$ : diameter No. 12 wire $=.080808$ : $d^{\prime}=3 \times(.0808+2 \times .005)+(2 \times .008)=.2 \mathrm{SS} 4$ incll.

    Assume $h=.625 ; n_{1}=3 ; n_{2}=22.91 \times 3.1416 \div .2884=249 ; n_{3}=$ 62.5 $\div .2884=2+$. Then $L=(12 \times 3 \times 420.7) \div(2 \times 249)=30.41$ inches.
    $C_{\min }=515 \times 1 \div 10=51.5 ; C=(249 \times 2 \div 3) \div 4=41$ (too small); $(249 \times 2 \div 3) \div 2=83 . \quad \therefore C=83$.
    $N=(2 \times 249) \times 2 \div 3=332$.
    $\phi=6 \times 1 \times 515 \times 1,000,000,000 \div 332 \times 450=20,683,000$.
    $\begin{aligned} & \text { Assume } \\ & =10777 \text {. }\end{aligned}=.94 ; B=20,683,000 \div(3.1416 \times 22.91 \times 30.41 \times .94$ ?
    To calculate $\lambda$ would require more space than can be spared here. Assume $\lambda=1.34$.
    ' $\phi^{\prime}=1.34 \times 20,683,000=27,715,220$.
    Area of magnet cores $=27,715,220 \xlongequal{\leftrightarrows} 40000=692$ sq. inches.
    Diameter of magnct cores $=\sqrt{692 \times \frac{4}{\pi}}=29.8$ inches.

    ## ALTERNATING CURIEENTS.*

    The advantages of alternating over direct currents are: 1. Greater simplicity of dynamos and motrrs, no commutators being reguired; 2. The feasibility of obtaining high voltages, by means of static transformers, for cheapening the cost of transmission; 3. The facility of transforming from one voltage to another, either higher or lower, for different purposes.

    A direct current is uniform in strength and direction, while an alternating current rapidly rises from zero to a maximum, falls to zero, reverses its direction, attains a maximum in the new direction, and again returns to zero. This series of changes can best be represented by a curve the abscissas of which represent time and the ordinates either current or electromotive force (e.m.f.). The curve usually chosen for this purpose is the sine curve, Fig. 172; the best forms of alternators give a curve that is a very close approximation to the sine curve, and all calculations and deductions of formulæ are based on it. The equation of the sine curve is $y=\sin x$, in which $y$ is any ordinate, and $x$ is the angle passed over by a moving radius vector.

    After the flow of a direct current has been once established, the only opposition to the flow is the resistance offered by the conductor to the passage of current through it. This resistance of the conductor, in treating of alternating currents, is sometimes spoken of as the ohmic resistance. The word resistance, used alone, always means the ohmic resistance. In alternating currents, in addition to the resistance, several other quantities, which affect the flow of current, must be taken into consideration. These quantities are inductance, capacity, and skin effect. They are discussed under separate headings.

    The current and the e.m.f. may be in phase with each other, that is, attain their maximum strength at the same instant, or they may not, depending on the character of the circuit. In a circuit containing only resistance, the current and e.m.f. are in phase; in a circuit containing inductance the e.m.f. attains its maximum value before the current, or leads the current. In a circuit containing capacity the current leads the e.m.f. If both capacity and inductance are present in a circuit, they will tend to neutralize each other.
    Maximum, Average, and Effective Values.-The strength and the e.m.f. of an alternating current being constantly varied, the maximum value of either is attained only for an instant in each period. The maximum values are little used in calculations, except in deducing formulee and for proportioning insulation, which must stand the maximum pressure.

    The average value is obtained by averaging the ordinates of the sine curve representing the current, and is $2 \div \pi$ or 0.637 of the maximum value.

    The value of greatest importance is the effective, or "square root of the mean square," value. It is obtained by taking the square root of the mean of the squares of the ordinates of the sine curve. The effective value is the value shown on alternating-current measuring instruments. The product of the square of the effective value of the current and the resistance of circuit is the heat lost in the circuit.

    The comparison of the maximum, average, and effective values is as follows:
    $E_{\mathrm{Effec} .}=E_{\text {Max. }} \times 0.707 ; \quad E_{\text {Aver. }}=E_{\mathrm{Max}} \times 0.637 ; \quad E_{\text {Max }}=1.41 \times E_{\mathrm{Effec}}$.
    Frequency.-The time required for an alternating current to pass through one complete cycle, as from one maximum point to the next ( $a$ and $b$, Fig. 172) is termed the period. The number of periods in a second is termed the frequency of the current. Since the current changes its direction twice in each period, the number of reversals or alternations is double the frequency. A current of 120 alternations per second has a period of $1 / 60$


    and a frequency of 60 The frequency of a current is equal to one half the number of poles on the generator. multiplied by the number of revolutions per second Frequency is denoted by the letter $f$.

    The frequencies most generally used in the United States are 25, 40, 60, 125, and 133 cycles per second The Standardization Report of the A I.E.E recommends the adoption of three frequencies, viz. 2560 and 120.

    With the higher frequencies both transformers and conductors whll be less costly in a circuit of a given resistance but the capacity and inductance offects in each will be increased, and these tend to increase the cost. With higlı frequencies it also becomes clifficult to operate alternator's in paraliel.
    A low-frequency current cannot be used on lighting circuits, as the lights will flicker when the frequency drops below a certain figure. For arc lights the frequency should not be less than 40 . For incandescent lamps it should not be less than 25 . if the circuit is to supply both power and light a frequency of 60 is usually desirable. For power transmission to long distances a low frequency, say 25 , is considered desirable, in order to lessen the capacity effects If the alternating current is to be converted into direct current for lighting purpose, a low frequency may be used as the frequency will then have no effect on the lights.

    Inductance.-A current flowing through a conductor produces a magnetic flux around the conductor. If the current be changed in strength or direction, the flux is also changed. producing in the conductor an e.m.f.
    

    Fig. 172. whose direction is opposed to that of the current in the conductor. This counter e.m. f. is the counter e.m.f. of inductance It is proportional to the rate of change of current, provided that the permeability of the medium around the conductor remains constant. The unit of induct. ance is the henry symbol $L$. A circuit has an inductance of one henry if a uniform variation of current at the rate of one ampere per second produces a counter e.m.f. of one volt.
    The effect of inductance on the circuit is to cause the current to lag behind the e.m.f. as shown in Fig. 172, in which abscissas represent time, and ordinates represent e.m.f. and current strengthe respectively.
    Capacity. - Any insulated conductor has the power of holding a quantity of static electricity. This power is termed the capacity of the body. The capacity of a circuit is measured by the quantity of electricity in it when at unit potential. It may be increased by means of a condlenscr. A condenser consists of two parallel conductors, insulated fron each other by a non-conductor. The conductors are usually in sheet form.
    The unit of capacity is a farad, symbol $C$. A condenser has a capacity of one farad when one coulomb of electricity contained in it produces a difference of potential of one volt. The farad is too large a unit to be conveniently used in practice, and the micro-farad is used instead.

    The effect of capacity on a circuit is to cause the e.m.f. to lag behind the current. Both inductance and capacity may be measured with a Wheatstone bridge by substituting for a standard resistance a standard of inductance or a standard of capacity.

    Power Factor. - In direct-current work the power, measured in watts, is the proluct of the volts and amperes in the circuit. In alternating-current work this is only true when the current and e.m.f. are in phase. If the current either lags or leads, the values shown on the volt and ammeters will not be truc simultaneous values. Referring to Fig. 172, it will be seen that the product of the ordinates of current and e.m.f. at any particular instant will not be equal to the product of the effective values which are shown on the instruments. The power in the circuit at any instant is the product of the simultaneous values of current and e.m.f.. and the volts and amperes shown on the recording instruments must be multiplied together and their product multiplied by a power factor before the true watts are obtained. This power factor, which is the ratio of the volt-amperes to the watts, is also the cosine of the angle of lag or lead of the current. Thus

    $$
    P=I \times E \times \text { power factor }=I \times E \times \cos \theta \text {. }
    $$

    where $\theta$ is the angle of lag or lead of the current.

    A watt-meter, however, gives the true power in a circuit directly. The method of obtaining the angle of lag is shown below, in the section on Impedance Polygons.

    Reactance, Impedance, Admittance. -In addition to the ohmic resistance of a circuit there are also resistances due to inductance, capacity, and skin effect. The virtual resistance due to inductance and capacity is termed the reactance of the circuit. If inductance only be present in the circuit, the reactance will yary directly as the inductance. If capacity only be present, the reactance will vary inversely as the calacity.

    $$
    \begin{aligned}
    & \text { Inductive reactance }=2 \pi f L \\
    & \text { Condensive reactance }=\frac{1}{2 \pi f C}
    \end{aligned}
    $$

    The total apparent resistance of the circuit, due to both the ohmic resistance and the reactance, is termed the impedance, and is equal to the square root of the sunn of the squares of the resistance and the reactance.
    Impedance $=Z=\sqrt{R^{2}+(2 \pi / L)^{2}}$ when inductance is present in the circuit. Impedance $=Z=\sqrt{R^{2}+\left(\frac{1}{2 \pi f C}\right)^{2}}$ when capacity is present in the circuit.

    Admittance is the reciprocal of impedance, $=1 \div Z$.
    If both inductance and capacity are present in the circuit, the reactance of one tends to balance that of the other; the total reactance is the algebraic sum of the two reactances; thus,

    $$
    \text { Total reactance }=X=2 \pi f L-\frac{1}{2 \pi f C} ; \quad Z=\sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}}
    $$

    In all cases the tangent of the angle of lag or lead is the reactance divided by the resistance. In the last case

    $$
    \tan \theta=\frac{2 \pi f L-\frac{1}{2 \pi f C}}{R}
    $$

    Skin Effect.-Alternating currents tend to have a greater density at the surface than at the axis of a conductor. The effect of this is to make the virtual resistance of a wire greater than its true ohmic resistance. With low frequencies and small wires the skin effect is small, but it becomes quite important with high frequencies and large wires.

    The following table, condensed from one in Foster's "Electrical Engineers' Pocket-book," shows the increase in resistance due to skin effect.

    Skin-effect Factors for Conductors carrying Alternating

    | Diameter and B. \& S. Gauge. | Frequencies. |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 25 | 40 | 60 | 100 | 130 |
    | 0 |  |  | 1.001 | 1.005 | 1.008 |
    | 00 |  | 1.001 | 1.002 | 1.006 | 1.010 |
    | 000 |  | 1.002 | 1.005 | 1.010 | 1.017 |
    | 0000 | 1.001 | 1.005 | 1.006 | 1.015 | 1.027 |
    | 年 ${ }^{\prime \prime}$ | 1.002 | 1.006 | 1.008 | 1.022 | 1.039 |
    | $11^{\frac{3}{4 \prime \prime}}$ | 1.007 | 1.016 1.052 | 1.040 | 1. 100 | 1.156 |
    | $1{ }^{1 / \prime}$ | 1.053 | 1.118 | 1.239 | 1.506 | 1.397 |
    | $1{ }^{\frac{1}{2}}{ }^{\prime \prime}$ | 1.098 | 1.223 | 1.420 | 1.765 | 1.983 |
    | $2^{\prime \prime}$ | 1.265 | 1.531 | 1.826 | 2.290 | 2.560 |

    For virtual resistance, multiply ohmic resistance by factor from this table.

    Ohm's Law applied to Alternating-current Circuits.--To apply Ohm's law to alternating-current circuits a slight change is necessary in the expression of the law. Impedance is substituted for resistance. The law should read

    $$
    I=\frac{E}{\sqrt{R^{2}+X^{2}}}=\frac{E}{Z} .
    $$

    Impedance Polygons.-1. Series Circuits.-The impedance of a circuit can be determined graphically as follows. Suppose a circuit to contain a resistance $R$ and an inductancc $L$, and to carry a current $I$ of frequency $f$. In Fig. 173 draw the line $a b$ proportional to $R$, and representing the direction of current. At $b$ erect $b c$ perpendicular to $a b$ and proportional to $2 \pi f L$. Join $a$ and $c$. The line $a c$ represents the impedance of the circuit. The angle $\theta$ between $a b$ and $a c$ is the angle of lag of the current behind the e.m.f., and the power factor of the circuit is cosine $\theta$. The e.m.f. of the circuit is $E=I Z$.
    

    Fig. 173.
    

    Fig. 174.

    If the above circuit contained, instcad of the inductance $L$, a caparity $C$, then would the polygon be drawn as in Fig. 174. The line $b c$ would be proportional to $\frac{1}{2 \pi f \bar{C}}$ and would be drawn in a direction opposite to that of $b c$ in Fig. 173. The impedance would again be $Z$, the e.m.f. would be $Z \times I$, but the current would lead the e.m.f. by the angle $\theta$.

    Suppose the circuit to contain resistance, inductance, and capacity. The lines of the impedance polygon would then be laid off as in Fig. 175. The impedance of the circuit would be represented by ad, and the angle of lag by $\theta$. If the capacity of the circuit had been such that $c d$ was less than $b c$, then would the e.m.f. have led the current.
    

    Fig. 175.
    

    Fig. 176.

    If between the inductance and capacity in the circuit in the previous examples there be interposed another resistance, the impedance polygon will take the form of Fig. 176. The lines representing either resistances, inductances, or capacities in the circuit follow each other in all cases as do the resistances, inductances, and capacities in the circuit, each line having its appropriate direction and magnitude.
    

    Fig. 177.

    Example.-A circuit (Fig. 177) contains a resistance, $R_{1}$, of 15 ohms a capacity, $C_{1}$, of 100 microfarads (. 000100 farad), a resistance, $R_{3}$, of 12 ohms. an inductance $L_{1}$, of . 05 henrys, and a resistance $R_{3}$, of 20 ohms. Find the impedance and electromotive force when a current of 2 amperes is sent through the circuit, and the current when an e.m.f. of 120 volts is impressed on the circuit frequency being taken as 60. Also find the angle of lag. the power factor, and the power in the circuit when 120 volts are impressed.

    The resistance is represented in Fig. 178 by the horizontal line $a b, 15$ units long. The capacity is represented by the line $b c$, drawn downwards from $b$. and whose length is

    $$
    \frac{1}{2 \pi f C_{1}}=\frac{1}{2 \times 3.1416 \times 60 \times .0001}=26.55
    $$

    

    From the point $c$ a horizontal line $c d, 12$ units long, is drawn to represent $R_{2}$. From the point $d$ the line de is drawn vertically upwards to represent the inductance $L_{1}$. Its length is

    $$
    2 \pi f L_{1}=2 \times 3.1416 \times 60 \times .05=18.85
    $$

    From the point $e$ a horizontal line ef, 20 units long; is drawn to represent $R_{3}$. The line joining $a$ and $f$ will represent the impedance of the circuit in ohms. The angle $\theta$, between $a b$ and $a f$, is the angle of lag of the e.m.f. behind the current. The impedance in this case is 47.5 ohms , and the angle of lag is $9^{\circ} 15^{\prime}$.

    The e.m.f. when a current of 2 amperes is sent through is

    $$
    I Z=E=2 \times 47.5=95 \text { volts. }
    $$

    If an e.m.f. of 120 volts be impressed on the circuit, the current flowing through will be

    $$
    I=\frac{120}{Z}=\frac{120}{47.5}=2.53 \text { amperes. }
    $$

    The power factor $=\cos \theta=\cos 9^{\circ} 15^{\prime}=.987$.
    The power in the circuit at 120 volts is
    $I \times E \times \cos \theta=2.53 \times 120 \times .987=299.6$ watts.
    2. Parallel Circuits.-If two circuits be arranged in parallel, the current flowing in each circuit will be inversely proportional to the impedance of that circuit. The e.m.f. of each circuit is
    

    Fig. 179. the e.m.f. across the terminals at either end of the main circuit. where the various branches separate. Consider a circuit, Fig. 179, consisting of two branches. The first branch contains a resistance $R_{1}$ and an inductance $L_{1}$ in series with it. The second branch contains a resistance $R_{2}$ in series with an inductance $L_{2}$. The impedance of the circuit may be determined by treating each of the two branches as a separate series circuit, and drawing the impedance polygon for each branch on that assumption. Having found the impedance the current flowing in either branch will be the reciprocal of the impedance multiplied by the e.m.f. across the terminals. The current in the entire circuit is the geometrical sum of the current in the two branches.

    The admittance of the equivalent simple circuit may be obtained by drawing a parallelogram, two of whose adjoining sides are made parallel to the impedance lines of each branch and equal to the two admittances respectively.

    The diagonal of the parallelogram will represent the admittance of the equivalent simple circuit. The admittance multiplied by the e.m.f. gives the total current in the circuit.

    Example.-Given the circuit in Fig. 180, consisting of two branches. Branch 1 consists of a resistance $R_{1}=12$ ohms, an inductance $L_{1}=.05$ henry, a resistance $R_{2}=4$ ohms, and a capacity $C_{1}=120$ microfarads (.00012 farad). Branch 2 consists of an inductance $L_{2}=.015$ henry, a resistance $R_{3}=10$ ohms, and an inductance $L_{3}=.03$ henry. An e.m f. of 100 volts is impressed on the circuit at a frequency of 60 . Find the ad-
    mittance of the entire circuit, the current, the power factor, and the power in the circuit. Construct the impedance polygons for the two branches
    

    Frg. 180.
    separately as shown in Fig. 181, $a$ and $b$. The impedance in branch 1 is 16.4 ohms, and the current is $\frac{1}{16.4} \times 100=6.19$ amperes. The angle of
    
    iead of the current is $12^{\circ} 45^{\prime}$. The impedance in branch 2 is 19.5 ohms and the current is $\frac{1}{19.5} \times 100=5.13$ amperes. The angle of lag of the current is $61^{\circ}$.

    The current in the entire circuit is found by taking the admittances of the two branches, and drawing them from the point $o$, in Fig. $181 c$, parallel to the impedance lines in their respective polygons. The diagonal from o is the admittance of the entire circuit, and in this case is equal to 0.092 . The current in the circuit is $.092 \times 100=9.2$ amperes. The power factor is 0.944 and the power in the circuit is $100 \times .944 \times 9.2=868.48$ watts.

    Selfinductance of Lines and Circuits. - The following formulw and table, taken from Crocker's "Electric Lighting," give a method of calculating the self-inductance of two parallel aerial wires forming part of the same circuit and composed of copper, or other non-magnetic material.

    $$
    \begin{aligned}
    & L \text { per foot }=\left(15.24+140.3 \log \frac{2 A}{d}\right)_{10^{-9}} \\
    & L \text { per mile }=\left(80.5+740 \log \frac{2 A}{d}\right) 10^{-6}
    \end{aligned}
    $$

    in which $L$ is the inductance in henrys of each wire, $A$ is the interaxial distance between the two wires, and $d$ is the diameter of each, both in inches. If the circuit is of iron wire, the formule become

    $$
    \begin{aligned}
    & L \text { per foot }=\left(2286+140.3 \log \frac{2 A}{d}\right) 10^{-9} \\
    & L \text { per mile }=\left(12070+740 \log \frac{2 A}{d}\right) 10^{-8}
    \end{aligned}
    $$

    INDUCTANCE, IN MILLIHENRYS PER MILE, FOR EACH OF TWO PARALLEL COPIER WIRES.

    | . | American Wire Gauge Number |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\stackrel{B}{A}$ | 0000 | 000 | 00 | 0 | 1 | 2 | . 3 | 4 | 6 | 8 | 10 | 12 |
    | 3 | 0.907 | 0944 | 0.982 | 1.019 | 1.056 | 1.094 | 1131 | 1.168 | 1.243 | 1.317 | 1.392 | 1.467 |
    | 6 | 1.130 | 1168 | 1.205 | 1.242 | 1.280 | 1317 | 1.354 | 1.392 | 1.466 | 1.540 | 1.615 | 1.690 |
    | 9 | 1260 | 1.298 | 1.335 | 1372 | 1410 | 1.447 | 1.485 | 1.522 | 1.596 | 1.671 | 1.746 | 1.820 |
    | 12 | 1.353 | 1.391 | 1.428 | 1.465 | 1.502 | , 1540 | 1577 | 1.614 | 1.689 | 1.764 | 1.838 | 1.913 |
    | 18 | 1.484 | 1.521 | 1.558 | 1.596 | 1.633 | 1.671 | 1.708 | 1.744 | 1.820 | 1894 | 1.968 | 2.044 |
    | 24 | 1.576 | 1.614 | 1651 |  | 1.725 | 1.764 | 1.800 | 1.838 | 1.912 | 1.986 | 2061 | 2.135 |
    | 30 | 1.648 | 1686 | 1723 | 1.760 | 1.797 | 1.835 | 1871 | 1910 | 1.984 | 2.058 | 2.134 | 2.208 |
    | 36 | 1707 | 1745 | 1.784 | 1.818 | 1.856 | 1893 | 1.931 | 1.968 | 2.043 | 2.117 | 2.192 | 2.266 |
    | 48 | 1.799 | 1836 | 1.874 | 1.911 | 1.949 | 1.986 | 2023 | 2.061 | 2135 | 2.209 | 2.285 | 2.359 |
    | 60 | 1.871 | 1909 | 1.946 | 1.982 | 2.023 | 2.058 | 2.095 | 2132 | 2.208 | 2.282 | 2.356 | 2.432 |
    | 72 | 1.930 | 1968 | 2.005 | 2.042 | 2.079 | 2116 | 2.154 | 2.192 | 2266 | 2.340 | 2.415 | 2.489 |
    | 84 96 | 1.971 | 2.016 | 2.053 | 2.092 | 2128 | 2166 | 2.203 | 2.240 | 2.312 | 2.389 | 2.464 | 2539 |
    | 96 | 2023 | 2.059 | 2.097 | 2.134 | 2.172 | 2.210 | 2.246 | 2.283 | 2358 | 2.433 | 2.507 | 2.582 |

    Capacity of Conductors.-All conductors are included in three classes, viz. 1. Insulated conductors with metallic protection: 2. Single aerial conductor with earth return; 3. Metallic circuit consistirg of two parallel aerial wires. The capacity of the lines may be calculated by means of the following formulæ taken from Crocker's "Electric Lighting ":

    Class 1. $\quad C$ per foot $=\frac{736!k 10^{-15}}{\log (D \div d)}, \quad C$ per mile $=\frac{38.83 k 10^{-9}}{\log (D \div d)}$.
    Class 2. $C$ per foot $=\frac{7361 \times 10^{-15}}{\log (4 h \div d)}, \quad C$ per mile $=\frac{38.83 \times 10^{-9}}{\log (4 h \div d)}$.
    Class 3. $\left\{\begin{array}{l}C \text { per foot of each wire }=\frac{3681 \times 10^{-15}}{\log (2 A \div d)}, \\ C \text { per mile of each wire }=\frac{19.42 \times 10^{-9}}{\log (2 A \div d)}\end{array}\right.$
    In which $C$ is the capacity in farads. $D$ the internal diameter of the metallic covering, $d$ the diameter of the conductor, $h$ the height of the conductor above the ground, and $A$ the interaxial distance between two parallel wires. all in mehes: $k$ is a dielectric constant which for air is equal to i and fr, pure rubber is equal to 2.5. The formulx in cases 2 and 3 assume the wires to be bare. If they are insulated, $k$ nust be introduced in the numerator and given a value slightly greater than 1.

    Single-phase and Polyphase Currents.-A single-phase cuirent ss a simple alternating current carried on a single pair of wires, and is generated on a machine having a single armature winding. It is represented by a single sine curve.

    Polyphase currents are known as two-phase, three-phase, six-phase, or any other number, and are represented by a corresponding number of sine curves. The most commonly used systems are the two-phase and threephase.

    1. Two-phase Currents. - In a two-phase system there are two singlephase alternating currents bearing a definite time relation to each other and represented by two sine curves (Fig. 182). The two separate currents
    

    Fig. 182. may be generated by the same or by separate machines. If by separate machines, the armatures of the two should be positively coupled together. Two-phase currents are usually generated by a machine with two armature windings, each winding terminating in two collector rings. The two windings are so related that the two currents will be $90^{\circ}$ apart. For this reason twophase currents are also called "quarter-phase" currents.

    Two-phase currents may be distributed on either three or four wires. The three-wire system of distribution is shown in Fig. 183. One of the return wires is dispensed with, connection being made across to the other as shown. The common return wire should be made 1.41 times the area of either of the other two wires, these two being equal in size.
    

    Fig. 183.
    

    Fig. 184.

    The four-wire system of distribution is shown in Fig. 184. The two phases are entirely independent, and for lighting purposes may be operated as two single-phase circuits.
    2. Three-phase Currents.-Three-phase currents consist of three alternating currents, differing in phase by $120^{\circ}$, and represented by three sine curves, as in Fig. 185. They may be distributed by three or six wires. If distributed by the six-wire system, it is anatogous to the four-wire, twophase system, and is equivalent to three single-phase circuits. In the three-wire system of distribution the circuits may be connected in two different ways, known respectively as the $Y$ or star connection, and the $\Delta$ (delta) or mesh connection.
    

    Fig. 185.
    

    Fig. 186.

    The Y connection is shown in Fig. 186. The three circuits are joined at the point $o$, known as the neutral point, and the three wires carrying the current are connected at the points $a, b$, and $c$, respectively. If the three circuits $a o$, bo, and co are composed of lights, they must be equally loaded or the lights will fluctuate. If the three circuits are perfectly balanced, the lights will remain steady. In this form of connection each wire may be considered as the return wire for the other two. If the three circuits are unbalanced, a return wire may be run from the neutral point $o$ to the neutral point of the armatare winding on the generator. The system will then be four-wire, and will work properly with unbalanced circuits.

    The $\Delta$ connection is shown in Fig. 187. Each of the three circuits $a b, a c, b c$, receives the current due to a separate coil in the armature winding. This form of connection will work properly even if the circuits are unbalanced; and if the circuit contains lamps, they will not fluctuate when the circuit changes from a balanced
    

    Fig. 187. to an unbalanced condition, or vice versa.

    MEasurement of Power in Poiyphase circuits.-1. Twophase Circuits. -The power of two-phase currents distributed by four wires may be measured by two wattmeter introduced into the circuit as shown in Fig. 184. The sum of the readings of the two instruments is the total power. If but one wattmeter is available, it should be introduced first in one circuit, and then in the other. If the current or e.m.f. does not vary during the operation, the result will be correct. If the circuits are perfectly balanced, twice the reading of one wattmeter will be the total power.

    The power of two-phase currents distributed by three wires may be measured by two wattmeter as shown in Fig. 183. The sum of the two readings is the total power. If but one wattmeter is available, the coarsewire coil should be connected in series with the wire of and one extremity of the pressure-coil should be connected to some point on of. The other end should be connected first to the wire $a$ and then to the wire $d$, a reading being taken in each position of the wire. The sum of the readings gives the power in the circuits.
    2. Three-phase Currents. - The power in a three-phase circuit may be measured by three wattmeters, connected as in Fig. 188 if the system is $Y$-connected, and as in Fig. 189 if the system is $\Delta$-connected. The sum
    

    Fig. 188.
    

    Fig. 189.
    of the wattmeter readings gives the power in the system. If the circuits are perfectly balanced, three times the reading of one wattmeter is the total power.

    The power in a $\Delta$-connected system may be measured by two wattmeters, as shown in Fig. 190. If the power factor of the system is greater than 0.50 , the arithmetical sum of the readings is the power in the circuit. If the power factor is less than 0.50 , the arithmetical difference of the reading is the power. Whether the power factor is greater or less than 0.50 may be discovered by interchanging the wattmeter without disturbing the
    relative conncction of their coarse- and fine-wire coils. If the deflections of
    

    Fig. 190. the needles are reversed, the difference of the readings is the power. If the needles are deflccted in the same direction as at first, the sum of the readings is the power.

    Alternating-current Genera= tors.-These differ little from directeurrent generators in many respects. Any direct-current generator, if provided with collector rings instead of a commutator. could be used as a single-phase alternator, The frequency would in most cases, however, be too low for any practical use. The fields of alternators are always separately excited; the machines are sometimes compounded by shunting some of their own current around the fields through a rectifying device which changes the current to pulsating direct current. In all large machines the armature is stationary and the field-magnets revelve.

    ## TREANSFORILERS, CONVEPTERS, ETC.

    Transformers. - A transformer consists essentially of two coils of wire, one coarse and one fine, wound upon an iron core. The function of a transformer is to convert electrical energy from one potential to another. If the transformer causes a change from high to low voltage, it is known as a "step-down" transformer; if from low to high voltage, it is known as a "step-up" transformer.

    The relation of the primary and secondary voltages depends on the number of turns in the two coils. Transformers may also be used to change current of one phase to current of another phase. The windings and the arrangement of the transformers must be adapted to each particular case. In Fig. 191 an arrangement is shown whereby two-phase currents may be converted into three-phasc. Two transformers are required, one having its primary and secondary coils in the relation of 100 to 100 , and the other having its primary and secondary in the rclation of 100 to 86. The secondary of the $100-$ to- 100 transformer is tapped at its middle point and joined to one terminal of the other secondary. Between any pair of the three remaining terminals of the secondaries there will exist a difference of potential of 50 .
    

    Fig. 191.

    There are two sources of loss in the transformer, riz., the copper loss and the iron loss. The copper loss is proportional to the square of the current, being the $I^{2} R$ loss due to heat. If $I_{1}, R_{1}$, be the current and resistance respectively of the primary, and $I_{2}, R_{2}$, the current and resistance respectively of the secondary, then the total copper loss is $W C=I_{1}{ }^{2} R_{1}+I_{2}{ }^{2} R_{2}$ and the percentage of copper loss is $\frac{I_{1}{ }^{2} R_{1}+I_{2}{ }^{2} R_{2}}{W_{p}}$, where $W_{p}$ is the energy delivered to the primary. The iron loss is constant at all loads, and is due to hysteresis and eddy currents.

    Transformers are sometimes cooled by means of forced air or water currents or by immersing them in oil, which tends to equalize the temperature in all parts of the transformer.

    Efficiency of Transformers.- The efficiency of a transformer is the ratio of the output in watts at the secondary terminals to the input at the primary terminals. At full load the output is equal to the input less the iron and copper losses. The full-load efficiency of transformers is usually yery high, being from 92 per cent. to 98 per cent. As the copper loss varies as the square of the load, the efficiency of a transformer varies considerably at different loads. Transformers on lighting circuits usually operate at full
    load but a very small part of the day, though they use some current all the time to supply the iron losses. For transformers operated only a part of the time the "all-day" efficiency is more important than the full-load efficiency. It is computed by comparing the watt-hours output to the watt-hours input.

    The all-day efficiency of a $10-\mathrm{K} . \mathrm{W}$. transformer, whose copper and iron losses at full load are each 1.5 per cent, and which operates 3 hours at full load, 2 hours at half load, and 19 hours at no load, is computed as follows:

    $$
    \begin{aligned}
    & \text { Iron loss, all loads }=10 \times .015=.15 \mathrm{~K} . \mathrm{W} . \\
    & \text { Copper loss, full load }=10 \times .015=.15 \mathrm{~K} . \mathrm{W} . \\
    & \text { Copper loss, } 1 / 2 \text { load }=.15 \times\left(\frac{1}{2}\right)^{2}=.0375 \mathrm{~K} . \mathrm{W} . \\
    & \text { Iron loss K.W. hours }=.15 \times 24=3.6 . \\
    & \text { Copper loss, full load, K.W. hours }=.15 \times 3=.45 . \\
    & \text { Copper loss, } 1 / 2 \text { load, } \mathrm{K} . \mathrm{W} . \text { hours }=.0375 \times 2=.075 . \\
    & \text { Output.K.W. hours }=\{(10 \times 3)+(5 \times 2)\}=40 . \\
    & \text { Input, K.W. hours }=40+3.6+.45+.075=44.125 . \\
    & \text { All-day efficiency }=40 \div 44.125=.907 .
    \end{aligned}
    $$

    The transformers heretofore discussed are constant-potential transformers and onerate at a constant voltage with a variable current. For the operation of lamps in series a constant-current transformer is required There are a number of types of this transformer. That manufactured by the General Electric Co. operates by causing the primary and sccondary coils to approach or to separate on any change in the current.

    Converters, etc.-In addition to static transforiners, various machines are used for the purpose of changing the voltage of direct currents or the voltage. phase or frequency of alternating currents, and also for changing alternating currents to direct or vice versa. These machines are all rotary and are known as rotary converters, motor-dynamos. and dynamotors.

    A rotary converter consists of a field excited by the machine itself, and an armature which is provided with both collector rings and a commutator. It receives direct current and changes it to alternating, working as a direct-current motor, or it changes alternating to direct current. working as a synchronous motor.

    A motor-dynamo consists of a motor and a dynamo mounted on the same base and coupled together by a shaft.

    A dynamotor has one field and two armature windings on the same core. One winding performs the functions of a motor armature. and the other those of a dynamo armature.

    A booster is a machine inserted in series in a direct-current circuit to change its voltage. It may be driven either by an electric motor or otherwise

    ## ALTERNATING-CURRENT MOTORS.

    Symehronous Motors.-Any alternator may be used as a motor. provided it be brought into synchronism with the generator supplying the current to it. The operation of the alternating-current motor and generator is similar to the operation of two generators in parallel. It is necessary to supply direct current to the field. The field circuit is left open until the machine is in phase with the generator If the motor has the same nunber of poles as the generator. it will run at the same speerl; if a different nunıber the speed will be that of the generator multiplied by the ratio of the number of poles of the motor to that of the generator. Single-phase, synchronous motors are not self-starting. Polyphase motors may be made self-starting but it is better to bring the machines to speed by independent means before supplying the current. The machines may be started by a small induction motor, the load on the synchronous motor being thrown off, or the field may be excited by a small direct-current generator belted to the motor, and this generator may be used as a motor to start the machine, current to run it being taken from a storage battery. If the field of a synchronous motnr be properly regulated to the load, the motor will exercise no inductive effect on the line, and the power factor will be 1. If the load varies the current in the motor will either lead or lag behind the e.mf. and will vary the power factor. If the motor be overloader so that there is a diminution of speed the motor will fall out of step with the generator and stop.

    Synchronous motors are often put on the same circuit with induction motors. The synchronous motor in this case may, by increasing the field excitation, be made to cause the current to lead, while the induction motor
    will cause it to lag. The two effects will thus tend to balance each other and cause the power factor of the circuit to approach 1.

    Synchronous motors are best used for large units of power at high voltages, where the load is constant and the speed invariable. They are unsatis. factory where the required apced is variable and the load changes. Two great disadvantages of the synchronous motor are its inability to start under load. and the necessity of direct-current excitation.

    Induction Motors. - The distinguishing feature of an induction motor is the rotating magnetic field. It is thus explained: In Fig 192 let $a b, c d$ be two pairs of poles of a motor, $a$ and $b$ being wound from
    

    Fig. 192. one leg or pair of wires of a two phase alternating circuit, and $c$ and $d$ from the other leg, the two phases being $90^{\circ}$ apart. At the instant when $a$ and $b$ are receiving maximum current. so as to make $a$ a north pole and $b$ a south pole, $c$ and $d$ are demagnetized, and a needle placed between the poles would stand as shown in the cut. Dur. ing the progress of the cycle of the current the magnetic flux at $a$ decreases and that at $c$ increases causing the point of resultant maximum intensity to shift, and the needle to move clockwise toward $c$. A complete rotation of the resultant point is performed during each cycle of the current. An armature placed within the ring is caused to rotate simp!y by the shifting of the magnetic field without the use of a collector ring. The words "rotating magnetic field" "efer to an area of magnctic intensity and must be distinguished from the words "revolving field" which refer to the portion of the machine constituting the field-magnet.

    The field or "primary" of an incluction motor is that portion of the machine to which current is supplied from the outside circuit.

    The armature or "secondary" is that portion of the machine in which currents are induced by the rotating magnetic field. Either the primary or the secondary may revolve. In the more modern machines the secondary revolves., The revolving part is called the "rotor," the stationary nart the "stator." The rotor may be either of the rirg or the drum tvpe, the drum type being more common. A common type of armature is the "squirrelcage." It consists of a number of copper bars placed on the armature-core and insulated from it. A copper ring at each end connects the bars. The field windings are always so arranged that more than one pair of poles are produced. This is necessary in order to bring the speed down to a practical limit. If but one pair of poles were produced, with a frequency of 60 , the revolutions per minute would be 3600 .

    The revolving part of an induction motor does not rotate as fast as the field. except at no load When loaded, a slip is necessary, in order that the lines of force may cut the conductors in the rotor and induce currents therein. The current required for starting an induction motor of the squir-rel-cage type under full load is 7 or 8 times as great as the current for running at full-loar. A type of induction motor known as 'Form L.,' built by the General Electric Co., will start with the full load current, provided the starting torque is not greater than the torque when running at full load

    Induction motors should be run as near their normal primary e.m.f. as possible. as the output and tor que are directiy proportional to the square of the primary ptessure A machine which will carry an overload of $5 \%$ per cent at normal e.m.f. will hardly carry its full load at 80 per cent of the normal e.m.f.

    An induction motor exercises its greatest torque when standing still, and its least when running in synchronism with the rotating field. If it be overloaded it will slow down until the induced currents in the armature are sufficient to carry the load.

    ## ALTERNATING-CURRENT CERCUIES.

    Calculation of Alternatingecurrent Circuits.-The following formulae and tables are issued by the General Electric Co. They afford a convenient methorl of caiculating the sizes of conductors for, and determining the losses in. alternating-curıer, circuits. They apply to circuits in which the conductors are spaced 18 inches apart. but a slight increase or decrease in this distance does not alter the figures appreciably. If the conductors are less than 18 inches apart, the loss of voltage is decreased and vice versa.

    Let $W=$ total power delivered in watts;
    $D=$ distance of transmission (one way) in feet;
    $P^{*}=$ per cent loss of delivered power ( $W$ );
    $E=$ voltage between mair conductors at consumer's end of circuit;
    $K=$ a constant; for continuous current $=2160$;
    $T=$ a variable depending on the system and nature of the load; for continuous current $=1$ :
    $M=$ a variable, depending on the size of wire and the frequency; for continuous current $=1$;
    $A=\mathrm{a}$ factor; for continuous current $=6.04$.
    Area of conductor, circular mils $=\frac{D \times W \times K}{P \times E^{2}}$ :
    Current in main conductors $=\frac{W \times T}{E}$;
    Volts lost in lines $=\frac{P \times E \times M}{100}$;
    Pounds copper $=\frac{D^{2} \times W \times K \times A}{P \times E^{2} \times 1,000,000}$.
    The following tables give values for the various constants.

    | Per cent of Power Factor. | Value of $K$. |  |  |  | Value of $T$. |  |  |  | \% |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 100 | 95 | 85 | 80 | 100 | 95 | 85 | 80 |  |
    |  |  |  |  |  |  |  |  |  |  |
    | Single-phase . | 2160 | 2400 | 3000 | 3380 | 1.00 | 1.C5 | 1.17 | 125 | 6.04 |
    | Two-phase 4 -wire Three-phase, 3-wire | 1080 | 1200 | 1500 | 1690 | . 58 | . 61 | . 69 | . 62 | 1208 9.06 |

    Values of $M$

    |  |  | 25 Cycles. |  |  | 60 Cycles. |  |  | 125 Cycles. |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | $\begin{aligned} & \text { Lights only } \\ & \text { Power Factor } 95 \% \text {. } \end{aligned}$ |  | 8 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 |  |  |  |  |  | $\begin{aligned} & \text { Motors only } \\ & \text { Power Factor } 80 \% \end{aligned}$ |
    | 0000 | 211,600 | 1.23 | 1.33 | 1.34 | 1.62 | 1.99 | 2.09 | 235 | 3.24 | 3.49 |
    | 000 | 167805 | 1.18 | 1.24 | 124 | 1.49 | 1.77 | 1.95 | 2.08 | 2.75 | 294 |
    | 00 | 133,079 | 1.14 | 1.16 | 1.16 | 1.34 | 1.60 | 1.66 | 1.86 | 2.40 | 257 |
    | 0 | 105,592 | 1.10 | 1.10 | 1.09 | 1.31 | 1.40 | 1.49 | 1.71 | 213 | 225 |
    | 1 | 83.694 | 1.07 | 1.05 | 1.03 | 1.24 | 1.34 | 1.36 | 1.56 | 1.88 | 1.97 |
    | 2 | 66,373 | 1.05 | 1.02 | 1.00 | 1.18 | 1.25 | 1.26 | 1.45 | 1.76 | 1.77 |
    | 3 | 52,633 | 1.03 | 1.00 | 1.00 | 1.14 | 1.18 | 1.17 | 1.35 | 1.53 | 1.57 |
    | 4 | 41,742 33,102 | 1.02 | 1.00 1.00 | 1.00 | 1.11 | 1.11 | 1.10 | 1.27 | 1.40 | 1.43 |
    | ${ }_{6}^{5}$ | 33,102 26,250 | 1.00 | 1.00 | 1.00 1.00 | 1.08 | 1.1. 16 | 1.04 1.00 | 1.21 | 1.35 | 1.31 |
    | 7 | 20,816 | 1.00 | 1.00 | 1.00 | 1.03 | 1.00 | 1.00 | 1.15 | 1.14 | 1.13 |
    | 8 | 16,509 | 1.00 | 1.00 | 1.00 | 1.02 | 1.00 | 1.00 | 1.C9 | $1 . \mathrm{C} 9$ | 1.07 |


    ## Relative Weight of Copper Required in Different Systems for Equal Effective Voltages.

    

    The weight of copper is inversely proportional to the squares of the voltages, other things being equal. The maximum value of an alternating e.m.f. is 1.41 times its effective rating. For derivation of the above figures, see Crocker's Electric Lighting, vol. ii.

    STANDARD SHZES OF ELECTRICAL MLACHINES.
    (Chiefly Selected from Bulletins of the General Electric Co.)
    Direct-driven Direct-current Generators for Lighting and Power.

    | 125 or 250 Volts. |  |  |  |  |  |  | 275 Volts. |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Dimensions. |  |  | $\begin{aligned} & \dot{\omega} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$ |  |  |  | Dimensions |  |  |
    |  |  |  |  | A. |  | C. |  |  |  |  | A. | B. | C |
    | 6 | 25 | 305 | 3,500 | 40 | 48 | 21 | 10 | 300 | 150 | 40,000 | 1 |  | 40 |
    | 6 | 35 | 300 | 4,600 | 4: | $5 \%$ | $2: 3$ | 10 | 400 | 150 | 55,000 | 132 | 145 | 41 |
    | 6 | 50 | 280 | 6,250 | 46 | 53 | 26 | 10 | 400 | 120 | 62,000 | 135 | $14 \%$ | 42 |
    | 6 |  | 270 | 8,800 | 55 | 66 | 26 | 14 | 550 | 100 | 82,000 | 152 | 180 | 42 |
    | 6 | 100 | 270 | 11,200 | 58 | 71 | 28 | 18 | 800 | 100 | 95,000 | 173 | 206 | 44 |
    | 8 | 160 | 230 | 15,000 | 67 | 85 | 30 | 18 | 1,000 | 100 | 115,000 | 178 | 21:2 | 46 |
    | 8 | 160 | 150 | 21,000 | 79 | 96 | 35 | 24 | 1,600 | 100 | 175,000 | 264 | 258 | 54 |
    | 8 | 200 | 1200 | 22,000 | 79 | 96 | 35 |  |  |  |  |  |  |  |
    | 8 |  | 150 | 30,000 | 85 | 112 | 37 |  |  |  |  |  |  |  |
    | Direct-connected Direct-eurrent llailway Generators. Forn H. 575 Volts. |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | $\begin{aligned} & \dot{0} \\ & \stackrel{W}{0} \\ & 0 \end{aligned}$ | 去 |  | 感0.800 | Dimensions. |  |  |  | $\dot{y}$ |  |  | Dimensions. |  |  |
    |  |  |  |  | A. | B | C. |  |  |  |  | A. | B. | C. |
    | 6 | 100 | 275 | 15,000 | 81 | 95 | 28 | 10 | 500 | 100 | 96,000 | 160 | 178 | 48 |
    | 6 | 150 | 200 | 29,000 | 99 | 114 | 35 | 10 | 500 | 90 | 110,000 | 161 | 180 | 50 |
    | 6 | $\because 00$ | 200 | 39,000 | 116 | 133 | 37 | 10 | 500 | 80 | 118,000 | $16:$ | 180 | 51 |
    | 6 | 200 | 150 | 50,000 | 119 | 136 | 41 | 12 | 650 | 90 | 117,000 | 173 | 188 | 48 |
    | 6 | 200 | . 120 | 58,000 | 121 | 140 | 48 | 12 | 800 | 120 | 113.000 | 173 | 188 | 48 |
    | 8 | 300 | 150 | 55,000 | 125 | 141 | 41 | 14 | 800 | 100 | 118,000 | 186 | 200 | 46 |
    | 8 | 300 | 120 | 65,000 | 129 | 145 | 45 | 14 | 800 | 80 | 135,000 | 187 | 201 | 48 |
    | 8 | 300 | 100 | 75,000 | 130 | 146 | 48 | 16 | 1,000 | 80 | 150,000 | 187 | 209 | 50 |
    | 8 | 400 | 150 | 68,000 | 132 | 148 | 45 | 18 | 1.200 | 80 | 156,000 | 196 | 221 | 48 |
    | 8 |  | 120 | 79,000 | 135 | 150 | 48 | 22 | 1,600 | \% 5 | 180,000 | $\underline{2}: 30$ | 245 | 48 |
    | 8 | 100 | 100 | 90,000 | 138 | $15 \cdot$ | 50 | 26 | $\because .000$ | 75 | 188,000 | 285 | 312 | 52 |
    | 10 | 500 | 1:0 | 81,000 | 145 | 154 | 45 | 28 | 2,400 | 75 | 225,000 | 320 | 364 | 52 |

    Dimensions in inches: A, height of frame above floor. B, diameter of frame at base. C, width of frane base.

    STANDARD SIZES OF ELECTRICAI, MACIINES. 10ヶ5
    Relted Generators. Componnd-or Slrunt-vvound. Typer ©

    | Pcles. | Kw. | Speed. | $\operatorname{Amp}_{(a)} .$ | $\operatorname{Amp}_{(b)}$ | Weight, Lbs. | Dimensions, Inches.* |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  |  |  | A. | B. | C. | D. | E. |
    | $\stackrel{2}{2}$ | 11/2 | 1,350 2,100 | $\begin{aligned} & 12 \\ & 18 \end{aligned}$ | $6$ | \} 345 | 28 | 17 | 16 | 5 | 4 |
    | $\stackrel{2}{2}$ | 214 | 1,350 | 18 | 9 | ) 155 |  |  |  |  |  |
    | 2 | 334 | 2,100 | 30 | 15 | \} 455 | 31 | 20 | 20 | 5 | 41/2 |
    | $\stackrel{\sim}{\square}$ | 334 | 1.350 | 30 | 15 | \} 630 |  |  |  |  |  |
    | $\stackrel{2}{4}$ | $51 / 2$ $51 \%$ | 1,8i5 | 44 | $2 \cdot$ | \} 630 | 33 | 22 | 21 | 5 | 41. |
    | 4 | 51/8 | 1,050 1,625 | 44 | 23 30 3 | \} $8 \pi 0$ | 38 | 26 | 24 | $73 / 4$ | 6 |
    | 4 | r1/2 | 1,850 | 60 | 30 | , 1, 10 |  |  |  | \% |  |
    | 4 | $11^{2}$ | 1,300 | 88 | 44 | \} 1,240 | 41 | 32 | 27 | 93/4 | 7 |
    | 4 | 11 15 | 880 1,300 | 88 120 | 44 60 | \} 1,660 | 49 | 33 | 30 | 10 | 81/2 |
    | 4 | 15 | 1,300 | $1 \sim 0$ |  |  |  |  |  |  | 8 |

    (a) Full load, 1:5 volts; no load voltage, 120. (b) Full load, 250 volts; no loud voltage, 240.
    Belted Generators. Slow Speed. Form $\mathbf{I I}$ (Four Poles).

    | Kw. | Speed. | Amperes, full load. |  |  | Weight, $\dagger$ L.bs. | Dimersions, Inches.* |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | 125 V | 250 V. | 500 V. |  | A. | B. | C. | D. | E. |
    | 61/2 | 950 | 59 | 26 | 13 | 1,030 | 38 | 36 | 26 | 11 | 41/4 |
    | 131/2 | 900 | Te | 36 | 18 | 1,435 | 43 | 40 | 49 | 111/2 | 61 |
    | 17 | - | 108 | 54 | 27 | 1,900 | 50 | 44 | 33 | 1:1/4 | 81/ |
    | 20 | r00 | 130 | 88 | 40 | 2,665 | $5{ }^{2}$ | 46 | 35 | 133/4 | 81 |
    | 30 | $6 i 5$ | 240 | 120 | 60 | 4,935 | 61 | 53 59 59 | 39 | 15 | 101/2 |
    | 40 | 605 | 320 | 160 | 80 | 5,690 | $\stackrel{68}{7}$ | ${ }_{6} 6$ | 46 | 201/3 |  |
    | 50 | 600 | 400 | 200 | 100 | 7,140 | \% ${ }^{18}$ | $6{ }^{6}$ | 49 | 2.3 23 23 | 151/2 |
    | \% | 550 | 600 | 300 | 150 | 8,800 | 92 | 68 | 56 | $\stackrel{2}{2}$ | $181 / 3$ 2419 |

    Direct-current Motors. Type CE.

    | H.P. | Speed (Shunt-wound). |  |  |  | Weight, Lbs. | Dimensions, Inches.* |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 110 V | 115 V. | 125 V. | 500 V |  | A. | B. | C. | D. | E. |
    | $\stackrel{2}{3}$ | 1,000 | 1,0:5 | 1,075 | 1,200 | \} 335 |  |  |  |  |  |
    | 3 3 3 | 1,600 | 1,150 | 1.840 $1.0 \sim 5$ | 1,800 | \} 335 | 28 | 17 | 20 | 5 | 4 |
    | 3 | 1,000 | 1,025 | 1,0i5 | 1,200 1,800 | \} 465 | 31 | 20 | 20 | 5 | 41/2 |
    | 5 | , 975 | 1,000 | 1,050 | 1,250 | \} 540 | 33 |  |  |  |  |
    | 7112 | 1,490 1,95 | 1,525 | 1,660 860 | 1,650 1,000 | \} 540 | 33 | 22 | 21 | 5 | 41/2 |
    | $10^{2}$ | 1,220 | 1,250 | 1,310 | 1,500 | \} 800 | 38 | 26 | 21 | 734 | 6 |
    | 10 | 635 | 6550 | 685 | - 800 | \} 1,150 |  |  |  |  |  |
    | 15 15 | 975 665 | 1,000 690 | $1,0.50$ 750 | 1,200 | $\{1,150$ | 41 | 32 | 27 | 93/4 | 7 |
    | 20 | 1,000 | 1,040 | 1,125 | 1,125 | \} 1,400 | 49 | 33 | 30 | 10 | 81, |

    Speeds for 220,230 , and 250 volts are the same as for 110,115 , and 125 volts.


    ## STANDARD BELTED MOTORS AND GENERATORS.

    (Crocker-Wheeler Electric Co., 1898.)

    | $\dot{\dot{\sim}}$ | $\left\|\begin{array}{c} \dot{d} \\ \frac{0}{0} \\ 0 \\ 0 \\ \dot{Z} \end{array}\right\|$ | Output. |  |  |  | Efficiency. |  |  | Outside Dimensions in inches. Net Over All. |  |  | Size of Pulley. |  | 0 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Motor. |  | Dynamo. |  |  |  |  |  |  |  |  |  |
    |  |  | $\begin{aligned} & \text { Bi } \\ & \stackrel{ت}{1} \end{aligned}$ | $\stackrel{\otimes}{\otimes}$ | $\begin{aligned} & \text { B } \\ & \text { 2 } \end{aligned}$ |  |  |  |  |  |  | $\begin{aligned} & \text { B } \\ & 0 \\ & 0 \end{aligned}$ | $\stackrel{\dot{\tilde{y}}}{\stackrel{\rightharpoonup}{\square}}$ | $\begin{gathered} \dot{\mathscr{U}} \\ \dot{\Sigma} \\ \dot{E} \end{gathered}$ | W |
    | 225 | 4 | 225 | 400 | 200 | 450 | 88 | 93 |  | 3000 | 133 | $733 / 4$ | $6{ }^{6}$ | 38 | , | 45 |
    | 150 | 6 | 150 | 400 | 130 | 450 | 85 | 92 | 11300 | 851/2 | 651/8 |  | 32 | 23 | 45 |
    | 100 | 4 | 100 | 600 | 90 | 650 | 88 | 92 | 11000 | 785\% | 581/4 | 513/4 | 23 | 16 | 45 |
    | 85 | 4 | 75 | $6: 5$ | 60 |  | 90 | 92 | 6500 | 693/4 | 5214 | 4612 | 20 | 14 | 45 |
    | 50 | 4 | 50 | 650 | 45 |  | 89 | 911 | 4500 | 6112 | 461 | 42 | 17 | 12 | 45 |
    | 35 | 4 | 35 | 700 | 31.5 | 750 | 88 | 91 | 3350 | 547\% | 4014 | 201/4 | 15 | 11 | 45 |
    | 25 | 4 | 25 | 750 | 23.5 |  | 86 | 881/2 | 2400 | 467\% | 365\% | 33 | 13 | 9 | 45 |
    | 15 | 4 | 15 | 800 | 13 | 900 | 821/2 | 88 | 1510 | 41 | 3112 | 283/4 | 11 | 8 | 45 |
    | 10 | 2 | 10 | 850 | 10 | 1000 | $8{ }^{8}$ | 87 | 920 | 361/4 | $253 / 4$ | 2:314 |  | 7 |  |
    | 712 | 2 | 712 | 900 | 7.5 | 1050 | 8.3 | 86 | \% 60 | 33 | 2312 | 2114 | 8 | 6 | 45 |
    |  | \% | 5 | 950 | 5 | 1100 | 82 | 85 | 510 | 281 | $218 / 8$ | 1914 | 7 | 5 | 45 |
    | 3 | 2 | $\stackrel{3}{ }$ | ${ }^{975}$ | 3 | 1175 | 80 | 841/2 | 410 | 265 | 185\% | 1614 | 6 | $41 / 4$ | 45 |
    | 2 | 2 | 2 | 1000 | 2 |  | 75 | 89 | 288 | $2: 1 \%$ | 153/4 | 1414 | 5 | 4 | 45 |
    | 1 | , | 1 | 1000 | 1 | 1300 | 76 | 81 | 205 | 1914 | 15 | 1314 | 4 | $31 / 2$ | 4 |
    |  | a | 1 | 1200 | .5 | 1600 | 67 | ${ }_{7}^{75}$ | 100 | 173 | 123 | 10 | 3 | 3 | 45 |
    |  | 2 |  | 1375 | 25 |  | 55 | \%3 | 60 |  | 105\% | 85/8 |  | 21 | 45 |
    | /6 | 2 |  | 1600 | . 11 | 2200 | 55 | 61 | 27 | 9\%/8 | 81/2 | 61 | 11 | 1 | 45 |

    ## Small Belted Dynamos and Motors (4-pole).

    (Crocker-Wheeler Co.)

    | Size. | Output. |  | Motor Speed. |  | Dynamo Speed. |  | $\mid$ | Dimensions, Inches. (See foot-note on p. 10\%~. |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | H.P. | Kw. | $11$ | 500 V . | $\begin{aligned} & 1 \% 5- \\ & 250 \mathrm{~V} . \end{aligned}$ | 550 V |  | A. | B. | D. | E. |
    | 3 \{ | 3 | $21 / 2$ $31 \%$ | $\begin{array}{r} 975 \\ 1,300 \end{array}$ | $\begin{aligned} & 1,100 \\ & 1,3 \% 5 \end{aligned}$ | $\begin{aligned} & 1,200 \\ & 1,600 \end{aligned}$ | $\begin{aligned} & 1,400 \\ & 1,750 \end{aligned}$ |  | 21 | 18 | 6 | 41/2 |
    |  | 5 | $41 \%$ | , 950 | 1,100 | 1,150 | 1,3\%5 |  |  |  |  |  |
    |  | 61/2 | $53 / 4$ | 1,150 | 1,350 | 1,400 | 1,\%00 | ) | 0 | 20 | \% | 5 |
    | 71/2 | $71 \%$ $91 \%$ | $61 / 2$ 818 | 875 1,100 | 1,1\% | 1,050 1,300 | 1,150 1,450 | \} 540 | 25 | 21 | 8 | 51/2 |
    |  | 976 | 8 |  |  | 1,300 | 1,450 |  |  |  |  | 52 |

    Bi-polar Dynamos and Motors. (Crocker-Wheeler Co.)

    | Size. | Output. |  | Iotor <br> Speed. |  | Dynamo Speed. |  | Net Weight, Lbs. | Pulley. |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | H.P. | Kw. | ${ }_{230}^{115-}$ | 500 V. | $\xrightarrow{1250} 5$ | 550 V . |  | Diam. | Face. |
    | 2 \{ | $\stackrel{2}{21 / 2}$ | 2 | 975 1,500 | 1,025 | 1,300 | 1,450 | 288 | 5 | 4 |
    | 1 \{ | 1 | 1 | 1,000 | 1,050 | 1,300 | 1,450 | 205 | 4 | 31/2 |
    | $1 / 2$ | 11/2 | 1/2 | 1,450 1,200 | 1,550 1,350 | 1,600 | 1,750 | 0 |  |  |
    | $1 / 4$ | $1 / 4$ |  | 1,400 | 1,600 | 1,800 | 1,950 | T0 | 3 | 21/4 |
    | 1/6 | 1/6 | 110 watts | 1,600 | 1,600 | 2200 |  | 27 | 111/2 | $1{ }^{1}$ |
    | 1/12 | 1/25 |  | 1,800 |  |  |  | 19 | $11 / 2$ | Grooved |

    ## Direct-connected Aiternators. (General Glectric Co.)

    25 Cycles.

    | Poles. | Kw | .P.M. | Poles. | K | R | Poles. | Kw. | R.P.M. | Poles. | Kw. | R.P.M. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 12 | T: | 250 | 24 | 360 | 125 | 28 | 810 | 107 | 3:3 | 1800 | 94 |
    | 12 | 108 | 250 | 28 | 360 | 107 | 32 | 810 | 91 | 40 | 1800 | 75 |
    | 14 | 160 | 214 | 20 | 540 | 150 | 24 | 1200 | 125 | 39 | 2700 | 94 |
    | 16 | 240 | 187.5 | 24 | 540 | 125 | 28 | 1200 | 107 | 40 | 2700 | 75 |
    | 20 | 210 | 150 | 28 | 540 | $10 \%$ | 32 | 1200 | 94 | 40 | 4080 | r 9 |
    | 20 | 360 | 150 | 24 | 810 | $1: 5$ | 28 | 1800 | 107 | 40 | 6000 | $\bigcirc$ |

    From 360 to 810 kw . the machines are wound for $3 \% 0$ volts ; from $\% 2$ to 810 kw . for 480 volts; from 810 to 6000 kw . for 2300 volts; and from 360 to 6000 kw. for 6600 and 13,300 volts.

    60 Cycles.

    | Poles. | Kw. | R.P.M. | Poles. | Kw. | R.P.M | oles. | Kw. | R.P.M | les. | Kw. | R.P.M. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | 2 | 72 | 276 | 56 | 360 | 128.5 | 60 | 810 | 120 | 80 | 1800 | 90 |
    | 28 | 108 | 257 | 64 | 360 | 112.5 | \%2 | 810 | 100 | 72 | 2700 | 100 |
    | 32 | 160 | 225 | 48 | 510 | 150 | 60 | 1200 | 120 | 84 | 2700 | 86 |
    | 36 | 240 | 200 | 56 | 540 | 128.5 | \%2 | 1200 | 100 |  |  |  |
    | 48 | 240 | 150 | 63 | 540 | 105 | 64 | 1800 | 112.5 |  |  |  |
    | 48 | 360 | 150 | 52 | 810 | 138.5 | 72 | 1800 | 100 |  |  |  |

    From ${ }^{2}: 2$ to 360 kw . the machines are wound for 240 volts; from $\gamma 2$ to 1200 kw . for 430 volts ; from 72 to $2 \pi 00 \mathrm{kw}$. for 2300 volts; from 540 to 2700 kw. some machines are wound for 6600 volts.

    The kw. ratings in the above table are based on the load that may be carried without a rise in temperature of any part exceeding $40^{\circ} \mathrm{C}$. above the surrounding atmosphere when running continuously with non-inductive full load. An overload of $25 \%$, non-inductive, may he carried for two hours without heating more than $55^{\circ} \mathrm{C}$. When full non inductive load is thrown off, with fixed normal excitation, the voltage will rise approximately $8 \%$. When full load with $80 \%$ power factor is thrown off, with fixed excitation, the rise will be approximately $20 \%$.

    A rating one-sixth less is given all machines for a rise of temperature not exceeding $35^{\circ} \mathrm{C}$. above surrounding atmosphere.

    Beltadriven Alternatingecurrent Generators. 60 Cycles.

    | Size. Kw . . . ............. 30 | 50 | 75 | 100 | 150 | 200 |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | No. of poles......... ...... 6 | 6 | 8 | 8 | 12 | 12 |
    | Speed, r.p.m . . . . . . . . . . . . . 1200 | 1200 | 900 | 900 | 600 | 600 |
    | Weight, with rails, lbs.... . 3000 | 3800 | 4750 | 5850 | 8100 | 9650 |
    | Floor-space with rails, ins. $51 \times 56$ | $58 \times 56$ | $68 \times 67$ | $74 \times 67$ | $80 \times 79$ | $87 \times 79$ |
    | Size of pulley, ins......... $16 \times 7$ | $16 \times 10$ | $21 \times 13$ | $21 \times 15$ | $32 \times 19$ | $32 \times 23$ |

    ## Induction Motors. 60 Cycles.

    

    * In direction of shaft, Form K motors. Forms L and M are 4 to 10 ins. wider.


    ## SYMBOLS USED IN CLECTIRICAE DEAGRAMIS．

    | $\begin{aligned} & \text { - ロ-SPST } \\ & \text { 口ロ-SPDT } \end{aligned}$ |
    | :---: |
    |  |  |
    |  |
    | －$\square^{\square}$ |
    | －『ローロPD |

    

    Galvanometer．
    

    Ammeter or Generator．Motor or Generator． or Generator．
    
    

    Shunt－wound Motor
    

    Inductive
    Resistance．
    

    Wittmeter
    

    Capacity or Condenser．

    Series－wound
    

    Two－phase Three－phase Generator．Generator．
    

    Battery
    

    Traus－ former．
    

    Compound－
    Separately wound Motor excited Motor or Generator．or Generator．

    ## APPENDIX.

    ## STRENGTHE OF THILEER.

    ## Safe Loads in Tons, Uniformly Distributed, for Whitem oak Heams.

    (In accordance with the Building Laws of Boston.)
    Formula: $W=\frac{4 P B D^{2}}{3 L}$.
    $W=$ safe loard in pounds ; $P$, extreme fibrestress $=1000$ lbs. per square iuch, for white oak; $B$. breadth in inches; $D$, depth in inches; $L$, distance between supports in inches.

    | بٌ | Distance between Supports in feet. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\checkmark$ | 6 | 8 | 10 | 11 | 12 | 14 | 15 | 16 | 17 | 18 | 19 | 21 | 23 | 25 | 26 |
    | Safe Load in Tons of 2000 Pounds. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | $2 \times 6$ $2 \times 8$ | 0.671 | 0.50 | 0.40 | 0.36 | . 3.3 | 0.29 | 0.27 | 0.25 | 0.24 | 0.22 |  |  |  |  |  |
    | $2 \times 10$ | 1.85 | 1.39 |  | 01 | 59 | . 1 |  |  | 0.42 |  |  |  | 0.31 | 0 |  |
    | $2 \times 12$ | 2.67 | 2.00 | 1.60 | 1.45 | 1.33 | 1.14 |  |  | 0.94 |  | 0.84 |  | . 78 |  | 0.43 |
    | $3 \times 6$ | 1.00 | 0.75 | 0.60 | 0.55 | 0.50 | 0.43 |  | 0.37 |  |  |  | 0.29 | 0.26 |  |  |
    | $3 \times 8$ | 1.78 | 1.33 | $1.0 \%$ |  | 0.89 | 0.16 | 0.71 | 0.67 | 0.63 | 0.59 | 0.56 | 0.51 | 0.46 | 0.43 | 41 |
    | $3 \times 10$ | 2.78 | 2.08 |  |  | 1.39 | 1.19 |  | 1.04 | 0.98 | 0.33 |  | 0.79 | 0. ${ }^{2}$ | 0.67 | 0.64 |
    | $3 \times 12$ | 4.00 | 3.00 |  |  |  |  |  | 1.50 | 1.41 | 1.33 |  | 1.14 | 1.04 | 0.96 | 0.92 |
    | $3 \times 14$ | 5.45 | 4.08 | 3.77 |  |  |  |  | 2.04 |  |  |  | 1.56 | 1.42 | 1.31 | 1.25 |
    | $3 \times 16$ | 7.11 | 5.33 | 4.27 | 3.88 |  |  |  | $\stackrel{7}{2}$ | 2.51 |  |  | 2.03 | 1.86 | 1.71 |  |
    | $4 \times 10$ | 3.70 | 2.78 | 2.22 | 3.02 | 1.85 |  |  | 1.39 | 1.31 | 1.28 | 1.15 | 1.06 | 1.97 | 0.89 | 1.85 |
    | $4 \times 12$ | 5.33 |  |  |  | 2.67 |  |  |  |  |  |  | 1.5 | 1.39 | 1.28 | 1.23 |
    | $4 \times 14$ | 7.26 | 5.44 | 4.36 | 3.96 | 3.63 | 3.11 | $2: 90$ | 2.72 | 2.56 |  |  |  | 1.90 | 1.74 | 1.68 |
    | $4 \times 10$ | 9.48 | 7.11 | 5.69 | 5.17 | 4.74 | 4.06 | 3.79 | 3.56 | 3.35 | 3.16 | 3.00 | 2.71 | 12.47 | 2.28 | 2.19 |
    | $4 \times 18$ | 12.00 | 9.00 |  | 6.55 | 6.00 |  |  |  |  |  |  |  | 3.13 | 2.88 | 2.77 |

    For other kinds of wood than white oak multiply the figures in the table by a figure selected from those given below (which represent the safe stress per square inch on beams of different kinds of wood according to the building laws of the cities named) and divide by 1000 .

    |  | Hemlock. | Spruce. | White pine. | Oak. | Yellow Pine. |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | New York. | 800 | 900 | 900 | 1100 |  |
    | Boston. |  | 750 | T50 | $1000 \dagger$ | 1250 |
    | Chicago. |  |  | 900 | 1080 | 1440 |

    ## MATHEIMATICS.

    ## Formula for Interpolation.

    $$
    { }^{a_{n}}=a_{1}+(n-1) d_{1}+\frac{(n-1)(n-2)}{1.2} d_{2}+\frac{(n-1)(n-2)(n-3)}{1.2 .3} d_{3}+\ldots
    $$ $a_{1}=$ the first term of the series; $n$, number of the required term; $a_{n}$, the required term; $d_{1}, d_{2}, d_{3}$, first terms of successive orders of differences between $a_{1}, a_{2}, a_{3}, a_{4}$, successive terms.

    Example.-Required the $\log$ of $40 . \tilde{r}, \operatorname{logs}$ of $40,41,42,43$ being given as below.

    $$
    \begin{aligned}
    & \text { Terms } a_{1},{ }_{12}, a_{3}, a_{4}: 1.6021 \quad 1.61 \gtrsim 81.62321 .6335 \\
    & \text { 1st differences: } 010 \% \text {. } 0104 \text {. } 0103 \\
    & \text { 2d }{ }^{\text {d }}-.0003-.0001 \\
    & 3 \mathrm{~d} \text { " }+.0002
    \end{aligned}
    $$

    For log. $40 n=1 ; \log 41 n=2 ; \log 40.7 n=1.7, n-1=0.7, n-2=-0.3_{1}$ $n-3=-.1 .3$.

    $$
    \begin{aligned}
    a_{n} & =1.6021+0.7(.0107)+\frac{(0.7)(-0.3)(-.0003)}{2}+\frac{(0.7)(-0.3)(-1.3)(.0002)}{6} \\
    & =1.6021+.00749+.000031+.000009=1.6096+.
    \end{aligned}
    $$

    Maxima and Minima without the Calculus. - In the equation $y=a+b x+c x^{2}$ in which $a, b$, and $c$ are constants, either positive or negative, if $c$ be positive $y$ is a minimum when $x=-b \div 2 c$; if $c$ be negative $y$ is a maximum when $x=-b \div 2 c$. In the equation $y=a+b x+c / x, y$ is a minimum when $b x=c / x$.

    APPLication.-The cost of electrical transmission is made up (1) of fixed charges, such as superintendence, repairs, cost of poles, etc., which may be represented by $a$; (i) of interest oll cost of the wire, which varies with the sectional area, and may be represented by $b x$; and (3) of cost of the energy wasted in transmission, which varies inversely with the area of the wire, or $c / x$. The total cost, $y=a+b x+c / x$, is a minimum when item $2=$ item 3 , or $t x=c / x$.

    ## REVETED JOINTS.

    Pressure Required to Drive Hot Rivets. - R. D. Wood \& Co., Philadelphia, give the following table (189) :

    Power to Drive Rivets Hot.

    | Size. | Girderwork. | Tankwork. | Boilerwork. | Size. | Girderwork. | Tankwork. | Boilerwork. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | tons. | tons. | tons. | ill. | tons. |  |  |
    |  | 9 | 15 | 20 | 11/8 | 38 | 60 | ${ }_{75}$ |
    |  | 12 | 18 | 25 | 114 | 45 | ${ }_{6} 7$ | 100 |
    |  | 15 | 22 | 33 | 11. | 60 | 85 | 125 |
    |  | 2 | 30 | 45 | 13/4 | 75 | 100 | 150 |
    |  | 30 | 45 | 60 |  |  |  |  |

    The above is based on the rivet passing through only two thicknesses of plate which together exceed the diameter of the rivet but little, if any.

    As the plate thickness increases the power required increases approximately in proportion to the square root of the increase of thickness. Thus, if the total thickness of plate is four times the diameter of the rivet, we should require twice the power given above in order to thoroughly fill the rivet-holes and do good work. Double the thickness of plate would increase the necessary power about $40 \%$.

    It takes about four or five times as much power to drive rivets cold as to drive them hot. Thus, a machine that will drive $3 / 4$-in. rivets hot will usually drive $3 / 8$-in. rivets cold (steel). Baldwin Locomotive Works drive $1 / 2$-in. softiron rivets cold with 15 tons.

    ## HEATING ANT VENTHEATION．

    ## Table of Capacities for Hot－blast or Plenum Heating with fans ol Bhowers．

    （Computed by F．R．Still，American Blower Co．，Detroit，Mich．）

    |  |  |  |  | $\left\lvert\, \begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.30 \\ & 4 \\ & 0 \end{aligned}\right.$ |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 42 |  |  |  |  | 1，021 | $90)$ |  |  | 80 |
    |  | 48 | 320 |  | 8，500 | 510，000 | 1，255，000 |  | 9.45 |  | 14 |
    | 90 | 54 | 280 | 4 | 10，500 | 630，000 | 1，550，000 |  | 11.66 |  | 80 |
    | 100 | 60 | 250 | 5 | 12，500 | 750，000 | 1．845，000 |  | $1: 3.9$ |  | 105 |
    | 110 | 66 | 230 | 6 | 15，800 | 948，000 | 2，335，000 |  | 17．5．5 |  | 1325 |
    | 20 | \％2 | 210 | 8 | 19，800 | 1，118，000 | 2，900，000 |  | 22. | ＂ | 1650 |
    | 140 | 84 | 180 | 10 | 26，200 | 1，572，000 | 3，870，000 |  | 29.1 |  | 2200 |
    | 160 | 96 | 160 | 12 | 33，000 | 1，980，000 | 4，870，000 |  | 36.7 |  | 2770 |
    | 0 | 108 | 140 | 15 | 41，600 | $\stackrel{2}{2}, 496,000$ | 6，130，000 |  | 46 | ＂ | 3490 |
    | 200 | 120 | 125 | 18 | 50.000 | $3,000,000$ | \％．375，000 | ＂ | 55.5 |  |  |


    |  | Lineal Feet of One－inch Pipe required． |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 1，7 | 1055 |  | 2 | 35 | 525 | 15 | 8． | 9．67 | 8.200 |
    |  | 2，142 | 1295 |  | 2 | 43 | 645 | 18 | 10，700 | 13.05 | 10，000 |
    | ， | 2，640 | 1600 | 4112 | $21 / 2$ | 53 | ${ }^{7} 95$ | 23 | 13，200 | 14.72 | 12,500 |
    | 100 | 3，150 | 1900 | 5 | 21／2 | 63 | 945 | 27 | 15，800 | 17.55 | 15，000 |
    | 110 | 3，975 | 2110 | $51 / 2$ | 3 | 80 | 1200 | 34 | 19，900 | 22.20 | 18，900 |
    | 120 | 4，950 | 2990 | 5 | 3 | 100 | 1500 | 43 | 2．5， 000 | 27.80 | 23，800 |
    | 140 | 6，600 | 3990 | r | 236 | 133 | 1995 | 57 | 33，100 | 46.30 |  |
    | 160 | 8.310 | $50: 5$ | 8 | 1 | $16 \%$ | 2505 | － 72 | 41，600 | 46.30 58.40 | 39,600 50,000 |
    | 180 | 10，470 | 6325 | 9 | 41／2 | 211 | 3165 | 90 108 | 52,500 63,200 | 58.40 70.25 | 50,000 60,000 |
    | 200 | 12，420 | 7560 | 10 | 5 | 252 | 3780 | 108 | 63.200 | \％0．25 | 60，000 |

    Temperature of fresh air， $0^{\circ}$ ；of air from coils， $120^{\circ}$ ；of steam， $227^{\circ}$ ．Pres－ sure of steam， 5 lbs ．
    Peripheral velocity of fan－tips， 4000 ft ．；number of pipes deep in coil，24； depth of coil， 60 inches；area of coils approximately twice free area．

    ## WATER－WHEELS．

    Water－power Plants Operating under High Pressures．－ The following notes are contributed by the Pelton Water．Wheel Co，
    The Consolidated Virginia \＆Col．Mining Co．，Virginia，Nev．，has a 3 －ft． steel－disk Pelton wheel operating under 2100 ft ．fall，equal to 911 lbs ．per sq．in． It runs at a peripheral velocity of 10.804 ft ．per minute and has a capacity of over $100 \mathrm{H} . \mathrm{P}$ ．The rigidity with which water under such a high pressure as this leaves the nozzle is shown in the fact that it is impossible to cut the
    stream with an axe, however heavy the blow, as it will rebound just as it would from a steel rod travelling at a high rate of speed.
    The London Hydraulic Power Co. has a large number of Pelton wheels from 12 to 18 in. diameter rumning under pressure of about 1000 lhs . per. sq. in. from a system of pressure-mains. The 18 -in. wheels weighing 30 ibs. have a capacity of over $20 \mathrm{H} . \mathrm{P}$. (See Blaine's "Hydraulic Machinery.")
    Hydraulic Power-hoist of Milwaukee Mining Co, Idaho.-One cage travels up as the other descends; the maximum load of 5500 lbs . at a speed of 400 ft . per min. is carried by one of a pair of Pelton wheels (one for each cage). Wheels are started and stopped by opening and closing a small hydraulic valve at the engineer's stand which operates the larger valves by hydraulic pressure. An air-chamber takes up the sloock that would otherwise occur on the pipe line under the pressure due to $8=0 \mathrm{ft}$. fall.
    The Mannesmann Cycle Tube Works, North Adams, Mass., are using four Pelton wheels, having a fly-wheel rim, under a pump pressure of 600 lbs . per sq. in. These wheels are direct-connected to the rolls through which the ingots are passed for drawing out seamless tubing.
    The Alaska Gold Mining Co., Douglass Island, Alaska. hos a $\xlongequal[2]{ } \mathrm{ft}$. Pelton wheel on the shaft of a Riedler diplex compressor. It is used as a flywheel as well, weighing $25,000 \mathrm{lbs}$ - and develops $500 \mathrm{H} . \mathrm{P}$. at 75 revolutions. A valre connected to the pressure-chamber sti rts and stops the wheel automatically, thus maintaining the pressure in the air-rectiver.

    At Pachuca in Mexico five Pelton wheels having a capacity of $600 \mathrm{H} . \mathrm{P}$. each under 800 ft . head are driving an electric transmission plant. These wheels weigh less than 500 lbs . each, showing over a horse-power per pound of inetal.

    Forming for Calculating the Power of Jet WaterWheels, such as the Pelton ( $\mathrm{F} . \mathrm{K}$. Blue). $-H P=$ horse-power delivered; $\delta=62.36 \mathrm{lbs}$. per cu. ft. ; $E=$ efficiency of turbine; $q=$ quantity of water, cubic feet per minute; $h=$ feet effective head; $d=$ inches diameter of jet; $p=$ pounds per square inch effective head; $c=$ coefficient of discharge from nozzle, which may be ordinarily taken at 0.9.

    $$
    \begin{aligned}
    & H P=\frac{\delta E q h}{33000}=.00189 E q h=.00436 E q p=.00496 E c d^{2} \sqrt{h^{3}}=.0174 E c d^{2} \sqrt{p^{3}} . \\
    & q=529.2 \frac{H P}{E h}=229 \frac{H P}{E p}=2.62 c d^{2} \sqrt{h}=3.93 c d^{2} \sqrt{p} . \\
    & d^{2}=201.6 \frac{H P}{E c \sqrt{h^{3}}}=57.4 \frac{H P}{E c \sqrt{p^{3}}}=.381 \frac{q}{c \sqrt{h}}=.25 \frac{q}{c \sqrt{p}} . \\
    & \text { GAS WUEL. }
    \end{aligned}
    $$

    Average Volumetric Composition, Energy, etc., of Various Gases. (Contributed by R. I). Wood d Co., Philadelphia, 1898.)

    |  | Natural Gas. | Coalgas. | Watergas. | Producer-gas. |  | Air. |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | Anthra. | Bitmm. |  |
    |  | 0.50 | 6.0 | 45.0 | 27.0 | 27.0 |  |
    | $\stackrel{H}{\mathrm{CH}}$ | 2.18 | 46.0 | 45.0 | 12.0 | 12.0 |  |
    | CH | 92.6 | 40.0 | $\stackrel{1}{2.0}$ | 1.2 | 2.5 |  |
    | $\mathrm{C}_{2} \mathrm{H}$ | 0.31 | 4.0 |  |  | 0.4 |  |
    | $\mathrm{CO}_{\mathrm{N}}$ | 0.26 | 0.5 | 4.0 | 2.5 | 2.5 | trace |
    | -1.. | 3.61 | 1.5 | 2.0 | 57.0 | 55.3 |  |
    | Vapor | 0.34 | 0.5 1.5 | 0.5 | 0.3 | 0.3 | 21 |
    | Lbs. in 1000 cu. ${ }^{\text {che. }}$. | 45.6 | 32.5 | 1.5 45.6 |  |  | trace |
    | H. U. in 1000 crr . ft. | 1,100,000 | \% 355000 | 322,000 | 137,455 | $\stackrel{65.9}{156,917^{*}}$ | 76.1 |
    | of coal a pprox... |  | 5 | 25 | 85 | 75 | 200t |

    * The real energy of bituminous producer-gas when used hot is far in excess of that indicated by the above table, oll account of the hydrocarbons, which do not show, as they are condensed in the act of collecting the gas for analysis. In actual practice there is found to be abont $50 \%$ more effective energy in bituminons gas than in anthracite gas when used hot enough to prevent condensation in the flues.
    $\dagger$ Cubic feet of air required to burn 1 lb . of coal with blast.


    ## STEAM-BOILERS.

    steam-boller Construction. (Extract from the Pules and Specifications of the Hartford Steam Builer Inspection \& Insuran ee Co., 1898.)
    Cylindrical boiler shells of fire box steel, and tube-heads of best flange steel. Limits of tensile strength between 55,000 and $62,000 \mathrm{lbs}$. per sq. in.
    Iron rivets in steel plates, 38,000 lbs. shearing strength per $s q$ in. in single shear, and $85 \%$ more or 70.300 lbs ., in double shear.
    Each shell-plate must bear a test-coupon which shall be sheared off and tested. Each coupon must fulfil the above requirements as to tensile strength, but must have a contraction of area of not less than $56 \%$ and an elongation of $25 \%$ in a length of 8 in . It must also stand bending $180^{\circ}$ when cold, when red hot, and after being heated red hot and quenched in cold water, without fracture on outside of bent portion.
    Crow-foot braces are required for boiler-heads without welds, and if of iron limit the strain to ri500 lbs. per sq. in., and stay-bolts must not be subjected to a greater strain than 6000 lbs . per sq. in.
    The thickness of double butt-straps $8 / 10$ the thickness of plates. In lapjoints the distance between the rows of rivets is $\% / 3$ the pitch. In doubleriveted lap-joints of plates up to $1 / 2$ in. thick the efficiency is $\% \%$ and in triple-riveted lap-joints $75 \%$ of the solid plate.

    In triple-riveted double-strapped butt-seams for plates from $1 / 4 \mathrm{in}$. to $1 / 2 \mathrm{in}$. thick, the efficiency ranges from $88 \%$ to $86 \%$ of the solid plate.
    In high-pressure boilers the holes are required to be drilled in place; that is, all holes may be punched $1 / 4 \mathrm{in}$. less thau full size, then the courses are rolled up, tube-heads and joint-covering plates bolted to courses, with all holes together perfectly fair. Then the rivet-holes are drilled to full size, and when completed the plates are taken apart and the burr removed.
    The rule for the bursting-pressure of cylindrical boiler-shells is the following: Multiply the ultimate tensile strength of the weakest plate in the shell by its thickness in inches and by the efficiency of the joint, and divide result by the semi-dianneter of shell; the quotient is the bursting-pressure per square inch. This pressure divided by the factor 5 gives the allowable working pressure.

    ## BOILETE FEEDING.

    Gravity Boiler-feeders. - If a closed tank be placed above the level of the water in a boiler and the tank be filled or partly filled with water, then on shutting off the supply to the tank, admitting steam from the boiler to the upper part of the tank, so as to equalize the steam-pressure in the boiler and in the lank, and opening a valve in a pipe leading from the tank to the boiler the water will run into the boiler. Aı apparatus of this kind may be made to work with practically perfect efficiency as a boilerfeeder, as an injector does, when the feed-supply is at ordinary atmospheric temperature, since after the tank is emptied of water and the valves in the pipes comecting it with the boiler are closed the condensation of the steam remaining in the tank will create a vacuum which will lift a fresh supply of water into the tank. The only loss of energy in the cycle of operations is the radiation from the tank and pipes, which may be made very small by proper covering.
    When the feed-water supply is hot, such as the return water from a heating system, the gravity apparatus may be made to work by having two receivers, one at a low level, which receives the returns or other feed-supply, and the other at a point above the boilers. A partial vacuum being created in the upper tank, steam-pressure is applied above the water in the lower tank by which it is elevated into the upper. The operation of such a machine may be made automatic by suitable arrangement of valves. (See circular of the Scott Boiler Feeder, made by the Q. \& C. Co., Chicago.)

    ## FEED-WATER HEATERS.

    Capacity of Feed-water Heaters.-The following extract from a letter by W. R. Bilings, treasurer of the 'Jaunton Locomotive Manufacturng Co., builders of the Wainwright feed-water heater, to Engineering Record, February, 1898, is of interest in showing the relation of the heating surface of a heater to the work done by it:
    "Closed feed-water heaters are seldom provided with sufficient surface to raise the feed temperature to more than $200^{\circ}$. Tba wate of heat trans-
    mission may be measured by the number of British thermal units which pass through a sqnare foot of tubular surface in one hour for each degree of difference in temperature between the water and the steam. The difficulties which attend experiments in this direction can only be appreciated by those who have attempted to make such experiments. Certain results have been reached, however, which point to what appears to be a reasonable co sclusion. One set of experiments made quite recently gave certain results which may be set forth in the table herewith.

    |  | 5 | 67 | B. | Transmitted |
    | :---: | :---: | :---: | :---: | :---: |
    | Difference between | $6^{\circ}$ |  |  | hour by each sq. ft. |
    | final tempera- | $8^{\circ}$ | 89 | " | of surface for each |
    | tures of water and | $11^{\circ}$ | 114 | " | degree of average |
    | s.team . | $\ 15^{\circ}$ |  | " | difference in temperatures |

    "In other words, when the water was brought to within $5^{\circ}$ of the temperature of the heating medium, heat was transmitted through the tubes at the rate of $6 \tilde{B}$ B.T.U. per square foot for each degree of difference in temperature in one hour. When the amonnt of water flowing through the heater was so largely increased as to make it impossible to get the water any nearer than within $18^{\circ}$ of the temperature of the steam, the heat was transmitted at the rate of 139 B.T.U. per sq. ft . of surface for each degree of difference in temperature in one hour. Note here that even with the rate of transmission as low as 67 B.T.U. the water was still $5^{\circ}$ from the temperature of the steam. At what rate would the heat have been transmitted if the water could have been brought to within $\approx^{\circ}$ of the temperature of the steam, oi to $210^{\circ}$ when the steam is at $212^{\circ}$ ?
    'For commercial purposes feed-water heaters are given a H.P. rating which allows about one-third of a square foot of surface per H.P.-a boiler H.P. being 30 lbs . of water per hour. If the figures given in the table above are accepted as substantially correct, a heater which is to raise 3000 lbs. of water per hour from $60^{\circ}$ to $20 \hat{0}^{\circ}$, using exhaust steam at $212^{\circ}$ as a heating medium, should have nearly 84 sq . ft. of heating surfoce-that is, a $100 \mathrm{H} . \mathrm{P}$. feed-water. heater which is to maintain a constant temperature of not less than $200^{\circ}$, with water flowing throngh it at the rate of 3000 lbs . per hour, should have nearly a square foot of surface per H.P. That feed-water heaters do not carry this amount of heating surface is well known."

    ## THE STEAM-ENGINE.

    Current Practice in Engine Proportions, 1897 (Compare pages 793 to 817. - - A paper with this title by Prof Johit H. Barr, in Trans. A. S. M. E., xviii. F3\%, gives the results of an examination of the proportions of parts of a great number of single-crlinder engines nade by different builders. The engines classed as low speed (L. S.) are Corliss or other long-stroke engines nsually making not more than 100 or 125 revs. per min. Those classed as high speed (H. S.) have a stroke generally of 1 to $11 / 2$ diameters and a speed of 200 to 300 revs. per min. The results are expressed in formulas of rational form with empirical coefficients, and are here abridged as ollows :
    Thickness of Shell, L. S. only. $-t=C D+B ; D=$ diam. of piston in in.; $B=0.3$ in.; $C$ varies from 0.04 to 0.06 , mean $=0.05$.

    Flanges and Cylinder-heads.-1 to 1.5 times thickness of shell. mean 1.2
    Cylinder-head studs.-No studs less than $3 / 4 \mathrm{in}$. nor greater than $13 / 8$ in diam. Least number, $\varepsilon$, for 10 in dian. Average number $=0 . \tau D$. Average diam. $=D / 40+1 / 2 \mathrm{in}$.

    Ports and Pipes.- $\quad=$ area of port (or pipe) in sq. in.; $A=$ area of piston, sq. in.; $V=$ nean piston-speed, ft. per min.; $a=A V / C$, in which $C=$ mean velocity of steam through the port or pipe in ft. per min.

    Ports, H. S. (same ports for steam as for exlanust). $-C=4500$ to 6500 , mean 5500. For ordinary piston-speed of 600 ft . per 111 in. $a=K A ; K=.09$ to .13, mean . 11 .

    Steam-ports, L. S. $-C C=5000$ to 9000 , mean $6800 ; K=.08$ to .10 , mean .09 .
    Exhanst-ports. L. S. $-C=4000$ to 7000 , mean $5500 ; K=.10$ to .125 , mean 11 .
    Steam-pipes, H. S. $-C=5800$ to 7000 , mean 6500 . If $d=$ diam. of pipe and $D=$ diam. of piston, $d=. \because 9 \mathrm{D}$ to $.3 \because D$. mean .30 D .

    Steam-pipes, L. S. $-C=5000$ to 8000 , mean $6000 ; d=.27$ to .35 D , mean .32 D .
    Exhaust-pipes, H.S. $C=0.500$ to 5500, mean $4400 ; d=.33$ to $.50 D$, mean $.37 D$.
    Exhaust-pipes, L. S. $-C=2800$ to $4 \tilde{0} 00$, mean $3800 ; d=.35$ to 0.45 D , mean .40 D .

    Face of Pistons. $-F=$ face; $D=$ diameter. $F=C D . \quad$ H. S.: $C=.30$ to .60 mean 46 . L. S.: $C=.25$ to .45 , mean .32.
    Piston-rods. $-d=$ diam. of rod; $D=$ diam. of piston; $L=$ stroke, in.; $d=C \sqrt{ } \bar{D} \bar{L}$. H. S.: $C=.12$ to .175 , mean .145. L. S.: $C=.10$ to .13 , mean .11 . Connecting-rods.-H. S. (generally 6 cranks long, rectangular section): $b=$ breadth; $h=$ height of section; $L_{1}=$ length of comecting-rod; $D=$ diann. of piston; $b=C \sqrt{D L_{1}} ; C=.04$, to .07, mean $.05 \pi ; h=k b ; K=2.8$ to 4 , mean 2.7. L. S. (generally 5 cranks long, circular sections only): $C=.082$ to . 105 , mean .092.
    Cross-head Slides.-Maximum pressure in lbs. per sq. in. of shoe, due to the vertical component of the force on the connecting-rod. H. S.: 10.5 to 38 , mean 27. L. S : 29 to 38, mean 40.

    Cross-head Pins. $-l=$ length $; d=$ diam.; projected area $=\|=d l=C A$; $A=$ area of piston; $l=K d . H . S .: C=.06$ to .11 , mean $.08 ; K=1$ to 2 , mean 1.25. L. S.: $C=.054$ to .10 , mean $.07 ; K=1$ to 1.5 , mean 1.3.
    Crank-pin. $-H P=$ lorse-power of engine; $L=$ length of stroke; $l=$ length of pin; $l=C \times H P / L+B ; d=$ diam. of pin: $A=$ area of piston; $d l=K A$. H. S.: $C=.13$ to 46 , mean $.30 ; B=2.5 \mathrm{in} . ; K=.17$ to .44 , mean . 24 . L. S.: $C=.4$ to .8 , mean $.6 ; B=2$ in. $; K=.065$ to .115 , mean .09 .

    Crank-shaft Main Journal. $-d=C \sqrt[3]{H P \div N ;} d=$ diam. $; l=$ length; $N=$ revs. per min.; projected area $=M A ; A=$ area of piston. H.S.: $C=6.5$ to 8.5, mean $7.3 ; K=2$ to 3 , mean $2.2 ; M=.3 \%$ to .70 , mean .46 . L.S.: $C=6$ to 8 , mean $6.8 ; K=1.7$ to 2.1 , mean $1.9 ; M=.46$ to .61 , mean .56 .

    Piston-speed.-H. S.: 530 to 660 , mean 600; L. S.: 500 to 850 , mean 600.
    Weight of Reciprocating Parts (piston, piston-1.od, cross-head, and cnehalf of connecting-rod). $-W=C D^{2} \div L N^{2} ; D=$ diam. of piston; $L_{=}=$length of stroke, in.; $N=$ revs per min. H. S. only: $\bar{C}=1,200,000$ to $2,300,000$, mean 1,860,000.

    Belt-surface per I.H.P. $-S=C H P+B: S=$ product of width of belt in feet by velocity of belt in ft . per min. H. S.: $C=21$ to 40 mean $28 ; B=1800$. L. S.: $S=C \times H P . ; C=30$ to 42, mean $=35$.

    Fly-wheel (H.S. only).-Weight of 1 im in lbs.: $W=C \times H P \div D_{1}{ }^{2} N^{3} ; D_{1}=$ diam. of wheel in in.; $C=65 \times 10^{10}$ to $2 \times 10^{12}$ mean $=12 \times 10^{11}$, or $1,200,000,000,000$.

    Weight of Engine per I.H.P. in lbs., including fly-wheel. $-W=C \times H . P$. H. S.: $C=100$ to 135 , mean 115. L. S.: $C=135$ to 240 , meau 175.

    Work of Steam-turbines. (See p. '791.)-A 300-H.P. De Laval steamturbine at the 13 th Street station of the Edison Electric Illuminating Co. in New York City in April, 1896, showed on a test a steam-consumption of 19.275 lbs . of steam per electrical H.P. per hour, equivalent to $1 \pi .348 \mathrm{lbs}$. per brake H.P., assuming an efficiency of the dynamo of $90 \%$. The steampressure was 145 lbs . gauge and the vacuum 26 in . It drove two $100-\mathrm{K}$.W. dynamos. The turbine-disk was 29.5 in . diameter and its speed 9000 revs. per min. The dynamos were geared down to 550 revs. The total equipment, including turbine, gearing, and dynamos, occupied a space 13 ft .3 in . long, 6 ft .5 in . wide, and 4 ft .3 in . high.
    The "Turbinia," a torpedo-boat 100 ft . long, 9 ft . beam, and $441 / 2$ tons displacement, was driven at 31 knots per hour by a Parsons steant-turbine in 1897, developing a calculated I.H.P. of $155^{\circ} 6$ and a thrust H.P. of 946, the steam-pressure at the engine being 130 lbs . and at the boilers 200 lbs . The vacuum was $131 \%$ lbs. The revolutions averaged 2100 per minute. The calculated steam-consumption was 15.86 lbs . per I.H.P. per hour. On another trial the "Turbinia" developed a speed of $323 / 4$ knots.
    

    ## GEARING.

    Efliciency of Worm Gearing. (See also page 898) -Worm gearing as a means of transmitting power, has until recently, generally been looked upon with suspicion, its efficiency being considered necessarily low and its life short. Recent experience, however, indicates that when properly proportioned it is both durable and reasonably efficient. Mr. F. A. Halsey discusses the subject in Am. Machinist, Jan. 13 and 20, 1898. He quotes two formulas for the efficiency of worm gearing due to Prof. John
    H. Barr:

    $$
    \begin{equation*}
    E=\frac{\tan a(1-f \tan \alpha)}{\tan \alpha+f}, \ldots \tag{1}
    \end{equation*}
    $$

    $$
    \begin{equation*}
    E=\frac{\tan a(1-f \tan a)}{\tan a+2 f} \tag{?}
    \end{equation*}
    $$

    in which $E=$ efficiency; $a=$ angle of thread, being angle between thread and a line perpendicular to the axis of the worm; $f=$ coefficient of friction. Eq. (1) applies to the worm thread only, while (v) applies to the worm and step conbined, on the assumption that the mean friction radius of the two is equal. Eq. (1) gives a maximum for $E$ when $\tan a=\sqrt{1+f^{2}}-f \ldots$ (3) and eq. (2) a maximum when $\tan \alpha=\sqrt{2+4 f^{2}}-2 f$. . (4) Using a value 05 for $f$ gives a value for $a$ in (3) of $43^{\circ} 34^{\prime}$ and in (4) a value of $52^{\circ} 49^{\prime}$. On plotting equations (1) and (2) the curves show the striking influence of the pitch-angle mpon the efficiency, and simce the lost work is expended in friction and wear, it is plain why worms of low angle should be short-lived and those of high angle long lived. The following table is taken from Mr. Halsey's plotted curves:

    RELATION BETWEEN THREAD-ANGLE SPEED AND EFFICIRNCY OF WORM GEARS.

    | Velocity of Pitch-line, feet per minute. | Angle of Thread. |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  | 5 | 10 | 20 | 30 | 40 | 45 |
    |  | Efficiency. |  |  |  |  |  |
    |  |  |  |  |  |  |  |
    | 5 10 | 40 | 56 | 66 69 | + ${ }^{73}$ |  |  |
    | 10 20 | 47 | ${ }_{6}^{62}$ | ${ }_{7}{ }^{7}$ | \%9 | 79 82 | 80 82 |
    | 40 | 50 | ${ }^{67}$ | \%8 | 83 | 85 | 88 |
    | 100 | 70 | 84 | 83 | 87 | 88 | 88 |
    | 200 | 76 | 85 | 88 91 | 91 | 91 | 91 |
    |  |  |  |  |  | 92 | 92 |

    The experiments of Mr. Wilfred Lewis on worms show a very satisfactory correspondence with the theory. Mr. Halsey gives a collection of data comprising 16 worns doing heavy duty and having pitch-angles ranging between $4^{\circ} 30^{\prime}$ and $45^{\circ}$. which show that every worm having an angle above $1: \because^{\circ} 30^{\prime}$ was successful in regard to durability, and every worm below $9^{\circ}$ was unsuccessful, the overlapping region being occupied by worms some of which were snccessful and some unsuccessful. In several cases worms of one pitch-angle had been replaced by worms of a diffcrent angle, an increase in the angle eading in every case to better results and a decrease to poorer James Christie, of the Penco the following table from experments by Mr. load upon the teeth with the pitch-line velocity of the worm : LIMITING SPEEDS and Pressures of worm gearing.
    

    ## APPIEOXIMATE HYDRAULIC FORMULIE,

    (The Lombard Governor Co., Boston, Mass.)
    Head $(H)$ in feet. Pressure $(P)$ in lbs. per sq. in. Diameter $(D)$ in feet. Area ( $A$ ) in sq. ft. Quantity ( $Q$ ) in cubic ft. per second. Time ( $T^{\prime}$ ) in seconds. Spouting velocity $=8.0 \mathrm{D} \sqrt{\prime} \bar{H}$.
    Time $\left(T_{1}\right)$ to acquire spouting velocity in a vertical pipe, or $\left(T_{2}\right)$ in a pipe on an angle ( $\theta$ ) from horizontal:

    $$
    J_{1}=8.02 \sqrt{H} \div 32.17, \quad T_{1}=8.02 \sqrt{H} \div 32.17 \sin \theta .
    $$

    Head $(H)$ or pressure $(P)$ which will vent any quantity $(Q)$ through a round orifice of any diameter $(D)$ or area ( $A$ :

    $$
    \begin{aligned}
    H & =Q^{2} \div 14.1 D^{4}, \quad H \\
    P & =Q^{2} \div 34.1 D^{4}, \quad P=Q^{2} \div 55.35 A^{2}:
    \end{aligned}
    $$

    Quantity ( $Q$ ) discharged through a round orifice of any diameter $(D)$ or area $(A)$ under any pressure $(P)$ or under any head $(H)$ :

    $$
    \begin{array}{ll}
    Q=\sqrt{P \times 55.3 \times A^{2}}, & Q=\sqrt{P \times 34.1 \times D^{4}} ; \\
    Q=\sqrt{H \times 23.75 \times A^{2}}, & Q=\sqrt{H \times 14.71 \times D^{4}} .
    \end{array}
    $$

    Diameter $(D)$ or area (A) of a round orifice to vent any quantity $(Q)$ under anv head $(H)$ or under any pressure $(P)$ :

    $$
    \begin{array}{ll}
    D=\sqrt{Q \div 3.84 \sqrt{H}}, & D=\sqrt{Q \div 5.8 \sqrt{P} ;} \\
    A=Q \div 4.89 \sqrt{H}, & A=Q \div 7.35 \sqrt{P} .
    \end{array}
    $$

    Time ( $T$ ) of emptying a vessel of any area $(A)$ through an orifice of any area ( $\alpha$ ) anywhere in its side:

    $$
    T=.416 A \sqrt{H} \div a
    $$

    Time $(T)$ of lowering a water level from $(H)$ to $(h)$ in a tank through an orifice of any area( $(1)$ in its side. Area of tank is (A).

    $$
    T=0.416 A(\sqrt{H}-1 \bar{h}) \div \alpha .
    $$

    Kinetic energy ( $K$ ) or foot-pounds in water in a round pipe of any diameter $(D)$ when moving at velocity $(V)$ :

    $$
    I=. \sigma 6 \times D^{2} \times L \times V .
    $$

    Time-average-pressure (A.P.) in a pipe of any length ( $L$ ) with water moving at any velocity ( $V$ ).

    $$
    A . P .=0.1324 L V \div T
    $$

    Note.-This must not be confused with water-hammer pressure, which is always many times greater than A.P. and for which no simple formula may be written.
    Area (a) of an orifice to emply a tank of any area ( $A$ ) in any time ( $T$ ) from any head (H):

    $$
    a=T \div 0.409 A \vee \bar{H} .
    $$

    Area ( $(1)$ of an orịice to lower water in a tank of area (A) from head (H) to (h) in time (T):

    $$
    \alpha=T \div 0.409 \times A \times(\sqrt{H}-\sqrt{ } \bar{h}) .
    $$

    ## SPECINICATHONS FOF TIN AND TERNE PLATE.

    (Penna. R. R. Co., 190\%.)
    Each sheet must (1) be cut as nearly exact to size ordered as possable, ( 2 ) must be rectangular and flat and free from flaws, (3) must double seam successfully under all circumstances, (4) nust show a smouth edge with no sign of fracture when bent through an angle of $180^{\circ}$ and flattenes down with a wooden mallet, (5) must be so nearly like every cther sheet in the sihipment, in thickness, uniformity, and amount of coating, that no difticulty will arise in the shops due to varying thickness of sheets, and (6) must correspond for the different grades to the figures in the following table :
    

    ## LIST OF AUYHORITIES QUOTED IN THIS BOOK.

    When a name is quoted but once or a few times only, the page or pages are given. The names of leading writers of text-books, who are quoted frequently, have the word "various" affixed in place of the page-number. The list is somewhat incomplete both as to names and page numbers.

    Abel, F. A., 642
    Abendroth \& Root Mfg. Co., 197, 198 American Screw Co., 209
    Achard, Arthur, 886, 919
    Addy, George, $95 \%$
    Addyston Pipe and Steel Co., 187, 188 Alden, G. I., 979
    Alexander, J. S., 629
    Allen, Kenneth, 295
    Allen, Leicester, 582
    Andrews, Thomas, 384
    Ansonia Brass and Copper Co., 327
    Arnold, Horace L., 959
    Asheroft Mfg. Co., 752 , 775
    Atkinson, J. J., 53z

    Babcock, G. H., 524, 933
    Babcock \& Wilcox Co., 538, 636
    Baermann, P. H., 188
    Bagshaw, Walter, 952
    Bailey, W. H., 943
    Baker, Sir Benjamin, 239, 247, 402
    Balch, S. W., 898
    Baldwin, Wm. J., 541
    Ball, Frank H., 751
    Barlow, W. H., 384
    Barlow, Prof., 288
    Barnaby. S. W., 1013
    Barnes, D. L., 631, 861, 863
    Barrus, Geo. H., 636
    Bauer, Chas. A., 207
    Bauschinger, Prof., 239
    Bazin, M., 563, $587^{7}$
    Beardslee, L. A.. 238, 377
    Beaumont, W. W., 979
    Becuel, L. A., 644
    Begtrup, J., 348
    Bennett, P. D., 354
    Bernard, M. \& E., 330
    Birkinbine, John, 605
    Bjorling, P. 676
    Blaine, R. G., 616, 1039
    Blauvelt, W. H., 039, 649
    Blechynden, A., 1015
    Bodmer, G. R., 753
    Bolland, Simpson, 946
    Booth, Wm. H., 926
    Box, Thomas, 475
    Briggs, Robert, 194, 478, 540, $6 \mathrm{~m}^{2}$
    British Board of Trade, 264, 266, 700
    Brown, A. G., 723,724
    Brown, E. H., 388
    Brown \& Sharpe Mfg. Co., 219, 890
    Browne, Ross E., 597
    Brush, Chas. B., 566
    Buckle, W., 611

    Buel, Richard H., 606, 834
    Buffalo Forge Co., 519, 529
    Builders' Iron Foundry, 374
    Burr. Wm. A., 565
    Burr, Wm. H., 247, 259, 290, 381
    Calvert, F. Crace, 386
    Calvert \& Johnson, 469
    Campbell, H. H., 398, 459, 650
    Campredon, Louis, 403
    Carnegie Steel Co., 177,272, 277, 391
    Carpenter, R. C., 454, 615, 718, etc.
    Chadwick Lead Works, 201, 615
    Chamberlain, P. M., 474
    Chance, H. M., 631
    Chandler, Chas. F., 552
    Chapman Valve Mfg. Co., 193
    Chauvenet, S. H., 3 \% 0
    Chase, Chas. P., 312
    Chevandier, Eugene, 640
    Christie, James, 394
    Church, Irving P., 415
    Church, Wm. Lee, r84, 1050
    Clapp, Geo. H., 397, 403, 551
    Clark, Daniel Kiunear, various
    Clarke, Ed win, ${ }^{2} 40$
    Claudel, 455
    Clay, F. W., 291
    Clerk, Dugald, 847
    Cloud, John W., 351
    Codman, J. E., 193
    Coffey, B. H., 810
    Coffin, Freeman C., 292
    Coggswell, W. B., 554
    Cole, Romaine C., 329
    Coleman. J. J., 4 \% 0
    Cooper, John H., 876, 900
    Cooper, Theodore, 262, 263,359
    Cotterill and Slade, 432, 9\%4
    Cowles, Eugene H., 329, 331
    Cox, A. J., 290
    Cox, E. T., 629
    Cox, William, 575
    Coxe, Eckley B., 632
    Craddock, Thonas. 473
    Cramp, E. S., 405
    Crimp, Santo, 564
    Crocker, F. B., 1070
    Cummins, Wm. Russell, 778
    Daelen, R. M., 617
    Dagger, John H. J., 329
    Daniel, Wm., 492
    D'Arcy, 563
    Davenport, R. W., 620
    Day, R. E., 1030
    Dean, F w., 605, 689

    Decœur, P., 600
    DeMeritens, A., 386
    Denton, James E., 730, 761, 781, 932
    Dinsmore, R. E., 963
    Dix, Walter S., 208.
    Dodge Manufacturing Co., 344
    Donald, J. T., 235
    Donkin, B., Jr., 491, 783
    Dudley, Chas. B., 326, 333
    Dudley, P. H., 401, 622
    Dudley, W. D., 167
    Dulong, M., 458, 476
    Dunbar, J. H., 796
    Durand, Prof., 56
    Dwelshauvers-Dery, 662
    Egleston, Thomas, 235, 641
    Emery, Chas. E., 603, 6i3, 820
    Engelhardt, F. E., 463
    Ellis and Howland, 577
    English, Thos., 753
    Ericsson, John, 286
    Eytelwein, 564
    Fairbairn, Sir Wm., 240, 264, 308, 854
    Fairley, W., 531, 533
    Falkenau, A., 509
    Fanning, J. T., 564, 5 r9
    Favre and Silbermann, 621
    Felton, C. E., 646
    Fernow, B. E., 640
    Field, C. J., 30, 937
    Fitts, James H., 844
    Flather, J. J., 961, 964
    Flynn, P. J., 463, 559
    F.oley, Nelson, 700

    Forbes, Prof., 1033
    Forney, M. N., 855
    Forsyth, Wm., 630
    Foster, R. J., 651
    Francis, J. B., 586, "39, 867
    Frazer, Persifor, 624
    Freeman, J. R., 581, 584
    Frith, A. J., 874
    Fulton, John, 637

    Ganguillet \& Kutter, 565
    Gantt, H. L., 406
    Garrison, F. L., 326, 331, 409
    Garvin Machine Co., 955
    Gause, F. T., 500
    Gay, Paulin, 966
    Gill, J. P., 657
    Gilmore, E. D., 241
    G'aisher, 483
    Glasgow, A. G., 654
    Goodman, John, 934
    Gordon, F. W., 689, 740
    Gordon, 247
    Goss, W. F. M., 863
    Graff, Frederick, 385
    Graham, W., 950
    Grant, George B., 898
    Grant, J. J., 960
    Grashof, Dr., 284
    Gray, J. McFarlane, 661
    Gray, J. M., 958
    Greene, D. M. 567

    ## Greig and Eyth, 863 <br> Grosseteste, W., 715 <br> Gruner, L., 623

    Hadfield, R. A., 391, 409
    Halpin, Druitt, 789, 854
    Halsey, Fred'k A., 490, 817
    Harkness, Wm., 900
    Harrison, W. H., 939
    Hartig, J., 961
    Hartman, John M., 364
    Hartnell, Wilson, 348, 818, 838.
    Hasson, W. F. C., 1047
    Hawksley, T., 485, 513, 564
    Hazen, H. Allen, 494
    Henderson, G. R., 347, 851
    Henthorn, J. T., 965
    Hering, Carl, 1045
    Herschel, Clemens, 583
    Hewitt, G. C., 630
    Hewitt, Wm., 917
    Hildenbrand, Wm., 913
    Hill, John W., 17
    Hiscox, G. D., 968
    Hoadley, John C., 451, 688
    Hobart, J. J., 962
    Hodgkinson, 246
    Holley, Alexander L., 377
    Honey, F. R., 47, 52
    Hoopes \& Townsend, 210
    Houston, Edwin J., 1061
    Houston \& Kennelly, 1058
    Howard, James E., 242, 382, 385
    Howden, James, 714
    Howe, Hemry M., 402, 407, 451, 518
    Howe, Malverd A., 170, 312
    Howland, A. H., 292
    Hudson, Joln G., 465
    Hughes, D. E., 396
    Hughes, H. W., 909
    Hughes, Thos. E., 917
    Humphreys, Alex. C., 652
    Hunsicker, Millard, 397
    Hunt, Alfied E., 235, 317, 392, 553
    Hunt, Chas. ${ }^{\top}$., 340, 922
    Huston, Charles, 383
    Hutton, Dr., 64
    Huyghens, 58
    Ingersoll-Sergeant Drill Co., 503
    Isherwood, Benj. F., 472
    Jacobus, D. S., 511, 689, 「26, 780
    Johnson, J. B., 309, 314
    Johnson, W. B., $4 \hat{1} 5$
    Johnson, W. R., 290
    Jones, Horace K., 387
    Jones \& Lamson Machine Co., 954
    Jones \& Laughlins, S67, 885

    Keep, W. J., 365, 951
    Kennedy, A. B. W., 355, 525, r6\%
    Kernot, Prof. 494
    Kerr, Walter C., 781
    Kiersted, W., 292
    Kimball, J. P., 498, 632, 63\%
    Kinealy, J. H., 537

    Kirk, A. C., 805
    Kirk, Dr., 1004
    Kirkaldy, David, 296
    Kopp, H. G. C., $47 \%$
    Kuichling, E., 578
    Kutter, 559
    Landreth, O. H., ${ }_{112}^{2}$
    Langley, J. W., 409, 410, 412
    Lanza, Gaetano, 310, 369, 864, 977
    La Rue, Benj. F., 248
    Leavitt, E. D., 788
    Le Chatelier, M., 452
    Le Conte, J., 565
    Ledoux. M., 981
    Leonard, H. Ward, 1027
    Leonard, S. H., 686
    Lewis, Fred. H., 186, 189; 3 ;9
    Lewis, I. N., 498
    Lewis, Wilfred, 352, 362, 378, 899
    Linde, G., 989
    Lindenthal, Gustav, 385
    Lloyd's Register, 264, 266, 700
    Loss, H. V., 306
    Love, E. G., 656
    Lovett, T. D., 256
    Lyne, Lewis F., 718
    McBride, James, 974
    MacCord, C. W., 898
    Macdonald, W. R., 956
    Macgovern, E. E., 545
    Mackay, W. M., 542, 544
    Mahler, M., 633
    Main, Chas. T., 590, 780, 790
    Mannesmann, L.,332
    Manning, Chas. H., 675, 823
    Marks, Win. D. ri93, 811
    Master Car Builders' Assoc., 376
    Mattes, W. F., 399
    Matthiessen, 1029
    Mayer, Alfred M., 468
    Mehrtens, G. G., 395, 405
    Meier, E. D. 688
    Meissner, C. A., 370
    Melville, Geo. W., 674
    Mendenhall, T. C., 23
    Merriman, Mansfield, 241, 260, 282
    Metcalf, William, 210, 412
    Meyer, J. G. A., 795,856
    Meystre, F. J.. 472
    Miller, Metcalf \& Parkin, 412
    Miller, T. Spencer, 344, 927
    Mitchell, A. E., 855, 856
    Molesworth, Sir G.'L., 562, 658
    Molyneux and Wood, r36
    Moore, Gideon E., 653
    Morin, 435, 930,933
    Morison, Geo. S., 381, 393
    Morrell, T. T., 407
    Morris, Tasker \& Co., 19\%, 196
    Mumford, E. R., $100{ }_{5}$
    Murgue, Daniel, 521
    Nagle, A. F., 292, 606, 878
    Napier, 474, 669
    Nason Mff. Co., 478,542
    National Pipe Bending Co., 198

    Nau, J. B., 367, 409
    Newberry, J. S., 624
    Newcomb, Simon, 432
    New Jersey Steel \& Iron Co., 253, 810
    Newton, Sir Isaac, 475
    Nichol, B. C., 473
    Nichols, 285
    Norris, R. Van A., 521
    Norwalk Iron Works Co., 488, 504
    Nystrom, John W., 265
    Ordway, Prof., 470
    Paret, T. Dunkin, 967
    Parker, W., 354
    Parsons, H. de B., 361
    Passburg, Emil, 466
    Pattinson, John, 629
    Peclet, M., 471, 478, 731
    Pelton Water Wheel Co., 191, 574, 585
    Pence, W. D., 294
    Pencoyd Iron Works, 179, 232, 868
    Pennell, Arthur, 555
    Pennsylvania R. R. Co., 307, 375, 399
    Philadelphia Engineering Works, 526
    Philbrick, P. H., 446
    Phillips, W. B., 629
    Phoenix Bridge Co., 263
    Phenix Iron Co., 181, 257
    Pierce, C. S., 124
    Pierce, H. M., 641
    Pittsburg Testing Laboratory, 248
    Platt, John, 617
    Pocock, F. A., 505
    Porter, Chas. T., 662, 787, 820
    Potter, E. C., 646
    Pottsville Iron \& Steel Co., 250
    Pouillet, 455
    Pourcel, Alexandre, 404
    Poupardin, M., 687
    Powell, A. M., 975
    Pratt \& Whitney Co., 892, 972
    Price, C. S., 638
    Prony, 564
    Pryibil, P., 977
    Quereau, C. H., 85s, 862
    Ramsey, Erskine, 638
    Rand Drill Co., 490,505
    Randolph \& Clowes, 198
    Rankine, W. J. M., various
    Ransome, Ernest L., 241
    Raymond, R. W., 631, 650
    Reese, Jacob, 966
    Regnault, M., various
    Reichhelm, E. P., 651
    Rennie, John, 928
    Reuleaux, various
    Richards, Frank, 488, 491, 499
    Richards, John, 965, 976
    Richards, Windsor, 404
    Riedler, Prof., $50 \%$
    Rites, F. M., 783, 818
    Roberts-Austen, Prof., 451
    Robinson, S. W., 583
    Rockwood, G. I., 781
    John A. Roebling's Sons' Co., 214, 921

    Roelker, C. R., 265
    Roney, W. R., 711
    Roots, P. H. \& F. M., 526
    Rose, Joshua, 414, 869, 970
    Rothwell, R. P., 637
    Rowland, Prof., 456
    Royce, Fred. P., 1043
    Rudiger, E. A., 671
    Kussell, S. Bent, 567
    Rust and Coolidge, 290
    Sabin, A. H., 387
    Saller. S. P.. 639
    Saint Venant, 282
    Salom, P. G., 406, 1056
    Sandberg, C. P., 384
    Saunders, J. L., 544
    Saunders, W. L., 505
    Scheffler, F. A., 681
    Schröter, Prof., ${ }^{2} 88$
    Schutte, L., \& Co., 527
    Seaton, various
    Sellers, Coleman, 890, 953, 975
    Sellers, Wm., 204
    Sharpless, S. P., 311, 639
    Shelton, F. H., 653
    Shock, W. H., 307
    Simpson, 56
    Sinclair, Angus, 863
    Sloane, 'T. O'Connor, 1027
    Smeaton, Wm., 493
    Smith, Chas. A., 537, 874
    Smith, C. Shaler, 256, 865
    Smith, Hamilton, Jr., 556
    Smith, Jesse M., 1050
    Smith, J. Bucknall, 225, 303
    Smith, Oberlin, 865, 973
    Smith, R. H., 962
    Smith, Scott A., 874
    Snell, Heury I., 514
    Stahl, Albert W., 599
    Stanwood, J. B., $802,809,813,818$
    Stead, J. E., 409
    Stearns, Albert, 465
    Stein and Schwarz, 410
    Stephens, B. F., 292
    Stillman, Thos. B., 944
    Stockalper, E. . 490
    Stromeyer, C. E., 395
    Struthers, Joseph, 451
    Sturtevant, B. F., Co., 487, 578
    Stut, J. C. H., 844
    Styffe, Knut, 383
    Suplee, H. H., 769,772
    Suter, Geo. A., 524
    Sweet, John E., 826
    Tabor, Harris, 751
    Tatham \& Bros., 201
    maylor, Fred. W., 880
    'raylor, W. J., 646
    Theiss, Emil, 818
    Thomas, J. W., 369
    Thompson, Silvanus P., 1064, 1066
    Thomson, Elihu, 1052
    Thomson, Sir Wm., 461, 1039
    Thurston, R. H., various
    Tilghman, B. F., 966
    Tompkins, C. R., 336

    Torrance, H. C., 401
    Torrey, Joseph, 582, 820
    Tower, Beauchamp, 931, 934
    Towne, Henry R., 8i6, 907, 911
    Townsend, David, 973
    Trautwine, J. C., 59, 118, 311, 482
    Trautwine, J. C., Jr., 255
    Trenton Iron Co., 216, 223, 230, 915
    Tribe, James, 765
    Trotz, E, 453
    Trowbridge, John, 467
    Trow bridge, W. P., 478, 513, 733
    Tuit, J. E., 616
    Tweddell, R. H., 619
    Tyler, A. H., 940
    Uchatius, Gen'l, 321
    Unwin, W. Cawthorne, various
    Urquhart, Thos., 645
    U. S. Testing Board, 308

    Vacuum Oil Co., 943
    Vair, G. O., 950
    Violette, M., 640,642
    Vladomiroff, L., 316
    Wade, Major, 321, 374
    Wailes, J. W., 404
    Walker Mfg. Co., 905
    Wallis, Philip, 858
    Warren Foundry \& Mach. Co., 189
    Weaver, W. D.. 1043
    Webber, Samuel, 591, 963
    Webber, W. O., 608
    Webster, W. R., 389
    Weidemann \& Franz, 469
    Weightman, W. H., 762
    Weisbach, Dr. Julins, various
    Wellington, A. M., 290, 9:8, 935
    West, Clias. D., 916
    West. Thomas D., 328
    Westinghouse \& Galton, 928
    Westinghouse El. \& Mfg. Co., 1048
    Weston, Edward, 1029
    Whitham, Jay M., 472, 760, 792, 84C
    Whitney, A. J., 389
    Willett, J. R., 538, 540
    Williamson, Prof., 58
    Wilson, Robert, 284
    Wheeler, H. A., 908
    White, Chas. F., 714
    White, Mannsel, 408
    Wohler, 238,240
    Wolcott, F. P.. 949
    Wolff, Alfred R, 494, 517, 528, 58:
    Wood, De Volson, various.
    Wood, H. A., 9
    Wood, M. P., 386. 389
    Woodhury, C. J. H., 537, 931
    Wootten, J. E. 855
    Wright, C. R. Alder, 831
    Wright, A. W., 289
    Yarrow, A. F., 710
    Yarrow \& Co., 307
    Yates, J. A.. 287
    Zahner, Robert, 490
    Zouner, 827

    ## INDEX.

    Abbreviations, 1
    Abscissas, 69
    Abrasion of manganese steel, 407
    Abrasive processes, 965-967
    Absolute temperature, 461 zero, 461
    Absorption of gases, 480
    of water by brick, 312
    refrigerating-machines, 984
    Accelerated motion, 427
    Acceleration, definition of, 423
    force of, 427
    work of, 430
    Accumulators, electric, 1045-1048
    Adiabatic compression of air, 499
    curve, 742
    expansion of air, 501
    expansion in compressed airengines, 501a
    expansion of steam, 742
    Adiabatically compressed air, mean effective pressures, table, $501 b$
    Admiralty metal, composition of, 325
    Admittance of alternating currents, 1063
    Aiken intensifier, 619
    Air, 481-527
    and vapor mixture, weight of, 484
    binds in pipes, 579
    carbonic acid allowable in, 529
    compressed, 498-511 (see Compressed air)
    compressors, effect of intake temperatures, 506
    compressors, high altitude, table of, 503
    compressors, tables, 503-505
    cooling of, 531
    density and pressure, 481, 482
    flow of, in pipes, 485,489
    flow of, in ventilating ducts, 530
    flow of through orifices, 484, 518
    friction of, in underground passages, 531
    head of, due to temperature differences, 533
    heating of, by compression, 498
    horse-power required to compress, 501
    loss of pressure of in pipes, 487 ; tables, 488-490
    manometer, 481
    properties of, 481
    pump for condenser, 841

    ## abb-alt

    Air, specific heat of, 458,484
    lift pump, 614
    pyrometer, 453
    thermometer, 454
    velocity of, in pipes, by anemometer, 491
    volumes, densities, and pressures (table), 481
    volume transmitted in pipes, 864 weight of, 165,481 ; table, 484
    Alcohol, compressibility of, 164
    Alden absorption dynamometer, 979
    Algebra, 33-36
    Algebraic symbols, 1
    Alligation, 10
    Alloys, 319-338
    aluminum, 328
    aluminum, tests of, 330
    aluminum-antimony, 331
    aluminum-copper, 329
    aluminum-copper-tin, 330
    aluminum-silicon-iron, 330
    aluminum-tin, 330
    aluminum-tungsten, 330
    aluminum-zinc, 330
    antimony, 336
    bearing metal, 333
    bismuth, 332
    caution as to strength of, 329
    composition of, in brass foundries, 325
    composition by mixture and by analysis, 323
    copper-manganese, 331
    copper-tin, 319,320
    copper-tin-lead, 326
    copper-tin-zinc, 322,325
    copper-zine, 321
    copper-zinc-iron, 326
    fusible, 333
    Japanese, 326
    liquation of metals in, 323
    nickel, 332
    variation in strength of, 323
    white metal, 336
    "Alloy" steels, $407-410$
    Alternating currents, 1061-1078
    admittance, 1063
    average, maximum, and effective, values, 1061
    calculation of circuits, 1072
    capacity, 1062
    capacity of conductors, 1067
    converters, 1071
    delta connection, 1069

    Alternating currents, frequency, 1061
    generators for, 1070
    impedance, 1063
    impedance polygons, 1064-1066
    inductance, 1062
    induction motor, 1072, 1077
    measurement of power in polyphase circuits, 1069
    Ohm's law applied to, 1064
    power factor, 1062
    reactance, 1063
    single and polyphase, 1068
    skin effect, 1063
    synchronous motors, 1071,1076
    transformers, 1070
    Y connection, 1069
    Altitude by barometer, 483
    Aluminum, 167, 317
    alloys, 319,328 (see Alloys)
    alloys, tests of, 330
    brass, 329
    bronze, 328
    bronze wire, 225
    electrical conductivity of 1028
    solcler. 319
    steel, 409
    strength of. 318
    wire, 225
    Ainerican base-box system, 182
    Ammonia-absorption refrigeratingmachine, 984,987 ; test of, 997
    Ammonia-compression refrigeratingmachines, 983, 986; test of, 999
    Ammonia gas. properties of, 992
    Ammonia liquid, density of, 992
    specific heat of, 992
    Ampere, 1024
    Analyses, asbestos, 235
    of boiler scale, 5.52
    of boiler water. 553,554
    of cast iron, 371-374
    of coals, 624-632
    of coal, sampling for, 632
    crucible steel, 411
    fire-clay, 234
    gas, 651
    gases of combustion, 622
    magnesite, 235
    Analytical geometry, 69-71
    Anchor forgings, strength of, 297
    Anemometer, 491
    Angle, economical, of framed structures, 447
    of repose of building material 929
    Angles, Carnegie bulb, properties of, table, 278
    Carnegie steel, properties of, table. $279 a$
    Pencoyd steel, weights and sizes, 179
    trigonometrical properties of, 66 plotting without protractor, 52 problems in, 37, 38
    Angular velocity, 425
    Animal power 433-435

    Annealing, effect on conductivity, 1029
    effect on steel, 392, 412
    influence of on magnetic capac. ity of steel, 396
    non-oxidizing process of, 389
    of steel, 394,413
    of steel forgings, 395
    of structural steel, 394
    Annuities, 15-17
    Annular gearing, 898
    Anthracite, classification of, 624
    composition of, 624
    sizes of, 632 .
    space occupied by. 625
    Anthracite-gas, 647
    Anti-friction curve, 50, 939
    metals, 932
    Antimony, properties of, 167
    in alloys, 331.336
    Apothecaries' measure and weight, 18, 19
    Arc, circular, 57
    circular, Huyghen's approximation of length of, 58 ; table, 114
    circular, relations of. 58
    Arc-lights, electric, 1041
    Arches: corrugated 181
    flooring, 281
    tie-rods for, 281
    Area of circles 1-1000, table, 103107
    of circles $\frac{1}{64}-100$. table advancing by $\frac{1}{8}$ : $108-112$
    of geometrical solids. 61-63
    of geometrical plane figures; 54-60
    of irregular figures, 55, 56
    of sphere, 61
    of sphere, table, 118
    Arithmetic, 2-32
    Arithmetical progression. 11
    Armature-circuit, e.m.f. of, 1056
    Armature torque of, 1056
    Asbestos, 235
    Asphaltum coating for iron. 387
    Asses, work of, 435
    Asymptotes of hyperbola, 71
    Atmosphere, equivalent pressures of, 27
    pressure of, 481. 482
    molsture in 483
    Atomic weights (table) 163
    Authorities, list of, 1089
    Arogadro's law of gases. 479
    Avoirdupois weight, 19
    Axles, railroad, effect of cold 384
    steel, specifications for, 397
    steel. strength of, 299
    Automatic cut-off engines 753
    Babbitt metal. 336, 337
    Babcock \& Wilcox bnilers, tests with various coals, 636
    Bagasse as fuel, 643
    Balances, to weigh on incorrect, 19
    Ball-bearings, 940
    Balls, hollow copper, 289

    Bands and belts, thenry of, 876
    for carrying grain, $912 d$
    Bars, eye, tests of, 304
    iron, flat, commercial sizes of, table, 170
    iron, various shapes, commercial sizes of, 171
    Lowmoor iron, strength of, 297
    steel, effect of nicking, 402
    twisted iron, tensile strength of, 241
    twisted, Gilmore's experiments on, 242
    various, weights of, 169
    wrought iron, compression tests of, 304
    wrought iron, weight of, table, 171
    Barometer, leveling with, 482
    to find altitude by, 483
    Barometric readings for various altitudes, 482
    Barrels, to find volume of, 64
    number of, in tanks, 126
    Basic Bessemer steel, strength of, 390
    Batteries, storage, 1045-1048
    Baume's hydrometer, 165
    Bazin's experiments on weirs, 587
    formulæ, flow of water, 563
    Beams, deck, properties of Carnegie, table, 278
    formulæ for flexure of, 267
    formulæ for transverse strength of, 268
    special, coefficients for loads on, 270
    steel, formulæ for safe loads on, 269
    varioucly loaded, 271
    yellow pine, safe loads on, 1023, 1079
    Beardslee's tests on elevation of elastic limit, 238
    Bearings, allowable pressure on, 935-937
    ball, 940
    cast-iron, 933
    for steam turbines, 941
    high speed, 941
    oil pressure in, 937
    overheating of, 938
    pivot, 939
    roller, 940
    steam-engine, 811-813
    Bearing-metal alloys, 333
    Bearing-metals, anti-friction, 932 composition of, 326
    Bearing pressure on rivets, 355
    Bed-plates of steam-engines, 817
    Bell-metal, composition of, 325
    Belt convevors, 912 d
    dressings. 887
    Belts. arrangement of, 885
    care of, 886
    cement for leather or cloth, 887
    centrifugal tension of, 876
    endless, 886
    evil of tight, 885

    Belts, lacing of, 883
    length of, 884
    open and crossed, 874,884
    quarter twist, 883
    sag of, 885
    Belting, $876-887$
    formulæ, 877
    friction of, 876
    horse-power of, 877-880
    notes on, 882
    practice, 877
    rubber, 887
    strength of, 302, 886
    tables, 877,878
    Taylor's rules, 880-882
    theory of, 876
    width for given H.P., 879
    Bending curvature of wire rope,
    Bends, effects of on flow of water in pipes, 578
    in pipes, 488,672 ; table, 199
    Bent lever, 436
    Bessemer converter, temperature determinations in, 452
    steel (see Steel, Bessemer)
    Bessemerized cast, iron, 375
    Bevel wheels, 898
    Billets, steel, specifications for, 401
    Bins, coal-storage, $912 a$
    Binomial, any power of, 33 theorem, 36
    Birmingham gauge, 28
    Bismuth, properties of, 167 alloys, 332
    Bituminous coal (see Coals)
    Blast-furnaces, consumption of charcoal in, 641
    steam-boilers for, 689
    temperature determinations in, 452
    Blocks or pulleys, 438
    efficiency of, table, 907
    strength of, 906
    Blooms, steel, weight of, table, 176
    Blow, force of, 430
    Blowers, 511-526
    and fans, comparative efficiency, 516
    blast-pipe diameters for, 520
    capacity of, 517, 1081
    experiments with, 514
    for cupolas, 519, 9.50
    pressure, 9.50
    rotary, table of, 526
    steam-jet, 527
    velocity due to pressure, 514
    Blowing-engines, dimensions of, 526
    Blue heat, effect on steel, 395
    Board measure, 20
    Bodies, falling, laws of, 424
    Boiler compounds. 717
    explosions, 720
    feed-pumps, 605, 726
    furnaces, height $\mathrm{c}^{f}, 711$
    furnaces, use of steam in, 650

    Boiler heads, 706
    heads, strength of, 284, 286
    heads, wrought-iron, 285
    heating-surface for steam heating, 538
    scale, analyses of, 552
    tubes, area of, table, 197
    tubes, dimensions of, table, 196
    tubes, expanded, holding power of. 307
    Boilers, horse-power, 677
    for steam heating, 538
    incrustation of, 550
    locomotive, 855
    marine, 1015
    plate, strength of, at high temperatures, 383
    steam, 677-731 (see Steam-boiler)
    Boiling, resistance to, 46.3
    Boiling-point of water, 550
    Boiling-points of substances, 455
    Bolts and nuts, 209, 211
    effect of initial strain in, 292
    holding power of in white pine, 290, 291
    square-head, table of weights of, 210
    strength of, table, 292
    taper. 972
    track, weight of, 210
    variation in size of iron for, 206
    Bomb calorimeter, 634
    Braces, diagonal, with tie, stresses in, 442
    Brackets, cast-iron, strength of, 252
    Brake, Prony, 978
    Brass, composition of rolled, 203 alloys, 325
    plates and bars, weight of, table, 202, 203
    tube, seamless, table, 198-200 wire, weight of, table, 202
    Brazing of aluminum bronze, 328
    metal, composition of. 325
    solder, composition of, 325
    Brick. absorption of water by, 312
    for floors. 281
    kiln, temperatures in, 452
    specific gravity of, 165
    strength of. 302,312
    weight of, 165, 312
    Bricks fire, number required for various circles, table. 234
    fire, sizes and shapes of, 233
    Bricks magnesia, 235
    Brickwork, measure of, 169 weight of, 169
    Bridge iron, durability of, 385
    links. steel, strength of, 298
    members, strains in, 262-264
    Memphis, proportions of material. 381
    Memphis tests of steel in, 393
    trusses, 442
    Brine, boiling of, 463
    properties of, 464,994

    Briquettes, coal, 632
    British thermal unit (B.T.U.), 455, 660
    Britannia metal, composition of, 336
    Bronze., aluminum, strength of 328
    ancient, composition of, 323
    deoyidized, composition of, 327
    Gurley's, composition of, 325
    manganese. 331
    phosphor. 327
    strength of, 300, 319, 321
    Tobin, 325, 326
    Buck-shot, sizes and weights of 204
    Buildings, construction of, 10191023
    fire-proof. 1020
    heating and ventilation of, 534
    transmission of heat through walls of, 478
    walls of, 1019
    Building-laws, New York City, 1019-1021
    on columns, New York, 252. 1019
    on columns, Boston, 252
    on columns, Chicago 252, 255
    on structural materials, Chicago, 381
    Building-materials, angle of repose of, 929
    coefficients of friction of, 929
    sizes and weights. 169. 184
    Bulb angles, properties of Carnegie steel, table, 278
    Bulkheads, plating and framing for, table. 287
    Buoyancy, 550
    Burr truss, stresses in, 443
    Bushel of coal, 638 of coke, 638
    Bush-metal, composition of, 325
    Butt-joints, riveted, 358
    Cables, chain, wrought-iron, 308, 340
    flexible steel wire, 223
    sizes, weight, and strength, 230 . 338
    lead-incased power, sizes and weights, 222
    suspension-bridge 230
    Cable-ways, suspension. 915
    Cadinium. nroperties of, 167
    Calculus, 72-79
    Calcium chloride in refrigeratingmachines. 994
    Caloric engines, 851
    Calorie, definition of, 455
    Calorimeter for coal. Mahler bomb, 634
    steam, 728-731
    steam, coil, 729
    steam, separating, 730
    steam, throttling 729
    Calorimetric tests of coal, 636

    Cam, 438
    Canals, irrigation, 564 speed of vessels on, 1008
    Candle-power of electric lights, 1042 of gas lights, 654
    Canvas, strength of, 302
    Cap-screws, table of standard, 208
    Capacity, electrical, 1062 electrical, of conductors, 1067
    Car-heating by steam, 538
    Car-journals, friction of, 937
    Cars, steel plate for, 401
    Car-wheels, cast iron for, 375
    Carbon, burning out of steel, 402 effect of, on strength of steel, 389 gas, 646
    Carbonic acid allowable in air, 529
    Carnegie steel sections, properties of, 272-280
    steel sections, weights and sizes, 177, 178
    Carriages, resistance of, on roads, 435
    Carriers, bucket, $912 a$
    Casks, volume of, 64
    Cast copper, strength of, 300, 319
    Cast iron, 365-376
    analyses of, 371-374
    bad, 375
    bearings, 933
    Bessemerized, 375
    chemistry of, 370-374
    columns, eccentric loading of, 254
    columns, strength of, 250-253
    columns, tests of, 250,251
    columns, weight of, table, 185
    compressive strength of, 245
    corrosion of, 386
    durability of, 385
    influence of phosphorus, sulphur, etc., $365-368,370$
    malleable, 375
    mixture of, with steel, 375
    pipe, 185-190 (see Pipe, castiron)
    pipe-fittings, sizes and weights, 187
    relation of chemical composition to fracture, 370
    shrinkage of: 368
    specific gravity of, 374
    specifications for, 374
    strength of, 296, 370-374
    strength in relation to silicon and cross-section, 369
    tests of, 369
    variation of density and tenacity, 374
    Castings, iron, analyses of, 373
    iron, strength of, 297
    malleable, rules for use of, 376
    shrinkage of, 951
    steel, 405
    steel, specifications for, 397, 406
    steel, strength of, 299
    weight of, from pattern, 952
    Catenary, to plot, 51,52
    Cement as a preservative coating, 387

    Cement for leather belts, 887
    mortar, strength of, 313
    Portland, strength of, 302
    specific gravity of, 166
    weight of, 166,170
    Center of gravity, 418
    of gravity of regular figures, 419
    of gyration, 420
    of oscillation, 421
    of percussion, 422
    Centigrade thermometer scale, 448
    -Fahrenheit conversion table, 449
    Centrifugal discharge elevators, $912 a$
    fans (see Fans, centrifugal)
    force, 423
    force in fly-wheels, 820
    pumps, 607-609 (see Pumps, centrifugal)
    tension of belts, 876
    C.G.S. system of measurement, 1024

    Chains, crane, sizes, weights, and properties, 232
    link-belting, $912 b$
    monobar, $912 b$
    pin, $912 c$
    roller, $912 c$
    specifications for, 307
    strength of, table, 307,339
    tests of, table, 307
    Chain-blocks, efficiency of, 907
    Chain-cables, proving tests of, 308
    weight and strength of, 340
    Chalk, strength of, 312
    Change gears for lathes, 955,956
    Channels, Carnegie steel, properties of, table, 277
    open, velocity of water in, 564
    strength of, 297
    weights and sizes, 178-180
    Charcoal, 640-642
    absorption of gases and water by, 641
    bushel of, 170
    composition of, 642
    consumption of, in blast-furnaces, 641
    pig iron, 365,374
    results of different methods of making, 641
    weight per cubic foot, 170
    Chemical elements, table, 163
    symbols, 163
    Chemistry of foundry irons, 370-374
    Chezy's formula for fow of water, 558
    Chimneys, 731-741
    draught, power of, 733
    draught, theory, 731
    effect of flues on draught, 734
    for ventilating, 533
    height of, 734
    height of water column due to unbalanced préssure in, 732
    lightning protection of, 736
    rate of combustion due to, 732
    sheet-iron, 741
    size of, 734
    size of, table, 735
    stability of, 738

    Chimneys, steel, 740
    steel, foundations for, 741
    tall brick, 737
    velocity of air in, 733
    weak, 739
    Chord of circle, 58
    Chords of trusses, strains in, 445
    Chrome steel, 409
    Circle, 57-59
    area of, 57
    area of, $1-1000$, table, 103-107
    area of, $\frac{1}{64}-100$, advancing by $\frac{1}{8}$, table, 108-112
    equations of, 70
    length of are of, 57
    length of are of, Huyghen's approximation, 58
    length of chord of, 58
    problems, 39, 40
    properties of, 57
    relations of are, chord, etc., of, 58 relations of, to equal, inscribed, and circumscribed square, 59
    sectors and segments of, 59
    Circuits, electric, e.m.f. in, 1030
    electric, polyphase, 1068 (see Alternating currents)
    electric, power of, 1031
    Circuit, magnetic, 10.51
    Circular ares, lengths of, 57
    ares, lengths of, tables, 114, 115
    functions, calculus, 78
    inch, 18
    measure, 20
    mill, 18
    mil wire gauge, 30
    mil wire gauge, table, 29
    pitch, 888
    ring, 59
    segments, table of areas of, 116
    Circumferences of circles, $1-1000$, table, 103-107
    of circles, $\frac{1}{6} \frac{1}{6}-100$, table, advancing by $\frac{1}{5}, 108-112$
    of circles, 1 inch to 33 feet, table, 113
    Cisterns, capacities of, 121, 126
    Classification of iron and steel, 364
    Clay, cubic feet per ton, 170
    fire, analysis of Mt. Savage, 233
    Clearance in stean-engines, 751,792
    Coal, analyses of, 624-632
    anthracite, sizes of, 632
    bituminous, classification of, 623
    calorimeteric tests of, 636
    classification of, 623-624
    conveyors, $912 a$
    cost of, for steam power, 789
    DuLong's formula for heating, value of, 633
    evaporative power of, 636
    foreign, analysis of, 631
    furnaces for different, 635
    heating value of, $63.3,634$
    handling machinery, 912-912d
    hoisting by rope. 343
    products of distillation of, 639, 651
    relative value of, 633-637

    Coal, sampling of, for analysis, 632 semi-biturninous, composition of, 625, 626
    space occupied by anthracite, 625
    storage bins, $912 a$
    vs. nil as fuel, 646
    washing, 638
    weathering of, 637
    weight of, 170,638
    Welsh, analysis of, 632
    Coal-gas, composition of, 652 manufacture of, 651
    Coatings, preservative, 387-389
    rustless, for iron and steel, 388
    Coefficients of expansion, 460
    of expansion of iron and steel, 385
    Coefficient of elasticity, 237,314
    of fineness, 1002
    of friction, definition, 928
    of friction, tables, 929, 930
    of friction of journals, 930,932
    of friction, rolling, 929
    of performance of ships, 1003
    of propellers, 1011
    of transverse strength, 267
    of water lines, 1002
    for loads on special beams, 270
    Coils, electric, heating of, 1032
    Coil pipe, table, 199
    Coke, analyses of, 637
    making of hard, 638
    ovens, generation of steam from waste heat of, 638
    by-products of manufacture, 638, $6: 39$
    weight of, 170, 638
    Coking, experiments in, 637
    Cold-chisels, form of, 955
    Cold, effect of, on railroad axles, 384
    effect of, on strength of iron and steel, 383
    ©lrawing, effect of, on steel, 305
    drawn steel, tests of, 30.5
    rolled steel, tests of, 305
    rolling, effect of, on steel, 393 saw, 966
    Collapse of corrugated furnaces, 266 resistance of hollow cylinders to, 264-266
    Color determination of temperature, 454
    scale for steel tempering, 414
    Columns, built, 256
    cast-iron, strength of, 250
    cast-iron, tests of, 250, 251
    cast-iron, weight of, tahle, 185
    eccentric, loarling of, 254
    Gordon's formula for, 247
    Hodgkinson's formula for, 246
    maximum permissible stress in, 255
    Merriman's formulæ for, 260
    mill, 1022
    Phoenix, dimensions of, 257-259
    steel. Merriman's tables for, 261
    strength of, 246,247
    strength of, by New York build. ing laws, 1019

    Columns, wrought-iron, built, 257
    wrought-iron, Merriman's table of, 260
    wrought-iron, tests of, 305
    wrought-iron, ultinate strength of, table, 255
    Combination, 10
    Combined stresses, 282, 283
    Combustion, analyses of gases of, 622
    heat of, 456, 621
    of fuels, 621
    of gases, rise of temperature in, 623
    rate of, due to chimneys, 732
    theory of, 620
    Composition of forces, 415
    Compound engines, 761-768 (see Steam-engines, compound)
    interest, 14
    locomotives, 862,863
    numbers, 5
    proportion, 6
    shapes, steel, 248
    units of weights and measures, 27
    Compressed-air, 488, 498-511
    adiabatic and isothermal compression, 499
    adiabatic expansion and compression, tables, 502
    compound compression, $501 b$
    cranes, 912
    diagrams, $501 b$
    drills driven by, 506
    engines, adiabatic expansion in, 501a
    engines, efficiency, 506
    for motors, effect of heating, 507
    flow of, in pipes, 489
    formulæ, 501
    heating of, 498
    hoisting engines, $505 b$
    horse-power required to compress air, 5 CO
    losses due to heating, 500
    loss of energy in, 498
    machines, air required to run, 505a
    mean effective pressures of adiabatically compressed air, table, $501 b$
    mean effective pressures, compound compression, table, $501 b$
    mean effective pressures, tables, 502, 503
    mine pumps, 511
    motors, 507
    Popp.system, 507
    practical applications of, $505 b$
    pumping with, $505 a$
    reheating of, 506
    shop operation by, 509
    tramways, 510. 511
    transmission, 488
    transmission, efficiencies of, 508
    volumes, mean pressures per stroke, etc., table, 499
    work of adiabatic compression, 501

    Compressed steel, 410
    Compression, adiabatic, formulæ for, 501
    adiabatic, tables, 502
    and flexure combined, 282
    and shear combined, 282
    and torsion combined, 283
    in steam-engines, 751
    members in structures, unit strains in, 280
    Compressive strength, 244-246
    strengths of woords, 311
    strength of iron bars. 304
    tests, specimens for. 245
    Compressors, air, 503-505
    air, effect of intake temperature, 506
    Condensers, 839-846
    air-pump for, 841
    circulating pump for, 843
    continuous use of cooling water in, 844
    cooling towers for 844
    cooling water required, 841
    ejector, 840
    evaporative surface, 844
    increase of power due to, 846
    jet, 839
    surface, 840
    tubes and tube plates of, 840 , 841
    tubes, heat transmission in, 472
    Conduction of heat, 468
    of heat, external, 469
    of heat, internal, 468
    Conductivity, electric, of steel, 403
    electrical, of metals, 1028
    Conductors, electrical, heating of, 1031
    clectrical, in series or parallel, resistance of, 10.30
    Conduit, water, efficiency of, 589
    Cone, measures of, 61
    pulleys, 874
    Conic sections, 71
    Connecting-rods, steam-engine, 799, 800
    tapered, 801
    Conoid, parabolic, 63
    Conservation of cnergy, 432
    Construction of buildings, 10191023
    Convection, loss of heat due to, 476 of heat, 469
    of heat, Dulong's law of, table of factors for, 477
    Conversion table. Centigrade-Fahrenheit, 449
    tables, metric, 23-26
    Converter, Bessemer, temperature determinations in. 452
    Converters, electric, 1071
    Conveying of coal in mines, 913, 914
    Conveyors, belt, $912 d$
    cable-hoist, 915
    coal, $912 a$
    horse-power required for, $912 c$
    screw, 913 d

    Cooling of air for ventilation, 531
    towers for condensers, 844
    Co-ordinate axes, 69
    Copper, 167
    ball pyrometer, 451
    cast, strength of, 300,319
    drawn, strength of, 300
    balls, hollow, 289
    manganese alloys, 331
    nicke! alloy, 332
    plates, strength of, 300
    plates, weight of, table, 202
    round bolt, weight of, table, 203
    strength of, at high temperatures, 309
    tin alloys, 320
    tin alloys, properties and composition of, 319
    tin-aluminum alloys, 330
    tin-zinc alloys, properties and composition, 322,323
    tubing, weight of, table, 200
    weight required in different systems of transmission, 1075
    wire, table of dimensions, weight, and resistance of $202,218-$ 220,1034
    wire, cost of, for long-distance transmission, 1036, 1040
    zinc alloys, strength of, 323
    zinc alloys, table of composition and properties, 321
    zinc-iron alloys, 326
    Cordage, technical terms relating to, 341
    weight of, table, 906
    Cork, properties of, 316
    Corn, weight of, 170
    Corrosion of iron, 386
    of steam-bollers, $386,552,716-$ 721
    Corrosive agents in atmosphere 386
    Corrugated arches, 181
    furnaces, 266, 702, 709
    iron, sizes anrl weights, 181
    plates, properties of Carnegie steel, table, 274
    Cosecant of an angle, 65; table, 159162
    Cosine of an angle, 65; table, 159162
    Cost of coal for steam-power, 789
    of steam-power, 790
    Cotangent of an angle, 65; table, 159-162
    Cotton ropes. strength of, 301
    Couloumb, 1024
    Counterbalancing of hoisting-engines, 909
    of locomotives, 864
    of steam-engines, 788
    Counterpoise system of hoisting, 910
    Couples, 418
    Coverings for steam-pipe, tests of, 470,471
    Coversine of angles, table, 159162

    Cox's formula for loss of head 575
    Crane chains, 232
    Cranes, 911
    classification of, 911
    compressed air, 912
    electric, 912
    jib, 912
    stresses in, 440
    travelling, 912
    guyed, stresses in, 441
    simple, stresses in, 440
    Cranks, steam-engine, 805
    Crank angles, steam-engine, table, 830
    pins, steam-engine, 801-804
    pins, steel, specifications for, 401
    shafts, steam-engine, 813-815
    shaft, steam-engine, torsion and flexure of, 814
    Cross-head guides, 798
    pin, 804
    Crucible steel, 410-414 (see Stee!, crucible)
    Crushing strength of masonry materials, 312
    Cubature, 75
    Cubes of numbers, table, 86-101 of decimals, table, 101
    Cube root, 8
    roots, table of, 86-101
    Cubic feet per gallon, table, 122 measure, 18
    Cupola practice, $946-950$
    result of increased driving, 949
    Cupolas, blast-pipes in. 520
    blast-pressure in, 948
    blowers for, 519,950
    charges for, 946-947
    charges in stove foundries, 949
    dimensions of, 947
    loss in melting iron in, 950
    slag in, 948
    Currents, electric (see Electric currents)
    Current motors, 589
    Cutting speeds of machine tools, 953 ; table, 954
    stone with wire, 966
    Cycloid, construction of, 49
    differential equations of, 79
    differential measure of, 60
    integration of, 79
    Cycloidal gear-teeth. 892
    Cylinder condensation in steamengines, 752,753
    Cylinder, measures of, 61
    Cylinders, hollow, limit of thickness, 288
    hollow, resistance of, to collapse, 264-266
    hollow, under tension, 287,289
    hydranlic, thickness of, 617
    hydraulic press, tinickness of, 288
    locomotive, 854
    steam-engine (see Steam-engines)
    table of capacities of, 120

    Cylindrical ring, 62
    Cylindrical tanks, capacities of, table, 121

    Dalton's law of gaseous pressures, 480
    Dam, stability of, 417
    D'Arey's formula, flow of water, 563
    formula, table from, of flow of water in pipes, 569-572
    Decimals, 3
    squares and cubes of, 101
    Decimal equivalents of fractions, 3
    equivalents of feet and inches, 112
    gauge, 32
    Deck-beams, weights and sizes, 177
    propertie of Carnegie steel, 278
    Delta connection for alternating currents, 1069
    metal, 225, 326
    Denominate numbers, 5
    Deoxidized bronze, 327
    Derrick, stresses in, 441
    Diaronals, formulæ for strains in, 444
    Diametral pitch, 888
    Differential gearing, 898
    calculus, 72-79
    of algebraic function, 72
    of exponential function, 77
    partial, 73
    coefficient, 73 ; sign of, 76
    second, third, etc., 75
    pulley, 439
    screw, 439 ; efficiency of, 974
    windlass, 439
    Differentiation, formulæ for, 73
    Discount, 13
    Disk fans (see Fans, disk)
    Displacement of ships, 1001, 1008
    Distillation of coal, 639
    Distiller for marine work, 847
    Domes on steam-boilers, 711
    Draught power of chimneys, 732 theory of chimneys, 731
    Drawing-press, blanks for, 973
    Dredge, centrifugal pump as a, 609
    Dressings, belt, 887
    Drift bolts, resistance of, in timber, 290
    Drill gauge, table, 29
    press, horse-power required by, 963
    Drills, rock, air required for, 505 a
    rock, requirements of air-driven, 506
    twist, speed of, 957
    tap, 970,971 ; sizes of, 208
    Drilling holes, speed of, 956
    machines, electric, 956
    Drop in electric circuits, 1029-1031 press, pressures attainable by, 973
    Drums for hoisting-ropes, 917

    Dry measure, 18
    Drying and evaporation, 462-467
    in a vacuum, 466
    Ducts, cold-air, for steam-heating, 539
    Ductility of metals, table, 169
    Dulong's formula for heating value of coal, 633
    law of convection, table of factors for, 477
    law of radiation, table of factors for, 476
    Durability of iron, 385, 386
    Durand's rule for areas, 56
    Dust explosions, 642
    fuel, 642
    Duty, measure of, 27
    of pumping-engine, 610
    trials of pumping-engines, 609612
    Dynamo-electric machines, 10551060
    machines, classification of, 1055
    machines, design of, 10581060
    machines, e.m.f. of armature circuit, 1056
    machines, moving force of, 1055
    machines, strength of field, 1057
    machines, torque of armature, 1056
    machines, types of, 1055
    machines, tables of, 1074-1077
    Dynamometers, 978-980
    Alden absorption, 979
    Prony brake, 978
    traction, 978
    transmission, 980
    Dyne, definition of, 415
    Earth, cubic feet per ton, 170
    Economical angle of framed structures, 447
    Eccentrics, steam-engine, 816
    Economizers, fuel, 715
    Edison wire gauge, 30 ; table, 29
    Efficiency of a machine, 432
    of compressed-air engines, 506
    of compressed-air transmission, 508
    of electric transmission, 1038
    of fans, $516,520,525,526$
    of fans and chimneys for ventila. tion, 533
    of injector, 726
    of pumps, 604, 608
    of riveted joints, 359,362
    of screws, 974
    of steam-boilers, 683, 689
    of steam-engines, 749,775
    Effort, definition of, 429
    Ejector condensers, 840
    Elastic-limit, 236-239
    apparent, 237
    Bauschinger's definition of, 239
    elevation of, 238

    Elastic-limit of wire rope. 917
    relation of to endurance, 238
    Wöhler's experiments on, 238
    Elastic resilience, 270
    resistance to torsion, 282
    Elasticity. coefficient of, 237 modulus of, 237
    moduli of, of various materials, 314
    Electrical conductivity of steel, 403
    Electrical engineering, 1024-1077
    alternating currents, 1061-1077
    direct currents, 1024-1060
    Electrical horse-power, 1031; table. 1039
    machines, tables of, 1074-1077 resistance, 1027-1032
    symbols, 1078
    Electricity, standards of measurement, 1024
    systems of distribution, 1041
    units used in, 1024
    Electric circuits (see Circuits, electric)
    currents, alternating, 1061-1078 (see Alternating currents)
    currents, direct, 1024-1060
    current, direction of, 1054
    currents, heating due to, 1031
    current required to fuse wires, 1032
    currents, short circuiting of, 1036
    heaters, 546, 1044
    light stations, economy of engines in, 785
    lighting, 1041-1043
    motors, alternating current, 1071, 1077
    motors, direct current, 1055, 1074 -1076
    railways, 1041
    storage-batteries, 1045-1048
    transmission, 1033-1041
    (see
    Transmission, electric)
    wires (see Wires, electric)
    welding, 1046
    Electro-chemical equivalents, 1049
    Electro-magnets, 1050-1054
    polarity of, 1054
    strength of, 1053
    winding for, 1053
    Electro-magnetic measurements, 1050
    Electrolysis, 1048
    Elements, chemical, table, 163
    of machines. 435-440
    Elevators, coal, $912 a$
    Ellipse, construction of, 46,47
    equations of, 70
    measures of, 59, 60
    Ellipsoil, 63
    Elongation, measurement of, 243
    E.M.F. of electric circuits, 1030
    of armature circuit, 1056
    Einery, grades of, 968
    wheels, speed and selection of, 967

    Emery-wheels strains in, 969
    Endless rope system of haulage, 914
    screw 440
    Endurance of materials, relation of to elastic limit 238
    Energy conservation of, 432
    definition of , 429
    measure of 429
    of res il of guns, 431
    sources of, 432
    Engines, blowing, 526
    compressed air, efficiency of, 506
    fire, capacities of, 580
    gas, 847-850 (see Gas-engines)
    gasoline, 850
    hoisting, 908
    hot-air, 850
    hydraulic, 619
    marine, 1017-1019
    marine, steam and exhaust openipgs, sizes of, 674
    marine, steam-pipes for, 674, 1016
    naphtha, 850
    petroleum, 850
    petroleum, tests of, 851
    pumping, 609-612 (see Pumpingengines)
    steam, 742-847 (see Steam-engines)
    winding, 909
    Engine-plane, wire-rope haulage, 913
    Epicycloid, 50
    Equation of payments, 14
    of pipes, 491
    Equations, algebraic, 34, 35
    of circle, 70
    of ellipse, 70
    of hyperbola, 71
    of parabola, 70
    quadratic, 35
    referred to co-ordinate axes, 69
    Equilibrium of forces, 418
    Equivalent orifice, mine ventilation, 533
    Equivalents, electro-chemical, 1049
    Erosion of soils, 565
    Ether, compressibility of, 164
    Evaporation, 462-467
    by exhaust steam, 465
    by multiple system, 463
    factors of, 695b-699
    in salt manufacture, 463
    of sugar solutions, 465
    of water from reservoirs and channcls, 463
    latent heat of, 462
    total heat of, 462
    unit of, 677
    Evaporator, for marine work, 847 , 1016
    Evolution, 7
    Exhaust-steam, evaporation by, 465
    for heating, 780

    Exhauster, steam-jet, 527
    Expansion, adiabatic, formule for, 501; tables, 502
    by heat, 459
    coefficients of, 460
    of iron and steel, 385
    of liquids, 461
    of solids by heat, 460
    of steam, 742
    of steam, actual ratios of, 750
    of timber, 311
    of water, 547
    Explosions, dust, 642
    Explosive energy of steam-boilers, 720
    Exponents, theory of, 36
    Exponential function, differential of, 77
    Eye bars, tests of, 304
    Factors of evaporation, 695b-699
    Factor of safety, 314
    in steam-boilers, 700
    Fahrenheit-Centigrade
    conversion table, 449
    Failures of stand-pipes, 294 of steel, 403
    Fairbairn's experiments on riveted joints, 354
    Falling bodies, graphic representation, 425
    bodies, laws of, 424
    Fans and blowers, 511-526
    capacity of, 517,1083
    comparative efficiencies, 516
    Fans, best proportions of, 512
    centrifugal, 511, 518-523
    disk, 524-526
    efficiency of, 520, 533
    experiments on, $515,516,522$
    for cupolas and forges, 519
    influence of speed of, 523
    influence of spiral casings on, 523
    pressure due to velocity of, 513
    quantity of air delivered by, 514
    Farad, definition and value of, 1024
    Fced-pump (see Pumps)
    Feed water, cold, strains caused by, 727
    water heaters, 727, 1083
    water heaters, marine practice, 1016
    water, saving due to heating, 727
    water, purification of, 554
    Feed-wire, stranded, table of sizes and weights, 222
    Fibre-graphite lubricant, 945
    Fifth roots and powers of numbers, 102
    Fineness, coefficient of, 1002
    Finishing temperature, effect of in steel rolling, 392
    Fink roof-truss, 446
    Fire, temperature of, 622

    Fire-brick arches in locomotives, 857
    Fire-brick, number required for various circles, table, 234
    sizes and shapes of, 233
    weight of, 233
    Fire-cay, analysis of Mt. Savage, 234
    pyrometer, 453
    Fire-engines, capacities of, 580
    Fire-proof buildings, 1020
    Fire-streams, 579-581
    discharge from nozzles at different pressures, 579
    effect of increased hose-length, 581
    friction loss in hose, 580
    pressure required for given length of, table, 581
    Fireless locomotive, 866
    Fits, forcing and shrinkage, 973
    Fittings, cast-iron pipe, sizes and weights, table, 187
    Flagging, strength of, 313
    Flanges for cast-iron pipe, table, 193
    pipe, standard, table, 192
    pipe, extra heavy, table, 193
    Flat plates in steam-boilers, 701, 709
    plates, strength of, 283
    rolled iron, weight of, table, 172 , 173
    Flexure of beams, formulæ for, 267
    and compression combined, 282
    and tension combined, 282
    and torsion combined, 283
    Fliegner's equation for flow of air, 485
    Flight conveyors, $912 a$
    Flights, sizes and weights of, $912 c$
    Floors, loads on, 281
    maximum load on, 1021
    strength of, 1019, 1021
    Flooring material, 281
    Flow of air in pipes, 485
    of air through orifices, 484,518
    of compressed air, 489
    of gases, 480
    of gas in pipes, 657-659
    of gas in pipes, tables, 658
    of metals, 973
    of steam, capacities of pipes, 672
    of steam, in pipes, 669-671
    of steam, loss of pressure due te friction, 671
    of steam, loss of pressure due to radiation, 671
    of steam, Napier's rule, 669
    of steam, resistance of bends valves, etc.. 672
    of steam, tables of, 668, 669
    of steam, through a nozzle, 668
    of water, 555-588
    of water, Bazin's formulæ, 563
    of water, Chezy's formula, 558
    of water, D'Arcy's formula, 563

    Flow of water, experiments on, $566^{-}$ 573
    of water, fall per mile and slope, table, 558
    of water, Flynn's formula, 562
    of water, formulæ for, 557-564, 1089
    of water in pipes, 557
    of water in pipes at uniform velocity, table, 572
    of water in cast-iron pipe, 566
    of water in house-service pipes, table, 578
    of water in $20^{\prime \prime}$ pipe, 566
    of water in pipes, table from D'Arcy's formula, 569-572
    of water in pipes, tables from Kutter's formula, 568, 569
    of water, Kutter's formula, 559
    of water, Molesworth's formula, 562
    of water, old formulæ for, 564
    of water over weirs, 555,586
    of water, $\sqrt{r}$ for pipes and conduits, table, 559
    of water through orifices, 555, 584
    Flowing water, horse-power of, 589
    water, measurement of, 582
    Flues, collapsing pressure of, 265
    corrugated, British rules, 266,702
    corrugated, U. S. rules, 709
    (see also Tubes and Boilers)
    Flywheels, steam-engine, 817-824 (see Steam-engines)
    Foaming or priming of steamboilers, 552, 718
    Foot and inches, decimal equivalents of, table, 112
    Foot-pound, unit of work, 428
    Force, centrifugal, 423
    definitions of, 415
    expression of, 429
    graphic representation of, 415
    moment of, 416
    of acceleration, 427
    of a blow, 430
    of wind, 492
    units of, 415
    Forces, composition of, 415
    equilibrium of, 418
    parallel, 417
    parallelogram of, 416
    parallelopipedon of, 416
    polygon of, 416
    resolution of, 415
    Forced draught in steam-boilers, 714
    draught, marine practice, 1015
    Forcing and shrinking fits, 973
    Forges, fans for, 519
    Forging, heating of steel for, 413
    hydraulic, 618, 620
    of tool steel, 413
    Forgings, strength of, 297 steel, annealing of, 396
    Foundry iron, analyses of, 371-374 irons, chemistry of, 370

    Foundry irons, grades of, 372
    ladles, dimensions of, 953
    practice, 946-953
    practice, moulding-sand, 952
    practice, shrinkage of castings, 951
    practice, use of softeners, 950
    Fractions, 2
    product of, in decimals, 4
    Frames, steam-engine, 817
    Framed structures, stresses in, 440447
    Framing, for bulkheads, table, 287
    for tanks, 287
    Francis's formulæ for weirs, 586
    Freezing-point of water, 5.50
    French measures and weights, 21-26
    thermal unit, 455
    Frequency of alternating currents, 1061
    Friction and lubrication, 928-945
    brakes, capacity of, 980
    ccefficient of, definition, 928
    coefficient of, tables, 929,930
    fluid, laws of, 929
    gearing, 905
    laws of, of lubricated journals, 934
    moment of, 938
    Morin's laws of, 933
    of air in mine passages, 531
    of car-journals, 937
    of lubricated journals, 931
    of metals under steam pressure, 933
    of motion, 929
    of pivot bearings, 939
    of rest, 928
    of solids, 928
    of steam-engines, 941
    of steel tires on rails, 928
    rolling, 928,929
    unlubricated, law of, 928
    work of, 938
    rollers, 940
    Frictional heads, flow of water, 577
    Frustum, of pyramid, 61
    of cone, 61
    of parabolic conoid, 64
    of spheroid, 63
    of spindle, 63
    Fuel, 620-651
    bagasse, 643
    charcoal, 640-642 (see Charcoal)
    coke, 637-639 (see Coke)
    combustion of, 620
    dust, 642
    economizers, 715
    for cupolas, 948
    gas, 646, 1082 (see Gas)
    gas for small furnaces, 651
    heat of combustion of, 621
    peat, 643
    petroleum, 645
    pressed, 632
    sawdust, 643
    straw, 643
    solid, classification of, 623

    Fuel. wet tan-bark, 643
    theory of combustion of, 620
    turf, 643
    weight of, 170
    wood, 639. 640
    Functions, trigonometrical, of half an angle, 67
    of sum and difference of angles, 66
    of twice an angle, 67
    tables of, 159-162
    Furnaces, blast, temperature determinations in, 452
    corrugated, 266,709
    down draught, 635, 712
    for different coals, 635
    gas-fuel for, 651
    industrial, temperatures in, 451
    open-hearth, temperature determinations in, 452
    steam-boiler, formulæ for, 702
    steam-boiler (see Boiler-furnaces)
    Fusible alloys, 333
    plugs in boilers, 710
    Fusibility of metals, 167
    Fusing-disk, 966
    Fusing temperatures of substances, 455
    Fusion, latent heat of, 461
    of electric wires, 1032
    a, value of, 424
    Gallons per cubic foot, table, 122
    Galvanic action, corrosion by, 386
    Galvanized wire rope, 228
    Gas, ammonia, 992, 993
    analyses by volume and weight, 651
    anthracite, 647
    bituminous, 647
    carbon, 646
    coal, 651
    fired steam-boilers, 714
    flow of in pipes, 657-659 (see Flow of gas)
    fuel, 646-651, 1082
    fuel, cost of, 651
    fuel for small furnaces, 651
    illuminating, 651-659 (عee Illu-minating-gas)
    natural, 649
    producer, 649
    producer, combustion of, 650
    producer, from ton of coal, 649
    sulphur-dioxide, 992
    water, 648, 652-657 (see Watergas)
    and vapor mixtures, laws of, 480
    Gas-engines, 847-850
    combustion of gas in Otto, 849
    efficiency of, 848
    pressures developed in, 849
    temperatures developed in, 849
    tests of, 848
    use of carburetted air in, 849
    Gas-pipe, cast-iron, weight of, table, 188

    Gas-producers: use of steain in, 650
    Gases, absorption of, 480
    Avogadro's law of, 479
    combustion of, rise of temperature in, 623
    densities of, 479
    expansion of, 479
    expansion of by heat, table, 459
    flow of, 480
    heat of combustion of, 456
    law of Charles, 479
    Mariotte's law of, 479
    of combustion, analyses of, 622
    physical properties of, 479
    specific heats of, 458
    weight and specific gravity of, table, 165
    waste, use of, under boilers, 689, 690
    Gasoline-engines, 850
    Gauges, limit, for screw threads, 205
    limit, for screw threads, table, 206
    Gauge, wire, $28-30$
    sheet metal, 28, 30-32
    Stub's wire, 29
    decimal, 32
    Gauss, definition and value of, 1052
    Gear, reversing, 816
    worm, 440
    wheels, calculation of speed of, 891
    wheels, formulæ for dimensions of, 890
    wheels, milling cutters for, 892
    wheels, proportions of, 891
    Gearing, annular, 898
    bevel, 898
    chordal pitch, 889
    comparison of formulæ, 902, 903
    cycloidal teeth, 892
    differential, 899
    efficiency of, 899
    forms of teeth, 892-899

    - formulæ for dimensions of, 890
    friction, 905
    involute teeth, 894
    pitch, pitch-circle, etc., 887
    pitch diameters for 1-inch circular pitch, 889
    proportions of teeth, 889-891
    racks, 895
    relation of diametral and circular pitch, 888
    speed of, 905
    spiral, 897
    strength of, 900-905
    stepped, 897
    toothed-wheel, 439, 887-906
    twisted, 897
    worm, 897, 1086
    Gears, lathe, for screw-cutting, 955
    Generators, electric, 1055-1060, 1074-1077
    alternating current, 1070, 1077
    (see Dynamo electric machines)
    Geometrical progression, $\cdot 11$
    problems, 37-52
    propositions, 53

    German silver, 300, 332
    silver, conductivity of, 1028
    Gilbert, definition and value of, 1050
    Girders, allowed stresses in plate and lattice, 264
    building. New York building laws, 1020
    iron-plate, strength of, 297
    steam-boiler, rules for, 703
    Warren, stresses in, 445
    Glass, skylight, sizes and weights, 184
    strength of, 308
    properties of, 167
    Gold-melting, temperature determinations, 452
    Gold-ore, cubic feet per ton, 170
    Gordon's formula for columns, 247
    Governors, steam-engine, 836-839
    Grade line, hydraulic, 578
    Grain elevators, $912 d$ weight of, 170
    Granite, strength of, 302, 312
    Graphite, lubricant, 945
    raint, 387
    Grate surface in locomotives, 856 surface of a steam-boiler, 680
    Gravel, cubic feet per ton, 170
    Gravity, acccleration due to, 424 center of, 418
    discharge elevators, $912 a$
    specific, $163-165$ (see Specific gravity)
    Greatest common measure or divisor, 2
    Greek letters, 1
    Green's fuel economizer, 715
    Greenhouses, hot-water, heating of, 542
    steam-heating of, 541
    Grinder, horse-power required to run, 963
    Grindstones, speed of, 968,969 strains in, 968
    varieties of, 970
    Gurley's bronze, composition of, 325
    Gun-bronze, variation in strength of, 321
    Guns, energy of recoil of, 431
    formula for thickness of, 288
    Gun-metal (bronze), composition of, 325
    Guy-ropes for stand-pipes, 293
    Guy-wires, table of sizes, weights, and strength of, 223
    Gyration, center of, 420
    table of radii of, 421
    radius of, 247, 249
    Hammering, effect of, on steel, 412
    Hardening of steel, 393, 414
    Hardness of copper-tin alloys, 320 of water, 553
    Haulage, wire-rope, 912d-916 wire-rope, endless rope system, 914
    wire-rope, engine-plane, 913
    wire-rope, inclined plane, 913

    Haulage, wire-rope, tail-rope sysiem, 913
    wire-rope, tramway, 914
    Hauling capacity of locomotives. 853
    Hawley down-draught furnace, 712
    Hawsers, flexible steel wire, 223
    Hawser, hemp, weight of. 223
    manila, weight of, 223
    steel, weight of, 223
    steel, table of sizcs and properties, 229
    table of comparative strength of steel, hemp, manila, and chain. 230
    Head, frictional, in cast-iron pipe, table, 577
    loss of, 573-579 (see Loss of head)
    of air, due to temperature differences, 533
    of water, 557
    of water, comparison of, with various units, 548
    of water, value in pounds per square inch, table, 189, 190
    Heads of boilers, 706
    of boilers, unbraced wroughtiron, strength of, 285
    Heat, 448-480
    conducting power of metals, 469
    conduction of, 468
    convection of, 469
    effect of, on grain of steel, 412
    expansion due to, 459
    generated by electric current, 1031
    latent, 461 (see Latent heat)
    loss by convection, 476
    mechanical equivalent of, 456
    of combustion, 456
    of combustion of fuels, 621
    quantitative measurement of, 455
    radiating power of substances, 468
    radiation of, 467
    radiation of various substances, 475
    reflecting power of substances, 468
    resistance of metals, 468
    specific, $457-459$ (see Specific heat)
    steam, storing of, 789
    transmission of, from steam to water, 472,473
    transmission of, in condenser tubes, 473
    transmission of, through building walls, etc., 478,534
    transmission of, through plates, 471-475
    transmission power of various substances, 478
    treatment of crucible steel, 411
    unit of, 455, 660
    units per pound of water, 548
    Heaters, electric, 1044
    feed-water, 727, 1083

    Heating and Ventilation, 528-546
    blower system, 545, 1081
    boiler-heating surface, 538
    computation of radiating surface, 536
    heating value of radiators, 534
    heating surface, indirect, 537
    hot-water heating, 542-544 (see Hot-water heating)
    overhead steam-pipes, 537
    steam-heating, 534-541 Steam-heating)
    transmission of heat through building walls, 534
    Heating a building to $70^{\circ}, 545$
    by electricity, 546, 1044
    by exhaust steam, 780
    of electrical conductors, 1031
    of greenhouses, 541,542
    of large buildings, 534
    of steel for forging, 413
    of tool steel, 412
    surface of steam-boiler, 678 ; measurement of, 679
    value of coals, 634,635
    value of wood, 639
    Height, table of, corresponding to a given velocity, 425
    Heine boiler, test of, with different coals, 688
    Helical springs, capacity of, 349 . 350
    springs for locomotives, 353
    steel springs, 347
    Helix, 60
    Hemp ropes, strength of, 301
    rope, table of strength and weight of, 340
    rope, table of strength of, 338
    rope, flat, table of strength of, 339
    Henry, definition and value of, 1024
    Hobson's hot-blast pyrometer, 453
    Hodgkinson's formula for columns, 246
    Hoisting, 906-916
    by hydraulic pressure, 617
    coal, 343
    counterpoise system 910
    cranes, 911 (see Cranes)
    effect of slack rope, 908
    endless rope system, 910
    engines, 908
    engines, compressed-air, 505 b
    engines, counterbalancing of, 909
    horse-power required for, 907
    Koepe system, 910
    limit of depth for, 908
    loaded wagon system, 910
    pneumatic, 909
    rope, 340
    rope, iron, or steel, dimensions, strength and properties, table, 226
    ropes, stresses in, on inclined planes, 915
    rope, sizes and strength of, 343 , 906

    Hoisting rope, tension required to prevent slipping, 916
    suspension cableways, 915
    tapering ropes, 910,916
    Holding power of bolts in white pine, 291
    power of expanded boiler-tubes, 307
    power of lag-screws, 290
    power of nails in woods, 291
    power of spikes, 289
    power of wood screws, 290
    Hollow cylinders, resistance of, to collapse, 264-266
    shafts, torsional strength of, 282
    Hooks, proportions of, 907
    Horse-gin, 434
    Horse, work of, 434
    Horse-power constants of steamengines, 757
    cost of, 590
    definition of, 27,429
    electrical, 1031
    electrical, table of, 1039
    hours, dcfinition of, 429
    nominal, definition of, 756
    of fans, 516
    of flowing water, 589
    of locomotive boilers, 679
    of marine boilers, 679
    of a steam-boiler, 677
    of a steam-boiler, builders' rating, 679
    of steam-engincs, 755-761
    of windmills, 497
    required to compress air, 500
    Hose, fire, friction losses in, 580
    Hot-air engines, 850
    Hot-blast pyrometer, Hobson's, 453
    Hot boxes, 938
    water heating, 542-544
    water heating. arrangement of mains, 544
    water heating, computation of radiating surface, 543
    water heating, indirect, 544
    water heating of greenhouscs, 542
    water heating, rules for, 544
    water heating, sizes of pipes for, 543
    water heating, velocity of flow, 542
    House-service pipes, flow of water in, table, 578
    Howe truss, stresses in, 445
    Humidity, relative, table of, 483
    Hydraulics, 555-588 (see Flow of water)
    Hydraulic apparatus, efficiency of, 616
    cylinders, thickness of, 617
    engine, 619
    forging, 618, 620
    formulæ, 557-564, 1087
    grade-line, 578
    machinery, friction of, 616

    Hydraulic pipe, 191
    power in London, 617
    press, thickness of cylinders for, 288
    presses in iron works, 617
    pressure, hoisting by, 617
    pressure transmission, 616-620
    pressure transmission, energy of, 616
    pressure transmission, speed of water through pipes and valves, 617
    ram, 614, 615
    riveting machines, 618
    Hydrometer, 165
    Hygrometer, dry and wet bulb, 483
    Hyperbola, asymptotes of, 71
    construction of, 49
    equations of 71
    curve on indicator diagrams, 759
    Hyperbolic logarithms, tables of, 156-158
    Hypocycloid, 50
    I beams (see Beams)
    Ice, properties of, 550
    making machines, 981-1001 (see Refrigerating machines)
    manufacture, 999
    melting effect, 983
    Illuminating-gas, 651-659
    calorific equivalents of constituents, 654
    coal-gas, 651
    fuel value of, 656
    space required for plants, 656
    water-gas, 652
    Impact, 431
    Impedance, 1063
    polygons, 1064-1066
    Impurities of water, 551
    Incandescent lamp, 1042
    Inches and fractions as decimals of a foot, table, 112
    Inclined-plane, 437
    motion on, 428
    stresses in hoisting-ropes on, 915
    plane, wire-rope haulage, 913
    Incrustation and scale, 551, 716
    India-rubber, vulcanized, tests of, 316
    Indicated horse-power, 755
    Indicators, steam-engine, 754-761 (see Steam-engines)
    Indicator tests of locomotives, 863
    Indirect heating surface, 537
    Inductance, 1062
    of lines and circuits, 1066
    Induction motors, 1072
    Inertia, definition of, 415 moment of, 247, 419
    Ingots, steel, segregation in, 404
    Injector, efficiency of, 726 equation of, 725
    Inoxidizable surfaces, production of, 388
    Inspection of steam-boilers, 720

    Insulation, Underwriters', 1033
    Insulators, electrical value of, 1028
    Integrals, 73
    table of, 78,79
    Integration, 74
    Intensifier, hydraulic, 619
    Interest, 13
    compound, 14
    Interpolation, formula for, 1080
    Involute, 52
    gear-teeth, 894
    gear-teeth, approximation of, 896
    Involution, 6
    Iridium, properties of, 167
    Iron and steel, 167, 364-389
    and steel boiler-plate, 382
    and steel, classification of, 364
    and steel, effect of cold on strength of, 383
    and ste $l$ in structures, formula. for unit strains in, 379
    and steel, inoxidizable surface for, 388
    and steel, latent heat of fusion of, 459
    and steel, manganese plating of, 389
    and steel, Pennsylvania Railroad specifications for, 378
    and steel, preservative coatings for, 387
    and steel, rustless coatings for, 387
    and steel, specific heat of, 459
    and steel, tensile strength at high temperatures, 382
    bars (see Bars)
    bridges, durability of, 385
    cast, 365-376 (see Cast iron)
    coefficients of expansion of, 385
    color of, at various temperatures, 455
    copper-zinc alloys, 326
    corrosion of, 386
    corrugated, sizes and weights, 181
    durability of, 385, 386
    flat-rolled, weight of, 172,173
    for stay-bolts, 379
    for U. S. standard bolts, variation in size of, 206
    foundry, analyses of, $371-374$
    foundry, chemistry of, 370-374
    malleable, 375, 376 (see Malleable iron)
    pig (see Pig iron)
    plates, approximating weight of, 403
    plate, weight of, table, 174,175
    rivet, shearing resistance of, 363
    rope, table of strength of, 338
    rope, flat, table of strength of, 339
    shearing strength of, 306
    sheets, weight of, 32,174
    silicon-aluminum alloys, 330
    tubes, collapsing pressure of, 265
    wrought, 377-379 (see Wrought iron)

    Irregular figure, area of, 55,56 solid, volume of, 64
    Irrigation canals, 564
    Isothermal compression of air, 499 expansion of steam, 742

    Japanese alloys, composition of, 326
    Jet-condensers, 839
    Jet propulsion of ships, 1014
    Jet, reaction of, 1015
    Jets, water, 579
    Joints, riveted, 354-363 (see Riveted joints)
    Joists, contents of, 21
    Joule, definition and value of, 1024
    Joule's equivalent, 456
    Journal-bearings, 930-939
    cast-iron, 933
    of engines, $810-815$
    Journals, coefficients of friction of, 930
    lubricated, friction of, 931, 932, 934, 935, 937

    Kelvin's rule for electric transmission, 1036
    Kerosene for scale in boilers, 718
    Keys, dimensions of, 977
    for machine tools, 976
    for shafting, sizes of, 976
    holding power of, 978
    sizes of, for mill-gearing, 975
    Kinetic energy, 429
    King-post truss, stresses in, 442
    Kirkaldy's tests on strength of materials, 296-303
    Knots, 344
    Knot or nautical mile, 17
    Koepe system of hoisting, 910
    Krupp steel tires and axles, 298, 299
    Kutter's formula, flow of water, 559 formula, table from, of flow of water in pipes, 568,569
    Ladles, foundry, dimensions of, 953
    Lag-screws, holding power of, 290
    Lacing of belts, 883
    Lamps, arc, 1041
    Lamps, incandescent electric, 1042 life of, 1042
    specifications for, 1043
    Lamps, Nernst, 1043
    Lap-joints, riveted, 358
    Land measure, 17
    "Lang Lay"' rope, 229
    Lap and lead in slide valves, 824-835
    Latent heat of ammonia, 992
    heat of evaporation, 462
    heat of fusion of iron and steel, 459
    heats of fusion of various substances, 461
    Lathe, change-gears for, 956
    cutting speed of, 953
    horse-power to run, 961-963
    rules for screw-cutting gears, 955 setting taper in, 956
    tools, forms of, 955

    Lattice girders, allowed stresses in, 264
    Law of Charles, 479
    Laws of falling bodies, 424
    of motion, 415
    Lead, properties of, 167
    pipe, weights and sizes of, table, 200
    pipe, tin-lined, sizes and weights, table, 201
    sheet, weight of, 200
    and tin tubing, 200
    waste-pipe, weights and sizes of 200
    Leakage of steam in engines, 761
    Least common multiple, 2
    Leather, strength of, 302
    Le Chatelier's pyrometer, 451
    Levelling by barometer, 482
    by boiling water, 482
    Lever, 435
    bent, 436
    Lighting, electric, 1041-1043
    Lightning protection of chimneys, 736
    Lignites, analysis of, 631
    Lime, weight of, 170
    and cement mortar, strength of, 313
    Limestone, strength of, 312, 313
    Limit, elastic, 236-239
    gauges for screw-threads, 206
    Lines of force, 1050
    Links, steam-engine, size of, 815
    steel bridge, strength of, 298
    Link-belting, sizes and weights, $912 b$
    Link-motions, steam-engine, 834836
    Lintels in buildings, 1020
    Liquation of metals in alloys, 323
    Liquid measure, 18
    Liquids, expansion of, 461
    specific gravity of, 164
    specific heats of, 457,458
    Locomotives, 851-866
    boiler pressure, 859
    boilers, size of, 855
    compounding of, 863
    counterbalancing of, 864
    cylinders, 854
    dimensions of, $859 b-862$
    drivers, sizes of, 859
    effect of speed on cylinder pressure, 859
    efficiency of, 854
    exhaust-nozzles, 856
    fire-brick arches in, 857
    fireless, 866
    forgings, strength of, 297
    formula for curves, $859 a$
    free-steaming, 855
    fuel waste of, 863
    grate surface of, 856
    hauling capacity of, 853
    horse-power of, 855
    indicator tests of, 863
    light, 865
    link motion, $859 a$

    Locomotives, narrow-gauge, 865
    oil consumption of, 943
    performance of high-speed, $859 a$
    petroleum-burning, 865
    safe load on tires, 865
    smoke-stacks, 856
    speed of, $859 a$
    steam distribution of, 858
    steam-ports, size of, 859
    testing apparatus, 863
    tractive power of, 853,857
    types of, 858
    valve travel, 859
    water consumption of, 862
    weight of, 857
    Wootten, 855
    Logarithms, 77
    hyperbolic, tables of, 156-158
    tables of, 129-156
    use of, 127-129
    Logarithinic curve, 71
    sines, etc., 162
    Logs, area of water required to store, 232
    weight of, 232
    Long measure, 17
    measure, French, 21
    Loops of force, 1050
    Loop, steam, 676
    Loss of head, 573-579
    of head, Cox's formula, 575
    of head, in cast-iron pipe, tables, 574,575
    of head in riveted steel pipes, 574
    Low strength of steel, 392
    Lowmoor iron bars, strength of, 297
    Lubrication, 942-945
    Lubricants, examination of oil, 943
    measurement of durability, 942
    oil, specifications for, 944
    qualifications of good, 942
    relative value of, 942
    soda mixture, 945
    solid, 945
    specifications for petroleum, 943
    Lumber, weight of, 232
    Machines, dynamo-electric, 10551060 (see Dynamo-electrio machines)
    Machines, efficiency of, 432
    elements of, 435-440
    Machine screws, table of proportions of, 209
    screws, taps for, 970
    shop, 953-978
    shops, horse-power required in, 965
    tools, keys for, 976
    tools, power required for, 960-965
    tools, proportioning of, 975
    tools, soda mixture for, 945
    Machinery, coal-handling, 912-912d horse-power required to run, 964
    Maclaurin's theorem, 76
    Magnesia bricks, 235
    Magnesium, properties of, 168
    Magnetic balance, 396

    Magnetic capacity of iron, effect of annealing, 396
    circuit, 1051 ; units of, 1050
    field, strength of, 1057
    Magneto-motive force, 1050, 1051
    Magnets, electro-, 1050-1054
    Magnolia metal, composition of, 334
    Mahler's calorimeter, 634
    Main-rods, steel, specifications for, 401
    Malleable castings, rules for use of, 376
    iron, 375
    iron, strength of, 376
    Malleability of metals, table, 169
    Man-wheel, 434
    Man, work of, tables, 433
    Mandrels, standard, 972
    Manganese, properties of, 168
    bronze, 331
    copper alloys, 331
    effect of on steel, 389
    effect of on cast iron, 367
    plating of iron, 389
    steel, 407
    Manila rope, 340 ; weight and strength of, 304, 344
    Mannesmann tubes, strength of, 296
    Manometer, air, 481
    Marble, strength of, 302
    Marine Engineering, 1001-1019 (see Ships and Steam-engines)
    Marine boilers, 1015
    engines, comparison of old and modern, 1017
    engines, three-stage, triple-expansion, 1017-1019
    Marriotte's law of gases, 479, 742
    Masonry, crushing strength of, 312
    materials, weight and specific gravity of, 166
    Mass, definition of, 427
    expression of, 429
    Materials, 163-235
    strength of, 236-346
    strength of, Kirkaldy's. tests, 296-303
    structural, stresses permissible in, 381
    various, weights of, 169 ; table, 166
    Maxima and minima, 76
    without calculus, 1080
    Maxwell, definition and value of, 1050
    Mean effective pressures of adiabatically compressed air, $501 b$ effective pressure of compressed air, table, 502, 503
    Measurements, miner's inch, 585
    Measurement of air velocity, 491
    of elongation. 243
    of flowing water, 582-588
    of vessels, 1001
    weir-dam, 586
    Measures, apothecaries, 18, 19
    board, 20

    Measures, circular, 20
    dry, 18
    liquid, 18
    long, 17
    nautical, 17
    of work, power, and duty, 27
    old land, 17
    shipping, 19
    solid or cubic, 18
    square, 18
    surface, 18
    time, 20
    timber, 20
    Measures and weights, metric system, 21-26
    Mechanics, 415-447
    Mechanical equivalent of heat, 456 powers, 435
    stokers, 711
    Mekarski compressed-air tramway, 510
    Melting-points of substances, 455
    Members, bridge, strains allowed in, 262-264
    Memphis bridge, tests of steel in, 393 bridge, proportions of materials in, 381
    Mensuration, 54-64
    Mercurial thermometer 448
    Mercury-bath pivot, 940
    Mercury, compressibility of, 164 properties of, 168
    Merriman's formula for columns, 260
    Mesuré and Nouel's pyrometric telescope, 453
    Metacentre, definition of, 550
    Metaline lubricant, 945
    Metals, anti-friction, 932
    coefficients of expansion of, 460
    coefficients of friction of, 930
    electrical conductivity of, 1028
    flow of, 973
    heat-conducting power of, 469
    life of under shocks, 240
    properties of, 167-169
    resistance overcome in cutting of, 960
    specific heats of, 453
    specific gravity of, 164
    weight of, 164
    table of ductility, infusibility, malleability, and tenacity, 169
    tenacity of, at various temperatures, 382-384
    Meter, Venturi, 583
    Meters, water delivered through, 579
    Metric conversion, tables, 23-26
    measures and weights, 21, 22
    screw-threads, cutting of, 956
    Mil, circular, 18, 2930
    Mile-ohm, weight of wire per, 217
    Mill columns, 1022
    power, value of, 589
    Milling cutters for gear-wheels, 892
    cutters inserted teeth, 960
    cutters, number of teeth in, 958
    cutters, pitch of teeth, 957
    cutters, spiral, 960

    Milling cutters, steel for, 957
    machines, cutting speed of, 958960
    machines, feed of, 959, 960
    machines, high results with, 959
    machine vs. planer, 960
    Miner's inch, 18
    inch measurements, 585
    Mines, centrifugal fans for, 521
    Mine fans, experiments on, 522
    ventilation 531
    ventilation, equivalent orifice, 533
    Modulus of elasticity, 237
    of elasticity of various materials, 314
    of resistance, 247
    of rupture 267
    Moisture in atmosphere, 483
    in steam, determination of, 728731
    Molesworth's formula, flow of water, 562
    Moments, method of, for determining stresses, 445
    Moment of a couple, 418
    of a force, 416
    of friction, 938
    of inertia, 247, 419
    of inertia of structural shapes, 248, 249
    statical, 417
    Momentum, 428
    Monobar, $912 b$
    Morin's laws of friction, 933
    Mortar, st rength of, 313
    Motion, accelerated, formulæ for, 427
    friction of 929
    Newton's laws of, 415
    on inclined planes, 428
    perpetual, 432
    retarded, 424
    Motors, alternating-current, 1071 , 1077
    compressed-air, 507
    electric, direct-current, 1055, 1074-1076
    water-current, 589
    Moulding-sand, 952
    Moving strut, 436
    Mule, work of, 435
    Multiphase electric currents, 1068
    Muntz metal composition of, 325
    Multiple system of evaporation 463
    Mushet steel, 409
    Nails, cut vs. wire, 290
    cut, table of sizes and weights, 213
    wire, table of, sizes and weights, 214,215
    Nail-holding power of wood, 291
    Naphtha engines, 850
    Napier's rule for flow of steam, 669
    Natural gas, 649
    Nautical measure, 17
    mile, 17
    Newton's laws of motion, 415
    Nickel-copper alloys, 332

    Nickel, properties of, 168
    steel, 407
    steel, tests of, 408
    Nozzles for measuring discharge of pumping-engines, 584

    Oats, weight of, 170
    Ocean waves, power of, 599
    Oersted, definition and value of, 1050
    Ohm, definition and value of, 1024
    Ohm's law, 1029
    law, applied to alternating currents, 1064
    law, applied to parallel circuits, 1030
    law. applied to series circuits, 1029
    Oil, amount needed for engines, 943
    as fuel, 646
    fire-test of, 944
    lubricating, 942-945 (see Lubricants)
    paraffine, 944
    well, 944
    pressure in bearings, 937
    tempering of steel forgings, 396
    vs. coal as fuel, 646
    Open-hearth furnace, temperature determinations in, 452
    steel (see Steel, open-hearth)
    Ordinates and abscissas, 69
    Ores, weight of, 170 .
    Orifice, equivalent, in mine ventilation, 533
    flow of air through, 484,518
    flow of water through, 555
    rectangular, flow of water through, table, 584
    Oscillation, center of, 421
    radius of, 421
    Overhcad steam-pipe radiators, 537
    Ox, work of, 435
    Oxygen, effect of, on strength of steel, 391
    $\pi$, value and relations of, 57
    Packing-rings of engines, 796
    Paddle-wheels, 1013, 1014
    Paint, 387
    qualities of, 388
    quantity of, for a given surface, 388
    Parabola, area of, by calculus, 74
    construction of, 48
    equations of, 70
    Parabolic, conoid, 63 spindle, 64
    Parallel rods, steel, specifications for, 401
    forces, 417
    Parallelogram, area of, 54
    definition of, 54
    of forces, 416
    of velocities, 426
    Parallelopipedon of forces, 416
    Parentheses in algcbra, 34

    Partial differential coefficient, 73 payments, 15
    Payments, equation of, 14
    Peat, 643
    Pelton water-wheel, 597, 1081
    tables of, 598, 599
    Pencoyd shapes, weights and sizes, 177, 178
    Pendulum, 422
    conical, 423
    Percussion, center of, 422
    Perfect discharge elevators, $912 a$
    Perforated plates, excess of strength of, 359
    plates, strength of, 354
    Permeability, magnetic, 1051 table, 1052
    Permutation, 10
    Perpetual motion, 432
    Petroleum as a metallurgical fuel, 646
    burning locomotives, 865
    cost of, as fuel, 646
    engines, 850
    Lima, 645
    products of distillation of, 645
    products, specifications for, 944
    value of, as fuel, 645
    Pewter, composition of, 336
    Phoenix columns, dimensions of, 257-259
    Phosphorus, influence of, on cast iron, 366
    influence of, on steel, 389
    Phosphor-bronze, composition of, 325, 334
    specifications for, 327
    springs, 352
    strength of, 327
    Fictet fluid, 982
    ice-machine, 985
    Piezometer, 582
    Pig-iron, añalysis of, 371
    chemistry of, 370
    charcoal, strength of, 374
    distribution of silicon in, 369
    grading of, 365
    influence of silicon, etc., on, 365
    tests of, 369
    Pillars, strength of, 246
    Pins, taper, 972
    Pine, strength of, 309
    Pipes, air-bound, 579
    bent, table of, 199
    block-tin, weights and sizes of, table, 200
    capacity of, 573
    cast-iron, 185-190
    cast-iron, gas, weight of, 188
    cast-iron, safe pressures for, tables, 189, 190
    cast-iron, thickness of, for various heads, 188, 189
    cast-iron water, transverse strength of, 251
    cast-iron, weight of, 185, 188
    cast-iron, weight of 12 -foot lengths, 186

    Pipes, coiled, table of, 199
    effects of bends in, 488,578, 672 equation of, 491
    fittings, cast-iron, sizes and weights, 187
    fittings, spiral-riveted, table, 198
    flanges, for cast-iron pipe, table, 193
    flanges, extra heavy, table, 193
    flanges, table of standard, 192
    flow of air in, 485, 489
    flow of gas in, 657
    flow of steam in, 669-673
    flow of water in, $557,566-572$
    for steam-heating, 540
    house-service, flow of water in, table, 578
    lead, safe heads for, 201
    lead, tin-lined, sizes and weights, table, 201
    lead, weights and sizes of, table, 200
    loss of air-pressure in, 487 ; tables, 488, 489, 490
    loss of head in, 573-579 (see Loss of head)
    quantity of water discharged by, 573
    riveted hydraulic, weights and safe heads, table, 191
    riveted-iron, dimensions of, table, 197
    riveted, safe pressures in, 707
    riveted-steel water, 295
    spiral riveted, table of, 198
    steam (see Steam-pipes)
    table of capacities of, 120
    threads on, 195
    wrought-iron, standard, table of dimensions, 194
    volume of air transmitted in, table, 486
    water, relation of diameter to capacity, 566
    Pipe-coverings, radiation through, 671
    Pistons, steam-engine, 795
    Piston-rings, steam-engine, 796
    Piston-rods, steam-engine, 796-798
    Piston-valves, steam-engine, 834 , 1016
    Pitch, diametral, 888
    of gearing, 887
    of rivets, 357-359
    of screw propellers, 1012
    Pitot tube gauge, 583
    Pivot-bearings, 939
    Pivot-bearing, mercury bath, 940
    Plane, inclined, 437 (see Inclined plane)
    surfaces, mensuration of, 54
    Planers, cutting speed of, 953
    Planer, heavy work on, 960
    horse-power required to run, 963
    tools, forms of, 955
    vs. milling-machine, 960
    Plates, acid-pickled, heat transmission through, 474

    Plates, areas of, in square feet, table, 123
    boiler, strength of, at high temperatures, 383
    brass, weight of, table, 202
    corrugated-steel. properties of, table, 274
    Carnegie trough, properties of, table, 274
    circular, strength of, 283
    copper, weight of, table, 202
    copper, strength of, 300
    flat, cast-iron, strength of, 286
    flat, for steam-boilers, rules for, 701, 706, 709
    iron, approximating weight of, 403
    iron, weight of, table, 175
    of different materials, table for calculating weights of, 169
    stayed, strength of, 286
    for stand-pipes, 293
    perforated, strength of, 353, 360
    punched, loss of strength in, 354
    steel boiler, specifications for, 399
    steel, corrections for size of, in tests, 380
    steel, for cars, specifications for, 401
    steel, specifications for, 400, 401
    steel, tests of, 297, 390
    strength of flat, 283-286
    strength of flat unstayed, 284
    transmission of heat through, 471
    transmission of heat through, air to water, 474
    transmission of heat through steam to air, 475
    Plate-girders, allowed stresses in, 264
    girder, strength of, 297
    Plating for bulkheads, table, 287
    steel, stresses in, due to waterpressure, 287
    for tanks, table, 287
    Platinum, properties of, 168
    wire, 225
    Plugs, fusible, in steam-boilers, 710
    Pneumatic hoisting, 909
    Polarity of electro-magnets, 1054
    Polyedron, 62
    Polygon, area of, 55
    construction of, 42,43
    definition of, 55
    table of, 44, 55
    Polygons, impedance, 1064-1066
    of forces, 416
    Polyphase circuits, 1068
    Popp system of compressed air, 507
    Population of the United States, 12
    Port opening in steam-engines, 828
    Portland cement strength of, 302
    Postal transmission, pneuinatic, 509
    Potential energy, 429
    Pound-calorie, definition of, 455
    Pound per square inch, equivalents of, 27

    Powell's screw-thread. 975
    Power, animal, 433
    definition of, 429
    factor of alternating currents, 1062
    hydraulic. in London. 617
    measure of, 27
    of electric circuits. 1031
    of a waterfall, E 88
    of ocean waves, 599
    unit of 429
    Powers of numbers, tables, 7, 86102
    of numbers, algebraic. 33
    Pratt truss, stresses in, 443
    Preservative coatings, 387-389
    Press, hydraulic, thickness of eylinders for, 288
    Pressed fuel, 632
    Presses, hydraulie, in iron works. 617
    punches, etc., 972
    Pressure, collapsing of flues 265
    eollapsing, of hollow eylinders, 264
    Priming, or foaming, of steamboilers, 552, 718
    Prism, 60
    Prismoid, 61
    rectangular, 61
    Prismoidal formula, 62
    Problems, geonetrical, 37-52
    in cireles, 39, 40
    in lines and angles, 37, 38
    in polygons, 42
    in triangles, 41
    Producers, gas, use of steam in, 650
    Producer-gas, 646-651 (see Gas)
    Progression, arithmetical and geometrical, 11
    Prony brake, 978
    Propeller, serew, 1010-1013 (see Serew-propeller)
    shafts, strength of, 299
    Proportion, 5
    compound, 6
    Pulleys, 873-875
    arrangement of, 874
    arms of, 820
    cone, 874
    convexity of, 874
    differential, 439
    for rope-driving, 925
    or blocks, 438
    proportions of, 873
    speed of, 884, 891
    Pulsometer, 612
    tests of, 613
    Pumps and pumping-engines, 601614
    air, for condensers, 841
    air-lift, 614
    boiler-feed, 605
    boiler-feed, efficieney of, 726
    centrifugal, 606-609
    centrifugal, as suetion-dredge, 609
    eentrifugal, efficieney of, 608
    centrifugal, relation of height of lift to velocity, 606

    Pumps eentrifugal, sizes of, 607
    eentrifugal tests of 609
    eirculating for condensers 843
    eompressed-air mine. 511
    depth of suction of. 602
    direct-asting, efficieney of, 604
    direet-acting, proportions of steam cylinder, 602
    duplex steam. sizes of, 604
    fced for marine engines. 843
    horse-power of, 601
    jet 614
    leakage test of, 611
    lift, water raised by 602
    piston speed of, 605
    single steam, sizes of. 603
    speed of water in passages of, 602, 605
    suction of, with hot water 602
    theoretical capacity of 601
    vacuum, 612
    Pump-valves, 606
    Pumping by compressed air. $505 a$
    Pumping-engines. duty trials of, 609
    economy of, 782
    table of data and results of duty trials of, 611
    triple-expansion, 782
    use of nozzles to measure diseharge of, 584
    Punches, clearance of, 972
    spiral, 972
    Punched plates, strength of, 354
    Punching, effect of, on structural steel. 394
    and drilling of steel 395
    Purification of water, 554
    Pyramid, 60
    frustum of, 61
    Pyrometer, alr, Wiborg's, 453
    eopper-ball, 451
    fire-elay, Seger's, 453
    Hobson's hot-blast. 453
    Le Chatelier's, 451
    principles of, 448
    thermo-electric, 451
    Uehling-Stein bart, 453
    Pyrometrie telescope, 453
    Pyrometry, 448-455
    Quadratie equations, 35
    Quadrature of piane figures, 74
    of surfaces of revolution, 75
    Quadrilateral, definition of, 54
    area of, 54
    area of, inseribed in cirele, 54
    Quadruple-expansion engines 772
    Quantitative measurement of heat, 455
    Quarter-twist belt, 883
    Quartz, cubic feet per ton, 170
    Qucen-post truss, stresses in, 442
    inverted, stresses in, 443
    Raek, gearing, 895
    Radiating power of substances, 468

    Radiating surface, computation of, for hot-water heating; 543
    surface, computation of, for steam heat, 536
    Radiation of heat, 467
    of various substances, 475
    table of factors for Dulong's laws of, 476
    Radiators, experiments with, 545
    heating value of, 477,534
    overhead steam-pipe, 537
    Radius of curvature of wire rope, 922 of gyration, 247, 420
    of gyration, graphical method for finding, 248
    of gyration of structural shapes, 249
    of oscillation, 421
    Rails, size of bolts for splicing 210 size of spikes for, 212
    steel, maximum safe load on, 865
    steel, specifications for, 398
    steel, strength of, 298
    Railroad axles, 384
    trains, resistance of, 851
    trains, speed of, 859
    Railways, electric, 1041
    narrow-gauge, 865
    Railway, street, compressed-air, 510, 511
    Ram, hydraulic, 614
    Ratio 5
    Reactance of alternating currents, 1063
    Reamers,. taper, 972
    Réaumer thermometer-scale, 448
    Recalescence of steel, 402
    Receiver-space in engines, 766
    Reciprocals of numbers, tables of, 80-85
    use of, 85
    Rectangle definition of, 54 value of diagonal of, 54
    Red lead as a preservative, 387
    Reduction, ascending and descending, 5
    Rectangular prismoid, 61
    Reese's fusing disk, 966
    Reflecting power of substances, 468
    Refrigerating - machines, a ir - machines, 983
    ammonịa-absorption, 984, 987
    ammonia-compression, 983, 986
    cylinder-heating, 997
    ether-machines, 983
    heat-balance, 990
    ice-melting effect, 983
    liquids for, pressures and boilingpoints, 982
    operations of, 981
    pipe-coils ior, 985
    pertormances of, 994-997
    properties of brine, 994
    properties of vapor, 993
    relative efficiency of, 988
    relative performance of ammoniacompression and absorption

    Refrigerating-machines, sulphur-dioxide machine, 985
    temperature range, 991
    tests of, 990-992
    using water vapor, 988
    Refrigeration, 981-1001
    means of applying the cold, 999
    Registers for steam-heating, 539
    Regnault's experiments on steam, 661
    Reluctance, magnetic, 1050, 1051
    Reservoirs, evaporation of water in, 463
    Resilience, 238
    elastic, 270
    Resistance, elastic, to torsion, 282
    electrical, 1027-1032
    electrical, effect of annealing, 1029
    electrical, effect of temperature, 1029
    electrical, in circuits, 1029-1031
    electrical, internal, 1031
    electrical, standard of, 1029
    electrical, of copper wire, 1029, 1034
    electrical, of steel, 403
    elevation of ultimate, 238
    of metals to repeated shocks, 238
    modulus of, 247
    of ships, 1002
    of trains, 851
    work of, of a material. 238
    Resolution of forces, 415
    Reversing-gear for steam-engines,
    dimensions of, 815
    Retarded motion, 424
    Rhomboid, definition and area of, 54
    Rhombus, definition and area of, 54
    Rivet-iron and -steel, shearing resistance of, 363
    Rivets, bearing pressure on, 356
    cone-head, for boilers, weight of, 211
    diameters of, table, 360
    in steam-boilers, rules for, 700
    pitch of, 359
    pressure required to drive, 1080
    rules for strength of, 360
    steel, specifications for, 401
    Riveting, efficiency of different methods, 355
    hand, strength of, 355
    hydraulic, strength of, 355
    machines, hydraulic, 618
    of structural steel, 394
    pressure required for, 362
    Riveted iron pipe, dimensions of, table, 197
    joints, 299, 354-363
    joints, drilled vs. punched holes, 355
    joints, efficiencies of, 359, 361
    joints, notes on, 356
    joints, proportions of, 358,359

    Riveted joints single-riveted lap, 357
    joints, calculated strength of double-riveted, 361
    joints, tests of double-riveted lap and butt, 360
    joints, tests of, table, 303
    pipe, flow of water in, 574
    pipe, weight of iron for, 197
    Roads, resistance of carriages on, 435
    Rock-drills, air required for, $505 a$
    requirements of air-driven, 506
    Rods of different materials, table for calculating weights of, 169
    Roof-truss, stresses in, 446
    Roofs, safe loads on, 184, 281
    strength of, 1019
    Roofing materials, 181-184
    materials, weight of various, 184
    Roller-bearings, 940
    Rolling of steel effect of finishing temperature, 392
    Ropes and cables, 338-346
    cable-traction, 226
    charcoal-wire, 228
    cotton and hemp, strength of, 301
    for coal-hoisting, 343
    hemp and wire, table of, working loads for, 339
    hemp, table of, strength and weight of, 340
    hoisting (see Hoisting-rope)
    "Lang Lay," 229
    locked-wire, 231
    manila, 340
    manila, weight and strength of, 344
    splicing of, 341
    steel flat, table of sizes, weight, and strength, 229
    steel-wire hawsers, 229
    stevedore, 340
    table of, strength of iron, steel, and hemp, 338
    table of strength of flat iron, steel, and hemp, 339
    technical terms relating to, 341
    transmission, 340
    wire (see Wire-rope)
    Rope-driving, 922-927
    English practice, 926
    horse-power of, 924
    pulleys for, 925
    sag of rope, 925
    tension of rope, 925
    various speeds of, 924
    weight of rope, 928
    Rotary blowers, 526
    steam-engines, 791
    Rotation, accelerated, work of, 430
    Rubber belting, 887
    vulcanized, tests of, 316
    Rule of three, 6

    Rupture, modulus of , 267
    Rustless coatings for iron, 388
    Safety, factor of, 314
    valves for steam-boilers, 721724
    Salt brine, properties of, 464
    manufacture, evaporation in, 463
    solubility of, 464
    solution, specific heat of, 458
    weight of, 170
    Sand-blast, 966
    Sand, cubic feet per ton, 170
    moulding, 952
    Sandstone, strength of, 312
    Saturation point of vapors, 480
    Sawdust as fuel, 643
    Sawing metal, 966
    Scale, boiler, 716
    boiler, analyses of, 552
    Scales, thermometer, comparison of, 448 ; table, 449
    Scantling, table of contents of, 21
    Schiele's anti-friction curve, 50 939
    Screw, 60
    bolts, efficiency of, 974
    conveyors, $912 d$
    differential, 439
    differential, efficiency of, 974
    efficiency of , 974
    (element of machine), 437
    propeller, 1010-1013
    propeller, coefficients of, 1011
    propeller, efficiency of, 1012
    propeller, slip of, 1012
    Screws, cap, table of standard, 208
    lag, holding power of, 290
    machine, proportions of, 209
    machine, taps for. 970
    set, table of standard, 208
    threads, 204-207
    threads, English standard, 205
    threads, limit gauges for, 206
    threads, metric. cutting of, 956
    thread, Powell's, 975
    threads, Sellers, 204
    threads, standard for taps. 207
    threads, U. S. standard, 204
    threads, U. S. standard, table of pitches. 204
    threads, U. S. standard, table of proportions of, 205
    threads, Whit worth, table, 205
    wood, holding power of, 290
    Sea-water, freezing-point of, 550
    Secant of an angle, 65
    table of, 159-162
    Sector of circle, 59
    Sediment in steam-boilers, 717
    Seger's fire-clay pyrometer, 453
    Segment of circle, 59
    Segments, circular, table of areas of, 116
    Segregation in steel ingots, 404
    Self-inductance of lines and circuits, 1066

    Separators, steam, 728
    Set-screws, holding power of, 977 standard, table of, 208
    Sewers, grade of, 566
    Shaft-bearings, 810
    Shaft-governors, 838
    Shafts, hollow, 871
    hollow, torsional strength of, 282 , 806
    steam-engine, 806-813
    steel propeller, strength of, 299, 815
    Shafting, 867-872
    deflection of, 868
    formulæ for, 867
    horse-power transmitted by, 869871
    horse-power to drive, 963
    laying out, 871,872
    keys for, 975
    Shaku-do, Japanese alloy, 326
    Shapes of test specimens, 243
    structural, properties of, 272-280
    Shear and compression combined, 282
    and tension combined, 282
    poles. stresses in, 442
    Shearing, effect of, on structural steel, 394
    resistance of rivets, 363
    unit strains of, 379
    strength of iron and steel, 306
    strength of woods, table, 312
    Sheaves, wire-rope, 917,919
    Shells of steam-boilers, material for, 700
    spherical, strength of, 286
    Shell-plate formulæ for steam-boilers, 701
    Sheet brass, weight of, 203
    copper, weight of, 202
    metal, strength of, 300
    metal, weight of, by decimal gauge, 32
    Sheets, iron and steel, weight of, 174
    Shibu-ichi, Japanese alloy, 326
    Shingles, weights and areas of, 183
    Ships, coefficient of fineness of, 1002
    coefficient of performance, 1003
    coefficient of water-lines, 1002
    displacement of, 1001, 1009
    horse-power of, 1009
    horse-power for given speeds, 1006
    horse-power of, from wetted surface, 1005
    jet propulsion of, 1014
    resistance of, 1002
    resistance of, per horse-power 1006
    rules for measuring, 1001
    rules for tonnage, 1001
    speed in canals, 1008
    trials of, 1007,1008
    twin-screw, 1017
    wetted surface of, 1005
    Shipping measure, 19, 1001

    Shocks, resistance of metals to repeated, 240
    stresses produced by, 241
    Shop operation by compressed air, 509
    Short circuits, electric, 1036
    Shot, American standard, sizes of, 204
    Shrinkage fits, 973
    of cast iron, 368
    of castings, 951
    Signs, arithmetical, 1
    Sign of differential coefficients, 76
    of trigonometrical functions, 66
    Silicon-aluminum-iron alloys, 330
    Silicon-bronze, 328
    Silicon-bronze wire, 225, 327
    Silicon, distribution of, in pig iron. 369
    influence of, on cast iron, 365,370 influence of, on steel, 389
    relation of, to strength of cast iron, 369, 370
    Silver-melting, temperature determinations, 452
    Silver, properties of, 168
    ore, cubic feet per ton, 170
    Simplex gas-engine, test of, 848
    Smokestack guys, 223
    Simpson's rule, 56
    Sine of an angle, 65
    tables of, 159-162
    Single-phase circuits, 1068
    Sinking-funds, 17
    Siphon, 581, 582
    Skin effect of alternating currents, 1065
    Skylight glass, sizes and weights, 184
    Slag in cupolas, 948
    in wrought iron, 377
    Slate roofing, dimensions and areas, 183
    roofing, weight of, 183
    Slide-valves, steam-engine, 824-835 (see Steam-engines)
    Slope, table of, and fall in feet per mile, 558
    Smoke prevention, 712-714
    Smoke-stacks, locomotive, 856
    sheet-iron, 741
    Snow, weight of, 184, 281,550
    Soapstone lubricant, 945
    strength of, 312
    Soda mixture for machine tools, 945
    Softeners in foundry practice, 950
    Softening of water, 554
    Soils, resistance of, to erosion, 565
    Solder, brazing, composition of, 325
    for aluminum, 319
    Solders, composition of various, 338
    Soldering aluminum bronze, 329
    Solid bodies, mensuration of, 60-64
    measure, 18
    of revolution, 62
    Solubility of conmmon salt, 463
    of sulphate of lime, 463

    Sources of energy, 432
    Specific gravity, 163-165
    gravity and Baume's hydrometer compared, table, 165
    gravity of brine 464,994
    gravity of cast iron, 374
    gravity of copper-tin alloys, 320
    gravity of copper-tin-zinc alloys, 323
    gravity of gases. 166
    gravity of ice, 550
    gravity of metals, table, 164
    gravity of liquids, table, 164
    gravity of steel, 403
    gravity of stones, brick, etc., 166
    Specific heats 457-459
    heat, determination of, 457
    heat of air, 484
    heat of ammonia, 992
    heats of gases, 458
    heat of ice, 550
    heat of iron and steel, 459
    heat of liquids, 457
    heats of metals, 458
    heat of saturated steam, 660
    heat of superheated steam, 661
    heat of water, 550
    heats of solids, 457,458
    heat of woods, 458
    Specifications for boiler-plate, 399
    for car-wheel iron, 375
    for cast iron, 374
    for chains, 307
    for elliptical steel springs, 352
    for helical steel springs, 353
    for incandescent lamps, 1043
    for oils, 945
    for petroleum lubricants, 943
    for phosphor-bionze, 327
    for spring steel, 401
    for steel axles, 397
    for steel billets, 401
    for steel castings, 397,406
    for steel crank-pins, 401
    for steel forgings, 397
    for steel main-rods, 401
    for steel parallel rods, 401
    for steel rails, 398
    for steel rivets, 399,401
    for steel splice-bars, 398
    for steel tires, 398
    for steel in Memphis bridge, 382
    for structural steel, 400
    for structural steel for bridges, 399
    for structural steel for buildings, 398
    for structural steel for ships, 399
    for tin and terne-plate, 1088
    for wrought iron, 378,379
    Speed of cutting-tools, 953,954
    of vessels, $1006-1009$
    Sphere, measures of, 61
    Spheres of different materials, table for calculating weight of, 169
    table of volumes and areas, 118
    Spherical segment, area and volume of, 2

    Spherical polygon area of 61
    triangle area and volume of. 61
    zone, area and volume of 62
    shells. strength of, 286
    shell, thickness of, to resist a given pressure, 286
    Spheroid, 63
    Spikes, boat, sizes and weights of, 212
    holding power of, 289
    street-railway, 212
    track, 212
    wire 213
    wrought, 213
    Spindle, surface and volume of, 63
    Spiral. 50, 60
    conical, 60
    construction of, 50
    plane, 60
    gears, 897
    Spiral-rivetcd pipe, table of, 198
    riveted pipe-fittings, table, 198
    Splice-bars, steel, specifications for, 398
    Splicing of ropes, 341
    of wire rope, 346
    Spring steel, strength of, 299
    Springs, 347-353
    elliptical, 347
    elliptical, sizes of, 352
    elliptical, specifications for, 352
    for engine-governors, 838
    helical, 347
    helical, formulæ for deflection and strength, 348
    helical, sperifications for, 353
    helical, steel, table of capacity and deflection, 347, 353
    laminated steel, 347
    locomotive, specifications for, 400
    phosphor-bronze, 352
    semi-elliptical, 347
    to resist torsion, 352
    Spruce, strength of, 310
    Spur gears, machine-cut, 905
    Square, definition of, 54
    measure, 18
    root, 8
    roots, tables of, $8 \hat{n}-101$
    value of diagonal of, 54
    Squares of numbers, table, 86-101
    of decimals, table, 101
    St. Gothard tunnel, loss of pressure in air-pipe mains in, 490
    Stability, 417
    of a dam, 417
    Stand-pipes, 292-295
    failures of, 294
    guy-ropes for, 293
    heights of, to resist wind-pressure, 293
    heights of, for various diameters and plates, table, 294
    thickness of bottom plates, 295
    thickness of plates in, 293
    wind strain on, 293
    Stand-pipe at Yonkers, N. Y., 295
    Statical moment, 416,417

    Stay-bolt iron, 379
    Stayed surfaces, strength of, 286
    Stays, steam-boiler, loads on, 703
    steam-boiler, material for, 703
    Stay-bolts in steam-boilers, 710
    Steam, 659-676
    determining moisture in, 728731
    dry, definition, 659
    dry, identification of 730
    expansion of, 742,743
    flow of, 668-674 (see Flow of steam)
    gaseous, 661
    generation of, from waste heat of coke-ovens, 638
    heat required to generate 1 pound of, 660
    latent heat of, 659
    loss of pressure in pipes, 671
    mean pressure of expandcd, 743 moisture in, 728
    properties of, as applied to steamheating, 540
    Regnault's experiments on, 661
    relative volume of, 660
    saturated, definition, 659
    saturated, density, volume, and latent heat of, 660
    saturated, properties of, table, 663-668
    saturated, specific heat of, 660
    saturated, temperature and pressure of, 659
    saturated, total heat of, 659
    superheated, definition, 659
    superheated, economy of steamengines with, 783
    superheated, properties of, 661
    superheated, specific heat of, 661
    temperature of, 659
    weight of, per cubic foot, table, 662
    wet, definition, 659
    work of, in single cylinder, 746753
    Steam-boiler, 677-731
    Steam-boilers, bumped heads, rules for, 706
    conditions to secure economy of, 682
    construction of, 700-711, 1085
    construction of, United States merchant-vessel rules, 705-708
    corrosion of, 386, 716-721
    dangerous, 720
    domes on, 711
    down-draught furnace for, 712
    effect of heating air for furnaces of, 687
    efficiency of, 683
    explosive energy of, 720
    factors of evaporation, 696-699
    factors of safety of, 700
    feed-pumps for, efficiency of, 726
    feed-water heaters for, 727
    feed-water, saving due to heating of, 727

    Steam-boilers, flat plates in rules for, 701, 706, 709
    flues and gas-passages, proportions of, 680
    foaming or priming of, 552, 718
    for blast-furnaces, 689
    forced combustion in, 714
    fuel economizers, 715
    furnace formulæ, 702
    furnaces, height of, 711
    fusible plugs in, 710
    gas-fired, 714
    girders, rules for, 703
    grate-surface, 678, 680
    grate-surface, relation to heating surface, 682
    gravity feeders, 1083
    heat losses in, 684
    heating-surfacc in, 678
    heating-surface, relation of, to grate-surface, 682
    height of chimney for , 735
    high rates of evaporation, 687
    horse-power of, 677
    incrustation of, 716-721
    injectors on, 725, 726 (see Injectors)
    inspection of, Philadelphia rules, 708
    marine, corrosion of, 719
    maximum efficiency with Cumberland coal, 689
    measure of duty of, 678
    mechanical stokers for, 711
    performance of, 681-685
    plates, ductility of, 705
    plates, tensile strength of, 705
    pressure allowable in, 706-708
    proportions of, 678-681
    proportions of grate-spacing, 681
    proportions of grate-surface, 680
    proportions of heating-surface, 678
    proportions of grate- and heatingsurface for given horse-power. 678
    proportions of, reating-surface per horse-power, 679
    safe working-pressure, 707
    riveting, rules for, 700
    safety-valves for, 721-724
    safety-valves, discharge of steam through, 724
    safety-valves, formulæ for, 721
    safety-valves, spring-loaded, 724
    scale in, 716
    scale compounds, 716
    sediment in, 717
    shells, material for, 700
    shell-plate formulæ, 701
    smoke prevention, 712-714
    stays, loads on, 703
    stays, material for, 703
    stay-bolts in, 710
    strains caused by cold feed-water, 727
    strength of, 700-711
    strength of rivets, 700

    Steam-boilers, tannate of soda compound in, 718
    tests of, 685-699
    tests of, at Centennial Exhibition, 685
    tests of, hydraulic, 700
    tests, rules for, 690-695b
    tubes, holding power of, 704
    tubes, iron vs. steel, 704
    tubes, material for, 704, 709
    tube plates, rules for, 704
    usc of kerosene in, 718
    use of zinc in, 720
    using waste gases, 689, 690
    Steam-calorimeters, 728-731
    Steam-domes on boilers, 711
    Steam-engines, 742-847
    advantages of compounding, 762
    at Columbian Exposition, 774
    bearings, size of, 810-813
    bed-plates, dimensions of, 817
    capacity of, 748
    clearance in, 751
    compound, 761-768
    compound, best cylinder ratios, 768
    compound, calculation of cylinders of, 768
    compound, combined indicator diagrams, 764
    compound, condensing, 788
    compound, cylinder proportions in, 765
    compound, economy of 780
    compound, efficiency of, 784
    compound, expansions in twocylinder, 765
    compound, formulæ for expansion and work in, $767=$
    compound, high-speed, performances of, 778, 779
    compound, high-speed, sizes of, 778, 779
    compound marine, approximate horse-power of, 766
    compound marine, cylinder ratios of, 766
    compound, non-conderising, efficiency of, 784
    compound, pressures in two cylinders, 765
    compound, recciver type, 762
    compound, receiver, idcal diagram, 763
    compound, receiver space in, 766
    compound, steam-jacketed, performances of, 778
    compound, stcam-jacketed, test of, 788
    compound, Sulzer, water consumption of, 783
    compound, two vs. three cylinders, 781
    compound, velocity of steam in passages of, 772
    compound, water consumption of, 777

    Steam-engines, compound, Wolff type, 762
    compound, Wolff, ideal diagram, 763
    compression, best periods of, 752
    compression, effect of, 751
    condensers, 839-847 (see Condensers)
    connecting-rods, dimensions. of, 799
    connecting-rod ends, 800
    Corliss, 773, 780
    cost of, 1085
    counterbalancing of, 788
    cranks, dimensions of, 805
    crank-pins, dimensions of, 801804
    crank-pins, pressure on, 804
    crank-pins, strength of, 803
    crank-shafts, dimensions of, 813
    crank-shafts for torsion and flexure, 814
    crank-shafts for triple-expansion, 815
    crank-shafts, three-throw, 815
    crosshead and crank, relative motion of, 831
    crosshead-pin, dimensions of, 804
    cut-off, most economical point of, 777
    cylinder condensation, experiments on, 753
    cylinder condensation, loss by, 7.52
    cylinders, dimensions of, 792
    cylinder-heads, dimensions of, 794
    cylinder-head bolts, size of, 795
    dimensions of parts of, $792-817$
    eccentrics, dimensions of, 816
    eccentric-rods, dimensions of, 816
    econonic performance of, 775-791
    economy at various speeds, 786
    economy, effect on, of wet steam, 781
    economy of compound $v s$. tripleexpansion, 781
    economy of, in central stations, 785
    economy of, simple and compound compared, 780
    econonyy under variable loads, 784
    economy with supcrheated steam, 783
    effect of moisture in steam, 781
    estimating I.H.P. of compound, 7.55
    estimating I.H.P. of single-cylinder, 755
    efficiency in thermal units per minute, 749
    exhaust steam used for heating, 780
    expansions in, table, 750
    expansive working of steam in, table, 747
    flywheels, 817-824
    flywheels, arms of, 820

    Steam-engine, flywheels, centrifugal force in, 820
    flywheels, diameters of, 821
    flywheels, formulx for, 817
    flywheels, thickness of rim of, 823
    flywheels, speed variation in, 817
    flywheels, strains in, 822
    flywheels, weight of, 818.819
    flywheels, wire-wound, 824
    flywheels, wooden rim, 823
    foundations embedded in air, 789
    frames, dimensions of, 817
    friction of, 941
    governors, fly-ball, 836
    governors, flywheel. 838
    governors, shaft, 838
    governors, springs for, 838
    guides, size of, 798
    high piston speed in, 787
    high-speed Corliss, 787
    high-speed, performances of, 777780
    high-speed, sizes of, 777-780
    horse-power constants, 756 - 758
    indicated horse-power (I.H.P.)
    of single-cylinder, 755-761
    indicator diagrams, 754
    indicator diagrams, to draw clearance line on, 759
    indicator diagrams, to draw expansion curve, 759
    indicators, effect of leakage, 761
    indicators, errors of, 756
    indicator rigs, 759
    limitation of speed of, 787
    links, size of, 815
    link motions, 834-836
    mean and terminal pressures, 743
    marine, 1015-1019
    mean effective pressure, calculation of, 744
    measures of duty of, 748
    non-condensing, $776,778,779$
    oil required for, 943
    pipes for, 673
    pistons, clearance of, 792
    pistons, dimensions of, 795
    piston-rings, size of, 796
    piston-rods, fit of, 796
    piston-rods, size of, 797
    piston-rod guides, size of, 798
    piston-valves, 834
    prevention of vibration in, 789
    progress in, 773
    proportions of, $792-817,1086$
    quadruple expansion, 772,773
    ratio of expansion of steam, 745
    reversing gear, dimensions of, 816
    rotary, 791, 792
    shafts, bearings for, $810-813$
    shafts, bending resistance of, 808
    shafts, dimensions of, 806-813
    shafts, equivalent twisting moment of, 808
    shafts, flywheel, 809
    shafts, twisting resistance of, 806
    single-cylinder, economy of, 775

    Steam-engines, single-cyiinder, water consumption of, 776
    single-cylinder, high-speed, sizes and performances of, 778
    slide-valves, crank-angles, table, 830
    slide-valves, cut-off for various lap and travel, table, 831, 832
    slide-valve, definitions, 824
    slide-valve diagrams, Sweet's, 826
    slide-valve diagrams, Zeuner's, 827
    slide-valve, diagram of port opening, cut-off, and travel, 833
    slide-valve, effect of changing lap, lead, etc., 829
    slide-valve, effect of lap and lead 825
    slide-valve, lead, 829
    slide-valve, port opening, 828
    slide-valve, ratio of lap to travel, 829, 831
    slide-valves, relative motion of crosshead and crank, 831
    slide-valve, setting of, 834
    small, coal consumption of, 786
    small, water consumption of, 786
    steam consumption per horse-power-hour, 750
    steam-jackets, influence of, 787
    superheated steam in, 783
    three-cylinder, 815
    to change speed of, 837
    to put on center, 834
    triple-expansion, 769-772, 10171019
    triple-expansion and compound, relative economy, 781
    triple-expansion, crank-shafts for, 815
    triple-expansion, cylinder proportions, 769
    triple-expansion, cylinder proportion formulx, 769-771
    triple-expansion, cylinder diameters, 773
    triple-expansion, cylinder ratios, 771
    triple-expansion, high-speed, sizes and performances of, 779, 780
    triple-expansion, non-condensing, 779
    triple-expansion, sequence of cranks in, 772
    triple-expansion, steam-jacketed, performances of, 779, 780
    triple-expansion, Sulzer, water consumption of, 783
    triple-expansion, theoretical mean effective pressures, 770
    triple-expansion, types of, 771
    triple-expansion, water consumption of, 777 .
    valve-rods, dimensions of, 815

    Steam-engines, water consumption of, $753,776,777,783,785,786$
    water consumption from indica-tor-cards, 760
    work of one pound of steam, 749
    work of steam in single-cylinder, 746-753
    wrist-pin, dimensions of, 804
    Steam heat, storagc of, 789
    heating, 534-541
    heating, diametcr of supply mains, 539
    hcating, indirect, 537
    heating, indircet, size of registers and ducts, 539
    heating of greenhouses, 541
    heating, pipes for, 540
    heating, properties of steam and condensed water, 540
    jackets on engines, 787
    jet blower, 527
    jet exhauster, 527
    jet ventilator, 527
    loop, 676
    -metal, composition of, 325
    pipes, 674-676
    pipes, copper, strength of, 675
    pipes, copper, tests of, 674
    pipes, failures of, 676
    pipes for engines, 673
    pipes for marine engines, 674, 1016
    pipes, riveted-stcel, 675
    pipes, uneovered, loss from, 676
    pipes, valves in, 675
    pipes, wire-wound, 675
    pipe coveringe, tests of, 471
    power, cost of, 790
    power, cost of coal for, 789
    separators, 728
    turbines, 790
    vessels (see Ships)
    Steel, 389-414
    aluminum, 409
    analyses and properties of, 389
    and iron, classification of, 364
    annealing of, 412, 413
    axles, specifications for, 397
    axles, strength of. 299
    bars, effect of nicking, 402
    beams, safe load on, 269
    Bessemer basic, ultimate strength of, 390
    Bessemer. range of strength of, 391, 392
    billets, spccifications for, 401
    blooms, weight of, table, 176
    bridge-links, strength of, 297
    burning carbon out of, 402
    castings, 405
    castings, specifications for, 397, 406
    castings, strength of, 299
    chrome, 409
    old-drawn, tests of, 305
    cold-rolled, tests of, 305
    color-scale for tempering, 414
    columns, 256-261

    Steel columns, Merriman's tables of 261
    crank-pins, specifications for, 401 crucible, 410-414
    crucible, analyses of, 411
    crucible, effect of heat treatment, 411
    crucible, selection of grades of, 410
    crucible, specific gravities of, 411
    effect of annealing on grain of, 392
    effect of annealing on magnetic capacity, 396
    effect of cold on strength of, 383
    effect of finishing temperature in rolling, 392
    effect of heat on grain, 412
    effect of oxygen on strength of, 391
    electrical conductivity of, 403
    eye-bars, test of, 304
    failures of, 403
    fluid-compressed, 410
    for car-axles, specifications, 401
    for rails, specifications, 401
    for milling cutters, 957
    forgings, annealing of, 396
    forgings, oil-tempering of, 396
    forgings, specifications for, 397
    hardening of, 393
    heating of, for forging, 413
    in Memphis bridge, tests of, 393
    ingots, segregation in, 404
    kinds of, for different uses, 397
    life of, under shock, 240
    low strength of, 392
    main-rods, specifications for, 401
    manganese, 407
    manganese, abrasion of, 407
    mixture of, with cast iron, 375
    Mushet, 409
    nickel, 407
    nickel, tests of, 408
    open-hearth, range of strength of, 391, 392
    open-hearth structural, strength of. 391
    parallel-rods, specifications, 401
    plates (see Plates, steel)
    rails, specifications for, 398
    rails, strength of, 298
    range of strength in, 391, 392
    recalescence of, 402
    relation between chemical composition and physical character of, 389
    rivet, shearing resistance of, 363
    rivet, specifications for, 399
    rivets, specifications for, 401
    rope, table of strength of, 338
    rope, flat, table of strength of 339
    shearing strength of, 306
    sheets, weight of, 174
    specific gravity of, 403,411
    specifications for, 397-402
    splice-bars, specifications for, 398

    Steel, spring, strength of, 299 springs (see Springs, steel) strength of, 297-303
    strength of, variation in, 398
    structural, annealing of, 394, 395
    structural drilling of, 395
    structural, earliest uses of, 405
    structural, effect of punching and shearing, 394
    structural, for bridges, specifications of, 399
    structural, for buildings, specifications of, 398
    structural, for ships, specifications of, 399
    structural, properties of, 272-280
    structural, punching of, 395
    structural, riveting of, 394
    structural, specifications for, 400
    structural, size and weights, 177180
    structural, treatment of, 394-396
    structural, upsetting of, 394
    structural, welding of, 394
    struts, 259
    tempering of, 414
    tensile strength of, at high temperatures, 382
    tensile strength of pure, 392
    tires, specifications for, 398
    tires, strength of, 298
    tool, heating of, 412
    tungsten, 409
    water-pipe, 295
    welding of, 396
    wire gauge, tables, 29
    working of, at blue heat, 395
    working stresses in bridge members, 262
    Stevedore rope, 340
    Stokers, mechanical for steamboilers, 711
    under-feed, 712
    Stone-cutting with wire, 966
    Stone, specific gravity of, table, 166
    weight of, table, 166
    strength of, 302, 312
    Storage-batteries, 1045-1048
    efficiency of, 1048
    Storage of steam heat, 789
    Storms, pressure of wind in, 494
    Stoves, compressed-air heating, efficiency of, 507
    Stove foundries, cupola charges in, 949
    Strain, 236
    Strains, forınulæ for unit, in iron and steel in structures, 379
    Straw as fuel, 643
    Stream, open, measurement of flow, 584-588
    Streams, fire, 579-581 (see Firestreams)
    running, horse-power of, 589
    Strength, compressive, 244-246 compressive, of woods, 311
    loss of, in punched plates, 353

    Strength, range of, in steel, 391, 392
    shearing, of iron and steel, 306
    shearing, of woods, table, 312
    tensile, 242
    tensile, of iron and steel at high temperatures, 382
    torsional, 281
    transverse, 266-271
    of aluminum, 318
    of aluminum-copper alloys, 328 , 329
    of anchor-forgings, 297
    of basic Bessemer steel, 390
    of belting, 302
    of blocks, 906
    of boiler-heads, 285
    of boiler-plate at high temperatures, 383
    of bolts, 292
    of brick, 302,312
    of bridge-links, 298
    of bronze, 300, 319-332
    of canvas, 302
    of cast iron, 370,374
    of cast iron, relation of, to silicon, 369
    of cast-iron columns, 250-254
    of cast-iron water-pipe, 251
    of chains, table, 307
    of chain cables, table, 340
    of castings, 297
    of cement mortar, 313
    of chalk, 312
    of columns, 246, 250-261
    of columns, New York building laws, 1019
    of copper at high temperatures, 309
    of copper plates, 300
    of copper-tin alloys, 320
    of copper-tin-zinc alloys, graphic representation, 323
    of copper-zinc alloys, 323
    of cordage, table, 906
    of crank-pins, 803
    of double-riveted seams, calculated, 361
    of electro-magnet, 1053
    of flagging, 313
    of flat plates, 283-286
    of floors, 1019,1021
    of German silver, 300
    of glass, 308
    of granite, 302,312
    of gun-bronze, 321
    of hand and hydraulic riveted joints, 355
    of iron and steel, effect of cold on, 383
    of lime-cement mortar, 313
    of limestone, 312,313
    of locomotive forgings, 297
    of Lowmoor iron bars, 297
    of malleable iron, 367
    of Mannesman tubes, 296
    of marble, 302
    of masonry, 312
    of materials, 236-346

    Strength of materials, Kirkaldy's tests, 296-303
    of perforated plates, 353
    of phosphor-bronze, 327
    of Portland cement, 302
    of riveted joints, 299, 354-362
    of roofs, 446, 1019
    of rope, 301, 338, 339
    of sandstone, 312
    of sheet metal, 300
    of silicon-bronze wire, 327
    of soapstone, 312
    of spring steel, 299
    of spruce timber, 310
    of stayed surfaces, 286
    of steam-boilers, 700-711
    of steel axles, 299
    of steel castings, 299
    of steel, open-hearth structural, 391
    of steel propeller-shafts, 299
    of steel rails, 298
    of steel tires, 298
    of stone, 312
    of structural shapes, 272-280
    of timber, 309-312, 1079
    of twisted iron, 241
    of unstayed surfaces, 284
    of yellow pine, 309
    of welds, 300,308
    of wire, 301, 303
    of wire and hemp rope, 301,340
    of wrought-iron columns, 255
    tensile, of pure steel, 392
    Stress and strain, 236
    Stress due to temperature, 283
    Stresses allowed in bridge members, 262-264
    combined, 282
    effect of, 236
    in framed structures, 440-447
    in steel plating due to water pressure, 287
    permissible in structural materials, 381
    produced by shocks, 241
    Structural shapes, elements of, 248
    shapes, moment of inertia of, 248, 273-280
    shapes, properties of, 272-280
    shapes, radius of gyration of, 248
    shapes, sizes and weights, $177-180$ steel (see Steel, structural)
    Struetures, formule for unit strains in iron and steel in, 379
    Strut, moving, 436
    Struts. steel, formulæ for, 259
    strength of, 246
    wrought-iron, formulæ for, 259
    Sugar manufacture, 643
    solutions, concentration of, 465
    Sulphate of linue, solubility of, 464
    Sulphur dioxide and ammonia-gas, properties of, 992
    dioxide refrigerating-machine, 985 influence of, on cast iron, 367,370

    Sulphur, in fluence of, on steel, 389
    Sum and difference of angles, functions of, 66
    Superheated steam, economy of steam-engines with, 783
    Surface condensers, 840-844
    Surfaces, unstayed flat, 284
    Suspension cableways, 915
    Sweet's slide-valve diagram, 826
    Symbols, chemical, 163
    electrical, 1078
    Synchronous motor, 1071
    T shapes, properties of Carnegie steel, table, 279
    Tail-rope system of haulage, 913
    Tanbark as fuel, 643
    Tangent of an angle, 65
    table of 159-162
    Tanks, plating and framing for, 287.
    capacities of, tables, 121, 125, 126
    Tannate of soda boiler compound, 718
    Taps for machine screws, 970
    formule and table for serewthreads of, 207
    Tap-drills, sizes of, 208
    table of, 970,971
    Taper, to set in a lathe, 956
    pins, 972
    Tapered wire rope. 916
    Taylor's rules for belting, 880-882 theorem, 76
    Tees, Pencoyd steel, weights and sizes, 179
    Teeth of gears, forms of, 892 of gears, proportions of, 889,890
    Telegraph-wire, copper, table of size, weight and resistance of, 221 joints in, 217
    tests of, table, 217
    Telescope, Mesurí and Nouel's pyrometric, 453
    Temperature, absolute, 461
    determination by color, 454
    determinations of melting-points, 452
    of fire, 622
    rise of, in combustion of gases, 623
    stress due to, 283
    effect of, on strength, 309, 382
    Tempering. effect of, on steel, 412 of steel, 414
    oil, of steel forgings. 396
    Tenacity of metals. 169
    of metals at various temperatures, 309 382-384
    Tensile strength, 242-244
    strength, increase of, by twisting, 241
    strength of iron and steel at high temperat ures. 382
    strength of pure steel, 392
    tests. shapes of specimens for, 243

    Tension and flexure, combincd, 282 and shear, combined, 282
    Terne-plate, 182
    specifications for, 1088
    Terra-cotta, weight of, 181
    Test-pieces, comparison of large and small, 393
    Tests of aluminum alloys, 330
    of aluminum brass, 329
    of cast iron, 369
    calorimetric, of coal. 636
    compressive, of wrought - iron bars, 304
    compressive, specimens for, 245
    tensile, precautions in, 243
    tensile, specimens for, 243
    tensile, table of, 242
    of brick, 312
    of cast-iron columns, 250-254
    of centrifugal pumps, 609
    of chains, table, 307
    of chain cables, 308
    of cold-diawn steel, 305
    of cold-rolled steel, 305
    of fans, $514,522,524$
    of gas-engines, 849
    of petroleum-engines, 851
    of hydraulic ram, 615
    of lap and butt riveted joints, 360
    of materials, Kirkaldy's, 296303
    of nickel-steel, 408
    of pine timber, 309
    of pulsometers, 613
    of pumping-engines, 611
    of riveted joints, table, 303
    of steam-boilers, 685-699
    of steam-boilers, rules for, 690$695 b$
    of steel eye-bars, 304
    of steel plate, 390
    of steel in Memphis bridge, 393
    of turbine wheels, 596
    of woods, 306
    of wrought-iron columns, 305
    of vulcanized rubber, 316
    Theory of exponents, 36
    Thermal capacity, definition of, 457
    units, 455, 660
    units, comparison of British and French, 455
    Thermodynamics, 478
    Thermometers, 448
    Thermometer, air, 454
    scales, comparison of, 448
    scales, comparison of, table, 449
    Threads, pipe, 195
    Three-phase circuits, 1068
    Toothed-wheel gearing, 439, 887906 (see Gearing)
    Tidal-power, utilization of, 600
    Tie-rods for brick arches, 281
    Tiles, weight of, 181
    Timber beams, safe loads, 1023
    expansion of, 311
    measure, 20
    properties of, table, 310
    resistance of drift-bolts in, 290

    Timber beams strength of, 309-312, 1079
    table of contents in feet, 21
    weight of, table, 310
    Time, measure of, 20
    Tin, properties of, 168
    -aluminum alloys, 330
    -copper alloys, 319, 320
    -copper-aluminum alloys, 330
    -copper-zinc alloys, 322, 323
    lined pipe, sizes and weights, table, 201
    pipe, weights and sizes of, 200
    plate, 182
    plate, specifications for, 1088
    plate, American packages of 182
    plate, comparison of gauges and weights, table, 182
    Tires, steel, friction of, on rails, 928
    steel, specifications for, 398
    stecl, strength of, 298
    Tobin bronze, analyses and properties of, 325, 326
    Toggle-joint, 436
    Tons per mile, equivalent of, 27
    Tonnage of vessels, 19, 1001
    Tools, machine, speed of, 953
    metal-cutting, forms of, 955
    Tool-steel, heating of, 412
    Torque of an armature, 1056
    Torsion and compression combined, 283
    and flexure combined, 283
    elastic resistance to, 282
    of shafts, 806
    Torsional strength, 281
    Total heat of evaporation, 462
    Track bolts, 210
    spikes, sizes and weights of, 212
    Tractive power of locomotives, 853 , 857
    Tractrix, 50
    Trains, railroad, resistance of, 851
    railroad, resistance due to friction, 939
    railroad, speed of, 859
    Trammels, to describe an ellipse with, 46
    Tramway, compressed-air, 510
    Tramways, wire-rope, 914
    Transformers, electric, 1070
    Transmission, compressed-air, 488
    compress d air, efficiency of, 508
    electric, 1033-1041
    electric area of wires, 1033
    electric, cost of copper, 1040
    electric, economy of, 1036
    electric, efficiency of, 1038
    electric, systems of, 1041
    electric, weight of copper for 1033, 1076
    electric, wire table for, 1037
    hydraulic-pressure, 616-620 (see Hydraulic - pressure transmission)
    of heat (see Heat)
    pneumatic postal, 509

    Transmission, rope, $922-927$ (see Rope-driving)
    wire-rope. 917-922 (see Wire rope)
    Transmission-rope, 340
    Transporting power of water, 565
    Triple-expansion engine, 769-772 (see Steam-engines)
    Transverse strength, 266-271
    strength of beams, formulæ for, 268
    strength, coefficient of, 267
    Trapezium, 54
    Trapezoid, 54
    Trapezoidal rule, 56
    Triangle, mensuration of, 54
    problems in, 41
    spherical, 61
    trigonometrical solution of, 68
    Trigonometry, 65-68
    Trigonometrical formulx, 66
    functions, relations of, 65
    functions, signs of, $66^{\prime}$
    functions, table of natural, 159161
    functions, table of logarithmic, 162
    Triple-effect evaporator, 463
    Trough plates, properties of steel, table, 274
    Troy weight, 20
    Trusses, Burr, 443
    Fink roof, 446
    Howe, 445
    King-post, 442
    Pratt, 443
    Queen-post, 442
    roof, 446
    Warren gircler, 445
    Whipple, 443
    Tubes, boiler, table, 196
    boiler, table of areas of, 197
    condenser, 840
    horse-power of water flowing in, 589
    of different materials, table for calculating weights of, 169
    expanded boiler, holding power of, 307
    iron, collapsing pressure of, 265
    Mannesmann, strength of, 296
    seamless brass, table, 198
    steam-boiler, holding power of, 704
    steam-boiler, iron vs. steel, 704
    steam-boiler, material for, 704 , 709
    strength of small, 266
    welded solid-drawn steel, 199
    wrought-iron, extra-strong, 196
    Tube plates, steam-boilcr, rules for, 704
    Tubing, brass, weight of, table, 200
    copper, weight of, table, 200
    lead and tin, 200
    zinc, weight of, table, 200
    Tungsten-aluminum alloys, 330
    Tungsten steel, 409

    Turbines, steain, 790, 1085
    steam, bearings for, 941
    Turbine wheels, 591-599
    wheels, dimensions of, 597
    wheels, efficiency of, 594
    wheels, Pelton, 597
    wheels, proportions of, 591
    wheels, table, 595
    wheels, tests of, 596
    Turf as fuel, 643
    Turnbuckles, 211
    Turret lathes, cutting-speed of, 954
    Tuyeres for cupolas, 948
    Twin-screw vessels, 1017
    Twist-drill gauge, tables, 29
    Twist-drills, sizes and speeds, 957
    Twisted iron bars, 241
    Two-phase currents, 1068
    Type metal, 336
    Uehling-Steinbart pyrometer, 453
    Unequal arms on balances, 19
    Units, electrical, 1024
    equivalent value of electrical and mechanical, 1026
    of the magnetic circuit, 1050
    Unit of evaporation, 677
    of force, 415
    of power, 429
    of heat, 455, 660
    of work, 428
    Unstayed surfaces, strength of, 284
    Upsetting of structural steel, 394
    United States, population of, 12 standard gauge, sheet-metal, 30 standard gauge, sheet-metal, table, 31

    Vacuum, drying in, 466 pumps, 612
    Valve-gears, steam-engine, 824-836
    Valve-rods, steam-engine, 815
    (see Steam-engines)
    Valves, marine-engine, 1016
    pump, 606
    in steam-pipes, 675
    Vapors, saturation-point of, 480
    Vapor water, weight of, 484
    and gas mixtures, laws of, 480
    for refrigerating-machines, 982
    Varnish, 387
    Velocity, angular, 425
    definition of. 423
    expression of, 429
    linear, of a turning body, 425
    measure of, 27
    of air in pipes by anemometer, 491
    parallelogram of, 426
    table of height corresponding to a given acquired 425
    of water in cast-iron pipe, 567
    of water in open channels, 564
    Ventilating fans, 517-525
    ducts. flow of air in, 530
    Ventilation, 528-546
    air-cooling for, 531
    blower system, 545

    Ventilation, efficiency of fans and chimneys, 533
    head of air, 533
    of large buildings, 534
    of mines, 531
    Ventilators, centrifugal, for mines, 521
    Ventilator, steam-jet, 527
    Venturi meter, 583
    Versed sine of an angle, 65 sine, relations of, in circle, 58
    Verticals, formulæ for strains in, 444
    Vertical high-speed engines, 777
    Vessels (see Ships)
    Vibration of steam-engines, 789
    Vis-viva, 428
    Volt, 1024
    Vulcanized rubber, tests of, 316
    Walls of buildings, 1019
    Warehouse floors, 1019
    Warren girders, stresses in, 445
    Washers, sizes and weights of, 212
    Washing of coal, 638
    Water, 547-555
    abrading power of, 565
    analyses of, 553,554
    boiling-point of, 550
    boiling-point at various barometric pressures, 483
    comparison of head, in feet, with various units, 548
    compressibility of, 164,551
    consumption of locomotives, 862 consumption of steam-engines, 753, 776, 777, 783, 785
    erosion by flowing, 565
    evaporation of, in reservoirs and channels. 463
    expansion of, 547
    fall, efficiency of. 588
    fall power of, 588
    flow of. 555-588 (see Flow of water).
    flowing in tube, horse-power of, 589
    flowing measurement of, 582588
    freezing point of, 550
    hardness of 553
    head of, 557
    head of, equivalent to pounds per square inch table. 549
    heat-units per pound, 548
    horse-power required to raise, 601 impurities of 551
    jets. 579
    meters 579
    power 588-620
    power plants, high-pressure, 1081 power value of, 590
    pressure due to weight of, 549
    pressure of one inch, 27. 549
    pressure of one foot 27,549
    price of 579
    pumping by compressed air, $505 a$
    purification of 554

    Water, quantity discharged froin pipes, 573
    relation of diameter of pipe to capacity, 566
    softening of, 554
    specific heat of, 550
    transporting power of, 565
    velocity of, in cast-iron pipe, 567
    velocity of, in open channels, 564
    weight of, $27,547,548$
    gas, 648
    gas, analyses of, 653
    gas, manufacture of, 652
    gas plant, efficiency of, 654
    gas plant, space required for, 656
    lines, coefficient of, 1002
    pipes, riveted-steel, 295
    pipe, cast-iron, transverse strength of, 251
    pipe, cast-iron, weight of, 188
    tower (see Stand-pipe)
    vapor and air mixture, weight of, 484
    vapor, weight of, table, 484
    wheel, 591-599
    wheel, Pelton, 597, 1081
    wheels, power of, 1082
    Watt, definition and value of, 1024
    Waves, ocean, power ef, 599
    Weathering of coal, 637
    Wedge, 437
    volume of, 61
    Weighing on incorrect balance, 19
    Weights and measures, 17-27
    and measures, Metric, 22-26
    Weight and pressure per unit area, Metric equivalents of, 27
    of materials, 164-166 (see also material in question)
    Weir-dam measurement, 586
    Weirs, flow of water over, 555,586
    Bazin's experiments. 587
    Weir formulæ, Francis's, 586
    table, 587, 588
    Welding. electric 1044
    of steel, 394,396
    Welds, strength of, 300. 308
    Wetted surface of ships, 1005
    Wheat, weight of, 170
    Wheel and axle, 439
    Wheels, emery, 967-970 (see Emery wheels)
    polishing, speed of, 968
    turbine $591-599$ (see Turbine wheels)
    Whipple truss, stresses in, 443
    White-metal alloys. 336
    composition of, 335
    Whitworth process of fluid compressed steel, 410
    Wiborg's air-pyrometer: 453
    Wind, 492-494
    force of, 492
    pressure of, in storms, 494
    strain on stand-pipes, 293

    Windlass, differential, 439
    Windmills, 494-498
    capacity of 496
    cost of, 498
    economy of, 497
    efficiency of, 494
    horse-power of, 497
    Winding-engines, 909
    Wire, aluminum, properties of, 225
    aluminum bronze, properties of, 225
    brass, properties of, 225
    brass, weight of, table, 202
    copper, properties of, 225
    delta-metal, properties of, 225
    copper, rules for resistance of, 222
    copper, specifications for, 225
    copper telegraph, size, weight, and resistance of table, 221
    copper, weight of, table, 202
    electric, carrying capacity of, 1033
    electric, fusion of, 1032
    electric, heating of, 1032
    electric, insulation of, 1033
    electric, table, 1034-1035
    galvanized iron, specifications for, 224
    galvanized iron, for telegraph and telephone lines, 217
    galvanized steel strand, 223
    gauges, tables, 29
    insulated copper, 221
    iron, 216
    nails, 214, 215
    phosphor-bronze, strength of, 327
    piano, size and strength of, 224
    plough-steel, 224
    phosphor-bronze, properties of, 225
    platinum, properties of, 225
    silicon bronze, iroperties of, 225
    silicon bronze, strength of, 327
    stranded feed, table of sizes and weights, 222
    strength of, 216, 301, 303
    telegraph, joints in, 217
    telegraph, tests of, table, 217
    telegraph, weight per mile-ohm, 217
    wound flywheels, 824
    ropes, 226-231
    rope, bending curvature, 921
    rope, bending stress of, 918
    rope, care of, 231
    rope, elastic limit of, table, 917
    rope for guys and rigging, 228
    rope for transmission, dimensions, strength, and properties, 227
    rope, galvanized steel, dimensions, strength, and properties, 229
    rope, locked, 231
    rope plough.steel, 227, 228
    rope, radius of curvature of, 922
    rope, sheaves for, 917,919
    rope, splicing of, 346
    rope, strength and weight of, 301, 340

    Wire rope haulage, 912-916 (see Haulage)
    ropes, tapered, 916
    rope tramways, 914
    rope transmission, 917-921
    rope transmission, deflection of rope, 920
    rope transmission, horse-power transmitted, 919
    rope transmission, inclined, 921
    rope transmission, limits of span, 920
    rope transmission, long-distance, 921
    rope, use of, 231
    table, copper, 218-220,1034,10351037
    Wiring-tables, 1037
    Wohler's experiments, on strength of materials, 238
    Wood as a fuel, 639, 640
    composition of, 640
    compressive strengths of, 311
    expansion of, 311
    heat required to expel water from, 640
    heating value of, 639
    holding power of bolts in. 291
    nail-holding power of, 291
    screws, holding power of, 290
    specific gravity of, table, 165
    weight of, table, 165
    strength of, 302, 309-312, 1079
    tests of, 306
    weight of, per cord, 232
    Woods, shearing strength of various table, 312
    specific heats of, 458
    weight of various, table, 310
    Wooden flywheels, \$23, 824
    Woodstone, properties of, 316
    Woolf compound engines, 762
    Wootten's locomotive, 855
    Work, definition of, 27, 428
    expression of, 429
    measure of, 27
    of acceleration, 430
    of accelerated rotation, 430
    of adiabatic compression, 501
    of friction, 938
    of a horse, 434
    of a man, 433
    rate of, 27
    unit of, 27,428
    World's Fair buildings, specifications of wrought iron for, 379
    Worm-gear, 440
    Worm-gearing, 897, 1086
    Wrist-pins, steam-engine, 804
    Wrought iron, 377-379
    iron bars, compression tests of, 304
    iron built columns, 257
    iron columns, tests of, 305
    iron chain cables, 308
    iron columns, Merriman's table for, 260
    iron. influence of chemical composition on properties of, 377

    Wrought iron, influence of rolling on, 377
    iron pipe, standard, table of dimensions, 194
    iron, slag in, 377
    iron, specifications for, 378
    iron, strength of, $245,297,300$, 304, 378
    iron, strength of, at high temperatures, 383
    iron tubes, extra-strong, table, 196
    Xylolith, properties of, 316
    Y connection for alternating currents, 1068
    Yield-point, 237
    determination of, 237
    Z bars, Carnegie steel, properties of, table, 280
    weights and sizes, 178

    Zero, absolute, 461
    Zeuner's slide-valve diagram, 827
    Zinc, properties of, 168
    aluminum alloys, 330
    -copper alloys, strength of, 323
    -copper alloys, table of composition and properties, 321
    -copper-iron alloys, 326
    -copper-tin alloys, specific gravities of, 323
    -copper-tin alloys, table of properties and composition, 322
    -copper-tin alloys, variation in strength of, graphic representation, 323
    -copper-tin alloys, variation in strength of, 324
    tubing, weight of, table, 200
    use of, in boilers, 720
    Zone, spherical, 62
    of spheroid, 63
    of spindle, 63

    ## ALPHABETICAL INDEX TO ADVERTISENENTS.

    ALLIS-CHALMERS COMPANY
    ALPHONS CUSTODIS CHIMNEY CONSTRUCTION ${ }^{\circ}$ CO ..... 7
    AMERICAN ENGINE COMPANY ..... 6
    AMERICAN MANUFACTURING COMPANY, THEE. ..... 13
    AMERICAN SHEET \& TIN PLATE COMPANY
    28
    28
    ANSONIA BRASS \& COPPER COMPANY ..... 12
    ATLANTIC, GULF, \& PACIFIC COMPANY ..... 26
    ATLAS PORTLAND CEMENT COMPANY.
    24
    24
    BALDWIN LOCOMOTIVE WORKS ..... 2
    BONNOT COMPANY, THE
    18
    18
    BOSTON BELTING COMPANY ..... 15
    BOSTON BLOWER COMPANY ..... 20
    BRIDGEPORT CHAIN COMPANY, THE
    21
    21
    CARPENTER \& COMPANY, GEO. B ..... 14
    CHAPMAN VALVE MANUFACTURING COOMPANY ..... 17
    CRESSON \& COMPANI, GEO. V
    14
    14
    EPPING-CARPENTER COMPANY
    5
    5
    GARVIN MACHINE COMPANY, THE ..... 18
    GENERAL ELECTRIC COMPANY, THE
    2
    2
    GOUBERT MANUFACTURING COMPANY, 'Т่̈ $\dot{\text { E }}$ ..... 9
    GREEN FUEL-ECONOMIZER COMPANY, THE. ..... 8
    HANCOCK INSPIRATOR COMPANY, THE ..... 3
    HARRISBURG FOUNDRY AND MACHINE ẄÖṘK̇S ..... 6
    HARTFORD STEAM BOILER INSPECTION AND INSUURANCE CO்
    16
    16
    HENDEY MACHINE COMPANY, THE. ..... 19
    INGERSOLL-RAND COMPANY
    4
    4
    JEWELL BELTING COMPANY ..... 15
    KENNICOTT WATER SOFTENER COMPANYY ..... 10
    KEUFFEL \& ESSER COMPANY ..... 27
    LAMBERT HOISTING ENGINE COMPANY
    11
    11
    LIDGERWOOD MANU FACTURING COMPAN Y ..... 11
    LODGE \& SHIPLEY MACHINE TOOL COMPAN $\mathfrak{Y}$, TḢE ..... 20
    MAURER \& SON, HENRY
    MAURER \& SON, HENRY ..... 22 ..... 22
    MORSE TWIST DRILL AND MACHINE COMPANY ..... 17
    NATIONAL METER COMPANY ..... 25
    NATIONAL TUBE COMPANY ..... 3
    NEW YORK INSULATED WIRE COMPANY ..... 21
    NORTON EMERY WHEEL COMPANY
    16
    16
    NORWALK IRON WORKS COMPANY, THE. ..... 5
    QUEEN \& COMPANY, INCORPORATED. ..... 27
    RANDOLPH-CLOWES COMPANY ..... 23
    RIDER-ERICSSON ENGINE COMPAN Y ..... 10
    ROEBLING'S SONS COMPANY, JOHN A. ..... 12
    SELLERS \& COMPANY, WILLIAM, INCORPORATED. ..... 19
    SIMMONS CONTPANY, JOHN ..... 25
    SKINNER CHUCK COMPANY, THE. ..... 20
    SNIDER-HUGHES COMPANY, THE ..... 20
    STIRLING COMPANY, THE ..... 8
    UNIVERSAL DRAFTING MACHINE COMPANY ..... 21
    WALWORTH MANUFACTURING COMPANY ..... 28
    WARREN FOUNDIRY \& MACHINE: COMPANY. ..... 23
    WILEY, JOHN \& SONS ..... 24-26
    YALE \& TOWNE MANUFACTURING COMPANY゙T, THBE ..... 1

    ## CLASSIFIED INDEX TO ADVERTISEMENTS.

    Belting and Hose.
    PAGE
    PAGE
    Boston Belting Co ..... 15
    Jewell Belting Co. ..... 15
    Blowers. Boston Blower Co
    20
    20
    Boiler Inspection and Insurance.
    Boiler Inspection and Insurance.
    Hartford Steam Boiler Inspection and Insurance Co. ..... 16
    Boiler Tubes. National Tube Co
    3
    3
    Boiler Tubes (Brass). Kandolph-Clowes Co
    23
    23
    Boiler Water, Softening and Purification.
    Boiler Water, Softening and Purification. Kennicott Water Softener Co. ..... 10
    Boilers, Steam.
    8
    Books. John Wiley \& Sons
    24-26
    24-26
    Brass Rods, Sheets, Tubes, Wire, Etc.
    Brass Rods, Sheets, Tubes, Wire, Etc. Ansonia Brass \& Copper Co ..... 12
    Randolph-Clowes Co
    23
    23
    Castings. Warren Foundry \& Machine Co
    $2: 3$
    $2: 3$
    Cement, American Portland. Atlas Portland Cement Cio
    24
    24
    Cement Machinery-Rotary Kilns, Ball and Tube Mills, Mixers, ETC.
    Bonnot Co., The
    18
    18
    Chain. Bridgeport Chain Co. ..... 21
    Chain Hoists. Yale \& Towne Mfg. Co., The
    1
    1
    Chimners. Alphons Custodis Chimney Construction Co.
    22
    22
    Chucks, Milling Cutters, Ireamers, Spring Cutters, Taps, etc. Morse Twist Drill and Machine Co.
    17
    17
    Skinner Chuck Co., The
    20
    20
    Compressors-Air, Gas, etc.
    Ingersoll-R and Co .
    4
    4
    Norwalk Iron Works Co., The.
    5
    5
    Condensers, Water-Tube Heaters, etc
    Snider-Hughes Co., The ..... 20
    Copper Wires, Cables, Bars, Sheets, Tubes, etc.
    Ansonia Brass \& Copper Co.
    12
    12
    Crushers-Ore, Rock, Stone. ..... 14
    Drafting Machines. Universal Drafting Machine Co ..... 21
    Dredging Engineers and Contractors.
    Atlantic, Gulf \& Pacific Co
    26
    26
    Drills, Power and Hand.
    Ingersoll-Rand Co. ..... 4
    Norwalk Iron Works Co., The ..... 5
    Drills, Twist. Morse Twist Drill and Machine Co ..... 17
    Dryer Cylinders. Warren Foundry \& Machine Co.
    23
    23
    Electrical Generators, Motors, Arc and Incandescent Lamps, FTC.
    General Flectric Co., The ..... 2
    Emery and Corundum Wheels. Norton Emery Wheel Co ..... 16
    Engineers and Contractors.
    Engineers and Contractors. Allis-Chalniers Co
    7
    7
    Engines
    7
    Allis-Chalmers Co
    American Engine Co ..... 6
    Harrisburg Foundry and Machine Works
    6
    6
    Rider-Eicesson Engine Co. ..... 10
    Engines, Blowing.Lambert Hoisting Engine Co.
    11
    Lidgerwoorl Mfg. Co ..... 11
    Feed-Water Heaters, Separators, Traps, Exhatist Heads, etc.
    Goubert Manufacturing Co.
    Goubert Manufacturing Co. ..... 9 ..... 9
    Fire Brick, Tiles, Slabs, Cupola Linings, Clay Retorts, etc. Maurer \& Son, Henry. ..... 22

    ## CLASSIFIED INDEX TO ADVERTISEMENTS.

    PAGE
    Fuel-Economizers and Furnaces. Green Fuel-Economizer Co., The ..... 8
    Holsting Machinery-Elevators, Conveyors, etc.
    Lambert Hoisting Engine Co. ..... 11
    Lidgerwond Mfg. Co. ..... 11
    Hydrants. Chapman Valve Mfg. Co. ..... 17
    Insulated Wires and Cables.
    Ansonia Brass \& Copper Co. ..... 12
    New York Insulated Wire Co. ..... 21
    Locomotives. Baldwin Locomotive Works ..... 2
    1 empres. National Meter Co. ..... 25
    Milling Machines, Shapers, Planers, Punches, Rolls, Shears, Lathes, Machine Tools, Bolts, etc. Garvin Machine Co. ..... 18
    Hendey Machine Co. ..... 19
    Lodge \& Shipley Machine Tool Co., The. ..... 20
    Sellers \& Co., William (Incorporated) ..... 19
    Mining anid Quarrying Machinery.
    Allis-Chalmers Co. ..... 7
    Ingersoll Rand Co ..... 4
    Norwalk Iron Works ..... 5
    Packing-Piston, Valve, Joint. Boston Belting Co. ..... 15
    Pipe, Water and Gas. .....
    3 .....
    3
    National Tube Co.
    National Tube Co.
    25
    25
    Walworth Mfg. Co ..... 28
    Warren Foundry \& Machine Co. ..... 23
    Pneumatic Tools. Ingerso!l-Rand Co ..... 4
    Pumping Machinery.
    Allis-Chalmers Co ..... 7
    Epping-Carpenter Co ..... 5
    National Meter Co ..... 25
    Rider-Ericsson Engine Co ..... 10
    Snider-Hughes Co., The. ..... 20
    Rubber Goods. Boston Belting Co. ..... 15
    Scale-preivention. Kennicott Water softener Co. ..... 10
    Sheet Steel, Tin Plate, Galvanized Iron, etc.
    American Sheet \& Tin Plate Co ..... 28
    Steam Spfecialties and Engineering Appliances.
    Goubert Manufacturing Co ..... 9
    Hancock Inspirator Co. ..... 3
    Walworth Mfg. Co ..... 28
    Survering Instruments .....
    27 .....
    27 ..... 27
    Keuffel \& Esser Co.
    Keuffel \& Esser Co.
    Tool Grinders. Norton Emery Wheel Co. ..... 16
    Transmission Rope.
    American Manufacturing Co. ..... 13
    Geo. B. Carpenter \& Co. ..... 14
    Valves-Gas, Water, and Steam. Chapman Valve Mfg. Co. ..... 17
    Hancock Inspirator Co ..... 3 ..... 3
    Water-Supply. Rider-Ericsson Engine Co. ..... 10 ..... 10
    Wire Rope and Telegraph, Telephone, and Trolley Wire. Ansonia Brass \& Copper Co. ..... 12
    Roebling's Sons Co., John A. ..... 12

    ## Triplex Blocks

    
    are available for almost every contracting and engineering work. They are the most efficient hand hoists made, and effect pronounced savings in time, labor and repair bills.

    Yale © Towne Cbain Blocks are constructed upon the most approved mechanical principles, and each part is carefully made and inspected. This makes each block absolutely safe and promotes ease of operation and long life.

    Triplex.-For greatest ease and quickness. 14 sizes. $1 / 2$ to 20 tons.

    Duplex.-For ease and handiness. io sizes. $1 / 2$ to 10 tons.

    Differential.-The Cheapest reliable chain block. 7 sizes. $1 / 8$ to 3 tons.

    Electric Hoist.-Best where conditions justify it. 4 sizes. I to 6 tons.

    Catalogues and other information sent on request.

    > The Yale \& Towne Mfg. Co. 9-15 Murray Street, New York
    > Local Offices: Chicago, Boston, Philadelphia, San Franciscn

    ## BALDWIN LOCOMOTIVE WORKS.

    Burnham, Williams \& Co., Philadelphia, U. S. A.
    

    ## LOCOMOTIVES of all descriptions.

    Mine and Furnace Locomotives operated by Steam, Compressed Air, and Electricity.

    ## The General Electric Company's Type M Control <br> (Sprague=General Electric System)

    FOR ELECTRIC TRAINS IAS BEEN ADOPTED EXCLU. SIVELY BY THE NEW YORK UNDERGROUND RAILIVAY.
    (Interborough Rapid Transit Company)
    ALL ELECTRIC TRAINS ON MANHATTAN ISLAND ARE EQUIPPED WITH THE SPRAGUE-GENERAL ELECTRIC SYSTEM OF CONTROL.

    General Office: SCHENECTADY, N. Y.
    New York Office : 44 Broad Street. Sales Offices in all large cities

    ## THE HANCOCK VALVES

    Made in one grade ONLY FOR ALL KINDS OF SERVICE
     "We guarantee that each and every Hancock Globe, Angle. $60^{\circ}$ and Cross Valve, with our monogram on it, has been tested with iooo pounds water pressure and found tight before leaving the works."

    > Write for our book of "valves"
    > The Hancock Inspipator Co,
    > $22-24-26$ so. Canal St. CHICAGO

    85-87-89 Liberty St. NEW YORK

    ## NATIONAL TUBE COMPANY, <br> MANUFACTURERS OF

    LAP- AND BUTT-WELDED WROUGHT PIPE ( $1 / 8$ INCH TO 30 INCHES DIAMETER.)
    Charcoal-Iron and Mild-Steel Boiler-Tubes FOR
    Marine, Locomotive, and Stationary Boilers. SEAMLESS TUBES.
    TROLLEY POLES, OIL- AND WATER-WELL TUBULAR GOODS.

    > LOCAL SALES OFFICES: BOSTON, NEW YORK, PHILADELPHIA, PITTSBURG, CHICAGO.

    SAN FRANCISCO.
    FOREIGN SALES-OFFICE: LONDON, ENGLAND.

    # AIR POWER APPLIANCES 

    For thirty-five years the standards of progress in engineering work

    AIR AND GAS COMPRESSORS ROCK DRILLS COAL-MINING MACHINERY STONE CHANNELERS<br>PNEUMATIC PUMPING SYSTEMS PNEUMATIC TOOLS

    Complete Pneumatic Power Equipments
    Descriptive literature sent on request

    ## IHE NORWALK AIR COIIPRESSOR

    ## OF STANDARD PATTERN

    
    is built with Tandem Compound Air Cylinders. Corliss Air Valves on the intake cylinders insure small clearance spaces. The Intercooler between the cylinders saves power by removing the heat of compression before the work is done, not after, and the compressing is all done by a straight pull and push on a continuous piston rod. The Compressor is self-contained: the repair bills are reduced to a minimum, and the machine is economical and efficient. Special machines for high pressures and for liquefying gases. Compound and Triple Steam Ends.

    A catalog, explaining its many points of superiority, is sent free to business men and engineers who apply to

    ## THE NORWALK IRON WORKS CO.,

    SOUTH NORWALK, CONN.

    ## EPPING-CARPENTER COMPANY,

    PITTSBURG, PA.
    ## IMPROVED PUMPING MACHINERY

    FOR EVERY SERVICE.Also Surface Condensers, with Air and Circulating Pumps, both Single and Duplex.
    

    New York Otfice,
    Cicveland Office,
    141 Broadway.

    # Harrisburg Engines 

    6 TO 3,000 HORSE POWER HGH SPEED, MEDIUM SPEED AND CORLISS

    ## Harrisburg ${ }^{\text {Foundry and }}$ Machine $W$ orks harrisburg, pa.

    # AMERICAN-BALL DUPLEX COMPOUND ENGINE 

    

    Complete electric and steam equipments furnished of our own manufacture.

    ## AMERICAN ENGINE CO.,

    New York Qffice-95 Liberty St. Bound Brook, N. d.

    # ALLIS=CHALMERS CO., 

    GENERAL OFFICE:
    CHICAGO, U. S. A.
    New York Life Building.

    ## SOLE BUILDERS OF hewnalos coriliss Elililis

    FOR ALL POWER PURPOSES.

    Reynolds Horizuntal Cross-Compound Engine. HIGH DUTY, TRIPLE EXPANSION AND COMPOUND

    # PUMPIIIG EICIINES, 

    Sewerage and Drainage Pumps.
    Blowing and Hoisting Engines. RIEDLER PUMPS AND AIR COMPRESSORS.

    BRANCH OFFICES:
    NEW YORK,
    71 Broadway.
    BOSTON. PIT'TSBURG. CHARLOT'TE. ATJANTA.
    NEW ORLEANS. DENVER. SPOKANE.
    SALT LAKE CITY. SEATTLE. SAN FRANCISCO,

    ## THE

    ## Stirling Consolidated Boiler Co.

    Successors to the plants and water-tube boiler business of the Stirling Company, Barberton, Ohio, and the Aultman \& Taylor Machinery Company, Mansfield, Ohio. MANUFACTURERS OF

    Stirling, A. \& T. Horizontal, and Cahall Vertical Water=tube Boilers, Chain Grate Stokers, and Superheaters.

    Works
    BARBERTON, OHIO MANSFIELD, OHIO

    ## General Offices

    ## TRINITY BUILDING

    III BROADWAY, NEW YORK

    ## GREEN'S FUEL ECONOMIZER

    FOR STEAM BO'LERS.
    

    ADVANTAGES--Ileats the feed water to High Temperature, thu effecting a GREAT SAVING IN COAL. Can be applicd to any type of boflea Without atoppage of works. A larere volume wifater alwaysinreserve at the evaporative point ready for hmineliate delfyery to the boilers.
    Sixteen Prize Medals.
    SOLE MAKERS IN THE UNITLI STATES.

    THE GREEN FUEL ECONOMIZER CO. of Mattedwan, N. ?
    

    ## The Stratton Steam Separator

    ## Dry Steam

    Its construction is familiar to engineers in every part of the world, and the plan on which it operates has never been improved upon. The unrestricted flow of steam contrasts strongly with the baffle-plate type.

    ## THE GOUBERT FEED=WATER HEATER

    Which is used in most of the largest street-railway and electric plants in the country. It has straight tubes, free exhaust, curved tubeplates, and is made in sizes from 50 to 6,000 horse-power.

    Send for our new Catalogs.

    ## The Goubert Mfg. Comp ${ }^{\prime} y$

    85 Liberty St., N. Y., U. S. A.
    

    ## DOMESTIC WATER=SUPPLY

    

    Without Depending on the Wind.

    ## THE IMPROVED RIDciR AND IMPROVED ERICSSON HOT=AIR PUMPING= ENGINES

    In use for twenty-five years.
    More than 20,000 sold.
    Specified by the Leading Engineers of this country.

    Catalogue ors application to near est store.

    ## RIDER=ERICSSON ENGINE CO.s,

    35 Warren Street, New York.
    239 Franklin Street, Boston.
    692 Craig Street, Montreal, P. Q.

    40 Dearborn Street, Chicago. 40 North 7th Street, Philadelphia. Teniente-Bey 7I, Havana, Caba.
    

    ## SOFT WATER

    FOR ALL
    INDUSTRIAL PURPOSES.

    KENNICOTT
    WATER
    SOFTENER CO.,

    3580 Butier St.,
    Chicago.

    ## HOISTING ENGINES of the LIDGERWOOD make

    
    are built to gauge on the Duplicate
    Part System. Quick delivery assured.

    ## STANDARD for Ouality and Duty.

    Over 24,000 in use. STEAM AND ELECTRIC HOISTS.

    ## CABLEWAYS,

    HOISTING AND CONVEYING DEVICES, For Mining, Quarrying, Logging, Dam Construction, etc.
    ## LIDGERWOOD MFG. CO.,

    # LOGGING ENGINES 

    ## CABLEWAYS

    Send for Catalogue D.D.

    ## LAMBERT HOISTING ENGINE CO.,

    Main Office and Woris:
    115=121 Poinier Street, Newark, N. J., U. S. A.
    New York Office, $==85$ Liberty Street.
    Boston, Philadelphia, Allegheny, Toledo, St. Louis, San Francisco

    ## ANSONIA BRASS \& COPPER CO.

    MANUFACTURERS OF

    ## COPPER WIRE AND CABLES

    For Trolley Roads, Electric Lighting Companies, Power Transmission Plants, Etc.
    ## DRAWN COPPER BARS

    For Switchboards, Commutators, Armatures, Etc.

    SOLE MANUFACTURERS

    ## "TOBIN BRONZE"

    Rods for Yacht Shaiting, Bolts, Pump Pistons; also Sheets, Tubes, Etc

    $$
    99 \text { JOHN ST., NEW YORK CITY }
    $$

    
    

    ## "OLD COLONY"

    ## Transmission Rope

    Our Old Colony selected long fibre Manila Transmission Rope embodies every point of high quality and efficiency that long experience and scientific experiment have contributed to the art of rope making. It is the one rope on the market sold absolutely on its merits, its price being always based on the market value of the best marks of Cebu Manila hemp, of which it is made.

    In the manufacture of Old Colony Rope the question of price is not considered, the purpose at all times being to better its quality, if possible, rather than to decrease its cost. In equipping your plant with Old Colony Rope you are getting absolutely the best that money can buy.

    ## GEO. B. CARPENTER Q CO.

    200, 202, 204, 206, 208 S. Water St., Chicago
    Our 900-page general catalogue of mill supplies, etc., is wortl owning. Send 25 c . in stamps.

    ## GEO. V. CRESSON CO.,

    Main Office and Works, Allegheny Ave. west of Seventeenth St., Philadelphia, Pa. New York Office: 141 Liberty St. Engineers, Founders, and Machinists.

    Manufacturers of pOWER TRANSMITTING MACHINERY, CRUSHING ROLLS and JAW CRUSHERS.

    Builders of
    SPECIAL MACHINERY TO ORDER.
    

    ## JEWELL BELTING COMPANY

    EXCLUSIVE MANUFACTURERS OF

    ## VICI BELTING

    OFFICE AND FACTORY
    HARTFORD, CONN.

    BRANCHES:
    New York
    Memphis
    Chicago
    Philadelphia
    Cincinnati
    San Francisco:
    

    ## THOROUGH INSPECTIONS

    AND
    Cnsurance against Loss or Damage to Property and Loss of Life and Injury to Persons caused by

    ## Steam Boiler Explosions

    L. B. BRAINERD, President and Tteasurer.
    F. B. ALLEN. Vice-President.
    J. B. PIERCE, Secretary.
    J. F. MIDDLEBROOK, Asst. Secretary.
    UNIFORM QUALITY, QUICK-CUTTING, WONDERFUL DURABILITY, WATERPROOF, NO DUST, NO ODOR.
    
    WALKER UNIVERSAL TOOL AND CUTTER GRINDER.
    NORTON EMERY WHEEL CO., WORCESTER, MAES,

    # Morse Twist Drill and Machine Co., NEW BEDFORD, MASS., U. S. A, 

    Arbors. Beach, Stetson, and Center Drill Chucks. Counterbores and Countersinks. Increase Twist and Constant Angle Drills. Drills with Oil Holes. Drills with Grooved Shanks. Dies. Gauges. Mandrels. Metal-slitting Saws. Milling Cutters. End Mills. Shell End Mills. Taper Pins. Adjustable and Expansion Reamers. Reamers with Oil Holes. Screw Plates with Dies. Sockets. Sleeves. Taps and Tap Wrenches.

    ## We also make Special Tools and Machines and solicit your correspondence.

    A copy of our latest Catalogue sent free to any address.

    ## CHAPMAN VALVE MFG. CO.,

    ## WORKS AND MAIN OFFICE: <br> INDIAN ORCHARD, MASS.

    BRANCH OFFICES:
    BOSTON, NEW YORK, PHILADELPHIA, BALTIMORE, ALLENTOWN, PA.; CHICAGO, ST. LOUIS, SAN FRAN. CIECO, LONDON, ENGLAND; PARIS, FRANCE; AND JOHANNESBURG, SOUTH AFRICA.

    VALVESMADE IN ALL SIZES AND FOR ALL PURPOSES AND PRESSURES.

    # MODERN 

    # Cement Machinery 

    FOR EITHER WET OR DRY PROCESS

    ## ROTARY KILNS

    BALL MILLS
    TUBE MILLS
    DRYERS, MIXERS, ETC.

    ## THE BONNOT COMPANY CANTON, Ohio U.S.A.

    ## THE GARVIN MACHINE CO.

    Main Offices and Works: Spring and Varick Streets, New York

    No. 2 Garvin Universal Milling Machine

    ## Manufacturers of

    Milling Machines Universal, Plain, Vertical, Profile, Hand, Lincoln and Duplex Styles
    Screw Machines Monitor Lathes Forming Machines Tapping Machines Drill Presses
    Cutter Grinders
    Hand Lathes SPECIAL MACHINERY Send for new Catalog.

    # WM. SELLERS \& CO. 

    (INCORPORATED), PHILADELPHIA, U. S. A.HIGH-SPEED TRAVELING AND SWING-CRANES, INJECTORS FOR ALL CONDITIONS OF SERVICE. GRINDING - MACHINES FOR TOOLS AND DRILLS. IMPROVED HYDRAULIC TESTING-MACHINES, Under Patents of A. H. Emery.
    TURNTABLES FOR LOCOMOTIVES AND SHOPCARS.
    IMPROVED LABOR-SAVING MACHINE TROLS For Railway and Machine-shop Equipment. SHAFTING IN ALL ITS DETAILS FOR THE ECONOMICAL TRANSMISSION OF POWER.

    ## The Hendey Machine Company,

    TORRINGTON, CONN.,MANUFACTURERS OF

    # MACHINE TOOLS. 

    SPECIALTIES:
    Hendey-Norton Milling Machines,
    Hendey-Norton Lathes, AND

    Hendey Pillar Shapers.

    # FAN and PRESSURE BLOWERS, EXHAUST FANS FOR ALL USES, 

    Hot Blast Heating Apparatus, Dry Kiln Outfits, Steam Fans, Forges, High and Low Pressure Engines. SEND FOR CIRCULARS.
    ## BOSTON BLOWER CO., HYDE PARK, MASS.

    ## THE SNIDER-HUGHES CO.

    sheridan street, CLEVELAND, OHIO. MANUFACTURERS OFSTEAM-PUMPS FOR EVERY SERVICE. JET AND SURFACE CONDENSERS.
    Estimates furnished on request.
    YOUR CORRESPONDENCE IS SOLICITED.
    SKINNER
    LATHE, DRILL, PLANER CHUCKS.
    
    
    

    THE SKINNER CHUCK CO.
    New Britain, Conn.
    LATHES

    Engine Lathes and Turret Lathes 14 -inch to 48 -inch Swing
    High Speed Lathes for straight turning Axle Lathes for railroads.
    EFFICIENT, ACCURATE, DURABLE.
    THE LODGE \& SHIPLEY MACUINF TCOL CO. CINCINNATI, O., U. S. A
    

    THE UNIVERSAL DRAFTING MACHINE saves the waste of time and distraction of mind caused by the continual changing of tools.

    This results in rapid work and better work, as the mind is left free for concentration upon the design.

    Send for complete information.

    ## UNIVERSAL DRAFTING MACHINE CO.

    220-226 Seneca StreetCLEVELAND, O.
    U. S. A.

    # ALL OUR WIRES 

    NAT'L BOARD OF FIRE UNDERWRITERS
    STANDARD.

    ## NEW YORK INSULATED WIRE CO.

    Main Office: 114 Liberty Street, N. Y.
    Branches: CHiCAG0, 192 Desplaines St,; BOSTON, 70 tis St.; SAN FRANCISCO, 33 Second St.
    WELDLESS STEEL WIRE CHAIN. twice the strength of welded.
    

    TRIUMPH PATTERN. 14 sizes.
    Send for results of voluntary tests made by the British Scientific Society.
    THE BRIDGEPORT CHAIN CO., Bridgeport, Conn. We Make over Ten miles per day.
    

    Chimneys straightened, pointed, banded, without inconveniencing or delaying the plant. Estimates cheerfully furnished on application. Write for catalogue and references.
    american branches:

    New York, 517-520 Bennett Bldg
    Chicago, 822-4 Marquette Bldg.

    Philadelphia, 720 Arcade Bldg. Boston, 725 Exchange Bldg. cipal cities of eurore.

    ## HENRY MAURER \& SON,

    MANUFACTURERS OF

    ## 

    ## Clay Retorts for Gas Works.

    Office, 420 East 23d Street,

    Works, Maurer, N. J.<br>P. O., Telegraph, and R. R. Station.)

    NEW YORK.

    170 BR0ADWAY, NEW YORK CITY
    Warren Foundry and Machine Co.
    

    ALSO ALL KINDS OF
    Flange Pipe, Condenser Tubes, DRYER CYLINDERS AND

    SPECIALCASTINGS
    RANDOLPH-CLOWES CO. Waterbury, Conn.

    Brass and Copper Rolling Mills AND

    Tube Works.

    SEAMLESS BRASS and COPPER TUBES and SHELLS Up to 36 Inches Diameter.

    # ATLAS <br> <br> PORTLAND 

    <br> <br> PORTLAND